Cisco MDS 9000 Family supports IP version 4 (IPv4) on Gigabit Ethernet interfaces. This chapter describes how to configure IPv4 addresses and other IPv4 features.

This chapter includes the following topics:
- About IPv4, page 46-1
- Basic Gigabit Ethernet Configuration for IPv4, page 46-2
- Verifying Gigabit Ethernet Connectivity, page 46-4
- VLANs, page 46-5
- Configuring Static IPv4 Routing, page 46-7
- IPv4-ACLs, page 46-7
- ARP Cache, page 46-8
- Displaying IPv4 Statistics, page 46-9
- Default Settings, page 46-10

About IPv4

Both FCIP and iSCSI rely on TCP/IP for network connectivity. On each IPS module or MPS-14/2 module, connectivity is provided in the form of Gigabit Ethernet interfaces that are appropriately configured. This section covers the steps required to configure IP for subsequent use by FCIP and iSCSI.

A new port mode, called IPS, is defined for Gigabit Ethernet ports on each IPS module or MPS-14/2 module. IP storage ports are implicitly set to IPS mode, so it can only be used to perform iSCSI and FCIP storage functions. IP storage ports do not bridge Ethernet frames or route other IP packets.

Each IPS port represents a single virtual Fibre Channel host in the Fibre Channel SAN. All the iSCSI hosts connected to this IPS port are merged and multiplexed through the single Fibre Channel host.

In large scale iSCSI deployments where the Fibre Channel storage subsystems do not require explicit LUN access control for every host device, use of proxy-initiator mode simplifies the configuration.
Basic Gigabit Ethernet Configuration for IPv4

Figure 46-1 shows an example of a basic Gigabit Ethernet IP version 4 (IPv4) configuration.

To configure the Gigabit Ethernet interface for the example in Figure 46-1, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config)# config terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# interface gigabitethernet 2/2</td>
<td>Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2).</td>
</tr>
<tr>
<td>switch(config-if)# ip address 10.1.1.100 255.255.255.0</td>
<td>Enters the IPv4 address (10.1.1.100) and subnet mask (255.255.255.0) for the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>switch(config-if)# no shutdown</td>
<td>Enables the interface.</td>
</tr>
</tbody>
</table>

This section includes the following topics:
- Configuring Interface Descriptions, page 46-3
Configuring Interface Descriptions

See the “About Interface Descriptions” section on page 13-17 for details on configuring the switch port description for any interface.

Configuring Beacon Mode

See the “About Beacon Mode” section on page 13-19 for details on configuring the beacon mode for any interface.

Configuring Autonegotiation

By default, autonegotiation is enabled all Gigabit Ethernet interface. You can enable or disable autonegotiation for a specified Gigabit Ethernet interface. When autonegotiation is enabled, the port automatically detects the speed or pause method, and duplex of incoming signals based on the link partner. You can also detect link up conditions using the autonegotiation feature.

To configure autonegotiation, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | switch# config terminal
switch(config)# | Enters configuration mode. |
| 2 | switch(config)# interface gigabitethernet 2/2
switch(config-if)# | Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2). |
| 3 | switch(config-if)# switchport auto-negotiate
switch(config-if)# no switchport auto-negotiate | Enables autonegotiation for this Gigabit Ethernet interface (default). Disables autonegotiation for this Gigabit Ethernet interface. |

Note When using DS-SFP-GE-T (copper SFPs) on Gigabit Ethernet interfaces in a DS-X9316-SSNK9 module, auto-negotiation should be disabled.

Configuring the MTU Frame Size

You can configure the interfaces on a switch to transfer large (or jumbo) frames on a port. The default IP maximum transmission unit (MTU) frame size is 1500 bytes for all Ethernet ports. By configuring jumbo frames on a port, the MTU size can be increased up to 9000 bytes.
Verifying Gigabit Ethernet Connectivity

Send documentation comments to mdsfeedback-doc@cisco.com

Note

The minimum MTU size is 576 bytes.

Tip

MTU changes are disruptive, all FCIP links and iSCSI sessions flap when the software detects a change in the MTU size.

You do not need to explicitly issue the `shutdown` and `no shutdown` commands.

To configure the MTU frame size, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | switch# config terminal
| | switch(config)# | Enters configuration mode. |
| Step 2 | switch(config)# interface gigabitethernet 2/2
| | switch(config-if)# | Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2). |
| Step 3 | switch(config-if)# switchport mtu 3000 | Changes the MTU size to 3000 bytes. The default is 1500 bytes. |

Configuring Promiscuous Mode

You can enable or disable promiscuous mode on a specific Gigabit Ethernet interface. By enabling the promiscuous mode, the Gigabit Ethernet interface receives all the packets and the software then filters and discards the packets that are not destined for that Gigabit Ethernet interface.

To configure the promiscuous mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | switch# config terminal
| | switch(config)# | Enters configuration mode. |
| Step 2 | switch(config)# interface gigabitethernet 2/2
| | switch(config-if)# | Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2). |
| Step 3 | switch(config-if)# switchport promiscuous-mode on | Enables promiscuous mode for this Gigabit Ethernet interface. The default is off. |
| | switch(config-if)# switchport promiscuous-mode off | Disables (default) promiscuous mode for this Gigabit Ethernet interface. |
| | switch(config-if)# no switchport promiscuous-mode | Disables (default) the promiscuous mode for this Gigabit Ethernet interface. |

Verifying Gigabit Ethernet Connectivity

Once the Gigabit Ethernet interfaces are connected with valid IP addresses, verify the interface connectivity on each switch. Ping the IP host using the IP address of the host to verify that the static IP route is configured correctly.
Note

If the connection fails, verify the following, and ping the IP host again:
- The IP address for the destination (IP host) is correctly configured.
- The host is active (powered on).
- The IP route is configured correctly.
- The IP host has a route to get to the Gigabit Ethernet interface subnet.
- The Gigabit Ethernet interface is in the up state.

Use the `ping` command to verify the Gigabit Ethernet connectivity (see Example 46-1). The `ping` command sends echo request packets out to a remote device at an IP address that you specify (see the “Using the ping and ping ipv6 Commands” section on page 2-15).

Use the `show interface gigabitethernet` command to verify if the Gigabit Ethernet interface is up.

```
Example 46-1  Verifying Gigabit Ethernet Connectivity

switch# ping 10.100.1.25
PING 10.100.1.25 (10.100.1.25): 56 data bytes
64 bytes from 10.100.1.25: icmp_seq=0 ttl=255 time=0.1 ms
64 bytes from 10.100.1.25: icmp_seq=1 ttl=255 time=0.1 ms
64 bytes from 10.100.1.25: icmp_seq=2 ttl=255 time=0.1 ms
--- 10.100.1.25 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.1/0.1 ms
```

VLANs

This section describes virtual LAN (VLAN) support in Cisco MDS NX-OS and includes the following topics:
- About VLANs for Gigabit Ethernet, page 46-5
- Configuring the VLAN Subinterface, page 46-6
- Interface Subnet Requirements, page 46-6

About VLANs for Gigabit Ethernet

Virtual LANs (VLANs) create multiple virtual Layer 2 networks over a physical LAN network. VLANs provide traffic isolation, security, and broadcast control.

Gigabit Ethernet ports automatically recognize Ethernet frames with IEEE 802.1Q VLAN encapsulation. If you need to have traffic from multiple VLANs terminated on one Gigabit Ethernet port, configure subinterfaces—one for each VLAN.

Note

If the IPS module or MPS-14/2 module is connected to a Cisco Ethernet switch, and you need to have traffic from multiple VLANs coming to one IPS port, verify the following requirements on the Ethernet switch:
- The Ethernet switch port connected to the IPS module or MPS-14/2 module is configured as a trunking port.
- The encapsulation is set to 802.1Q and not ISL, which is the default.
Use the VLAN ID as a subscription to the Gigabit Ethernet interface name to create the subinterface name (the `<slot-number>/<port-number>.<VLAN-ID>`).

Configuring the VLAN Subinterface

To configure a VLAN subinterface (VLAN ID), follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | switch# config terminal
 | switch(config)# |
| | Enters configuration mode. |
| Step 2 | switch(config)# interface gigabitethernet 2/2.100
 | switch(config-if)# |
| | Specifies the subinterface on which 802.1Q is used (slot 2, port 2, VLAN ID 100). |
| | Note: The subinterface number, 100 in this example, is the VLAN ID. The VLAN ID ranges from 1 to 4093. |
| Step 3 | switch(config-if)# ip address 10.1.1.101
 | 255.255.255.0 |
| | Enters the IPv4 address (10.1.1.100) and subnet mask (255.255.255.0) for the Gigabit Ethernet interface. |
| Step 4 | switch(config-if)# no shutdown |
| | Enables the interface. |

Interface Subnet Requirements

Gigabit Ethernet interfaces (major), subinterfaces (VLAN ID), and management interfaces (mgmt 0) can be configured in the same or different subnet depending on the configuration (see Table 46-1).

<table>
<thead>
<tr>
<th>Interface 1</th>
<th>Interface 2</th>
<th>Same Subnet Allowed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet 1/1</td>
<td>Gigabit Ethernet 1/2</td>
<td>Yes</td>
<td>Two major interfaces can be configured in the same or different subnets.</td>
</tr>
<tr>
<td>Gigabit Ethernet 1/1.100</td>
<td>Gigabit Ethernet 1/2.100</td>
<td>Yes</td>
<td>Two subinterfaces with the same VLAN ID can be configured in the same or different subnets.</td>
</tr>
<tr>
<td>Gigabit Ethernet 1/1.100</td>
<td>Gigabit Ethernet 1/2.200</td>
<td>No</td>
<td>Two subinterfaces with different VLAN IDs cannot be configured in the same subnet.</td>
</tr>
<tr>
<td>Gigabit Ethernet 1/1</td>
<td>Gigabit Ethernet 1/1.100</td>
<td>No</td>
<td>A subinterface cannot be configured on the same subnet as the major interface.</td>
</tr>
<tr>
<td>mgmt0</td>
<td>Gigabit Ethernet 1/1.100</td>
<td>No</td>
<td>The mgmt0 interface cannot be configured in the same subnet as the Gigabit Ethernet interfaces or subinterfaces.</td>
</tr>
<tr>
<td>mgmt0</td>
<td>Gigabit Ethernet 1/1</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Note The configuration requirements in Table 46-1 also apply to Ethernet PortChannels.
Configuring Static IPv4 Routing

To configure static IPv4 routing (see Figure 46-1) through the Gigabit Ethernet interface, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# config terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# ip route 10.100.1.0 255.255.255.0 10.1.1.1 switch(config-if)#</td>
<td>Enters the IP subnet (10.100.1.0 255.255.255.0) of the IP host and configures the next hop 10.1.1.1, which is the IPv4 address of the router connected to the Gigabit Ethernet interface.</td>
</tr>
</tbody>
</table>

Displaying the IPv4 Route Table

The `ip route interface` command takes the Gigabit Ethernet interface as a parameter and returns the route table for the interface. See Example 46-2.

Example 46-2 Displays the IP Route Table

```
switch# show ips ip route interface gig 8/1
Codes: C - connected, S - static
No default gateway
C 10.1.3.0/24 is directly connected, GigabitEthernet8/1
```

Connected (C) identifies the subnet in which the interface is configured (directly connected to the interface). Static (S) identifies the static routes that go through the router.

IPv4-ACLs

This section describes the guidelines for IPv4 access control lists (IPv4-ACLs) and how to apply them to Gigabit Ethernet interfaces.

This section includes the following topics:

- Gigabit Ethernet IPv4-ACL Guidelines, page 46-7
- Applying IPv4-ACLs on Gigabit Ethernet Interfaces, page 46-8

Note

For information on creating IPv4-ACLs, see Chapter 35, “Configuring IPv4 and IPv6 Access Control Lists.”

Gigabit Ethernet IPv4-ACL Guidelines

Follow these guidelines when configuring IPv4-ACLs for Gigabit Ethernet interfaces:

- Only use Transmission Control Protocol (TCP) or Internet Control Message Protocol (ICMP).
Note
Other protocols such as User Datagram Protocol (UDP) and HTTP are not supported in Gigabit Ethernet interfaces. Applying an ACL that contains rules for these protocols to a Gigabit Ethernet interface is allowed but those rules have no effect.

- Apply IPv4-ACLs to the interface before you enable an interface. This ensures that the filters are in place before traffic starts flowing.
- Be aware of the following conditions:
 - If you use the log-deny option, a maximum of 50 messages are logged per second.
 - The established option is ignored when you apply IPv4-ACLs containing this option to Gigabit Ethernet interfaces.
 - If an IPv4-ACL rule applies to a pre-existing TCP connection, that rule is ignored. For example if there is an existing TCP connection between A and B and an IPv4-ACL which specifies dropping all packets whose source is A and destination is B is subsequently applied, it will have no effect.

Tip
If IPv4-ACLs are already configured in a Gigabit Ethernet interface, you cannot add this interface to an Ethernet PortChannel group. “Chapter 35, “Configuring IPv4 and IPv6 Access Control Lists,” for information on configuring IPv4-ACLs.

Applying IPv4-ACLs on Gigabit Ethernet Interfaces

To apply an IPv4-ACL on a Gigabit Ethernet interface, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# config t</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | switch(config)# interface gigabitethernet 3/1
switch(config-if)# |
| | Configures a Gigabit Ethernet interface (3/1). |
| **Step 3** | switch(config-if)# ip access-group SampleName |
| | Applies the IPv4-ACL SampleName on Gigabit Ethernet 3/1 for both ingress and egress traffic (if the association does not exist already). |
| **Step 4** | switch(config-if)# ip access-group SampleName1 in
switch(config-if)# ip access-group SampleName2 out |
| | Applies the IPv4-ACL SampleName1 on Gigabit Ethernet 3/1 for ingress traffic.
| | Applies the IPv4-ACL SampleName2 on Gigabit Ethernet 3/1 for egress traffic (if the association does not exist already). |

ARP Cache

Cisco MDS NX-OS supports ARP cache for Gigabit Ethernet interface configured for IPv4. This section includes the following topics:

- Displaying ARP Cache, page 46-9
- Clearing ARP Cache, page 46-9
Displaying ARP Cache

You can display the ARP cache on Gigabit Ethernet interfaces.

Note: Use the physical interface, not the subinterface, for all ARP cache commands.

Use the `show ips arp interface gigabitethernet` command to display the ARP cache on the Gigabit Ethernet interfaces. This command takes the Ethernet interface as a parameter and returns the ARP cache for that interface. See Example 46-3.

Example 46-3 Displays ARP Caches

```
switch# show ips arp interface gigabitethernet 7/1

Protocol         Address   Age (min)   Hardware Addr  Type   Interface
Internet        20.1.1.5        3     0005.3000.9db6  ARPA  GigabitEthernet7/1
Internet       20.1.1.10        7     0004.76eb.2ff5  ARPA  GigabitEthernet7/1
Internet       20.1.1.11       16     0003.47ad.21c4  ARPA  GigabitEthernet7/1
Internet       20.1.1.12        6     0003.4723.c4a6  ARPA  GigabitEthernet7/1
Internet       20.1.1.13       13     0004.76f0.ef81  ARPA  GigabitEthernet7/1
Internet       20.1.1.14       13     0004.76e0.2f68  ARPA  GigabitEthernet7/1
Internet       20.1.1.15       13     0003.47b2.494b  ARPA  GigabitEthernet7/1
Internet       20.1.1.17       13     0003.479a.b7a3  ARPA  GigabitEthernet7/1
...  
```

Clearing ARP Cache

The ARP cache can be cleared in two ways: clearing just one entry or clearing all entries in the ARP cache.

Use the `clear ips arp` command to clear the ARP cache. See Example 46-4 and Example 46-5.

Example 46-4 Clearing One ARP Cache Entry

```
switch# clear ips arp address 10.2.2.2 interface gigabitethernet 8/7
arp clear successful
```

Example 46-5 Clearing All ARP Cache Entries

```
switch# clear ips arp interface gigabitethernet 8/7
arp clear successful
```

Displaying IPv4 Statistics

Use the `show ips stats ip interface gigabitethernet` to display and verify IPv4 statistics. This command takes the main Ethernet interface as a parameter and returns the IPv4 statistics for that interface. See Example 46-6.

Note: Use the physical interface, not the subinterface, to display IPv4 statistics.
Example 46-6 Displays IPv4 Statistics

```
switch# show ips stats ip interface gigabitethernet 4/1
Internet Protocol Statistics for port GigabitEthernet4/1
  168 total received, 168 good, 0 error
  0 reassembly required, 0 reassembled ok, 0 dropped after timeout
  371 packets sent, 0 outgoing dropped, 0 dropped no route
  0 fragments created, 0 cannot fragment
```

Default Settings

Table 46-2 lists the default settings for IPv4 parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 MTU frame size</td>
<td>1500 bytes for all Ethernet ports.</td>
</tr>
<tr>
<td>Autonegotiation</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Promiscuous mode</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>