

C

Reference Architecture for OpenStack Grizzly

OpenStack is one of the fastest growing open source projects today, with thousands of active developers
and hundreds of actively supporting companies and individuals. Getting started with OpenStack has
been simplified by the existence of this large development community to such a degree that a single
script can turn a virtual machine into a usable OpenStack-based test environment. But in attempting to
make a production-ready system, the choices suddenly narrow and deploying a system that can be
managed after production starts is even more difficult.

The Cisco Reference Architecture for OpenStack Grizzly is one of the current models for getting to that
manageable deployment. It includes a model for the compute, network, and storage components, the
virtualization platform, and also how to install the system. A set of guidelines and a validated process
for using well-known Hypervisor and OpenStack code distributions, along with a tested and validated
DevOps deployment model based on the work of the community (driven by Puppet Labs with their
Puppet DevOps toolset), is included. This document will also cover the tests that have been completed
against the environment to highlight where the system is functional, and in some cases, areas of possible
concern where improvements will be made.

Reference Architecture
The reference architecture supports a common model for OpenStack deployments, meeting a typical set
of user and usage requirements. Aspects of the system can be modified and scaled either up or down,
depending on specific end user needs, but the system is based on a few key tenets:

1. Middle of the system specs to meet "average" scenarios.

2. Provide for future extension to support a high availability service (not covered in this document).

3. Minimize system differences to reduce Day0 (initial) and Day 2 (break/fix) operational
requirements.

4. Avoid top bin devices/components to manage overall system cost and improve system value.

5. Cover the OpenStack core components.

6. Enhance the core components when appropriate (for services such as future High Availability
control plane or added functionality such as Service Assurance tools).
1
isco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Reference Architecture
Reference Architecture Target Requirements
In addition to the general model requirements, we will also address a set of feature/capability
requirements in future testing iterations using Cisco Reference Architecture for OpenStack Grizzly.
Namely:

• Support for micro, small, medium, large, x-large, and xx-large instances (up to 32GB memory and
8 cores per VM).

• Support for local instance persistence.

• Ability to support VM migration and restart.

• Support for single interface or multi-interface networks.

• Support OpenStack Essex, Folsom, and Grizzly releases against Ubuntu 12.04 LTS and RedHat
RHEL 6.4.

• Future support for automated deployment of our highly available access to OpenStack services
configuration (Nova, Glance, Keystone, Quantum, Swift, and Cinder).

Physical Infrastructure Model
To simplify operational management, only two types of systems are included in the model:
compute-centric (Table 1) and storage-centric (Table 2).

The compute system is based on the 1RU C220-M3 platform and leverages a low power 8 core CPU and
256GB of memory giving a memory-to-core ratio of 16:1. The storage subsystem is based on a high
performance RAID controller and 8 SAS disks for a flexible model for distributed CINDER and/or Ceph
storage. The network interface is based on the Cisco Virtual Interface Controller (VIC), providing dual
10Gbps network channels and enabling Hypervisor Bypass with Virtual Machine Fabric Extension
(VM-FEX) functionality when combined with a Nexus 5500 series data center switch as the Top of Rack
(TOR) device, Fibre Channel over Ethernet (FCOE) storage, and Network Interface Card (NIC) bonding
for network path resiliency or increased network performance for video streaming, high performance
data moves, or storage applications.

Table 1 Compute Model based on UCS C220-M3

Element Type Quantity Description

CPU Intel E5-2660 2 Mid-tier high core count CPU for a balance of power and VM
scale.

Memory 1600MHz 16GB dual rank DIMM 16 Supports up to 4 xx-large instances per physical system.

NIC Cisco VIC 1 Provides dual port 10G interfaces for resiliency and the
ability to support VM-FEX for hypervisor bypass (on
supported Hypervisors).

Disk Controller Mega-RAID 9266i 1 Provide memory-backed RAID operation across the local
disks, improve performance of lower cost/denser disk
options. RAID 10 for performance

Disk Drives 600GB 10Krpm SAS 8 Provide a large possible footprint for local VM instances with
reasonable performance.
2
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Reference Architecture
The storage system is based on the 2RU C240-M3 platform, which is similar at the baseboard level to
the C220-M3, but provides up to 24 2.5" drive slots. With 24 spindles, this platform is focused on storage
as opposed to compute, and while it could be used as configured for a combined all-in-one platform, the
reference makes use of dual low power 4 core CPUs, and a much smaller memory space at 32GB total,
which is our current model for managing SWIFT or CINDER-focused nodes specifically. This platform
also includes the Cisco VIC for up to 20Gbps of storage forwarding with link resiliency when combined
with the dual TOR model.

Compute BIOS
The current default host BIOS configuration is appropriate for deployment; however, it is convenient to
change some of the parameters to accelerate boot, and address hardware differences (such as having the
Cisco FlexFlash installed). This will improve the automated deployment process. The manual steps
required to implement these changes can be found in the Cisco UCS C-Series Servers Integrated
Management Controller CLI Configuration Guide or the Cisco UCS C-Series Servers Integrated
Management Controller Configuration Guide for CLI or Web UI based configuration.

Some of the non-standard recommended parameters are defined in Table 3:

A set of utility scripts are available to facilitate BIOS updates and storage configurations, along with
collecting data needed for the reference deployment model. These scripts are available from the Cisco
Systems GitHub repository:

Table 2 Storage Model based on UCS C240-M3

Element Type Quantity Description

CPU Intel E5-2609 2 Lower core count CPU for a reduced computational
non-complex workload.

Memory 1600MHz 8GB dual rank DIMM 4 Provides working memory for in-system disk cache.

NIC Cisco VIC 1 Provides dual port 10G interfaces for bonded NIC resiliency.

Disk Controller Mega-RAID 9266i 1 Provide memory-backed RAID operation across the local
disks for non-Swift-based storage. No RAID config.

Disk Drives 1 TB 7.2Krpm SATA-6 24 Disk for Swift or block or NAS depending on usage model.

Table 3 Non-Standard Compute BIOS Recommended Parameters

BIOS Parameter Value Description

bios/LomOpromControlPort0 Disabled Disable un-used LOM port BIOS. There are either 2 or 4 of these (0,1 or
0,1,2,3) for C220 vs. C240.

bios/UsbPortInt Disabled Access to the internal 4GB USB card if installed (not in the reference
model).

bios/UsbPortSdCard Disabled Access to the internal 16GB Cisco FlexFlash if installed (not in the reference
model).

Boot-order cdrom,pxe,hdd Simplifies day 0 OS install, PXE being the principal method for installing
the hypervisor OS.

BIOS/CIMC Version 1.5(f) The current 1.5 BIOS release provides enhanced CIMC-based access to
BIOS and PCI device management.
3
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Reference Architecture
https://github.com/CiscoSystems/ucs-openstack-cimc-expect.git

Network Model
The upstream network is based on the Nexus 5500 series switch enabling the use of a number of
advanced scale-out network services in the Layer 2 (Link Local) and Layer 3 (Routed Network) services.
In the basic reference, the TOR switches are configured as a virtual Port Channel (vPC) pair, with a set
of 10Gigabit connections between them as the VPC peer link, and a set of two ports each as the vPC to
the upstream device (a Nexus 7000 series device in our Virtual Multiservice Datacenter (VMDC)
network model). Figure 1 shows the normal link configurations, and Table A-1 in Appendix A shows an
example port mapping for the two TOR switches with the server management interfaces (TOR-M in
Figure 1) collapsed onto the TOR-1 and TOR-2 devices.

Figure 1 Physical Network Configuration

The physical model above makes the following assumptions:

• A separate interface and VLAN is used for management, both CIMC (power, KVM, and bare metal
management) and for the hypervisor management interface.

• An additional VLAN (or in certain network models, additional VLANs) will be provisioned on the
trunk port(s) on a separate interface associated with the hypervisor, by the Cisco Quantum plugin.

• vPC is used to connect to an upstream router (or routers) who support LACP port channels at a
minimum.

• vPC is used to connect to the physical servers, but this is either manually or automatically
configured after the base OS is installed due to the inability of most Linux installers to PXE boot
and install over a bonded network interface.

Logically, the network is segregated either via VLANs (as proposed in this reference) or via an overlay
L2 technology like VXLAN. The latter is expected to become the standard mechanism for providing
much greater tenancy or project-level L2 segregation scale by the Fall 2013 OpenStack release time
frame (the Havana release). L3 and other network services have only limited support in the current
Folsom and Grizzly releases, and in our reference architecture, the L3 services will be supported by the
L3_Agent network model. Security will be provided by the IPtables security and NAT functionality
driven by Quantum.
4
Cisco Reference Architecture for OpenStack Grizzly

https://github.com/CiscoSystems/ucs-openstack-cimc-expect.git

 Reference Architecture for OpenStack Grizzly
Software Architecture
The vPC enabled TOR switches we recommend are either the Nexus 3548 switch with L3 services if
performance is the principal concern, or the Nexus 5548-UP with the L3 daughter card if features like
VM-FEX and/or FCOE capability are of interest. Nexus 3k is a low-latency HPC switch. Nexus 5k is a
popular access switch and is included in Flexpod, vBlock and VMDC. A BOM for both devices is
included in Appendix B: Bills of Material, page -17.

Software Architecture
The system software architecture for the Grizzly release of Cisco OpenStack Installer on Ubuntu 12.04
LTS is straightforward (Figure 2). Future references will be released to support the Havana release, and
RedHat-based Hypervisor OS systems.

The non-HA model has a single node acting as a control node, running the control APIs, with the
exception of nova-compute. This same system also runs the Quantum L2 and L3 agents providing local
to external network connectivity and security.

Figure 2 Primary Software Components on Control and Compute Nodes

The current deployment model also includes a build node, which provides a number of additional
services beyond the OpenStack-specific deployment components highlighted above, namely:

• Cobbler (https://github.com/cobbler) to support bare metal install of the compute node hypervisor
and control node base OS.
5
Cisco Reference Architecture for OpenStack Grizzly

https://github.com/cobbler

 Reference Architecture for OpenStack Grizzly
Small Scale Example System
• Puppet Agent and Puppet Master (https://puppetlabs.com) DevOps toolset for system management
and deployment services.

• Nagios, Collectd, and Graphite for system health data collection from the control and compute
nodes.

Small Scale Example System
As most deployments don't immediately jump to a full rack or even multi-rack OpenStack systems
deployment, we have provided a small system model that should allow a simple update to a complete
rack model. This simple model starts with a single switch and a set of three compute class nodes.

The following system is an example of a small test or application support deployment setup model. This
system is designed to support ~48 virtual compute nodes across this particular environment and to be
configured into a single 42 RU server rack with the intention of having additional devices added to build
out a full server rack-based system (Table 4).

The physical network model for this system is also quite simple, but is designed to be ready to scale out
to the full rack system as well and uses the same port model, but without any of the redundant links
installed initially (and no virtual port channel or redundant uplinks configured). Refer to Appendix A:
Switch Port Mapping, page -15 for the wiring diagram.

Rack Scale Example System
This is a system that includes all of the components (Table 5) needed for the upcoming HA systems
model, along with the SWIFT and CINDER storage components.

Table 4 Small Scale System Rack Layout

Location in Rack (RU number) Principal Function Component Name Element

Slot 42 (top of rack) Network TOR-1 5548-UP

Slot 41-39 Expansion Blank

Slot 38 Control/Network build-server C220-M3 Compute

Slot 37 Control/Network control-server C220-M3 Compute

Slot 35-36 Expansion Blank

Slot 34 Compute build-server 01 C220-M3 Compute

Slot 33 Compute build-server 02 C220-M3 Compute

Table 5 Rack Scale Example System

Location in Rack (RU number) Principal Function Component Name Element

Slot 42 (top of rack) Network TOR-1 5548-UP

Slot 41 Network TOR-2 5548-UP

Slot 40 Expansion

Slot 39 Expansion

Slot 38 Build build-server C220-M3 Compute
6
Cisco Reference Architecture for OpenStack Grizzly

https://puppetlabs.com

 Reference Architecture for OpenStack Grizzly
Systems Installation
Systems Installation
The following section walks through the software steps required to install RedHat RDO on top of the
Cisco Reference Architecture for OpenStack system. This process presumes an environment as
described above.

Slot 37 Control/Compute control-server01 C220-M3 Compute

Slot 36 Control/Compute control-server02 C220-M3 Compute

Slot 35 Control/Compute control-server03 C220-M3 Compute

Slot 34 Compute compute-server01 C220-M3 Compute

Slot 33 Compute compute-server02 C220-M3 Compute

Slot 32 Compute compute-server03 C220-M3 Compute

Slot 31 Compute compute-server04 C220-M3 Compute

Slot 30 Compute compute-server05 C220-M3 Compute

Slot 29 Compute compute-server06 C220-M3 Compute

Slot 28 Compute compute-server07 C220-M3 Compute

Slot 27 Compute compute-server08 C220-M3 Compute

Slot 26 Compute compute-server09 C220-M3 Compute

Slot 25 Compute compute-server10 C220-M3 Compute

Slot 24 Compute compute-server11 C220-M3 Compute

Slot 23 Compute compute-server12 C220-M3 Compute

Slot 22 Compute compute-server13 C220-M3 Compute

Slot 21 Compute compute-server14 C220-M3 Compute

Slot 20 Compute compute-server15 C220-M3 Compute

Slot 19 Storage Proxy proxy-server01 C220-M3 Compute

Slot 18 Storage Proxy proxy-server02 C220-M3 Compute

Slot 17 Storage Proxy proxy-server03 C220-M3 Compute

Slot 15-16 Cinder Block block-server01 C240-M3 Compute

Slot 13-14 Cinder Block block-server02 C240-M3 Compute

Slot 11-12 Swift swift-server01 C240-M3 Compute

Slot 9-10 Swift swift-server02 C240-M3 Compute

Slot 7-8 Swift swift-server03 C240-M3 Compute

Slot 5-6 Swift swift-server04 C240-M3 Compute

Slot 3-4 Swift swift-server05 C240-M3 Compute

Slot 1-2 Expansion

Table 5 Rack Scale Example System (continued)
7
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Systems Installation
Assumptions
Although other configurations are supported, the following instructions target an environment with a
build node, a controller node, and at least one compute node. Additional compute nodes may optionally
be added.

Also, these instructions primarily target deployment of OpenStack onto UCS servers (either blades or
rack-mount form factors). Several steps in the automation leverage the UCS manager or CIMC to
execute system tasks. Deployment on non-UCS gear may well work, particularly if the gear has
functional IPMI, but may require additional configuration or additional manual steps to manage systems.

Cisco OpenStack Installer Grizzly requires that you have two physically or logically (VLAN) separated
IP networks. One network is used to provide connectivity for OpenStack API endpoints, Open vSwitch
(OVS) GRE endpoints and OpenStack/UCS management. The second network is used by OVS as the
physical bridge interface and by Quantum as the public network.

Creating a Build Server
To create a build server, perform the following:

Step 1 To deploy Cisco OpenStack, first configure a build server.

This server has relatively modest hardware requirements: 2 GB RAM, 20 GB storage, Internet
connectivity, and a network interface on the same network as the eventual management interfaces
of the OpenStack cluster machines are the minimal requirements. This machine can be physical or
virtual; eventually a pre-built VM of this server will be provided, but this is not yet available.

Step 2 Install Ubuntu 12.04 LTS onto this build server.

A minimal install with openssh-server is sufficient. Configure the network interface on the
OpenStack cluster management segment with a static IP.

Also, when partitioning the storage, choose a partitioning scheme which provides at least 15 GB free
space under /var, as installation packages and ISO images used to deploy OpenStack will eventually
be cached there.

• When the installation finishes, log in and become root: sudo -H bash

Note If you have proxies, or your control and compute nodes do not have Internet access, please read
the following:

• If you require a proxy server to access the Internet, be aware that proxy users have occasionally
reported problems during the phases of the installation process that download and install software
packages. A common symptom of proxy trouble is that apt will complain about hash mismatches or
file corruptions when verifying downloaded files. A few known scenarios and workarounds include:

– If the apt-get process reports a "HASH mismatch," you may be facing an issue with a caching
engine. If it's possible to do so, bypassing the caching engine may resolve the problem.

• If you do have a proxy, you will want, at a minimum, to export the two types of proxies needed in
your root shell when running fetch commands, as noted in the relevant sections.

• You will also want to change the $proxy setting in site.pp to reflect your local proxy.
8
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Systems Installation
• Another possible change is if you don't have "public" Internet accessible IPs for all of your machines
(build, control, compute, etc.) and are building this in a controlled environment. If this is the case,
ensure that $default_gateway is *not* set in site.pp and all of the files required for installing the
control and compute nodes will be fetched from the boot server.

• You have two choices for setting up the build server. You can follow the manual steps below, or you
can run a one-line script that tries to automate this process. In either case, you should end up with
the Puppet modules installed, and a set of template site manifests in /etc/puppet/manifests.

Model 1: Run the Script

Step 3 To run the install script, copy and paste the following on your command line (as root with your proxy
set if necessary as above):

curl -s -k -B
https://raw.github.com/CiscoSystems/grizzly-manifests/multi-node/install_os_puppet |
/bin/bash

With a proxy, use:

https_proxy=http://proxy.example.com:80/ curl -s -k -B
https://raw.github.com/CiscoSystems/grizzly-manifests/multi-node/install_os_puppet >
install_os_puppet
chmod +x install_os_puppet
./install_os_puppet -p http://proxy.example.com:80/

Step 4 You can now jump to Customizing the Build Server. Otherwise, follow the steps below.

Model 2: Run the Commands Manually

Step 5 Install any pending security updates:

apt-get update && apt-get dist-upgrade -y && apt-get install -y puppet git ipmitool

Note The system may need to be restarted after applying the updates.

Get the reference example manifests. Under the grizzly-manifests GitHub repository, you will find
different branches, so select the one that matches your topology plans most closely. In the following
examples, the multi-node branch will be used, which is likely the most common topology:

git clone https://github.com/CiscoSystems/grizzly-manifests ~/cisco-grizzly-manifests/
cd ~/cisco-grizzly-manifests
git checkout -q g.0

With a proxy:

https_proxy=http://proxy.example.com:80 git clone
https://github.com/CiscoSystems/grizzly-manifests ~/cisco-grizzly-manifests/
cd ~/cisco-grizzly-manifests
https_proxy=http://proxy.example.com:80 git checkout -q g.0

Step 6 Copy the Puppet manifests from ~/cisco-grizzly-manifests/manifests/ to /etc/puppet/manifests/

cp ~/cisco-grizzly-manifests/manifests/* /etc/puppet/manifests

Step 7 Copy the Puppet templates from ~/cisco-grizzly-manifests/templates/ to /etc/puppet/templates/

cp ~/cisco-grizzly-manifests/templates/* /etc/puppet/templates

Step 8 Then get the reference Puppet modules from Cisco's GitHub repository:

(cd /etc/puppet/manifests; sh /etc/puppet/manifests/puppet-modules.sh)

With a proxy:
9
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Systems Installation
(cd /etc/puppet/manifests; http_proxy=http://proxy.example.com:80\
https_proxy=http://proxy.example.com:80 sh\ /etc/puppet/manifests/puppet-modules.sh)

Customizing the Build Server
In the /etc/puppet/manifests directory you will find these files:

clean_node.sh
cobbler-node.pp
core.pp
modules.list
puppet-modules.sh
reset_nodes.sh
site.pp.example

At a high level, cobbler-node.pp manages the deployment of cobbler to support booting of additional
servers into your environment. The core.pp manifest defines the core definitions for OpenStack service
deployment. The site.pp.example manifest captures the user-modifiable components and defines the
various parameters that must be set to configure the OpenStack cluster, including the Puppet Master and
Cobbler setup on the build server. clean_node.sh is a shell script provided as a convenience to
deployment users; it wraps several cobbler and Puppet commands for ease of use when building and
rebuilding the nodes of the OpenStack cluster. reset_nodes.sh is a wrapper around clean_node.sh to
rebuild your entire cluster quickly with one command.

Step 1 IMPORTANT! You must copy site.pp.example to site.pp and then edit it as appropriate for your
installation. It is internally documented.

cp /etc/puppet/manifests/site.pp.example /etc/puppet/manifests/site.pp
vi /etc/puppet/manifests/site.pp

Step 2 Use the 'puppet apply' command to activate the manifest:

puppet apply -v /etc/puppet/manifests/site.pp

When the 'puppet apply' command runs, the Puppet client on the build server will follow the
instructions in the site.pp and cobbler-node.pp manifests and will configure several programs on the
build server:

• Network Time Protocol daemon (NTPD): a time synchronization server used on all OpenStack
cluster nodes to ensure time throughout the cluster is correct.

• tftpd-hpa: a TFTP server used as part of the PXE boot process when OpenStack nodes boot up

• dnsmasq: a DNS and DHCP server used as part of the PXE boot process when OpenStack nodes
boot up.

• Cobbler: an installation and boot management daemon, which manages the installation and booting
of OpenStack nodes.

• apt-cacher-ng: a caching proxy for package installations, used to speed up package installation on
the OpenStack nodes.

• Nagios: an infrastructure monitoring application, used to monitor the servers and processes of the
OpenStack cluster.

• Collectd: a statistics collection application, used to gather performance and other metrics from the
components of the OpenStack cluster.
10
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Systems Installation
• Graphite and Carbon: a real-time graphing system for parsing and displaying metrics and statistics
about OpenStack.

• Apache: a web server hosting sites to implement Graphite, Nagios, and Puppet web services.

The initial Puppet configuration of the build server will take several minutes to complete as it
downloads, installs, and configures all the software needed for these applications.

Step 3 Once the site.pp manifest has been applied to your system, you need to stage Puppet plugins so they can
be accessed by the managed nodes:

puppet plugin download

Step 4 After the build server is configured, the systems listed in site.pp should be defined in cobbler on the build
server:

cobbler system list
control-server
compute-server01
compute-server02

Deploying OpenStack
Perform the following steps to deploy the control, compute, and storage nodes.

Step 1 Use cobbler to build your controller:

/etc/puppet/manifests/clean_node.sh {node_name}

Replace node_name with the name of your controller.

clean_node.sh is a script which does several things:

• Configures Cobbler to PXE boot the specified node with appropriate PXE options to do an
automated install of Ubuntu.

• Uses Cobbler to power-cycle the node.

• Removes any existing client registrations for the node from Puppet, so Puppet will treat it as a new
install.

• Removes any existing key entries for the node from the SSH known hosts database.

Step 2 You can watch the progress on the console of your controller node as Cobbler completes the automated
install of Ubuntu. Once the installation finishes, the controller node will reboot and then will run Puppet
after it boots up. Puppet will pull and apply the controller node configuration defined in the Puppet
manifests on the build server.

This step will take several minutes, as Puppet downloads, installs, and configures the various
OpenStack components and support applications needed on the control node. /var/log/syslog on the
controller node will display the progress of the Puppet configuration run.

Note It may take more than one Puppet run for the controller node to be set up completely, especially
if there are proxies in the path as some proxies can have issues with apt-get installs and updates.
Observe the log files (/var/log/syslog on the controller node) to verify that the controller
configuration has converged completely to the configuration defined in Puppet.
11
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Systems Installation
Step 3 Once the Puppet configuration of the controller has completed, follow the same steps to build each of
the other nodes in the cluster, using clean_node.sh to initiate each install. As with the controller, the
other nodes will take several minutes for Puppet configuration to complete and may require multiple
runs of Puppet before they are fully converged to their defined configuration state.

As a short cut, if you want to build all of the nodes defined in your cobbler-node.pp file, you can run:

for n in `cobbler system list`; do clean_node.sh $n ; done

Or you can run a full reset script, which also does this and re-runs the build-node Puppet apply and
Puppet plugin download steps:

./reset_nodes.sh

Step 4 Bring up the storage nodes by running "cobbler system poweron --name=[storage node name]". Allow
the operating system to be installed and for the puppet agent to complete it's first catalog run.

Step 5 Bring up the Swift proxy node by running "cobbler system poweron --name=[proxy node name]". Allow
the operating system to be installed and for the puppet agent to complete it's first catalog run.

Step 6 Allow puppet to make another catalog run on each storage node.

Step 7 Once the OpenStack nodes have been built using Cobbler, run Puppet on the build node a second time:

puppet agent -t

This second Puppet run will gather information about the individual OpenStack nodes collected by
Puppet when they were being built, and use that information to set up status monitoring of the
OpenStack cluster on the build server.

Testing OpenStack
Once the nodes are built, and once Puppet runs have completed on all nodes (watch /var/log/syslog on
the cobbler node), you should be able to log into the OpenStack Horizon interface:

http://ip-of-your-control-node/ user: admin, password: Cisco123 (if you didn't change
the defaults in the site.pp file).

You will still need to log into the console of the control node to load in an image using user: localadmin,
password: ubuntu.

If you SU to root, you will need to source the openrc auth file, which is in the root's home directory (run
"source openrc" in /root/), and you can launch a test file in /tmp/nova_test.sh.

Deploying Your First VM

The following deployment steps should be used after completing clean puppet runs on OpenStack Nodes
and restarting quantum-server and quantum-plugin-openvswitch-agent services.

Manual Process

Step 1 Create quantum public network.

quantum net-create public --router:external=True

Step 2 We are using 192.168.221.0/24 as our external network.
12
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Systems Installation
Note The eth settings on the Controller Node associated to this network should not have an IP address
assigned to it as it will function in bridged mode.

quantum subnet-create public 192.168.221.0/24

Note If there are upstream routers/L3 switches that use HSRP/GLBP/VRRP that use low-order IP
addresses such as .2 and .3 then the default subnet address assignments used by Quantum for this
subnet (such as floating IP addresses and the Qrouter interface [default is .3]) will directly
conflict with these real IP addresses on the upstream first hop routers. You can alter these default
address assignments for the Quantum subnet by using the "--allocation-pool" range when
creating the Quantum subnet. The example that follows will use the default upstream router
address of .1 (in this example the upstream HSRP address would be 192.168.221.1) and the first
addresses for floating-IPs will begin at .10:

quantum subnet-create --tenant-id services --allocation-pool
start=192.168.221.10,end=192.168.221.250 public 192.168.221.0/24

Step 3 Create the internal (data) network used for Tenants. Create additional networks and associated subnets
as needed. In the example below, we are assigning specific DNS servers that will be used by the
instances.

quantum net-create net10
quantum subnet-create net10 10.10.10.0/24 --name net10-subnet --dns_nameservers
list=true 8.8.8.8 8.8.4.4

Note Replace 8.8.8.8 8.8.4.4 with the IP address(es) of the DNS server or servers virtual machines
should use.

Step 4 Create a virtual router and an associated interface used for the subnet created in the previous step:

quantum router-create router1
quantum router-interface-add router1 net10-subnet

Step 5 Connect the virtual router to your external network:

quantum router-gateway-set router1 public

Step 6 Download an image and add it to Glance:

a. For Ubuntu Precise:

wget
http://cloud-images.ubuntu.com/precise/current/precise-server-cloudimg-amd64-disk1.img

glance add name="precise-x86_64" is_public=true container_format=ovf disk_format=qcow2
< precise-server-cloudimg-amd64-disk1.img

b. For Cirros Cloud Image:

wget http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img

glance add name="cirros-x86_64" is_public=true disk_format=qcow2 container_format=ovf
< cirros-0.3.1-x86_64-disk.img

Step 7 Create an SSH keypair and add the public key to Nova. Make sure you create a key-pair for your
Network and Controller Nodes. Note: leave the passphrase empty when creating the keypair:

ssh-keygen
13
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Systems Installation
cd /root/.ssh/
nova keypair-add --pub_key id_rsa.pub <key_name>

Step 8 Boot an Instance (Precise image example):

quantum net-list
nova boot --image precise-x86_64 --flavor m1.tiny --key_name <key_name> --nic
net-id=<quantum-net10-id> <your_instance_name>

a. Cirros Image Example

nova boot --image cirros-x86_64 --flavor m1.tiny --key_name <key_name> --nic
net-id=<quantum-net10-id> <your_instance_name>

b. Verify that your instance has spawned successfully:

nova show <your_instance_name>

Step 9 Verify connectivity to Instance from the node running Quantum L3 Agent (Controller Node). Since we
are using namespaces, we run the commands from the context of the qrouter using the "ip netns exec
qrouter" syntax. Below, we list the qrouter to get its router-id, we connect to the qrouter and get a list of
its addresses, we ping the instance from the qrouter and then we SSH into the instance from the qrouter:

quantum router-list
ip netns exec qrouter-<quantum-router-id> ip addr list
ip netns exec qrouter-<quantum-router-id> ping <fixed-ip-of-instance>
ip netns exec qrouter-<quantum-router-id> ssh ubuntu@<fixed-ip-of-instance>

Note You can get the internal fixed IP of your instance with the following command: nova show
<your_instance_name>

Step 10 Create and associate a Floating IP. You will need to get a list of the networks copy the correct IDs:

quantum net-list
quantum floatingip-create <public/ext-net-id>
quantum floatingip-associate <floatingip-id> <internal VM port-id>
or in a single step:
quantum net-list
quantum port-list
quantum floatingip-create --port_id <internal VM port-id> <public/ext-net-id>

Step 11 Enable Ping and SSH to Instances:

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0
nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

Step 12 Ping and SSH to your Instances from an external host.

Running Your OpenStack Environment
If the previous set of instructions was followed correctly, you should now have a simple system image,
security and network access, and manipulate and map storage to running instances. Future OpenStack
white papers will look at managing users and projects, scaling systems, running multi-site systems, and
a host of other operations and scale out tasks. Check back often for more from the OpenStack team.
14
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix A: Switch Port Mapping
Appendix A: Switch Port Mapping
Table 6 provides an example of switch port mapping.

Table 6 Example Switch Port Mapping

Switch Port Trunk/Access VLANs Speed Connected Device Device Port Port-Channel vPC

native, allowed

e0/1 trunk 100,all 10G Upstream PC-100 p1 98 98

e0/2 trunk 100,all 10G Upstream PC-100 p2 98 98

e0/3 trunk 100,all 10G TOR-2 e0/3 99 99

e0/4 trunk 100,all 10G TOR-2 e0/4 99 99

e0/5 trunk 100,100 10G compute-00 pci1/0 100 100

e0/6 trunk 100,100 10G compute-01 pci1/0 101 101

e0/7 trunk 100,100 10G compute-02 pci1/0 102 102

e0/8 trunk 100,100 10G compute-03 pci1/0 103 03

e0/9 trunk 100,100 10G compute-04 pci1/0 104 104

e0/10 trunk 100,100 10G compute-05 pci1/0 105 105

e0/11 trunk 100,100 10G compute-06 pci1/0 106 106

e0/12 trunk 100,100 10G compute-07 pci1/0 107 107

e0/13 trunk 100,100 10G compute-08 pci1/0 108 108

e0/14 trunk 100,100 10G compute-09 pci1/0 109 109

e0/15 trunk 100,100 10G compute-10 pci1/0 110 110

e0/16 trunk 100,100 10G compute-11 pci1/0 111 111

e0/17 trunk 100,100 10G compute-12 pci1/0 112 112

e0/18 trunk 100,100 10G compute-13 pci1/0 113 113

e0/19 trunk 100,100 10G compute-14 pci1/0 114 114

e0/20 trunk 100,100 10G compute-15 pci1/0 115 115

e0/21 trunk 100,100 10G compute-16 pci1/0 116 116

e0/22 trunk 100,100 10G compute-17 pci1/0 117 117

e0/23 trunk 100,100 10G compute-18 pci1/0 118 118

e0/24 trunk 100,100 10G compute-19 pci1/0 119 119

e0/25 trunk 100,100 10G storage-00 pci1/0 120 120

e0/26 trunk 100,100 10G storage-01 pci1/0 121 121

e0/27 trunk 100,100 10G storage-02 pci1/0 122 122

e0/28 trunk 100,100 10G storage-03 pci1/0 123 123

e0/29 trunk 100,100 10G storage-04 pci1/0 124 124

e0/30 trunk 100,100 10G storage-05 pci1/0 125 125

e0/31 trunk 100,100 10G storage-06 pci1/0 126 126

e0/32 trunk 100 1G compute-00 lot-m
15
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix A: Switch Port Mapping
e0/33 access 100 1G compute-02 lot-m

e0/34 access 100 1G compute-04 lot-m

e0/35 access 100 1G compute-06 lot-m

e0/36 access 100 1G compute-08 lot-m

e0/37 access 100 1G compute-10 lot-m

e0/38 access 100 1G compute-12 lot-m

e0/39 access 100 1G compute-14 lom-m

e0/40 access 100 1G compute-16 lom-m

e0/41 access 100 1G compute-18 lom-m

e0/42 access 100 1G storage-00 lom-m

e0/43 access 100 1G storage-01 lom-m

e0/44 access 100 1G storage-02 lom-m

e0/45 access 100 1G storage-03 lom-m

e0/46 access 100 1G storage-04 lom-m

e0/47 access 100 1G storage-05 lom-m

e0/48 access 100 1G storage-06 lom-m

Table 6 Example Switch Port Mapping (continued)

Switch Port Trunk/Access VLANs Speed Connected Device Device Port Port-Channel vPC
16
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix B: Bills of Material
Appendix B: Bills of Material
Table 7, Table 8, Table 9, and Table 10 lists the following bills of material:

• “Compute Reference Bill of Materials”

• “Storage Reference Bill of Materials”

• “Network TOR Model A (Nexus 3064) Reference Bill of Materials”

• “Network TOR Model B (Nexus 5548-UP) Reference Bill of Materials”

Table 7 Compute Reference Bill of Materials

Product Description Quantity

UCSC-C220-M3S UCS C220 M3 SFF w/o CPU, mem, HDD, PCIe, PSU, w/ rail kit 1

UCS-CPU-E5-2660 2.20 GHz E5-2660/95W 8C/20MB Cache/DDR3 1600MHz 2

UCS-MR-1X162RY-
A

16GB DDR3-1600-MHz RDIMM/PC3-12800/dual rank/1.35v 16

A03-D600GA2 600GB 6Gb SAS 10K RPM SFF HDD/hot plug/drive sled mounted 8

UCS-RAID-9266-NB MegaRAID 9266-8i with no battery back up 1

R2XX-RAID10 Enable RAID 10 Setting 1

UCSC-PCIE-C10T-02 Cisco VIC 1225T Dual Port 10GBaseT CAN 1

UCSC-PSU-650W 650W power supply for C-series rack servers 2

CAB-C13-C14-2M Power Cord Jumper, C13-C14 Connectors, 2 Meter Length 2

UCSC-DLOM-01 Dedicated LOM Mode BIOS setting for C-Series Servers 1

UCSC-HS-C220M3 Heat Sink for UCS C220 M3 Rack Server 2

UCSC-RAIL1 Rail Kit for C220, C22, C24 rack servers 1

Table 8 Storage Reference Bill of Materials

Product Description Quantity

UCSC-C240-M3S UCS C240 M3 SFF w/o CPU, mem, HD, PCIe, w/ rail kit, expdr 1

UCS-CPU-E5-2609 2.4 GHz E5-2609/80W 4C/10MB Cache/DDR3 1066MHz 2

UCS-MR-1X082RY-A 8GB DDR3-1600-MHz RDIMM/PC3-12800/dual rank/1.35v 4

UCS-HDD300GI2F105 300GB 6Gb SAS 15K RPM SFF HDD/hot plug/drive sled mounted 24

UCS-RAID-9266-NB MegaRAID 9266-8i with no battery back up 1

UCSC-PCIE-C10T-02 Cisco VIC 1225T Dual Port 10GBaseT CNA 1

UCSC-PSU-650W 650W power supply for C-series rack servers 2

CAB-C13-C14-2M Power Cord Jumper, C13-C14 Connectors, 2 Meter Length 2

UCSC-DLOM-01 Dedicated LOM Mode BIOS setting for C-Series Servers 1

UCSC-HS-C240M3 Heat Sink for UCS C240 M3 Rack Server 2

UCSC-RAIL-2U 2U Rail Kit for UCS C-Series servers 1

UCSC-PCIF-01F Full height PCIe filler for C-Series 3
17
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix B: Bills of Material
Table 9 Network TOR Model A (Nexus 3064) Reference Bill of Materials

Product Description Quantity

N3K-C3064-E-FA-L3 Nexus 3064-E Std Airflow (port side exhaust) LAN Ent Lic B 1

SFP-H10GB-CU1M 10GBASE-CU SFP+ Cable 1 Meter 16

SFP-H10GB-CU3M 10GBASE-CU SFP+ Cable 3 Meter 16

N2200-PAC-400W N2K/N3K AC Power Supply Std airflow (port side exhaust) 2

CAB-C13-C14-2M Power Cord Jumper C13-C14 Connectors 2 Meter Length 2

N3K-BAS1K9 Nexus 3000 Base License 1

N3K-C3064-ACC-KIT Nexus 3064PQ Accessory Kit 1

N3K-C3064-FAN Nexus 3064 Fan Mo Front-to-Back Airflow Facing ColdAisle 1

N3K-LAN1K9 Nexus 3000 LAN Enterprise License 1

N3KUK9-602U1.1A NX-OS Release 6.0(2)U1(1a) 1

GLC-T 1000BASE-T SFP 16

Table 10 Network TOR Model B (Nexus 5548-UP) Reference Bill of Materials

Product Description Quantity

N5K-C5548UP-FA Nexus 5548 UP Chassis, 32 10GbE Ports, 2 PS, 2 Fans 1

N5548P-FAN Nexus 5548P Fan Module 2

N55-PAC-750W Nexus 5500 PS, 750W, Front to Back Airflow 2

CAB-C13-C14-2M Power Cord Jumper, C13-C14 Connectors, 2 Meter Length 2

GLC-T 1000BASE-T SFP 8

SFP-H10GB-CU1M 10GBASE-CU SFP+ Cable 1 Meter 16

SFP-H10GB-CU3M 10GBASE-CU SFP+ Cable 3 Meter 8

N55-D160L3-V2 Nexus 5548 Layer 3 Daughter Card, Version 2 1

N55-M16UP Nexus 5500 Unified Mod 16p 10GE Eth/FCoE OR 16p 8/4/2/1G FC 1

GLC-T 1000BASE-T SFP 8

SFP-H10GB-CU3M 10GBASE-CU SFP+ Cable 3 Meter 8

N5KUK9-602N1.2 Nexus 5000 Base OS Software Rel 6.0(2)N1(2) 1

N55-LAN1K9 Layer 3 License for Nexus 5500 Platform 1

N55-BAS1K9 Layer 3 Base License for Nexus 5500 Platform 1

N5548-ACC-KIT Nexus 5548 Chassis Accessory Kit 1
18
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
Appendix C: Tested Design
The design tested is a functionally equivalent subset of the current rack level reference architecture. The
test system was built out of a set of six UCS C-220-M3S and three UCS C-240-M3S servers, connected
together as per Diagram 1. The 10 Gbps links provide VLAN segments for both the management plane
and the primary data networks, while the 1 Gbps links provide access to the Cisco Integrated
Management Controller for each node.

Summary of Test Findings
The testing described in this paper demonstrates that OpenStack is a flexible Cloud operating system
that can be deployed quickly and in an automated fashion. Cisco OpenStack Installer powered by Puppet
provides a flexible deployment model for OpenStack that allows cloud administrators to deploy
OpenStack networking, compute, storage, and identity services on multiple compute nodes with minimal
effort. Test cases described in Appendix C: Tested Design include:

1. OpenStack Installation on Multiple Nodes, page -19

2. OpenStack Installation with GRE Tunnels Used for Isolation, page -23

3. OpenStack Installation Automated with Minimal Input, page -24

4. Monitoring Functional State with An Administrative Dashboard, page -25

5. OpenStack Manual Installation Minimum Deployment Time, page -27

6. OpenStack Application Infrastructure Deployment Minimum Deployment Time, page -28

OpenStack Test Cases
To highlight functional use cases, the following tests were performed:

OpenStack Installation on Multiple Nodes

• Nr: 001

• Name: Deployment

• User: System Administrator

• Case: Install

It should be possible to deploy OpenStack in a multi-node fashion on physical compute, network, and
storage elements

Test Setup

The topology for this test includes six UCS C-220-M3S and three UCS C-240-M3S servers connected
to a Nexus 3064 top-of-rack switch pair. The first C220 will serve as a “build” node to serve DHCP/PXE
and Puppet for installing the other servers. The second C220 will serve as the control node on which
coordinating services for the cloud will be run (including Horizon, the OpenStack GUI). The next three
C220s serve as compute nodes on which instances may be launched. The last C220 serves as the swift
proxy node. All three C240s serve as swift storage nodes.
19
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
Each server is equipped with two 10-gigabit Ethernet interfaces. Each of the two 10-gigabit Ethernet
interfaces is cabled to a separate Nexus 3064 top-of-rack (ToR) switch. All server ports on the ToR
switches should be configured as trunk ports, with management network being the native VLAN on the
trunk:

interface Ethernet1/17
 switchport mode trunk
 switchport trunk native vlan 844
 switchport trunk allowed vlan 842,844,846
 spanning-tree port type edge trunk

Procedure

Step 1 Install Ubuntu 12.04 Server on the first node in the cluster (e.g., the “build node”).

Step 2 As root, run the following commands to apply updates and install a few necessary software packages:

a. apt-get update

b. apt-get dist-upgrade –y

c. apt-get install git ipmitool debmirror

Step 3 Fetch the Cisco OpenStack Installer – Grizzly Puppet modules by running the following command as
root:

curl -s -k -B
https://raw.github.com/CiscoSystems/grizzly-manifests/multi-node/install_os_puppet |
/bin/bash

Step 4 Copy the site.pp.example file to site.pp and edit it to customize it for your environment. You will supply
information about the remaining nodes in your cloud, networking information, and other configuration
information.

a. cp site.pp.example site.pp

b. vi site.pp

Step 5 If necessary, edit cobbler-node.pp to add any late commands you would like to use to customize your
bare-metal operating system installs.

Step 6 Apply the edited site.pp file. Once the site.pp file has been applied, make puppet plugins available for
nodes to download:

a. puppet apply –v site.pp

b. puppet plugin download

Step 7 Install the control node by issuing the following commands to power cycle it. When the machine reboots,
it should begin a PXE installation of Ubuntu 12.04. You may wish to launch the KVM console from the
CIMC before issuing these commands so you can observe the process as it takes place.

a. cobbler system poweroff controller

b. cobbler system poweron controller

Step 8 When the control node has completed the operating system install, log in to it as localadmin with
password “ubuntu.”

Step 9 If you disabled puppet from running at startup via your site.pp file to make any final changes before
running the installation process:

a. Make your final changes.

b. Edit /etc/default/puppet and change “no” to “yes,”
20
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
c. Then run the following command as root:

 service puppet start

Step 10 Observe the puppet agent logging messages in /var/log/syslog as it installs and configures the OpenStack
control node. You should not see any error messages.

Step 11 Once the control node has completed its installation process, boot the compute nodes in the cluster. As
they boot, they will begin PXE installation of Ubuntu 12.04. You may wish to access the KVM consoles
of each system prior to issuing these commands in order to observer the install process.

a. cobbler system poweroff compute-01; cobbler system poweron compute-01

b. cobbler system poweroff compute-02; cobbler system poweron compute-02

c. cobbler system poweroff compute-03; cobbler system poweron compute-03

Step 12 Once the operating system install process completes, log in to each node as localadmin with password
“ubuntu.”

Step 13 If you chose to disable puppet from running at startup via your site.pp file to make any final changes to
each node before starting the OpenStack installation process:

a. Make your final changes

b. Start the puppet agent by running the following command as root on each node:

service puppet start

Step 14 Observe the puppet log messages in /var/log/syslog on each system. You should not see any errors.

Step 15 Once the compute nodes have finished their automated setup process, boot the swift storage nodes in the
cluster. As they boot, they will begin PXE installation of Ubuntu 12.04. You may wish to access the
KVM consoles of each system prior to issuing these commands in order to observer the install process.

a. cobbler system poweroff swift-storage01; cobbler system poweron swift-storage01

b. cobbler system poweroff swift-storage02; cobbler system poweron swift-storage02

c. cobbler system poweroff swift-storage03; cobbler system poweron swift-storage03

Step 16 Once the operating system install process completes, log in to each node as localadmin with password
“ubuntu.”

Step 17 If you chose to disable puppet from running at startup via your site.pp file to make any final changes to
each node before starting the OpenStack installation process:

a. Make your final changes

b. Start the puppet agent by running the following command as root on each node:

service puppet start

Step 18 Observe the puppet log messages in /var/log/syslog on each system. You should not see any errors.

Step 19 Once the swift storage nodes have finished their automated setup process, boot the swift proxy node in
the cluster. As it boots, it will begin PXE installation of Ubuntu 12.04. You may wish to access the KVM
console of the system prior to issuing these commands in order to observer the install process.

a. cobbler system poweroff swift-proxy01

b. cobbler system poweron swift-proxy01

Step 20 Once the operating system install process completes, log in to it as localadmin with password “ubuntu.”

Step 21 If you chose to disable puppet from running at startup via your site.pp file to make any final changes to
each node before starting the OpenStack installation process:

a. Make your final changes
21
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
b. Start the puppet agent by running the following command as root on each node:

service puppet start

Step 22 Observe the puppet log messages in /var/log/syslog on each system. You should not see any errors.

Step 23 Once the swift proxy node has finished its automated setup process, run the following command on the
control node and verify that each compute node is listed in the output:

a. nova-manage host list

Step 24 Access Horizon by opening a web browser and typing in the IP address or hostname of your control
node. Verify that you can log in as “admin” with password “Cisco123.”

Step 25 Download VM images to the control node and import into Glance with the following commands:

a. wget
http://cloud-images.ubuntu.com/precise/current/precise-server-cloudimg-amd64-disk1.img

b. glance add name="precise-x86_64" is_public=true container_format=ovf disk_format=qcow2
< precise-server-cloudimg-amd64-disk1.img

c. wget http://mattdm.fedorapeople.org/cloud-images/Fedora18-Cloud-x86_64-latest.qcow2

d. glance add name="Fedeora18-x86_64" is_public=true container_format=ovf
disk_format=qcow2 < Fedora18-Cloud-x86_64-latest.qcow2

e. wget http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img

f. glance add name="cirros-x86_64" is_public=true disk_format=qcow2 container_format=ovf <
cirros-0.3.1-x86_64-disk.img

Step 26 Setup quantum networking including:

a. Public network with a pool for floating IPs

b. Private network with a sunet for VM hosts

c. Quantum router connected to both networks

Step 27 Using CLI or UI, setup two new tenants with a non-admin user in each tenant.

Step 28 Install tempest on control node and customize the temptest.conf file.

a. git clone https://github.com/CiscoSystems/tempest.git

b. cd tempest

c. git checkout -b stable/grizzly origin/stable/grizzly

d. pip install testtools

e. pip install testresources

f. vi etc/tempest.conf

Step 29 Run tempest using nose test:

nosetests -v tempest

Pass/Fail Criteria

1. Puppet should run without errors that prevent OpenStack from functioning.

2. User should be able to log in to Horizon.

3. User should be able to successfully create Quantum routers, networks, and subnets.

4. Users should be able to import VM images into glance
22
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
5. Users should be able to create new tenants and users in each tenant.

6. Tempest should be able to run and tests pass.

Bugs Encountered

• https://bugs.launchpad.net/tempest/+bug/1202991

• https://bugs.launchpad.net/neutron/+bug/1190242

• https://bugs.launchpad.net/tempest/+bug/1160309

• https://bugs.launchpad.net/nova/+bug/1197573

• https://bugs.launchpad.net/tempest/+bug/1182384

• https://bugs.launchpad.net/tempest/+bug/1198164

• https://bugs.launchpad.net/nova/+bug/1189059

OpenStack Installation with GRE Tunnels Used for Isolation

• Nr: 002

• Name: Network Deployment

• User: System Administrator

• Case: Install

It should be possible to deploy OpenStack using the following network model:

Multiple physical network interfaces for management and tenant or other networks with GRE tunnels
used for isolation on one or more virtual or physical OpenStack elements.

Test Setup

Topology deployment with GRE Isolation is documented at:

http://docwiki.cisco.com/wiki/OpenStack:Grizzly-Multinode

We use a 9-node topology as described in OpenStack Installation on Multiple Nodes, page -19.

Procedure

Testing requires at least 3 servers connected by a ToR switch.

Step 1 Install a minimal install of Ubuntu 12.04 LTS on the first server (the “build” server)

Step 2 Add the git and puppet and ipmitool packages to the build server

Step 3 curl -s -k -B https://raw.github.com/CiscoSystems/grizzly-manifests/multi-node/install_os_puppet |
/bin/bash

Step 4 cd /etc/puppet/manifests

Step 5 edit site.pp as appropriate for your install

Step 6 sh puppet-modules.sh

Step 7 run puppet to configure your build node: puppet apply –v –d /etc/puppet/manifests/site.pp

Step 8 puppet plugin download

Step 9 cobbler system list to verify
23
Cisco Reference Architecture for OpenStack Grizzly

http://docwiki.cisco.com/wiki/OpenStack:Grizzly-Multinode
https://bugs.launchpad.net/tempest/+bug/1202991
https://bugs.launchpad.net/neutron/+bug/1190242
https://bugs.launchpad.net/tempest/+bug/1160309
https://bugs.launchpad.net/nova/+bug/1197573
https://bugs.launchpad.net/tempest/+bug/1182384
https://bugs.launchpad.net/tempest/+bug/1198164
https://bugs.launchpad.net/nova/+bug/1189059

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
Step 10 ./clean_node.sh controller to install the controller

Step 11 After the controller installs and reboots, log into it and monitor the automatic puppet run that sets it up

Step 12 Once it finishes, repeat steps 10-11 for the compute nodes

Step 13 Once they finish, repeat steps 10-11 for the swift storage nodes

Step 14 Once they finish, repeat steps 10-11 for the swift proxy nodes

Step 15 Run puppet agent –t –d on the build node to finish configuring Nagios

Pass/Fail Criteria

Tempest was used to validate the OpenStack network.

See results from OpenStack Installation on Multiple Nodes, page -19.

OpenStack Installation Automated with Minimal Input

• Nr: 003

• Name: Deployment Automation

• User: System Administrator

• Case: Install

The installation should run automatically once basic information is provided to the installer. This
information should not need to exceed the following:

1. Network address information

2. Physical device address and access information (e.g., power management, MAC address)

3. User names and passwords if necessary for external or API access

4. Deployment model information (network interface bonding, disk use models, etc.)

5. Network and storage control interfaces for external devices

6. Default management information for automatically deplorable network and storage elements

Test Setup

See OpenStack Installation on Multiple Nodes, page -19. This test case requires only the prerequisites
for whichever OpenStack installation method you choose.

Procedure

Follow the instructions in OpenStack Installation on Multiple Nodes, page -19 to obtain a copy of
site.pp.example.

All user-configurable install instructions reside in site.pp.example, which after editing, must then be
copied to site.pp for execution.

site.pp.example is well-documented internally. The general information that needs to be known to
correctly modify the file is as follows:

• Whether or not you need to use a proxy to reach the Internet. For convenience, Cisco offers the
options of both HTTP and FTP for package retrieval.

• An accessible NTP server.
24
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
• The general network configuration you wish to use:

• The IP addresses, hostnames, and domain names you wish to use for your build, control, and
compute nodes.

• The physical hardware in each node that will connect to the respective physical/logical network
(e.g., network interfaces).

• The MAC addresses for each node.

• The netmask and default gateway used for the private network.

• IP and login information for power control of the physical nodes.

By default, Cisco pre-populates most of this information. Cisco also defines one of each node: build,
controller, and compute. To add additional nodes, you must add additional node information as
described in site.pp.example.

Complete the installation process described in OpenStack Installation on Multiple Nodes, page -19.

Pass/Fail Criteria

The test case passes if the installation procedure in OpenStack Installation on Multiple Nodes, page -19
section 1.1 can be completed without adding additional information to site.pp beyond the node
information described in the procedure.

Monitoring Functional State with An Administrative Dashboard

• Nr: 004

• Name: Management and Monitoring

• User: System Administrator

• Case: System Functional State

The functional state of the system should be available to a systems state dashboard of some nature
allowing for a view of areas of function or areas where a system maintainable or repair task is required.
Failures should be reported in a time commensurate with their severity. Capacity limitations and system
bottlenecks should also be discoverable via these mechanisms.

It should be possible to see:

• Control

– Total server down alerts

• Compute

– Total server down alerts

• Network

– Total server down alerts

– Rabbit messaging alerts are working

– Rabbit API alerts are working

• System

– Total server down alerts

– Keystone service not running alerts

– Keystone authentication not working alerts
25
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
– Keystone endpoints not defined alerts

– NTP times not sufficiently synchronized alerts

– nova-api service not running alerts

– nova-api service not answering queries alerts

– glance-api not running alerts

– glance-api misconfigured alerts

– glance alerts if no images found

– apache for Horizon not running triggers alerts

– VM status logs cpu / memory consumption are gathered

Test Setup

Testing should be done with a standard multi-node test pod. The pod will be installed using puppet in
the standard Cisco OpenStack Installer multinode deployment as documented at:

http://docwiki.cisco.com/wiki/OpenStack:Grizzly-Multinode

To prepare for testing, configure puppet with information about the build node, the control node, and
two compute nodes. Then, deploy only the build node.

Procedure

Step 1 Deploy the control node. After the puppet run finishes, power off the node and verify Nagios alerting
about control node.

Step 2 Deploy the compute node. After the puppet run finishes, power off the node and verify Nagios alerting
about compute node.

Step 3 When executing Step 1, verify that network connectivity Nagios alerts are triggered.

Step 4 Stop the rabbitmq-server service on the controller. Verify “RabbitMQ Alive” Nagios alerts triggered.

Step 5 When executing Step 1, verify that system tests (load, users, disk space) generate Nagios alerts.

Step 6 Stop the keystone service on the control node and verify the Keystone alert is triggered.

Step 7 Configure an incorrect password in /etc/nrpe.d/check_keystone.cfg on the control node and verify the
Keystone alert is triggered.

Step 8 Delete endpoints for services from Keystone and verify the Keystone alert is triggered.

Step 9 Stop NTP services throughout the cluster and change a system’s clock by 10 minutes. Confirm that
Nagios NTP alerts are triggered by the clock drift.

Step 10 Stop the nova-api service on the controller and verify that the Nova-Api alert is triggered.

Step 11 Configure an incorrect password in /etc/nrpe.d/check_novaapi.cfg on the control node and verify the
Nova-Api alert is triggered.

Step 12 Stop the glance-api service on the controller and verify that the Glance alert is triggered.

Step 13 Configure an incorrect password in /etc/nrpe.d/check_glance.cfg on the control node and verify the
Glance alert is triggered.

Step 14 Confirm that the Glance alert logs errors until an image called “precise-x86_64” has been uploaded.

Step 15 Stop the apache2 service on the control node and verify the HTTP alert is triggered.
26
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
Step 16 Launch a couple of VMs and verify that CPU / memory statistics are logged under VM Stats alerts.

Pass/Fail Criteria

The test case passes if all steps above succeed.

Bugs Encountered

https://bugs.launchpad.net/openstack-cisco/+bug/1200316

https://bugs.launchpad.net/openstack-cisco/+bug/1200454

OpenStack Manual Installation Minimum Deployment Time

• Nr: 005

• Name: System Deployment Times

• User: System Administrator

• Case: Deployment Times

The system should deploy rapidly. The following are target times that should be possible to meet:

• Initial setup of a node from scratch, assuming all addressing and other manual entry information
exists: 120 minutes

• Additional node setup: 60 minutes

• Network setup: 60 minutes

• Additional network setup: 60 minutes

• Storage environment setup: 120 minutes

• Additional storage setup: 120 minutes

Test Setup

Refer to setup in OpenStack Installation on Multiple Nodes, page -19. A multimode deployment model
will be used in this test.

Procedure

Follow the manual install instructions for Cisco OpenStack Installer located here:

http://docwiki.cisco.com/wiki/OpenStack:Grizzly-Multinode

• Results in installation times of the following (approximately):

• Controller Node: 25 minutes

• Network Node: 20 minutes

• Compute Node: 20 minutes

• Storage Nodes: 46 minutes

• Openstack testing, including creation of virtual networks, instances, and instances: < 1 minute

• Total time: 111 minutes
27
Cisco Reference Architecture for OpenStack Grizzly

https://bugs.launchpad.net/openstack-cisco/+bug/1200316
https://bugs.launchpad.net/openstack-cisco/+bug/1200454
http://docwiki.cisco.com/wiki/OpenStack:Grizzly-Multinode

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
Pass/Fail Criteria

The test fails if the times specified in the test description are not achievable.

OpenStack Application Infrastructure Deployment Minimum Deployment Time

• Nr: 006

• Name: Application Deployment

• User: Systems User

• Case: Application Deployment Times

An application infrastructure should deploy rapidly. This case is not intended to include application code
deployment as part of the definition.

• Deployment of a VM instance from cli or UI: 10 minutes

• Deployment of network from cli or UI: 10 minutes

• Deployment of additional volume from cli or UI: 10 minutes

• Deployment of object storage container from cli or UI: 10minutes

• Notification of completion of an operation: 10 minutes

Test Setup

A standard multi-node installation of Cisco OpenStack Installer as described in OpenStack Installation
on Multiple Nodes, page -19 is used for this test.

Requirements:

• 1 COSI Build Node Instance. Dedicated hardware.

• 1 COSI Control Node Instance. Dedicated Hardware.

• (at least) 1 COSI Compute Node Instance. Dedicated Hardware.

• 1 COSI Swift Proxy Node Instance. Dedicated Hardware

• (at least) 3 COSI Swift Storage Node Instances. Dedicated Hardware

• 1 Cirros testing machine image shall be loaded and available via either installation through Glance
and or the horizon dashboard.

• Environment should be pre-qualified for proper operation of python command line client tools and
Horizon dashboard.

• No instances shall be running at the start of the test.

Procedure

Deployment from CLI in less than 10 minutes.

CLI Deployment scripts are available with elapsed timer for job submission. This alone, however, will
not show accurate elapsed time as OpenStack is an asynchronous system. You must watch for proper
transition of the instance availability via the nova list command.

Step 1 Create instance using the nova boot command and watch status using the nova list command

Follow this simple example for specification of the test procedure:
28
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
Step 2 nova boot –image <image name> -- flavor<flavor name> <instance name>.

Step 3 Check command submission elapsed time and watch for instance to move to an active state by running
the nova list.

Step 4 After a period of 10 minutes, the instance should be in active state.

If an error is encountered or the instance never reaches state ‘ACTIVE’ then declare test failed.

Deployment of network in less than 10 minutes.

CLI network deployment scripts are available with elapsed timer for job submission. This alone,
however, will not show accurate elapsed time as OpenStack is an asynchronous system. You must watch
for proper network availability via the quantum net-show command.

Step 1 Create network using the quantum net-create command and watch status using the quantum net-show
command

Follow this simple example for specification of the test procedure:

Step 2 quantum net-create private

Step 3 Command should complete within 10 minutes

Step 4 quantum net-show should list network private

If an error is encountered running the quantum net-create command, the test result is a failure

Deployment of volume less than 10 minutes.

CLI volume scripts are available with elapsed timer for job submission. This alone, however, will not
show accurate elapsed time as OpenStack is an asynchronous system. You must watch for proper volume
availability via the cinder list command.

Step 1 Create 1GB cinder volume and watch status using the cinder list command

Follow this simple example for specification of the test procedure:

Step 2 cinder create –display_name test 1

Step 3 Command should complete within 10 minutes

Step 4 cinder list

If an error is vencountered running the cinder commands, the test result is a failure.

Deployment of object into container less than 10 minutes.

For this test we will up upload a 10Mb file into a new swift container and verify it completes within the
time limits allowed.

Follow this simple example for specification of the test procedure:

Step 1 dd if=/dev/zero of=random.10Mb bs=10485760 count=1; du -sm random.10Mb

Step 2 The following command should complete within 10 minutes

date;swift upload test_container random.10Mb;date
29
Cisco Reference Architecture for OpenStack Grizzly

 Reference Architecture for OpenStack Grizzly
Appendix C: Tested Design
If an error is encountered running the swift commands, the test result is a failure.

Pass/Fail Criteria

Instance Create

Pass: Instance shows ACTIVE via the Nova List Command

Fail: Instance shows status other than ACTIVE, command error or exceeds 10 minutes.

Network Create

Pass: quantum net-show command shows the created network

Fail: quantum net-show lists nothing, command error or exceeds 10 minutes.

Volume Create

Pass: cinder list command shows the created 1 GB volume

Fail: cinder list command lists nothing, command error or exceeds 10 minutes.

Object Container Create

Pass: swift upload command completes without error in less than 10min.

Fail: swift upload command returns an error or runtime exceeds 10 minutes.
30
Cisco Reference Architecture for OpenStack Grizzly

	Reference Architecture for OpenStack Grizzly
	Reference Architecture
	Reference Architecture Target Requirements
	Physical Infrastructure Model
	Compute BIOS
	Network Model

	Software Architecture
	Small Scale Example System
	Rack Scale Example System
	Systems Installation
	Assumptions
	Creating a Build Server
	Customizing the Build Server
	Deploying OpenStack
	Testing OpenStack
	Deploying Your First VM

	Running Your OpenStack Environment

	Appendix A: Switch Port Mapping
	Appendix B: Bills of Material
	Appendix C: Tested Design
	Summary of Test Findings
	OpenStack Test Cases
	OpenStack Installation on Multiple Nodes
	OpenStack Installation with GRE Tunnels Used for Isolation
	OpenStack Installation Automated with Minimal Input
	Monitoring Functional State with An Administrative Dashboard
	OpenStack Manual Installation Minimum Deployment Time
	OpenStack Application Infrastructure Deployment Minimum Deployment Time

