
Cisco Intrusion Prevention System Man
OL-30787-01

A

P P E N D I X A

System Architecture

This appendix describes the Cisco IPS system architecture, and contains the following topics:

• Purpose of Cisco IPS, page A-1

• System Design, page A-1

• System Applications, page A-3

• User Interaction, page A-5

• Security Features, page A-5

• MainApp, page A-5

• SensorApp, page A-22

• CollaborationApp, page A-27

• SwitchApp, page A-29

• CLI, page A-30

• Communications, page A-31

• Cisco IPS File Structure, page A-34

• Summary of Cisco IPS Applications, page A-35

Purpose of Cisco IPS
The purpose of the Cisco IPS is to detect and prevent malicious network activity. You can install the
Cisco IPS software on two platforms: appliances and the modules. The Cisco IPS contains a management
application and a monitoring application. The IDM is a network management JAVA application that you
can use to manage and monitor the IPS. The IME is an IPS network monitoring JAVA application that
you can use to view IPS events. The IME also contains the IDM configuration component. The IDM and
the IME communicate with the IPS using HTTP or HTTPS and are hosted on your computer.

System Design
The Cisco IPS software runs on the Linux operating system. We have hardened the Linux OS by
removing unnecessary packages from the OS, disabling unused services, restricting network access, and
removing access to the shell.
A-1
ager Express Configuration Guide for IPS 7.3

Appendix A System Architecture
 System Design
Figure A-1 illustrates the system design for IPS software.

Figure A-1 System Design for the IPS

MainApp

CLI

IDAPI

CIDS
Ethernet

SensorApp

- Signature Definition
- Event Action Rules

Master
Blocking
Sensor

IDM
IME

SNMP NotificationApp
AuthenticationApp
Attack Response Controller
InterfaceApp
Logger

Web Server

CtlTransSource

Event Store

HTTPS

SNMP

Collaboration
Manifest Server

Collaboration
Update Server(s)

Network
Participation
Server

25
12

35

Telnet
SSH

Monitored
Network

FTP SCP NTP

CollaborationApp
A-2
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 System Applications
Figure A-1 illustrates the system design for IPS software for the IPS 4500 series sensors.

Figure A-2 System Design for IPS 4500 Series Sensors

For More Information

• For more information on the MainApp, see MainApp, page A-5.

• For more information on the SensorApp, see SensorApp, page A-22.

• For more information on the CollaborationApp, see CollaborationApp, page A-27.

• For detailed information on the CLI, see CLI, page A-30.

• For detailed information on the SwitchApp, see SwitchApp, page A-29.

System Applications

Note Each application has its own configuration file in XML format.

MainApp

CLI

IDAPI

CIDS
Ethernet

SensorApp

- Signature Definition
- Event Action Rules

Master
Blocking
Sensor

IDM
IME

SNMP NotificationApp
AuthenticationApp
Attack Response Controller
InterfaceApp
Logger
Web Server

CtlTransSource

Event Store

HTTPS

SNMP

Collaboration
Manifest Server

Collaboration
Update Server(s)

Network
Participation
Server

33
38

18

Telnet
SSH

Monitored Networks

FTP SCP NTP

CollaborationApp

Switch

SwitchApp
A-3
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 System Applications
The Cisco IPS software includes the following applications:

• MainApp—Initializes the system, starts and stops the other applications, configures the OS, and
performs upgrades. It contains the following components:

– ctlTransSource (Control Transaction server)—Allows sensors to send control transactions. This
is used to enable the master blocking sensor capability of Attack Response Controller (formerly
known as Network Access Controller).

– Event Store—An indexed store used to store IPS events (error, status, and alert system
messages) that is accessible through the CLI, IDM, IME, ASDM, or SDEE.

Note The Event Store has a fixed size of 30 MB for all platforms.

– InterfaceApp—Handles bypass and physical settings and defines paired interfaces. Physical
settings are speed, duplex, and administrative state.

– Logger—Writes all the log messages of the application to the log file and the error messages of
the application to the Event Store.

– Attack Response Controller (formerly known as Network Access Controller) —Manages
remote network devices (firewalls, routers, and switches) to provide blocking capabilities when
an alert event has occurred. The ARC creates and applies ACLs on the controlled network
device or uses the shun command (firewalls).

– NotificationApp—Sends SNMP traps when triggered by alert, status, and error events. The
NotificationApp uses the public domain SNMP agent. SNMP GETs provide information about
the general health of the sensor.

– Web server (HTTP SDEE server)—Provides a web interface and communication with the other
IPS devices through the SDEE protocol using several servlets to provide the IPS services.

– AuthenticationApp—Verifies that users are authorized to perform CLI, IDM, IME, ASDM, or
SDEE actions.

• SensorApp (Analysis Engine)—Performs packet capture and analysis.

• CollaborationApp—Interfaces with the MainApp and the SensorApp using various interprocess
communication technologies including IDAPI control transactions, semaphores, shared memory,
and file exchange.

• CLI—The interface that is run when you successfully log in to the sensor through Telnet or SSH.
All accounts created through the CLI will use the CLI as their shell (except the service
account—only one service account is allowed). Allowed CLI commands depend on the privilege of
the user.

All Cisco IPS applications communicate with each other through a common API called the IDAPI.
Remote applications (other sensors, management applications, and third-party software) communicate
with sensors through the SDEE protocol.

The sensor has the following partitions:

• Application partition—A full IPS system image.

• Recovery partition—A special purpose image used for recovery of the sensor. Booting into the
recovery partition enables you to completely reimage the application partition. Network settings are
preserved, but all other configuration is lost.
A-4
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 User Interaction
User Interaction
You interact with the Cisco IPS in the following ways:

• Configure device parameters

You generate the initial configuration for the system and its features. This is an infrequent task,
usually done only once. The system has reasonable default values to minimize the number of
modifications you must make. You can configure Cisco IPS through the CLI, IDM, IME, CSM,
ASDM, or through another application using SDEE.

• Tune

You make minor modifications to the configuration, primarily to Analysis Engine, which is the
portion of the application that monitors network traffic. You can tune the system frequently after
initially installing it on the network until it is operating efficiently and only producing information
you find useful. You can create custom signatures, enable features, or apply a service pack or
signature update. You can tune Cisco IPS through the CLI, IDM, IME, CSM, ASDM, or through
another application using SDEE.

• Update

You can schedule automatic updates or apply updates immediately to the applications and signature
data files. You can update Cisco IPS through the CLI, IDM, IME, CSM, ASDM, or through another
application using SDEE.

• Retrieve information

You can retrieve data (status messages, errors, and alerts) from the system through the CLI, IDM,
IME, CSM, ASDM, or another application using SDEE.

Security Features
Cisco IPS has the following security features:

• Network access is restricted to hosts who are specifically allowed access.

• All remote hosts who attempt to connect through the web server, SSH and SCP or Telnet will be
authenticated.

• By default Telnet access is disabled. You can choose to enable Telnet.

• By default SSH access is enabled.

• An FTP server does not run on the sensor. You can use SCP to remotely copy files.

• By default the web server uses TLS or SSL. You can choose to disable TLS and SSL.

• Unnecessary services are disabled.

• Only the SNMP set required by the Cisco MIB Police is allowed within the CISCO-CIDS-MIB.
OIDs implemented by the public domain SNMP agent will be writeable when specified by the MIB.

MainApp
This section describes the MainApp, and contains the following topics:

• Understanding the MainApp, page A-6

• MainApp Responsibilities, page A-6
A-5
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
• Event Store, page A-7

• NotificationApp, page A-9

• CtlTransSource, page A-11

• Attack Response Controller, page A-12

• Logger, page A-19

• AuthenticationApp, page A-20

• Web Server, page A-22

Understanding the MainApp
The MainApp includes all IPS components except SensorApp and the CLI. It is loaded by the operating
system at startup and loads SensorApp. The MainApp then brings the following subsystem components
up:

• Authentication

• Logger

• ARC

• Web Server

• Notification (SNMP)

• External Product Interface

• Interface manager

• Event Store

• Health and security monitoring

MainApp Responsibilities
The MainApp has the following responsibilities:

• Validate the Cisco-supported hardware platform

• Report software version and PEP information

• Start, stop, and report the version of the IPS components

• Configure the host system settings

• Manage the system clock

• Manage the Event Store

• Install and uninstall software upgrades

Note In the Cisco IPS, the MainApp can automatically download signature and signature engine
updates from Cisco.com.

• Shut down or reboot the operating system
A-6
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
The MainApp responds to the show version command by displaying the following information:

• Sensor build version

• MainApp version

• Version of each running application

• Version and timestamp of each installed upgrade

• Next downgrade version of each installed upgrade

• Platform version

• Version of sensor build on the other partition

The MainApp also gathers the host statistics and reports the health and security monitoring status.

Event Store
This section describes the Event Store, and contains the following topics:

• Understanding the Event Store, page A-7

• Event Data Structures, page A-8

• IPS Events, page A-9

Understanding the Event Store

Note The Event Store has a fixed size of 30 MB for all platforms.

Each IPS event is stored in the Event Store with a time stamp and a unique, monotonic, ascending ID.
This time stamp is the primary key used to index the event into the fixed-size, indexed Event Store. When
the circular Event Store has reached its configured size, the oldest event or events are overwritten by the
new event being stored. The SensorApp is the only application that writes alert events into the Event
Store. All applications write log, status, and error events into the Event Store.

The fixed-sized, indexed Event Store allows simple event queries based on the time, type, priority, and
a limited number of user-defined attributes. If each event is assigned a priority of low, medium, or high,
a single event query can specify a list of desired event types, intrusion event priorities, and a time range.

Table A-1 shows some examples:

Table A-1 IPS Event Examples

IPS Event
Type

Intrusion
Event Priority

Start Time
Stamp Value

Stop Time
Stamp Value Meaning

status — 0 Maximum value Get all status events that are
stored.

error
status

— 0 65743 Get all error and status events that
were stored before time 65743.

status — 65743 Maximum value Get status events that were stored
at or after time 65743.
A-7
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
The size of the Event Store allows sufficient buffering of the IPS events when the sensor is not connected
to an IPS event consumer. Sufficient buffering depends on your requirements and the capabilities of the
nodes in use. The oldest events in the circular buffer are replaced by the newest events.

Event Data Structures

The various functional units communicate the following seven types of data:

• Intrusion events—Produced by the SensorApp. The sensor detects intrusion events.

• Error events—Caused by hardware or software malfunctions.

• Status events—Reports of a change in the status of the application, for example, that its
configuration has been updated.

• Control transaction log events—The sensor logs the result of a control transaction.

• Attack response events—Actions for the ARC, for example, a block request.

• Debug events—Highly detailed reports of a change in the status of the application used for
debugging.

• Control transaction data—Data associated with control transactions, for example, diagnostic data
from an application, session logs, and configuration data to or from an application.

All seven types of data are referred to collectively as IPS data. The six event types—intrusion, error,
status, control transaction log, network access, and debug—have similar characteristics and are referred
to collectively as IPS events. IPS events are produced by the several different applications that make up
the IPS and are subscribed to by other IPS applications. IPS events have the following characteristics:

• They are spontaneously generated by the application instances configured to do so. There is no
request from another application instance to generate a particular event.

• They have no specific destination. They are stored and then retrieved by one or more application
instances.

Control transactions involve the following types of requests:

• Request to update the configuration data of an application instance

• Request for the diagnostic data of an application instance

• Request to reset the diagnostic data of an application instance

• Request to restart an application instance

• Request for ARC, such as a block request

intrusion
attack response

low 0 Maximum value Get all intrusion and attack
response events with low priority
that are stored.

attack response
error
status
intrusion

medium
high

4123000000 4123987256 Get attack response, error, status,
and intrusion events with medium
or high priority that were stored
between time 4123000000 and
4123987256.

Table A-1 IPS Event Examples (continued)

IPS Event
Type

Intrusion
Event Priority

Start Time
Stamp Value

Stop Time
Stamp Value Meaning
A-8
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
Control transactions have the following characteristics:

• They always consist of a request followed by a response.

The request and response may have an arbitrary amount of data associated with them. The response
always includes at least a positive or negative acknowledgment.

• They are point-to-point transactions.

Control transactions are sent by one application instance (the initiator) to another application
instance (the responder).

IPS data is represented in XML format as an XML document. The system stores user-configurable
parameters in several XML files.

IPS Events

IPS applications generate IPS events to report the occurrence of some stimulus. The events are the data,
such as the alerts generated by SensorApp or errors generated by any application. Events are stored in a
local database known as the Event Store.

There are five types of events:

• evAlert—Alert event messages that report when a signature is triggered by network activity.

• evStatus—Status event messages that report the status and actions of the IPS applications.

• evError— Error event messages that report errors that occurred while attempting response actions.

• evLogTransaction—Log transaction messages that report the control transactions processed by each
sensor application.

• evShunRqst—Block request messages that report when ARC issues a block request.

You can view the status and error messages using the CLI, IME, and ASDM. The SensorApp and ARC
log response actions (TCP resets, IP logging start and stop, blocking start and stop, trigger packet) as
status messages.

NotificationApp
The NotificationApp allows the sensor to send alerts and system error messages as SNMP traps. It
subscribes to events in the Event Store and translates them into SNMP MIBs and sends them to
destinations through a public-domain SNMP agent. The NotificationApp supports sending sets and gets.
The SNMP GETs provide information about basic sensor health.

The NotificationApp has been modified in IPS 7.3(1)E4 and later to support SNMPv3. SNMPv3
configuration, such as access control (rwuser and rouser) security level (authPriv, noAuthNoPriv,
authNoPriv), authentication protocol (SHA or none), and privacy protocol (AES or none), has been
added. The administrator can also associate SNMPv3 users with trap destinations.

The NotificationApp sends the following information from the evAlert event in sparse mode:

• Originator information

• Event ID

• Event severity

• Time (UTC and local time)

• Signature name

• Signature ID
A-9
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
• Subsignature ID

• Participant information

• Alarm traits

The NotificationApp sends the following information from the evAlert event in detail mode:

• Originator information

• Event ID

• Event severity

• Time (UTC and local time)

• Signature name

• Signature ID

• Subsignature ID

• Version

• Summary

• Interface group

• VLAN

• Participant information

• Actions

• Alarm traits

• Signature

• IP log IDs

The NotificationApp determines which evError events to send as a trap according to the filter that you
define. You can filter based on error severity (error, fatal, and warning). The NotificationApp sends the
following information from the evError event:

• Originator information

• Event ID

• Event severity

• Time (UTC and local time)

• Error message

The NotificationApp supports GETs for the following general health and system information from the
sensor:

• Packet loss

• Packet denies

• Alarms generated

• Fragments in FRP

• Datagrams in FRP

• TCP streams in embryonic state

• TCP streams in established state

• TCP streams in closing state
A-10
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
• TCP streams in system

• TCP packets queued for reassembly

• Total nodes active

• TCP nodes keyed on both IP addresses and both ports

• UDP nodes keyed on both IP addresses and both ports

• IP nodes keyed on both IP addresses

• Sensor memory critical stage

• Interface status

• Command and control packet statistics

• Fail-over state

• System uptime

• CPU usage

• Memory usage for the system

• PEP

Note Not all IPS platforms support PEP.

The NotificationApp provides the following statistics:

• Number of error traps

• Number of event action traps

• Number of SNMP GET requests

• Number of SNMP SET requests

CtlTransSource
The CtlTransSource is an application that forwards locally initiated remote control transactions to their
remote destinations using HTTP protocol. The CtlTransSource initiates either TLS or non-TLS
connections and communicates remote control transactions to HTTP servers over these connections.

The CtlTransSource must establish sufficient credentials on the remote HTTP server to execute a remote
control transaction. It establishes its credentials by presenting an identity to the HTTP server on the
remote node in the form of a username and password (basic authentication). When the authentication is
successful, the requestor is assigned a cookie containing a user authentication that must be presented
with each request on that connection.

The transactionHandlerLoop method in the CtlTransSource serves as a proxy for remote control
transaction. When a local application initiates a remote control transaction, IDAPI initially directs the
transaction to the CtlTransSource. The transactionHandlerLoop method is a loop that waits on remote
control transactions that are directed to the CtlTransSource.
A-11
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
Figure A-3 shows the transactionHandlerLoop method in the CtlTransSource.

Figure A-3 CtlTransSource

When the transactionHandlerLoop receives a remotely addressed transaction, it tries to forward the
remote control transaction to its remote destination. The transactionHandlerLoop formats the transaction
into a control transaction message. The transactionHandlerLoop uses the HttpClient classes to issue the
control transaction request to the HTTP server on the remote node. The remote HTTP server handles the
remote control transaction and returns the appropriate response message in an HTTP response. If the
remote HTTP server is an IPS web server, the web server uses the CtlTransSource servlet to process the
remote control transactions.

The transactionHandlerLoop returns either the response or a failure response as the response of the
control transaction to the initiator of the remote control transaction. If the HTTP server returns an
unauthorized status response (indicating the HTTP client has insufficient credentials on the HTTP
server), the transactionHandlerLoop reissues the transaction request using the designated username and
password of the CtlTransSource to authenticate the identity of the requestor. The
transactionHandlerLoop continues to loop until it receives a control transaction that directs it to exit or
until its exit event is signaled.

Attack Response Controller
This section describes the Attack Response Controller (ARC), and contains the following topics:

• Understanding the ARC, page A-13

• ARC Features, page A-14

• Supported Blocking Devices, page A-15

• ACLs and VACLs, page A-16

• Maintaining State Across Restarts, page A-16

• Connection-Based and Unconditional Blocking, page A-17

• Blocking with Cisco Firewalls, page A-18

• Blocking with Catalyst Switches, page A-19

1
1
9
5
9
5

IDAPI HTTP Client

CtlTransSource

+CtlTransSource0
+transaction HandlerLoop
A-12
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
Understanding the ARC

The main responsibility of the ARC is to block events. When it responds to a block, it either interacts
with the devices it is managing directly to enable the block or it sends a block request through the Control
Transaction Server to a master blocking sensor. The web server on the master blocking sensor receives
the control transaction and passes it to the Control Transaction Server, which passes it to the ARC. The
ARC on the master blocking sensor then interacts with the devices it is managing to enable the block.

Figure A-4 illustrates the ARC.

Figure A-4 ARC

Note An ARC instance can control 0, 1, or many network devices. The ARC does not share control of any
network device with other ARC applications, IPS management software, other network management
software, or system administrators. Only one ARC instance is allowed to run on a given sensor.

The ARC initiates a block in response to one of the following:

• An alert event generated from a signature that is configured with a block action

• A block configured manually through the CLI, IDM, IME, or ASDM.

• A block configured permanently against a host or network address

When you configure the ARC to block a device, it initiates either a Telnet or SSH connection with the
device. The ARC maintains the connection with each device. After the block is initiated, the ARC pushes
a new set of configurations or ACLs (one for each interface direction) to each controlled device. When
a block is completed, all configurations or ACLs are updated to remove the block.

14
35

98

Sensor

Block
Subscription

Block Event
Event Store

Block CT

Block CT
Response

Block
Subscription

Block Event

Block CT

Block CT
Response

CT Source

Master Blocking Sensor

Block CT

Block CT
Response

Block CT

Block CT
Response

CT Server

Web Server

Block CT Block CT
Response

IDAPI
Attack

Response
Controller

IDAPI
Attack

Response
Controller

Routers and Firewalls

Routers and Firewalls
A-13
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
ARC Features

The ARC has the following features:

• Communication through Telnet and SSH 1.5 with 3DES (the default) or DES encryption

Only the protocol specified in the ARC configuration for that device is attempted. If the connection
fails for any reason, the ARC attempts to reestablish it.

• Preexisting ACLs on routers and VACLs on switches

If a preexisting ACL exists on a router interface or direction that is controlled by the ARC, you can
specify that this ACL be merged into the ARC-generated configuration, either before any blocks by
specifying a preblock ACL or after any blocks by specifying a postblock ACL. The Catalyst 6000
VACL device types can have a preblock and postblock VACL specified for each interface that the
ARC controls. The firewall device types use a different API to perform blocks and the ARC does
not have any effect on preexisting ACLs on the firewalls.

Note Catalyst 5000 RSM and Catalyst 6000 MSFC2 network devices are supported in the same
way as Cisco routers.

• Forwarding blocks to a list of remote sensors

The ARC can forward blocks to a list of remote sensors, so that multiple sensors can in effect
collectively control a single network device. Such remote sensors are referred to as master blocking
sensors.

• Specifying blocking interfaces on a network device

You can specify the interface and direction where blocking is performed in the ARC configuration
for routers. You can specify the interface where blocking is performed in the VACL configuration.
The ARC can simultaneously control up to 250 interfaces.

Note Cisco firewalls do not block based on interface or direction, so this configuration is never
specified for them.

• Blocking hosts or networks for a specified time

The ARC can block a host or network for a specified number of minutes or indefinitely. The ARC
determines when a block has expired and unblocks the host or network at that time.

• Logging important events

The ARC writes a confirmation event when block or unblock actions are completed successfully or
if any errors occur. The ARC also logs important events such as loss and recovery of a network
device communication session, configuration errors, and errors reported by the network device.

• Maintaining the blocking state across ARC restarts

The ARC reapplies blocks that have not expired when a shutdown or restart occurs. The ARC
removes blocks that have expired while it was shut down.

Note The ARC can only maintain the blocking state successfully if no one changes the system
time while the application is shut down.
A-14
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
• Maintaining blocking state across network device restarts

The ARC reapplies blocks and removes expired blocks as needed whenever a network device is shut
down and restarted. The ARC is not affected by simultaneous or overlapping shutdowns and restarts
of the ARC.

• Authentication and authorization

The ARC can establish a communications session with a network device that uses AAA
authentication and authorization including the use of remote TACACS+ servers.

• Two types of blocking

The ARC supports host blocks and network blocks. Host blocks are connection based or
unconditional. Network blocks are always unconditional.

• NAT addressing

The ARC can control network devices that use a NAT address for the sensor. If you specify a NAT
address when you configure a network device, that address is used instead of the local IP address
when the sensor address is filtered from blocks on that device.

• Single point of control

The ARC does not share control of network devices with administrators or other software. If you
must update a configuration, shut down ARC until the change is complete. You can enable or disable
the ARC through the CLI or any Cisco IPS manager. When the ARC is reenabled, it completely
reinitializes itself, including rereading the current configuration for each controlled network device.

Note We recommend that you disable the ARC from blocking when you are configuring any
network device, including firewalls.

• Maintains up to 250 active blocks at any given time

The ARC can maintain up to 250 active blocks at a time. Although the ARC can support up to 65535
blocks, we recommend that you allow no more than 250 at a time.

Note The number of blocks is not the same as the number of interface and directions.

Supported Blocking Devices

The ARC can control the following devices:

• Cisco routers running Cisco IOS 11.2 or later

Note To perform rate limiting, the routers must be running Cisco IOS 12.3 or later.

• Catalyst 5000 series switches with Supervisor Engine software 5.3(1) or later running on the
supervisor engine, and IOS 11.2(9)P or later running on the RSM.

Note You must have the RSM because blocking is performed on the RSM.

• Catalyst 6000 series switches with PFC installed running Catalyst software 5.3 or later
A-15
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
• Catalyst 6000 MSFC2 with Catalyst software 5.4(3) or later and Cisco IOS 12.1(2)E or later on the
MSFC2

• Cisco ASA 5500 series models: ASA 5510, ASA 5520, and ASA 5540

• FWSM

Note The FWSM cannot block in multi-mode admin context.

ACLs and VACLs

If you want to filter packets on an interface or direction that the ARC controls, you can configure the
ARC to apply an ACL before any blocks (preblock ACL) and to apply an ACL after any blocks
(postblock ACL). These ACLs are configured on the network device as inactive ACLs. You can define
preblock and postblock ACLs for each interface and direction. The ARC retrieves and caches the lists
and merges them with the blocking ACEs whenever it updates the active ACL on the network device. In
most cases, you will want to specify a preexisting ACL as the postblock ACL so that it does not prevent
any blocks from taking effect. ACLs work by matching a packet to the first ACE found. If this first ACE
permits the packet, a subsequent deny statement will not be found.

You can specify different preblock and postblock ACLs for each interface and direction, or you can reuse
the same ACLs for multiple interfaces and directions. If you do not want to maintain a preblock list, you
can use the never block option and always block hosts and networks by using existing configuration
statements. A forever block is a normal block with a timeout value of -1.

The ARC only modifies ACLs that it owns. It does not modify ACLs that you have defined. The ACLs
maintained by ARC have a specific format that should not be used for user-defined ACLs. The naming
convention is IPS_<interface_name>_[in | out]_[0 | 1]. <interface_name> corresponds to the name of
the blocking interface as given in the ARC configuration.

For Catalyst switches, it is a blocking interface VLAN number. Do not use these names for preblock and
postblock ACLs. For Catalyst 6000 VACLs, you can specify a preblock and postblock VACL and only
the interface is specified (direction is not used in VLANs). For firewalls, you cannot use preblock or
postblock ACLs because the firewall uses a different API for blocking. Instead you must create ACLs
directly on the firewalls.

Maintaining State Across Restarts

When the sensor shuts down, the ARC writes all blocks and rate limits (with starting timestamps) to a
local file (nac.shun.txt) that is maintained by the ARC. When the ARC starts, this file is used to
determine if any block updates should occur at the controlled network devices. Any unexpired blocks
found in the file are applied to the network devices at startup. When the ARC shuts down, no special
actions on the ACLs are taken even if outstanding blocks are in effect. The nac.shun.txt file is accurate
only if the system time is not changed while the ARC is not running.

Caution Do not make manual changes to the nac.shun.txt file.
A-16
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
The following scenarios demonstrate how the ARC maintains state across restarts.

Scenario 1

There are two blocks in effect when the ARC stops and one of them expires before the ARC restarts.
When the ARC restarts, it first reads the nac.shun.txt file. It then reads the preblock and postblock ACLs
or VACLs. The active ACL or VACL is built in the following order:

1. The allow sensor_ ip_address command (unless the allow sensor shun command has been
configured)

2. Preblock ACL

3. The always block command entries from the configuration

4. Unexpired blocks from nac.shun.txt

5. Postblock ACL

When a host is specified as never block in the ARC configuration, it does not get translated into permit
statements in the ACL. Instead, it is cached by the ARC and used to filter incoming addShunEvent events
and addShunEntry control transactions.

Scenario 2

There are no preblock or postblock ACLs specified, but there is an existing active ACL. The new ACL
is built in the following order:

1. The allow sensor_ ip_address command (unless the allow sensor shun command has been
configured)

2. The always block command entries from the configuration

3. Unexpired blocks from nac.shun.txt

4. The permit IP any any command

Connection-Based and Unconditional Blocking

The ARC supports two types of blocking for hosts and one type of blocking for networks. Host blocks
are connection-based or unconditional. Network blocks are always unconditional.

When a host block is received, the ARC checks for the connectionShun attribute on the host block. If
connectionShun is set to true, the ARC performs connection blocking. Any host block can contain
optional parameters, such as destination IP address, source port, destination port, and protocol. For a
connection block to take place, at least the source and destination IP address must be present. If the
source port is present on a connection block, it is ignored and not included in the block.

Under the following conditions, the ARC forces the block to be unconditional, converting the block from
connection type if necessary:

• A block of any type is active for a specified source IP address

• A new block of any type is received for that source IP address

• The new block differs in any of its optional parameters (except the source port) from the old block

When a block is updated (for example, when a new block arrives while an existing block for that source
IP address or network is already in effect), the remaining minutes of the existing block are determined.
If the time for the new block is less than or equal to the remaining minutes, no action is taken. Otherwise,
the new block timeout replaces the existing block timeout.
A-17
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
Caution Cisco firewalls do not support connection blocking of hosts. When a connection block is applied, the
firewall treats it like an unconditional block. Cisco firewalls also do not support network blocking. ARC
never tries to apply a network block to a Cisco firewall.

Blocking with Cisco Firewalls

The ARC performs blocks on firewalls using the shun command. The shun command has the following
formats:

• To block an IP address:

shun srcip [destination_ip_address source_port destination_port [port]]

• To unblock an IP address:

no shun ip

• To clear all blocks:

clear shun

• To show active blocks or to show the global address that was actually blocked:

show shun [ip_address]

The ARC uses the response to the show shun command to determine whether the block was performed.
The shun command does not replace existing ACLs, conduits, or outbound commands, so there is no
need to cache the existing firewall configuration, nor to merge blocks into the firewall configuration.

Caution Do not perform manual blocks or modify the existing firewall configuration while ARC is running.

If the block command specifies only the source IP address, existing active TCP connections are not
broken, but all incoming packets from the blocked host are dropped.

When the ARC first starts up, the active blocks in the firewall are compared to an internal blocking list.
Any blocks that do not have a corresponding internal list entry are removed.

The ARC supports authentication on a firewall using local usernames or a TACACS+ server. If you
configure the firewall to authenticate using AAA but without the TACACS+ server, the ARC uses the
reserved username pix for communications with the firewall.

If the firewall uses a TACACS+ server for authentication, you use a TACACS+ username. In some
firewall configurations that use AAA logins, you are presented with three password prompts: the initial
firewall password, the AAA password, and the enable password. The ARC requires that the initial
firewall password and the AAA password be the same.

When you configure a firewall to use NAT or PAT and the sensor is checking packets on the firewall
outside network, if you detect a host attack that originates on the firewall inside network, the sensor tries
to block the translated address provided by the firewall. If you are using dynamic NAT addressing, the
block can be ineffective or cause innocent hosts to be blocked. If you are using PAT addressing, the
firewall could block the entire inside network. To avoid these situations, position your sensor on the
inside interface or do not configure the sensor to block.
A-18
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
Blocking with Catalyst Switches

Catalyst switches with a PFC filter packets using VACLs. VACLs filter all packets between VLANs and
within a VLAN. MSFC router ACLs are supported when WAN cards are installed and you want the
sensor to control the interfaces through the MSFC2.

Note An MSFC2 card is not a required part of a Catalyst switch configuration for blocking with VACLs.

Caution When you configure the ARC for the Catalyst switch, do not specify a direction with the controlled
interface. The interface name is a VLAN number. Preblock and postblock lists should be VACLs.

The following commands apply to the Catalyst VACLs:

• To view an existing VACL:

show security acl info acl_name

• To block an address (address_spec is the same as used by router ACLs):

set security acl ip acl_name deny address_spec

• To activate VACLs after building the lists:

commit security acl all

• To clear a single VACL:

clear security acl map acl_name

• To clear all VACLs:

clear security acl map all

• To map a VACL to a VLAN:

set sec acl acl_name vlans

Logger
The sensor logs all events (alert, error, status, and debug messages) in a persistent, circular buffer. The
sensor also generates IP logs. The messages and IP logs are accessible through the CLI, IDM, and
ASDM.

The IPS applications use the Logger to log messages. The Logger sends log messages at any of five levels
of severity: debug, timing, warning, error, and fatal. The Logger writes the log messages to
/usr/cids/idsRoot/log/main.log, which is a circular text file. New messages overwrite older messages
when the file reaches its maximum size; therefore the last message written may not appear at the end of
the main.log. Search for the string “= END OF FILE =” to locate the last line written to the main.log.

The main.log is included in the show tech-support command output. If the message is logged at warning
level or above (error or fatal), the Logger converts the message to an evError event (with the
corresponding error severity) and inserts it in the Event Store.

The Logger receives all syslog messages, except cron messages, that are at the level of informational and
above (*.info;cron.none), and inserts them in to the Event Store as evErrors with the error severity set to
Warning. The Logger and application logging are controlled through the service logger commands.
A-19
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
The Logger can control what log messages are generated by each application by controlling the logging
severity for different logging zones. You would only access the individual-zone-control of the logger
service at the request and supervision of a TAC engineer or developer. For troubleshooting purposes,
TAC might request that you turn on debug logging.

AuthenticationApp
This section describes the AuthenticationApp, and contains the following topics:

• Understanding the AuthenticationApp, page A-20

• Authenticating Users, page A-20

• Configuring Authentication on the Sensor, page A-20

• Managing TLS and SSH Trust Relationships, page A-21

Understanding the AuthenticationApp

The AuthenticationApp has the following responsibilities:

• To authenticate the identity of a user

• To administer the accounts, privileges, keys, and certificates of the user

• To configure which authentication methods are used by the AuthenticationApp and other access
services on the sensor

Authenticating Users

You must configure authentication on the sensor to establish appropriate security for user access. When
you install a sensor, an initial cisco account with an expired password is created. A user with
administrative access to the sensor accesses the sensor through the CLI or an IPS manager, such as the
IDM or the ASDM, by logging in to the sensor using the default administrative account (cisco). In the
CLI, the administrator is prompted to change the password. IPS managers initiate a
setEnableAuthenticationTokenStatus control transaction to change the password of an account.

Through the CLI or an IPS manager, the administrator configures which authentication method is used,
such as username and password or an SSH authorized key. The application servicing the administrator
initiates a setAuthenticationConfig control transaction to establish the authentication configuration.

The authentication configuration includes a login attempt limit value that is used to specify how account
locking is handled. Account locking is invoked when the number of consecutive failed login attempts for
a given account exceeds the login attempt limit value. After an account is locked, all further attempts to
log in to that account are rejected. The account is unlocked by resetting the authentication token of the
account using the setEnableAuthenticationTokenStatus control transaction. The account locking feature
is disabled when the login attempt limit value is set to zero.

The administrator can add additional user accounts either through the CLI or an IPS manager.

Configuring Authentication on the Sensor

When a user tries to access the sensor through a service such as web server or the CLI, the identity of
the user must be authenticated and the privileges of the user must be established. The service that is
providing access to the user initiates an execAuthenticateUser control transaction request to the
A-20
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 MainApp
AuthenticationApp to authenticate the identity of the user. The control transaction request typically
includes the username and a password, or the identity of the user can be authenticated using an SSH
authorized key.

The AuthenticationApp responds to the execAuthenticateUser control transaction request by attempting
to authenticate the identity of the user. The AuthenticationApp returns a control transaction response that
contains the authentication status and privileges of the user. If the identity of the user cannot be
authenticated, the AuthenticationApp returns an unauthenticated status and anonymous user privileges
in the control transaction response. The control transaction response also indicates if the account
password has expired. User interface applications that authenticate users by initiating an
execAuthenticateUser control transaction prompt the user to change the password.

The AuthenticationApp uses the underlying operating system to confirm the identity of a user. All the
IPS applications send control transactions to the AuthenticationApp, which then uses the operating
system to form its responses.

Remote shell services, Telnet and SSH, are not IPS applications. They call the operating system directly.
If the user is authenticated, it launches the IPS CLI. In this case, the CLI sends a special form of the
execAuthenticateUser control transaction to determine the privilege level of the logged-in user. The CLI
then tailors the commands it makes available based on this privilege level.

Managing TLS and SSH Trust Relationships

Encrypted communications over IP networks provide data privacy by making it impossible for a passive
attacker to discover from the packets exchanged alone the secret key needed to decrypt the data in the
packets.

However, an equally dangerous attack vector is for an impostor to pretend to be the server end of the
connection. All encryption protocols provide a means for clients to defend themselves from these
attacks. IPS supports two encryption protocols, SSH and TLS, and the AuthenticationApp helps manage
trust when the sensor plays either the client or server role in encrypted communications.

The IPS web server and SSH server are server endpoints of encrypted communications. They protect
their identities with a private key and offer a public key to clients that connect to them. For TLS this
public key is included inside an X.509 certificate, which includes other information. Remote systems
that connect to the sensor should verify that the public key received during connection establishment is
the key they expect.

Clients must maintain a list of trusted public keys to protect themselves from man-in-the-middle attacks.
The exact procedure by which this trust is established varies depending on the protocol and client
software. In general, the client displays a fingerprint of 16 or 20 bytes. The human operator who is
configuring the client to establish trust should use an out-of-band method to learn the key fingerprints
of the server before attempting to establish trust. If the fingerprints match, the trust relationship is
established and henceforth the client can automatically connect with that server and be confident that the
remote server is not an impostor.

You can use the show ssh server-key and show tls fingerprint to display the key fingerprints of the
sensor. By recording the output of these commands when directly connected to the sensor console, you
can reliably use this information to confirm the identity of the sensor over the network later when
establishing trust relationships.

For example, when you initially connect to a sensor through the Microsoft Internet Explorer web
browser, a security warning dialog box indicates that the certificate is not trusted. Using the user
interface of Internet Explorer, you can inspect the certificate thumb print, a value that should exactly
match the SHA1 fingerprint displayed by the show tls fingerprint command. After verifying this, add
this certificate to the list of trusted CAs of the browser to establish permanent trust.
A-21
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 SensorApp
Each TLS client has different procedures for establishing this trust. The sensor itself includes a TLS
client that is used to send control transactions to other sensors and download upgrades and configuration
files from other TLS web servers. Use the tls trusted-host command to establish trust of the TLS servers
with which the sensor communicates.

Similarly, the sensor includes an SSH client that is used to communicate with managed network devices,
download upgrades, and copy configurations and support files to remote hosts. Use the ssh host-key
command to establish trust relationships with the SSH servers the sensor will contact.

You can manage the list of TLS trusted certificates and SSH known hosts through the commands service
trusted-certificates and service ssh-known-hosts.

X.509 certificates include additional information that can increase the security of the trust relationship;
however, these can lead to confusion. For example, an X.509 certificate includes a validity period during
which the certificate can be trusted. Typically this period is a number of years starting at the moment the
certificate is created. To ensure that an X.509 certificate is valid at the moment it is being used requires
that the client system maintain an accurate clock.

X.509 certificates are also tied to a particular network address. Sensors fill this field with the IP address
of the command and control interface of the sensor. Consequently, if you change the command and
control IP address of the sensor, the X.509 certificate of the server is regenerated. You must reconfigure
all clients on the network that trusted the old certificate to locate the sensor at its new IP address and
trust the new certificate.

By using the SSH known hosts and TLS trusted certificates services in the AuthenticationApp, you can
operate sensors at a high level of security.

Web Server
The web server provides SDEE support, which enables the sensor to report security events, receive
IDIOM transactions, and serve IP logs. The web server supports HTTP 1.0 and 1.1. Communications
with the web server often include sensitive information, such as passwords, that would severely
compromise the security of the system if an attacker were able to eavesdrop. For this reason, sensors ship
with TLS enabled. The TLS protocol is an encryption protocol that is compatible with SSL.

Note We deprecated the RDEP event sever service in IPS 6.1, and deleted it from the IPS system architecture.
The web server now uses the SDEE event server.

SensorApp
This section describes the SensorApp, and contains the following topics:

• Understanding the SensorApp, page A-23

• Inline, Normalization, and Event Risk Rating Features, page A-24

• SensorApp New Features, page A-25

• Packet Flow, page A-25

• Signature Event Action Processor, page A-26
A-22
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 SensorApp
Understanding the SensorApp
The SensorApp performs packet capture and analysis. Policy violations are detected through signatures
in the SensorApp and the information about the violations is forwarded to the Event Store in the form of
an alert. Packets flow through a pipeline of processors fed by a producer designed to collect packets from
the network interfaces on the sensor. Event actions can be associated with an event risk rating threshold
that must be surpassed for the actions to take place. Some of the processors call inspectors to perform
signature analysis. All inspectors can call the alarm channel to produce alerts as needed.

The SensorApp supports the following processors:

• Time Processor—This processor processes events stored in a time-slice calendar. Its primary task is
to make stale database entries expire and to calculate time-dependent statistics.

• Deny Filters Processor—This processor handles the deny attacker functions. It maintains a list of
denied source IP addresses. Each entry in the list expires based on the global deny timer, which you
can configure in the virtual sensor configuration.

• Signature Event Action Processor—This processor processes event actions. Event actions can be
associated with an event risk rating threshold that must be surpassed for the actions to take place. It
supports the following event actions:

– Reset TCP flow

– IP log

– Deny packets

– Deny flow

– Deny attacker

– Alert

– Block host

– Block connection

– Generate SNMP trap

– Capture trigger packet

• Statistics Processor—This processor keeps track of system statistics such as packet counts and
packet arrival rates.

• Layer 2 Processor—This processor processes layer 2-related events. It also identifies malformed
packets and removes them from the processing path. You can configure actionable events for
detecting malformed packets such as alert, capture packet, and deny packet. The layer 2 processor
updates statistics about packets that have been denied because of the policy you have configured.

• Database Processor—This processor maintains the signature state and flow databases.

• Fragment Reassembly Processor—This processor reassembles fragmented IP datagrams. It is also
responsible for normalization of IP fragments when the sensor is in inline mode.

• Stream Reassembly Processor—This processor reorders TCP streams to ensure the arrival order of
the packets at the various stream-based inspectors. It is also responsible for normalization of the
TCP stream. The normalizer engine lets you enable or disable alert and deny actions.

The TCP Stream Reassembly Processor normalizer has a hold-down timer, which lets the stream
state rebuild after a reconfiguration event. You cannot configure the timer. During the hold-down
interval, the system synchronizes stream state on the first packet in a stream that passes through the
system. When the hold down has expired, SensorApp enforces your configured policy. If this policy
calls for a denial of streams that have not been opened with a 3-way handshake, established streams
A-23
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 SensorApp
that were quiescent during the hold-down period will not be forwarded and will be allowed to
timeout. Those streams that were synchronized during the hold-down period are allowed to
continue.

• Signature Analysis Processor—This processor dispatches packets to the inspectors that are not
stream-based and that are configured for interest in the packet in process.

• Slave Dispatch Processor—A process found only on dual CPU systems.

The SensorApp also supports the following units:

• Analysis Engine—The Analysis Engine handles sensor configuration. It maps the interfaces and
also the signature and alarm channel policy to the configured interfaces.

• Alarm Channel—The Alarm Channel processes all signature events generated by the inspectors. Its
primary function is to generate alerts for each event it is passed.

Inline, Normalization, and Event Risk Rating Features
The SensorApp contains the following inline, normalization, and event risk rating features:

• Processing packets inline

When the sensor is processing packets in the data path, all packets are forwarded without any
modifications unless explicitly denied by policy configuration. Because of TCP normalization it is
possible that some packets will be delayed to ensure proper coverage. When policy violations are
encountered, the SensorApp allows for the configuration of actions. Additional actions are available
in inline mode, such as deny packet, deny flow, and deny attacker.

All packets that are unknown or of no interest to the IPS are forwarded to the paired interface with
no analysis. All bridging and routing protocols are forwarded with no participation other than a
possible deny due to policy violations. There is no IP stack associated with any interface used for
inline (or promiscuous) data processing. The current support for 802.1q packets in promiscuous
mode is extended to inline mode.

• IP normalization

Intentional or unintentional fragmentation of IP datagrams can serve to hide exploits making them
difficult or impossible to detect. Fragmentation can also be used to circumvent access control
policies like those found on firewalls and routers. And different operating systems use different
methods to queue and dispatch fragmented datagrams. If the sensor has to check for all possible
ways that the end host will reassemble the datagrams, it makes the sensor vulnerable to denial of
service attacks. Reassembling all fragmented datagrams inline and only forwarding completed
datagrams, refragmenting the datagram if necessary, is the solution to this problem. The IP
Fragmentation Normalization unit performs this function.

• TCP normalization

Through intentional or natural TCP session segmentation, some classes of attacks can be hidden. To
make sure policy enforcement can occur with no false positives and false negatives, the state of the
two TCP endpoints must be tracked and only the data that is actually processed by the real host
endpoints should be passed on. Overlaps in a TCP stream can occur, but are extremely rare except
for TCP segment retransmits. Overwrites in the TCP session should not occur. If overwrites do
occur, someone is intentionally trying to elude the security policy or the TCP stack implementation
is broken. Maintaining full information about the state of both endpoints is not possible unless the
sensor acts as a TCP proxy. Instead of the sensor acting as a TCP proxy, the segments will be ordered
properly and the normalizer will look for any abnormal packets associated with evasion and attacks.
A-24
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 SensorApp
• Event risk rating

Event risk rating helps reduce false positives from the system and gives you more control over what
causes an alarm. The event risk rating incorporates the following additional information beyond the
detection of a potentially malicious action:

– Severity of the attack if it were to succeed

– Fidelity of the signature

– Relevance of the potential attack with respect to the target host

– Overall value of the target host

SensorApp New Features
The SensorApp contains the following new features:

• Policy table—Provides a list of risk category settings (high, medium, and low).

• Evasion protection—Lets an inline interface mode sensor switch from strict mode to asymmetric
mode for the Normalizer.

• Sensor health meter—Provides sensor-wide health statistics.

• Top services—Provides the top ten instances of the TCP, UDP, ICMP, and IP protocols.

• Security meter—Profiles alerts into threat categories and reports this information in red, yellow, and
green buckets. You can configure the transition points for these buckets.

• Clear Flow state—Lets you clear the database, which causes the sensor to start fresh just as in a
restart.

• Restart status—Reports periodically the current start and restart stages of the sensor.

Packet Flow
Packets are received by the NIC and placed in the kernel user-mapped memory space by the IPS-shared
driver. The packet is perpended by the IPS header. Each packet also has a field that indicates whether to
pass or deny the packet when it reaches Signature Event Action Processor.

The producer pulls packets from the shared-kernel user-mapped packet buffer and calls the process
function that implements the processor appropriate to the sensor model. The following orders occur:

• Single processor execution

Time Processor --> Layer 2 Processor --> Deny Filters Processor --> Fragment Reassembly
Processor --> Statistics Processor --> Database Processor --> Signature Analysis Processor -->
Stream Reassembly Processor --> Signature Event Action Processor

• Dual processor execution

Execution Thread 1 Time Processor --> Layer 2 Processor --> Deny Filters Processor --> Fragment
Reassembly Processor --> Statistics Processor --> Database Processor --> Signature Analysis
Processor --> Slave Dispatch Processor --> | Execution Thread 2 Database Processor --> Stream
Reassembly Processor --> Signature Event Action Processor
A-25
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 SensorApp
Signature Event Action Processor
The Signature Event Action Processor coordinates the data flow from the signature event in the Alarm
Channel to processing through the Signature Event Action Override, the Signature Event Action Filter,
and the Signature Event Action Handler. It consists of the following components:

• Alarm Channel—The unit that represents the area to communicate signature events from the
SensorApp inspection path to signature event handling.

• Signature Event Action Override—Adds actions based on the risk rating value. Signature Event
Action Override applies to all signatures that fall in the range of the configured risk rating threshold.
Each Signature Event Action Override is independent and has a separate configuration value for
each action type.

• Signature Event Action Filter—Subtracts actions based on the signature ID, addresses, and risk
rating of the signature event. The input to the Signature Event Action Filter is the signature event
with actions possibly added by the Signature Event Action Override.

Note The Signature Event Action Filter can only subtract actions, it cannot add new actions.

The following parameters apply to the Signature Event Action Filter:

– Signature ID

– Subsignature ID

– Attacker address

– Attacker port

– Victim address

– Victim port

– Risk rating threshold range

– Actions to subtract

– Sequence identifier (optional)

– Stop-or-continue bit

– Enable action filter line bit

– Victim OS relevance or OS relevance

• Signature Event Action Handler—Performs the requested actions. The output from the Signature
Event Action Handler is the actions being performed and possibly an evIdsAlert written to the Event
Store.

Figure A-5 on page A-27 illustrates the logical flow of the signature event through the Signature Event
Action Processor and the operations performed on the action for this event. It starts with the signature
event with configured action received in the Alarm Channel and flows top to bottom as the signature
event passes through the functional components of the Signature Event Action Processor.
A-26
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 CollaborationApp
Figure A-5 Signature Event Through Signature Event Action Processor

CollaborationApp
This section describes the CollaborationApp, and contains the following topics:

• Understanding the CollaborationApp, page A-27

• Update Components, page A-28

• Error Events, page A-29

Understanding the CollaborationApp
The CollaborationApp is a peer of the MainApp and the SensorApp. It interfaces with them using various
interprocess communication technologies, such as IDAPI control transactions, semaphores, shared
memory, and file exchange.

Consumed
signature event

13
21

88

Signature event with
configured action

Signature event

Add action based on RR

Subtract action based on
signature, address, port, RR, etc.

Subtract action based on
current summary mode

Perform action

Event count

Signature event
action override

Signature event
action filter

Signature event
summary filter

Signature event
action handler
A-27
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 CollaborationApp
Reputation updates are exchanged between the Global Correlation server and the CollaborationApp. The
CollaborationApp communicates with the sensors using four update components:

• Set of rules score weight values

• Set of IP addresses and address ranges, which together with the rules and alerts provide the
information needed to calculate reputation scores

• List of IP addresses and address ranges for which traffic should always be denied

• Network participation configuration, which allows the server to control the rate at which sensors
send telemetry date to the server

The sensor sends collaboration information to the Network Participation server. The sensor queries the
Global Correlation server for a list of what collaboration updates are available and from which Global
Correlation server to download the update files.

Note The SensorApp starts before the CollaborationApp, but they initialize asynchronously. Therefore, it is
possible that the Reputation Update server may download and attempt to apply one or more global
correlation updates before the SensorApp is ready to accept the update. The update server may download
and partially process the update, but it must wait until the SensorApp is ready before it can commit the
update.

For More Information

For detailed information on global correlation and how to configure it, see Chapter 13, “Configuring
Global Correlation.”

Update Components
The Global Correlation Update client exchanges manifests with the Global Correlation Update server. It
parses the server manifest to determine what new updates are available for download and where they
reside, and then builds a list of updates to be installed. If all updates are applied successfully, then the
Global Correlation Update client commits the applied updates for each component, notifies SensorApp
that new updates are available, and updates the client manifest to reflect the latest committed updates for
each component.

The client manifest contains the UDI of the sensor, which includes the serial number of the sensor, and
an encrypted shared secret that the server uses to verify the sensor is an authentic Cisco IPS sensor. The
server manifest contains a list of update files available for each component. For each update file in the
list, the server manifest contains data, such as the update version, type, order, location, file transfer
protocol, and so forth.

There are two types of updates files: a full update file that replaces any existing data in the database of
the component, and an incremental update that modifies the existing reputation data by adding, deleting,
or replacing information. When all update files have been applied for all components, the temporary
databases are committed by replacing the working databases.

Authentication and authorization are achieved though the secret encryption mechanism and decryption
key management. The Global Correlation Update server authenticates the sensor using the shared secret
encryption mechanism contained in the client manifest. The Global Correlation Update client authorizes
sensors using decryption key management. Sensors that have been authenticated by the Global
Correlation Update server are sent valid keys in the server manifest so that they can decrypt the update
files.
A-28
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 SwitchApp
Caution You receive a warning message if you have enabled global correlation, but you have not configured a
DNS or HTTP proxy server. This warning is a reminder to either disable global correlation or add a DNS
or HTTP proxy server.

For More Information

For the procedure for adding a DNS or HTTP proxy server to support global correlation, seeConfiguring
Network Settings, page 6-1.

Error Events
Whenever a global correlation update fails, an evError event is generated. The error message is included
in sensor statistics. The following conditions result in a status message with the severity of Error:

• The sensor is unlicensed

• No DNS or HTTP proxy server is configured

• The manifest exchange failed

• An update file download failed

• Applying or committing the update failed

An evError event is generated with the severity level of Warning if you edit and save either the host or
global correlation configurations so that global correlation is enabled, but no DNS or HTTP proxy
servers are configured.

For More Information

For the procedure for displaying sensor statistics, see Viewing Statistics, page 20-25.

SwitchApp
The 4500 series sensors have a built in switch that provides the external monitoring interfaces of the
sensor. The SwitchApp is part of the IPS 4500 series design that enables the InterfaceApp and sensor
initialization scripts to communicate with and control the switch. Any application that needs to get or
set information on the switch must communicate with the SwitchApp. Additionally the SwitchApp
implements the following:

• Detects bypass—When the SensorApp is not monitoring, the SwitchApp places the switch in bypass
mode and then back to inspection mode once the SensorApp is up and running normally.

• Collects port statistics—The SwitchApp monitors the switch and collects statistics on the external
interfaces of the switch for reporting by InterfaceApp.

• Handles the external interface configuration—When you update the interface configuration, the
configuration is sent to the InterfaceApp, which updates the interface configuration for SwitchApp,
which then forwards that configuration on to the switch.
A-29
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 CLI
CLI
This section describes the Cisco IPS CLI, and contains the following topics:

• Understanding the CLI, page A-30

• User Roles, page A-30

• Service Account, page A-31

Understanding the CLI
The CLI provides the sensor user interface for all direct node access such as Telnet, SSH, and serial
interface. You configure the sensor applications with the CLI. Direct access to the underlying OS is
allowed through the service role.

User Roles

Caution You should carefully consider whether you want to create a service account. The service account
provides shell access to the system, which makes the system vulnerable. However, you can use the
service account to create a password if the administrator password is lost. Analyze your situation to
decide if you want a service account existing on the system.

There are four user roles:

• Viewer—Can view configuration and events, but cannot modify any configuration data except their
user passwords.

• Operator—Can view everything and can modify the following options:

– Signature tuning (priority, disable or enable)

– Virtual sensor definition

– Managed routers

– Their user passwords

• Administrator—Can view everything and can modify all options that operators can modify in
addition to the following:

– Sensor addressing configuration

– List of hosts allowed to connect as configuration or viewing agents

– Assignment of physical sensing interfaces

– Enable or disable control of physical interfaces

– Add and delete users and passwords

– Generate new SSH host keys and server certificates

• Service—Only one user with service privileges can exist on a sensor. The service user cannot log in
to the IME. The service user logs in to a bash shell rather than the CLI.

The service role is a special role that allows you to bypass the CLI if needed. Only one service
account is allowed. You should only create an account with the service role for troubleshooting
purposes. Only a user with administrator privileges can edit the service account.
A-30
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 Communications
When you log in to the service account, you receive the following warning:

************************ WARNING ***
UNAUTHORIZED ACCESS TO THIS NETWORK DEVICE IS PROHIBITED.
This account is intended to be used for support and troubleshooting purposes only.
Unauthorized modifications are not supported and will require this device to be
re-imaged to guarantee proper operation.
**

Note For IPS 5.0 and later, you can no longer remove the cisco account. You can disable it using the no
password cisco command, but you cannot remove it. To use the no password cisco command, there
must be another administrator account on the sensor. Removing the cisco account through the service
account is not supported. If you remove the cisco account through the service account, the sensor most
likely will not boot up, so to recover the sensor you must reinstall the sensor system image.

Service Account
The service account is a support and troubleshooting tool that enables the TAC to log in to a native
operating system shell rather than the CLI shell. It does not exist on the sensor by default. You must
create it so that it is available for the TAC to use for troubleshooting your sensor.

Only one service account is allowed per sensor and only one account is allowed a service role. When the
password of the service account is set or reset, the password of the root account is set to the same
password. This allows the service account user to su to root using the same password. When the service
account is removed, the password of the root account is locked.

The service account is not intended to be used for configuration purposes. Only modifications made to
the sensor through the service account under the direction of the TAC are supported. Cisco Systems does
not support the addition and/or running of an additional service to the operating system through the
service account, because it affects proper performance and proper functioning of the other IPS services.
The TAC does not support a sensor on which additional services have been added.

You can track logins to the service account by checking the log file /var/log/.tac, which is updated with
a record of service account logins.

Note The Cisco IPS incorporates several troubleshooting features that are available through the CLI, IDM, or
IME. The service account is not necessary for most troubleshooting situations. You may need to create
the service account at the direction of TAC to troubleshoot a very unique problem. The service account
lets you bypass the protections built into the CLI and allows root privilege access to the sensor, which is
otherwise disabled. We recommend that you do not create a service account unless it is needed for a
specific reason. You should remove the service account when it is no longer needed.

Communications
This section describes the communications protocols used by Cisco IPS, and contains the following
topics:

• IDAPI, page A-32

• IDIOM, page A-32

• IDCONF, page A-33
A-31
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 Communications
• SDEE, page A-33

• CIDEE, page A-34

IDAPI
IPS applications use an interprocess communication API called the IDAPI to handle internal
communications. The IDAPI reads and writes event data and provides a mechanism for control
transactions. The IDAPI is the interface through which all the applications communicate.

The SensorApp captures and analyzes the network traffic on its interfaces. When a signature is matched,
the SensorApp generates an alert, which is stored in the Event Store. If the signature is configured to
perform the blocking response action, the SensorApp generates a block event, which is also stored in the
Event Store.

Figure A-6 illustrates the IDAPI interface.

Figure A-6 IDAPI

Each application registers to the IDAPI to send and receive events and control transactions. The IDAPI
provides the following services:

• Control transactions

– Initiates the control transaction.

– Waits for the inbound control transaction.

– Responds to the control transaction.

• IPS events

– Subscribes to remote IPS events, which are stored in the Event Store when received.

– Reads IPS events from the Event Store.

– Writes IPS events to the Event Store.

The IDAPI provides the necessary synchronization mechanisms to guarantee atomic data accesses.

IDIOM
IDIOM is a data format standard that defines the event messages that are reported by the IPS as well as
the operational messages that are used to configure and control intrusion detection systems. These
messages consist of XML documents that conform to the IDIOM XML schema.

IDIOM supports two types of interactions: event and control transaction. Event interactions are used to
exchange IPS events such as alerts. IDIOM uses two types of messages for event interactions: event and
error messages. Control transactions provide a means for one host to initiate an action in, change the
state of, or read the state of another host. Control transactions utilize four types of IDIOM messages:
request, response, configuration, and error messages. Events and control transactions that are
communicated between application instances within a host are known as local events or local control

11
90

96

Alert

Block
request

Alert

Block
request

IDAPISensorApp Event Store
A-32
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 Communications
transactions, or collectively, local IDIOM messages. Events and control transactions that are
communicated between different hosts are known as remote events and remote control transactions, or
collectively, remote IDIOM messages.

Note IDIOM for the most part has been superseded by IDCONF, SDEE, and CIDEE.

IDCONF
The Cisco IPS manages its configuration using XML documents. IDCONF specifies the XML schema
including the Cisco IPS control transactions. The IDCONF schema does not specify the contents of the
configuration documents, but rather the framework and building blocks from which the configuration
documents are developed. It provides mechanisms that let the IPS managers and CLI ignore features that
are not configurable by certain platforms or functions through the use of the feature-supported attribute.

IDCONF messages are wrapped inside IDIOM request and response messages.

The following is an IDCONF example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<request xmlns="http://www.cisco.com/cids/idiom" schemaVersion="2.00">
 <editConfigDelta xmlns="http://www.cisco.com/cids/idconf">
 <component name="userAccount">
 <config typedefsVersion="2004-03-01" xmlns="http://www.cisco.com/cids/idconf">
 <struct>
 <map name="user-accounts“ editOp=“merge”>
 <mapEntry>
 <key>
 <var name="name">cisco</var>
 </key>
 <struct>
 <struct name="credentials">
 <var name="role">administrator</var>
 </struct>
 </struct>
 </mapEntry>
 </map>
 </struct>
 </config>
 </component>
 </editDefaultConfig>
</request>

SDEE
The Cisco IPS produces various types of events including intrusion alerts and status events. The IPS
communicates events to clients such as management applications using the proprietary IPS-industry
leading protocol, SDEE, which is a product-independent standard for communicating security device
events. SDEE adds extensibility features that are needed for communicating events generated by various
types of security devices.

Systems that use SDEE to communicate events to clients are referred to as SDEE providers. SDEE
specifies that events can be transported using the HTTP or HTTP over SSL and TLS protocols. When
HTTP or HTTPS is used, SDEE providers act as HTTP servers, while SDEE clients are the initiators of
HTTP requests.
A-33
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 Cisco IPS File Structure
The IPS includes the web server, which processes HTTP or HTTPS requests. The web server uses
run-time loadable servlets to process the different types of HTTP requests. Each servlet handles HTTP
requests that are directed to the URL associated with the servlet. The SDEE server is implemented as a
web server servlet.

The SDEE server only processes authorized requests. A request is authorized if is originates from a web
server to authenticate the identity of the client and determine the privilege level of the client.

CIDEE
CIDEE specifies the extensions to SDEE that are used by the Cisco IPS. The CIDEE standard specifies
all possible extensions that are supported by the Cisco IPS. Specific systems may implement a subset of
CIDEE extensions. However, any extension that is designated as being required MUST be supported by
all systems. CIDEE specifies the Cisco IPS-specific security device events and the IPS extensions to the
SDEE evIdsAlert element.

CIDEE supports the following events:

• evError—Error event

Generated by the CIDEE provider when the provider detects an error or warning condition. The
evError event contains error code and textual description of the error.

• evStatus—Status message event

Generated by CIDEE providers to indicate that something of potential interest occurred on the host.
Different types of status messages can be reported in the status event—one message per event. Each
type of status message contains a set of data elements that are specific to the type of occurrence that
the status message is describing. The information in many of the status messages are useful for audit
purposes. Errors and warnings are not considered status information and are reported using evError
rather than evStatus.

• evShunRqst—Block request event

Generated to indicate that a block action is to be initiated by the service that handles network
blocking.

The following is a CDIEE extended event example:

<sd:events xmlns:cid="http://www.cisco.com/cids/2004/04/cidee"
xmlns:sd=“http://example.org/2003/08/sdee”>
 <sd:evIdsAlert eventId="1042648730045587005" vendor="Cisco“ severity="medium">
 <sd:originator>
 <sd:hostId>Beta4Sensor1</sd:hostId>
 <cid:appName>sensorApp</cid:appName>
 <cid:appInstanceId>8971</cid:appInstanceId>
 </sd:originator>
 <sd:time offset="0" timeZone="UTC">1043238671706378000</sd:time>
 <sd:signature description="IOS Udp Bomb" id="4600" cid:version="S37">
 <cid:subsigId>0</cid:subsigId>
 </sd:signature> …

Cisco IPS File Structure
The Cisco IPS has the following directory structure:

• /usr/cids/idsRoot—Main installation directory.

• /usr/cids/idsRoot/shared—Stores files used during system recovery.
A-34
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 Summary of Cisco IPS Applications
• /usr/cids/idsRoot/var—Stores files created dynamically while the sensor is running.

• /usr/cids/idsRoot/var/updates—Stores files and logs for update installations.

• /usr/cids/idsRoot/var/virtualSensor—Stores files used by SensorApp to analyze regular expressions.

• /usr/cids/idsRoot/var/eventStore—Contains the Event Store application.

• /usr/cids/idsRoot/var/core—Stores core files that are created during system crashes.

• /usr/cids/idsRoot/var/iplogs—Stores iplog file data.

• /usr/cids/idsRoot/bin—Contains the binary executables.

• /usr/cids/idsRoot/bin/authentication—Contains the authentication application.

• /usr/cids/idsRoot/bin/cidDump—Contains the script that gathers data for tech support.

• /usr/cids/idsRoot/bin/cidwebserver—Contains the web server application.

• /usr/cids/idsRoot/bin/cidcli—Contains the CLI application.

• /usr/cids/idsRoot/bin/nac—Contains the ARC application.

• /usr/cids/idsRoot/bin/logApp—Contains the logger application.

• /usr/cids/idsRoot/bin/mainApp—Contains the main application.

• /usr/cids/idsRoot/bin/sensorApp—Contains the sensor application.

• /usr/cids/idsRoot/bin/collaborationApp—Contains the collaboration application.

• /usr/cids/idsRoot/bin/switchApp—Contains the switch application.

• /usr/cids/idsRoot/etc—Stores sensor configuration files.

• /usr/cids/idsRoot/htdocs—Contains the IDM files for the web server.

• /usr/cids/idsRoot/lib—Contains the library files for the sensor applications.

• /usr/cids/idsRoot/log—Contains the log files for debugging.

• /usr/cids/idsRoot/tmp—Stores the temporary files created during run time of the sensor.

Summary of Cisco IPS Applications
Table A-2 gives a summary of the applications that make up the IPS.

Table A-2 Summary of Applications

Application Description

AuthenticationApp Authorizes and authenticates users based on IP address, password,
and digital certificates.

Attack Response Controller An ARC is run on every sensor. Each ARC subscribes to network
access events from its local Event Store. The ARC configuration
contains a list of sensors and the network access devices that its local
ARC controls. If an ARC is configured to send network access events
to a master blocking sensor, it initiates a network access control
transaction to the remote ARC that controls the device. These
network access action control transactions are also used by IPS
managers to issue occasional network access actions.
A-35
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

Appendix A System Architecture
 Summary of Cisco IPS Applications
CLI Accepts command line input and modifies the local configuration
using the IDAPI.

CollaborationApp Shares information with other devices through a global correlation
database to improve the combined efficacy of all the devices.

Control Transaction Server1 Accepts control transactions from a remote client, initiates a local
control transaction, and returns the response to the remote client.

Control Transaction Source2 Waits for control transactions directed to remote applications,
forwards the control transactions to the remote node, and returns the
response to the initiator.

IDM The Java applet that provides an HTML IPS management interface.

IME The Java applet that provides an interface for viewing and archiving
events.

InterfaceApp Handles bypass and physical settings and defines paired interfaces.
Physical settings are speed, duplex, and administrative state.

Logger Writes all the log messages of the application to the log file and the
error messages of the application to the Event Store.

MainApp Reads the configuration and starts applications, handles starting and
stopping of applications and node reboots, handles software
upgrades.

NotificationApp Sends SNMP traps when triggered by alert, status, and error events.
NotificationApp uses the public domain SNMP agent. SNMP GETs
provide information about the general health of the sensor.

SDEE Server3 Accepts requests for events from remote clients.

SensorApp Captures and analyzes traffic on the monitored network and generates
intrusion and network access events. Responds to IP logging control
transactions that turn logging on and off and that send and delete IP
log files.

SwitchApp Part of the IPS 4500 series design that enables the InterfaceApp and
sensor initialization scripts to communicate with and control the
built-in switch. Any application that needs to get or set information
on the switch must communicate with the SwitchApp.

Web Server Waits for remote HTTP client requests and calls the appropriate
servlet application.

1. This is a web server servlet.

2. This is a remote control transaction proxy.

3. This is a web server servlet.

Table A-2 Summary of Applications (continued)

Application Description
A-36
Cisco Intrusion Prevention System Manager Express Configuration Guide for IPS 7.3

OL-30787-01

	System Architecture
	Purpose of Cisco IPS
	System Design
	System Applications
	User Interaction
	Security Features
	MainApp
	Understanding the MainApp
	MainApp Responsibilities
	Event Store
	Understanding the Event Store
	Event Data Structures
	IPS Events

	NotificationApp
	CtlTransSource
	Attack Response Controller
	Understanding the ARC
	ARC Features
	Supported Blocking Devices
	ACLs and VACLs
	Maintaining State Across Restarts
	Connection-Based and Unconditional Blocking
	Blocking with Cisco Firewalls
	Blocking with Catalyst Switches

	Logger
	AuthenticationApp
	Understanding the AuthenticationApp
	Authenticating Users
	Configuring Authentication on the Sensor
	Managing TLS and SSH Trust Relationships

	Web Server

	SensorApp
	Understanding the SensorApp
	Inline, Normalization, and Event Risk Rating Features
	SensorApp New Features
	Packet Flow
	Signature Event Action Processor

	CollaborationApp
	Understanding the CollaborationApp
	Update Components
	Error Events

	SwitchApp
	CLI
	Understanding the CLI
	User Roles
	Service Account

	Communications
	IDAPI
	IDIOM
	IDCONF
	SDEE
	CIDEE

	Cisco IPS File Structure
	Summary of Cisco IPS Applications

