

Managing the Switch

- Displaying Information About Installed Hardware Modules, on page 1
- Displaying the Hardware Inventory for a Switch, on page 3
- Displaying the Backplane and Serial Number Information, on page 4
- Displaying Environmental Information for a Switch, on page 7
- Displaying Temperatures for Modules, on page 8
- Connecting to a Module, on page 10
- Saving the Module Configuration, on page 11
- Displaying Power Usage Information, on page 11
- Reloading a Module, on page 12
- Rebooting the Switch, on page 12
- Overview of Supervisor Modules, on page 13
- Overview of I/O Module Support, on page 13
- Power Modes Overview, on page 16
- Overview of Fan Trays, on page 20

Displaying Information About Installed Hardware Modules

To display information about the switch hardware and the hardware modules installed in the switch chassis, use the show hardware command.

Enter the show hardware command.

Example:

switch\# show hardware

Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html
Copyright (c) 2002-2015, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php

```
Software
    BIOS: version 1.7.0
    kickstart: version 8.3(0)SK(1) [build 8.3(0)SK(0.47)] [gdb]
    system: version 8.3(0)SK(1) [build 8.3(0)SK(0.47)] [gdb]
    BIOS compile time: 10/10/2017
    kickstart image file is: bootflash:///n7700-s3-kickstart.8.3.0.SK.0.47.gbin
    kickstart compile time: 5/31/2018 23:00:00 [03/02/2018 06:26:13]
    system image file is: bootflash:///n7700-s3-dk9.8.3.0.SK.0.47.gbin
    system compile time: 5/31/2018 23:00:00 [03/02/2018 08:23:10]
Hardware
    cisco Nexus7700 C7702 (2 Slot) Chassis ("Supervisor Module-3")
    Intel(R) Xeon(R) CPU with 32744992 kB of memory.
    Processor Board ID JAE183300QX
    Device name: APEX2
    bootflash: 4014080 kB
    slot0: 7989768 kB (expansion flash)
Kernel uptime is 6 day(s), 23 hour(s), 38 minute(s), 57 second(s)
Last reset at 448455 usecs after Wed Jun 3 19:10:58 2015
    Reason: Reset Requested by CLI command reload
    System version: 8.3(0)SK(0.47)
    Service:
plugin
    Core Plugin, Ethernet Plugin
Switch hardware ID information
--------------------------------
Switch is booted up
    Switch type is : Nexus7700 C7702 (2 Slot) Chassis
    Model number is N77-C7702
    H/W version is 0.202
    Part Number is 73-100796-02
    Part Revision is 02
    Manufacture Date is Year 19 Week 13
    Serial number is JPG1913002X
    CLEI code is CMM1700DRA
Chassis has 2 Module slots
Module1 ok
    Module type is : 100 Gbps Ethernet Module
    O submodules are present
    Model number is N77-F430CQ-36
    H/W version is 0.203
    Part Number is 73-101350-02
    Part Revision is 05
    Manufacture Date is Year 19 Week 41
    Serial number is JAE214303LY
    CLEI code is
Module2 ok
    Module type is : Supervisor Module-3
    O submodules are present
    Model number is N77-SUP3E
```

```
    H/W version is 0.909
    Part Number is 73-16310-09
    Part Revision is 09
    Manufacture Date is Year 18 Week 33
    Serial number is JAE2150086E
    CLEI code is
Chassis has 2 PowerSupply Slots
PS1 ok
    Power supply type is: 3000.00W 220v AC
    Model number is N7K-AC-3KW
    H/W version is 1.0
    Part Number is 341-0428-01
    Part Revision is A0
    Manufacture Date is Year 16 Week }5
    Serial number is DTM165200TK
    CLEI code is CMUPABRCAA
PS2 ok
    Power supply type is: 3000.00W 220v AC
    Model number is N77-AC-3KW
    H/W version is 1.0
    Part Number is 341-0600-01
    Part Revision is A0
    Manufacture Date is Year 17 Week 32
    Serial number is DTM173200S1
    CLEI code is CMUPAB4CAA
Chassis has 1 Fan slots
Fan1(sys_fan1) ok
    Model number is N77-C7702-FAN
    H/W version is 0.0
    Part Number is 73-100660-02
    Part Revision is 04
    Manufacture Date is Year 19 Week 6
    Serial number is DCH1906A020
    CLEI code is
```


Displaying the Hardware Inventory for a Switch

To display information about the field replaceable units (FRUs), including product IDs, serial numbers, and version IDs, use the show inventory command.

Enter the show inventory command.

```
Example:
switch# show inventory
NAME: "Chassis", DESCR: "Nexus7700 C7702 (2 Slot) Chassis "
PID: N77-C7702 , VID: V00, SN: JPG1913002X
```

```
NAME: "Slot 1", DESCR: "100 Gbps Ethernet Module"
PID: N77-F430CQ-36 , VID: V00 , SN: JAE214303LW
NAME: "Slot 2", DESCR: "Supervisor Module-3"
PID: N77-SUP3E , VID: V00, SN: JAE2150086E
NAME: "Slot 33", DESCR: "Nexus7700 C7702 (2 Slot) Chassis Power Supply"
PID: N7K-AC-3KW , VID: V01 , SN: DTM165200TK
NAME: "Slot 34", DESCR: "Nexus7700 C7702 (2 Slot) Chassis Power Supply"
PID: N77-AC-3KW , VID: V01 , SN: DTM173200S1
NAME: "Slot 35", DESCR: "Nexus7700 C7702 (2 Slot) Chassis Fan Module"
PID: N77-C7702-FAN , VID: V00, SN: DCH1906A020
```


Displaying the Backplane and Serial Number Information

You can display the backplane information, including the serial number for the switch, by using the show sprom backplane command.

Enter the show sprom backplane command.

Example:

```
switch# show sprom backplane 1
DISPLAY backplane sprom contents:
Common block:
    Block Signature : Oxabab
    Block Version : 3
    Block Length : 160
    Block Checksum : 0x170c
    EEPROM Size : 65535
    Block Count : 5
    FRU Major Type : 0x6001
    FRU Minor Type : 0x0
    OEM String : Cisco Systems, Inc.
    Product Number : N77-C7702
    Serial Number : JPG1913002X
    Part Number : 73-100796-02
    Part Revision : 02
    Mfg Deviation : 0
    H/W Version : 0.202
    Mfg Bits : 0
    Engineer Use : 0
    snmpOID : 9.12.3.1.3.1648.0.0
    Power Consump : 0
    RMA Code : 0-0-0-0
    CLEI Code : CMM1700DRA
    VID : V00
Chassis specific block:
    Block Signature : 0x6001
    Block Version : 3
    Block Length : 39
    Block Checksum : 0x360
    Feature Bits : 0x0
```

```
    HW Changes Bits : 0x1
    Stackmib OID : 0
    MAC Addresses : 8c-60-4f-30-db-00
    Number of MACs : }12
    OEM Enterprise : 9
    OEM MIB Offset : 5
    MAX Connector Power: 0
WWN software-module specific block:
    Block Signature : 0x6005
    Block Version : 1
    Block Length : 0
    Block Checksum : 0x268
wwn usage bits:
    00 00 00 00 00 00 00 00
    0 1 0 0 0 3 ~ f f ~ f f ~ 0 0 ~ 0 0 ~ 0 0 ~
    00 00 00 00 00 00 00 00
    00}0000000000 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00}00000000000\quad00\quad0
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00}0000000\quad00\quad00\quad00\quad0
    00 00 00 00 00 00 00 00
    00}000000000\quad00\quad00\quad0
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00}00000 00 00 00 00 00 
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00 00 00 00 00 00 00
    00 00
License software-module specific block:
    Block Signature : 0x6006
    Block Version : 1
    Block Length : 16
    Block Checksum : 0x17d
lic usage bits:
    c0 46 00 00 00 00 00 00
Second Serial number specific block:
    Block Signature : 0x6007
    Block Version : 1
    Block Length : 28
    Block Checksum : 0x31e
    Serial Number : JAE191106QG
switch# show sprom backplane 2
DISPLAY backplane sprom contents:
Common block:
    Block Signature : 0xabab
    Block Version : 3
```



```
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00}000000000\quad00\quad00\quad0
00}0000000\quad00\quad00\quad00\quad0
00 00 00 00 00 00 00 00
00 00
License software-module specific block:
    Block Signature : 0x6006
    Block Version : 1
    Block Length : 16
    Block Checksum : 0x17d
lic usage bits:
    c0 46 00 00 00 00 00 00
Second Serial number specific block:
    Block Signature : 0x6007
    Block Version : 1
    Block Length : 28
    Block Checksum : 0x31e
    Serial Number : JAE191106QG
```


Displaying Environmental Information for a Switch

You can display all of the environment-related switch information by using the show environment command.

Enter the show environment command.

Example:

Power Supply:				
Voltage: 50 Volts				
Power		Actual	Total	
Supply	Model	Output	Capacity	Status
		(Watts)	(Watts)	
1	N7K-AC-3KW	251 W	3000 W	Ok
2	N77-AC-3KW	245 W	3000 W	Ok
Module		Actual	Power	
	Model	Draw	Allocated	Status
		(Watts)	(Watts)	
1	N77-F430CQ-36	604 W	1000 W	Powered-Up
2	N77-SUP3E	100 W	190 W	Powered-Up
fan1	N77-C7702-FAN	39 W	300 W	Powered-Up

N/A - Per module power not available

Power Usage Summary:
Power Supply redundancy mode (configured)
Power Supply redundancy mode (operational)
Total Power Capacity (based on configured mode)
PS-Redundant
PS-Redundant

3000 W
Total Power of all Inputs (cumulative) 6000 W

Displaying Temperatures for Modules

Each module has temperature sensors with two thresholds:

- Minor temperature threshold-When a minor threshold is exceeded, a minor alarm occurs and the following actions occur for all four sensors:
- Displays system messages
- Sends Call Home alerts (if configured)
- Sends SNMP notifications (if configured)
- Major temperature threshold-When a major threshold is exceeded, a major alarm occurs and the following actions occur:
- For sensors 1, 3, and 4 (outlet and onboard sensors), the following actions occur:
- Displays system messages.
- Sends Call Home alerts (if configured). For more information, refer Associating an Alert Group with a Destination Profile .
- Sends SNMP notifications (if configured). For more information, refer Enabling SNMP Notifications.
- For sensor 2 (intake sensor), the following actions occur:
- If the threshold is exceeded in a switching module, only that module is shut down.
- If the threshold is exceeded in an active supervisor module with HA-standby or standby present, only that supervisor module is shut down and the standby supervisor module takes over.
- If you do not have a standby supervisor module in your switch, you have up to 2 minutes to decrease the temperature. During this interval, the software monitors the temperature every 5 seconds and continuously sends system messages as configured.

Tip We recommend that you install dual supervisor modules. If you are using a switch without dual supervisor modules, we recommend that you immediately replace the fan module if just one fan is not working.

Note A threshold value of -127 indicates that no thresholds are configured or applicable.
You can display temperature readings for module temperature sensors by using the show environment temperature command.

Enter the show environment temperature command.

Example:

Module	Sensor	MajorThresh (Celsius)	MinorThres (Celsius)	CurTemp (Celsius)	Status
1	Crossbar1(s1)	125	115	51	Ok
1	Crossbar2 (s2)	125	115	51	Ok

Arb-mux (s3)	125	115	35	Ok
L2L3Dev1 (s5)	125	115	31	Ok
L2L3Dev2 (s6)	125	115	29	Ok
L2L3Dev3 (s7)	125	115	34	Ok
L2L3Dev4 (s8)	125	115	32	Ok
L2L3Dev5 (s9)	125	115	31	Ok
L2L3Dev6 (s10)	125	115	32	Ok
Inlet (s1)	60	42	17	Ok
Crossbar (s2)	125	115	58	Ok
L2L3Dev1 (s3)	125	110	39	Ok
Arbiter (s4)	125	105	47	Ok
CPU1CORE1 (s5)	85	75	27	Ok
CPU1CORE2 (s6)	85	75	26	Ok
CPU1CORE3 (s7)	85	75	26	Ok
CPU1CORE4 (s8)	85	75	24	Ok
CPU2CORE1 (s9)	85	75	23	Ok
CPU2CORE2 (s10)	85	75	21	Ok
CPU2CORE3 (s11)	85	75	24	Ok
CPU2CORE4 (s12)	85	75	19	Ok
DDR3DIMM1 (s13)	95	85	25	Ok
DDR3DIMM2 (s14)	95	85	24	Ok
DDR3DIMM4 (s16)	95	85	22	Ok
DDR3DIMM5 (s17)	95	85	21	Ok

Connecting to a Module

At any time, you can connect to any module by using the attach module command. Once you are at the module prompt, you can obtain further details about the module by using module-specific commands in EXEC mode.

Step 1 Enter the attach module slot_number command.

Example:

```
switch# attach module 1
switch#
```

Provides direct access to the I/O module in slot 1 (in this example, the supervisor module is in slot 2).
Step 2
dir bootflash

Example:

```
switch# dir bootflash
Example:
switch# dir bootflash:
    80667580 Feb 21 22:04:59 2008 n7700-s2-kickstart.7.3.0.DX.1.bin
    22168064 Feb 21 22:04:19 2008 n7700-s2-dk9.7.3.0.DX.1.bin
            16384 Jan 03 19:56:00 2005 lost+found/
Usage for bootflash://sup-local
    234045440 bytes used
    1684602880 bytes free
    1918648320 bytes total
switch#
```

Note To exit the module-specific prompt, use the exit command.

Tip If you are not accessing the switch from a console terminal, this step is the only way to access the standby supervisor module.

Saving the Module Configuration

To save the new configuration along with the non-default VDC configuration to nonvolatile storage, use the copy running-config startup-config vdc-all command from EXEC mode. Once you enter these commands, the running and the startup copies of the configuration are identical.
The following table lists various scenarios when module configurations are preserved or lost.

Scenario	Consequence
A particular switching module is removed and you used the copy running-config startup-config vdc-all command again.	The configured module information is lost.
A particular switching module is removed and the same switching module is replaced before you enter the copy running-config startup-config vdc-all command again.	The configured module information is preserved.
A particular switching module is removed and replaced with the same type switching module, and you entered the reload module slot_number command.	The configured module information is preserved.
A particular switching module is reloaded when you enter the reload module slot_number command.	The configured module information is preserved.

Displaying Power Usage Information

To display the power usage information for the entire switch, use the show environment power command. This command shows the power usage for many of the modules installed in the switch. For the older modules that do not have the capability to output this information, the output is shown as N/A.

Power usage is reserved for both supervisor modules regardless of whether one or both supervisor modules are present.

Enter the show environment power command.

Reloading a Module

You can reset a module by using the reload module command and specifying the module by its slot number in the chassis.

Caution Reloading a module disrupts traffic through the module.

Step 1 Enter the configure terminal command to enter the configuration terminal mode.
Example:

```
switch# configure terminal
```

switch(config) \#
Step 2 Specify the slot number for the module that you are resetting by entering the reload module slot_numbercommand.
Example:

```
switch(config)# reload module 1
```


Rebooting the Switch

To reboot or reload the switch, use the reload command without any options. When you use this command, you reboot the switch.

Note If you need to use the reload command, be sure to save the running configuration by using the copy running-config startup-config vdc-all command beforehand.

Step 1 Start the configuration mode by entering the configure terminal command.

Example:

switch\# configure terminal
switch(config) \#
Step 2 Save the running configuration by entering the copy running-config startup-config vdc-all command.
Example:
switch(config)\# copy running-config startup-config vdc-all
Step 3 Reload the switch by entering the reload command.

Example:

Overview of Supervisor Modules

The Cisco Nexus 7702 switch has one supervisor module slot. You can install any one of the following types of supervisor modules:

- Supervisor 2 Enhanced (N77-SUP2E)
- Supervisor 3 Enhanced (N77-SUP3E)

Note For the Supervisor 2 Enhanced (N77-SUP2E) supervisor module in the Cisco Nexus 7702 chassis, the minimum EPLD version supported is 1.4. For more information about EPLD upgrades, please refer Cisco Nexus 7000 Series FPGA/EPLD Upgrade Release Notes, Release 7.2

Note You can use only one type of supervisor module in a switch.
The supervisor module is automatically powered up and started with the switch.

Overview of I/O Module Support

The following F3-Series modules are supported by the Cisco Nexus 7700 Series switches:

- F3-Series Enhanced 48-port 1-/10-G Ethernet with XL (N77-F348XP-23)
- F3-Series Enhanced 24-port 40-G Ethernet with XL (N77-F324FQ-25)
- F3-Series Enhanced 12-port 100-G Ethernet with XL (N77-F312CK-26)

The following F4-Series module is supported by the Cisco Nexus 7700 Series switches:

- F4-Series 30-port 100-G Ethernet (N77-F430CQ-36)

The following M3 Series modules are supported by the Cisco Nexus 7700 Series switches:

- M3-Series 48-port 1-/10-G Ethernet (N77-M348XP-23L)
- M3-Series 24-port 40-G Ethernet (N77-M324FQ-25L)
- M3-Series 12-port 100-G Ethernet (N77-M312CQ-26L)

Accessing an I/O Module through a Console

You can troubleshoot bootup problems for an I/O module by accessing the module through its console port. This action establishes a console mode that you must exit in order to use other Cisco NX-OS commands.
To attach to the console port for an I/O module, use the attach console module command to specify the module you need to work with.

Note To exit the console mode, enter the \sim, command.

Attach to the console port for the I/O module by entering the attach console module slot_number command.

Example:

switch\# attach console module 1
connected
Escape character is '~,' (tilde comma]

Displaying Information for the Installed Modules

You can display information about the modules installed in the switch chassis by using the show module command. This information includes module type, bootup status, MAC addresses, serial numbers, software versions, and hardware versions. You can use this command in the following ways to display information about all of the installed module or specific modules:

- For information on all modules, use the show module command.
- For information on a specific supervisor or I/O module, use the show module slot_number command to specify a slot number.

For a description of the module status indicated by one of the above show module commands, see the following table.

$\mathbf{I / O}$ Module State	Description
powered up	The hardware has electrical power. When the hardware is powered up, the software begins booting.
testing	The module has established connection with the supervisor and the module is performing bootup diagnostics.
initializing	The diagnostics have completed successfully and the configuration is being downloaded.
failure	The switch detects a module failure upon initialization and automatically attempts to power-cycle the module three times. After the third attempt, the module powers down.
ok	The switch is ready to be configured.
power-denied	The switch detects insufficient power for an I/O module to power up.

I/O Module State	Description
active	This module is the active supervisor module and the switch is ready to be configured.

Use the show module [slot_number]command in one of the following ways:

Option	Description
show module	Displays information for all of the installed modules.
show module slot_number	Displays information for a supervisor or I/O module that you specify by its slot number.

Display information for all or specific modules.

Displaying Information for All Installed Modules

Displaying Information for a Specific Supervisor or I/O Module

Mod	Ports	Module-Type		Model	Status
1	30	100 Gbps	Ethernet Module	N77-F430CQ-36	ok
2	0	Superviso	r Module-3	N77-SUP3E	active *
Mod	Sw		Hw		
1	8.3 (0)	SK (0.47)	0.203		
2	8.3 (0)	SK (0.47)	0.909		
Mod	MAC-Address(es)			Serial-Num	
1	00-27-90-a1-ab-50 to 00-27-90-a1-ab-b3			JAE214303LW	
2	00-3c-10-17-55-ec to 00-3c-10-17-55-ff			JAE2150086E	
Mod	Online Diag Status				
1	Pass				
2	Pass				
* this terminal session					
switch\# show module 1					
Mod	Ports	Module-Type		Model	Status
1	30	100 Gbps	Ethernet Module	N77-F430CQ-36	ok
Mod	Sw		Hw		
1	$8.3(0)$	SK (0.47)	0.203		

```
1 00-27-90-a1-ab-50 to 00-27-90-a1-ab-b3 JAE214303LW
Mod Online Diag Status
--- ------------------
1 Pass
Chassis Ejector Support: Enabled
Ejector Status:
Left ejector CLOSE, Right ejector CLOSE, Module HW does support
ejector based shutdown, Ejector policy enabled.
switch#
```


Purging the Module Configuration

You can clear the running configuration for an I/O slot that is not functioning by using the purge module command in EXEC mode.

Note This command does not work on supervisor slots nor on any I/O slot that currently has a powered-up module.

Before you begin

Verify that either the I/O slot is empty or the I/O module installed in the slot is powered down.

Clear the running configuration by using the purge module slot_number running-config command.

Example:

switch\# purge module 1 running-config

Power Modes Overview

You can configure one of the following power modes to either use the combined power provided by the installed power supply units (no power redundancy) or to provide power redundancy when there is a power loss:

Combined mode

This mode allocates the combined power of all power supplies to active power for switch operations. This mode does not allocate reserve power for power redundancy in case of power outages or power supply failures.

Power-supply $(n+1)$ redundancy mode

This mode allocates one power supply as a reserve power supply in case an available power supply fails. The remaining power supplies are allocated for available power. The reserve power supply must be at least as powerful as each power supply used for the available power.

Input-source (grid) redundancy mode

This mode allocates half of the power to available power and the other half to reserve power. You must use a different power source for the active and reserve power sources so that if the power source used for active power fails, the other power source used for the reserve power can provide power for the switch.

Full redundancy mode

This mode provides both power-supply $(n+1)$ and input-source (grid) redundancies. As happens with the input-source redundancy mode, this mode allocates half of the power supplies to provide available power and the other half of the power supplies to provide the reserve power. One of the reserve power supplies can alternatively be used to provide power if a power supply supplying the available power fails.

Guidelines for Configuring Power Redundancy Modes

The amounts of available and reserve power depend on the power redundancy mode that you specify and the number of power supplies installed in the switch. For each redundancy mode, consider the following:

Combined mode

The available power equals the combined output of all installed power supplies. There is no reserve power. You activate this mode by using the power redundancy-mode combined command.

Power supply $(n+1)$ redundancy mode

The power supply that outputs the most power provides the reserve power so that it can take over for any other power supply that fails, and all of the other installed power supplies provide the available power. You activate this power mode by using the power redundancy-mode ps-redundant command.

Input-source (grid) redundancy mode

The available power is provided by one power source and the reserve power is provided by the other power source. If the power source providing the available power fails, the switch uses the reserve power source to provide its required power. You activate this power mode by using the power redundancy-mode insrc_redundant command.

Full redundancy mode

Full redundancy provides both power-supply redundancy and input-source redundancy. For power-supply redundancy, the power supply with the most output provides reserve power and the other power supplies provide the available power. For input-source redundancy, the available power is provided by one power source and the reserve power is provided by another power source You activate this power mode by using the power redundancy-mode redundant command.

Configuring the Power Mode

You can configure the power supply mode by using the power redundancy-mode command.

Note To display the current power supply configuration, use the show environment power command.

Step 1 Start the configuration mode by entering the configure terminal command.

Example:

```
switch# configure terminal
switch(config)#
```

Step 2 Specify one of the following power modes by entering the power redundancy-mode mode command:

- For combined mode, include the combined keyword.
- For power supply redundancy mode, include the ps-redundant keyword.
- For input source redundancy mode, include the insrc_redundant keyword.
- For full redundancy mode, include the redundant keyword.

Example:

switch(config)\# power redundancy-mode redundant
switch(config) \#

Maximum Power Available for 3-kW AC Power Supplies

The maximum power available for operations depends on the input power from your power source, the number and output capabilities of your power supplies, and the power redundancy mode that you use. The following table lists the amount of power available for $3-\mathrm{kW}$ AC power supplies depending on power inputs, numbers of power supplies, and the mode used.

Power Inputs	Power Supplies	Combined Mode	Power Supply Redundancy Mode	Input Source Redundancy Mode	Full Redundancy Mode
1 input $(220 \mathrm{~V})$	1	3000 W	-	-	-
	2	6000 W	3000 W	3000 W	3000 W
1 input $(110 \mathrm{~V})$	1	1450 W	-	-	-
	2	2900 W	1450 W	1450 W	1450 W

Maximum Power Available for 3-kW DC Power Supplies

The maximum power available for operations depends on the input power from your power source, the number and output capabilities of your power supplies, and the power redundancy mode that you use. The following table lists the amount of power available for $3-\mathrm{kW}$ DC power supplies depending on power inputs, numbers of power supplies, and the mode used.

Power Inputs	Power Supplies	Combined Mode	Power Supply Redundancy Mode	Input Source Redundancy Mode	Full Redundancy Mode
1 input	1	3000 W	-	-	-
	2	6000 W	3000 W	3000 W	3000 W

Maximum Power Available for 3.5-kW Inputs (AC)

The maximum power available for operations depends on the input power from your power source, the number and output capabilities of your power supplies, and the power redundancy mode that you use. The following table lists the amount of power available for $3.5-\mathrm{kW}$ HVAC/HVDC power supplies depending on AC power inputs, number of power supplies, and the mode used.

Power Inputs	Power Supplies	Combined Mode	Power Supply Redundancy Mode	Input Source Redundancy Mode	Full Redundancy Mode
	1	3500 W	-	-	-
	2	7000 W	3500 W	3500 W	3500 W
1 input $(220 / 230$ V)	1	3500 W	-	-	-
	2	7000 W	3500 W	3500 W	3500 W
1 input $(210 \mathrm{~V})$	1	3100 W	-	-	-
	2	6200 W	3100 W	3100 W	3100 W
1 input $(110 \mathrm{~V})$	1	1500 W	-	-	1500 W
	2	3000 W	1500 W	1500 W	

Note A combination of 3-kW AC and 3.5-kW HVAC/HVDC power supplies can be used.

Maximum Power Available for 3.5-kW Inputs (DC)

The maximum power available for operations depends on the input power from your power source, the number and output capabilities of your power supplies, and the power redundancy mode that you use. The following table lists the amount of power available for $3.5-\mathrm{kW}$ HVAC/HVDC power supplies depending on DC power inputs, number of power supplies, and the mode used.

Power Inputs	Power Supplies	Combined Mode	Power Supply Redundancy Mode	Input Source Redundancy Mode	Full Redundancy Mode
1 input $(380 \mathrm{~V})$	1	$3,500 \mathrm{~W}$	-	-	-
	2	$7,000 \mathrm{~W}$	$3,500 \mathrm{~W}$	$3,500 \mathrm{~W}$	$3,500 \mathrm{~W}$
	1 input $(220 / 240 \mathrm{~V})$	1	$3,500 \mathrm{~W}$	-	-
		2	$7,000 \mathrm{~W}$	$3,500 \mathrm{~W}$	$3,500 \mathrm{~W}$
1 input $(210 \mathrm{~V})$		1	$3,100 \mathrm{~W}$	-	-

Note A combination of 3-kW DC and 3.5-kW HVAC/HVDC power supplies can be used.

Overview of Fan Trays

Note During normal switch operations, all 3 fan trays in a switch should be of the same type.

The Cisco Nexus 7702 switch has one fan tray with three variable speed fans. The fan tray can be removed and replaced while the switch is operating without presenting an electrical hazard or damage to the switch. The switch can operate without the fan tray for up to two minutes. If a fan tray is not installed within that time, the switch will automatically shutdown.

Note When one of the three fans in the fan tray fails, the remaining two fans run at a higher speed to compensate for the failed fan and keep the switch operating.

\triangle

Caution If one or more fans fail within a fan tray, the Fan Status LED turns red. A fan failure could lead to temperature alarms if not corrected immediately.

The fan status is continuously monitored by the software. In case of a fan failure, the following actions occur:

- System messages are displayed.
- Call Home alerts are sent (if configured). For more information, refer Associating an Alert Group with a Destination Profile .
- SNMP notifications are sent (if configured). For more information, refer Enabling SNMP Notifications.

Displaying the Status for the Fan Trays

To display the status for the , use the show environment fan command as shown in the following example.

Enter the show environment fan command.
Example:

