

 [image: ../images/cover_page.jpg]

 Chapter 1.
 Overview

 	About Service Integration with the Application Policy Infrastructure Controller

 	About the Device Package Architecture

 	About the Debug Logs

 About Service
 	 Integration with the
 	 Application Policy Infrastructure Controller

 The
 		Application Policy Infrastructure Controller (APIC) automates the insertion and
 		provisioning of network services, such as Secure Sockets Layer (SSL) offload,
 		server load balancing (SLB), Web Application Firewalls (WAFs), and traditional
 		firewalls. The network services are rendered by service appliances, such as
 		Application Delivery Controllers (ADCs) and firewalls. A service appliance can
 		perform one or more service function.
 	

 The
 		APIC enables you to define a service
 		graph. Each node in the service graph represents a network function. A graph
 		defines set of service functions that are based on user-defined policies. A
 		service appliance (device) performs a service function within the graph. One or
 		more service appliances can render the services that are required by a graph.
 		One or more service functions can be performed by a single service device.
 	

 The
 		APIC requires a device package that you can
 		use to insert and configure network service functions on a network service
 		appliance (device). A device package is a zip file that contains the following:
 		
 	

 	
 		

 			 DeviceModel.xml—The device package must contain a
 			 single XML file called
 			 DeviceModel.xml that is the device specification. The
 			 device specification is an XML file that provides a hierarchical description of
 			 the device, including the configuration of each function, and is mapped to a
 			 set of managed objects on the
 			 APIC. The device specification defines
 			 the following:
 		

 	
 				
 Device
 				 functions
 				

 			

 	
 				
 Parameters
 				 that are required by the device to configure each function
 				

 			

 	
 				
 Interfaces
 				 and network connectivity information for each function
 				

 			

 		

 		

 	
 		

 			 DeviceScript.py—The device package must contain a
 			 single Python file called
 			 DeviceScript.py. You should define the APIs for
 			 interfacing between the
 			 APIC and the device in this Python file.
 			 The device specification XML file associates the device script to this Python
 			 file.
 		

 		
 The device
 			 script manages communication between the
 			 APIC and the device. It defines the
 			 mapping between
 			 APIC events and the function calls
 			 representing device interactions, converting calls from a generic API to
 			 device-specific calls.
 		

 		
 When you upload
 			 a device package to the
 			 APIC, the
 			 APIC creates a hierarchy of managed
 			 objects representing the device and validates the device script interface.
 		

 		

 	
 		
 Additional files
 			 and directories that contain Python or text files. The device package can
 			 include any supporting Python libraries for interfacing and configuring the
 			 device. The supporting Python files can be split across multiple directories.
 			 The package can also include any supporting text files. A device package can
 			 contain supporting Python egg files.
 		

 		

 	
 		

 			 images directory—The device package must contain the
 			 images directory, and the directory must contain a
 			 single file named
 			 vendor_name.gif. The image size must be 28
 			 pixels x 28 pixels.
 		

 		

 	

 The following
 		example shows a listing of a package zip file from the vendor named Insieme:
 	

 bash-4.1$ unzip -l insiemeDevicePackage.zip
Archive: insiemeDevicePackage.zip
 Length Date Time Name
--------- ---------- ----- ----
 309597 03-17-2014 17:39 DeviceModel.xml
 1597 03-17-2014 17:39 DeviceScript.py
 0 01-30-2014 15:36 common/
 1919 02-06-2014 11:35 common/deviceInterface.py
 0 01-30-2014 15:36 feature/
 21919 02-06-2014 11:35 feature/functionCommon.py
 6485 10-31-2013 06:32 feature/function2.py
 7747 10-31-2013 06:32 feature/function1.py
 0 10-31-2013 06:32 feature/__init__.py
 0 01-30-2014 15:36 lib/
 1919 02-06-2014 11:35 lib/
 0 01-30-2014 15:36 util/
 21919 02-06-2014 11:35 util/logging.py
 0 10-31-2013 06:32 parser/configParser.py
 0 02-12-2014 10:07 images/
 1380 02-12-2014 10:07 images/insieme.gif

 The following figure
 		describes the relationship between a device package and the
 		APIC.
 	

 APIC Package Upload

[image: ../images/351280.jpg]

 About the Device
 	 Package Architecture

 The following figure
 		shows the
 		Application Policy Infrastructure Controller (APIC) service automation and insertion
 		architecture through the device package.
 	

 Device Package
 		 Architecture

[image: ../images/349145.jpg]

 When you upload a
 		device package through the GUI or northbound
 		APIC interface, the
 		APIC creates a namespace for each unique
 		device package. The content of the device package is unzipped and copied to the
 		namespace. The file structure created for a device package namespace is as
 		follows:
 	

 root@apic1:/# ls
bin dbin dev etc fwk install images lib lib64 logs pipe sbin tmp usr util

root@apic1:/install# ls
DeviceScript.py DeviceSpecification.xml feature common images lib util.py

 The contents of the
 		device package are copied under the
 		install directory.
 	

 The
 		APIC parses the device model. The managed
 		objects that are defined in the XML file are added to the
 		APIC's managed object tree that is
 		maintained by the Policy Manager.
 	

 The Python scripts
 		that are defined in the device package are launched within a script wrapper
 		process in the name space. The access to the file system is restricted. Python
 		scripts can create temporary files under
 		/tmp and can access any text files that were bundled
 		as part of the device package. However, you should not create Python scripts
 		that create or store any persistent data in a file.
 	

 The logs are written
 		to two files: the debug.log and the periodic.log. Any configuration API event
 		logs are written to the debug.log and any periodic poll API logs are written to
 		the periodic.log. The logging framework is similar to the python logging
 		framework.
 	

 The log files are
 		accessible by logging in to the APIC as the fabric administrator. The log files
 		are located in
 		/data/devicescript/<vendorname-model-pkgversion>/logs.
 		
 	

 Multiple versions of
 		a device package with different major version numbers can coexist on the
 		APIC, because each device package version
 		runs in its own namespace. You can select a specific version for managing a set
 		of devices.
 	

 About the Debug Logs
 	

 The
 		Application Policy Infrastructure Controller (APIC) maintains log files that you can use
 		to debug a device script. The log files are saved in the following directories:
 		
 	

 	 Directory
 				
 				

 	 Log Files
 				
 				

 	
 				 /data/devicescript
 				

 	
 				 debug.log and
 				 periodic.log
 				

 	
 				 /var/log/dme
 				

 	
 				

 	
 						
 DME
 						 logs—requires administrator privileges to view.
 						

 					

 	
 						
 Core
 						 files—requires root privileges to use backtrace to check the process stack of a
 						 core file.
 						

 					

 	
 						
 svc_ifc_*.log—requires administrator privileges to
 						 view. You need to view these log files only in the event of an issue with the
 						 APIC. For more information about exporting
 						 log files, see the
 						 Cisco ACI Troubleshooting Guide.
 						

 					

 				

 You must have
 		administrator privileges to access these directories.
 	

 Chapter 2. Developing Device Specifications

 	About Device Types

 	About Device Specifications

 	About Cluster and Device Configurations

 	About Functional Configurations

 	About Parameter Objects and Folders

 	Managed Object Model

 About Device
 	 Types

 The
 		Application Policy Infrastructure Controller (APIC) classifies network service devices
 		into two types:
 	

 	 GoTo—Represents any device
 		 that is Layer 3 (L3) attached. The packet is delivered to a GoTo device because
 		 either the destination MAC or destination IP within the packet identifies the
 		 device. Typically, Application Delivery Controllers (ADCs) or L3 firewalls
 		 represent a GoTo device.
 		

 	 GoThrough—Represents any
 		 transparent device. The destination MAC or destination IP address is not
 		 addressed to the device, but the packet is steered through the device due to
 		 VLAN stitching. Typically, Layer 2 (L2) firewall or Intrusion Detection System
 		 (IDS) devices represent a GoThrough device. The end stations that exchange
 		 packets are not aware of the presence of a GoThrough (transparent device)
 		 within the path.
 		

 The
 		APIC further classifies device instances
 		registered with an
 		APIC into two categories:
 	

 	Concrete device—Represented
 		 by
 		 vnsCDev, which identifies an instance of a service
 		 device. A concrete device can be physical or virtual. A concrete device has its
 		 own management IP address to configure and monitor through the
 		 APIC.
 		
 		

 	Logical device—Represented
 		 by
 		 vnsLDevVip.
 		 vnsLDevVip identifies a cluster of one or more
 		 concrete devices. A logical device is addressed and managed through a
 		 management IP address that is assigned to the cluster. The service functions
 		 offered by the service device are always rendered on a logical device.
 		 Typically, a logical device represents a cluster of devices deployed in
 		 active-active mode or active-standby high availability mode. If you deploy a
 		 device in standalone mode, the logical device contains only one concrete
 		 device. The management IP address for logical devices and concrete devices will
 		 be the same. All service operations are always done on a logical device
 		 instance.
 		

 For information about
 		registering a device with an
 		APIC, see the
 		Cisco APIC Layer
 		 4 to Layer 7 Services Deployment Guide.
 	

 A service device can
 		be single-context or multi-context. A multi-context device supports multiple
 		routing domains, which means that the device supports overlapping IP addresses
 		to be configured across different routing contexts.
 	

 A single-context
 		device must be registered to a specific tenant. A single-context device cannot
 		be shared by multiple tenants. A multi-context device can be registered under a
 		common tenant and can be shared by multiple tenants.
 	

 About Device
 	 Specifications

 The configuration of
 		the
 		Application Policy Infrastructure Controller
 		(APIC)
 		is represented by an object model that consists of a large number of managed
 		objects (MOs). A device type is defined by a tree of managed objects that have
 		Meta Device (MDev) at the root. The device specification XML file extends the
 		APIC's
 		managed object model by defining a new MDev object.
 	

 A device specification
 		file must define a Meta Device (vnsMDev) object. The
 		vnsMDev object contains metadata that describes
 		vendor-specific information, such as the vendor name, device package version,
 		device version supported, device script binding, and device model describing
 		that functions and parameters that are required to realize these functions on
 		the device.
 	

 Each unique major
 		version of a device package results in the creation of one instance of a
 		vnsMDev object instance with the
 		APIC
 		Policy Manager. The
 		APIC
 		can support many instances of the
 		vnsMDev object. The
 		vnsMDev object is contained within an infra-policy
 		(represented by
 		infraInfra) under the
 		APIC
 		global policy. The global policy is the universe of policies, which is
 		represented as
 		polUni. The following figure describes the relations
 		of
 		vnsMDev to the
 		APIC's
 		managed object hierarchy.
 	

 Relations of
 		 vnsMDev to the
 		 APIC's
 		 Managed Object Hierarchy

[image: ../images/304516.jpg]

 The device model is
 		contained by a
 		vnsMDev object. The device specification file must have
 		the following structure:
 	

 <poliUni>
 <infraInfra>
 <vnsMDev>
 <!-- device Sepcification-->
 </vnsMdev>
 </infraInfra>
</poliUni>

 		vnsMDev must have the following attributes:
 	

 	
 		

 			 vendor—Identifies the device package vendor.
 		

 		

 	
 		

 			 model—Identifies the device models that are managed
 			 by the device specification.
 		

 		

 	
 		
 version—Identifies
 			 the device package version, which is also referred to in the document as the
 			 major version. You can upload and use one or more versions of a device package
 			 on the
 			 APIC.
 			 The
 			 APIC
 			 allows you to select a device package to be used for managing a device instance
 			 that is registered with the
 			 APIC.
 			
 		

 		
 The device
 			 package version is incremented when major structural changes are made to the
 			 device model and properties of existing device objects are modified or existing
 			 objects are deleted or when the device package is updated to manage later
 			 revisions of the device. You must increment a minor version for any bug fixes
 			 or minor enhancements that are made or additional that objects are augmented to
 			 the device package.
 		

 		

 	
 		

 			 funcMask—Indicates whether a device package can
 			 support service functions deployed in GoTo or GoThrough mode. A device package
 			 can support both the GoTo and the GoThrough mode of service insertion. If both
 			 modes are supported, define
 			 funcMask as a comma-separated list in the following
 			 format:
 		

 		 GoTo,GoThrough

 		 A service function
 			 on a device can be deployed as GoTo or GoThrough only when a device package
 			 supports such a configuration. Typically,
 			 funcMask for firewall device packages supports both
 			 the GoTo mode and the GoThrough mode to allow firewalls to be deployed in
 			 routed or transparent bridge mode.
 		

 		

 The following example
 		shows the
 		vnsMDev attributes:
 	

 <vnsMDev vendor="Insieme"
 model="NetworkService"
 version="1.0"
 funcMask="GoTo,GoThrough">

 The
 		vnsMDev object instance is identified by the
 		<vendor-model-version> string. The
 		APIC
 		creates a
 		vnsMDev instance for each unique
 		<vendor-model-version> string.
 	

 The device model is
 		divided into following parts:
 	

 	 Generic Part—Defines generic
 		 information about the device. It consists of the following objects:
 		

 	Device Credentials
 			

 	Interface Labels
 			

 	
 				
 Device
 				 Profiles
 				

 			

 		

 	Cluster and Device
 		 Configuration Part—Defines any cluster or device specific configuration. It
 		 consists of the following objects:
 		

 	Cluster Configuration
 			

 	Device Configuration
 			

 		

 	Functional Part—Describes the
 		 service functions and its configuration. The configuration is divided under the
 		 following objects:
 		

 	Global Functional Device
 				Configuration
 			

 	Group Configuration
 			

 	Function Configuration
 			

 		

 	Device Script

 	Devices Credentials

 	Interface Labels

 	Vendor Device Profile

 	Vendor Device Interface Name

 Device
 	 Script

 The device script
 		information is defined through the <vnsDevScript> object. The device
 		Script object associates the python file defining
 		APIC
 		APIs.
 		APIC
 		calls these python APIs to instantiate any service functions defined by the
 		device package.
 	

 The device script
 		object contains following attributes:
 	

 	
 				
 Attribute
 				

 				

 	
 				
 Type
 				

 				

 	
 				
 Description
 				

 				

 	
 				
 ctrlrVersion
 					
 				

 				

 	
 				
 String
 				

 				

 	
 				
 Identifies
 					 controller API version compatibility. It is a string. It should match with APIC
 					 API version - Current accepted value is "1.0" and "1.1". Note that packages
 					 written for version 1.0 work with controller version 1.1. Set the controller
 					 version to 1.1 for packages developed based on this document. Packages
 					 developed for controller version 1.1 will not work with
 					 APIC
 					 API version 1.0.
 				

 				

 	
 				
 minorversion
 					
 				

 				

 	
 				
 String (512
 					 characters)
 				

 				

 	
 				
 Identifies
 					 the minor version of the device package. The device package developers should
 					 use this version string to track any revisions that are made to the device
 					 script or model without making structural changes to existing objects in the
 					 device model.
 				

 				

 	
 				
 versionExpr
 				

 				

 	
 				
 String (512
 					 character)
 				

 				

 	
 				
 APIC
 					 passes this versionExpr string to the script during a deviceValidate call. The
 					 device package developer defines any string (it can be regular expression) to
 					 indicate device versions that this device package can support.
 				

 				

 The minorversion
 		string provides a non-disruptive upgrade of a device package. If only the
 		device scripts have changed, the device package developer must update only the
 		minor version string. When only the minorversion has changed and the device
 		package version has not been incremented, the
 		APIC
 		restarts the scripts associated with the package with the new set of files
 		bundled in the device package. The Managed Object Model is refreshed with the
 		new objects defined in the device model specified in the device package. This
 		enables efficient upgrade of the script without triggering re-rendering of the
 		graphs that use the device package.
 	

 Devices
 	 Credentials

 The devices
 		credentials object allows vendors to specify the type of credentials that the
 		Application Policy Infrastructure Controller
 		(APIC)
 		passes to the device script for authentication while communicating with the
 		device. Currently, only the username and password-based authentication is
 		supported. The device specification file must define the following object:
 	

 <vnsMCred name=”username” key=”username”/>
<vnsMCredSecret name=”password” key=”password”/>

 The device
 		specification file must define only one instance of
 		vnsMCred and
 		vnsMCredSecret. During the device registration, you
 		provide a value for the username and password object. For more information, see
 		the
 		Cisco APIC Layer
 		 4 to Layer 7 Services Deployment Guide.
 	

 Interface
 	 Labels

 Interfaces on the
 		device must be labeled in an abstract way. A function associates with these
 		interfaces to represent a logical flow of packets through the service function.
 		For example, a firewall device could label the interfaces as trusted,
 		untrusted, cluster, and management interfaces. Packets that are received from
 		an untrusted interface could be directed through the firewall function and
 		emitted out of a trusted interface. As another example, a device could label
 		its interface as an external, internal, HA, and management interface. A load
 		balancing function could receive packet from an external interface and load
 		balance to a pool through an internal interface. A single physical interface
 		(or vNIC in case of virtual service) can be assigned one or more labels. The
 		labels are assigned to the interfaces on a device at the time of registering
 		logical and concrete devices. You can assign multiple labels to a single
 		interface for single arm deployment. The device models must specify labels for
 		its interfaces. The labels are defined using the
 		vnsMIfLbl object type.
 	

 The following example
 		defines the labels:
 	

 <vnsMIfLbl name="external" shortName="ext"/>
<vnsMIfLbl name="internal" shortName="int"/>
<vnsMIfLbl name="management" shortName="mgmt" />

 The
 		vnsMIfLbl object must contain the
 		name attribute and
 		shortName attribute. The short name must be four
 		characters or less. The device specification can define one or more types of
 		the
 		vnsMIfLbl object.
 	

 Vendor Device
 	 Profile

 The vendor device
 		profile (vnsDevProf) is a new object in the Layer 4 - Layer 7
 		management information tree. This object allows a vendor to add device model
 		information to the
 		Application Policy Infrastructure Controller (APIC). Vendors provide it as part of device
 		package or provide it separately.
 		vnsDevProf is contained within
 		vnsMDev. A
 		vnsMDev can have one or more
 		vnsDevProf.
 		vnsDevProf contains information pertaining to a
 		specific device model, its interface and other properties. The
 		APIC GUI uses
 		vnsDevProf to provide users the option to select a
 		model while registering concrete devices with the
 		APIC.
 		vnsDevProf provides an ease of use enhancement to the
 		APIC GUI experience .
 		vnsDevProf simplifies the device registration process
 		and reduces user error when specifying physical interface name and other
 		parameters during registering with the
 		APIC and forming a logical cluster.
 	

 The
 		APIC also uses
 		vnsDevProf to update a device package after it has been
 		uploaded.
 		vnsDevProf can be augmented by a tenant administrator.
 		Vendors define a new
 		vnsDevProf and make it available independently of the
 		device package in order to support new profile information such as chassis,
 		model or IO module. Or, tenant administrators define their own device profile
 		and use it for registering devices.
 	

 The
 		vnsDevProf object has the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	name
 				

 	Yes
 				

 	
 				
 Uniquely
 					 identifies the object. Each object name must have a unique value within the
 					 containing object. The name can contain only alphanumeric characters, '_' or
 					 '-'. The name cannot contain any other characters. The
 					 APIC uses the name to lookup a specific
 					 object within a containing object.
 				

 				
 The name
 					 size is limited to a maximum of 512 characters.
 				

 				
 The name
 					 attribute identifies a specific device model supported by the device package.
 					 For example:
 				

 	
 						
 ASA5585-S20K-X9
 						

 					

 	
 						
 ASA558-S60P60SK9
 						

 					

 				

 				

 	 type
 				

 	Yes
 				

 	
 				
 Specifies
 					 whether the device type is pyhsical or virtual.
 				

 				
 The values
 					 are:
 				

 	
 						
 PHYSICAL
 						
 						

 					

 	
 						
 VIRTUAL
 						

 					

 				

 				

 	 context
 				

 	Yes
 				

 	
 				
 Specifies if
 					 the device is context-aware (supports multiple contexts on the same logical
 					 cluster). For example, it has support for multiple routing domains and supports
 					 unique configuration for each user on the same logical device cluster. The
 					 values for this attribute can be:
 				

 	
 						
 single-context (default)
 						

 					

 	
 						
 multiple-contect
 						

 					

 				

 				

 	pcPrefix
 				

 	No
 				

 	
 				
 Provides a prefix that identifies the logical interface
 					 created by link aggregation (with or without the LACP protocol). The GUI uses
 					 the
 					 pcPrefix as a prefix when a user selects a
 					 link bundle (Port-channel or Etherchannel) as the device interface while
 					 registering a device with the
 					 APIC.
 					
 				

 				
 A device package developer defines one
 					 pcPrefix for a given
 					 vnsDevProf.
 				

 				
 The following are
 					 pcPrefix examples:
 				

 	
 						
 pcPrefix='Port-Channel'
 						

 					

 	
 						
 pcPrefix='LA'
 						

 					

 	
 						
 pcPrefix='Etherchannel'
 						

 					

 				

 				

 Vendor Device
 	 Interface Name

 The
 		vnsDevInt is a new object in the Layer 4 - Layer 7
 		management information tree. The
 		vnsDevInt object describes an interface name on a given
 		chassis. The
 		APIC
 		GUI uses the
 		vnsDevInt information provided by the user during device
 		registration. Users map a logical interface name to one of the
 		vnsDevInt found on the device. The
 		APIC
 		GUI provides a drop down list based on
 		vnsDevInt contained in the
 		vnsDevProf. Users select one of the interfaces while
 		associating a logical interface with a physical interface.
 	

 		

 	[image: ../images/note.gif]
Note
 	

Note: users are not limited to the interfaces defined under
 		 vnsDevProf. Users can select the ‘other’ option in the
 		
 		 APIC
 		 GUI and provide any arbitrary string as the interface name.
 		 vnsDevInt should have the list of all supported
 		 interface names.
 		

 	

 The
 		vnsDevInt object has the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	name
 				

 	Yes
 				

 	
 				
 Uniquely identifies the object. Each object name must have a
 					 unique value within the containing
 					 vnsDevProf object . The name cannot contain '
 					 '. The name size is limited to a maximum of 512 characters.
 				

 				
 For example:
 				

 	
 						
 eth1.1
 						

 					

 	
 						
 1.1
 						

 					

 	
 						
 1/1
 						

 					

 	
 						
 Gig0/1/1
 						

 					

 	
 						
 Tunnel0
 						

 					

 	
 						
 Ehternet0
 						

 					

 	
 						
 Eth0
 						

 					

 				

 				

 	 mgmtOnly
 				

 	No
 				

 	
 				
 Specifies whether the device type is whether the device is
 					 reserved for management access.
 				

 				
 The values are:
 				

 	
 						
 yes
 						

 					

 	
 						
 no
 						

 					

 				

 				

 About Cluster and
 	 Device Configurations

 The
 		Application Policy Infrastructure Controller
 		(APIC)
 		allows devices to be deployed in standalone, High-Available Active-Standby mode
 		or as a Cluster in Active-Active mode. The cluster and device configuration
 		section allows vendors to specify any configuration that applies to the cluster
 		or a specific node within a cluster irrespective of the HA mode. Cluster and
 		device specification is not mandatory.
 	

 	Cluster Configurations

 	Device Configurations

 Cluster
 	 Configurations

 The device
 		specification file can define just one cluster configuration object referred to
 		as
 		vnsClusterCfg. The cluster configuration contains the
 		configuration for an entire cluster. The configuration that applies to a
 		cluster is represented by one or more objects of type
 		vnsMParam that can be further grouped logically under
 		one or more
 		vnsMFolder objects.
 	

 You can instantiate
 		parameters and folders defined under the cluster configuration for a logical
 		device registered with an
 		Application Policy Infrastructure Controller
 		(APIC).
 		The configuration defined under a cluster configuration is passed to the device
 		script only during a
 		clusterModify() or
 		clusterAudit() call. The configuration defined under a
 		cluster cannot be referenced by a service function. The cluster configuration
 		is not passed to the scripts during a
 		serviceModify(),
 		serviceAudit(),
 		serviceHealth(), or
 		serviceCounters() API call.
 	

 vnsClusterCfg can
 		contain one or more
 		vnsMFeature objects. The
 		vnsMFeature object allows logical grouping of cluster
 		configurations. Folders are grouped based on the
 		dispFeature attribute defined under folder. The
 		Application Policy Infrastructure Controller
 		(APIC)
 		GUI uses the
 		vnsMFeature object to order and group the folders for
 		user input.
 	

 A device package
 		developer should define any cluster level configuration within a
 		vnsClusterCfg object. For example, a cluster
 		configuration can include a Network Time Protocol (NTP) server configuration
 		and the syslog server IP address.
 	

 The following example
 		shows a cluster configuration:
 	

 <vnsClusterCfg name="ClusterConfig">
	 <vnsMFolder key="SyslogConfig">
		 <vnsMParam key="ipaddress"
		 	description="Syslog Server IP address"
	 		dType="str"
			 validation="isIPAddress"/>
 </vnsMFolder>

 <vnsMFolder key="NTPConfig">
 		 <vnsMParam key="ipaddress"
	 description="NTP Server IP address"
 		dType="str"
	 validation="isIPAddress"/>
 </vnsMFolder>
</vnsClusterCfg>

 Device
 	 Configurations

 The device
 		specification file can contain one instance of
 		vnsDevCfg that contains a device-specific
 		configuration. The
 		vnsDevCfg is contained within a
 		vnsClusterCfg. The device-specific configuration is
 		represented by one or more
 		vnsMParam, which can be further grouped under one or
 		more
 		vnsMFolder.
 	

 The configuration that
 		is defined under a device configuration is instantiated by the user during
 		concrete device registration within a logical device. The device configuration
 		is passed to the device scripts only during the
 		deviceAudit(),
 		deviceModify(),
 		deviceHealth(), and
 		deviceCounters() calls. The device configuration cannot
 		be referenced from a service function, during the
 		clusterModify() call, or during the
 		clusterAudit() call.
 	

 A device
 		configuration can contain a configuration such as the HA mode on the device,
 		the peer IP address for cluster, or the port-channel (LACP) configuration that
 		must be pushed to a specific device within a cluster.
 	

 vnsDevCfg can
 		contain one or more
 		vnsMFeature objects. The
 		vnsMFeature object allows logical grouping of cluster
 		configurations. Folders are grouped based on the
 		dispFeature attribute defined under folder. The
 		Application Policy Infrastructure Controller
 		(APIC)
 		GUI uses the
 		vnsMFeature object to order and group the folders for
 		user input.
 	

 The following example
 		shows a device configuration:
 	

 <vnsClusterCfg name="ClusterConfig">
 <vnsDevCfg name="DevCfg">
 <vnsMFolder key="HighAvailabilityCfg" cardinality="n">
 <vnsMParam key="peerIP"
 description="HA Pair peer IP address"
 dType="str"
 validation="isIPAddress"/>
 </vnsMFolder>
 </vnsDevCfg>
</vnsClusterCfg>

 About Functional
 	 Configurations

 A device package and a
 		device can support many service functions. Typically, any function that
 		transforms and influences packet forwarding on the device can be represented as
 		a service function. For example, SSL offload, VPN, server load balancing, and
 		web application filtering can be modeled as functions that are supported by the
 		device. One or more such functions can be modeled in the device specification
 		file.
 	

 The functions are
 		represented by a
 		vnsMFunc object. The
 		vnsMFunc object has a
 		name attribute. Each function that is defined within
 		the device package must have a unique name. The name is used to look up a
 		function that is defined under an instance of an MDev.
 	

 The
 		vnsMFunc object must contain the following object:
 	

 	vnsMConn
 		

 The parameters that
 		are required to render a specific service function can be defined under the
 		following categories:
 	

 	Function
 		

 	Group
 		

 	Device global
 		

 The following example
 		shows the structure of a function configuration:
 	

 <poliUni>
 <infraInfra>
 <vnsMDev>
 <!-- Generic Part -->

 <!-- Device Credentials -->
 <vnsMCred name=”username” key=”username”/>
 <vnsMCredSecret name=”password” key=”password”/>

 <!-- Interface Labels -->
 <vnsMIfLbl name="external" shortName="ext"/>

 <!-- Device Profiles -->

 <!-- Cluster Configuration -->
 <vnsClusterCfg name="ClusterCfg">

 <!-- Device Configuration -->
 <vnsDevCfg name="DeviceConfig">

 </vnsDevCfg>
 </vnsClusterCfg>

 <!-- Functional Configuration -->

 <!-- Global Functional Device Configuration -->
 <vnsMDevCfg>
 </vnsMDevCfg>

 <!-- Group Configuration -->
 <vnsGrpCfg>
 </vnsGrpCfg>

 <!—Function configuration: Could be one or more such configuration -->
 <vnsMFunc>
 </vnsMFunc>
 </vnsMdev>
 </infraInfra>
</poliUni>

 	Connector Objects

 	Images

 	Function Configurations

 	Group Configurations

 	Global Function Configurations

 	Relations

 	Parameter Scope and API Configuration Dictionary

 Connector
 	 Objects

 A function must have
 		at least one connector object:
 		vnsMConn. The connector object is used to link one or
 		more functions to form a service graph. If a function is a transit function, it
 		must have at least two connectors. If a function is a stub function, such as a
 		collector, it can have just one connector. Typically, only IDS devices that are
 		in passive mode and are capturing packets that are copied to the device have
 		just one connector defined for the capture function. All other functions, such
 		as a firewall, load balancers, and SSL offload, have two or more connectors.
 		Currently, the
 		Application Policy Infrastructure Controller
 		(APIC)
 		supports a maximum of two connectors per function, which means that you can
 		define an input and output connector for any transit function.
 	

 The connector has the
 		following attributes:
 	

 	Attribute
 				

 	Mandatory
 				

 	Description
 				

 	 name
 				

 	Yes
 				

 	 Specifies the name of the connector. Every connector within a
 				 function must have a unique name.
 				

 	 encType
 				

 	Yes
 				

 	 Specifies the connector encapsulation type. This attribute is
 				 the encapsulation that is used for traffic on the connector and is specified as
 				 a value of
 				 vlan or
 				 vxlan. The value specifies whether the packet is sent
 				 encapsulated from the network to the device VLAN or VXLAN encapsulated. On a
 				 virtual device, the encapsulation might be removed by the virtual switch and
 				 the VLAN or VXLAN encapsulation header might not be seen by the virtual service
 				 device. Currently, the
 				 APIC
 				 supports only VLAN encapsulation.
 				

 	 dir
 				

 	No
 				

 	 Specifies the connector direction. This direction can be
 				 specified as either
 				 input or
 				 output.
 				

 	 cardinality
 				

 	No
 				

 	 If a function supports multiple instances of a given connector
 				 type, the device model can specify this explicitly by setting the cardinality
 				 to
 				 n. By default, the cardinality is
 				 1.
 				

 	 notification
 				

 	No
 				

 	
 				
 Allows
 					 endpoint or network attach/detach notifications to be generated for the
 					 function. This attribute is used to determine whether the
 					 APIC
 					 calls the device script when an endpoint or subnet association changes for an
 					 endpoint group (EPG) that is attached directly or indirectly to this connector.
 					 The notification can take the following values:
 				

 				

 	none
 					

 	subnet
 					

 	endpoint
 					

 				
 If the
 					 notification attribute is not specified, it defaults
 					 to
 					 none, which means that the
 					 APIC
 					 will not attach nor detach the network or endpoint APIs.
 				

 				

 A connector must
 		contain just one
 		vnsRsInterface object. This object associates a
 		connector to a specific interface type that is identified by the labels that
 		are defined by using
 		vnsMIfLbl. The
 		APIC
 		uses this relation to pass the specific interface information while rendering
 		the service function. For more information, see
 		Fabric Connectivity.
 		
 	

 Images

 The device package
 		must contain the
 		images directory, and the directory must contain a
 		single file named
 		vendor_name.gif. The image size must be 28
 		pixels x 28 pixels.
 	

 The following example
 		shows a listing of a package zip file from the vendor named Insieme:
 	

 bash-4.1$ unzip -l insiemeDevicePackage.zip
Archive: insiemeDevicePackage.zip
 Length Date Time Name
--------- ---------- ----- ----
 309597 03-17-2014 17:39 DeviceModel.xml
 1597 03-17-2014 17:39 DeviceScript.py
 0 01-30-2014 15:36 common/
 1919 02-06-2014 11:35 common/deviceInterface.py
 0 01-30-2014 15:36 feature/
 21919 02-06-2014 11:35 feature/functionCommon.py
 6485 10-31-2013 06:32 feature/function2.py
 7747 10-31-2013 06:32 feature/function1.py
 0 10-31-2013 06:32 feature/__init__.py
 0 01-30-2014 15:36 lib/
 1919 02-06-2014 11:35 lib/
 0 01-30-2014 15:36 util/
 21919 02-06-2014 11:35 util/logging.py
 0 10-31-2013 06:32 parser/configParser.py
 0 02-12-2014 10:07 images/
 1380 02-12-2014 10:07 images/insieme.gif

 Function
 	 Configurations

 The
 		vnsMFunc object identifies a specific function on a
 		device that can be managed through the device package. Each
 		vnsMFunc defined in the device package must be assigned
 		a unique name. A device package developer can also define a
 		dispLabel attribute for a
 		vnsMFunc object. The
 		dispLabel is a 512 character string. It allows a device
 		package developer to provide a more user friendly name for the function. When a
 		
 		dispLabel attribute is defined for a
 		vnsMFunc, the
 		APIC
 		GUI displays the
 		dispLabel string instead of the name attribute. Device
 		package developers must provide a user friendly name for the functions exposed
 		through the device package.
 	

 A device package
 		developer defines parameters that are required to configure a service function
 		under a function object. Any parameter that is defined under
 		vnsMFunc is scoped under a specific function. The
 		parameters that are defined under a function can be further grouped logically
 		under one or more folders.
 	

 The parameter and
 		folders defined under a function persist if the instance of the function
 		persists. The
 		APIC
 		deletes the parameters and folders that are defined under a function when the
 		function instance is deleted.
 	

 The parameter and
 		folders under a function cannot be shared or referenced by any other function
 		within the same graph or a different graph that is rendered on the same device.
 		The parameter and folders defined under the function must have a unique
 		instance on the device for each function instance. The scope of the parameter
 		and folders the are being limited within a functions context is similar to a
 		local variable in the C language.
 	

 The following example
 		defines the parameters of a service function:
 	

 <vnsMFunc name="SLB">

 <vnsMConn name="external"
 dir="input"
 encType="vlan"
 notifications="endpoint">
 <vnsRsInterface tDn="uni/infra/mDev-Insieme-SampleDevice-1.0/mIfLbl-external" />
 </vnsMConn>

 <vnsMConn name="internal"
 dir="output"
 encType="vlan"
 notifications="endpoint">
 <vnsRsInterface tDn="uni/infra/mDev-Insieme-SampleDevice-1.0/mIfLbl-internal" />
 </vnsMConn>

 <vnsMFolder key="VServer"
 scopedBy="epg">
 <vnsMParam key="vservername"
 description="Name of VServer"
 mandatory="true"
 dType="str"
 validation="isAlpha"/>
 <vnsMParam key="port"
 description="Port for Virtual server"
 validation="isL4Port"/>
 <vnsMParam key="persistencetype"
 description="persistencetype"/>

 <vnsMParam key="servicename"
 description="Service bound to this vServer"/>
 <vnsMParam key="servicetype"
 description="Service bound to this vServer"
 dType="str"
 validation="isProtocol"/>
 <vnsMParam key="clttimeout"
 description="Client timeout"/>

 </vnsMFolder>
 </vnsMFunc>

 Group
 	 Configurations

 Any parameter and
 		folders that are defined under a group configuration can be shared across
 		multiple functions in a graph. A device package developer can define parameters
 		and folders that can be shared across multiple functions that are rendered on a
 		single device within a single graph under a group configuration.
 	

 The parameters and
 		folders within a group configuration are scoped under a graph instance. Any
 		function within a graph instance can share and reference the configuration.
 	

 Objects defined under
 		a group configuration persists as long as the graph instance persists. The
 		Application Policy Infrastructure Controller
 		(APIC)
 		deletes the parameter and folder defined under a group configuration when the
 		graph instance is deleted. Any parameter that is defined under a group
 		configuration must have a unique instance per graph on a device; a parameter
 		must not be shared or referenced by any other graph instance that is rendered
 		on the same device.
 	

 The group
 		configuration is represented by the
 		vnsGrpCfg object. Only one definition of
 		vnsGrpCfg can be under
 		vnsMDev. All group parameters and folders that are
 		scoped under a group must be contained within a
 		vnsGrpCfg object.
 	

 Parameters and
 		folders that are defined under a group configuration are similar to static
 		variables in the C language. The variables persist beyond a function.
 	

 Global Function
 	 Configurations

 Any parameter and
 		folders defined under an
 		vnsMDev configuration can be shared across multiple
 		functions across multiple graphs. A device package developer can define
 		parameters and folders that can be shared across multiple functions across
 		multiple graphs that are rendered on a single device under
 		vnsMDevCfg.
 	

 Objects defined under
 		a
 		vnsMDev configuration persist if there is at least one
 		graph instance refers to the parameter or the folder. The
 		Application Policy Infrastructure Controller
 		(APIC)
 		deletes the parameter and folder that is defined under a
 		vnsMDev configuration when all functions across all
 		graph instances are deleted from a specific device.
 	

 On a multi-context
 		device, the global configuration must have a unique instance per context. The
 		parameters and folders that are defined under
 		vnsMDev must not be shared across multiple contexts.
 	

 The parameter and
 		folders that are defined under a
 		vnsMDev configuration are similar to global variables
 		in the C language.
 	

 Typically, network
 		attributes, such as an IP address configured on an interface, routes, and
 		subnets, have a global scope. The encapsulation tags that are allocated by the
 		APIC
 		are globally scoped, which allows multiple parallel functions to be deployed on
 		the same network across multiple graphs.
 	

 Relations

 A service function can
 		reference a particular parameter or a folder that is defined under a group or
 		
 		 vnsMDevCfg, which allows the function to use an instance of a
 		parameter or a folder that is defined under a group or a device scope. The
 		relation to a folder is defined using the
 		vnsMRel object. A
 		vnsMRel object can exist only within a
 		vnsMFolder object. A folder can have one or more
 		relations objects defined.
 	

 The
 		vnsMRel object has the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	 key
 				

 	 Yes
 				

 	
 				
 Identifies
 					 the object. Each object key must have a unique value within the containing
 					 object. The key can contain only alphanumeric characters, '_', or '-'. A key
 					 cannot contain any other characters. The
 					 Application Policy Infrastructure Controller
 					 (APIC)
 					 uses the key to look up a specific object within a containing object.
 				

 				
 The key size
 					 is limited to a maximum of 512 characters.
 				

 				

 	 Description
 				

 	 Yes
 				

 	
 				
 Holds the
 					 description of this configuration item. The description field is used by the
 					 APIC
 					 GUI to provide help to the user. A device package developer should provide an
 					 accurate description and intent of the relation.
 				

 				
 The
 					 description field size is limited to a maximum of 512 characters.
 				

 				

 	 mandatory
 				

 	No
 				

 	
 				
 Indicates
 					 whether this relation is mandatory. This property is a Boolean value (yes or
 					 no). By default, a relation is not mandatory unless explicitly specified,
 					 meaning that the user is not required to specify a relations object. The given
 					 relation is not necessary to render a function on the device.
 				

 				

 	 cardinality
 				

 	No
 				

 	 Specifies the number of occurrences of this relation. By
 				 default, only one instance of a relation is permitted under the contained
 				 object. If a user is allowed to instantiate more than one instance of the
 				 relation object, the device specification file should define the relation with
 				 cardinality="n".
 				

 	 dispLabel
 				

 	No
 				

 	
 				
 This is a
 					 512 character string. If this attribute is specified in the model, the
 					 APIC
 					 GUI will display a string defined by
 					
 						dispLabel instead of the key. A device package developer provides a
 					 user friendly name for the folder.
 				

 				

 The
 		vnsMRel object contains a
 		vnsRsTarget object that identifies the object to which
 		a relation is referring. The target is a fully qualified key of the object that
 		is defined in the device specification file. The
 		vnsMRel object can contain only one instance of a
 		vnsRsTarget object.
 	

 The following example
 		defines a relations object:
 	

 <vnsMRel key="ServerConfig">
 <vnsRsTarget tDn="uni/infra/mDev-Insieme-SampleDevice-1.0/mDevCfg/mFolder-Server"/>
 </vnsMRel>

 The above example
 		indicates that the
 		ServerConfig that is defined within a function has a
 		relation to an instance of a server folder that is defined under
 		vnsMDevCfg. You can instantiate a relation by
 		specifying the target folder instance name qualified by a full path under a
 		device configuration. When a service function is rendered on a device, the
 		APIC
 		looks for a specific instance of the folder that is referred to by the
 		relations. If the
 		APIC
 		finds a matching instance, it includes the folder in the configuration
 		dictionary that is passed in the service API call. The
 		APIC
 		also passes an instance of relations as part of the function configuration
 		dictionary. For an example of a configuration dictionary that is passed in the
 		API, see
 		Developing Device Scripts.
 		
 	

 Parameter Scope and
 	 API Configuration Dictionary

 Any parameter and
 		folders that are defined under vnsMDevCfg, vnsGrpCfg, or vnsMFunc are passed to
 		the device script only during the serviceAudit(), serviceModify(),
 		serviceHealth(), and serviceCounters() function calls. The parameters and
 		folders that are defined in a vnsMDevCfg object are passed in a service API
 		call only if there is a service function with a relations object that refers to
 		that parameter and folder.
 	

 About Parameter
 	 Objects and Folders

 The cluster, device,
 		and functional configuration is defined by one or more
 		vnsMParam objects. These objects can be grouped
 		logically under one or more folders that are represented as the
 		vnsMFolder object.
 	

 	Parameter Objects

 	Folders

 	Features

 	Parameter Validation

 	Faults Codes

 	Function Profile

 Parameter
 	 Objects

 The configuration
 		parameters are represented by the
 		vnsMParam object type. A device package can have one or
 		more
 		vnsMParam objects. A parameter object contains the
 		following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	key
 				

 	Yes
 				

 	
 				
 Specifies
 					 the key for the meta parameter. This property uniquely identifies the
 					 parameter. Each parameter key must have a unique value within the containing
 					 object. The key can contain only alphanumeric characters, "_", or "-". The key
 					 cannot contain any other characters. The
 					 Application Policy Infrastructure Controller
 					 (APIC)
 					 uses the key to look up a specific object within a containing object, which is
 					 typically the
 					 vnsMFolder object.
 				

 				
 The key
 					 size is limited to a maximum of 512 characters.
 				

 				

 	 Description
 				

 	Yes
 				

 	
 				
 Holds the
 					 description of this configuration item. The description field is used by the
 					 APIC
 					 GUI to provide help to the user. The device package developer should provide an
 					 accurate description and intent of the parameter.
 				

 				
 The
 					 description field size is limited to a maximum of 512 characters.
 				

 				

 	 mandatory
 				

 	No
 				

 	 Indicates whether this parameter is mandatory. This property is
 				 a Boolean value (yes or no). By default, a parameter is not mandatory unless
 				 explicitly specified.
 				

 	 dType
 				

 	No
 				

 	
 				
 Specifies
 					 the data type for this parameter. It can take following values:
 				

 				

 	int
 					

 	real
 					

 	str
 					

 				
 If the
 					 dType is not specified, the parameter defaults to
 					 int.
 				

 				

 	 validation
 				

 	No
 				

 	
 				
 Specifies
 					 the validation expression to be used by the
 					 APIC
 					 for validating a value for this parameter.
 				

 				
 The
 					 validation string cannot exceed 255 characters.
 				

 				
 The
 					 dType need not be
 					 str if validation is specified. The validation string
 					 refers to a composite or a comparison object name. For more information, see
 					 c_Parameter_Validation_d129.html.
 					
 				

 				

 	 cardinality
 				

 	No
 				

 	
 				
 Specifies
 					 the number of occurrences of this parameter. By default, only one instance of a
 					 parameter is permitted under the contained object. If a user is allowed to
 					 instantiate more than one instance of the parameter object, the device
 					 specification file should define the parameter with
 					 cardinality="n".
 				

 				
 For
 					 example, if you can instantiate multiple static routes on a device that has a
 					 parameter object called
 					 route, set the cardinality of the
 					 route parameter to
 					 cardinality="n".
 				

 				

 	 dispLabel
 				

 	No
 				

 	
 				
 This is a
 					 512 character string. If this attribute is specified in the model, the
 					 APIC
 					 GUI will display a string defined by
 					
 						dispLabel instead of the key. A device package developer provides a
 					 user friendly name for the folder.
 				

 				
 For example,
 					 the configuration for a server IP address can be labeled as
 					
 						dispLabel = "Server IP Address" while the key is
 					 srvIpAddr. The GUI displays "Server IP Address" as the
 					 name for the parameter instead of "srvIpAddr."
 				

 				

 The following example
 		defines a parameter object:
 	

 <vnsMParam key="vservername"
 description="Name of VServer"
 mandatory="true"
 dType="str"
 validation="isAlpha"/>

<vnsMParam key="subnetipaddress"
 description="Subnet IPAddress of the Device"
 dType="str"
 cardinality=”n”
 validation="isIPAddress"/>

<vnsMParam dispLabel="Network Mask"
 key="netmask"
 dType="str"
 mandatory="true"/>

<vnsMParam dispLabel="Default Gateway"
 key="gateway"
 dType="str"
 mandatory="true"/>

 Folders

 The configuration
 		parameters can be logically grouped under folders. A folder can contain one or
 		more folders and parameters. A folder is represented by the
 		vnsMFolder object and has the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	key
 				

 	Yes
 				

 	
 				
 Specifies
 					 the key for the meta folder. This property uniquely identifies the folder. Each
 					 folder key must have a unique value within the containing object. The key can
 					 contain only alphanumeric characters, '_', or '-'. The key cannot contain any
 					 other characters. The
 					 Application Policy Infrastructure Controller
 					 (APIC)
 					 uses the key to look up a specific object within a containing object.
 				

 				
 The key
 					 size is limited to a maximum of 512 characters.
 				

 				
 The key for
 					 the top most folder defined under <vnsMDevCfg>, <vnsGrpCfg> or
 					 <vnsMfunc> must be unique within the device package.
 				

 				

 	 Description
 				

 	Yes
 				

 	
 				
 Holds the
 					 description of this configuration item. The description field is used by the
 					 APIC
 					 GUI to provide help to the user. The device package developer should provide an
 					 accurate description and intent of the folder.
 				

 				
 The
 					 description field size is limited to a maximum of 512 characters.
 				

 				

 	 scopedBy
 				

 	No
 				

 	
 				
 Specifies
 					 the scope for this configuration folder. This attribute specifies where in the
 					 Management Information Tree (MIT) to look for the value of this folder when
 					 instantiating a function. The
 					 APIC
 					 resolves the value by looking up an instance that is defined under different
 					 objects to which a graph is associated. The
 					 scopedBy attribute can contain the following values:
 				

 				

 	
 						tenant—The folder can be instantiated only under a
 						tenant.
 					

 	
 						ap—The folder can be instantiated only under an
 						application profile or tenant.
 					

 	
 						bd—The folder can be instantiated only under a bd or
 						tenant.
 					

 	
 						epg—The folder can be instantiated only under an
 						endpoint group (EPG), bridge domain, application profile, or tenant.
 					

 	
 						none
 					

 				
 A device
 					 package developer can limit the resolution to a higher level. By default,
 					 scopedBy is defined as "none", which means that the
 					 device package does not impose any restriction on where a particular folder can
 					 be instantiated. The
 					 APIC
 					 user can define an instance of the folder under a tenant, application profile,
 					 bridge domain, or EPG.
 				

 				

 					

 	Note

 	The
 						current version supports only
 						scopedby EPG.
 					

 				

 				

 	 cardinality
 				

 	No
 				

 	
 				
 Specifies
 					 the number of occurrences of this folder. By default, only one instance of a
 					 folder is permitted under the contained object. If the user is allowed to
 					 instantiate more than one instance of the folder object, the device
 					 specification file should define the folder with
 					 cardinality="n".
 				

 				

 	 dispLabel
 				

 	No
 				

 	
 				
 This is a
 					 512 character string. If this attribute is specified in the model, the
 					 APIC
 					 GUI will display a string defined by
 					
 						dispLabel instead of the key. A device package developer provides a
 					 user friendly name for the folder.
 				

 				
 For example,
 					 the configuration for syslog can be grouped under a folder with
 					
 						dispLabel = "Syslog Server Configuration" while the key is
 					 syslogSrvCfg. The GUI displays "Syslog Server
 					 Configuration" as the name for the folder instead of "syslogSrvCfg."
 				

 				

 	 dispFeature
 				

 	No
 				

 	
 				
 This is a
 					 512 character string. This attribute allows grouping of multiple folders based
 					 on a feature.
 				

 				
 A given
 					 feature such as Network may require multiple parameters. These parameters can
 					 be further grouped in one or more folders. A set of folders can define a
 					 feature configuration.
 				

 				
 This
 					 attribute defines which feature requires this folder. The
 					 APIC
 					 GUI matches the feature name specified fro this attribute with the
 					 vnsFeature to identify under which feature this folder
 					 should be displayed.
 				

 				
 This
 					 attribute takes a coma separated list of feature names. The folder can be
 					 included for one or more features. For example, the "LBMonitor" folder can be
 					 included under the "LoadBalancing" and "ContentSwitching" features.
 				

 				
 Match
 					 feature names specified for this attribute with the
 					 vnsFeature name defined under function,
 					 vnsDevCfg, or
 					 vnsClusterVfg.
 				

 				
 The
 					 APIC
 					 GUI groups the folders based on the
 					 vnsFeature name. If the feature name specified in the
 					 dispFeature attribute matches a
 					 vnsMFeature, the GUI will show this folder under that
 					 specific feature. If the name does not match any
 					 vnsMFeature, the GUI will default to display this
 					 folder under the "All" feature tab.
 				

 				
 If the
 					 dispFeature attribute is not defined, the GUI will display the folder the "All"
 					 feature tab.
 				

 				
 For
 					 example below, for
 					 dispFeature="LoadBalancing, SSLOffload", the GUI will
 					 display this folder under both Load Balancing and SSL Offload.
 				

 				
 For more
 					 examples, see the sample model described later in this document.
 				

 				

 The following example
 		defines a folder object:
 	

 <vnsMFolder key="Server"
 scopedBy="epg">
 <vnsMParam key="servername"
 description="Server Name"
 dType="str"
 validation="isAlpha"/>
 <vnsMParam key="domain"
 description="Domain name of the server"/>
 <vnsMParam key="ipaddress"
 description="Server IP address"
 dType="str"
 validation="isIPAddress"/>
</vnsMFolder>

 Features

 The
 		vnsMFeature is a new object in the Layer 4 - Layer 7
 		management information tree. The
 		vnsMFeature attribute allows logical grouping of folders
 		based on a feature. This object along with
 		dispFeature allows one or more folders to be grouped for
 		configuring a specific feature. The
 		Application Policy Infrastructure Controller
 		(APIC)
 		GUI uses this object to determine a set of features that can be configured on a
 		device cluster or a function supported by the cluster. The
 		vnsMFeature object and has the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	name
 				

 	Yes
 				

 	
 				
 Uniquely identifies the object. Each object name must have a
 					 unique value within the containing object. The name can contain only
 					 alphanumeric characters, '_' or '-'. The name cannot contain any other
 					 characters. The
 					 APIC
 					 uses the name to lookup a specific object within a containing object.
 				

 				
 The name size is limited to a maximum of 512 characters.
 				

 				

 	 dispOrder
 				

 	Yes
 				

 	
 				
 Specifies the order in which the
 					 vnsMFeature object is arranged within the
 					 parent object. Each instance of the
 					 vnsMFeature object in the parent object should
 					 have a unique
 					 dispOrder.
 				

 				
 This object is a string of numeric characters. The
 					 APIC
 					 GUI uses the numeric value for ordering the feature tabs on the screen. The
 					 features are ordered in ascending order.
 				

 				

 Parameter
 	 Validation

 The
 		Application Policy Infrastructure Controller
 		(APIC)
 		can do parameter validation by using the
 		vnsComparison and
 		vnsComposite objects. A device package developer can
 		define and associate validation to any string type parameter by using either
 		basic or composite comparisons.
 	

 The basic comparisons
 		(vnsComparison) can perform the following operations:
 	

 	 Equal—eq (the default)
 		

 	 Not equal—ne
 		

 	 Less than—lt
 		

 	 Greater than—gt
 		

 	 Greater than or equal
 		 to—ge
 		

 	 Less than or equal
 		 to—le
 		

 	 Match—match (requires a
 		 regular expression)
 		

 The comparison object
 		
 		vnsComparison is defined under the
 		vnsMDev,
 		vnsMFunc,
 		vnsMFolder,
 		vnsMParam, or
 		vnsComposite objects. The
 		vnsComparison object has the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	 name
 				

 	Yes
 				

 	
 				
 Holds the
 					 name of the comparison assertion.
 				

 				

 	Note

 	
 					
 The name
 						field allows only alphanumeric characters. The maximum length for this field is
 						16 characters; and you cannot use special characters.
 					

 				

 				

 	 cmp
 				

 	Yes
 				

 	
 				
 Defines the
 					 comparison operator:
 				

 				

 	eq—Equal, which is
 						the default.
 					

 	
 						ne—Not equal.
 					

 	
 						lt—Less than.
 					

 	
 						gt—Greater than.
 					

 	
 						ge—Greater than or equal to.
 					

 	
 						le—Less than or equal to.
 					

 	
 						match—Match. The
 						match comparison requires a regular expression.
 					

 				

 In the following
 		example, the parameter validates IP addresses using a regular expression match:
 		
 	

 <vnsMParam key="vipaddress"
 description="VIP IPAddress"
 dType="str"
 validation="isIPAddress"
/>

<vnsComparison name="isIPAddress"
 cmp="match"
 value="([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])"
/>

 The composite
 		comparison (vnsComposite) provides the following types of
 		comparisons to be performed:
 	

 	 All match (the
 		 default)—Validation passes when the parameter value matches all of the
 		 comparison objects that are defined by the composite object.
 		

 	 Any match—Validation passes
 		 when a parameter value matches one of the comparison objects that is defined
 		 within the composite object.
 		

 	 Exactly one match—Validation
 		 passes when a parameter value matches one of the comparison objects.
 		

 The composite object
 		can contain one or more
 		vnsComparison objects. A composite object can be
 		defined under
 		vnsMDev,
 		vnsMFunc,
 		vnsMFolder or
 		vnsMParam. A
 		vnsComposite has the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	 name
 				

 	Yes
 				

 	
 				
 Holds the
 					 name of the composite.
 				

 				

 	 cmp
 				

 	Yes
 				

 	
 				
 Defines the
 					 type of comparison to be performed. It takes the following values:
 				

 				

 	
 						and—All comparison strings that are contained within
 						the composite must match for the validation to return as a success. The
 						and type is the default comparison.
 					

 	
 						or—Any comparison string that is contained within the
 						composite can match for the validation to return as a success.
 					

 	
 						one—Only one comparison string contained within the
 						composite can match for the validation to return as a success. This operator
 						enables the package developer to define a mutual exclusion.
 					

 				

 In the following
 		example, the element defines a match with any of the contained values:
 	

 <vnsComposite name="isProtocol" comp="or">
 <vnsComparison name="ip" cmp="eq" value="IP" />
 <vnsComparison name="tcp" cmp="eq" value="TCP" />
 <vnsComparison name="udp" cmp="eq" value="UDP" />
 <vnsComparison name="http" cmp="eq" value="HTTP" />
 </vnsComposite>

 <vnsComposite name="yesNo" comp="one">
 <vnsComparison name="yes" cmp="eq" value="YES" />
 <vnsComparison name="No" cmp="eq" value="NO" />
 </vnsComposite>

 Faults Codes

 The device
 		specification file can define fault codes with help strings that describe the
 		nature of a fault and possible corrective action. When a device script
 		encounters an issue with rendering a function due to a parameter or folder, the
 		script can return a specific fault code with a path of the object that had an
 		issue. The
 		Application Policy Infrastructure Controller
 		(APIC)
 		refers to the fault code that is defined in the device specification file and
 		picks the description and corrective action that is described while displaying
 		the fault. Defining a fault code provides a description of the reason for the
 		fault and the corrective action that the user can take to resolve the fault.
 	

 The fault codes are
 		defined under a vnsMDfcts object. A device specification can have one instance
 		of vnsMDfcts under vnsMDev. A vnsMDfcts object can contain one or more fault
 		codes that are described by the vnsMDfct object.
 	

 The vnsMDfct object
 		contains the following attributes:
 	

 	 Attribute
 				

 	 Mandatory
 				

 	 Description
 				

 	code
 				

 	Yes
 				

 	
 				
 Specifies aA
 					 unit16 value that identifies a unique defect.
 				

 				

 	 Description
 				

 	Yes
 				

 	
 				
 Describes
 					 the defect. The description field is used by the
 					 APIC
 					 GUI to provide help to the user. The device package developer should provide an
 					 accurate description.
 				

 				
 The field
 					 size is limited to a maximum of 512 characters.
 				

 				

 	 htmlFile
 				

 	No
 				

 	
 				
 Specifies
 					 the URL link to online help that can help a user understand and correct the
 					 issue.
 				

 				
 The field
 					 size is limited to a maximum of 512 characters.
 				

 				

 	 recAct
 				

 	Yes
 				

 	
 				
 Specifies
 					 the recommended action. This field is used by the
 					 APIC
 					 GUI to provide the recommended action for the user to take. The device package
 					 developer should provide an accurate recommended action to resolve the defect.
 				

 				
 The field
 					 size is limited to a maximum of 512 characters.
 				

 				

 The following example
 		defines a fault object:
 	

 <vnsMDfcts>
 <vnsMDfct code="100"
 recAct="Configure a Netmask for the vipaddress"
 descr="VIP requires vipaddress and NetMask"/>
 <vnsMDfct code="200"
 recAct="Configure a relation to VIP Folder"
 descr="A function should have a valid relations to a VIP folder that is specifying the VIP Address and Netmask"/>
</vnsMDfcts>

 Function
 	 Profile

 The
 		APIC
 		requires a device package developer to define a function profile within a
 		device model. A function profile is a template for one or more functions
 		suitable for a specific application. A function profile is the equivalent of
 		defining an abstract graph within a device package with meaningful defaults for
 		a function that defines the graph. The user can leverage the built-in function
 		profile by referencing the built-in function profile in the device package at
 		the time of defining a service graph. Function profiles reduce the number of
 		parameters that a user has to provide to instantiate a service function for a
 		specific application. A device package developer must include as many function
 		profiles as applicable.
 	

 The
 		APIC
 		GUI wizard for configuring service graphs requires function profiles. It
 		expects the user to associate a function profile to a function while defining a
 		graph template. If a device package does not define a function profiles, the
 		user will not be able to use the
 		APIC
 		GUI service deployment wizard. Overall user experience suffers as a result.
 		Define at least one function profile for each function type defined in the
 		device package. Users can further clone and customize these function profiles.
 	

 Following is an
 		example of defining function profile in a device package:
 	

 <vnsAbsFuncProfContr name = "FunctionProfiles">

 <vnsAbsFuncProfGrp name = "Function Profiles for Service graph
 for an Application 1 ">
 <vnsAbsFuncProf name = "Function 1 Name">
 <vnsRsProfToMFunc
 tDn="uni/infra/mDev-<vendor-model-version>/mFunc-function1"/>

 <vnsAbsDevCfg>
 <vnsAbsFolder key="Folder_Key"
 name="Folder_Key>-Default" scopedBy="epg">
 <vnsAbsParam name="Param Instance name”
 “key="Param Name" value="Value"/>
 …
 </vnsAbsFolder>
 …

 </vnsAbsDevCfg>

 <vnsAbsFuncCfg>

 <vnsAbsFolder key=”Folder_Key"
 name="Folder_Key>-Default" scopedBy="epg">
 <vnsAbsCfgRel key="relation_key"
 name=”rel name” targetName="targetValue"/>
 </vnsAbsFolder>
 …
 <vnsAbsFuncCfg>

 </vnsAbsFuncProf>

 <vnsAbsFuncProf name = "Function 2 Name">
 <vnsRsProfToMFunc
 tDn="uni/infra/mDev-<vendor-model-version>/mFunc-function2"/>
 ….
 <vnsAbsFuncProf>

 </vnsAbsFuncProfGrp>

 <vnsAbsFuncProfGrp name = "Function Profiles for
 Service graph for an Application 2 ">
 …
 </vnsAbsFuncProfGrp>

 </vnsAbsFuncProfContr>

 The function profile
 		definition is contained within <vnsAbsFuncProfContr>. The profile for
 		each unique application is identified by <vnsAbsFuncProfGrp>. The
 		<vnsAbsFuncProfGrp> name should be intuitive to relate to an application
 		for which the template is being defined. For example, if the function profile
 		is for a load balancing function for a web application, the vnsAbsFuncProfGrp
 		should be named "Web Application Virtual Server".
 	

 A function profile
 		identified by <vnsAbsFuncProfGrp> can contain one or more functions as
 		applicable. If the graph requires the chaining of multiple functions on the
 		same device, the profile could define defaults for these functions within the
 		<vnsAbsFuncProfGrp>. Each function configuration within the profile is
 		contained within <vnsAbsFuncProf>.
 	

 Each vnsAbsFuncProf
 		has one relation to a function defined by the device model. The relation
 		identifies type of function being instantiated by the function profile. The
 		relation to the function is defined by object vnsRsProfToMFunc contained within
 		vnsAbsFuncProf. The vnsRsProfToMFunc has a tDn attribute identifying a function
 		with a fully qualified name of the function object. The example shows a sample
 		tDn for identifying a function within a device model.
 	

 The mechanism to
 		configure parameters for these functions are identical to creating a service
 		graph on APIC. The parameter, relations, and folders in a function profile can
 		be an instance of the parameters, relations and folders defined under
 		vnsMDevCfg, vnsGrpCfg, and vnsFuncCfg.
 	

 		

 	[image: ../images/note.gif]
Note
 	

The names of the folder in the function profile must be folder key
 		 appended with this string: "-Default". For example, folder key = "Network" then
 		 the folder instance is "Network-Default".
 		

 	

 Function profile does not allow instantiating multiple instances of
 		folder with cardinality 'n'. Only one instance can be defined within the
 		profile.
 	

 For information about
 		creating a service graph through the northbound API, see the
 		Cisco APIC Layer
 		 4 to Layer 7 Services Deployment Guide.
 	

 Managed Object
 	 Model

 The following figure
 		shows the object model for representing a device.
 	

 Managed Object
 		 Model

[image: ../images/304917.jpg]

 The following table
 		describes the objects in the object model.
 	

 	
 				
 Component
 				

 				

 	
 				
 Description
 				

 				

 	
 				
 vnsMDev
 				

 				

 	
 				
 Contains
 					 definitions of the metadata for a service device type. The metadata contains
 					 vendor-specific data, including the vendor name, device model, and device
 					 version. The service devices are categorized as GoTo and GoThrough devices. A
 					 device is a GoTo device if the packet is addressed to the device's MAC address
 					 or IP address. A device is considered as a GoThrough device if a packet
 					 transits through the device by in-path insertion and the packet is not
 					 addressed to the device's MAC address or IP address. A firewall in transparent
 					 mode is an example of a GoThrough device. A device package and device
 					 specification model could support devices in both GoTo and GoThrough mode. By
 					 default, the device specification is assumed to represent devices in GoTo mode.
 					 The device specification file can be changed to support both modes or the
 					 GoThrough mode only by using the following attribute:
 					 funcMask: "GoTo,GoThrough"

 				

 				

 	
 				
 vnsMCred
 				

 				

 	
 				
 Represents
 					 the credentials necessary to authenticate a user into the device. For example,
 					 key is used for key-based authentication schemes. This
 					 model details the meta-information for such key-based authentication of
 					 credentials.
 				

 				

 	
 				
 vnsDevScript
 				

 				

 	
 				

 					 Represents a device script handler. This managed object contains
 					 meta-information about the script handler's related attributes, including its
 					 name, package name, and version.
 				

 				

 	
 				
 vnsClusterCfg
 				

 				

 	
 				
 Contains
 					 the cluster configuration folders and parameters. The cluster configuration
 					 affects the functionality of the device cluster independent of graphs rendered
 					 on the device cluster.
 				

 				

 	
 				
 vnsDevCfg
 				

 				

 	
 				
 Contains
 					 device-specific configuration folders and parameters. The device configuration
 					 affects the functionality of a specific device within a cluster independent of
 					 the graphs rendered on the device cluster.
 				

 				

 	
 				

 					 vnsMCredSecret
 				

 				

 	
 				
 Contains
 					 the password for logging into a service device.
 				

 				

 	
 				
 vnsMDevCfg
 				

 				

 	
 				

 					 Represents the base level device configuration. This object serves as an anchor
 					 to differentiate between different device configurations and the shared
 					 configuration (MGrpCfg). The configuration under
 					 MDevCfg can be shared across multiple instances of a
 					 function across multiple graphs.
 				

 				

 	
 				
 vnMGrpCfg
 				

 				

 	
 				

 					 Represents the meta-group configuration. It contains the part of the
 					 configuration that can be shared across multiple functions in a graph. A
 					 configuration under a group configuration is scoped within a graph instance and
 					 cannot be referred to by another graph.
 				

 				

 	
 				
 vnsMFolder
 				

 				

 	
 				

 					 Represents meta-folder information. The model uses a generic configuration that
 					 consists of
 					 MFolders and
 					 MParams. This object allows the configuration to be
 					 specified as a hierarchy.
 				

 				

 	
 				
 vnsMParam
 				

 				

 	
 				
 Enables a
 					 configuration to be specified as a hierarchy. The metadata within this model
 					 consists of a key, a type (integer, string), and other attributes that are
 					 related to parameters.
 				

 				

 	
 				
 vnsMRel
 				

 				

 	
 				

 					 Represents a meta-relation to another object. It allows the referencing of
 					 another folder or parameter.
 				

 				

 	
 				
 vnsMFunc
 					
 				

 				

 	
 				
 Contains
 					 the metadata for a single function on a device. A function contains a set of
 					 connectors and a function-specific configuration tree. This managed object
 					 contains the metadata for all such operations.
 				

 				

 	
 				
 vnsMConn
 				

 				

 	
 				

 					 Represents a connector between logical functions. The metadata includes the
 					 cardinality, direction, and encapsulation type (VXLAN or VLAN) for the given
 					 connection.
 				

 				

 	
 				
 vnsMIfLbl
 					
 				

 				

 	
 				

 					 Represents an interface label. Interfaces can be labeled in an abstract way on
 					 devices. For example, a firewall device can implement trusted, untrusted, and
 					 management interfaces. The concrete models specify how many labels that a
 					 device supports.
 				

 				

 	
 				
 vnsMChainable
 				

 				

 	
 				

 					 Identifies the function names on a device that can immediately follow the
 					 parent function. This managed object contains the function names that can be
 					 chained together.
 				

 				

 	
 				
 vnsAbsFuncProfContr
 				

 				

 	
 				
 A Function
 					 profile group container. Defines a collection of function profile groups
 					 (graphs) for a specific application. Each function profile group can contain
 					 one or more functions initialized with certain default parameters for a
 					 specific application. A Function profile container can be defined within a
 					 device model by a device package developer or can be defined by the tenant to
 					 provide a catalog of graphs for a set of applications.
 				

 				

 	
 				
 vnsAbsFuncProfGrp
 				

 				

 	
 				
 Represents
 					 a function profile group. A collection of functions initialized with default
 					 parameters for a specific application. A function profile group can be defined
 					 within a device package by a device package developer or it can be defined by
 					 an APIC tenant as a catalog of graph for a specific applications.
 				

 				

 	
 				
 vnsAbsFuncProf
 					
 				

 				

 	
 				
 Represents
 					 a function profile. It contains vnsAbsDevCfg (an instance of vnsMDevCfg),
 					 vnsAbsGrpCfg (an instance of vnsMGrpCfg) and vnsAbsFuncCfg (an instance of
 					 vnsMFunc). A function profile is linked to a specific function defined in the
 					 device model. A function profile can be defined within a device package or can
 					 be defined by an
 					 APIC tenant as a catalog of function
 					 within a vnsAbsFuncProfGrp.
 				

 				

 	
 				
 vnsDevProf
 					
 				

 				

 	
 				
 Identifies
 					 a device model and associated attributes. It defines whether a device model is
 					 type virtual or physical, whether it supports multiple contexts, and so on.
 					 This object is primarily used to simplify device registration through the
 					 APIC.
 				

 				

 	
 				
 vnsDevInt
 					
 				

 				

 	
 				
 Allows
 					 device package vendors to define acceptable interface names for a given device
 					 profile.
 				

 				

 	
 				
 vnsMFeature
 					
 				

 				

 	
 				
 Represents
 					 a a list of features applicable to the function, device or cluster
 					 configuration. The
 					 APIC allows device package developers to
 					 group the folders based on features. A given folder may be part of one or more
 					 features. Based on the
 					 APIC GUI uses the
 					 vnsMFeature to display a subset of fulders while
 					 configuring a function, device, or cluster.
 				

 				

 	Managed Object Example for v1.1

 Managed Object
 	 Example for v1.1

 The following XML file
 		contains a sample managed object configuration, including the
 		dispLabel,
 		dispFeatrue, and
 		vnsMFeature objects. You can use a similar XML file to
 		instantiate a network device on the
 		APIC.
 		
<polUni>
<infraInfra>
<vnsMDev vendor="Insieme"
 model="NetworkService"
 version="1.0"
 funcMask="GoTo,GoThrough">

 <!-- Associate a device script that defines APIs required by APIC script Engine -->
 <vnsDevScript name="InsiemeNetworkService"
 packageName="DeviceScript.py"
 versionExpr="1.0"
 ctrlrVersion="1.1"
 minorversion="01"/>

 <!-- Define inteface labels for logical interface -->
 <vnsMIfLbl name="external"/>
 <vnsMIfLbl name="internal"/>
 <vnsMIfLbl name="mgmt"/>

 <!-- Describe device models and interface names allowed on the model -->
 <vnsDevProf name = "N9k" type = "PHYSICAL" context="multi-Context" pcPrefix="Port-channel">
 <vnsDevInt name="eth1_0" mgmtOnly="yes"/>
 <vnsDevInt name="eth1_1"/>
 <vnsDevInt name="eth1_2"/>
 <vnsDevInt name="eth1_3"/>
 <vnsDevInt name="eth1_4"/>
 <vnsDevInt name="eth1_5"/>
 </vnsDevProf>

 <vnsDevProf name = "N9kv" type = "VIRTUAL" pcPrefix="Port-channel">
 <vnsDevInt name="eth1_0" mgmtOnly="yes"/>
 <vnsDevInt name="eth1_2"/>
 <vnsDevInt name="eth1_3"/>
 <vnsDevInt name="eth1_4"/>
 <vnsDevInt name="eth1_5"/>
 <vnsDevInt name="eth1_6"/>
 </vnsDevProf>

 <vnsMCred name="username" key="username"/>
 <vnsMCredSecret name="password" key="password"/>

 <vnsComparison name="enable" cmp="match" value="^enable$" />
 <vnsComparison name="enableDisable" cmp="match" value="^(enable|disable)$" />
 <vnsComparison name="trueFalse" cmp="match" value="^(true|false)$" />
 <vnsComparison name="macAddress" cmp="match"
 value="^([0-9a-fA-F]{1,4}.){2}[0-9a-fA-F]{1,4}$" />
 <vnsComparison name="ipv4Addr" cmp="match"
 value="^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
 (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
 (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
 (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$" />
 <vnsComparison name="netmask" cmp="match"
 value="^((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[0-9]{1,2})\.)
 {3}(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[0-9]{1,2})$" />
 <vnsComparison name="hexKey" cmp="match" value="^[0-9a-fA-F]{32}$" />
 <vnsComparison name="str38" cmp="match" value="^\S{1,38}$" />
 <vnsComparison name="str128" cmp="match" value="^\S{1,128}$" />
 <vnsComparison name="any46" cmp="match" value="^any[46]?$"/>
 <vnsComposite name="domainName" comp="and">
 <vnsComparison name="dn_len" cmp="match" value="^.{1,63}$"/>
 <vnsComparison name="dn_str" cmp="match" value="^[a-zA-Z0-9-]+(\.[a-zA-Z0-9-]+)*$"/>
 </vnsComposite>

 <vnsComposite name="permitDeny" comp="or">
 <vnsComparison name="permit" cmp="eq" value="permit"/>
 <vnsComparison name="deny" cmp="eq" value="deny"/>
 </vnsComposite>

 <vnsMDfcts>
 <vnsMDfct code="10"
 descr="Configuration error"
 recAct="Fix the configuration error and retry.">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>
 </vnsMDfct>
 <vnsMDfct code="20"
 descr="Connection error"
 recAct="Check the device IP address and network connectivity.">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>
 </vnsMDfct>
 <vnsMDfct code="30"
 descr="Unexpected error"
 recAct="Report this error to Insieme.">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-critical"/>
 </vnsMDfct>
 <vnsMDfct code="40"
 descr="Unsupported device version"
 recAct="Upgrade to a device version that is supported by this Device Package.">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>
 </vnsMDfct>
 <vnsMDfct code="50"
 descr="device is busy with a previous configuration"
 recAct="Retry the operation after waiting for a short while.">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-warning"/>
 </vnsMDfct>
 </vnsMDfcts>

 <vnsClusterCfg name="ClusterConfig">
 <vnsMFeature name="License" dispOrder="0"/>

 <vnsDevCfg name="DeviceConfig">
 <vnsMFeature name="HighAvailability" dispOrder="0"/>
 <vnsMFolder dispFeature="HighAvailability"
 dispLabel="Failover Settings" key="HighAvailability">
 <vnsMParam dispLabel="Peer IP Address" key="ipaddress" dType="str" />
 <vnsMParam dispLabel="Peer NetMask" key="netmask" dType="str"/>
 <vnsMParam dispLabel="Peer Unit ID" key="id" mandatory="true" />
 </vnsMFolder>
 </vnsDevCfg>

 <vnsMFolder dispFeature="License" dispLabel="Licensed Features" key="enableFeature">
 <vnsMParam dispLabel="L4 Load Balancing" key="LBV4" dType="str"/>
 <vnsMParam dispLabel="L7 Load Balancing" key="LBV7" dType="str"/>
 </vnsMFolder>

 </vnsClusterCfg>

 <vnsMDevCfg name="DeviceConfig">

 <vnsMFolder dispFeature="Network"
 dispLabel="Configure Network"
 key="Network"
 scopedBy="epg"
 cardinality="n">

 <vnsMFolder dispLabel="Routing" key="route" cardinality="n">
 <vnsMParam dispLabel="Subnet" key="network" dType="str"
 validation="netmask" mandatory="true" />
 <vnsMParam dispLabel="Network Mask" key="netmask" dType="str"
 validation="netmask" mandatory="true" />
 <vnsMParam dispLabel="Default Gateway" key="gateway" dType="str"
 validation="ipv4Addr" mandatory="true" />
 </vnsMFolder>

 <vnsMFolder dispLabel="Device IP" key="ip" cardinality="n">
 <vnsMParam dispLabel="IP Address" key="ipaddress" dType="str"
 validation="ipv4Addr" mandatory="true" />
 <vnsMParam dispLabel="Network Mask" key="netmask" dType="str"
 validation="netmask" mandatory="true" />
 </vnsMFolder>

 </vnsMFolder>

 <vnsMFolder dispFeature="Policy"
 dispLabel="Configure Traffic Processing Policies"
 key="Policy"
 scopedBy="epg"
 cardinality="n">

 <vnsMFolder dispFeature="Policy"
 dispLabel="L7 Load Balancing"
 key="l7policy"
 cardinality="n">
 <vnsMParam dispLabel="Name" key="policyname" dType="str" mandatory="true" />
 <vnsMParam dispLabel="URL" key="url" dType="str" />
 <vnsMParam dispLabel="Rule" key="rule" dType="str" />
 </vnsMFolder>

 <vnsMFolder dispFeature="Policy"
 dispLabel="Caching Policy"
 key="cachepolicy"
 cardinality="n">
 <vnsMParam dispLabel="Name" key="policyname" dType="str" mandatory="true" />
 <vnsMParam dispLabel="Rule" key="rule" dType="str" mandatory="true" />
 <vnsMParam dispLabel="Action" key="action" dType="str"
 validation="permitDeny" mandatory="true" />
 </vnsMFolder>
 </vnsMFolder>

 <vnsMFolder dispFeature="Server" dispLabel="Configure Server Pool"
 key="serverpool" cardinality="n">
 <vnsMParam dispLabel="Pool Name" key="serverpoolname" dType="str" mandatory="true" />
 <vnsMParam dispLabel="Type" key="type" dType="str" mandatory="true" />

 <vnsMFolder dispLabel="LB Monitor" key="lbmonitor" cardinality="n">
 <vnsMRel dispLabel="Select LB Monitor" key="monitorRel" >
 <vnsRsTarget tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-lbmonitor"/>
 </vnsMRel>
 <vnsMParam dispLabel="Monitor State"
 key="monstate" dType="str"
 validation="enableDisable"/>
 </vnsMFolder>

 <vnsMFolder dispLabel="Server Pool Member" key="server" cardinality="n">
 <vnsMParam dispLabel="Server Name" key="servername" dType="str"/>
 <vnsMParam dispLabel="Port" key="port" dType="str"/>
 <vnsMParam dispLabel="IP Address" key="ip" dType="str"
 validation="ipv4Addr" mandatory="true"/>
 </vnsMFolder>
 </vnsMFolder>

 <vnsMFolder dispFeature="LBMonitor" dispLabel="Configure LB Monitor"
 key="lbmonitor" cardinality="n">
 <vnsMParam dispLabel="Name" key="monitorname" dType="str" mandatory="true" />
 <vnsMParam dispLabel="Type" key="type" dType="str" mandatory="true" />
 </vnsMFolder>

 <vnsMFolder dispFeature="SSL" dispLabel="Configure SSL Certificate Key"
 key="sslcertkey" cardinality="n">
 <vnsMParam dispLabel="Certificate Key Name" key="certkey" dType="str" mandatory="true" />
 <vnsMParam dispLabel="Certficate Name" key="cert" dType="str" mandatory="true" />
 <vnsMParam dispLabel="Key Name" key="key" dType="str" mandatory="true" />
 </vnsMFolder>

 <vnsMFolder dispFeature="SLB" dispLabel="Virtual Server Configuration"
 key="lbvserver" cardinality="n">
 <vnsMParam dispLabel="Name" key="name" dType="str" mandatory="true" />
 <vnsMParam dispLabel="Type" key="servicetype" dType="str" mandatory="true" />
 <vnsMParam dispLabel="IP Address" key="ipv4" dType="str" mandatory="true"
 validation="ipv4Addr" />
 <vnsMParam dispLabel="Subnet" key="ipmask" dType="str" mandatory="true"
 validation="netmask"/>
 <vnsMParam dispLabel="Port" key="port" mandatory="true"/>
 </vnsMFolder>
 </vnsMDevCfg>

 <vnsMFunc name="LoadBalancing" dispLabel="Load Balancing">

 <vnsMConn name="external" dir="input" encType="vlan" notifications="subnet">
 <vnsRsInterface tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mIfLbl-external" />
 </vnsMConn>
 <vnsMConn name="internal" dir="output" encType="vlan" notifications="endpoint">
 <vnsRsInterface tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mIfLbl-internal" />
 </vnsMConn>

 <vnsMFeature name="SLB" dispOrder="0"/>
 <vnsMFeature name="Server" dispOrder="1"/>
 <vnsMFeature name="Monitor" dispOrder="2"/>
 <vnsMFeature name="Policy" dispOrder="3"/>
 <vnsMFeature name="Network" dispOrder="4"/>
 <vnsMFeature name="SSL" dispOrder="5"/>

 <vnsMFolder dispFeature="SLB" dispLabel="Virtual Server" key="lbvserverCfg" cardinality="n">
 <vnsMRel dispLabel="Select Virtual Server" key="lbvserverRel" >
 <vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-lbvserver"/>
 </vnsMRel>
 <vnsRsConnector tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mFunc-LoadBalancing/mConn-external"/>
 </vnsMFolder>

 <vnsMFolder dispFeature="Server" dispLabel="Server Pool" key="serverpoolCfg" cardinality="n">
 <vnsMRel dispLabel="Select Server Pool" key="serverpoolRel" >
 <vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-serverpool"/>
 </vnsMRel>
 </vnsMFolder>

 <vnsMFolder dispFeature="Monitor" dispLabel="Monitor" key="lbmonitorCfg" cardinality="n">
 <vnsMRel dispLabel="Select Monitor" key="lbmonitorRel" >
 <vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-lbmonitor"/>
 </vnsMRel>
 </vnsMFolder>

 <vnsMFolder dispFeature="Policy" dispLabel="Policies" key="policyCfg" cardinality="n">
 <vnsMRel dispLabel="Select Policies" key="policyRel" >
 <vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-Policy"/>
 </vnsMRel>
 </vnsMFolder>

 <vnsMFolder dispFeature="SLB" dispLabel="vip" key="vipCfg" cardinality="n">
 <vnsMRel dispLabel="Select Network" key="vipRel" >
 <vnsRsTarget tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-Network/mFolder-ip"/>
 </vnsMRel>
 </vnsMFolder>

 <vnsMFolder dispFeature="Network" dispLabel="Internal Network"
 key="internalNetwork" cardinality="n">
 <vnsMRel dispLabel="Select Internal Network" key="internalNetworkRel" >
 <vnsRsTarget tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-Network/mFolder-ip"/>
 </vnsMRel>
 <vnsRsConnector tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mFunc-LoadBalancing/mConn-internal"/>
 </vnsMFolder>

 <vnsMFolder dispFeature="Network" dispLabel="Internal Route"
 key="internalRoute" cardinality="n">
 <vnsMRel dispLabel="Select Internal Route" key="internalRouteRel" >
 <vnsRsTarget tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-Network/mFolder-route"/>
 </vnsMRel>
 <vnsRsConnector tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mFunc-LoadBalancing/mConn-internal"/>
 </vnsMFolder>

 <vnsMFolder dispFeature="Network" dispLabel="External Network"
 key="externalNetwork" cardinality="n">
 <vnsMRel dispLabel="Select External Network" key="externalNetworkRel" >
 <vnsRsTarget tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-Network/mFolder-ip"/>
 </vnsMRel>
 <vnsRsConnector tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mFunc-LoadBalancing/mConn-external"/>
 </vnsMFolder>

 <vnsMFolder dispFeature="Network" dispLabel="External Route" key="externalRoute" cardinality="n">
 <vnsMRel dispLabel="Select External Route" key="externalRouteel" >
 <vnsRsTarget tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/mFolder-Network/mFolder-route"/>
 </vnsMRel>
 <vnsRsConnector tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mFunc-LoadBalancing/mConn-external"/>
 </vnsMFolder>

 </vnsMFunc>

 <vnsAbsFuncProfContr name="FunctionProfiles">
 <vnsAbsFuncProfGrp name = "GroupCfg">
 <vnsAbsFuncProf name = "WebLoadBalancer">
 <vnsRsProfToMFunc tDn=
 "uni/infra/mDev-Insieme-NetworkService-1.0/mFunc-LoadBalancing"/>
 <vnsAbsDevCfg>
 <vnsAbsFolder key="lbvserver" name="lbvserver-Default">
 <vnsAbsParam key="name" name="WebVServer" value="WebVServer" />
 <vnsAbsParam key="servicetype" name="servicetype" value="http" />
 <vnsAbsParam key="port" name="port" value="80"/>
 </vnsAbsFolder>
 <vnsAbsFolder key="serverpool" name="serverpool-Default">
 <vnsAbsParam key="serverpoolname" name="serverpoolname"
 value="webserverpool" />
 <vnsAbsParam key="servicetype" name="servicetype" value="http" />
 <vnsAbsParam key="port" name="port" value="8080"/>
 </vnsAbsFolder>
 </vnsAbsDevCfg>
 <vnsAbsFuncCfg>
 <vnsAbsFolder key="lbvserverCfg" name="lbvserver-Default">
 <vnsAbsCfgRel name="lbvserverRel"
 key="lbvserverRel" targetName="lbvserver-Default"/>
 </vnsAbsFolder>
 <vnsAbsFolder key="serverpoolCfg" name="serverpoolCfg-Default">
 <vnsAbsCfgRel name="serverpoolRel"
 key="serverpoolRel" targetName="serverpool-Default"/>
 </vnsAbsFolder>
 </vnsAbsFuncCfg>
 </vnsAbsFuncProf>
 </vnsAbsFuncProfGrp>
 </vnsAbsFuncProfContr>
</vnsMDev>
</infraInfra>
</polUni>

 	

 Chapter 3. Developing Device Scripts

 	About Device Scripts

 	Guidelines for Creating Device Scripts

 	Sample Script

 About Device
 	 Scripts

 The device script acts
 		as an adapter between the
 		Application Policy Infrastructure Controller
 		(APIC)
 		and the network service by converting calls to the
 		APIC
 		service API into device-specific calls.
 	

 Device Script
 		 Model

[image: ../images/351281.jpg]

 The device script runs
 		in the context of a
 		ScriptWrapper, which is an environment that handles
 		calls for each device type. A
 		ScriptWrapper runs within a namespace that limits CPU,
 		file, and socket resource consumption.
 	

 Uploading a device
 		package creates a
 		ScriptWrapper that imports the module from the device
 		script file. The module exposes the functions described in the API.
 	

 The device scripts
 		must be stateless and idempotent (producing the same result if run more than
 		once). No file I/O operations are permitted within a script, except for
 		generating a temporary state in the
 		/tmp directory. You should not use any file that is
 		created within the
 		/tmp directory for storing a persistent state. The
 		APIC
 		can be deployed in a cluster. The device script can get invoked from any one of
 		the
 		APIC
 		instances. Any data stored in the
 		/tmp directory is not guaranteed to be available
 		across two API calls. A script must not store its own state in any file.
 	

 The
 		APIC
 		requires scripts to be developed for Python 2.7. Other than standard libraries
 		that are available in Python 2.7, the script environment provides Python
 		Requests library v1.2.3. If the device package requires any other libraries,
 		the device package developer can bundle those libraries in the device script's
 		zip file.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 The script must be
 		 thread-safe, which means that for any instance, multiple threads can invoke the
 		 same function in the script in order to configure different devices. The script
 		 should execute in the invoking thread context and must not spawn any new
 		 threads as part of its execution.
 		

 	

 Guidelines for
 	 Creating Device Scripts

 You must implement all
 		the scripting APIs to establish the adapters between the
 		Application Policy Infrastructure Controller
 		(APIC) and the network services. The APIs
 		receive the Python dictionaries that correspond to the device specification
 		hierarchy. You must convert the Python dictionaries to the internal format that
 		is needed by the specific device. Similarly, when a device returns a value, the
 		API must convert the return value to the format needed by the
 		APIC.
 		For examples, see the specification in
 		Developing Device
 		 Specifications and the sample script at the end of this section.
 	

 	Device Script APIs

 	Script Framework

 	Configuration Dictionary Format

 	Service Configuration

 	API Callouts

 	Passing Parameters

 	Device Identification

 	Handling Script Failures

 Device Script
 	 APIs

 The device script
 		APIs are divided into four categories:
 	

 	Device
 		

 	Cluster
 		

 	Service
 		

 	 Endpoint and Network Event
 		

 	

 APIC requires users to
 		register one or more device cluster within a tenant. All service functions are
 		applied to a cluster. A cluster can contain one or more network service
 		devices. A device can be deployed in standalone mode without any redundancy by
 		defining a cluster with a single device. A device can be deployed in
 		active-standby HA mode by registering two devices configured as active-standby
 		peers within a cluster. Similarly devices can be deployed in active-active mode
 		by registering multiple devices configured as active peers within a cluster.
 		The devices registered within a cluster are assumed to have active-active or
 		active-standby pairing. The HA configuration of devices within a cluster can be
 		pushed via APIC or it could be done out-of-band directly on the device prior to
 		registering the devices with the APIC.
 	

 The configuration on
 		the device is split into three categories: service function specific
 		configuration, device specific configuration, or cluster specific
 		configuration. The service configuration is pushed via Service APIs; the device
 		configuration is pushed via Device APIs; and the cluster configuration is
 		pushed via Cluster APIs.
 	

 Device
 		 APIs

 		
 		
 The following APIs
 		 are called for each device registered within a cluster with
 		 APIC:
 		

 		def deviceValidate(device, version)
def deviceModify(device, interfaces, configuration)
def deviceAudit(device, interfaces, configuration)
def deviceHealth(device, interfaces, configuration)
def deviceCounters(device, interfaces, configuration)

 		The configuration
 		 dictionary passed in these APIs contains any device specific configuration done
 		 on the APIC.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 APIC does not
 			 pass any cluster level or service function configuration information during
 			 device API callouts.
 		

 		

 		
 The device APIs
 		 are assumed to act on any device specific configuration and should not
 		 reference or affect cluster level configuration or affect service functions.
 		

 		
 Typically
 		 configuration like link bundling (such as LACP, etc.), that is device specific,
 		 can be done in deviceModify(), deviceAudit() callouts.
 		

 		
 The configuration
 		 passed in the dictionary will be an instance of any folder and parameter
 		 defined under vnsDevCfg in the device Model.
 		

 	

 Cluster
 		 APIs

 		
 		
 The following APIs
 		 are called for each device cluster that is registered with the
 		 APIC:
 		

 		def clusterModify(device, interfaces, configuration)
def clusterAudit(device, interfaces, configuration)

 		The configuration
 		 dictionary contains any cluster configuration done on the APIC.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 APIC does not
 			 pass any device configuration or service configuration information during
 			 cluster API callouts.
 		

 		

 		
 The cluster APIs
 		 are assumed to act on any cluster level configuration and should not reference
 		 or affect device specific of function specific configuration.
 		

 		
 Typically NTP
 		 server, syslog server, etc. like configuration that is done at the HA cluster
 		 level is configured through cluster API.
 		

 		
 The configuration
 		 passed in the dictionary is an instance of any folder and parameter defined
 		 directly under vnsClusterCfg in the device Model.
 		

 	

 Service
 		 APIs

 		
 		
 The following APIs
 		 are called for any service function that is rendered on the device:
 		

 		def serviceModify(device, configuration)
def serviceAudit(device, configuration)
def serviceHealth(device, configuration)
def serviceCounters(device, configuration)

 		 The configuration
 		 dictionary contains an instance of parameters and folders that are defined
 		 under
 		 vnsMDevCfg,
 		 vnsGrpCfg, or under
 		 vnsMFunc.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Instance of
 			 folders/parameters defined under vnsMDevCfg within a device model is passed in
 			 a service API callout if and only if an instance of a function in the service
 			 graph has a reference to these parameter. Not all parameter and folder
 			 instances defined under vnsMDevCfg are passed to the service function. APIC
 			 passes only those parameters and folders that are used by a specific function
 			 instance being referenced in the service API callout.
 		

 		

 	

 Endpoint and
 		 Network Event APIs

 		
 		
 The following APIs
 		 are called when an endpoint or a network configuration changes for endpoint
 		 groups (EPGs) that are associated with the graph:
 		

 		def attachEndpoint(device, configuration, endpoints)
def detachEndpoint(device, configuration, endpoints)
def attachNetwork(device, configuration, networks)
def detachNetwork(device, configuration, networks)

 		 These APIs are
 		 called only if the device specification supports an endpoint or network attach
 		 notification and you have enabled a notification on the function connector. The
 		 AttachEndpoint and DetachEndpoint events are called when an endpoint within an
 		 EPG attaches or detaches. The network APIs are called when you modify the
 		 subnet configuration under the bridge domain or EPG. These APIs provide
 		 information to enable the automation of any service function configuration that
 		 should be modified on an endpoint or network configuration change. An example
 		 would be if you dynamically add and remove a server from a pool that is
 		 attached to a load balancer or dynamically update a subnet within an access
 		 list defined for a firewall. The device specification file can define an empty
 		 function that returns success in the return format that is required by the
 		 APIC. It is not mandatory to support
 		 endpoint or network event handling functionality.
 		

 		
 If a device
 		 package does not support these functions, it should define a stub function that
 		 always returns a status of success with the return dictionary format as
 		 described in this document.
 		

 	

 Script
 	 Framework

 The two modules that
 		must be imported by device script are as follows:
 	

 	 Import Insieme.Logger
 		

 	 Import Insieme.Config
 		

 Logging

 		
 		
 Insieme.Logger
 		 defines a logging utility. A device script can use this utility to log debug
 		 information. The logging utility writes the configuration API logs to a file
 		 called
 		 debug.log. This file is included in any technical
 		 support data that is collected from the
 		 Application Policy Infrastructure Controller
 		 (APIC).
 		 A device script developer should log as much information as possible to help
 		 debug any script issues.
 		

 		
 Logs for Periodic
 		 APIs like serviceHealth() serviceCounters() are redirected to the periodic.log.
 		 The debug.log and periodic.log files can be accessed as a fabric administrator
 		 on APIC under /data/devicescript/<vendor-model-version>/logs.
 		

 		
 The logging function
 		 is similar to the Python logging function. The logs can be split into the
 		 following categories:
 		

 		

 	 CRIT
 		

 	 ERROR
 		

 	 WARN
 		

 	 INFO
 		

 	 DEBUG
 		

 	 DEBUG2
 		

 	 DEBUG3
 		

 	 DEBUG4
 		

 		
 The script can
 		 invoke the API as follows:
 		

 		Logger.log(level, Log String)

 		The following
 		 example invokes the API:
 		

 		Logger.log(Logger.DEBUG, 'Connection to device failed')

 	

 		 Constants

 		
 		
 Insieme.Config
 		 defines constants that can be used for parsing the dictionary:
 		

 		Type = Insieme.Fwk.Enum(
 DEV=0,
 GRP=1,
 CONN=2,
 FUNC=3,
 FOLDER=4,
 PARAM=5,
 RELATION=6,
 ENCAP=7,
 ENCAPASS=8,
 ENCAPREL=9,
 VIF=10,
 CIF=11,
 LIF=12,
)

State = Insieme.Fwk.Enum(
 UNCHANGED=0,
 NEW=1,
 CHANGED=2,
 DELETED=3,
)

Result = Insieme.Fwk.Enum(
 SUCCESS=0,
 TRANSIENT=1,
 PERMANENT=2,
 AUDIT=3,
)

 		
 		

 	[image: ../images/note.gif]
Note
 	

Device package
 			 developers should use the
 			 enums
 			 defined in the Insieme.Fwk python module. The integer values
 			 shown above may have changed in the final implementation. Using the absolute
 			 values shown in this document can lead to unexpected behavior.
 		

 		

 	

 Configuration
 	 Dictionary Format

 The configuration
 		dictionary that is passed in the cluster API, device API, and service API
 		follows the same structure as defined in the device specification file. The
 		configuration is passed as a hierarchy of dictionaries, with each level
 		identifying a folder. The dictionary format is as follows:
 	

 		(type, key, name) : { ‘state’: …
 ‘transaction’: …
 ‘connector’: …
 ‘value’: …
 ‘target’: …
 ‘device’: …
 }

 	

 The fields are as
 		follows:
 	

 	Field
 				

 	Description
 				

 	type
 				

 	
 				
 Identifies
 					 the type of the object represented by the dictionary. The field can have one of
 					 the following values:
 				

 				

 					 DEV=0,
GRP=1,
CONN=2,
FUNC=3,
FOLDER=4,
PARAM=5,
RELATION=6,
ENCAP=7,
ENCAPASS=8,
ENCAPREL=9,
VIF=10,
CIF=11,
LIF=12

 				

 				

 	 Key
 				

 	 Specifies the key or name attribute that is defined in the
 				 device specification file for the object.
 				

 	 Name
 				

 	 Specifies the parameter or folder instance name that is
 				 provided by the user.
 				

 	 State
 				

 	
 				
 Identifies
 					 the object's state. This field can have one of the following values:
 				

 				

 					 UNCHANGED=0,
NEW=1,
CHANGED=2,
DELETED=3,

 				

 				

 	 Connector
 				

 	 Specifies the name of the connect instance that is resolved
 				 according to the relations that are defined the specification file. This field
 				 is populated for a folder or a relation dictionary only if the corresponding
 				 vnsMFolder object or
 				 vnsMRel object has
 				 vnsRsConnector relations defined in the device
 				 specification file.
 				

 	 Value
 				

 	 Defines the value for the object. In the case of a folder, this
 				 field can contain another dictionary. A relations object does not contain a
 				 value element, and instead has a
 				 target element. A value for a parameter object cannot
 				 exceed 512 characters.
 				

 	 Target
 				

 	 Defines the target folder to which a relations object is
 				 resolved. This element is populated only for a relations object.
 				

 	 Transaction
 				

 	 Contains the
 				 Application Policy Infrastructure Controller
 				 (APIC)
 				 transaction ID that resulted in a specific API callout.
 				
 The
 					 transaction ID is used for correlating request/response between APIC and the
 					 device script. It is used primarily for debugging convenience. A script can
 					 ignore this value.
 				

 				

 	
 				
 Device
 				

 				

 	
 				
 Any
 					 configuration passed in a cluster API or service API is typically applied to
 					 the cluster and it is in effect on all devices within the cluster. However it
 					 is possible that there may be cases where the configuration has to be applied
 					 to a specific device within the cluster, such as when configuring the interface
 					 IP for devices within the cluster. Each device may be assigned a unique IP. As
 					 a result, the interface IP configuration should be applied to one specific
 					 device within the cluster. This is accomplished using device context labels on
 					 the APIC. When a user configures the parameter on APIC, a user can (optionally)
 					 associate a device context label identifying a device within the cluster on
 					 which the configuration should be applied.
 				

 				
 If a
 					 parameter is tied to a specific device context within a cluster, APIC
 					 instantiates a 'device' key in the dictionary with device name as its value.
 					 The script can lookup the device name in the device dictionary passed in the
 					 callout. A script can apply the parameter configuration to a specific device
 					 identified by device field.
 				

 				

 For more information
 		about the configuration dictionary format, see
 		Sample Script.
 		For an example dictionary for connector, encapsulation, and interface
 		information, see
 		Fabric Connectivity
 		
 	

 API Return
 		 Value

 		
 		
 The APIs return a
 		 dictionary with the following format:
 		

 		

 		 { ‘state’:
 ‘health’: []
 ‘fault’: []
 }

 		

 		
 The state returns
 		 one of the following values:
 		

 		

 		 SUCCESS=0
 TRANSIENT=1
 PERMANENT=2
 AUDIT=3

 		

 		
 For information
 		 about the health, see
 		 Health Monitoring.
 		 For information about faults, see
 		 c_Fault_Codes_d130.html.
 		
 		

 		
 You should configure
 		 the device script to set a timeout of at least 30 seconds to establish a
 		 connection with the device. If the device script fails to establish network
 		 connectivity within the time interval, it returns a TRANSIENT (1) state in the
 		 return dictionary. The
 		 APIC
 		 retries the transaction until the Transient state is cleared.
 		

 		
 Transient faults
 		 indicate failures that don't require immediate user attention to resolve the
 		 issue. It could be a temporary event that prevents a script from pushing the
 		 configuration.
 		 APIC
 		 will retry pushing the configuration aggressively till the fault is cleared. If
 		 a transient fault fails to clear after multiple (5) retries,
 		 APIC
 		 marks the failure as permanent.
 		

 		
 A device script
 		 can request for an audit call by returning AUDIT state in the return
 		 dictionary.
 		 APIC
 		 will trigger a clusterAudit(), deviceAudit(), or serviceAudit() depending on
 		 whether the cluster API, device API or service API returned an AUDIT state. The
 		 script can request for an audit in the event it detects a configuration
 		 mismatch between
 		 APIC
 		 and a device which cannot be resolved within the current API call
 		

 		
 A device script
 		 returns a PERMANENT fault if the parameter values or configuration that was
 		 passed by you has an issue and requires a user intervention to resolve the
 		 problem.
 		

 		
 A persistent
 		 transient fault may translate to a permanent fault.
 		 APIC
 		 will continue to periodically push the configuration till the fault is
 		 resolved. The retry is spaced at larger interval. Some faults may require a
 		 user intervention to clear (such as an invalid parameter value, etc.).
 		

 		
 The
 		 scriptwrapper process that invokes the device script
 		 API expects the API to return within 120 seconds. If the script takes longer
 		 than 120 seconds, the
 		 scriptwrapper process terminates and restarts. Any
 		 outstanding transactions are replayed after the restart.
 		

 	

 Service
 	 Configuration

 The
 		Application Policy Infrastructure Controller
 		(APIC)
 		creates an instance of a metadevice (MDev) for each
 		tenant context. An
 		MDev
 		instance is referred to as a virtual device, or
 		vDev.
 		All service configuration instances for a tenant are rooted under a
 		vDev.
 		The
 		APIC
 		generates a unique id for identifying each
 		vDev.
 		The
 		APIC
 		also generates a unique ID for each graph instance, which is represented as
 		vGrp.
 		The group configuration and function configuration are rooted under this
 		vGrp
 		instance that identifies a specific graph instance.
 	

 The configuration
 		dictionary that is passed in
 		serviceAudit(),
 		serviceModify(),
 		serviceHealth(), and
 		serviceCounter() always contains a
 		vDev
 		object and a
 		vGrp
 		object. A multi-context device script should use the
 		vDev
 		object to identify a tenant context uniquely, which could map to a specific
 		routing domain or context.
 	

 Parameter
 		 Instance Name on Device

 		
 		
 Any folders and
 		 parameters that are defined under
 		 vnsMDevCfg are instantiated under
 		 vDev. Either a multi-context device must create a
 		 configuration folder for each
 		 vDev ID, or the device or device script must
 		 concatenate the
 		 vDev
 		 ID that is passed in the configuration dictionary to generate a unique name
 		 across multiple contexts.
 		

 		
 The following
 		 example shows a dictionary with a global folder and parameter for a function:
 		

 		{
 (0,'',4304): {
 'state': 1,
 'transaction': 10000,
 'value': {
 (4,'Server','webserver1'): {
 'state': 1,
 'transaction': 10000,
 'value': {
 (5,'ipaddress','ipaddress'): {
 'state': 1,
 'transaction': 10000,
 'value': '192.168.100.2'
 },
 (5,'servername','servername'): {
 'state': 1,
 'transaction': 10000,
 'value': 'webserver1'
 }
 }
 }
}

 		 A device script
 		 must make sure that the
 		 servername instance is uniquely identified across
 		 different contexts. Because the names can overlap across different contexts
 		 that are configured on the same device, a device script can append the
 		 vDev
 		 ID to the
 		 servername value to make the parameter and folder
 		 name unique across different contexts. The following examples are unique
 		 servername values:
 		

 		4304_webserver1
webserver1_4304
webserver1.4304

 		Another method for
 		 creating unique
 		 servername values is by creating a folder called
 		 4304, and then creating the
 		 webserver1 instance under the
 		 4304 folder.
 		

 		
 A single context
 		 device can ignore the
 		 vDev argument that is passed in the configuration
 		 dictionary. Similarly, a single context or multi-context device must append the
 		 group ID to keep the parameter and folder name that are configured for a graph
 		 instance unique from another graph instance that is rendered on the same
 		 device, as shown in the following example:
 		

 		(0,'',4304): {
 'state': 1,
 'transaction': 10000,
 'value': {
 (1,'',4368): {
 'state': 1,
 'transaction': 10000,
 'value': {
 (3,'SLB','SLB'): {
 'state': 1,
 'transaction': 10000,
 'value': {
 (5,'servicename','servicename'): {
 'state': 1,
 'transaction': 10000,
 'value': 'webservice'
 },
 }
 }
 }
 }
 }
}

 		 The device script
 		 must ensure that the
 		 servicename instance that is created for this graph
 		 instance does not overlap with another graph instance that is rendered on the
 		 same device. The reason is because the parameter and folder that are defined
 		 under a Group or Function configuration in the device specification is unique
 		 for a graph instance or function instance within a graph. Such parameter or
 		 folder names might not be unique across different instances of the graph or
 		 instances of a function within a graph, respectively. The device script can
 		 append the group ID or the group ID and function name that is passed in the
 		 device dictionary to make the folder parameter name unique across graphs or
 		 functions within a graph, as shown in the following example:
 		

 		4368.SLB.webservice

 		If the device
 		 supports creating folders, the script can create a folder for the graph
 		 identified by vgrp id passed in the configuration dictionary and group specific
 		 parameters can be instantiated under the vgrp folder. Similarly function
 		 configuration can created under a function specific folder within the group
 		 folder, thus maintaining uniqueness of each parameter/folder across multiple
 		 graph instances.
 		

 	

 API Callouts

 Cluster
 		 Configuration

 		
 		
 Registering the
 		 first concrete device within a cluster with
 		 Application Policy Infrastructure Controller
 		 (APIC)
 		 triggers the following sequence of API callouts:
 		

 		

 	
 			 deviceValidate— This API validates whether a device
 			 version registered with the
 			 APIC
 			 can be supported by the device package.
 		

 	
 			 deviceAudit— This
 			 APIC
 			 call clears any device global configuration that is not pushed from the
 			 APIC.
 			 The device script does not clear the management IP address, login credentials,
 			 and any configuration that the device needs to be operational that is not
 			 supported through the
 			 APIC.
 			 The
 			 deviceAudit call needs to be selective in clearing the
 			 configuration. Only the configuration that can be pushed from the
 			 APIC
 			 is cleared.
 			
 deviceAudit()
 				should not modify any service function parameter/configuration or cluster level
 				configuration. The service functions should not be affected on a deviceAudit()
 				call. The purpose of the deviceAudit() call is to bring the device level
 				configuration in sync with the
 				APIC.
 				The script should bring the device in sync with minimal disruption to data
 				path. It should identify the configuration found on the device which was not
 				pushed by
 				APIC,
 				such a configuration should be removed.
 			

 			

 	[image: ../images/note.gif]
Note
 	

 				
 This should
 				 be done only for a configuration that can be managed through the device
 				 package.
 				

 			

 			
 The script
 				should push any missing configuration or configuration that is not in sync to
 				the device.
 			

 		

 	
 			 clusterAudit—The
 			 APIC
 			 calls this API when the first device is added to the logical device (device
 			 cluster). This API clears any configuration from the cluster that is not pushed
 			 by the
 			 APIC.
 			 Similar to the
 			 deviceAudit() call, this API clears only the
 			 configuration that can be supported through the
 			 APIC.
 			
 			
 clusterAudit()
 				should not modify any service function parameter/configuration or device
 				specific parameters. The service functions should not be affected on a
 				clusterAudit() call. The purpose of the clusterAudit() call is to bring the
 				cluster level configuration in sync with the
 				APIC.
 				The script should bring the device in sync with minimal disruption to the data
 				path. It should identify the configuration found on the device which was not
 				pushed by
 				APIC,
 				such a configuration should be removed.
 			

 			

 	[image: ../images/note.gif]
Note
 	

 				
 This should
 				 be done only for configuration that can be managed through a device package.
 				

 			

 			
 A script
 				should push any missing configuration or configuration that is not in sync to
 				the device.
 			

 		

 	
 			 clusterModify—This API is called for any device that is
 			 registered and added to a logical device (device cluster). The call results in
 			 configuring the cluster configuration.
 		

 	
 			 serviceAudit—This API is called with function
 			 configuration applied by the user on
 			 APIC.
 			 The script should push any service functions passed in the configuration. If
 			 the device has any service function that is not configured on
 			 APIC
 			 but could be managed through the API, the script should remove such a
 			 configuration. The purpose of the serviceAudit() call is to make sure service
 			 specific functionality on the device is in sync with the
 			 APIC.
 			
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 A device cluster
 			 state maintained within the
 			 APIC
 			 is changed to be operationally up when clusterAudit() returns success. All
 			 service level APIs are invoked only after cluster is operational.
 		

 		
 The cluster can
 			 be marked operational once a single device within the cluster is operational.
 		

 		
 Registering
 			 additional devices within a cluster triggers the following calls:
 		

 		

 	
 				
 deviceValidate()
 				

 			

 	
 				
 deviceAudit()
 				

 			

 	
 				
 clusterAudit()
 				

 				

 	[image: ../images/note.gif]
Note
 	

 				
 clusterAudit() should not disrupt devices that are operational
 					 within the cluster. Besides service functions that are deployed on the cluster
 					 others should not be impacted by adding more devices (such as deviceAudit() or
 					 clusterAudit()) should not impact the service functions that are in operational
 					 state on the cluster.
 				

 				

 			

 		

 		
 After the device is
 		 registered,
 		 APIC
 		 periodically calls the following APIs:
 		

 		

 	
 			 deviceHealth
 		

 	 deviceCounter
 		

 		
 Removing a device
 		 within a cluster results in calling clusterAudit(). If the last device is
 		 removed from the cluster and the cluster state changes to operationally down,
 		 APIC
 		 calls serviceModify() to remove any service specific configuration.
 		

 	

 Service Graph
 		 Configuration

 		
 		
 When you
 		 instantiate a graph by associating an abstract graph to a contract that is
 		 bound to an endpoint group (EPG), the
 		 APIC
 		 calls the following API:
 		

 		

 	
 			 serviceModify—This API instantiates service functions
 			 on the device.
 		

 		
 After a service has
 		 been rendered, the
 		 APIC
 		 periodically calls the following APIs:
 		

 		

 	 serviceHealth
 		

 	 serviceCounter
 		

 	

 Audit
 		 Calls

 		
 		
 APIC
 		 will trigger a serviceAudit() when the
 		 APIC
 		 cluster changes while there is an outstanding transaction with the device.
 		 Since the cluster change can cause a different
 		 APIC
 		 to resume communication with the device, a previous configuration transaction
 		 may not have completed causing the device and the
 		 APIC
 		 cluster to go out of sync. The serviceAudit() call issued by a new master
 		 ensures the device state is kept in sync with the
 		 APIC.
 		
 		

 		
 APIC
 		 passes the entire service configuration that is associated with a given device
 		 in a single serviceAudit() call. A script is required to process serviceAudit()
 		 with a minimum disruption to services configured on the device. The
 		 serviceAudit() call should not result in clearing any device specific global
 		 configuration or cluster configuration.
 		

 		
 Similar to
 		 serviceAudit(),
 		 APIC
 		 triggers a deviceAudit() and clusterAudit() depending on whether there were any
 		 outstanding device configurations or cluster configuration transactions in
 		 progress.
 		

 		
 The device script
 		 can trigger an audit call when it detects that the configuration on the device
 		 and the
 		 APIC
 		 has changed and the script cannot resolve the difference from within the API
 		 call.
 		

 		
 The
 		 clusterAudit() call can be triggered by returning "3"
 		 (AUDIT) as the return state for the
 		 clusterModify() call. The
 		 APIC
 		 passes the entire cluster configuration that is defined by the folders and
 		 parameters under
 		 vnsClusterCfg in
 		 clusterAudit(). The service function configuration is
 		 not passed in
 		 clusterAudit(). The script must apply the configuration
 		 that is passed in the dictionary and remove any configuration that is not
 		 defined by the
 		 APIC.
 		 The script removes only unwanted configurations that are found on the device
 		 that can be managed by the
 		 APIC
 		 and is defined in a device specification file under
 		 vnsClusterCfg.
 		

 		
 The
 		 deviceAudit() call can be triggered by returning "3"
 		 (AUDIT) as the return state for the
 		 deviceModify(),
 		 deviceHealth(), or
 		 deviceCounter() call. The
 		 APIC
 		 passes the entire device configuration that is defined by the folders and
 		 parameters under
 		 vnsDevCfg in the
 		 deviceAudit() call. The service function configuration
 		 is not passed in
 		 deviceAudit(). The script must apply the configuration
 		 that is passed in the dictionary and remove any device configuration that is
 		 not defined by the
 		 APIC.
 		 The script removes only a configuration that is defined on the
 		 APIC
 		 and can be managed through the
 		 APIC.
 		
 		

 		
 The
 		 serviceAudit() can be triggered by returning '3' as the
 		 return state for the
 		 serviceModify(),
 		 serviceHealth(), or
 		 serviceCounter() call. The
 		 APIC
 		 passes all service function configurations across all
 		 vDev (tenant) and graph instances that are rendered on
 		 the device cluster. The device removes any configuration that is not configured
 		 by the
 		 APIC
 		 and can be managed through the
 		 APIC.
 		
 		

 	

 Passing
 	 Parameters

 The following example
 		shows a configuration dictionary that is passed for service APIs:
 	

Configuration = {
 (0, mDev-key, mDev-Instance-Name) : {
 'state': state
 'value': {
 (1, '', functionGroup-Instance) : {
 'state': state
 'value': {
 (3, mDevFunction-Key, mDev-Function-Instance-Name): {
 'state': state,
 'value': {
 (2, mDevFunction-Connector-Key, InstanceName): {
 'state': state
 'value': {
 'CDev-Instance-Name': 'EncapAssociation-Instance',
 ...
 }
 }
 (4, mFolder-Key, mFolder-Instance): {
 'state': state
 'value': {
 (5, mParam-Key, mParam-Instance): {
 'state': state
 'device': cluster-node-instance
 'value': {
 }
 }
 }
 }
 }
 }
 }
 }
 (4, mFolder-Key, mFolder-Instance): {
 'state': state
 'value': {
 (5, mParam-Key, mParam-Instance): {
 'state': state
 'value': {
 }
 }
 }
 },
 (7, '', <encap-instance>): {'state': 1, 'tag': TagValue, 'type': TagType },
 (8, '', <encap-association-Instance>): {
 'state': 1,
 'encap': <encapInstance>,
 'vif': <LogicalInterfaceInstanceID>
 },
 (10, '', <LogicalInterfaceInstance>): {
 'state': 0,
 'cifs': {'
 'state': 0,
 'value': <Interface Value>
 }
 }
 }
 },
} ‘

Device = {
 'devs': {
 cluster-node-Instance: {
 'host': cluster-node-ipaddress
 'port': cluster-node-port-number,
 'creds': {
 'username': username,
 'password': password
 }
 }
 },
 'name': cluster-name,
 'host': cluster-ipaddress
 'port': cluster-port-number,
 'creds': {
 'username': username,
 'password': password
 }
}

 	[image: ../images/note.gif]
Note
 	

All parameters are
 		strings.
 	

 The following example shows parameters that are passed in the
 		deviceValidate callout.
 	

Device = {
 'creds': {
 'password': '<password>',
 'username': 'admin'
 },
 'host': '10.0.0.2',
 'port': 443,
 'virtual': False
 }

version: '1.0'

 The following is an example of a parameter dictionary that is passed in
 		deviceAudit(),
 		deviceModify,
 		deviceHealth and
 		deviceCounter call outs. This is parameter structure is
 		identical to a configuration dictionary that is passed in the service or
 		cluster API call outs.
 		devices: = {
 'host': '10.0.0.2',
 'port': 443,
 'creds': {'username': 'admin',
 'password': '<password>'},
 'virtual': False},

interfaces = {
 (11, '', 'eth1_0'): {'state': 0, 'label': ''},
 (11, '', 'eth1_1'): {'state': 0, 'label': ''}
},

 	

 	

 The following is an example of parameters that are passed in the
 		clusterAudit() and
 		clusterModify() APIs. The configuration dictionary
 		format is identical to the example that is shown in the service call out.
 		Device = {
 'name': 'LB',
 'virtual': False,
 'devs': {
 'Device1': {
 'host': '10.0.0.2',
 'port': 443,
 'creds': {
 'username': 'admin',
 'password': 'password'
 },
 'virtual': False}
 },
 'host': '10.0.0.1',
 'port': 443,
 'creds': {
 'username': 'admin',
 'password': '<password>'
 }
 },

Interfaces = {
 (12, '', 'internal'): {
 'state': 0,
 'cifs': {
 'Device1': 'eth1_1'
 },
 'label': ''
 },
 (12, '', 'external'): {
 'state': 0,
 'cifs': {
 'Device1': 'eth1_0'
 },
 'label': ''
 }
 }

 	

 Device
 	 Identification

 The device parameter
 		is a simple dictionary that contains the device configuration and the
 		credentials required to access the device. Most of the functions in the device
 		script take a device parameter that identifies the device intended for
 		modification, as shown in the following example:
 	

 {
 'creds': {
 'password': 'admin',
 'username': 'admin'
 },
 'host': '10.30.13.153',
 'port': 443
}

 The
 		APIC stores credentials in an encrypted
 		partition.
 	

 The script must not store the credentials in temporary files. It should
 		not print the credential in debug logs.
 	

 Handling Script
 	 Failures

 The
 		APIC services integration model is based on
 		Promise Theory, in which individual agents join in a system of voluntary
 		cooperation. The
 		APIC pushes the intended state to the
 		script and provides an API to raise faults on parts of the configuration.
 	

 Failures can occur
 		when parameter values change or when a device error occurs. In the case of an
 		APIC failure, the new
 		APIC determines whether to reissue the
 		serviceModify call or audit the function groups. The
 		APIs can return a fault list that provides details about the cause for the
 		fault and the potential corrective action for resolving the fault.
 	

 	

 APIC does not maintain a transaction history. The state of an object
 		within the configuration dictionary is determined based on the state of the
 		managed object information tree. The object state is marked 'NEW (1)' when a
 		new object is inserted in the managed object tree. Any subsequent API callouts
 		from APIC sets that objects state to 'UNCHANGED (0)' till either the object
 		value is changed by an explicit user configuration or an implicit APIC event
 		that causes the object value to change.
 	

 On a change in objects value, the state of the object in the next
 		modify() API call is set to 'CHANGED(2)". If the object is deleted, APIC
 		indicates the deletion by setting the object state to 'DELETED (3)'.
 	

 Note if the API returns state 'PERMANENT(2)' indicating that the script
 		encountered an error while processing the configuration, APIC retries the
 		configuration until it receives 'SUCCESS(0)' from the script. If the user has
 		not changed the value of any object between retries, APIC sets the object state
 		to 'UNCHANGED(0)' during these retries. The state of the object is set to
 		'NEW(1)', 'CHANGED(2)' or 'DELETED(3)' only if a new object was created, an
 		existing object was modified, or deleted between the retries.
 	

 The following example shows a case that can occur due to a lack of
 		transaction history on APIC. The device package developer should be aware of
 		such issues and address it in the device script.
 	

 Assume that a device package has three parameters: A, B, and C, where A
 		depends on B and B depends on C.
 	

 	
 		
 When A, B, C are created on APIC, this causes APIC to call device a
 			 script with state create (1) for all three parameters such that A =a(1) ->
 			 B=b (1) -> C=c (1).
 		

 		
 The script raises a fault for B, configures C, but does not
 			 configure A and returns state PERMANENT. The end of this callout device has
 			 only 'c'.
 		

 		
 APIC raises a fault on B as the configuration for object B was
 			 invalid.
 		

 		

 	
 		
 When the value of B is changed to b', this resolves the
 			 configuration issue. This change in configuration results in APIC calling the
 			 device script with the modification. The parameter state during the subsequent
 			 API callout is as follows
 		

 		
 A =a(0) -> B=b'(2) -> C=c(0)
 		

 		
 APIC does not maintain transaction history. APIC does not have any
 			 knowledge that A=a was not applied on the device during the previous
 			 transaction. APIC retries the configuration and updates the parameter state for
 			 B as it was the only parameter that changed between retries.
 		

 		
 The script tries to update parameter B to b'. The script should be
 			 able to identify that parameter B does not exist on the device and is being
 			 modified before create. Ideally the modify request to the device should return
 			 an error.
 		

 		
 If the device is capable of identifying a modify before create as an
 			 error, the script should handle such an error from the device using one of the
 			 two following options:
 		

 	
 				
 Option 1
 				

 				
 Create the parameter B with value b' on the device and resolve
 				 any dependent objects that could be missing from the device. The script must
 				 walk through the configuration passed in the dictionary and check if the
 				 objects that depend on the modified object were created on the device. If the
 				 objects were not created, the script should create the object. In this example,
 				 the script should create A=a that depends on B=b' as object A=a is not found on
 				 the device.
 				

 			

 	
 				
 Option 2
 				

 				
 Return AUDIT(3) state in the return response. APIC replays the
 				 entire configuration.
 				

 				

 	[image: ../images/note.gif]
Note
 	

 				
 Requesting an audit call can be an expensive operation as APIC
 					 passes the entire configuration.
 				

 				

 				
 The device script needs to identify the missing configuration
 				 and apply any missing configuration. This option should be used only when a
 				 modified object in the dictionary has dependent objects in the configuration.
 				

 			

 		

 		
 If the device is not capable of returning an error when a parameter
 			 is modified before create, the device script should read the object that is
 			 being modified before performing a modify operation on it. This approach of
 			 reading the configuration from the device before modifying can be expansive and
 			 impact performance. To keep the solution optimal, reading the configuration
 			 from the device should be done only if the object being modified could have
 			 other objects depending on it.
 		

 		

 Sample
 	 Script

 		
 The following
 		 example shows a device script in Python:
 		

 		

 		
import pprint
import sys
import Insieme.Logger as Logger

#
Infra API
#def deviceValidate(device,version):
 return {
 'state': 0,'version': '1.0'
 }

def deviceModify(device,interfaces,configuration):
 return {
 'state': 0,'faults': [],'health': []
 }

def deviceAudit(device,interfaces,configuration):
 return {
 'state': 0,'faults': [],'health': []
 }

def deviceHealth(device,interfaces,configuration):
 return {
 'state': 0,'faults': [],'health': [([], 100)]
 }

def deviceCounters(device,interfaces,configuration):
 return {
 'state': 0,'counters': [
 ([(11,'','eth0')],{
 'rxpackets':100,
 'rxerrors':101,
 'rxdrops':102,
 'txpackets':200,
 'txerrors':201,
 'txdrops':202
 }
)
]
 }

def clusterModify(device,interfaces,configuration):
 return {
 'state': 0,'faults': [],'health': []
 }

def clusterAudit(device,interfaces,configuration):
 return {
 'state': 0,'faults': [],'health': []
 }

#
FunctionGroup API
#

def serviceModify(device,configuration):
 return {
 'state': 0,'faults': [],'health': []
 }

def serviceAudit(device,configuration):
 return {
 'state': 0,'faults': [],'health': []
 }

def serviceHealth(device,configuration):
 return {
 'state': 0,'faults': [],'health': []
 }

def serviceCounters(device,configuration):
 externalIntferface, = [
 (0, 'Firewall', 4384),
 (1, '', 4432),
 (3, 'Firewall-Func', 'FW-1'),
 (2, 'external', 'external1')
]
 internalInterface = [
 (0, 'Firewall', 4384)
 (1, '', 4432)
 (3, 'Firewall-Func', 'FW-1'),
 (2, 'internal','internal1')
]
 Firewall-1-External-Counters = (externalInterface, {
 'rxpackets': 100,
 'rxerrors': 0,
 'rxdrops': 0
 'txpackets': 100
 'txerrors': 4
 'txdrops': 2
 }
)
 Firewall-1-Internal-Counters = (internalInterface, {
 'rxpackets': 100,
 'rxerrors': 0,
 'rxdrops': 0
 'txpackets': 100
 'txerrors': 4
 'txdrops': 2
 }
)
 Counters = [Firewall-1-External-Counters, Firewall-1-Internal-Counters]
 return {
 'state': 0,
 'counters': Counters
 }

#
EndPoint/Network API
#

def attachEndpoint(device,
 configuration,
 endpoints):
 return {
 'state': 0,
 'faults': [],
 'health': [],
 }

def detachEndpoint(device,
 configuration,
 endpoints):
 return {
 'state': 0,
 'faults': [],
 'health': [],
 }

def attachNetwork(device,
 configuration,
 networks):
 return {
 'state': 0,
 'faults': [],
 'health': [],
 }

def detachNetwork(device,
 configuration,
 networks):
 return {
 'state': 0,
 'faults': [],
 'health': [],
 }

 		

 		
 The following is an
 		 example invocation:
 		

 		

 		 Function: deviceValidate

Arguments:

(
 {
 'creds': {
 'password': 'admin',
 'username': 'admin'
 },
 'host': '10.30.13.153','port': 443
}
u'1.0'
)

Function: deviceAudit

Arguments:

(
 {
 'host': '10.30.13.153',
 'port': 443,
 'creds': {
 'username': 'admin','password': 'admin'
 }
 },
 {
 (11,'','1_1'): {
 'state': 0,
 'label': 'int'
 },
 (11,'','1_2'): {
 'state': 0,
 'label': 'ext'
 },
 (11,'','1_3'): {
 'state': 0,
 'label': 'mgmt'
 }
 },
 {
 (4,'HighAvailabilityCfg','HA'): {
 'state': 2,'value': {
 (5,'peerIP','peerip'): {
 'state': 2,
 'value': '10.30.13.154'
 }
 }
 }
 }
)

Function: deviceCounters

Arguments:

(
 {
 'creds': {
 'password': 'insieme',
 'username': 'admin'
 },
 'host': '10.0.0.2',
 'port': 443,
 'virtual': False
 },
 {
 (11, '', 'eth1_0'): {
 'label': ' ',
 'state': 0
 },
 (11, '', 'eth1_1'): {
 'label': ' ',
 'state': 0
 }
 },
 {
 (4, 'HighAvailability', 'HA'): {
		 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (5, 'id', 'id'): {
 	'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '1'
			 },
 (5, 'ipaddress', 'ipaddress'): {
				 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '10.0.0.3'
				 },
 (5, 'netmask', 'netmask'): {
				 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '255.255.255.0'
				 }
			 }
		 }
}
)

Function: clusterAudit

Arguments:

(
 {
 'name': 'Cluster1',
 'virtual': False,
 'devs': {
 'SampleDevice1': {
 'host': '10.30.13.153',
 'port': 443,
 'creds': {
 'username': 'admin',
 'password': 'admin'
 }
 }
 },
 'host': '10.30.13.153',
 'port': 443,
 'creds': {
 'username': 'admin',
 'password': 'admin'
 }
 },
 {
 (12, '', 'internal'): {
 'state': 0,
 'label': 'int'
 },
 (12, '', 'external'): {
 'state': 0,
 'label': 'ext'
 }
 },
 {
 (4,'SyslogConfig','syslogconfig'): {
 'state': 2,
 'value': {
 (5,'ipaddress','syslogip'): {
 'state': 2,
 'value': '10.168.62.100'
 }
 }
 },
 (4,'NTPConfig','ntpconfig'): {
 'state': 2,
 'value': {
 (5,'ipaddress','syslogip'): {
 'state': 2,
 'value': '10.168.62.1'
 }
 }
 }
 }
)

Function: clusterModify

Arguments:

(
 {
 'name': 'Cluster1',
 'virtual': False,
 'devs': {
 'SampleDevice1': {
 'host': '10.30.13.153',
 'port': 443,
 'creds': {
 'username': 'admin',
 'password': 'admin'
 }
 }
 },
 'host': '10.30.13.153',
 'port': 443,
 'creds': {
 'username': 'admin',
 'password': 'admin'
 }
 },
 {
 (12, '', 'internal'): {
 'state': 0,
 'label': 'int'
 },
 (12, '', 'external'): {
 'state': 0,
 'label': 'ext'
 }
 },
 {
 (4,'SyslogConfig','syslogconfig'): {
 'state': 2,
 'value': {
 (5,'ipaddress','syslogip'): {
 'state': 2,
 'value': '10.168.62.100'
 }
 }
 },
 (4,'NTPConfig','ntpconfig'): {
 'state': 2,
 'value': {
 (5,'ipaddress','syslogip'): {
 'state': 2,
 'value': '10.168.62.1'
 }
 }
 }
 }
)

Function: serviceModify

Arguments:

(

 {
 'Device1': {
 'creds': {
 'password': 'insieme',
 'username': 'admin'
 },
 'host': '10.0.0.2',
 'port': 443,
 'virtual': False
 }
 },
 'host': '10.0.0.1',
 'name': 'LB',
 'port': 443,
 'virtual': False
 },
 {
 (0, '', 5539): {
 'ackedState': 0,
 'ctxName': 'TenantActx1',
 'state': 1,
 'tenant': 'TenantA',
 'transaction': 0,
 'txid': 10000,
 'value': {
 (1, '', 4411): {
 'absGraph': 'WebGraph',
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (3, 'LoadBalancing', 'SLB'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (2, 'external', 'external'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (9, '', 'LB_external_2424832_32771'): {
 'ackedState': 0,
 'state': 1,
 'target': 'LB_external_2424832_32771',
 'transaction': 0
 }
 }
 },
 (2, 'internal', 'internal'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (9, '', 'LB_internal_2424832_49154'): {
 'ackedState': 0,
 'state': 1,
 'target': 'LB_internal_2424832_49154',
 'transaction': 0
 }
 }
 },
 (4, 'externalNetwork', 'externalNetwork'): {
 'ackedState': 0,
 'connector': 'external',
 'state': 1,
 'transaction': 0,
 'value': {
 (6, 'externalNetworkRel', 'externalNetworkRel'): {
 'ackedState': 0,
 'state': 1,
 'target': 'network/externalIP',
 'transaction': 0
 }
 }
 },
 (4, 'internalNetwork', 'internalNetwork'): {
 'ackedState': 0,
 'connector': 'internal',
 'state': 1,
 'transaction': 0,
 'value': {
 (6, 'internalNetworkRel', 'internalNetworkRel'): {
 'ackedState': 0,
 'state': 1,
 'target': 'network/internalIP',
 'transaction': 0
 }
 }
 },
 (4, 'lbvserverCfg', 'lbvserverCfg'): {
 'ackedState': 0,
 'connector': 'external',
 'state': 1,
 'transaction': 0,
 'value': {
 (6, 'lbvserverRel', 'lbvserverRel'): {
 'ackedState': 0,
 'state': 1,
 'target': 'lbvserver',
 'transaction': 0
 }
 }
 },
 (4, 'serverpoolCfg', 'serverpoolCfg'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (6, 'serverpoolRel', 'serverpoolRel'): {
 'ackedState': 0,
 'state': 1,
 'target': 'serverpool',
 'transaction': 0
 }
 }
 },
 (4, 'vipCfg', 'vipcfg'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (6, 'vipRel', 'vipRel'): {
 'ackedState': 0,
 'state': 1,
 'target': 'network/vipaddress',
 'transaction': 0
 }
 }
 }
 }
 }
 },
 (4, 'Network', 'network'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (4, 'ip', 'externalIP'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '20.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'internalIP'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '30.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'vipaddress'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '100.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '255.255.255.255'
 }
 }
 }
 }
 },
 (4, 'lbvserver', 'lbvserver'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (5, 'ipmask', 'ipmask'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '255.255.255.255'
 },
 (5, 'ipv4', 'ipv4'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '100.0.0.1'
 },
 (5, 'name', 'name'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': 'vserver1'
 },
 (5, 'port', 'port'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '80'
 },
 (5, 'servicetype', 'servicetype'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': 'http'
 }
 }
 },
 (4, 'serverpool', 'serverpool'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (4, 'server', 'server1'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': {
 (5, 'ip', 'ip'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '30.0.0.2'
 },
 (5, 'port', 'port'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': '80'
 }
 }
 },
 (5, 'serverpoolname', 'serverpoolname'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': 'webpool'
 },
 (5, 'type', 'type'): {
 'ackedState': 0,
 'state': 1,
 'transaction': 0,
 'value': 'http'
 }
 }
 },
 (7, '', '2424832_32771'): {
 'ackedState': 0,
 'state': 1,
 'tag': 436,
 'transaction': 0,
 'type': 1
 },
 (7, '', '2424832_49154'): {
 'ackedState': 0,
 'state': 1,
 'tag': 370,
 'transaction': 0,
 'type': 1
 },
 (8, '', 'LB_external_2424832_32771'): {
 'ackedState': 0,
 'encap': '2424832_32771',
 'state': 1,
 'transaction': 0,
 'vif': 'LB_external'
 },
 (8, '', 'LB_internal_2424832_49154'): {
 'ackedState': 0,
 'encap': '2424832_49154',
 'state': 1,
 'transaction': 0,
 'vif': 'LB_internal'
 },
 (10, '', 'LB_external'): {
 'ackedState': 0,
 'cifs': {
 'Device1': 'eth1_0'
 },
 'state': 1,
 'transaction': 0
 },
 (10, '', 'LB_internal'): {
 'ackedState': 0,
 'cifs': {
 'Device1': 'eth1_1'
 },
 'state': 1,
 'transaction': 0
 }
 }
 }
 }
)
Function: serviceCounters

Arguments:

(
{'creds': {
 'password': 'insieme',
 'username': 'admin'
 },
	 'devs': {
 'Device1': {
 'creds': {
 'password': 'insieme',
 'username': 'admin'
 },
 'host': '10.0.0.2',
 'port': 443,
 'virtual': False
 }
 },
 'host': '10.0.0.1',
 'name': 'LB',
 'port': 443,
 'virtual': False
},
{
(0, '', 5539): {
 'ctxName': 'TenantActx1',
 'state': 2,
 'tenant': 'TenantA',
 'value': {
 (1, '', 4411): {
 'absGraph': 'WebGraph',
 'state': 2,
 'value': {
 (3, 'LoadBalancing', 'SLB'): {
 'state': 2, 'value': {
 (2, 'external', 'external'): {
 'state': 2, 'value': {
 (9, '', 'LB_external_2424832_32771'): {
 'state': 0, 'target': 'LB_external_2424832_32771'
 }
 }
 },
 (2, 'internal', 'internal'): {
 'state': 2,
 'value': {
 (9, '', 'LB_internal_2424832_49154'): {
 'state': 0,
 'target': 'LB_internal_2424832_49154'
 }
 }
 },
 (4, 'externalNetwork', 'externalNetwork'): {
 'connector': 'external',
 'state': 0,
 'value': {
 (6, 'externalNetworkRel', 'externalNetworkRel'): {
 'state': 0,
 'target': 'network/externalIP'
 }
 }
 },
 (4, 'internalNetwork', 'internalNetwork'): {
 'connector': 'internal',
 'state': 0,
 'value': {
 (6, 'internalNetworkRel', 'internalNetworkRel'): {
 'state': 0,
 'target': 'network/internalIP'
 }
 }
 },
 (4, 'lbvserverCfg', 'lbvserverCfg'): {
 'connector': 'external',
 'state': 0,
 'value': {
 (6, 'lbvserverRel', 'lbvserverRel'): {
 'state': 0,
 'target': 'lbvserver'
 }
 }
 },
 (4, 'serverpoolCfg', 'serverpoolCfg'): {
 'state': 0,
 'value': {
 (6, 'serverpoolRel', 'serverpoolRel'): {
 'state': 0,
 'target': 'serverpool'
 }
 }
 },
 (4, 'vipCfg', 'vipcfg'): {
 'state': 0,
 'value': {
 (6, 'vipRel', 'vipRel'): {
 'state': 0,
 'target': 'network/vipaddress'
 }
 }
 }
 }
 }
 }
 },
 (4, 'Network', 'network'): {
 'state': 0,
 'value': {
 (4, 'ip', 'externalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '20.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'internalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '30.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'vipaddress'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.255'
 }
 }
 }
}
},
(4, 'lbvserver', 'lbvserver'): {
 'state': 0,
 'value': {
 (5, 'ipmask', 'ipmask'): {
 'state': 0,
 'value': '255.255.255.255'
 },
 (5, 'ipv4', 'ipv4'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'name', 'name'): {
 'state': 0,
 'value': 'vserver1'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 },
 (5, 'servicetype', 'servicetype'): {
 'state': 0,
 'value': 'http'
 }
}
},
(4, 'serverpool', 'serverpool'): {
 'state': 0,
 'value': {
 (4, 'server', 'server1'): {
 'state': 0,
 'value': {
 (5, 'ip', 'ip'): {
 'state': 0,
 'value': '30.0.0.2'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 }
 }
 },
 (5, 'serverpoolname', 'serverpoolname'): {
 'state': 0,
 'value': 'webpool'
 },
 (5, 'type', 'type'): {
 'state': 0,
 'value': 'http'
 }
 }
},
(7, '', '2424832_32771'): {
 'state': 0,
 'tag': 436,
 'type': 1
},
(7, '', '2424832_49154'): {
 'state': 0,
 'tag': 370,
 'type': 1
},
(8, '', 'LB_external_2424832_32771'): {
 'encap': '2424832_32771',
 'state': 0,
 'vif': 'LB_external'
},
(8, '', 'LB_internal_2424832_49154'): {
 'encap': '2424832_49154',
 'state': 0,
 'vif': 'LB_internal'
},
(10, '', 'LB_external'): {
 'cifs': {
 'Device1': 'eth1_0'
 },
 'state': 0
},
(10, '', 'LB_internal'): {
 'cifs': {
 'Device1': 'eth1_1'
 },
 'state': 0
}
}
}
)

Function: serviceHealth

Arguments:
(
{'creds': {
 'password': 'insieme',
 'username': 'admin'
},
'devs': {
 'Device1': {
 'creds': {
 'password': 'insieme',
 'username': 'admin'
 },
 'host': '10.0.0.2',
 'port': 443,
 'virtual': False
 }
 },
 'host': '10.0.0.1',
 'name': 'LB',
 'port': 443,
 'virtual': False
 },
 {(0, '', 5539): {
 'ctxName': 'TenantActx1',
 'state': 2,
 'tenant': 'TenantA',
 'value': {
 (1, '', 4411): {
 'absGraph': 'WebGraph',
 'state': 2,
 'value': {
 (3, 'LoadBalancing', 'SLB'): {
 'state': 2,
 'value': {
 (2, 'external', 'external'): {
 'state': 2,
 'value': {
 (9, '', 'LB_external_2424832_32771'): {
 'state': 0,
 'target': 'LB_external_2424832_32771'
 }
 }
 },
 (2, 'internal', 'internal'): {
 'state': 2,
 'value': {
 (9, '', 'LB_internal_2424832_49154'): {
 'state': 0,
 'target': 'LB_internal_2424832_49154'
 }
 }
 },
 (4, 'externalNetwork', 'externalNetwork'): {
 'connector': 'external',
 'state': 0,
 'value': {
 (6, 'externalNetworkRel', 'externalNetworkRel'): {
 'state': 0,
 'target': 'network/externalIP'
 }
 }
 },
 (4, 'internalNetwork', 'internalNetwork'): {
 'connector': 'internal',
 'state': 0,
 'value': {
 (6, 'internalNetworkRel', 'internalNetworkRel'): {
 'state': 0,
 'target': 'network/internalIP'
 }
 }
 },
 (4, 'lbvserverCfg', 'lbvserverCfg'): {
 'connector': 'external',
 'state': 0,
 'value': {
 (6, 'lbvserverRel', 'lbvserverRel'): {
 'state': 0,
 'target': 'lbvserver'
 }
 }
 },
 (4, 'serverpoolCfg', 'serverpoolCfg'): {
 'state': 0,
 'value': {
 (6, 'serverpoolRel', 'serverpoolRel'): {
 'state': 0,
 'target': 'serverpool'
 }
 }
 },
 (4, 'vipCfg', 'vipcfg'): {
 'state': 0,
 'value': {
 (6, 'vipRel', 'vipRel'): {
 'state': 0,
 'target': 'network/vipaddress'
 }
 }
 }
 }
 }
 }
 },
 (4, 'Network', 'network'): {
 'state': 0,
 'value': {
 (4, 'ip', 'externalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '20.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'internalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '30.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'vipaddress'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.255'
 }
 }
 }
 }
 },
 (4, 'lbvserver', 'lbvserver'): {
 'state': 0,
 'value': {
 (5, 'ipmask', 'ipmask'): {
 'state': 0,
 'value': '255.255.255.255'
 },
 (5, 'ipv4', 'ipv4'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'name', 'name'): {
 'state': 0,
 'value': 'vserver1'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 },
 (5, 'servicetype', 'servicetype'): {
 'state': 0,
 'value': 'http'
 }
 }
 },
 (4, 'serverpool', 'serverpool'): {
 'state': 0,
 'value': {
 (4, 'server', 'server1'): {
 'state': 0,
 'value': {
 (5, 'ip', 'ip'): {
 'state': 0,
 'value': '30.0.0.2'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 }
 }
 },
 (5, 'serverpoolname', 'serverpoolname'): {
 'state': 0,
 'value': 'webpool'
 },
 (5, 'type', 'type'): {
 'state': 0,
 'value': 'http'
 }
 }
 },
 (7, '', '2424832_32771'): {
 'state': 0,
 'tag': 436,
 'type': 1
 },
 (7, '', '2424832_49154'): {
 'state': 0,
 'tag': 370,
 'type': 1
 },
 (8, '', 'LB_external_2424832_32771'): {
 'encap': '2424832_32771',
 'state': 0,
 'vif': 'LB_external'
 },
 (8, '', 'LB_internal_2424832_49154'): {
 'encap': '2424832_49154',
 'state': 0,
 'vif': 'LB_internal'
 },
 (10, '', 'LB_external'): {
 'cifs': {
 'Device1': 'eth1_0'
 },
 'state': 0
 },
 (10, '', 'LB_internal'): {
 'cifs': {
 'Device1': 'eth1_1'
 },
 'state': 0
 }
 }
 }
}
)

Function: attachEndpoint

Arguments:

(
{'creds': {
 'password': 'insieme', 'username': 'admin'
},
'devs': {
 'Device1': {
 'creds': {
 'password': 'insieme', 'username': 'admin'
 },
 'host': '10.0.0.2',
 'port': 443,
 'virtual': False
}
},
'host': '10.0.0.1',
'name': 'LB',
'port': 443,
'virtual': False
},

{(0, '', 5539): {
 'ctxName': 'TenantActx1',
 'state': 2,
 'tenant': 'TenantA',
 'value': {
 (1, '', 4411): {
 'absGraph': 'WebGraph',
 'state': 2,
 'value': {
 (3, 'LoadBalancing', 'SLB'): {
 'state': 2,
 'value': {
 (2, 'external', 'external'): {
 'state': 2,
 'value': {
 (9, '', 'LB_external_2424832_32771'): {
 'state': 0,
 'target': 'LB_external_2424832_32771'
 }
 }
 },
 (2, 'internal', 'internal'): {
 'state': 2,
 'value': {
 (9, '', 'LB_internal_2424832_49154'): {
 'state': 0,
 'target': 'LB_internal_2424832_49154'
 }
 }
 },
 (4, 'externalNetwork', 'externalNetwork'): {
 'connector': 'external',
 'value': {
 (6, 'externalNetworkRel', 'externalNetworkRel'): {
 'state': 0,
 'target': 'network/externalIP'
 }
 }
 },
 (4, 'internalNetwork', 'internalNetwork'): {
 'connector': 'internal',
 'state': 0,
 'value': {
 (6, 'internalNetworkRel', 'internalNetworkRel'): {
 'state': 0,
 'target': 'network/internalIP'
 }
 }
 },
 (4, 'lbvserverCfg', 'lbvserverCfg'): {
 'connector': 'external',
 'state': 0,
 'value': {
 (6, 'lbvserverRel', 'lbvserverRel'): {
 'state': 0,
 'target': 'lbvserver'
 }
 }
 },
 (4, 'serverpoolCfg', 'serverpoolCfg'): {
 'state': 0,
 'value': {
 (6, 'serverpoolRel', 'serverpoolRel'): {
 'state': 0,
 'target': 'serverpool'
 }
 }
 },
 (4, 'vipCfg', 'vipcfg'): {
 'state': 0,
 'value': {
 (6, 'vipRel', 'vipRel'): {
 'state': 0,
 'target': 'network/vipaddress'
 }
 }
 }
 }
 }
 }
 },
 (4, 'Network', 'network'): {
 'state': 0,
 'value': {
 (4, 'ip', 'externalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '20.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'internalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '30.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'vipaddress'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.255'
 }
 }
 }
 }
 },
 (4, 'lbvserver', 'lbvserver'): {
 'state': 0,
 'value': {
 (5, 'ipmask', 'ipmask'): {
 'state': 0,
 'value': '255.255.255.255'
 },
 (5, 'ipv4', 'ipv4'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'name', 'name'): {
 'state': 0,
 'value': 'vserver1'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 },
 (5, 'servicetype', 'servicetype'): {
 'state': 0,
 'value': 'http'
 }
 }
 },
 (4, 'serverpool', 'serverpool'): {
 'state': 0,
 'value': {
 (4, 'server', 'server1'): {
 'state':
 'value': {
 (5, 'ip', 'ip'): {
 'state': 0,
 'value': '30.0.0.2'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 }
 }
 },
 (5, 'serverpoolname', 'serverpoolname'): {
 'state': 0,
 'value': 'webpool'
 },
 (5, 'type', 'type'): {
 'state': 0,
 'value': 'http'
 }
 }
 },
 (7, '', '2424832_32771'): {
 'state': 0,
 'tag': 436,
 'type': 1
 },
 (7, '', '2424832_49154'): {
 'state': 0,
 'tag': 370,
 'type': 1
 },
 (8, '', 'LB_external_2424832_32771'): {
 'encap': '2424832_32771',
 'state': 0,
 'vif': 'LB_external'
 },
 (8, '', 'LB_internal_2424832_49154'): {
 'encap': '2424832_49154',
 'state': 0,
 'vif': 'LB_internal'
 },
 (10, '', 'LB_external'): {
 'cifs': {
 'Device1': 'eth1_0'
 },
 'state': 0
 },
 (10, '', 'LB_internal'): {
 'cifs': {
 'Device1': 'eth1_1'
 },
 'state': 0
 }
}
}
},
[
 {
 'addr': '34.34.34.12',
 'conn': 'internal'
 }
]
)

 		

 		
 The
 		 endpoints dictionary in the API callout contains the
 		 following attributes:
 		

 		

 	 'addr'—The IP
 			 address of the endpoint that attached to an EPG.
 		

 	 'conn'—The
 			 connector to which the EPG is attached directly or indirectly through other
 			 function nodes.
 		

 		

 		 Function: attachNetwork
Arguments:

(
{'creds': {
 'password': 'insieme',
 'username': 'admin'
},
'devs': {
 'Device1': {
 'creds': {
 'password': 'insieme',
 'username': 'admin'
 },
 'host': '10.0.0.2',
 'port': 443,
 'virtual': False
 }
},
'host': '10.0.0.1',
'name': 'LB',
'port': 443,
'virtual': False
},

{(0, '', 5539): {
 'ctxName': 'TenantActx1',
 'state': 2,
 'tenant': 'TenantA',
 'value': {
 (1, '', 4411): {
 'absGraph': 'WebGraph',
 'state': 2,
 'value': {
 (3, 'LoadBalancing', 'SLB'): {
 'state': 2,
 'value': {
 (2, 'external', 'external'): {
 'state': 2,
 'value': {
 (9, '', 'LB_external_2424832_32771'): {
 'state': 0,
 'target': 'LB_external_2424832_32771'
 }
 }
 },
 (2, 'internal', 'internal'): {
 'state': 2,
 'value': {
 (9, '', 'LB_internal_2424832_49154'): {
 'state': 0,
 'target': 'LB_internal_2424832_49154'
 }
 }
 },
 (4, 'externalNetwork', 'externalNetwork'): {
 'connector': 'external',
 'state': 0,
 'value': {
 (6, 'externalNetworkRel', 'externalNetworkRel'): {
 'state': 0,
 'target': 'network/externalIP'
 }
 }
 },
 (4, 'internalNetwork', 'internalNetwork'): {
 'connector': 'internal',
 'state': 0,
 'value': {
 (6, 'internalNetworkRel', 'internalNetworkRel'): {
 'state': 0,
 'target': 'network/internalIP'
 }
 }
 },
 (4, 'lbvserverCfg', 'lbvserverCfg'): {
 'connector': 'external',
 'state': 0,
 'value': {
 (6, 'lbvserverRel', 'lbvserverRel'): {
 'state': 0,
 'target': 'lbvserver'
 }
 }
 },
 (4, 'serverpoolCfg', 'serverpoolCfg'): {
 'state': 0,
 'value': {
 (6, 'serverpoolRel', 'serverpoolRel'): {
 'state': 0,
 'target': 'serverpool'
 }
 }
 },
 (4, 'vipCfg', 'vipcfg'): {
 'state': 0,
 'value': {
 (6, 'vipRel', 'vipRel'): {
 'state': 0,
 'target': 'network/vipaddress'
 }
 }
 }
 }
 }
 }
 },
 (4, 'Network', 'network'): {
 'state': 0,
 'value': {
 (4, 'ip', 'externalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '20.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'internalIP'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '30.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.0'
 }
 }
 },
 (4, 'ip', 'vipaddress'): {
 'state': 0,
 'value': {
 (5, 'ipaddress', 'ipaddress'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'netmask', 'netmask'): {
 'state': 0,
 'value': '255.255.255.255'
 }
 }
 }
 }
 },
 (4, 'lbvserver', 'lbvserver'): {
 'state': 0,
 'value': {
 (5, 'ipmask', 'ipmask'): {
 'state': 0,
 'value': '255.255.255.255'
 },
 (5, 'ipv4', 'ipv4'): {
 'state': 0,
 'value': '100.0.0.1'
 },
 (5, 'name', 'name'): {
 'state': 0,
 'value': 'vserver1'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 },
 (5, 'servicetype', 'servicetype'): {
 'state': 0,
 'value': 'http'
 }
 }
 },
 (4, 'serverpool', 'serverpool'): {
 'state': 0,
 'value': {
 (4, 'server', 'server1'): {
 'state': 0,
 'value': {
 (5, 'ip', 'ip'): {
 'state': 0,
 'value': '30.0.0.2'
 },
 (5, 'port', 'port'): {
 'state': 0,
 'value': '80'
 }
 }
 },
 (5, 'serverpoolname', 'serverpoolname'): {
 'state': 0,
 'value': 'webpool'
 },
 (5, 'type', 'type'): {
 'state': 0,
 'value': 'http'
 }
 }
 },
 (7, '', '2424832_32771'): {
 'state': 0,
 'tag': 436,
 'type': 1
 },
 (7, '', '2424832_49154'): {
 'state': 0,
 'tag': 370,
 'type': 1
 },
 (8, '', 'LB_external_2424832_32771'): {
 'encap': '2424832_32771',
 'state': 0,
 'vif': 'LB_external'
 },
 (8, '', 'LB_internal_2424832_49154'): {
 'encap': '2424832_49154',
 'state': 0,
 'vif': 'LB_internal'
 },
 (10, '', 'LB_external'): {
 'cifs': {
 'Device1': 'eth1_0'
 },
 'state': 0
 },
 (10, '', 'LB_internal'): {
 'cifs': {
 'Device1': 'eth1_1'
 },
 'state': 0
 }
 }
}
},
[
 {
 'addr': '34.34.34.0/24',
 'conn': 'internal'
 }
]
)

 		

 		
 The
 		 networks dictionary in the API callout contains the
 		 following attributes:
 		

 		

 	 'addr'—Identifies
 			 the subnet configured in the bridge domain or EPG associated with the
 			 connector.
 		

 	 'conn'—The
 			 connector to which the EPG is attached directly or indirectly through other
 			 function nodes.
 		

 	

 Chapter 4. Fabric
 	 Connectivity

 	Registering Devices

 	Connectors

 	Service Graphs

 	Graph Rendering

 	Device Script Interface

 Registering
 	 Devices

 To manage service
 		nodes through the
 		Application Policy Infrastructure Controller
 		(APIC),
 		the administrator must explicitly register the service devices. During the
 		registration step, you must provide the following information:
 	

 	
 		
 Topology
 			 information: How device interfaces are connected to the fabric leaf nodes.
 		

 		

 	
 		
 Label interfaces:
 			 Based on the device requirements. The labels are used by the
 			 APIC
 			 to bind an interface with a connector for specific functions that are provided
 			 by the service device.
 		

 		

 	
 		
 IP address and
 			 port information: Information that is needed to connect to the device.
 		

 		

 	
 		
 Username and
 			 password: Credentials used for configuring the device.
 		

 		

 	

 The sample firewall
 		device specification below defines three labels for interfaces:
 	

 	
 		
 Inside: Identifies
 			 network interfaces that are more trusted (secure).
 		

 		

 	
 		
 Outside: Identifies
 			 network interfaces that are less trusted.
 		

 		

 	
 		
 Management:
 			 Identifies the interface used for management connectivity.
 		

 		

 	

 The labels are defined
 		in the device specification using the
 		vnsMIfLbl tag. All interfaces on the firewall device
 		are categorized into one of the types defined by the device specification.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 The
 		 APIC
 		 does not check if the interface actually exists on the device.
 		

 	

 The following example
 		shows a Northbound XML post for registering a device with the
 		APIC.
 		You can either post the request as shown or use the
 		APIC
 		GUI to register the device:
 		
<polUni>
 <fvTenant
 dn="uni/tn-Tenant1"
 name="Tenant1">
 <vnsLDevVip name="Firewall-1">

 <vnsLIf name="external">
 <vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.0.1.16/mIfLbl-external"/>
 <vnsRsCIfAtt tDn="uni/tn-Tenant1/lDevVip-Firewall/cDev-ASA/cIf-Eth1_1"/>
 </vnsLIf>
 <vnsLIf name="internal">
 <vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.0.1.16/mIfLbl-internal"/>
 <vnsRsCIfAtt tDn="uni/tn-Tenant1/lDevVip-Firewall/cDev-ASA/cIf-Eth1_2"/>
 </vnsLIf>
 <vnsCDev name="FW1">

 <vnsCIf name="Eth1_1">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/20]"/>
 </vnsCIf>
 <vnsCIf name="Eth1_2">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-102/pathep-[eth1/21]"/>
 </vnsCIf>
 <vnsCIf name="Eth1_3">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-103/pathep-[eth1/22]"/>
 </vnsCIf>

 <vnsCMgmt name="devMgmt"
 host="192.168.78.62"
 port="80"
 />

 <vnsCCred name="username"
 value="admin"
 />
 <vnsCCredSecret name="password"
 value="insieme"
 />
 </vnsCDev>
 </vnsLDevVip>
 </fvTenant>
</polUni>

 	

 The following figure
 		shows the topology of registering a device.
 	

 Topology of
 		 Registering a Device

[image: ../images/349147.jpg]

 The three steps the to
 		register the device are as follows:
 	

 	
 		
 Register the
 			 interfaces:
 		

 	
 				
 Eth 1/1:
 				 Labeled as
 				 outside. Connected to Leaf node 101, Eth 1/20.
 				

 			

 	
 				
 Eth 1/2:
 				 Labeled as
 				 inside. Connected to Leaf node 102, Eth 1/21.
 				

 			

 	
 				
 Ethernet 1/3:
 				 Labeled as
 				 management. Connected to Leaf node 103, Eth 1/22.
 				

 			

 		

 		

 	
 		
 Provide the
 			 management IP address (192.168.78.62) and port (80) to reach to the device.
 		

 		

 	
 		
 Provide the
 			 username and password credentials to use for communicating with the device.
 		

 		

 	

 Connectors

 The connectors for a
 		vnsMFunc define connectivity between two or more
 		function nodes or between a function node and the fabric within a graph. A
 		connector has the following attributes:
 	

 	
 		
 name: Identifies a
 			 specific connector.
 		

 		

 	
 		
 encType: Defines
 			 whether the packets are tagged with a VLAN header or are VXLAN encapsulated.
 		

 		

 	
 		
 vnsRsInterface: If
 			 the connector provides connectivity to the fabric, this interface associates
 			 the connector to an interface type on the device.
 		

 		

 	

 In the following
 		figure, two connectors are associated to a firewall function. The first
 		connector represents connectivity to an external or outside network, and the
 		second connector represents connectivity to an internal or inside network on
 		the firewall device. Both are tagged with a VLAN header.
 	

 Connectors
 		 Associated to a Firewall Function

[image: ../images/304513.jpg]

 Service
 	 Graphs

 A service graph is an
 		ordered set of functions between a set of terminals. You can manually create a
 		service graph using the GUI or CLI, or create one programmatically using the
 		Application Policy Infrastructure Controller (APIC) Northbound Service Integration API. A
 		function within the graph might require one or more parameters and have one or
 		more connectors.
 	

 A service graph
 		represents the network using the following elements:
 	

 	
 		
 Function Nodes
 			 (green)—A function applied to traffic such as a transform (SSL termination, VPN
 			 gateway), filter (firewalls), or terminal (intrusion detection systems)
 		

 		

 	
 		
 Terminal Nodes
 			 (blue)—Input and outputs from the service graph
 		

 		

 	
 		
 Connector
 			 (white)—Input and output from a node
 		

 		

 	
 		
 Connections—How
 			 traffic is forwarded through the network
 		

 		

 The following figure
 		shows a service graph.
 	

 Service
 		 Graph

[image: ../images/351283.jpg]

 	[image: ../images/note.gif]
Note
 	

 		
 Although this
 		 generic service graph shows two output nodes, the fabric supports only a single
 		 input node and a single output node from a service graph at this time.
 		

 		
 The
 		 serviceModify function is used to instantiate the
 		 network and function configurations.
 		

 	

 Graph
 	 Rendering

 When instantiating a
 		function on the device, the
 		Application Policy Infrastructure Controller (APIC) does the following:
 	

 	
 		
 Assigns a
 			 VLAN/VXLAN ID for the connector. The
 			 APIC checks whether the previous node has
 			 been allocated a VLAN/VXLAN ID. It either uses the previous node value or
 			 allocates a new tag for the connector. The
 			 encType indicates whether the VLAN/VXLAN ID is
 			 allocated.
 		

 		

 	
 		
 Uses interface
 			 relation and device interface label information to associate an interface to a
 			 connector. In the previous figure, rendering a firewall function on the
 			 firewall device will result in these bindings:
 		

 	
 				
 Connector
 				 labeled as
 				 external: Device Interface Eth1/1
 				

 			

 	
 				
 Connector
 				 labeled as
 				 internal: Device Interface Eth1/2
 				

 			

 		

 		

 	

 You should enable or
 		bind the VLAN or VXLAN tags that are assigned to the connector to the
 		associated interfaces.
 	

 In the following
 		figure, the
 		APIC assigns VLAN 10 to the outside
 		connector and VLAN 20 to the inside connector. The device script must configure
 		VLAN 10 on interface Eth1/1 and bind it to the firewall function. Similarly,
 		the device script must configure VLAN 20 on interface Eth1/2 and bind it to the
 		firewall function.
 	

 A Firewall With Bound VLANs

[image: ../images/304525.jpg]

 Device Script
 	 Interface

 The VXLAN/VLAN
 		encapsulation, interface, and association between the interface and VLAN/VXLAN
 		are passed as device configuration parameters to the device script. In the
 		previous figure, the
 		Application Policy Infrastructure Controller (APIC) provides the following information in
 		the device configuration:
 	

 	
 		
 Encapsulation:
 			 VLAN 10, VLAN 20
 		

 		

 	
 		
 Interface: Eth1/1,
 			 Eth1/2
 		

 		

 	
 		
 Association of
 			 encapsulation to a logical interface:
 		

 	
 				
 'Firewall-1_outside_1553': (VLAN -10, Eth1/1)
 				

 			

 	
 				
 'Firewall-1_inside_7697': (VLAN-20, Eth1/2)
 				

 			

 		

 		

 	

 The encapsulation
 		tags, interfaces, and association are destroyed only when all functions across
 		all graphs using the tag are deleted from the device. By providing
 		encapsulation information in the device configuration, the
 		APIC ensures the encapsulation tag is not
 		deleted from the device until all functions that refer to the tag are deleted.
 		The following example shows a sample dictionary:
 		
Configuration =
{
 (0, '', <LdevInstance>): {
 ...
 (7, '', <encap-instance>): {'state': 1, 'tag': TagValue, 'type': TagType},
 (7, '', <encap-instance>): {'state': 1, 'tag': TagValue, 'type': 0},
 (8, '', <encap-association-Instance>): {
 'state': 1,
 'encap': <encapInstance>,
 'vif': <LogicalInterfaceInstanceID>}
 },
 (8, '', <encap-association-Instance>): {
 'state': 1,
 'encap': <encapInstance>,
 'vif': <LogicalInterfaceInstanceID>},
 },
 (10, '', <LogicalInterfaceInstance>): {
 'state': 0,
 'cifs': {
 'cDevInstance': <Interface Value>
 }
 },
 (10, '', <LogicalInterfaceInstance>): {
 'state': 0,
 'cifs': {
 'cDevInstance': <Interface Value>
 }
 },
 }
}

Legend:
The dictionary format is as follows:

(type, key, name): {
 'state': StateValue,
 'device': CDevName,
 'connector': connectorValue,
 'value': Parameter Value,
}

type:
7 – Encap Instance [Encap Type=0 (VLAN), Encap Type=1 (VXLAN))]
 Encap Tag = VLAN ID or VNID (VXLAN case)
8 – VEncapAss (Device Interface and Encap (VXLAN/VLAN) association)
10 – VIF (logical interface) – Identifies interface on the device.

CDevName: Identifies a specific device within a cluster node. This attribute is not applicable to encap, VIF, or vEncapAss.

connectorValue: Identifies the connector to which this parameter should be bound. This attribute is not applicable to encap, VIF, or vEncapAss.

value: Value of the parameter.

StateValue:
0 – No change
1 – Create
2 – Modify
3 - Destroy

 	

 The connectors within
 		the function are related to the encapsulation association parameter specified
 		in the device configuration. The encapsulation association parameter binds the
 		connector to a specific VLAN/VXLAN tag and interface. In the above example, the
 		dictionary for the function would contain the following connector information:
 		
Configuration =
{
 (0, '', 'Firewall-1'): {
 'state': 2,
 'value': {
 (7, '', '1553'): {'state': 1, 'tag': 10, 'type': 0},
 (7, '', '7697'): {'state': 1, 'tag': 20, 'type': 0},
 (8, '', 'Firewall-1_outside_1553'): {'state': 1,
 'encap': '1553',
 'vif': 'Firewall-1_outside'},
 (8, '', 'Firewall-1_inside_7697'): {'state': 1,
 'encap': '1553',
 'vif': 'Firewall-1_inside'},

 (10, '', 'Firewall-1_outside'): {'state': 1,
 'cifs': {'FW2': 'Eth1/1' }
 },
 (10, '', 'Firewall-1_inside'): {'state': 1,
 'cifs': {'FW': 'Eth1/2'}}
 }
 (1, '', '4552'): {
 'state': 1,
 'value': {
 (3, 'Firewall', 'F1’): {
 'state': 1,
 'value': {
 (2, 'external', 'conn1'): { 'state': 1,
 'value': {
 ('9', '', 'outside_1553'): {
 'state': 1,
 'value': 'Firewall-1-outside_1553'
 },
 }
 },
 (2, 'internal', 'conn2'): { 'state': 1
 'value': {
 ('9', '', 'inside_7697'): {
 'state': 1,
 'value': 'Firewall-1-inside_7697'
 },
 }
 },
 (4, 'Firewall-Config', 'FW-Config 1'): {
 'state': 1,
 'value' : {
 (5, 'Param-1', ''): { 'state': 1, 'value': value },
 . . .
 }
 },
 },
 },
 },
 },
 },
}

 	

 Based on the above
 		dictionary, you should configure the device script to do the following:
 	

 	
 		
 Enable VLAN 10 on
 			 interface Eth1/1:
 		

 	
 				
 Create
 				 subinterface Eth1/1.10 with encap VLAN 10
 				

 			

 	
 				
 Add Eth1/1 to
 				 VLAN 10
 				

 			

 		

 		

 	
 		
 Enable VLAN 20 on
 			 interface Eth1/2:
 		

 	
 				
 Create
 				 subinterfaceEth1/2.20 with encap VLAN 20
 				

 			

 	
 				
 Add Eth1/2 to
 				 VLAN 20
 				

 			

 		

 		

 	

 	[image: ../images/note.gif]
Note
 	

 		
 The connector value
 		 is a dictionary that allows each device within the cluster to use different
 		 interfaces.
 		

 	

 Chapter 5. Service Insertion Support

 	Health Monitoring

 	Faults

 	Counters

 Health
 	 Monitoring

 The
 		Application Policy Infrastructure Controller (APIC) can query the health status of
 		devices and services from 0 (not operational) to 100 (fully functional) by
 		using the following functions:
 	

 	deviceHealth—Returns the health of a service device.
 		

 	serviceHealth—Returns the health of a service
 		 function, endpoint, or endpoint group.
 		

 The
 		APIC periodically calls the
 		deviceHealth API. The device script can return the
 		health of the device. The health can be a normalized value that is computed by
 		the script based on querying CPU utilization, memory utilization, and other
 		critical resources, such as the state of the power supply or HA status. The
 		value of the health can be a score between 0 to 100. 0 indicates that the
 		device is not operational and 100 indicates that the device is fully
 		functional.
 	

 The following
 		example shows a return value from the
 		deviceHealth API:
 	

 def deviceHealth (device,interfaces,configuration):
 …
 return {
 'state': 0,'faults': [],'health': [([],80)]
 }

 	[image: ../images/note.gif]
Note
 	

 		
 The health value is
 		 a normalized value based on memory utilization, CPU utilization, and the number
 		 of connections. The health element can be written as a part of the device
 		 modify or device audit API.
 		

 	

 The device script can
 		report the health of all the functions provided by the service node using the
 		Service Health API. The
 		APIC periodically invokes the Service
 		Health API with the service node configuration.
 	

 The Service Health API
 		is defined as follows:
 		
serviceHealth (device, configuration)

 	

 The
 		serviceHealth parameters are defined as follows:
 	

 	
 		
 device: A dictionary
 			 providing the device IP and credentials. The
 			 APIC uses this information to connect to
 			 the service node.
 		

 		

 	
 		

 			 configuration: The service node configuration. The
 			 APIC pushes the entire device configuration
 			 across all graphs during the
 			 serviceHealth poll.
 		

 		

 	

 The Service Health API
 		can query the device and accumulate information regarding the health of a
 		service. For example, the script may collect CPU utilization, memory
 		utilization, or the number of connections associated with the service. The
 		script uses the data collected from the device to compute a normalized value
 		between 0 – 100, representing the health of the service. 0 indicates bad
 		health, and 100 indicates that the service is in a good state.
 	

 The
 		APIC expects the script to return the
 		service health as a list of
 		(path, Service
 		 Health) tuples.
 	

 path: A list of
 		tuples identifying a specific service function within the device:
 		
Path = [(type, key, name) (type, key, name) ...]

 	

 The
 		state
 		can take one of the following values:
 	

 	OK: Success
 		

 	TRANSIENT: Temporary
 		 failure. The Script Engine will retry the configuration by calling the device
 		 script API again.
 		

 	PERMANENT:
 		 Configuration failure. This may be due to an invalid configuration parameter or
 		 the use of an unsupported feature on the device. The Script Engine will not
 		 retry the configuration in this state.
 		

 	AUDIT: The script
 		 can request that an audit be triggered.
 		

 	True: Success
 		

 	False: Permanent
 		 failure. There is a configuration issue requiring user intervention.
 		

 	

 Cisco recommends that
 		you use
 		OK,
 		TRANSIENT,
 		PERMANENT, or
 		AUDIT
 		as
 		state
 		values, rather than the boolean
 		True
 		and
 		False
 		values.
 	

 Faults are returned as
 		a list of (object, fault) tuples, and are updated in the system as follows:
 	

 	If the script returns a
 		 state value of
 		 OK,
 		 True, or
 		 PERMANENT: Faults are replaced with the set of faults
 		 in the return value. Any previous fault that was not reported will be
 		 implicitly cleared. For example, if you had a fault on
 		 obj1
 		 but on the second attempt you return a fault only on
 		 obj2, the
 		 obj1
 		 fault is cleared and the
 		 APIC now reports a fault only on
 		 obj2. Faults are replaced only in this return state.
 		

 	If the script returns a
 		 state value of
 		 TRANSIENT,
 		 False, or
 		 AUDIT: Faults are augmented. For example, if the script
 		 had reported a fault on
 		 obj1 but on the second attempt you return a fault only
 		 on
 		 obj2, the
 		 APIC reports a faults on both
 		 obj1 and
 		 obj2.
 		

 	

 The script should
 		return a
 		TRANSIENT state along with the fault on the device when
 		the connection to the device breaks. Otherwise it can report transient fault on
 		objects if the configuration could not be applied due to a temporary device
 		resource issue.
 	

 The script should
 		return a
 		PERMANENT state along with faults on objects when the
 		configuration could not be applied because of an invalid parameter or
 		configuration issue. The user must change the configuration to clear the fault.
 		
 	

 The script should
 		return an
 		OK
 		or
 		True
 		state if the configuration could be successfully applied. Do not populate
 		faults on success. The
 		APIC will implicitly clear all faults
 		that were reported prior to this call.
 	

 The script should
 		return a
 		PERMANENT state with the fault on the device if the
 		configuration parsing fails.
 	

 The following example
 		illustrates a return value in the case in which the device is configured with
 		multiple instances of an SLB function:
 		
device =
 {'creds': {'password': 'admin', 'username': 'admin'},
 'devs': {'cdev1': {'creds': {'password': 'admin',
 'username': 'admin'},
 'host': '172.21.158.182',
 'port': 80},
 'cdev2': {'creds': {'password': 'admin',
 'username': 'admin'},
 'host': '172.21.158.224',
 'port': 80}},
 'host': '1.1.1.3',
 'name': 'cluster1',
 'port': 80}

configuration =
 {(0, '', 4447): {'state': 1, 'transaction': 10000,
 'value': {(1, '', 4208): {'state': 1,
 'transaction': 10000,
 'value': {(3, 'SLB', 'Node1'): {'state': 1,
 'transaction': 10000,
 'value': { ... }
 }
 }
 }
 }
 }

 	

 For each function:
 	

 	Query the physical devices.
 		
 		

 	Determine a score for each
 		 device based on certain criteria relevant to the device, such as connections,
 		 CPU usage, or errors.
 		

 	Determine a score for the
 		 cluster. For an Active-Active cluster, determine a score using a minimum set of
 		 nodes and normalize the scores from each device. For an Active-Standby cluster,
 		 use active nodes for the score as well as the high availability state.
 		

 	[image: ../images/note.gif]
Note
 	

 			
 The health
 				element can also be returned as part of the return dictionary for the service
 				modify or service audit API.
 			

 		

 		

 	Return the health score the
 		 cluster and each device using this format:
 		
func1 = [(0, '', 4447), (1, '', 4208), (3, 'SLB', 'Node1')]
 return { 'state': OK,
 'health': [(func1, 100)],
 'devs': {
 'cdev1': {
 'state': True,
 'health': [(func1, 100)]
 },
 'cdev2': {
 'state': True,
 'health': [(func1, 100)]
 },
 }
 }

 		

 	

 Faults

 The
 		APIC has a comprehensive infrastructure for
 		alarms, notifications and logging that you can use within the device script.
 		The device package developer can define a set of faults using the
 		MDfct
 		object. The
 		MDfct
 		objects are contained within an
 		MDfcts
 		object. The
 		APIC allows a device package developer to
 		define one instance of
 		MDfcts
 		that is contained within
 		MDev.
 		The
 		MDfcts
 		object can contain one or more
 		MDfct
 		object. The hierarchy of the
 		MDfcts
 		object and the
 		MDfct
 		object is as follows:
 	

 		 <polUni>
 <infraInfra>
 <vnsMDev …>
 <vnsMDfcts>
 <vnsMDfct …>
 <vnsRsDfctToCat…/>
 </vnsMDfct>
 </vnsMDfcts>
 …
 </vnsMDev>
 </infraInfra>
</polUni>

 	

 Each
 		MDfct
 		object describes a class of fault that the device script can return, and
 		provides additional information about the fault to the user. The
 		MDfct
 		object has following attributes:
 	

 	 Attribute
 				
 				

 	 Mandatory
 				
 				

 	
 				 Description
 				

 	
 				 Code
 				

 	 Yes
 				

 	 The
 				 code uniquely identifies a class of defect. The device
 				 script must return a
 				 code value along with a fault string.
 				

 	
 				 Description
 				

 	 Yes
 				

 	 This
 				 field describes the fault. The
 				 description field is used by the
 				 APIC GUI to provide help to the user. A
 				 device package developer should provide an accurate description of the fault.
 				 The
 				 description field size is limited to maximum of 512
 				 characters.
 				

 	
 				 recAct
 				

 	 Yes
 				

 	 This
 				 field specifies the recommended corrective action for the user to resolve the
 				 fault. This field is limited to maximum of 512 characters.
 				

 	
 				 htmlFile
 				

 	 No
 				

 	 The
 				 device package developer can add a link to additional help on the fault.
 				

 APIC classifies
 		faults into four categories or severity levels:
 	

 	

 	 warning(1)
 		

 	minor(2)
 		

 	major(3)
 		

 	 critical(4)
 		

 	

 The device package
 		developer should associate the fault that is described by the
 		MDfct
 		object to one of the severity levels. The relation to a severity level is
 		specified using the
 		vnsRsDfctToCat object, as shown in the following
 		example:
 	

 <vnsRsDfctToCat tDn="dfctCats/dfctCat-warning"/>
<vnsRsDfctToCat tDn="dfctCats/dfctCat-minor"/>
<vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>
<vnsRsDfctToCat tDn="dfctCats/dfctCat-critical"/>

 Following is an
 		example of defining a fault code in the device package:
 	

 <vnsMDfcts>
 <vnsMDfct code="10"
 descr="This is a description of the fault 10"
 recAct="Recommended action for resolving fault 10"
 htmlFile="http://somewhere/file.html">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-minor"/>
 </vnsMDfct>
 <vnsMDfct code="20"
 descr="This is a description of the fault 20"
 recAct="Recommended action for resolving fault 20"
 htmlFile="http://somewhere/file.html">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>
 </vnsMDfct>
 </vnsMDfcts>

 The device script can
 		return faults in the return dictionary for any API. The
 		APIC allows scripts to return 'faults'. The
 		return dictionary contains a python list of tuples. Each tuple in the fault
 		list must contain the following elements:
 	

 (object-path, code, fault string)

 	
 		
 object-path—The
 			 object path uniquely identifies an object in the configuration dictionary that
 			 caused a fault. The script can raise a fault on one or more objects that are
 			 passed in the configuration that require user intervention to correct the
 			 issue.
 		

 		
 To raise a fault
 			 on the device in a specific tenant context, the script can return the object
 			 path as the
 			 vDev that is passed in the dictionary. For example:
 		

 		 (0, '', 4133)

 		

 	
 		

 			 code—The script must return a fault code that is
 			 defined in the
 			 MDfct object in the device package.
 		

 		

 	
 		
 Fault string—The
 			 device script can optionally add a fault string to provide more specific
 			 information about the fault. This fault string can be null or can be
 			 alphanumeric string with up to 512 characters.
 		

 		

 The
 		APIC updates the faults on the object that
 		are specified by the path only whenthe device script returns the state as
 		OK.
 		The fault in the return dictionary is ignored by the
 		APIC for all other states. The script must
 		return all faults that were raised during API execution. The
 		APIC clears any fault that previously
 		existed on the device, graph, function, folder, relation, or parameter that was
 		passed in the API, but was not reported again in the return dictionary. The
 		APIC replaces the faults on objects that
 		are passed in the API with the set of faults that are returned by the API,
 		provided that the state is
 		OK in
 		the return dictionary. Any faults that are raised by the script will continue
 		to exist as long as the API continues to return faults on those objects that
 		are passed in the API. If the script stops returning a fault on the object that
 		is passed in the API, the
 		APIC will clear it, provided that the state
 		was
 		OK.
 	

 The faults that are
 		returned by the device script can be queried through the
 		APIC north bound API. The
 		APIC GUI also reports faults that are
 		returned by the device script. The
 		APIC augments the severity to the fault
 		code and string returned by the API.
 	

 The following
 		example defines a fault code:
 	

 <vnsMDfcts>
 <vnsMDfct code="10"
 descr="Invalid VIP address "
 recAct="Please enter valid unicast VIP address"
 htmlFile="http://insieme.net/SLBCfgExample.html">
 <vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>
 </vnsMDfct>
 </vnsMDfcts>

def serviceModify(device, configuration):
 path = [
 (0,’’,1234), (1,’’,2345), (3, ‘Function’, ‘SLB’),
 (4, ‘folder’, ‘network’), (5,’param’,’vip’)
]
 code = 10
 message = ‘225.0.0.1’

 faults = [(path,code,message)]

 return {
 ‘state’: Config.SUCCESS,
 ‘faults’: faults,
 ‘health’: []
 }

 The
 		APIC will display the fault and append
 		the following text:
 	

 (APIC defect category defined in MDfct object in device package,
 Defect-code defined in MDfct object in device package,
 Defect-Description defined in MDfct object in device package,
 Fault string passed in the return dictionary by the device script)

 In the
 		serviceModify fault example, the
 		APIC will report following fault string
 		on the VIP object:
 	

 Major Fault: 10, “Invalid VIP address “: ‘225.0.0.1’

 Counters

 The
 		Application Policy Infrastructure Controller (APIC) can query packet counters using the
 		deviceCounter and
 		serviceCounters functions, which returns a dictionary
 		with transmit and receive counters for packets, errors, and drops for
 		interfaces and connectors that are associated with a service function,
 		respectively.
 	

 The
 		deviceCounters API returns interface statistics from a
 		specific device and is defined as follows:
 	

 def deviceCounters(device,interfaces,configuration):

 The following example
 		is a
 		deviceCounters call:
 	

 def deviceCounters(device, interfaces, configuration):
 return {
 'state': 0,
 'counters': [([cif], counters), ...]

counters: {
 'rxpackets': <rxpackets>,
 'rxerrors': <rxerrors>,
 'rxdrops': <rxdrops>,
 'txpackets': <txpackets>
 'txerrors': <txerrors>
 'txdrops': <txdrops>
}

 cif is a (type, key,
 		value) tuple that identifies an interface.
 	

 For example:
 		

 eth0Count = {
 'rxpackets': 100,
 'rxerrors': 0,
 'rxdrops': 0
 'txpackets': 10
 'txerrors': 4
 'txdrops': 2
 }

 return {
 'state': 0,
 'counters': [([(11, '', 'eth0')], eth0Count)]
 }

 	

 The
 		serviceCounters API returns statistics for connectors
 		associated with a service function and is defined as follows:
 		
serviceCounters (device, configuration)

 	

 The
 		serviceCounters parameters are defined as follows:
 	

 	
 		
 device: A dictionary
 			 providing the device IP and credentials.
 			 APIC uses this information to connect to
 			 the service node.
 		

 		

 	
 		

 			 configuration: The service node configuration.
 		

 		

 	

 The following example
 		illustrates how
 		APIC can query packet counters for service
 		functions:
 		
def serviceCounters(device, configuration):
 externalIntferface, = [(0, 'Firewall', 4384), (1, '', 4432), (3, 'Firewall-Func', 'FW-1'), (2, 'external', 'external1')]
 internalInterface = [(0, 'Firewall', 4384) (1, '', 4432) (3, 'Firewall-Func', 'FW-1'), (2, 'internal','internal1')]

 Firewall-1-External-Counters = (externalInterface,
 { 'rxpackets': 100,
 'rxerrors': 0,
 'rxdrops': 0
 'txpackets': 100
 'txerrors': 4
 'txdrops': 2})

 Firewall-1-Internal-Counters = (internalInterface,
 { 'rxpackets': 100,
 'rxerrors': 0,
 'rxdrops': 0
 'txpackets': 100
 'txerrors': 4
 'txdrops': 2})

 Counters = [Firewall-1-External-Counters,
 Firewall-1-Internal-Counters]
 return {
 'state': 0,
 'counters': Counters
 }

 	

 Preface

 This preface includes the following sections:

 	Audience

 	Document Conventions

 	Related Documentation

 	Documentation Feedback

 	Obtaining Documentation and Submitting a Service Request

 Audience

 This guide is intended
 		primarily for data center administrators with responsibilities and expertise in
 		one or more of the following:
 	

 	
 		
 Virtual machine installation and administration
 		

 		

 	
 		
 Server administration
 		

 		

 	
 		
 Switch and network administration
 		

 		

 Document
 	 Conventions

 		
 Command descriptions
 		 use the following conventions:
 		

 		

 	Convention
 				

 	Description
 				

 	
 					 bold
 				

 	
 					
 Bold text
 						indicates the commands and keywords that you enter literally as shown.
 					

 				

 	
 					 Italic
 					
 				

 	
 					
 Italic
 						text indicates arguments for which the user supplies the values.
 					

 				

 	[x]
 				

 	
 					
 Square
 						brackets enclose an optional element (keyword or argument).
 					

 				

 	[x | y]
 				

 	
 					
 Square
 						brackets enclosing keywords or arguments separated by a vertical bar indicate
 						an optional choice.
 					

 				

 	{x | y}
 				

 	
 					
 Braces
 						enclosing keywords or arguments separated by a vertical bar indicate a required
 						choice.
 					

 				

 	[x {y | z}]
 				

 	
 					
 Nested set
 						of square brackets or braces indicate optional or required choices within
 						optional or required elements. Braces and a vertical bar within square brackets
 						indicate a required choice within an optional element.
 					

 				

 	
 					 variable
 				

 	
 					
 Indicates
 						a variable for which you supply values, in context where italics cannot be
 						used.
 					

 				

 	string
 				

 	A nonquoted set of
 					 characters. Do not use quotation marks around the string or the string will
 					 include the quotation marks.
 				

 	

 		
 Examples use the
 		 following conventions:
 		

 		

 	Convention
 				

 	Description
 				

 	
 					 screen font
 				

 	
 					
 Terminal
 						sessions and information the switch displays are in screen font.
 					

 				

 	
 					
 						boldface screen font
 					
 				

 	
 					
 Information you must enter is in boldface screen font.
 					

 				

 	
 					
 						italic screen font
 					
 				

 	
 					
 Arguments
 						for which you supply values are in italic screen font.
 					

 				

 	< >
 				

 	
 					
 Nonprinting characters, such as passwords, are in angle
 						brackets.
 					

 				

 	[]
 				

 	
 					
 Default
 						responses to system prompts are in square brackets.
 					

 				

 	!, #
 				

 	
 					
 An
 						exclamation point (!) or a pound sign (#) at the beginning of a line of code
 						indicates a comment line.
 					

 				

 	

 		
 This document uses
 		 the following conventions:
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Means
 			 reader take
 				note. Notes contain helpful suggestions or references to material not
 			 covered in the manual.
 		

 		

 		

 	[image: ../images/caut.gif]
Caution
 	

 		
 Means
 			 reader be
 				careful. In this situation, you might do something that could result in
 			 equipment damage or loss of data.
 		

 		

 		

 	[image: ../images/warn.gif]
Warning
 	

 		
 		
 IMPORTANT SAFETY
 		 INSTRUCTIONS
 		

 		
 This warning symbol
 		 means danger. You are in a situation that could cause bodily injury. Before you
 		 work on any equipment, be aware of the hazards involved with electrical
 		 circuitry and be familiar with standard practices for preventing accidents. Use
 		 the statement number provided at the end of each warning to locate its
 		 translation in the translated safety warnings that accompanied this device.
 		

 		
 SAVE THESE
 		 INSTRUCTIONS
 		

 	

 	

 Related
 	 Documentation

 The Application
 		Centric Infrastructure documentation set includes the following documents that
 		are available on Cisco.com at the following URL:
 		http:/​/​www.cisco.com/​c/​en/​us/​support/​cloud-systems-management/​application-policy-infrastructure-controller-apic/​tsd-products-support-series-home.html.
 	

 Web-Based
 		 Documentation

 		
 		

 	
 			
 Cisco APIC Management Information Model Reference
 				
 			

 		

 	
 			
 Cisco APIC Online Help Reference
 				
 			

 		

 	
 			
 Cisco APIC Python SDK Reference
 				
 			

 		

 	
 			
 Cisco ACI Compatibility Tool
 				
 			

 		

 	
 			
 Cisco ACI MIB Support List
 				
 			

 		

 	

 Downloadable
 		 Documentation

 		
 		

 	
 			
 Knowledge Base
 				 Articles (KB Articles) are available at the following URL:
 				http:/​/​www.cisco.com/​c/​en/​us/​support/​cloud-systems-management/​application-policy-infrastructure-controller-apic/​products-configuration-examples-list.html
 			

 		

 	
 			
 Cisco Application Centric Infrastructure Release Notes
 				
 			

 		

 	
 			
 Cisco Application Centric Infrastructure Fundamentals
 					 Guide
 				
 			

 		

 	
 			
 Cisco APIC Getting Started Guide
 				
 			

 		

 	
 			
 Cisco APIC REST API User Guide
 				
 			

 		

 	
 			
 Cisco APIC Command Line
 					 Interface User Guide
 				
 			

 		

 	
 			
 Cisco APIC Faults, Events, and System Messages Management
 					 Guide
 				
 			

 		

 	
 			
 Cisco ACI NX-OS Syslog Reference Guide
 			

 		

 	
 			
 Cisco APIC Layer 4 to Layer 7 Services Deployment Guide
 				
 				
 			

 		

 	
 			
 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide
 				
 				
 			

 		

 	
 			
 Cisco APIC Layer 4 to Layer 7 Device Package Test Guide
 				
 				
 			

 		

 	
 			
 Cisco ACI Firmware Management Guide
 			

 		

 	
 			
 Cisco ACI Troubleshooting Guide
 			

 		

 	
 			
 Cisco ACI Switch Command Reference, NX-OS Release 11.0
 				
 				
 			

 		

 	
 			
 Cisco ACI MIB Quick
 					 Reference
 				
 			

 		

 	
 			
 Cisco Nexus CLI to Cisco APIC Mapping Guide
 				
 			

 		

 	
 			
 Application Centric
 					 Infrastructure Fabric Hardware Installation Guide
 				
 			

 		

 	
 			
 Cisco Nexus 9332PQ
 				 ACI-Mode Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 9336PQ
 				 ACI-Mode Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 9372PX
 				 ACI-Mode Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 9372TX
 				 ACI-Mode Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 9396PX
 				 ACI-Mode Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 9396TX
 				 ACI-Mode Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 93128TX
 					 ACI-Mode Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 9504 ACI-Mode
 					 Switch Hardware Installation Guide
 			

 		

 	
 			
 Cisco Nexus 9508 ACI-Mode
 					 Switch Hardware Installation Guide
 			

 		

 	

 Cisco
 		 Application Centric Infrastructure (ACI) Simulator Documentation

 		
 		
 The following
 		 Cisco ACI Simulator documentation is available at
 		 http:/​/​www.cisco.com/​c/​en/​us/​support/​cloud-systems-management/​application-centric-infrastructure-simulator/​tsd-products-support-series-home.html.
 		

 		

 	
 			
 Cisco ACI Simulator Release
 				 Notes
 			

 		

 	
 			
 Cisco ACI Simulator
 				 Installation Guide
 			

 		

 	
 			
 Cisco ACI Simulator Getting
 				 Started Guide
 			

 		

 	

 Cisco Nexus
 		 9000 Series Switches Documentation

 		
 		
 The Cisco Nexus
 		 9000 Series Switches documentation is available at
 		 http:/​/​www.cisco.com/​c/​en/​us/​support/​switches/​nexus-9000-series-switches/​tsd-products-support-series-home.html.
 		

 	

 Cisco
 		 Application Virtual Switch Documentation

 		
 		
 The Cisco
 		 Application Virtual Switch (AVS) documentation is available at
 		 http:/​/​www.cisco.com/​c/​en/​us/​support/​switches/​application-virtual-switch/​tsd-products-support-series-home.html.
 		

 	

 Documentation
 	 Feedback

 To provide technical
 		feedback on this document, or to report an error or omission, please send your
 		comments to apic-docfeedback@cisco.com. We appreciate your feedback.
 	

 Obtaining
 	 Documentation and Submitting a Service Request

 		
 For information on
 		 obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a
 		 service request, and gathering additional information, see
 		 What's New in
 			 Cisco Product Documentation at:
 		 http:/​/​www.cisco.com/​c/​en/​us/​td/​docs/​general/​whatsnew/​whatsnew.html
 		
 		

 		
 Subscribe to
 		 What’s New in
 			 Cisco Product Documentation, which lists all new and revised Cisco
 		 technical documentation as an RSS feed and delivers content directly to your
 		 desktop using a reader application. The RSS feeds are a free service.
 		

 	

 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS
 MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND
 RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED
 WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
 RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

 THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT
 ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE
 INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE
 LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

 The Cisco implementation of TCP header compression is an adaptation of
 a program developed by the University of California, Berkeley (UCB) as part of
 UCB's public domain version of the UNIX operating system. All rights reserved.
 Copyright © 1981, Regents of the University of California.

 NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND
 SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE
 ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING,
 WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
 AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
 PRACTICE.

 IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT,
 SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION,
 LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO
 USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

 Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone
 numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown
 for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and
 coincidental.

 Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries.
 To view a list of Cisco trademarks, go to this URL: http:/​/​www.cisco.com/​go/​trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply
 a partnership relationship between Cisco and any other company. (1110R)

 images/cover_page.jpg
lllllllll
CISCO.

Cisco APIC Layer 4 to Layer 7 Device
Package Development Guide,
Release 1.0(2x)

©2014-2015 Cisco Systems, Inc. Al ights reserved.

YRS U

images/304525.jpg
<visMCom: mames"exterma;

acType="vian

<omsis Tatarface thm=unt/infra/ubey-Aena-Firavall ATAPL-cutside” />
</onsiConn>

Firewall Function
vLaw: 10

e —————
<omsisTatarface thimut/infra/uey-Aena-Firevll ATAPL-insida" />
</vnsiConn>

=

outside

Etnl/z
Label! inside

ases

images/351280.jpg
User

Seript
Handler

Network
Service

Device
Definition

images/349145.jpg
Device package o e

BETICL et 0 hadovicis.

images/304516.jpg
poluni

infrinfra

wnsMDev

Funchiask
model
vendor

——r

images/304917.jpg
vnsDevProf |@__ | vnsDevint vnsMDfct vnsMDfct
[-name x o [Shme code
-context ety recAct
dispLabel [htmieile
[pcpreic 0 [deser
vnsMDev L
I‘rmm;k
wnsticap [model 1
e | [®lendor h@ll
gk [PR NI gy
14 frame
. [|shorthiame
nsDevscript a T QT 5 1 1 n
etrirversion 1 1 1 7
LversionExpr A
packagename |
| minorversion '
|
|
vnscred ;
ey n
[-name & “ - vnsMConn
vnsClustercfe vnsDevCfe nsMDevCfe VnsMGrpCfe vnsMFunc M e
\nsMCredsecret| i i = PCf, > ey
Mrame Frame [rame [rame frame (@ ir
pame J R & b | fencryoe
ey Inotifications
VnsMchainable
: L — ¢ :
14 y 5 % 1 [rame
\ ¥ 4 Ea—
vnsAbsFuncProfContr vnsMFolder
L MGl — vnsMimage
rame ey [rame
|deseription ey
a I
LA 1 A
vnsbsFuncerofarp [neMParant
|
rame [o Frev ---
|description ! penel |description
-=-pname |mandatory (@
= aryoe N
1 Lvalidation
nsbsFuncProf
1 1] vnsRsProfToMFunc "
|descrption [®1 o 1 t_
s wnsRange
L |vnsComparison
|-value2 P
vnsAbsDevCg vnsAbsGrpCfg SAA e
|-description [-description descpptice
e
vnsAbsFolder vnsabsClgrel a0
ey n ey [n
[-scopedBy targetName vnsMFeature
1 n Frame
¢ Fisptabel
1 wnsAbsParam [ispCirder
key =
o [alue 3

images/351281.jpg
- APIC Device API

Device
Seript

Device

Device

Specific APl

images/349147.jpg
Leaf 101 Leat102 |

Benaze | men a1

Een 1720

1
Labol ! outasde’ Tabel’ nosde

images/304513.jpg
<omsRsTntertace tTvm i/ infra/uev-Rona-Firavl) /ATEIPL outsida" />
</msHC o>

Firewall Function

<omsRsTnterface bl i/ infea/uev-Aona—Fireal /MIFIP] -insida” />
</vmsHCon>

T

images/351283.jpg
Service Graph

images/cover_shelf.jpg
Nnmim
cisco

—

3
Cisco APIC Layer 4 to
Layer 7 Device Package
Development Guide,...

TR

