

Signature Definitions

You must be administrator or operator to add, clone, or delete signature policies.

This chapter explains how to create signature definition policies and how to configure signatures. It contains the following sections:

- Security Policies, page 5-1
- Configuring Signature Definition Policies, page 5-2
- sig0 Pane, page 5-3
- Understanding Signatures, page 5-4
- MySDN, page 5-5
- Configuring Signatures, page 5-6
- Configuring Signature Variables, page 5-24
- Configuring Miscellaneous Settings, page 5-26

Security Policies

You can create multiple security policies and apply them to individual virtual sensors. A security policy is made up of a signature definition policy, an event action rules policy, and an anomaly detection policy. Cisco IPS 6.1 contains a default signature definition policy called sig0, a default event action rules policy called rules0, and a default anomaly detection policy called ad0. You can assign the default policies to a virtual sensor or you can create new policies.

The use of multiple security policies lets you create security policies based on different requirements and then apply these customized policies per VLAN or physical interface.

Configuring Signature Definition Policies

This section describes how to configure signature definition policies, and contains the following topics:

- Signature Definitions Pane, page 5-2
- Signature Definitions Pane Field Definitions, page 5-2
- Add and Clone Policy Dialog Boxes Field Definitions, page 5-2
- Adding, Cloning, and Deleting Signature Policies, page 5-2

Signature Definitions Pane

In the Signature Definitions pane, you can add, clone, or delete a signature definition policy. The default signature definition policy is called sig0. When you add a policy, a control transaction is sent to the sensor to create the policy instance. If the response is successful, the new policy instance is added under Signature Definitions. If the control transaction fails, for example because of resource limitations, an error message appears.

If your platform does not support virtual policies, this means you can only have one instance for each component and you cannot create new ones or delete the existing one. In this case, the Add, Clone, and Delete buttons are disabled.

/ľ\ Caution

AIM-IPS and NME-IPS do not support sensor virtualization and therefore do not support multiple policies.

Signature Definitions Pane Field Definitions

The following fields are found in the Signature Definitions pane:

- Policy Name—Identifies the name of this signature definition policy.
- Assigned Virtual Sensor—Identifies the virtual sensor that this signature definition policy is assigned to.

Add and Clone Policy Dialog Boxes Field Definitions

The following field is found in the Add and Clone Policy dialog boxes:

• Policy Name—Lets you create a unique name for the new policy.

Adding, Cloning, and Deleting Signature Policies

To add, clone, or delete a signature definition policy, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- **Step 2** Choose **Configuration > Policies > Signature Definitions**, and then click **Add**.
- **Step 3** In the Policy Name field, enter a name for the signature definition policy.

Tip	To discard your changes and close the Add Policy dialog box, click Cancel .
Clic	k OK.
The	signature definition policy appears in the list in the Signature Definitions pane.
To c	lone an existing signature definition policy, select it in the list, and then click Clone.
The nam	Clone Policy dialog box appears with "_copy" appended to the existing signature definition policy e.
In th	e Policy Name field, enter a unique name.
Clic	k OK.
The	cloned signature definition policy appears in the list in the Signature Definitions pane.
To re	emove a signature definition policy, select it, and then click Delete .
The	Delete Policy dialog box appears asking if you are sure you want to delete this policy permanently
You	cannot delete the default signature definition policy, sig0.
Clic	k Yes.
The	signature definition policy no longer appears in the list in the Signature Definitions pane.
Clic	k Apply to apply your changes and save the revised configuration

sig0 Pane

The sig0 menu in the left navigation pane contains the list of signatures listed by categories, for example, by signature type, all signatures, or active signatures. Once you choose a signature type in the menu, the sig0 pane is populated with the tools to configure signatures. You can filter the signatures by a variety of categories, for example, by signature ID, signature name, whether the signature is enabled, severity, fidelity rating, base risk rating, action, type, and engine.

You must select a signature category to see the signature configuration and add, clone, or edit signatures.

You can sort the data in each column by clicking the column head. The following columns are shown by default:

- ID
- Name
- Enabled
- Severity
- Fidelity Rating
- Base RR
- Signature Actions (Alert and Log, Deny, and Other)

- Type
- Engine
- Retired

To change the default column view, click the **Column** icon in the upper right of the pane and check or clear the check boxes in the Choose Columns to Display dialog box. You can also move the columns to a new location by selecting it and dragging it to a different place in the table.

There are configuration buttons grouped around the following configuration actions:

- Signature Configuration—Lets you edit event actions, enable and disable signatures, restore signature defaults, view signature information on MySDN, edit, add, delete, clone, and export signatures.
- Signature Wizard—Lets you use a wizard to create custom signatures.
- Advanced
 - Signature Variables—Lets you set up variables to use within multiple signatures.
 - Miscellaneous—Lets you configure application policy signatures, set up the mode for IP fragmentation and TCP stream reassembly, and configure IP logging.

Understanding Signatures

Attacks or other misuses of network resources can be defined as network intrusions. Sensors that use a signature-based technology can detect network intrusions. A signature is a set of rules that your sensor uses to detect typical intrusive activity, such as DoS attacks. As sensors scan network packets, they use signatures to detect known attacks and respond with actions that you define.

The sensor compares the list of signatures with network activity. When a match is found, the sensor takes an action, such as logging the event or sending an alert. Sensors let you modify existing signatures and define new ones.

Signature-based intrusion detection can produce false positives because certain normal network activity can be misinterpreted as malicious activity. For example, some network applications or operating systems may send out numerous ICMP messages, which a signature-based detection system might interpret as an attempt by an attacker to map out a network segment. You can minimize false positives by tuning your signatures.

To configure a sensor to monitor network traffic for a particular signature, you must enable the signature. By default, the most critical signatures are enabled when you install the signature update. When an attack is detected that matches an enabled signature, the sensor generates an alert, which is stored in the Event Store of the sensor. The alerts, as well as other events, may be retrieved from the Event Store by web-based clients. By default the sensor logs all Informational alerts or higher.

Some signatures have subsignatures, that is, the signature is divided into subcategories. When you configure a subsignature, changes made to the parameters of one subsignature apply only to that subsignature. For example, if you edit signature 3050 subsignature 1 and change the severity, the severity change applies to only subsignature 1 and not to 3050 2, 3050 3, and 3050 4.

Cisco IPS 6.1 contains over 10,000 built-in default signatures. You cannot rename or delete signatures from the list of built-in signatures, but you can retire signatures to remove them from the sensing engine. You can later activate retired signatures; however, this process requires the sensing engines to rebuild their configuration, which takes time and could delay the processing of traffic. You can tune built-in signatures by adjusting several signature parameters. Built-in signatures that have been modified are called tuned signatures.

We recommend that you retire any signatures that you are not using. This improves sensor performance.

You can create signatures, which are called custom signatures. Custom signature IDs begin at 60000. You can configure them for several things, such as matching of strings on UDP connections, tracking of network floods, and scans. Each signature is created using a signature engine specifically designed for the type of traffic being monitored.

MySDN

Currently when you click **MySDN**, you are redirected to the IntelliShield site, which will eventually replace MySDN.

MySDN is a repository of information for individual signatures. It provides the following information about a signature:

- Signature ID
- Release version
- Original release date
- Latest release date
- Default enabled
- Default retired
- CVE
- Bugtraq ID
- Alarm severity
- Fidelity
- Description
- Recommended filters
- Benign filters
- IntelliShield alerts

The information from MySDN is available in the lower half of the sig0 pane. Select a signature in the list, and the information appears in the lower half. Or you can select a signature on **Configuration > Policies > Signature Definitions > sig0 > Active Signatures**, and then click **MySDN**. After logging in to Cisco.com, you are taken to the specific information about that signature through the MySDN site ending at the IntelliShield site.

IDM launches MySDN from the last browser window you opened, which is the default setting for Windows. To change this default behavior, in Internet Explorer, choose **Tools > Internet Options**, and then click the **Advanced** tab. Scroll down and uncheck the **Reuse windows for launching shortcuts** check box.

The MySDN website has been decommissioned and is no longer available to Cisco.com users. You can get to the information only through IDM.

Configuring Signatures

This section describes how to configure signatures. It contains the following topics:

- Sig0 Pane Field Definitions, page 5-6
- Add, Clone, and Edit Signatures Dialog Boxes Field Definitions, page 5-7
- Edit Actions Dialog Box Field Definitions, page 5-9
- Enabling, Disabling, and Retiring Signatures, page 5-12
- Adding Signatures, page 5-12
- Cloning Signatures, page 5-14
- Tuning Signatures, page 5-15
- Assigning Actions to Signatures, page 5-16
- Configuring Alert Frequency, page 5-18
- Example Meta Engine Signature, page 5-21

Sig0 Pane Field Definitions

The following fields are found in the Sig0 pane:

- Filter—Lets you sort the list of signatures by selecting an attribute to filter.
- ID—Identifies the unique numerical value assigned to this signature and subsignature. This value lets the sensor identify a particular signature.
- Name—Identifies the name assigned to the signature.
- Enabled—Identifies whether or not the signature is enabled. A signature must be enabled for the sensor to protect against the traffic specified by the signature.
- Severity—Identifies the severity level that the signature will report: High, Informational, Low, Medium.
- Fidelity Rating—Identifies the weight associated with how well this signature might perform in the absence of specific knowledge of the target.
- Base RR—Displays the base risk rating value of each signature. IDM automatically calculates the base risk rating by multiplying the fidelity rating and the severity factor and dividing them by 100 (Fidelity Rating x Severity Factor /100).

Severity Factor has the following values:

- Severity Factor = 100 if the severity level of the signature is high
- Severity Factor = 75 if severity level of the signature is medium
- Severity Factor = 50 if severity level of the signature is low
- Severity Factor = 25 if severity level of the signature is informational
- Signature Actions—Identifies the actions the sensor will take when this signature fires.

- Type—Identifies whether this signature is a default (built-in), tuned, or custom signature.
- Engine—Identifies the engine that parses and inspects the traffic specified by this signature.
- Retired—Identifies whether or not the signature is retired.

A retired signature is removed from the signature engine. You can activate a retired signature to place it back in the signature engine.

Note We recommend that you retire any signatures that you are not using. This improves sensor performance.

Right-Click Menu Functions:

- Edit Actions—Opens the Edit Actions dialog box.
- Enable—Enables the selected signature.
- Disable—Disables the selected signature.
- Set Severity To—Lets you set the severity level that the signature will report: High, Medium, Low or Informational.
- Restore Default—Returns all parameters to the default settings for the selected signature.
- Show MySDN Information—Takes you to the description of that signature on the MySDN site on Cisco.com.
- Edit—Opens the Edit Signature dialog box. In the Edit Signature dialog box, you can change the parameters associated with the selected signature and effectively *tune* the signature. You can edit only one signature at a time.
- Add—Opens the Add Signature dialog box. In the Add Signature dialog box, you can add the parameters associated with the selected signature and effectively *tune* the signature.
- Delete—Deletes the selected custom signature. You cannot delete built-in signatures.
- Clone—Opens the Clone Signature dialog box. In the Clone Signature dialog box, you can create a signature by changing the prepopulated values of the existing signature you chose to clone.
- Change Status To—Lets you change the status to retired or active.
- Export—Lets you export currently displayed signatures in the table to a comma-separated Excel file (using CSV) or HTML file. You can also use **Ctrl-C** to copy the contents in to a clipboard and later paste in to Notepad or Word using **Ctrl-V**.

Add, Clone, and Edit Signatures Dialog Boxes Field Definitions

Tip

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

The following fields are found in the Add, Clone, and Edit Signature dialog boxes:

- Signature Definition
 - Signature ID—Identifies the unique numerical value assigned to this signature. This value lets the sensor identify a particular signature. The value is 1000 to 65000.

- SubSignature ID—Identifies the unique numerical value assigned to this subsignature. The subsignature ID identifies a more granular version of a broad signature. The value is 0 to 255.
- Alert Severity—Lets you choose the severity level of the signature: High, Informational, Low, Medium.
- Sig Fidelity Rating—Lets you choose the weight associated with how well this signature might perform in the absence of specific knowledge of the target. The value is 0 to 100. The default is 75.
- Promiscuous Delta-Lets you determine the seriousness of the alert.
- Sig Description—Lets you specify the following attributes that help you distinguish this signature from other signatures:
 - Signature Name—Name your signature. The default is MySig.
 - Alert Notes—Add alert notes in this field.
 - User Comments—Add your comments about this signature in this field.
 - Alarm Traits—Add the alarm trait in this field. The value is 0 to 65535. The default is 0.
 - Release—Add the software release in which the signature first appeared.
- Engine—Lets you choose the engine that parses and inspects the traffic specified by this signature.
- Event Action—Lets you assign the actions the sensor takes when it responds to events.
- Event Counter—Lets you configure how the sensor counts events. For example, you can specify that you want the sensor to send an alert only if the same signature fires 5 times for the same address set:
 - Event Count—The number of times an event must occur before an alert is generated. The value is 1 to 65535. The default is 1.
 - Event Count Key—The storage type used to count events for this signature. Choose attacker address, attacker address and victim port, attacker and victim addresses, attacker and victim addresses and ports, or victim address. The default is attacker address.
 - Specify Alert Interval—Specifies the time in seconds before the event count is reset. Choose Yes or No from the drop-down list and then specify the amount of time.
- Alert Frequency—Lets you configure how often the sensor alerts you when this signature is firing. Specify the following parameters for this signature:
 - Summary Mode—The mode of alert summarization. Choose Fire All, Fire Once, Global Summarize, or Summarize.

Note When multiple contexts from the adaptive security appliance are contained in one virtual sensor, the summary alerts contain the context name of the last context that was summarized. Thus, the summary is the result of all alerts of this type from all contexts that are being summarized.

- Summary Interval—The time in seconds used in each summary alert. The value is 1 to 65535. The default is 15.
- Summary Key—The storage type used to summarize alerts. Choose Attacker address, Attacker address and victim port, Attacker and victim addresses, Attacker and victim addresses and ports, or Victim address. The default is Attacker address.
- Specify Global Summary Threshold—Lets you specify the threshold number of events to take the alert into global summary. Choose Yes or No and then specify the threshold number of events.

- Status—Lets you enable or disable a signature, or retire or unretire a signature:
 - Enabled—Lets you choose whether the signature is enabled or disabled. The default is yes (enabled).
 - Retired—Let you choose whether the signature is retired or not. The default is no (not retired).
 - Obsoletes—Lists the signatures that are obsoleted by this signature.
- Mars Category—Maps signatures to a MARS attack category.

This is a static information category that you can set in the configuration and view in the alerts.

Edit Actions Dialog Box Field Definitions

The following fields are found in the Edit Actions dialog box:

- Alert and Log Actions
 - Produce Alert—Writes the event to Event Store as an alert.

The Produce Alert action is not automatic when you enable alerts for a signature. To have an alert created in Event Store, you must select Produce Alert. If you add a second action, you must include Produce Alert if you want an alert sent to Event Store. Also, every time you configure the event actions, a new list is created and it replaces the old list. Make sure you include all the event actions you need for each signature.

There are other event actions that force a Product Alert. These actions use Product Alert as the vehicle for performing the action. Even if Product Alert is not selected or is filtered, the alert is still produced. The actions are the following: Produce Verbose Alert, Request SNMP Trap, Log Attacker Packets, Log Victim Packets, and Log Pair Packets.

Produce Verbose Alert—Includes an encoded dump of the offending packet in the alert.

P This action causes an alert to be written to Event Store, even if Produce Alert is not selected.

 Log Attacker Packets—Starts IP logging on packets that contain the attacker address and sends an alert.

Note This action causes an alert to be written to Event Store, even if Produce Alert is not selected.

Log Victim Packets—Starts IP Logging on packets that contain the victim address and sends an alert.

This action causes an alert to be written to Event Store, even if Produce Alert is not selected.

- Log Attacker/Victim Pair Packets—(inline mode only) Starts IP Logging on packets that contain the attacker/victim address pair.

Note This action causes an alert to be written to Event Store, even if Produce Alert is not selected.

- Request SNMP Trap—Sends a request to NotificationApp to perform SNMP notification.

This action causes an alert to be written to Event Store, even if Produce Alert is not selected. You must have SNMP configured on the sensor to implement this action.

- Deny Actions
 - Deny Packet Inline—(inline mode only) Does not transmit this packet.

You cannot delete the event action override for Deny Packet Inline because it is protected. If you do not want to use that override, disable it.

- Deny Connection Inline—(inline mode only) Does not transmit this packet and future packets on the TCP flow.
- Deny Attacker Victim Pair Inline—(inline mode only) Does not transmit this packet and future packets on the attacker/victim address pair for a specified period of time.

To set the specified period of time and maximum number of denied attackers, choose **Configuration > Policies > Event Action Rules > rules0 > General Settings**.

- Deny Attacker Service Pair Inline—(inline mode only) Does not transmit this packet and future packets on the attacker address victim port pair for a specified period of time.
- Deny Attacker Inline—(inline mode only) Does not transmit this packet and future packets originating from the attacker address for a specified period of time.

The sensor maintains a list of attackers being denied by the system. To remove an entry from the denied attacker list, you can view the list of attackers and clear the entire list, or you can wait for the timer to expire. The timer is a sliding timer for each entry. Therefore, if attacker A is being denied, but issues another attack, the timer for attacker A is reset and attacker A remains in the denied attacker list until the timer expires. If the denied attacker list is at capacity and cannot add a new entry, the packet is still denied.

Note This is the most severe of the deny actions. It denies current and future packets from a single attacker address. To clear all denied attacker entries, choose Monitoring > Time-Based Actions > Denied Attackers > Clear List, which permits the addresses back on the network.

 Modify Packet Inline— Modifies packet data to remove ambiguity about what the end point might do with the packet.

Modify Packet Inline is not an option for Add Event Action Filter or Add Event Action Override.

- Other Actions
 - Request Block Connection—Sends a request to ARC to block this connection.

You must have blocking devices configured to implement this action.

- Request Block Host—Sends a request to ARC to block this attacker host.

You must have blocking devices configured to implement this action.

<u>Note</u>

To set the duration of the block, choose **Configuration > Policies > Event Action Rules > rules0 > General Settings**.

- Request Rate Limit—Sends a rate limit request to ARC to perform rate limiting.

You must have rate limiting devices configured to implement this action.

Request Rate Limit applies to a select set of signatures.

Reset TCP Connection—Sends TCP resets to hijack and terminate the TCP flow.

Reset TCP Connection only works on TCP signatures that analyze a single connection. It does not work for sweeps or floods.

For More Information

- For detailed descriptions of the event actions, see Event Actions, page 8-7.
- For the procedure for clearing the denied attackers list and setting the duration of the block, see Configuring and Monitoring Denied Attackers, page 15-4.
- For the procedure for setting the specified period of time and maximum number of denied attackers, see Configuring General Settings, page 8-29.
- For the procedure for configuring blocking devices to implement the request block connection, request block host, and request rate limit actions, see Chapter 11, "Configuring Attack Response Controller for Blocking and Rate Limiting."
- For more information on rate limiting, see Understanding Rate Limiting, page 11-4.
- For the procedure for configuring SNMP traps, see Configuring SNMP Traps, page 12-3.

Enabling, Disabling, and Retiring Signatures

To enable, disable, and retire signatures, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- **Step 2** Choose **Configuration > Policies > Signature Definitions > sig0 > All Signatures**.
- **Step 3** To locate a signature, choose a sorting option from the Filter drop-down list.

For example, if you are searching for a Flood Host signature, chose **Engine** from the drop-down list, then **Flood Host**, and then select the individual signature.

The sig0 pane refreshes and displays only those signatures that match your sorting criteria.

- **Step 4** To enable or disable an existing signature, select the signature, and follow these steps:
 - **a.** View the Enabled column to determine the status of the signature. A signature that is enabled has the check box checked.
 - **b.** To enable a signature that is disabled, check the **Enabled** check box.
 - c. To disable a signature that is enabled, remove the check from the Enabled check box.
 - d. To retire one or more signatures, select the signature(s), right-click, and then click Change Status To > Retired.

te We recommend that you retire any signatures that you are not using. This improves sensor performance.

P Tip

To discard your changes, click Reset.

Step 5 Click **Apply** to apply your changes and save the revised configuration.

Adding Signatures

To create a custom signature that is not based on an existing signature, follow these steps:

Step 1	Log in to IDM using an account with administrator or operator privileges.
Step 2	Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures , and then click Add .
Step 3	In the Signature ID field, enter a unique signature ID for the new signature.
	New signatures start at 60000.
Step 4	In the Subsignature field, enter a unique subsignature ID for the new signature.
Step 5	From the Alert Severity drop-down list, choose the severity you want to associate with this signature.
Step 6	In the Sig Fidelity Rating field, enter a value between 1 and 100 to represent the signature fidelity rating for this signature.

- **Step 7** In the Promiscuous Delta field, enter the promiscuous delta (between 0 and 30) that you want to associate with this signature.
- **Step 8** Complete the Sig Description fields and add any comments about this signature.
- **Step 9** From the Engine drop-down list, choose the engine the sensor will use to enforce this signature.

Note If you do not know which engine to select, use the Custom Signature Wizard to help you create a custom signature.

- **Step 10** Assign actions to this signature.
- **Step 11** Configure the engine-specific parameters for this signature.
- **Step 12** Configure Event Counter:
 - **a.** In the Event Count field, enter the number of events you want counted (1 to 65535).
 - **b.** From the Event Count Key drop-down list, choose the key you want to use.
 - **c.** From the Specify Alert Interface drop-down list, choose whether you want to specify the alert interval (Yes or No).
 - d. If you chose Yes, enter the alert interval (2 to 1000) in the Alert Interval field.
- **Step 13** Configure the alert frequency.
- **Step 14** Configure the status of the signature:
 - a. From the Enabled drop-down list, choose Yes to enable the signature.

Note A signature must be enabled for the sensor to actively detect the attack specified by the signature.

b. From the Retired drop-down list, choose Yes to make sure the signature is active.

This places the signature in the engine.

A signature must not be retired for the sensor to actively detect the attack specified by the signature.

c. Choose the vulnerable OS(es).

To select more than one OS, hold down the Ctrl key.

Step 15 Choose the MARS category and click **OK**.

To discard your changes and close the Add Signature dialog box, click Cancel.

Step 16 Click OK. The new signature appears in the list with the Type set to Custom.

 \mathcal{A} Tip

To discard your changes, click Reset.

Step 17 Click **Apply** to apply your changes and save the revised configuration.

For More Information

- If you do not know which signature engine to use, use the Signature Wizard to help you create the new signature. For more information, see Chapter 7, "Signature Wizard."
- For the procedure for assigning actions to a signature, see Assigning Actions to Signatures, page 5-16.
- For the procedure for configuring alert frequency, see Configuring Alert Frequency, page 5-18.

Cloning Signatures

On the sig0 pane, you can create a signature by cloning an existing signature. This task can save you time when you are creating signatures that are similar.

Caution

Some signature values in built-in signature are protected, which means that you cannot copy that value. You can still clone the signature, but you cannot configure certain values. You will receive an error message similar to the following when a signature value cannot be configured:

[Obsoletes] is protected, cannot copy the value. [Mars Category] is protected, cannot copy the value.

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

To create a signature by using an existing signature as the starting point, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- **Step 2** Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures.
- **Step 3** To locate a signature, choose a sorting option from the Filter drop-down list.

For example, if you are searching for a Flood Host signature, choose **Engine** from the drop-down list, then **Flood Host**, and then select the individual signature.

The sig0 pane refreshes and displays only those signatures that match your sorting criteria.

- **Step 4** Select the signature and click **Clone**.
- **Step 5** In the Signature field, enter a unique signature ID for the new signature.
- **Step 6** In the Subsignature field, enter a unique subsignature ID for the new signature.
- **Step 7** Review the parameter values and change the value of any parameter you want to be different for this new signature.

ρ Tin

To select more than one OS or event action, hold down the Ctrl key.

- **Step 8** Configure the status of the signature:
 - a. From the Enabled drop-down list, choose Yes to enable the signature.

A signature must be enabled for the sensor to actively detect the attack specified by the signature.

b. From the Retired drop-down list, choose **Yes** to make sure the signature is active.

This places the signature in the engine.

A signature must not be retired for the sensor to actively detect the attack specified by the signature.

To discard your changes and close the Clone Signature dialog box, click Cancel.

c. Click OK. The cloned signature now appears in the list with the Type set to Custom.

To discard your changes, click Reset.

Step 9 Click **Apply** to apply your changes and save the revised configuration.

For More Information

For the procedure for configuring alert frequency, see Configuring Alert Frequency, page 5-18.

Tuning Signatures

On the sig0 pane, you can edit, or *tune* a signature.

Note

You can tune built-in signatures by adjusting several signature parameters. Built-in signatures that have been modified are called *tuned* signatures.

<u>}</u> Tip

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

To tune an existing signature, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- Step 2 Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures.
- **Step 3** To locate a signature, choose a sorting option from the Filter drop-down list.

For example, if you are searching for a Flood Host signature, choose **Engine** from the drop-down list, then **Flood Host**, and then select the individual signature.

The sig0 pane refreshes and displays only those signatures that match your sorting criteria.

- **Step 4** Select the signature and click **Edit**.
- **Step 5** Review the parameter values and change the value of any parameter you want to tune.

To select more than one OS, event action, vulnerable OS, or MARS category, hold down the **Ctrl** key.

- **Step 6** Configure the status of the signature:
 - a. From the Enabled drop-down list, choose Yes to enable the signature.

Note A signature must be enabled for the sensor to actively detect the attack specified by the signature.

b. From the Retired drop-down list, choose **Yes** to make sure the signature is active. This places the signature in the engine.

Note

A signature must not be retired for the sensor to actively detect the attack specified by the signature.

```
<u>)</u>
Tip
```

To discard your changes and close the Edit Signature dialog box, click Cancel.

Step 7 Click OK. The edited signature now appears in the list with the Type set to Tuned.

Tip

To discard your changes, click **Reset**.

Step 8 Click **Apply** to apply your changes and save the revised configuration.

For More Information

For the procedure for configuring alert frequency, see Configuring Alert Frequency, page 5-18.

Assigning Actions to Signatures

On the sig0 pane, you can assign actions to a signature.

To edit actions for a signature or a set of signatures, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- **Step 2** Choose **Configuration > Policies > Signature Definitions > sig0 > All Signatures**.
- **Step 3** To locate a signature, choose a sorting option from the Filter drop-down list.

For example, if you are searching for a Flood Host signature, choose **Engine** from the drop-down list, then **Flood Host**, and then select the individual signature.

The sig0 pane refreshes and displays only those signatures that match your sorting criteria.

Check the check boxes next to the actions you want to assign to the signature(s).

- **Step 4** Select the signature(s), and click **Edit Actions**.
- Step 5
- Note

A check mark indicates that the action is assigned to the selected signature(s). No check mark indicates that the action is not assigned to any of the selected signatures. A gray check mark indicates that the action is assigned to some of the selected signatures.

To select more than one action, hold down the **Ctrl** key.

Choose from the following actions:

- Produce Alert—Writes the event to Event Store as an alert.
- Produce Verbose Alert—Includes an encoded dump of the offending packet in the alert.
- Log Attacker Packets—Starts IP logging on packets that contain the attacker address and sends an alert.
- Log Victim Packets—Starts IP Logging on packets that contain the victim address and sends an alert.
- Log Attacker/Victim Pair Packets—(inline mode only) Starts IP Logging on packets that contain the attacker/victim address pair.
- Request SNMP Trap—Sends a request to NotificationApp to perform SNMP notification.
- Deny Packet Inline—(inline mode only) Does not transmit this packet.
- Deny Connection Inline—(inline mode only) Does not transmit this packet and future packets on the TCP flow.
- Deny Attacker Victim Pair Inline—(inline mode only) Does not transmit this packet and future packets on the attacker/victim address pair for a specified period of time.
- Deny Attacker Service Pair Inline—(inline mode only) Does not transmit this packet and future packets on the attacker address victim port pair for a specified period of time.
- Deny Attacker Inline—(inline mode only) Does not transmit this packet and future packets originating from the attacker address for a specified period of time.

The sensor maintains a list of attackers being denied by the system. To remove an entry from the denied attacker list, you can view the list of attackers and clear the entire list, or you can wait for the timer to expire. The timer is a sliding timer for each entry. Therefore, if attacker A is being denied, but issues another attack, the timer for attacker A is reset and attacker A remains in the denied attacker list until the timer expires. If the denied attacker list is at capacity and cannot add a new entry, the packet is still denied.

- Modify Packet Inline— Modifies packet data to remove ambiguity about what the end point might do with the packet.
- Request Block Connection—Sends a request to ARC to block this connection.
- Request Block Host—Sends a request to ARC to block this attacker host.
- Request Rate Limit—Sends a rate limit request to ARC to perform rate limiting.

• Reset TCP Connection—Sends TCP resets to hijack and terminate the TCP flow.

To discard your changes and close the Assign Actions dialog box, click Cancel.

Step 6 Click **OK** to save your changes and close the dialog box.

The new action(s) now appears in the Action column.

To discard your changes, click Reset.

Step 7 Click **Apply** to apply your changes and save the revised configuration.

For More Information

- For detailed descriptions of the event actions, see Event Actions, page 8-7.
- For the procedure for clearing the denied attackers list and setting the duration of the block, see Configuring and Monitoring Denied Attackers, page 15-4.
- For the procedure for setting the specified period of time and maximum number of denied attackers, see Configuring General Settings, page 8-29.
- For the procedure for configuring blocking devices to implement the request block connection, request block host, and request rate limit actions, see Chapter 11, "Configuring Attack Response Controller for Blocking and Rate Limiting."
- For more information on rate limiting, see Understanding Rate Limiting, page 11-4.
- For the procedure for configuring SNMP traps, see Configuring SNMP Traps, page 12-3.

Configuring Alert Frequency

You can control how often a signature fires. For example, you may want to decrease the volume of alerts sent out from the sensor. Or you may want the sensor to provide basic aggregation of signature firings into a single alert. Or you may want to counter anti-IPS tools such as "stick," which are designed to send bogus traffic so that the IPS produces thousands of alerts during a very short time.

When multiple contexts from the adaptive security appliance are contained in one virtual sensor, the summary alerts contain the context name of the last context that was summarized. Thus, the summary is the result of all alerts of this type from all contexts that are being summarized.

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

To configure the alert frequency of a signature, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- **Step 2** Choose **Configuration > Policies > Signature Definitions > sig0 > All Signatures**.
- **Step 3** Click Add to add a signature, choose a signature to clone, and click Clone, or choose a signature to edit, and click Edit.
- **Step 4** Configure the event count, key, and alert interval:
 - a. In the Event Count field, enter a value for the event count.

This is the minimum number of hits the sensor must receive before sending one alert for this signature.

b. From the Event Count Key drop-down list, choose an attribute to use as the Event Count Key.

For example, if you want the sensor to count events based on whether or not they are from the same attacker, choose Attacker address as the Event Count Key.

- **c.** If you want to count events based on a rate, choose **Yes** from the Specify Event Interval drop-down list, and then in the Alert Interval field, enter the number of seconds that you want to use for your interval.
- **Step 5** To control the volume of alerts and configure how the sensor summarizes alerts, choose one of the following options from the Summary Mode drop-down list:
 - Fire All

Specifies that you want the sensor to send an alert every time the signature detects malicious traffic. You can then specify additional thresholds that let the sensor dynamically adjust the volume of alerts.

Go to Step 6.

Fire Once

Specifies that you want the sensor to send an alert the first time the signature detects malicious traffic. You can then specify additional thresholds that let the sensor dynamically adjust the volume of alerts.

Go to Step 7.

• Summarize

Specifies that you want the sensor to only send summary alerts for this signature instead of sending alerts every time the signature fires. You can then specify additional thresholds that let the sensor dynamically adjust the volume of alerts.

Go to Step 8.

Global Summarize

Specifies that you want the sensor to send an alert the first time a signature fires on an address set, and then only send a global summary alert that includes a summary of all alerts for all address sets over a given time interval.

Go to Step 9.

- **Step 6** Configure the Fire All option:
 - a. From the Specify Summary Threshold drop-down list, choose Yes.
 - **b.** In the Summary Threshold field, enter the minimum number of hits the sensor must receive before sending a summary alert for this signature.

- c. In the Summary Interval field, enter the number of seconds that you want to use for the time interval.
- **d.** To have the sensor enter global summarization mode, choose **Yes** from the Specify Global Summary Threshold drop-down list.
- **e.** In the Global Summary Threshold field, enter the minimum number of hits the sensor must receive before sending a global summary alert.
- f. From the Summary Key drop-down list, choose the type of summary key.

The summary key identifies the attribute to use for counting events. For example, if you want the sensor to count events based on whether or not they are from the same attacker, choose Attacker address as the summary key.

- **Step 7** Configure the Fire Once option:
 - **a.** From the Summary Key drop-down list, choose the type of summary key.

The summary key identifies the attribute to use for counting events. For example, if you want the sensor to count events based on whether or not they are from the same attacker, choose Attacker address as the summary key.

- **b.** To have the sensor use global summarization, choose **Yes** from the Specify Global Summary Threshold drop-down list.
- **c.** In the Global Summary Threshold field, enter the minimum number of hits the sensor must receive before sending a global summary alert.

When the alert rate exceeds a specified number of signatures in a specified number of seconds, the sensor changes from sending a single alert the first time a signature fires to sending a single global summary alert. When the rate during the interval drops below this threshold, the sensor reverts to its configured alert behavior.

Note When multiple contexts from the adaptive security appliance are contained in one virtual sensor, the summary alerts contain the context name of the last context that was summarized. Thus, the summary is the result of all alerts of this type from all contexts that are being summarized.

- **d.** In the Summary Interval field, enter the number of seconds during which the sensor counts events for summarization.
- **Step 8** Configure the Summarize option:
 - **a.** In the Summary Interval field, enter the number of seconds during which the sensor counts events for summarization.
 - **b.** From the Summary Key drop-down list, choose the type of summary key.

The summary key identifies the attribute to use for counting events. For example, if you want the sensor to count events based on whether or not they are from the same attacker, choose Attacker address as the summary key.

- **c.** To have the sensor use dynamic global summarization, choose **Yes** from the Specify Global Summary Threshold drop-down list.
- **d.** In the Global Summary Threshold field, enter the minimum number of hits the sensor must receive before sending a global summary alert.

When the alert rate exceeds a specified number of signatures in a specified number of seconds, the sensor changes from sending a single alert the first time a signature fires to sending a single global summary alert. When the rate during the interval drops below this threshold, the sensor reverts to its configured alert behavior.

- **Step 9** To configure the Global Summarize option, in the Summary Interval field, enter the number of seconds during which the sensor counts events for summarization.
- **Step 10** Click **OK** to save your alert behavior changes. You are returned to the sig0 pane.

To discard your changes, click **Cancel**.

Step 11To apply your alert behavior changes to the signature configuration, click Apply.The signature you added or edited is enabled and added to the list of signatures.

Example Meta Engine Signature

The Meta engine defines events that occur in a related manner within a sliding time interval. This engine processes events rather than packets. As signature events are generated, the Meta engine inspects them to determine if they match any or several Meta definitions. The Meta engine generates a signature event after all requirements for the event are met.

All signature events are handed off to the Meta engine by the Signature Event Action Processor. The Signature Event Action Processor hands off the event after processing the minimum hits option. Summarization and event action are processed after the Meta engine has processed the component events.

A large number of Meta signatures could adversely affect overall sensor performance.

For example, signature 64000 subsignature 0 fires when it sees the alerts from signature 2000 subsignature 0 and signature 3000 subsignature 0 on the same source address. The source address selection is a result of the meta key default value of Axxx. You can change the behavior by changing the meta key setting to xxBx (destination address) for example.

S. Note

The Meta engine is different from other engines in that it takes alerts as input where most engines take packets as input.

 \mathcal{P} Tip

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

To create a signature based on the Meta engine, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- **Step 2** Choose **Configuration > Policies > Signature Definitions > sig0 > All Signature Configuration**, and then click **Add**.
- **Step 3** In the Signature ID field, enter a unique signature ID for the new signature.
- **Step 4** In the Subsignature field, enter a unique subsignature ID for the new signature.

- **Step 5** From the Alert Severity drop-down list, choose the severity you want to associate with this signature.
- **Step 6** In the Signature Fidelity Rating field, enter a value between 1 and 100 to represent the signature fidelity rating for this signature.
- **Step 7** Leave the default value for the Promiscuous Delta field.
- **Step 8** Complete the signature description fields and add any comments about this signature.
- **Step 9** From the Vulnerable OS List drop-down list, choose the operating systems that are vulnerable to this signature.

To choose more than one action, hold down the Ctrl key.

- **Step 10** From the Engine drop-down list, choose **Meta**.
- **Step 11** Configure the Meta engine-specific parameters:
 - **a.** From the Event Action drop-down list, choose the actions you want the sensor to take when it responds to an event.

 \mathcal{P} Tip

To choose more than one action, hold down the **Ctrl** key.

- **b.** From the Swap Attacker Victim drop-down list, choose **Yes** to swap the attacker and victim addresses and ports (destination and source) in the alert message and for any actions taken.
- **c.** In the Meta Reset Interval field, enter the time in seconds to reset the Meta signature. The valid range is 0 to 3600 seconds. The default is 60 seconds.
- d. Click the pencil icon next to Component List to insert the new Meta signature.

The Component List dialog box appears.

e. Click Add to insert the first Meta signature.

The Add List Entry dialog box appears.

- f. In the Entry Key field, enter a name for the entry, for example, Entry1. The default is MyEntry.
- **g.** In the Component Sig ID field, enter the signature ID of the signature (2000 in this example) on which to match this component.
- **h.** In the Component SubSig ID field, specify the subsignature ID of the signature (0 in this example) on which to match this component.
- i. In the Component Count field, enter the number of times this component must fire before it is satisfied.
- j. Click OK. You are returned to the Add List Entry dialog box.
- k. Select your entry and click Select to move it to the Selected Entries list.
- I. Click OK.
- m. Click Add to insert the next Meta signature. The Add List Entry dialog box appears.
- **n**. In the Entry Key field, enter a name for the entry, for example Entry2.
- **o.** In the Component Sig ID field, enter the signature ID of the signature (3000 in this example) on which to match this component.
- **p.** In the Component SubSig ID field, enter the subsignature ID of the signature (0 in this example) on which to match this component.

- **q.** In the Component Count field, enter the number of times this component must fire before it is satisfied.
- r. Click OK. You are returned to the Add List Entry dialog box.
- s. Select your entry and click Select to move it to the Selected Entries list.
- t. Select the new entry and click Move Up or Move Down to order the new entry.

Click **Reset Ordering** to return the entries to the Entry Key list.

- u. Click OK.
- v. From the Meta Key drop-down list, choose the storage type for the Meta signature:
 - Attacker address
 - Attacker and victim addresses
 - Attacker and victim addresses and ports
 - Victim address
- w. In the Unique Victims field, enter the number of unique victims required for this signature.
 - The valid value is 1 to 256. The default is 1.
- **x.** From the Component List in Order drop-down list, choose **Yes** to have the component list fire in order.
- **Step 12** Configure Event Counter:
 - a. In the Event Count field, enter the number of events you want counted (1 to 65535).
 - **b.** From the Event Count Key drop-down list, choose the key you want to use.
 - **c.** From the Specify Alert Interface drop-down list, choose whether you want to specify the alert interval (Yes or No).
 - **d**. If you chose Yes, enter the alert interval (2 to 1000) in the Alert Interval field.
- **Step 13** Configure the alert frequency.
- **Step 14** Configure the status of the signature:
 - a. From the Enabled drop-down list, choose Yes to enable the signature.

A signature must be enabled for the sensor to actively detect the attack specified by the signature.

b. From the Retired drop-down list, choose Yes to make sure the signature is active.

This places the signature in the engine.

A signature must not be retired for the sensor to actively detect the attack specified by the signature.

To discard your changes and close the Add Signature dialog box, click Cancel.

Step 15 Click **OK**. The new signature appears in the list with the Type set to Custom.

 $\frac{\rho}{\Gamma}$

To discard your changes, click **Reset**.

Step 16 Click **Apply** to apply your changes and save the revised configuration.

Configuring Signature Variables

This section describes how to configure signature variables, and contains the following topics:

- Signature Variables Tab, page 5-24
- Adding, Editing, and Deleting Signature Variables, page 5-25

Signature Variables Tab

You must be administrator or operator to configure signature variables.

When you want to use the same value within multiple signatures, use a variable. When you change the value of a variable, that variable is updated in all signatures in which it appears. This saves you from having to change the variable repeatedly as you configure signatures.

You must preface the variable with a dollar (\$) sign to indicate that you are using a variable rather than a string.

Some variables cannot be deleted because they are necessary to the signature system. If a variable is protected, you cannot select it to edit it. You receive an error message if you try to delete protected variables. You can edit only one variable at a time.

Field Definitions

The following fields are found on the Signature Variables tab and in the Add and Edit Signature Variable dialog boxes:

- Name—Identifies the name assigned to this variable.
- Type—Identifies the variable as a web port or IP address range.
- Value—Identifies the value(s) represented by this variable.

To designate multiple port numbers for a single variable, place a comma between the entries. For example, 80, 3128, 8000, 8010, 8080, 8888, 24326.

Adding, Editing, and Deleting Signature Variables

To add, edit, and delete signature variables, follow these steps:

Configuring Miscellaneous Settings

This section describes the Miscellaneous tab and how to configure Application Inspection and Control (AIC) signatures, IP fragment reassembly signatures, TCP stream reassembly signatures, and IP logging. It contains the following topics:

- Miscellaneous Tab, page 5-26
- Miscellaneous Tab Field Definitions, page 5-27
- Configuring Application Policy Signatures, page 5-28
- Configuring IP Fragment Reassembly Signatures, page 5-37
- Configuring TCP Stream Reassembly Signatures, page 5-40
- Configuring IP Logging, page 5-48

Miscellaneous Tab

You must be administrator or operator to configure the parameters on the Miscellaneous tab.

On the Miscellaneous tab, you can perform the following tasks:

• Configure the application policy parameters (also known as AIC signatures)

You can configure the sensor to provide Layer 4 to Layer 7 packet inspection to prevent malicious attacks related to web services. You first set up the AIC parameters, then you can either use the default AIC signatures or tune them.

• Configure IP fragment reassembly options

You can configure the sensor to reassemble a datagram that has been fragmented over multiple packets. You can specify boundaries that the sensor uses to determine how many datagrams and how long to wait for more fragments of a datagram. The goal is to ensure that the sensor does not allocate all its resources to datagrams that cannot be completely reassembled, either because the sensor missed some frame transmissions or because an attack has been launched that is based on generating random fragment datagrams. You first choose the method the sensor will use to perform IP fragment reassembly, then you can tune the IP fragment reassembly signatures, which are part of the Normalizer engine.

• Configure TCP stream reassembly

You can configure the sensor to monitor only TCP sessions that have been established by a complete three-way handshake. You can also configure how long to wait for the handshake to complete, and how long to keep monitoring a connection where no more packets have been seen. The goal is to prevent the sensor from creating alerts where a valid TCP session has not been established. There are known attacks against sensors that try to get the sensor to generate alerts by simply replaying pieces of an attack. The TCP session reassembly feature helps to mitigate these types of attacks against the sensor. You first choose the method the sensor will use to perform TCP stream reassembly, then you can tune TCP stream reassembly signatures, which are part of the Normalizer engine.

For signature 3050 Half Open SYN Attack, if you choose modify packet inline as the action, you can see as much as 20 to 30% performance degradation while the protection is active. The protection is only active during an actual SYN flood.

• Configure IP logging options

You can configure a sensor to generate an IP session log when the sensor detects an attack. When IP logging is configured as a response action for a signature and the signature is triggered, all packets to and from the source address of the alert are logged for a specified period of time.

For More Information

- For the procedure for setting up the AIC parameters, see Configuring Application Policy, page 5-35.
- For an example procedure for tuning AIC signatures, see Tuning an AIC Signature, page 5-36.
- For the procedure for configuring the method the sensor uses for performing IP fragment reassembly, see Configuring the IP Fragment Reassembly Mode, page 5-39.
- For an example procedure for tuning an IP fragment reassembly signature, see Tuning an IP Fragment Reassembly Signature, page 5-40.
- For the procedure for configuring the method the sensor uses to perform TCP stream reassembly, see Configuring the TCP Stream Reassembly Mode, page 5-46.
- For an example procedure for tuning a TCP stream reassembly signature, see Tuning a TCP Stream Reassembly Signature, page 5-47.
- For the procedure for configuring IP logging, see Configuring IP Logging, page 5-48.

Miscellaneous Tab Field Definitions

The following fields are found on the Miscellaneous tab:

- Application Policy-Lets you configure application policy enforcement.
 - Enable HTTP —Enables protection for web services. Check the Yes check box to require the sensor to inspect HTTP traffic for compliance with the RFC.
 - Max HTTP Requests—Specifies the maximum number of outstanding HTTP requests per connection.
 - AIC Web Ports—Specifies the variable for ports to look for AIC traffic.
 - Enable FTP—Enables protection for web services. Check the Yes check box to require the sensor to inspect FTP traffic.
- Fragment Reassembly—Lets you configure IP fragment reassembly.
 - IP Reassembly Mode—Identifies the method the sensor uses to reassemble the fragments, based on the operating system.
- Stream Reassembly—Lets you configure TCP stream reassembly.
 - TCP Handshake Required—Specifies that the sensor should only track sessions for which the three-way handshake is completed.
 - TCP Reassembly Mode—Specifies the mode the sensor should use to reassemble TCP sessions with the following options:

Asymmetric—Can only see one direction of bidirectional traffic flow.

<u>Note</u>

Asymmetric mode lets the sensor synchronize state with the flow and maintain inspection for those engines that do not require both directions. Asymmetric mode lowers security because full protection requires both sides of traffic to be seen.

Strict—If a packet is missed for any reason, all packets after the missed packet are not processed.

Loose—Use in environments where packets might be dropped.

- IP Log—Lets you configure the sensor to stop IP logging when any of the following conditions are met:
 - Max IP Log Packets—Identifies the number of packets you want logged.
 - IP Log Time—Identifies the duration you want the sensor to log. A valid value is 1 to 60 seconds. The default is 30 seconds.
 - Max IP Log Bytes-Identifies the maximum number of bytes you want logged.

Configuring Application Policy Signatures

This section describes AIC signatures and how to configure them. This section contains the following topics:

- Understanding AIC Signatures, page 5-28
- AIC Engine and Sensor Performance, page 5-29
- AIC Request Method Signatures, page 5-29
- AIC MIME Define Content Type Signatures, page 5-31
- AIC Transfer Encoding Signatures, page 5-34
- AIC FTP Commands Signatures, page 5-34
- Configuring Application Policy, page 5-35
- Tuning an AIC Signature, page 5-36

Understanding AIC Signatures

AIC has the following categories of signatures:

- HTTP request method
 - Define request method
 - Recognized request methods
- MIME type
 - Define content type
 - Recognized content type
- Define web traffic policy

There is one predefined signature, 12674, that specifies the action to take when noncompliant HTTP traffic is seen. The parameter Alarm on Non HTTP Traffic enables the signature. By default this signature is enabled.

- Transfer encodings
 - Associate an action with each method
 - List methods recognized by the sensor
 - Specify which actions need to be taken when a chunked encoding error is seen
- FTP commands
 - Associates an action with an FTP command.

For More Information

- For more information on the AIC signature engine, see AIC Engine, page B-10.
- For a list of AIC request method signature IDs and descriptions, see AIC Request Method Signatures, page 5-29.
- For a list of AIC MIME define content type signature IDs and descriptions, see AIC MIME Define Content Type Signatures, page 5-31.
- For a list of AIC transfer encoding signature IDs and descriptions, see AIC Transfer Encoding Signatures, page 5-34.
- For a list of AIC FTP commands signature IDs and descriptions, see AIC FTP Commands Signatures, page 5-34.

AIC Engine and Sensor Performance

Application policy enforcement is a unique sensor feature. Rather than being based on traditional IPS technologies that inspect for exploits, vulnerabilities, and anomalies, AIC policy enforcement is designed to enforce HTTP and FTP service policies. The inspection work required for this policy enforcement is extreme compared with traditional IPS inspection work. A large performance penalty is associated with using this feature. When AIC is enabled, the overall bandwidth capacity of the sensor is reduced.

AIC policy enforcement is disabled in the IPS default configuration. If you want to activate AIC policy enforcement, we highly recommend that you carefully choose the exact policies of interest and disable those you do not need. Also, if your sensor is near its maximum inspection load capacity, we recommend that you not use this feature since it can oversubscribe the sensor. We recommend that you use the adaptive security appliance firewall to handle this type of policy enforcement.

AIC Request Method Signatures

The HTTP request method has two categories of signatures:

- Define request method—Allows actions to be associated with request methods. You can expand and modify the signatures (Define Request Method).
- Recognized request methods—Lists methods that are recognized by the sensor (Recognized Request Methods).

Table 5-1 lists the predefined define request method signatures. Enable the signatures that have the predefined method you need.

Signature ID	Define Request Method
12676	Request Method Not Recognized
12677	Define Request Method PUT
12678	Define Request Method CONNECT
12679	Define Request Method DELETE
12680	Define Request Method GET
12681	Define Request Method HEAD
12682	Define Request Method OPTIONS
12683	Define Request Method POST
12685	Define Request Method TRACE
12695	Define Request Method INDEX
12696	Define Request Method MOVE
12697	Define Request Method MKDIR
12698	Define Request Method COPY
12699	Define Request Method EDIT
12700	Define Request Method UNEDIT
12701	Define Request Method SAVE
12702	Define Request Method LOCK
12703	Define Request Method UNLOCK
12704	Define Request Method REVLABEL
12705	Define Request Method REVLOG
12706	Define Request Method REVADD
12707	Define Request Method REVNUM
12708	Define Request Method SETATTRIBUTE
12709	Define Request Method GETATTRIBUTENAME
12710	Define Request Method GETPROPERTIES
12711	Define Request Method STARTENV
12712	Define Request Method STOPREV

 Table 5-1
 Request Method Signatures

For More Information

For the procedure for enabling signatures, see Enabling, Disabling, and Retiring Signatures, page 5-12.

AIC MIME Define Content Type Signatures

There are two policies associated with MIME types:

- Define content type—Associates specific actions for the following cases (Define Content Type):
 - Deny a specific MIME type, such as an image/jpeg
 - Message size violation
 - MIME-type mentioned in header and body do not match
- Recognized content type (Recognized Content Type)

Table 5-2 lists the predefined define content type signatures. Enable the signatures that have the predefined content type you need. You can also create custom define content type signatures.

Table 5-2 Define Content Type Signatures

Signature ID	Signature Description
12621	Content Type image/gif Invalid Message Length
12622 2	Content Type image/png Verification Failed
12623 0	Content Type image/tiff Header Check
12623 1	Content Type image/tiff Invalid Message Length
12623 2	Content Type image/tiff Verification Failed
12624 0	Content Type image/x-3ds Header Check
12624 1	Content Type image/x-3ds Invalid Message Length
12624 2	Content Type image/x-3ds Verification Failed
12626 0	Content Type image/x-portable-bitmap Header Check
12626 1	Content Type image/x-portable-bitmap Invalid Message Length
12626 2	Content Type image/x-portable-bitmap Verification Failed
12627 0	Content Type image/x-portable-graymap Header Check
12627 1	Content Type image/x-portable-graymap Invalid Message Length
12627 2	Content Type image/x-portable-graymap Verification Failed
12628 0	Content Type image/jpeg Header Check
12628 1	Content Type image/jpeg Invalid Message Length
12628 2	Content Type image/jpeg Verification Failed
12629 0	Content Type image/cgf Header Check
12629 1	Content Type image/cgf Invalid Message Length
12631 0	Content Type image/x-xpm Header Check
12631 1	Content Type image/x-xpm Invalid Message Length
12633 0	Content Type audio/midi Header Check
12633 1	Content Type audio/midi Invalid Message Length
12633 2	Content Type audio/midi Verification Failed
12634 0	Content Type audio/basic Header Check
12634 1	Content Type audio/basic Invalid Message Length
12634 2	Content Type audio/basic Verification Failed
12635 0	Content Type audio/mpeg Header Check
12635 1	Content Type audio/mpeg Invalid Message Length
12635 2	Content Type audio/mpeg Verification Failed

Signature ID	Signature Description
12636 0	Content Type audio/x-adpcm Header Check
12636 1	Content Type audio/x-adpcm Invalid Message Length
12636 2	Content Type audio/x-adpcm Verification Failed
12637 0	Content Type audio/x-aiff Header Check
12637 1	Content Type audio/x-aiff Invalid Message Length
12637 2	Content Type audio/x-aiff Verification Failed
12638 0	Content Type audio/x-ogg Header Check
12638 1	Content Type audio/x-ogg Invalid Message Length
12638 2	Content Type audio/x-ogg Verification Failed
12639 0	Content Type audio/x-wav Header Check
12639 1	Content Type audio/x-wav Invalid Message Length
12639 2	Content Type audio/x-wav Verification Failed
12641 0	Content Type text/html Header Check
12641 1	Content Type text/html Invalid Message Length
12641 2	Content Type text/html Verification Failed
12642 0	Content Type text/css Header Check
12642 1	Content Type text/css Invalid Message Length
12643 0	Content Type text/plain Header Check
12643 1	Content Type text/plain Invalid Message Length
12644 0	Content Type text/richtext Header Check
12644 1	Content Type text/richtext Invalid Message Length
12645 0	Content Type text/sgml Header Check
12645 1	Content Type text/sgml Invalid Message Length
12645 2	Content Type text/sgml Verification Failed
12646 0	Content Type text/xml Header Check
12646 1	Content Type text/xml Invalid Message Length
12646 2	Content Type text/xml Verification Failed
12648 0	Content Type video/flc Header Check
12648 1	Content Type video/flc Invalid Message Length
12648 2	Content Type video/flc Verification Failed
12649 0	Content Type video/mpeg Header Check
12649 1	Content Type video/mpeg Invalid Message Length
12649 2	Content Type video/mpeg Verification Failed
12650 0	Content Type text/xmcd Header Check
12650 1	Content Type text/xmcd Invalid Message Length
12651 0	Content Type video/quicktime Header Check
12651 1	Content Type video/quicktime Invalid Message Length
12651 2	Content Type video/quicktime Verification Failed
12652 0	Content Type video/sgi Header Check
12652 1	Content Type video/sgi Verification Failed
12653 0	Content Type video/x-avi Header Check
12653 1	Content Type video/x-avi Invalid Message Length

Table 5-2	Define Content	Type Signatures	(continued)
		ippo orginataroo	(00111111000)

Signature ID	Signature Description
12654 0	Content Type video/x-fli Header Check
12654 1	Content Type video/x-fli Invalid Message Length
12654 2	Content Type video/x-fli Verification Failed
12655 0	Content Type video/x-mng Header Check
12655 1	Content Type video/x-mng Invalid Message Length
12655 2	Content Type video/x-mng Verification Failed
12656 0	Content Type application/x-msvideo Header Check
12656 1	Content Type application/x-msvideo Invalid Message Length
12656 2	Content Type application/x-msvideo Verification Failed
12658 0	Content Type application/ms-word Header Check
12658 1	Content Type application/ms-word Invalid Message Length
12659 0	Content Type application/octet-stream Header Check
12659 1	Content Type application/octet-stream Invalid Message Length
12660 0	Content Type application/postscript Header Check
12660 1	Content Type application/postscript Invalid Message Length
12660 2	Content Type application/postscript Verification Failed
12661 0	Content Type application/vnd.ms-excel Header Check
12661 1	Content Type application/vnd.ms-excel Invalid Message Length
12662 0	Content Type application/vnd.ms-powerpoint Header Check
12662 1	Content Type application/vnd.ms-powerpoint Invalid Message Length
12663 0	Content Type application/zip Header Check
12663 1	Content Type application/zip Invalid Message Length
12663 2	Content Type application/zip Verification Failed
12664 0	Content Type application/x-gzip Header Check
12664 1	Content Type application/x-gzip Invalid Message Length
12664 2	Content Type application/x-gzip Verification Failed
12665 0	Content Type application/x-java-archive Header Check
12665 1	Content Type application/x-java-archive Invalid Message Length
12666 0	Content Type application/x-java-vm Header Check
12666 1	Content Type application/x-java-vm Invalid Message Length
12667 0	Content Type application/pdf Header Check
12667 1	Content Type application/pdf Invalid Message Length
12667 2	Content Type application/pdf Verification Failed
12668 0	Content Type unknown Header Check
12668 1	Content Type unknown Invalid Message Length
12669 0	Content Type image/x-bitmap Header Check
12669 1	Content Type image/x-bitmap Invalid Message Length
12673 0	Recognized content type

Table 5-2 Define Content Type Signatures (continued)

For More Information

For the procedure for enabling signatures, see Enabling, Disabling, and Retiring Signatures, page 5-12.

1

AIC Transfer Encoding Signatures

There are three policies associated with transfer encoding:

- Associate an action with each method (Define Transfer Encoding)
- List methods recognized by the sensor (Recognized Transfer Encodings)
- Specify which actions need to be taken when a chunked encoding error is seen (Chunked Transfer Encoding Error)

Table 5-3 lists the predefined transfer encoding signatures. Enable the signatures that have the predefined transfer encoding method you need.

Signature ID	Transfer Encoding Method	
12686	Recognized Transfer Encoding	
12687	Define Transfer Encoding Deflate	
12688	Define Transfer Encoding Identity	
12689	Define Transfer Encoding Compress	
12690	Define Transfer Encoding GZIP	
12693	Define Transfer Encoding Chunked	
12694	Chunked Transfer Encoding Error	

Table 5-3 Transfer Encoding Signatures

For More Information

For the procedure for enabling signatures, see Enabling, Disabling, and Retiring Signatures, page 5-12.

AIC FTP Commands Signatures

Table 5-4 lists the predefined FTP commands signatures. Enable the signatures that have the predefined FTP command you need.

Table 5-4 FTP Commands Signatures

Signature ID	FTP Command
12900	Unrecognized FTP command
12901	Define FTP command abor
12902	Define FTP command acct
12903	Define FTP command allo
12904	Define FTP command appe
12905	Define FTP command cdup
12906	Define FTP command cwd
12907	Define FTP command dele
12908	Define FTP command help
12909	Define FTP command list
12910	Define FTP command mkd

Signature ID	FTP Command
12911	Define FTP command mode
12912	Define FTP command nlst
12913	Define FTP command noop
12914	Define FTP command pass
12915	Define FTP command pasv
12916	Define FTP command port
12917	Define FTP command pwd
12918	Define FTP command quit
12919	Define FTP command rein
12920	Define FTP command rest
12921	Define FTP command retr
12922	Define FTP command rmd
12923	Define FTP command rnfr
12924	Define FTP command rnto
12925	Define FTP command site
12926	Define FTP command smnt
12927	Define FTP command stat
12928	Define FTP command stor
12929	Define FTP command stou
12930	Define FTP command stru
12931	Define FTP command syst
12932	Define FTP command type
12933	Define FTP command user

Table 5-4 FTP Commands Signatures (continued)

For More Information

For the procedure for enabling signatures, see Enabling, Disabling, and Retiring Signatures, page 5-12.

Configuring Application Policy

To configure the application policy parameters, follow these steps:

<u>}</u> Tip

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

Step 1 Log in to IDM using an account with administrator or operator privileges.

Step 2 Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Advanced > Miscellaneous.

In the Enable HTTP field, choose Yes from the drop-down list to enable inspection of HTTP traffic.			
In the Max HTTP Requests field, enter the number of outstanding HTTP requests per connection that can be outstanding without having received a response from the server.			
In the AIC Web Ports field, enter the ports that you want to be active.			
In the Enable FTP field choose Yes from the drop-down list to enable inspection of FTP traffic.			
Note	If you enable the application policy for HTTP or FTP, the sensor checks to be sure the traffic is compliant with the RFC.		
ρ			
Тір	To discard your changes, click Cancel .		
Click	OK.		

Tuning an AIC Signature

The following example demonstrates how to tune an AIC signature, a Recognized Content Type (MIME) signature, specifically, signature 12,623 1 Content Type image/tiff Invalid Message Length.

To tune a MIME-type policy signature, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- **Step 2** Choose **Configuration > Policies > Signature Definitions > sig0 > All Signatures**.
- Step 3 From the Filter drop-down list, choose Engine and then choose AIC HTTP as the engine.
- **Step 4** Scroll down the list and select Sig ID 12,623 Subsig ID 1 Content Type image/tiff Invalid Message Length, and click **Edit**.
 - <u>)</u> Tip

You can click the Sig ID column head to have the signature IDs appear in order.

 $\underline{\rho}$ Tip

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

- Step 5 Under Status, choose Yes from the drop-down list in the Enabled field.
- **Step 6** Under Engine, choose one of the options, for example, **Length**, in the Content Type Details field.
- **Step 7** In the Length field, make the length smaller by changing the default to 30,000.

Configuring IP Fragment Reassembly Signatures

This section describes IP fragment reassembly, lists the IP fragment reassembly signatures with their configurable parameters, and describes how to configure them. It contains the following topics:

- Understanding IP Fragment Reassembly Signatures, page 5-37
- IP Fragment Reassembly Signatures and Configurable Parameters, page 5-38
- Configuring the IP Fragment Reassembly Mode, page 5-39
- Tuning an IP Fragment Reassembly Signature, page 5-40

Understanding IP Fragment Reassembly Signatures

You can configure the sensor to reassemble a datagram that has been fragmented over multiple packets. You can specify boundaries that the sensor uses to determine how many datagram fragments it reassembles and how long to wait for more fragments of a datagram. The goal is to ensure that the sensor does not allocate all its resources to datagrams that cannot be completely reassembled, either because the sensor missed some frame transmissions or because an attack has been launched that is based on generating random fragmented datagrams.

You configure the IP fragment reassembly per signature.

For More Information

For more information on the Normalizer signature engine, see Normalizer Engine, page B-22.

IP Fragment Reassembly Signatures and Configurable Parameters

Table 5-5 lists IP fragment reassembly signatures with the parameters that you can configure for IP fragment reassembly. The IP fragment reassembly signatures are part of the Normalizer engine.

Table 5-5 IP Fragment Reassembly Signatures

Signature ID and Name	Description	Parameter With Default Value	Default Action
Signature iD and Name	Description		
1200 IP Fragmentation	Fires when the total number of	Specify Max Fragments 10000	Deny Packet Inline
Buffer Full	threshold set by Max Fragments.	(0-42000)	Produce Alert
1201 Fragment Overlap	Fires when the fragments queued for a datagram overlap each other.	None ²	
1202 Datagram Too Long	Fires when the fragment data (offset and size) exceeds the threshold set with Max Datagram Size.	Specify Max Datagram Size 65536 (2000-65536)	Deny Packet Inline Produce Alert ³
1203 Fragment Overwrite	Fires when the fragments queued for a datagram overlap each other and the overlapping data is different. ⁴	None	Deny Packet Inline Produce Alert ⁵
1204 No Initial Fragment	Fires when the datagram is incomplete and missing the initial fragment.	None	Deny Packet Inline Produce Alert ⁶
1205 Too Many Datagrams	Fires when the total number of partial datagrams in the system exceeds the threshold set by Max Partial Datagrams.	Specify Max Partial Datagrams 1000 (0-10000)	Deny Packet Inline Produce Alert ⁷
1206 Fragment Too Small	Fires when there are more than Max Small Frags of a size less than Min Fragment Size in one datagram. ⁸	Specify Max Small Frags 2 (8-1500) Specify Min Fragment Size 400 (1-8)	Deny Packet Inline Produce Alert ⁹
1207 Too Many Fragments	Fires when there are more than Max Fragments per Datagram in one datagram.	Specify Max Fragments per Datagram 170 (0-8192)	Deny Packet Inline Produce Alert ¹⁰
1208 Incomplete Datagram	Fires when all of the fragments for a datagram have not arrived during the Fragment Reassembly Timeout. ¹¹	Specify Fragment Reassembly Timeout 60 (0-360)	Deny Packet Inline Produce Alert ¹²
1220 Jolt2 Fragment Reassembly DoS attack	Fires when multiple fragments are received all claiming to be the last fragment of an IP datagram.	Specify Max Last Fragments 4 (1-50)	Deny Packet Inline Produce Alert ¹³
1225 Fragment Flags Invalid	Fires when a bad combination of fragment flags is detected.	None ¹⁴	

1. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packets and all associated fragments for this datagram. If you disable this signature, the default values are still used and packets are dropped (inline mode) or not analyzed (promiscuous mode) and no alert is sent.

2. This signature does not fire when the datagram is an exact duplicate. Exact duplicates are dropped in inline mode regardless of the settings. Modify Packet Inline removes the overlapped data from all but one fragment so there is no ambiguity about how the endpoint treats the datagram. Deny Connection Inline has no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.

- 3. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram. Regardless of the actions set the datagram is not processed by the IPS if the datagram is larger than the Max Datagram size.
- 4. This is a very unusual event.
- 5. Modify Packet Inline removes the overlapped data from all but one fragment so there is no ambiguity about how the endpoint treats the datagram. Deny Connection Inline has no effect on this signature. Deny Packet Inline drops the packets and all associated fragments for this datagram.
- IPS does not inspect a datagram missing the first fragments regardless of the settings. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.
- 7. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.
- 8. IPS does not inspect the datagram if this signature is on and the number of small fragments is exceeded.
- 9. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.
- 10. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.
- 11. The timer starts when the packet for the datagram arrives.
- 12. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.
- 13. Modify Packet Inline and Deny Connection Inline have no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.
- 14. Modify Packet Inline modifies the flags to a valid combination. Deny Connection Inline has no effect on this signature. Deny Packet Inline drops the packet and all associated fragments for this datagram.

Configuring the IP Fragment Reassembly Mode

Note

You can configure this option if your sensor is operating in promiscuous mode. If your sensor is operating in line mode, the method is NT only.

To configure the mode the sensor uses for IP fragment reassembly, follow these steps:

- **Step 1** Log in to IDM using an account with administrator or operator privileges.
- Step 2 Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Advanced > Miscellaneous.

P

- **p** An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.
- **Step 3** Under Fragment Reassembly, from the IP Reassembly Mode field choose the operating system you want to use to reassemble the fragments.

- **Step 4** Click **OK**, and then **Apply** to apply your changes and save the revised configuration.
 - Image: Project with the sector of t

Tuning an IP Fragment Reassembly Signature

The following procedure demonstrates how to tune an IP fragment reassembly signature, specifically, signature 1200 0 IP Fragmentation Buffer Full.

To tune an IP fragment reassembly signature, follow these steps:

- Step 1 Log in to IDM using an account with administrator or operator privileges.
- Step 2 Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures.
- **Step 3** In the Filter field, choose **Engine** from the drop-down list, and then choose **Normalizer** as the engine.
- **Step 4** Select the IP fragment reassembly signature you want to configure in the list, for example, Sig ID 1200 Subsig ID 0 IP Fragmentation Buffer Full, and then click **Edit**.

 \mathcal{P} Tip

An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default.

Step 5 Change the default setting of any IP fragment reassembly parameters that can be configured for signature 1200. For example, in the Max Fragments field change the setting from the default of 10000 to 20000.

For signature 1200, you can also change the parameters of these options:

- Specify TCP Idle Timeout
- Specify Service Ports
- Specify SYN Flood Max Embryonic

Tin

To discard your changes and close the Edit Signature dialog box, click Cancel.

Step 6 Click OK, and then Apply to apply your changes and save the revised configuration

To discard your changes, click **Reset**.

Configuring TCP Stream Reassembly Signatures

This section describes TCP stream reassembly, lists the TCP stream reassembly signatures with the configurable parameters, describes how to configure TCP stream signatures, and how to configure the mode for TCP stream reassembly. It contains the following topics:

- Understanding TCP Stream Reassembly Signatures, page 5-41
- TCP Stream Reassembly Signatures and Configurable Parameters, page 5-41
- Configuring the TCP Stream Reassembly Mode, page 5-46
- Configuring TCP Stream Reassembly Signatures, page 5-40

Understanding TCP Stream Reassembly Signatures

You can configure the sensor to monitor only TCP sessions that have been established by a complete three-way handshake. You can also configure how long to wait for the handshake to complete, and how long to keep monitoring a connection where no more packets have been seen. The goal is to prevent the sensor from creating alerts where a valid TCP session has not been established. There are known attacks against sensors that try to get the sensor to generate alerts by simply replaying pieces of an attack. The TCP session reassembly feature helps to mitigate these types of attacks against the sensor.

You configure TCP stream reassembly parameters per signature. You can configure the mode for TCP stream reassembly.

For More Information

For more information on the Normalizer signature engine, see Normalizer Engine, page B-22.

TCP Stream Reassembly Signatures and Configurable Parameters

Table 5-6 lists TCP stream reassembly signatures with the parameters that you can configure for TCP stream reassembly. TCP stream reassembly signatures are part of the Normalizer engine.

Table 5-6	TCP Stream	Reassembly Signatures
-----------	------------	------------------------------

Signature ID and Name	Description	Parameter With Default Value and Range	Default Actions
1301 TCP Session Inactivity Timeout ¹	Fires when a TCP session has been idle for a TCP Idle Timeout.	TCP Idle Timeout 3600 (15-3600)	2
1302 TCP Session Embryonic Timeout ³	Fires when a TCP session has not completes the three-way handshake in TCP embryonic timeout seconds.	TCP Embryonic Timeout 15 (3-300)	4
1303 TCP Session Closing Timeout ⁵	Fires when a TCP session has not closed completely in TCP Closed Timeout seconds after the first FIN.	TCP Closed Timeout 5 (1-60)	6
1304 TCP Session Packet Queue Overflow	This signature allows for setting the internal TCP Max Queue size value for the Normalizer engine. As a result it does not function in promiscuous mode. By default this signature does not fire an alert. If a custom alert event is associated with this signature and if the queue size is exceeded, an alert fires. Note The IPS signature team discourages modifying this value.	TCP Max Queue 32 (0-128) TCP Idle Timeout 3600	7

Signature ID and Name	Description	Parameter With Default Value and Range	Default Actions
1305 TCP Urg Flag Set ⁸	Fires when the TCP urgent flag is seen	TCP Idle Timeout 3600	Modify Packet Inline ⁹
1306 0 TCP Option Other	Fires when a TCP option in the range of TCP Option Number is seen. All 1306 signatures fire an alert and do not function in promiscuous mode.	TCP Option Number 6-7,9-255 (Integer Range Allow Multiple 0-255 constraints) TCP Idle Timeout 3600	Modify Packet Inline Produce Alert ¹⁰
1306 1 TCP SACK Allowed Option	Fires when a TCP selective ACK allowed option is seen. All 1306 signatures fire an alert and do not function in promiscuous mode.	TCP Idle Timeout 3600	Modify Packet Inline ¹¹
1306 2 TCP SACK Data Option	Fires when a TCP selective ACK data option is seen. All 1306 signatures fire an alert and do not function in promiscuous mode.	TCP Idle Timeout 3600	Modify Packet Inline ¹²
1306 3 TCP Timestamp Option	Fires when a TCP timestamp option is seen. All 1306 signatures fire an alert and do not function in promiscuous mode.	TCP Idle Timeout 3600	Modify Packet Inline ¹³
1306 4 TCP Window Scale Option	Fires when a TCP window scale option is seen. All 1306 signatures fire an alert and do not function in promiscuous mode.	TCP Idle Timeout 3600	Modify Packet Inline ¹⁴
1306 5 TCP MSS Option	Fires when a TCP MSS option is detected. All 1306 signatures fire an alert and do not function in promiscuous mode.	TCP Idle Timeout 3600	Modify Packet Inline
1306 6 TCP option data after EOL option	Fires when the TCP option list has data after the EOL option. All 1306 signatures fire an alert and do not function in promiscuous mode.	TCP Idle Timeout 3600	Modify Packet Inline
1307 TCP Window Variation	Fires when the right edge of the recv window for TCP moves to the right (decreases).	TCP Idle Timeout 3600	Deny Connection Inline Produce Alert ¹⁵

Table 5-6 TCP Stream Reassembly Signatures (continued)

		Parameter With Default Value and	
Signature ID and Name	Description	Range	Default Actions
1308 TTL Evasion ¹⁶	Fires when the TTL seen on one direction of a session is higher than the minimum that has been observed.	TCP Idle Timeout 3600	Modify Packet Inline ¹⁷
1309 TCP Reserved Flags Set	Fires when the reserved bits (including bits used for ECN) are set on the TCP header.	TCP Idle Timeout 3600	Modify Packet Inline Produce Alert ¹⁸
1311 TCP Packet Exceeds MSS	Fires when a packet exceeds the MSS that was exchanged during the three-way handshake.	TCP Idle Timeout 3600	Produce Alert ¹⁹
1312 TCP MSS Below Minimum	Fires when the MSS value in a packet containing a SYN flag is less that TCP Min MSS.	TCP Min MSS 400 (0-16000) TCP Idle Timeout 3600	Modify Packet Inline ²⁰
1313 TCP Max MSS	Fires when the MSS value in a packet containing a SYN flag exceed TCP Max MSS	TCP Max MSS1460 (0-16000)	Modify Packet Inline disabled ²¹
1314 TCP Data SYN	Fires when TCP payload is sent in the SYN packet.		Deny Packet Inline disabled ²²
1315 ACK Without TCP Stream	Fires when an ACK packet is sent that does not belong to a stream.	—	Produce Alert disabled ²³
1317 Zero Window Probe	Fires when a zero window probe packet is detected.	Modify Packet Inline removes data from the Zero Window Probe packet.	Modify Packet Inline
1330 ²⁴ 0 TCP Drop - Bad Checksum	Fires when TCP packet has bad checksum.	Modify Packet Inline corrects the checksum.	Deny Packet Inline
1330 1 TCP Drop - Bad TCP Flags	Fires when TCP packet has bad flag combination.		Deny Packet Inline
1330 2 TCP Drop - Urgent Pointer With No Flag	Fires when TCP packet has a URG pointer and no URG flag.	Modify Packet Inline clears the pointer.	Modify Packet Inline disabled
1330 3 TCP Drop - Bad Option List	Fires when TCP packet has a bad option list.		Deny Packet Inline
1330 4 TCP Drop - Bad Option Length	Fires when TCP packet has a bad option length.		Deny Packet Inline
1330 5 TCP Drop - MSS Option Without SYN	Fires when TCP MSS option is seen in packet without the SYN flag set.	Modify Packet Inline clears the MSS option.	Modify Packet Inline

Table 5-6 TCP Stream Reassembly Signatures (continued)

Table 5-6	TCP Stream Reassembly Signatures ((continued)
-----------	------------------------------------	-------------

Signature ID and Name	Description	Parameter With Default Value and Range	Default Actions
1330 6 TCP Drop - WinScale Option Without SYN	Fires when TCP window scale option is seen in packet without the SYN flag set.	Modify Packet Inline clears the window scale option.	Modify Packet Inline
1330 7 TCP Drop - Bad WinScale Option Value	Fires when a TCP packet has a bad window scale value.	Modify Packet Inline sets the value to the closest constraint value.	Modify Packet Inline
1330 8 TCP Drop - SACK Allow Without SYN	Fires when the TCP SACK allowed option is seen in a packet without the SYN flags set.	Modify Packet Inline clears the SACK allowed option.	Modify Packet Inline
1330 9 TCP Drop - Data in SYN ACK	Fires when TCP packet with SYN and ACK flags set also contains data.	—	Deny Packet Inline
1330 10 TCP Drop - Data Past FIN	Fires when TCP data is sequenced after FIN.	—	Deny Packet Inline
1330 11 TCP Drop - Timestamp not Allowed	Fires when TCP packet has timestamp option when timestamp option is not allowed.	—	Deny Packet Inline
1330 12 TCP Drop - Segment Out of Order	Fires when TCP segment is out of order and cannot be queued.	—	Deny Packet Inline
1330 13 TCP Drop - Invalid TCP Packet	Fires when TCP packet has invalid header.	—	Deny Packet Inline
1330 14 TCP Drop - RST or SYN in window	Fires when TCP packet with RST or SYN flag was sent in the sequence window but was not the next sequence.		Deny Packet Inline
1330 15 TCP Drop - Segment Already ACKed	Fires when TCP packet sequence is already ACKed by peer (excluding keepalives).	—	Deny Packet Inline
1330 16 TCP Drop - PAWS Failed	Fires when TCP packet fails PAWS check.	—	Deny Packet Inline
1330 17 TCP Drop - Segment out of State Order	Fires when TCP packet is not proper for the TCP session state.	-	Deny Packet Inline
1330 18 TCP Drop - Segment out of Window	Fires when TCP packet sequence number is outside of allowed window.		Deny Packet Inline
3050 Half Open SYN Attack		syn-flood-max-embry onic 5000	

Table 5-6 TCP Stream Reassembly Signatures (continued)

Signature ID and Name	Description	Parameter With Default Value and Range	Default Actions
3250 TCP Hijack		max-old-ack 200	
3251 TCP Hijack Simplex Mode		max-old-ack 100	

1. The timer is reset to 0 after each packet on the TCP session. by default, this signature does not produce an alert. You can choose to produce alerts for expiring TCP connections if desired. A statistic of total number of expired flows is updated any time a flow expires.

- 2. Modify Packet Inline, Deny Connection Inline, and Deny Packet Inline have no effect on this signature.
- 3. The timer starts with the first SYN packet and is not reset. State for the session is reset and any subsequent packets for this flow appear to be out of order (unless it is a SYN).
- 4. Modify Packet Inline, Deny Connection Inline, and Deny Packet Inline have no effect on this signature.
- 5. The timer starts with the first FIN packet and is not reset. State for the session is reset and any subsequent packets for this flow appear to be out of order (unless it is a SYN).
- 6. Modify Packet Inline, Deny Connection Inline, and Deny Packet Inline have no effect on this signature.
- 7. Modify Packet Inline and Deny Packet Inline have no effect on this signature. Deny Connection Inline drops the current packet and the TCP session.
- 8. Phrak 57 describes a way to evade security policy using URG pointers. You can normalize the packet when it is in inline mode with this signature.
- 9. Modify Packet Inline strips the URG flag and zeros the URG pointer from the packet. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 10. Modify Packet Inline strips the selected option(s) from the packet. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 11. Modify Packet Inline strips the selected ACK allowed option from the packet. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 12. Modify Packet Inline strips the selected ACK allowed option from the packet. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 13. Modify Packet Inline strips the timestamp option from the packet. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 14. Modify Packet Inline strips the window scale option from the packet. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 15. Modify Packet Inline has no effect on this signature. Deny Connection Inline drops the current packet and the TCP connection. Deny Packet Inline drops the packet.
- 16. This signature is used to cause TTLs to monotonically decrease for each direction on a session. For example, if TTL 45 is the lowest TTL seen from A to B, then all future packets from A to B will have a maximum of 45 if Modify Packet Inline is set. Each new low TTL becomes the new maximum for packets on that session.
- 17. Modify Packet Inline ensures that the IP TTL monotonically decreases. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 18. Modify Packet Inline clears all reserved TCP flags. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 19. Modify Packet Inline has no effect on this signature. Deny Connection Inline drops the current packet and the TCP connection. Deny Packet Inline drops the packet.
- 20. 2.4.21-15.EL.cisco.1 Modify Packet Inline raises the MSS value to TCP Min MSS. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet 2.4.21-15.EL.cisco.1.
- 21. Modify Packet Inline lowers the MSS value to TCP Max MSS. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet 2.4.21-15.EL.cisco.1.
- 22. Modify Packet Inline has no effect on this signature. Deny Connection Inline drops the current packet and the TCP session. Deny Packet Inline drops the packet.
- 23. Modify Packet Inline, Deny Connection Inline, and Deny Packet Inline have no effect on this signature. By default, the 1330 signatures drop packets for which this signature sends alerts.
- 24. These subsignatures represent the reasons why the Normalizer might drop a TCP packet. By default these subsignatures drop packets. These subsignatures let you permit packets that fail the checks in the Normalizer through the IPS. The drop reasons have an entry in the TCP statistics. By default these subsignatures do not produce an alert.

Configuring the TCP Stream Reassembly Mode

An e para valu	mpty check box indicates the default value is being used. Check the check box to configure that meter. Click the value field to change the parameter. A green check indicates that a user-defined e is being used. Click the green check to change the value back to the default.
The traffi inlin	parameters TCP Handshake Required and TCP Reassembly Mode only impact sensors inspecting ic in promiscuous mode, not inline mode. To configure asymmetric options for sensors inspecting e traffic, use the Normalizer Mode parameter.
To c	onfigure the TCP stream reassembly mode, follow these steps:
Log	in to IDM using an account with administrator or operator privileges.
Choo Miso	ose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Advanced > cellaneous.
Und	er Stream Reassembly, in TCP Handshake Required field, choose Yes.
Choo three	osing TCP Handshake Required specifies that the sensor should only track sessions for which the-way handshake is completed.
In th rease	e TCP Reassembly Mode field, from the drop-down list, choose the mode the sensor should use semble TCP sessions:
•	Asymmetric —Lets the sensor synchronize state with the flow and maintain inspection for thos engines that do not require both directions.
•	Strict—If a packet is missed for any reason, all packets after the missed packet are processed.
•]	Loose—Use in environments where packets might be dropped.
ρ	

For More Information

For information on asymmetric inspection options for sensors configured in inline mode, see Inline TCP Session Tracking Mode, page 6-3 and Adding, Editing, and Deleting Virtual Sensors, page 6-10.

Tuning a TCP Stream Reassembly Signature

The following procedure demonstrates how to tune a TCP stream reassembly signatures, for example, signature 1313 0 TCP MSS Exceeds Maximum.

Caution For signature 3050 Half Open SYN Attack, if you choose modify packet inline as the action, you can see as much as 20 to 30% performance degradation while the protection is active. The protection is only active during an actual SYN flood. <u>}</u> Tip An empty check box indicates the default value is being used. Check the check box to configure that parameter. Click the value field to change the parameter. A green check indicates that a user-defined value is being used. Click the green check to change the value back to the default. To tune a TCP stream reassembly signature, follow these steps: Step 1 Log in to IDM using an account with administrator or operator privileges. Step 2 Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures. Step 3 From the Filter drop-down list, choose **Engine** and then choose **Normalizer**. Step 4 Select the TCP fragment reassembly signature you want to configure in the list, for example, Sig ID 1313 Subsig ID 0 TCP MSS Exceeds Maximum, and click Edit. Step 5 Change the default setting of any configurable IP fragment reassembly parameters for signature 1313. For example, in the TCP Max MSS field, change the setting from the default of 1460 to 1380. Note Changing this parameter from the default of 1460 to 1380 helps prevent fragmentation of traffic going through a VPN tunnel. For signature 1313 0, you can also change the parameters of these options: Specify Hijack Max Old Ack Specify TCP Idle Timeout Specify Service Ports Specify SYN Flood Max Embryonic Tip To discard your changes and close the Edit Signature dialog box, click Cancel. Step 6 Click **OK**, and then **Apply** to apply your changes and save the revised configuration \mathcal{P} Tip To discard your changes, click Reset.

Configuring IP Logging

You can configure a sensor to generate an IP session log when the sensor detects an attack. When IP logging is configured as a response action for a signature and the signature is triggered, all packets to and from the source address of the alert are logged for a specified period of time.

An empty check box indicates the default value is being used. Check the check box to comparameter. Click the value field to change the parameter. A green check indicates that a use value is being used. Click the green check to change the value back to the default. When the sensor meets any one of the IP logging conditions, it stops IP logging. To configure IP logging parameters, follow these steps: Log in to IDM using an account with administrator or operator privileges. Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Adv Miscellaneous. Under IP Log in the Max IP Log Packets field, enter the number of packets you want logged In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.		
 When the sensor meets any one of the IP logging conditions, it stops IP logging. To configure IP logging parameters, follow these steps: Log in to IDM using an account with administrator or operator privileges. Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Adv Miscellaneous. Under IP Log in the Max IP Log Packets field, enter the number of packets you want logged In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged. 	An en param value	pty check box indicates the default value is being used. Check the check box to configure eter. Click the value field to change the parameter. A green check indicates that a user-def is being used. Click the green check to change the value back to the default.
 When the sensor meets any one of the IP logging conditions, it stops IP logging. To configure IP logging parameters, follow these steps: Log in to IDM using an account with administrator or operator privileges. Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Adv Miscellaneous. Under IP Log in the Max IP Log Packets field, enter the number of packets you want logge In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged. 		
To configure IP logging parameters, follow these steps: Log in to IDM using an account with administrator or operator privileges. Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Adv Miscellaneous. Under IP Log in the Max IP Log Packets field, enter the number of packets you want logged In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.	When	the sensor meets any one of the IP logging conditions, it stops IP logging.
Log in to IDM using an account with administrator or operator privileges. Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Adv Miscellaneous . Under IP Log in the Max IP Log Packets field, enter the number of packets you want logge In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.	То сог	figure IP logging parameters, follow these steps:
Choose Configuration > Policies > Signature Definitions > sig0 > All Signatures > Adv Miscellaneous . Under IP Log in the Max IP Log Packets field, enter the number of packets you want logge In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.	Log ir	to IDM using an account with administrator or operator privileges.
Under IP Log in the Max IP Log Packets field, enter the number of packets you want logge In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.	Choos Misce	e Configuration > Policies > Signature Definitions > sig0 > All Signatures > Advance llaneous.
In the IP Log Time field, enter the duration you want the sensor to log. A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.	Under	IP Log in the Max IP Log Packets field, enter the number of packets you want logged.
A valid value is 1 to 60 minutes. The default is 30 minutes. In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.	In the	IP Log Time field, enter the duration you want the sensor to log.
In the Max IP Log Bytes field, enter the maximum number of bytes you want logged.	A vali	d value is 1 to 60 minutes. The default is 30 minutes.
	In the	Max IP Log Bytes field, enter the maximum number of bytes you want logged.
	\mathcal{Q}	
Tip To discard your changes and close the Advanced dialog box, click Cancel.	_	