

Interface Management

- About Interfaces, on page 1
- Guidelines and Limitations for Interfaces, on page 17
- Configure Interfaces, on page 20
- Monitoring Interfaces, on page 30
- Troubleshooting Interfaces, on page 33
- History for Interfaces, on page 39

About Interfaces

The Firepower 4100/9300 chassis supports physical interfaces, VLAN subinterfaces for container instances, and EtherChannel (port-channel) interfaces. EtherChannel interfaces can include up to 16 member interfaces of the same type.

Chassis Management Interface

The chassis management interface is used for management of the FXOS Chassis by SSH or chassis manager. This interface is separate from the mgmt-type interface that you assign to the logical devices for application management.

To configure parameters for this interface, you must configure them from the CLI. See also Changing the Management IP Address. To view information about this interface in the FXOS CLI, connect to local management and show the management port:

Firepower # connect local-mgmt

Firepower(local-mgmt) # show mgmt-port

Note that the chassis management interface remains up even if the physical cable or SFP module are unplugged, or if the **mgmt-port shut** command is performed.

Note

The chassis management interface does not support jumbo frames.

Interface Types

Physical interfaces, VLAN subinterfaces for container instances, and EtherChannel (port-channel) interfaces can be one of the following types:

- Data—Use for regular data. Data interfaces cannot be shared between logical devices, and logical devices cannot communicate over the backplane to other logical devices. For traffic on Data interfaces, all traffic must exit the chassis on one interface and return on another interface to reach another logical device.
- Data-sharing—Use for regular data. Only supported with container instances, these data interfaces can be shared by one or more logical devices/container instances (threat defense-using-management center only). Each container instance can communicate over the backplane with all other instances that share this interface. Shared interfaces can affect the number of container instances you can deploy. Shared interfaces are not supported for bridge group member interfaces (in transparent mode or routed mode), inline sets, passive interfaces, clusters, or failover links.
- Mgmt—Use to manage application instances. These interfaces can be shared by one or more logical
 devices to access external hosts; logical devices cannot communicate over this interface with other logical
 devices that share the interface. You can only assign one management interface per logical device.
 Depending on your application and manager, you can later enable management from a data interface;
 but you must assign a Management interface to the logical device even if you don't intend to use it after
 you enable data management.

Note

Mgmt interface change will cause reboot of the logical device, for example one change mgmt from e1/1 to e1/2 will cause the logical device to reboot to apply the new management.

• Eventing—Use as a secondary management interface for threat defense-using-management center devices. To use this interface, you must configure its IP address and other parameters at the threat defense CLI. For example, you can separate management traffic from events (such as web events). See the management center configuration guide for more information. Eventing interfaces can be shared by one or more logical devices to access external hosts; logical devices cannot communicate over this interface with other logical devices that share the interface. If you later configure a data interface for management, you cannot use a separate eventing interface.

Note

A virtual Ethernet interface is allocated when each application instance is installed. If the application does not use an eventing interface, then the virtual interface will be in an admin down state.

```
Firepower # show interface Vethernet775
Firepower # Vethernet775 is down (Administratively down)
Bound Interface is Ethernet1/10
Port description is server 1/1, VNIC ext-mgmt-nic5
```

Cluster—Use as the cluster control link for a clustered logical device. By default, the cluster control link
is automatically created on Port-channel 48. The Cluster type is only supported on EtherChannel interfaces.
For multi-instance clustering, you cannot share a Cluster-type interface across devices. You can add
VLAN subinterfaces to the Cluster EtherChannel to provide separate cluster control links per cluster. If
you add subinterfaces to a Cluster interface, you cannot use that interface for a native cluster. The device
manager and CDO does not support clustering.

Note

This chapter discusses *FXOS* VLAN subinterfaces only. You can separately create subinterfaces within the threat defense application. See FXOS Interfaces vs. Application Interfaces, on page 3 for more information.

See the following table for interface type support for the threat defense and ASA applications in standalone and cluster deployments.

Table 1: Interface Type Support

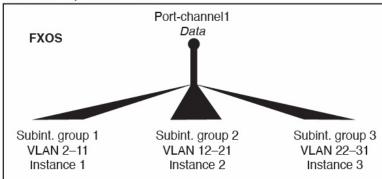
Application	n	Data	Data: Subinterface	Data-Sharing	Data-Sharing: Subinterface	Mgmt	Eventing	Cluster (EtherChannel only)	Cluster: Subinterface
Threat Defense	Standalone Native Instance	Yes —		_	_	Yes	Yes	_	_
	Standalone Container Instance	Yes	Yes	Yes	Yes	Yes	Yes	_	_
	Cluster Native Instance	Yes (EtherChannel only for inter-chassis cluster)	_	_	_	Yes	Yes	Yes	_
	Cluster Container Instance	Yes (EtherChannel only for inter-chassis cluster)	_	_	_	Yes	Yes	Yes	Yes
ASA	Standalone Native Instance	Yes	_	_	_	Yes	_	Yes	_
	Cluster Native Instance	Yes (EtherChannel only for inter-chassis cluster)	_	_	_	Yes	_	Yes	_

FXOS Interfaces vs. Application Interfaces

The Firepower 4100/9300 manages the basic Ethernet settings of physical interfaces, VLAN subinterfaces for container instances, and EtherChannel (port-channel) interfaces. Within the application, you configure

higher level settings. For example, you can only create EtherChannels in FXOS; but you can assign an IP address to the EtherChannel within the application.

The following sections describe the interaction between FXOS and the application for interfaces.


VLAN Subinterfaces

For all logical devices, you can create VLAN subinterfaces within the application.

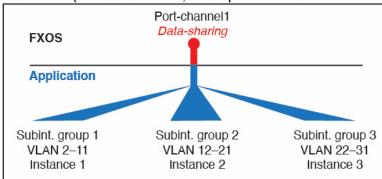
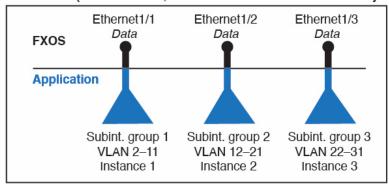

For container instances in standalone mode only, you can *also* create VLAN subinterfaces in FXOS. Multi-instance clusters do not support subinterfaces in FXOS except on the Cluster-type interface. Application-defined subinterfaces are not subject to the FXOS limit. Choosing in which operating system to create subinterfaces depends on your network deployment and personal preference. For example, to share a subinterface, you must create the subinterface in FXOS. Another scenario that favors FXOS subinterfaces comprises allocating separate subinterface groups on a single interface to multiple instances. For example, you want to use Port-channel1 with VLAN 2–11 on instance A, VLAN 12–21 on instance B, and VLAN 22–31 on instance C. If you create these subinterfaces within the application, then you would have to share the parent interface in FXOS, which may not be desirable. See the following illustration that shows the three ways you can accomplish this scenario:

Figure 1: VLANs in FXOS vs. the Application for Container Instances


Scenario 1 (recommended)

Scenario 2 (not recommended, worse performance)

Scenario 3 (recommended, but lacks EtherChannel redundancy)

Independent Interface States in the Chassis and in the Application

You can administratively enable and disable interfaces in both the chassis and in the application. For an interface to be operational, the interface must be enabled in both operating systems. Because the interface state is controlled independently, you may have a mismatch between the chassis and application.

The default state of an interface within the application depends on the type of interface. For example, the physical interface or EtherChannel is disabled by default within the application, but a subinterface is enabled by default.

Hardware Bypass Pairs

For the threat defense, certain interface modules on the Firepower 9300 and 4100 series let you enable the Hardware Bypass feature. Hardware Bypass ensures that traffic continues to flow between an inline interface pair during a power outage. This feature can be used to maintain network connectivity in the case of software or hardware failures.

The Hardware Bypass feature is configured within the threat defense application. You do not need to use these interfaces as Hardware Bypass pairs; they can be used as regular interfaces for both the ASA and the threat defense applications. Note that Hardware Bypass-capable interfaces cannot be configured for breakout ports. If you want to use the Hardware Bypass feature, do not configure the ports as EtherChannels; otherwise, you can include these interfaces as EtherChannel members in regular interface mode.

When Hardware Bypass is enabled on an inline pair, switch bypass is attempted first. If the bypass configuration fails due a switch error, physical bypass is enabled.

Note

Hardware Bypass (FTW) is not supported on threat defense installed in service-chaining with third-party applications, such as VDP/Radware.

Note

Do not enable Hardware Bypass and link state propagation for the same inline set.

The threat defense supports Hardware Bypass for interface pairs on specific network modules on the following models:

- Firepower 9300
- Firepower 4100 series

The supported Hardware Bypass network modules for these models include:

- Firepower 6-port 1G SX FTW Network Module single-wide (FPR-NM-6X1SX-F)
- Firepower 6-port 10G SR FTW Network Module single-wide (FPR-NM-6X10SR-F)
- Firepower 6-port 10G LR FTW Network Module single-wide (FPR-NM-6X10LR-F)
- Firepower 2-port 40G SR FTW Network Module single-wide (FPR-NM-2X40G-F)
- Firepower 8-port 1G Copper FTW Network Module single-wide (FPR-NM-8X1G-F)

Hardware Bypass can only use the following port pairs:

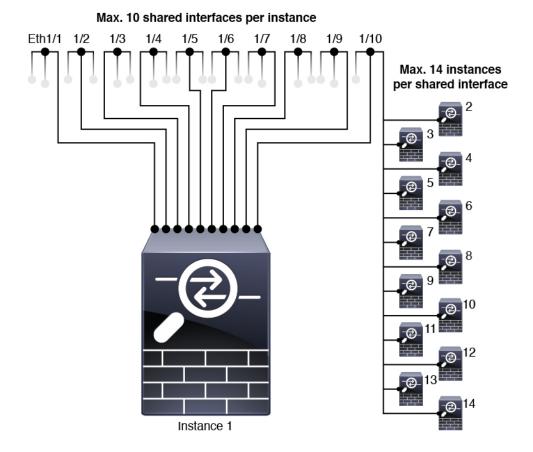
- 1 & 2
- 3 & 4
- 5 & 6
- 7 & 8

Jumbo Frame Support

The Firepower 4100/9300 chassis has support for jumbo frames enabled by default. To enable jumbo frame support on a specific logical device installed on the Firepower 4100/9300 chassis, you will need to configure the appropriate MTU settings for the interfaces on the logical device.

The maximum MTU that is supported for the application on the Firepower 4100/9300 chassis is 9184.

Note


The chassis management interface does not support jumbo frames.

Shared Interface Scalability

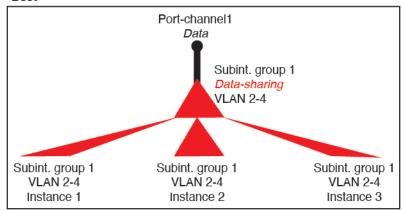
Instances can share data-sharing type interfaces. This capability lets you conserve physical interface usage as well as support flexible networking deployments. When you share an interface, the chassis uses unique MAC addresses to forward traffic to the correct instance. However, shared interfaces can cause the forwarding table to grow large due to the need for a full mesh topology within the chassis (every instance must be able to communicate with every other instance that is sharing the same interface). Therefore, there are limits to how many interfaces you can share.

In addition to the forwarding table, the chassis maintains a VLAN group table for VLAN subinterface forwarding. You can create up to 500 VLAN subinterfaces.

See the following limits for shared interface allocation:

Shared Interface Best Practices

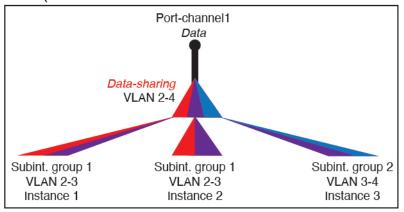
For optimal scalability of the forwarding table, share as few interfaces as possible. Instead, you can create up to 500 VLAN subinterfaces on one or more physical interfaces and then divide the VLANs among the container instances.


When sharing interfaces, follow these practices in the order of most scalable to least scalable:

1. Best—Share subinterfaces under a single parent, and use the same set of subinterfaces with the same group of instances.

For example, create a large EtherChannel to bundle all of your like-kind interfaces together, and then share subinterfaces of that EtherChannel: Port-Channel1.2, 3, and 4 instead of Port-Channel2, Port-Channel3, and Port-Channel4. When you share subinterfaces from a single parent, the VLAN group table provides better scaling of the forwarding table than when sharing physical/EtherChannel interfaces or subinterfaces across parents.

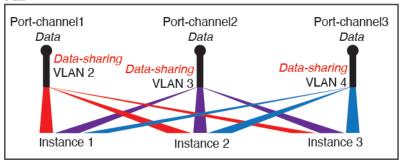
Figure 2: Best: Shared Subinterface Group on One Parent


Best

If you do not share the same set of subinterfaces with a group of instances, your configuration can cause more resource usage (more VLAN groups). For example, share Port-Channel1.2, 3, and 4 with instances 1, 2, and 3 (one VLAN group) instead of sharing Port-Channel1.2 and 3 with instances 1 and 2, while sharing Port-Channel1.3 and 4 with instance 3 (two VLAN groups).

Figure 3: Good: Sharing Multiple Subinterface Groups on One Parent

Good (uses more resources)

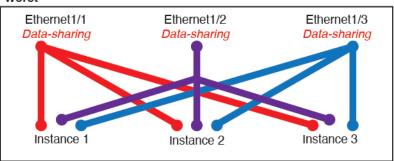


2. Fair—Share subinterfaces across parents.

For example, share Port-Channel1.2, Port-Channel2.3, and Port-Channel3.4 instead of Port-Channel2, Port-Channel4, and Port-Channel4. Although this usage is not as efficient as only sharing subinterfaces on the same parent, it still takes advantage of VLAN groups.

Figure 4: Fair: Shared Subinterfaces on Separate Parents

Fair



3. Worst—Share individual parent interfaces (physical or EtherChannel).

This method uses the most forwarding table entries.

Figure 5: Worst: Shared Parent Interfaces

Worst

Shared Interface Usage Examples

See the following tables for examples of interface sharing and scalability. The below scenarios assume use of one physical/EtherChannel interface for management shared across all instances, and another physical or EtherChannel interface with dedicated subinterfaces for use with High Availability.

- Table 2: Physical/EtherChannel Interfaces and Instances on a Firepower 9300 with Three SM-44s, on page 11
- Table 3: Subinterfaces on One Parent and Instances on a Firepower 9300 with Three SM-44s, on page 12
- Table 4: Physical/EtherChannel Interfaces and Instances on a Firepower 9300 with One SM-44, on page 14
- Table 5: Subinterfaces on One Parent and Instances on a Firepower 9300 with One SM-44, on page 15

Firepower 9300 with Three SM-44s

The following table applies to three SM-44 security modules on a 9300 using only physical interfaces or EtherChannels. Without subinterfaces, the maximum number of interfaces are limited. Moreover, sharing multiple physical interfaces uses more forwarding table resources than sharing multiple subinterfaces.

Each SM-44 module can support up to 14 instances. Instances are split between modules as necessary to stay within limits.

Table 2: Physical/EtherChannel Interfaces and Instances on a Firepower 9300 with Three SM-44s

Dedicated Shared Interfaces Interfaces		Number of Instances	% Forwarding Table Used
32:	0	4:	16%
• 8		• Instance 1	
• 8		• Instance 2	
• 8		• Instance 3	
• 8		• Instance 4	
30:	0	2:	14%
• 15		• Instance 1	
• 15		• Instance 2	
14:	1	14:	46%
• 14 (1 ea.)		• Instance 1-Instance 14	
33:	3:	33:	98%
• 11 (1 ea.)	• 1	• Instance 1-Instance 11	
• 11 (1 ea.)	• 1	• Instance 12-Instance 22	
• 11 (1 ea.)	• 1	• Instance 23-Instance 33	
33:	3:	34:	102%
• 11 (1 ea.)	• 1	• Instance 1-Instance 11	DISALLOWED
• 11 (1 ea.)	• 1	• Instance 12-Instance 22	
• 12 (1 ea.)	• 1	• Instance 23-Instance 34	
30:	1	6:	25%
• 30 (1 ea.)		• Instance 1-Instance 6	
30:	3:	6:	23%
• 10 (5 ea.)	• 1	• Instance 1-Instance2	
• 10 (5 ea.)	• 1	• Instance 2-Instance 4	
• 10 (5 ea.)	• 1	• Instance 5-Instance 6	

Dedicated Interfaces	Shared Interfaces	Number of Instances	% Forwarding Table Used
30:	2	5:	28%
• 30 (6 ea.)		• Instance 1-Instance 5	
30:	4:	5:	26%
• 12 (6 ea.)	• 2	• Instance 1-Instance2	
• 18 (6 ea.)	• 2	• Instance 2-Instance 5	
24:	7	4:	44%
• 6		• Instance 1	
• 6		• Instance 2	
• 6		• Instance 3	
• 6		• Instance 4	
24:	14:	4:	41%
• 12 (6 ea.)	• 7	• Instance 1-Instance2	
• 12 (6 ea.)	• 7	• Instance 2-Instance 4	

The following table applies to three SM-44 security modules on a 9300 using subinterfaces on a single parent physical interface. For example, create a large EtherChannel to bundle all of your like-kind interfaces together, and then share subinterfaces of that EtherChannel. Sharing multiple physical interfaces uses more forwarding table resources than sharing multiple subinterfaces.

Each SM-44 module can support up to 14 instances. Instances are split between modules as necessary to stay within limits.

Table 3: Subinterfaces on One Parent and Instances on a Firepower 9300 with Three SM-44s

Dedicated Subinterfaces	Shared Subinterfaces	Number of Instances	% Forwarding Table Used
168:	0	42:	33%
• 168 (4 ea.)		• Instance 1-Instance 42	
224:	0	14:	27%
• 224 (16 ea.)		• Instance 1-Instance 14	
14:	1	14:	46%
• 14 (1 ea.)		• Instance 1-Instance 14	

Dedicated Shared Subinterfaces Subinterfaces		Number of Instances	% Forwarding Table Used	
33:	3:	33:	98%	
• 11 (1 ea.)	• 1	• Instance 1-Instance 11		
• 11 (1 ea.)	• 1	• Instance 12-Instance 22		
• 11 (1 ea.)	• 1	• Instance 23-Instance 33		
70:	1	14:	46%	
• 70 (5 ea.)		• Instance 1-Instance 14		
165:	3:	33:	98%	
• 55 (5 ea.)	• 1	• Instance 1-Instance 11		
• 55 (5 ea.)	• 1	• Instance 12-Instance 22		
• 55 (5 ea.)	• 1	• Instance 23-Instance 33		
70:	2	14:	46%	
• 70 (5 ea.)		• Instance 1-Instance 14		
165:	6:	33:	98%	
• 55 (5 ea.)	• 2	• Instance 1-Instance 11		
• 55 (5 ea.)	• 2	• Instance 12-Instance 22		
• 55 (5 ea.)	• 2	• Instance 23-Instance 33		
70:	10	14:	46%	
• 70 (5 ea.)		• Instance 1-Instance 14		
165:	30:	33:	102%	
• 55 (5 ea.)	• 10	• Instance 1-Instance 11	DISALLOWED	
• 55 (5 ea.)	• 10	• Instance 12-Instance 22		
• 55 (5 ea.)	• 10	• Instance 23-Instance 33		

Firepower 9300 with One SM-44

The following table applies to the Firepower 9300 with one SM-44 using only physical interfaces or EtherChannels. Without subinterfaces, the maximum number of interfaces are limited. Moreover, sharing multiple physical interfaces uses more forwarding table resources than sharing multiple subinterfaces.

The Firepower 9300 with one SM-44 can support up to 14 instances.

Table 4: Physical/EtherChannel Interfaces and Instances on a Firepower 9300 with One SM-44

Dedicated Interfaces	Shared Interfaces	Number of Instances	% Forwarding Table Used
32:	0	4:	16%
• 8		• Instance 1	
• 8		• Instance 2	
• 8		• Instance 3	
• 8		• Instance 4	
30:	0	2:	14%
• 15		• Instance 1	
• 15		• Instance 2	
14:	1	14:	46%
• 14 (1 ea.)		• Instance 1-Instance 14	
14:	2:	14:	37%
• 7 (1 ea.)	• 1	• Instance 1-Instance 7	
• 7 (1 ea.)	•1	• Instance 8-Instance 14	
32:	1	4:	21%
• 8		• Instance 1	
• 8		• Instance 2	
• 8		• Instance 3	
• 8		• Instance 4	
32:	2	4:	20%
• 16 (8 ea.)		• Instance 1-Instance 2	
• 16 (8 ea.)		• Instance 3-Instance 4	
32:	2	4:	25%
• 8		• Instance 1	
• 8		• Instance 2	
• 8		• Instance 3	
• 8		• Instance 4	

Dedicated Interfaces	Shared Interfaces	Number of Instances	% Forwarding Table Used
32:	4:	4:	24%
• 16 (8 ea.)	• 2	• Instance 1-Instance 2	
• 16 (8 ea.)	• 2	• Instance 3-Instance 4	
24:	8	3:	37%
• 8		• Instance 1	
• 8		• Instance 2	
• 8		• Instance 3	
10:	10	5:	69%
• 10 (2 ea.)		• Instance 1-Instance 5	
10:	20:	5:	59%
• 6 (2 ea.)	• 10	• Instance 1-Instance 3	
• 4 (2 ea.)	• 10	• Instance 4-Instance 5	
14:	10	7:	109%
• 12 (2 ea.)		• Instance 1-Instance 7	DISALLOWED

The following table applies to the Firepower 9300 with one SM-44 using subinterfaces on a single parent physical interface. For example, create a large EtherChannel to bundle all of your like-kind interfaces together, and then share subinterfaces of that EtherChannel. Sharing multiple physical interfaces uses more forwarding table resources than sharing multiple subinterfaces.

The Firepower 9300 with one SM-44 can support up to 14 instances.

Table 5: Subinterfaces on One Parent and Instances on a Firepower 9300 with One SM-44

Dedicated Subinterfaces	Shared Subinterfaces	Number of Instances	% Forwarding Table Used
112:	0	14:	17%
• 112 (8 ea.)		• Instance 1-Instance 14	
224:	0	14:	17%
• 224 (16 ea.)		• Instance 1-Instance 14	
14:	1	14:	46%
• 14 (1 ea.)		• Instance 1-Instance 14	

Dedicated Subinterfaces	Shared Subinterfaces	Number of Instances	% Forwarding Table Used	
14:	2:	14:	37%	
• 7 (1 ea.)	• 1	• Instance 1-Instance 7		
• 7 (1 ea.)	• 1	• Instance 8-Instance 14		
112:	1	14:	46%	
• 112 (8 ea.)		• Instance 1-Instance 14		
112:	2:	14:	37%	
• 56 (8 ea.)	• 1	• Instance 1-Instance 7		
• 56 (8 ea.)	• 1	• Instance 8-Instance 14		
112:	2	14:	46%	
• 112 (8 ea.)		• Instance 1-Instance 14		
112:	4:	14:	37%	
• 56 (8 ea.)	• 2	• Instance 1-Instance 7		
• 56 (8 ea.)	• 2	• Instance 8-Instance 14		
140:	10	14:	46%	
• 140 (10 ea.)		• Instance 1-Instance 14		
140:	20:	14:	37%	
• 70 (10 ea.)	• 10	• Instance 1-Instance 7		
• 70 (10 ea.)	• 10	• Instance 8-Instance 14		

Viewing Shared Interface Resources

To view forwarding table and VLAN group usage, enter the **show detail** command under **scope fabric-interconnect**. For example:

```
Firepower# scope fabric-interconnect
Firepower /fabric-interconnect # show detail

Fabric Interconnect:
    ID: A
    Product Name: Cisco FPR9K-SUP
    PID: FPR9K-SUP
    VID: V02
    Vendor: Cisco Systems, Inc.
    Serial (SN): JAD104807YN
    HW Revision: 0
    Total Memory (MB): 16185
```

```
OOB IP Addr: 10.10.5.14

OOB Gateway: 10.10.5.1

OOB Netmask: 255.255.255.0

OOB IPv6 Address: ::

OOB IPv6 Gateway: ::

Prefix: 64

Operability: Operable

Thermal Status: Ok

Ingress VLAN Group Entry Count (Current/Max): 0/500

Switch Forwarding Path Entry Count (Current/Max): 16/1021

Current Task 1:

Current Task 2:

Current Task 3:
```

Inline Set Link State Propagation for the Threat Defense

An inline set acts like a bump on the wire, and binds two interfaces together to slot into an existing network. This function allows the system to be installed in any network environment without the configuration of adjacent network devices. Inline interfaces receive all traffic unconditionally, but all traffic received on these interfaces is retransmitted out of an inline set unless explicitly dropped.

When you configure an inline set in the threat defense application and enable link state propagation, the threat defense sends inline set membership to the FXOS chassis. Link state propagation means that the chassis automatically brings down the second interface in the inline interface pair when one of the interfaces in an inline set goes down. When the downed interface comes back up, the second interface automatically comes back up, also. In other words, if the link state of one interface changes, the chassis senses the change and updates the link state of the other interface to match it. Note that the chassis requires up to 4 seconds to propagate link state changes. Link state propagation is especially useful in resilient network environments where routers are configured to reroute traffic automatically around network devices that are in a failure state.

Note

Do not enable Hardware Bypass and link state propagation for the same inline set.

Guidelines and Limitations for Interfaces

VLAN Subinterfaces

- This document discusses *FXOS* VLAN subinterfaces only. You can separately create subinterfaces within the threat defense application. See FXOS Interfaces vs. Application Interfaces, on page 3 for more information.
- Subinterfaces (and the parent interfaces) can only be assigned to container instances.

Note

If you assign a parent interface to a container instance, it only passes untagged (non-VLAN) traffic. Do not assign the parent interface unless you intend to pass untagged traffic. For Cluster type interfaces, the parent interface cannot be used.

- Subinterfaces are supported on Data or Data-sharing type interfaces, as well as Cluster type interfaces. If you add subinterfaces to a Cluster interface, you cannot use that interface for a native cluster.
- For multi-instance clustering, FXOS subinterfaces are not supported on Data interfaces. However, subinterfaces are supported for the cluster control link, so you can use either a dedicated EtherChannel or a subinterface of an EtherChannel for the cluster control link. Note that *application*-defined subinterfaces are supported for Data interfaces.
- You can create up to 500 VLAN IDs.
- See the following limitations within the logical device application; keep these limitations in mind when planning your interface allocation.
 - You cannot use subinterfaces for an threat defense inline set or as a passive interface.
 - If you use a subinterface for the failover link, then all subinterfaces on that parent, and the parent itself, are restricted for use as failover links. You cannot use some subinterfaces as failover links, and some as regular data interfaces.

Data-sharing Interfaces

- You cannot use a data-sharing interface with a native instance.
- Maximum 14 instances per shared interface. For example, you can allocate Ethernet1/1 to Instance1 through Instance14.

Maximum 10 shared interfaces per instance. For example, you can allocate Ethernet1/1.1 through Ethernet1/1.10 to Instance1.

• You cannot use a data-sharing interface in a cluster.

- See the following limitations within the logical device application; keep these limitations in mind when planning your interface allocation.
 - You cannot use a data-sharing interface with a transparent firewall mode device.
 - You cannot use a data-sharing interface with threat defense inline sets or passive interfaces.
 - You cannot use a data-sharing interface for the failover link.

Inline Sets for Threat Defense

- Supported for physical interfaces (both regular and breakout ports) and EtherChannels. Subinterfaces are not supported.
- Link state propagation is supported.
- Do not enable Hardware Bypass and link state propagation for the same inline set.

Hardware Bypass

- Supported for the threat defense; you can use them as regular interfaces for the ASA.
- The threat defense only supports Hardware Bypass with inline sets.

- Hardware Bypass-capable interfaces cannot be configured for breakout ports.
- You cannot include Hardware Bypass interfaces in an EtherChannel and use them for Hardware Bypass; you can use them as regular interfaces in an EtherChannel.
- Hardware Bypass is not supported with High Availability.
- Do not enable Hardware Bypass and link state propagation for the same inline set.

Default MAC Addresses

For native instances:

Default MAC address assignments depend on the type of interface.

- Physical interfaces—The physical interface uses the burned-in MAC address.
- EtherChannels—For an EtherChannel, all interfaces that are part of the channel group share the same MAC address. This feature makes the EtherChannel transparent to network applications and users, because they only see the one logical connection; they have no knowledge of the individual links. The port-channel interface uses a unique MAC address from a pool; interface membership does not affect the MAC address.

For container instances:

MAC addresses for all interfaces are taken from a MAC address pool. For subinterfaces, if you decide
to manually configure MAC addresses, make sure you use unique MAC addresses for all subinterfaces
on the same parent interface to ensure proper classification. See Automatic MAC Addresses for Container
Instance Interfaces.

Configure Interfaces

By default, physical interfaces are disabled. You can enable interfaces, add EtherChannels, add VLAN subinterfaces, edit interface properties, and configure breakout ports.

Note

Configure a Physical Interface

You can physically enable and disable interfaces, as well as set the interface speed and duplex. To use an interface, it must be physically enabled in FXOS and logically enabled in the application.

Note

For QSFPH40G-CUxM, auto-negotiation is always enabled by default and you cannot disable it.

Before you begin

• Interfaces that are already a member of an EtherChannel cannot be modified individually. Be sure to configure settings before you add it to the EtherChannel.

Procedure

Step 1 Enter interface mode.

scope eth-uplink

scope fabric a

Step 2 Enable the interface.

enter interface interface_id

enable

Example:

```
Firepower /eth-uplink/fabric # enter interface Ethernet1/8
Firepower /eth-uplink/fabric/interface # enable
```

Note

Interfaces that are already a member of a port-channel cannot be modified individually. If you use the **enter interface** or **scope interface** command on an interface that is a member of a port channel, you will receive an error stating that the object does not exist. You should edit interfaces using the **enter interface** command before you add them to a port-channel.

Step 3 (Optional) Set Debounce Time.

set debounce-time 5000 {Enter a value between 0-15000 milli-seconds}

Example:

```
Firepower /eth-uplink/fabric/interface # set debounce-time 5000
```

Step 4 (Optional) Set the interface type.

```
set port-type {data | data-sharing | mgmt | firepower-eventing | cluster}
```

Example:

```
Firepower /eth-uplink/fabric/interface # set port-type mgmt
```

The **data** keyword is the default type. The **data-sharing** type is only supported with container instances. Do not choose the **cluster** keyword; by default, the cluster control link is automatically created on Port-channel 48

Step 5 Enable or disable autonegotiation, if supported for your interface.

set auto-negotiation {on | off}

Example:

```
Firepower /eth-uplink/fabric/interface* # set auto-negotiation off
```

Step 6 Set the interface speed.

set admin-speed {1gbps | 10gbps | 40gbps | 100gbps}

Example:

Firepower /eth-uplink/fabric/interface* # set admin-speed 1gbps

Step 7 Set the interface duplex mode.

set admin-duplex {fullduplex | halfduplex}

Example:

Firepower /eth-uplink/fabric/interface* # set admin-duplex halfduplex

Step 8 If you edited the default flow control policy, it is already applied to interfaces. If you created a new policy, apply it to the interface. See Configure a Flow Control Policy, on page 28.

set flow-control-policy name

Example:

Firepower /eth-uplink/fabric/interface* # set flow-control-policy flow1

Step 9 Save the configuration.

commit-buffer

Example:

```
Firepower /eth-uplink/fabric/interface* # commit-buffer
Firepower /eth-uplink/fabric/interface #
```

Add an EtherChannel (Port Channel)

An EtherChannel (also known as a port channel) can include up to 16 member interfaces of the same media type and capacity, and must be set to the same speed and duplex. The media type can be either RJ-45 or SFP; SFPs of different types (copper and fiber) can be mixed. You cannot mix interface capacities (for example 1GB and 10GB interfaces) by setting the speed to be lower on the larger-capacity interface. The Link Aggregation Control Protocol (LACP) aggregates interfaces by exchanging the Link Aggregation Control Protocol Data Units (LACPDUs) between two network devices.

You can configure each physical Data or Data-sharing interface in an EtherChannel to be:

Active—Sends and receives LACP updates. An active EtherChannel can establish connectivity with
either an active or a passive EtherChannel. You should use the active mode unless you need to minimize
the amount of LACP traffic.

On—The EtherChannel is always on, and LACP is not used. An "on" EtherChannel can only establish
a connection with another "on" EtherChannel.

Note

It may take up to three minutes for an EtherChannel to come up to an operational state if you change its mode from On to Active or from Active to On.

Non-data interfaces only support active mode.

LACP coordinates the automatic addition and deletion of links to the EtherChannel without user intervention. It also handles misconfigurations and checks that both ends of member interfaces are connected to the correct channel group. "On" mode cannot use standby interfaces in the channel group when an interface goes down, and the connectivity and configurations are not checked.

When the Firepower 4100/9300 chassis creates an EtherChannel, the EtherChannel stays in a **Suspended** state for Active LACP mode or a **Down** state for On LACP mode until you assign it to a logical device, even if the physical link is up. The EtherChannel will be brought out of this **Suspended** state in the following situations:

- The EtherChannel is added as a data or management interface for a standalone logical device
- The EtherChannel is added as a management interface or cluster control link for a logical device that is part of a cluster
- The EtherChannel is added as a data interface for a logical device that is part of a cluster and at least one unit has joined the cluster

Note that the EtherChannel does not come up until you assign it to a logical device. If the EtherChannel is removed from the logical device or the logical device is deleted, the EtherChannel will revert to a **Suspended** or **Down** state.

Procedure

Step 1 Enter interface mode:

scope eth-uplink

scope fabric a

Step 2 Create the port-channel:

create port-channel id

enable

Step 3 Assign member interfaces:

create member-port interface_id

You can add up to 16 member interfaces of the same media type and capacity. The member interfaces must be set to the same speed and duplex, and must match the speed and duplex that you configured for this port channel. The media type can be either RJ-45 or SFP; SFPs of different types (copper and fiber) can be mixed. You cannot mix interface capacities (for example 1GB and 10GB interfaces) by setting the speed to be lower on the larger-capacity interface.

Example:

```
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/1
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/2
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/3
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/4
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
```

Step 4 (Optional) Set the interface type.

set port-type {data | data-sharing | mgmt | firepower-eventing | cluster}

Example:

```
Firepower /eth-uplink/fabric/port-channel # set port-type data
```

The **data** keyword is the default type. The **data-sharing** type is only supported with container instances. Do not choose the **cluster** keyword unless you want to use this port-channel as the cluster control link instead of the default.

Step 5 Set the required interface speed for members of the port-channel.

```
set speed {10mbps | 100mbps | 1gbps | 10gbps | 40gbps | 100gbps}
```

If you add a member interface that is not at the specified speed, it will not successfully join the port channel. The default is **10gbps**.

Example:

```
Firepower /eth-uplink/fabric/port-channel* # set speed 1gbps
```

Step 6 (Optional) Set the required duplex for members of the port-channel.

set duplex {fullduplex | halfduplex}

If you add a member interface that is configured with the specified duplex, it will not successfully join the port channel. The default is **fullduplex**.

Example:

```
Firepower /eth-uplink/fabric/port-channel* # set duplex fullduplex
```

Step 7 Enable or disable autonegotiation, if supported for your interface.

set auto-negotiation {on | off}

Example:

```
Firepower /eth-uplink/fabric/interface* # set auto-negotiation off
```

Step 8 Set the LACP port-channel mode for data and data-sharing interfaces.

For non-Data and non-data-sharing interfaces, the mode is always active.

set port-channel-mode {active | on}

Example:

Firepower /eth-uplink/fabric/port-channel* # set port-channel-mode on

Step 9 If you edited the default flow control policy, it is already applied to interfaces. If you created a new policy, apply it to the interface. See Configure a Flow Control Policy, on page 28.

set flow-control-policy name

Example:

Firepower /eth-uplink/fabric/interface* # set flow-control-policy flow1

Step 10 Commit the configuration:

commit-buffer

Add a VLAN Subinterface for Container Instances

You can add up to 500 subinterfaces to your chassis.

For multi-instance clustering, you can only add subinterfaces to the Cluster-type interface; subinterfaces on data interfaces are not supported.

VLAN IDs per interface must be unique, and within a container instance, VLAN IDs must be unique across all assigned interfaces. You can reuse VLAN IDs on *separate* interfaces as long as they are assigned to different container instances. However, each subinterface still counts towards the limit even though it uses the same ID.

This document discusses *FXOS* VLAN subinterfaces only. You can separately create subinterfaces within the threat defense application.

Procedure

Step 1 Enter fabric a mode.

scope eth-uplink

scope fabric a

Example:

```
Firepower# scope eth-uplink
Firepower /eth-uplink # scope fabric a
Firepower /eth-uplink/fabric #
```

Step 2 Enter the interface to which you want to add the subinterface.

enter {interface | port-channel} interface_id

You cannot add a subinterface to a physical interface that is currently allocated to a logical device. If other subinterfaces of the parent are allocated, you can add a new subinterface as long as the parent interface itself is not allocated.

Subinterfaces are supported on data or data-sharing type interfaces, as well as cluster type interfaces.

Example:

```
Firepower /eth-uplink/fabric # enter interface Ethernet1/8
Firepower /eth-uplink/fabric/interface #
```

Step 3 Create the subinterface.

enter subinterface id

• *id*—Set the ID between 1 and 4294967295. This ID will be appended to the parent interface ID as *interface_id.subinterface_id*. For example, if you add a subinterface to Ethernet1/1 with the ID of 100, then the subinterface ID will be: Ethernet1/1.100. This ID is not the same as the VLAN ID, although you can set them to match for convenience.

Example:

```
Firepower /eth-uplink/fabric/interface # enter subinterface 100 Firepower /eth-uplink/fabric/interface/subinterface* #
```

Step 4 Set the VLAN.

set vlan id

• id—Set the VLAN ID between 1 and 4095.

Example:

```
Firepower /eth-uplink/fabric/interface/subinterface* # set vlan 100
```

Step 5 Set the interface type.

```
set port-type {data | data-sharing | cluster}
```

Example:

```
Firepower /eth-uplink/fabric/interface/subinterface* # set port-type data
```

For data and data-sharing interfaces: The type is independent of the parent interface type; you can have a data-sharing parent and a data subinterface, for example. The default type is data.

Step 6 Save the configuration.

commit-buffer

Example:

Firepower /eth-uplink/fabric/interface/subinterface* # commit-buffer

```
Firepower /eth-uplink/fabric/interface/subinterface #
```

Example

The following example creates 3 subinterfaces on Ethernet 1/1, and sets them to be data-sharing interfaces.

```
Firepower# scope eth-uplink
Firepower /eth-uplink # scope fabric a
Firepower /eth-uplink/fabric # enter interface Ethernet1/1
Firepower /eth-uplink/fabric/interface # enter subinterface 10
Firepower /eth-uplink/fabric/interface/subinterface* # set vlan 10
Firepower /eth-uplink/fabric/interface/subinterface* # set port-type data-sharing
Firepower /eth-uplink/fabric/interface/subinterface* # exit
Firepower /eth-uplink/fabric/interface # enter subinterface 11
Firepower /eth-uplink/fabric/interface/subinterface* # set vlan 11
Firepower /eth-uplink/fabric/interface/subinterface* # set port-type data-sharing
Firepower /eth-uplink/fabric/interface/subinterface* # exit
Firepower /eth-uplink/fabric/interface # enter subinterface 12
Firepower /eth-uplink/fabric/interface/subinterface* # set vlan 12
Firepower /eth-uplink/fabric/interface/subinterface* # set port-type data-sharing
Firepower /eth-uplink/fabric/interface/subinterface* # commit-buffer
Firepower /eth-uplink/fabric/interface/subinterface #
```

Configure Breakout Cables

The following procedure shows how to configure breakout cables for use with the Firepower 4100/9300 chassis. You can use a breakout cable to provide four 10 Gbps ports in place of a single 40 Gbps port.

Before you begin

Hardware Bypass-capable interfaces cannot be configured for breakout ports.

Procedure

Step 1 To create a new breakout, use the following commands:

a) Enter cabling mode:

scope cabling

scope fabric a

b) Create the breakout:

create breakout network_module_slot port

Example:

```
Firepower /cabling/fabric/ # create breakout 2 1
```

c) Commit the configuration:

commit-buffer

This will cause an automatic reboot. If you are configuring more than one breakout, you should create all of them before you issue the commit-buffer command.

- **Step 2** To enable/configure the breakout ports, use the following commands:
 - a) Enter interface mode:

scope eth-uplink

scope fabric a

scope aggr-interface network_module_slot port

Note

Interfaces that are already a member of a port-channel cannot be modified individually. If you use the **enter interface** or **scope interface** command on an interface that is a member of a port channel, you will receive an error stating that the object does not exist. You should edit interfaces using the **enter interface** command before you add them to a port-channel.

b) Use the **set** command to configure the interface speed and port type.

Use the **enable** or **disable** command to set the administrative state of the interface.

c) Commit the configuration:

commit-buffer

Configure a Flow Control Policy

Flow control policies determine whether the Ethernet ports send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears. For flow control to work between devices, you must enable the corresponding receive and send flow control parameters for both devices.

The default policy disables send and receive control, and sets the priority to autonegotiate.

Procedure

Step 1 Enter eth-uplink and then flow-control mode.

scope eth-uplink

scope flow-control

Example:

```
firepower-4110# scope eth-uplink
firepower-4110 /eth-uplink # scope flow-control
firepower-4110 /eth-uplink/flow-control #
```

Step 2 Edit or create a flow control policy.

enter policy name

If you want to edit the default policy, enter **default** for the name.

Example:

```
firepower-4110 /eth-uplink/flow-control # enter policy default
firepower-4110 /eth-uplink/flow-control/policy* #
```

Step 3 Set the priority.

```
set prio {auto | on}
```

The priority sets whether to negotiate or enable PPP for this link.

Example:

```
firepower-4110 /eth-uplink/flow-control/policy* # set prio on
```

Step 4 Enable or disable flow control receive pauses.

```
set receive {on | off}
```

- on—Pause requests are honored and all traffic is halted on that uplink port until the network cancels the pause request.
- off—Pause requests from the network are ignored and traffic flow continues as normal.

Example:

```
firepower-4110 /eth-uplink/flow-control/policy* # set receive on
```

Step 5 Enable or disable flow control send pauses.

```
set send {on | off}
```

- on—The Firepower 4100/9300 sends a pause request to the network if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels.
- off—Traffic on the port flows normally regardless of the packet load.

Example:

```
firepower-4110 /eth-uplink/flow-control/policy* # set send on
```

Step 6 Save the configuration.

commit-buffer

Example:

```
firepower-4110 /eth-uplink/flow-control/policy* # commit-buffer
firepower-4110 /eth-uplink/flow-control/policy #
```

Example

The following example configures a flow control policy.

```
firepower-4110# scope eth-uplink
firepower-4110 /eth-uplink # scope flow-control
firepower-4110 /eth-uplink/flow-control # enter policy FlowControlPolicy23
firepower-4110 /eth-uplink/flow-control/policy* # set prio auto
firepower-4110 /eth-uplink/flow-control/policy* # set receive on
firepower-4110 /eth-uplink/flow-control/policy* # set send on
firepower-4110 /eth-uplink/flow-control/policy* # commit-buffer
firepower-4110 /eth-uplink/flow-control/policy #
```

Monitoring Interfaces

Note

There can be a difference between the FXOS and threat defense/ASA interface utilization due to fragmentation drops in the threat defense/ASA. To view fragmentation drops, see the threat defense/ASA show asp drop and show fragment commands.

• show interface

Shows interface status.

Note

Interfaces that act as ports in port channels do not appear in this list.

```
Firepower# scope eth-uplink
Firepower /eth-uplink # scope fabric a
Firepower /eth-uplink/fabric # show interface
Interface:
   Port Name
               Port Type
                                Admin State Oper State
 Allowed Vlan State Reason
   Ethernet1/2
               Data
                                 Enabled
 All
   Ethernet1/4 Mgmt
                                Enabled
 A11
   Ethernet1/5 Data
                                 Enabled
                                           Uр
 Untagged
   Ethernet1/7 Firepower Eventing Enabled
                                           ďυ
   Ethernet1/8
               Data
                                 Disabled
                                           Sfp Not Present
           Unknown
 A11
  Ethernet2/1
                                 Disabled
                                           Sfp Not Present
               Data
 All Unknown
  Ethernet2/2 Data
                                 Disabled
                                           Sfp Not Present
 All
           Unknown
  Ethernet2/3 Data
                                 Disabled
                                           Sfp Not Present
 All Unknown
   Ethernet2/4 Data
                                 Disabled
                                           Sfp Not Present
 All Unknown
   Ethernet2/5 Data
                                 Disabled
                                           Sfp Not Present
 All Unknown
  Ethernet2/6 Data
                                 Disabled
                                           Sfp Not Present
 All
           Unknown
  Ethernet2/7 Data
                                 Disabled
                                           Sfp Not Present
 All Unknown
   Ethernet2/8 Data
                                 Disabled
                                           Sfp Not Present
      Unknown
 A11
```

· show port-channel

Shows port-channel status.

```
Firepower# scope eth-uplink
Firepower /eth-uplink # scope fabric a
Firepower /eth-uplink/fabric # show port-channel
Port Channel:
  Port Channel Id Name
                           Port Type
                                          Admin State Oper State
Port Channel Mode Allowed Vlan State Reason
   1
              Port-channell Data
                                          Enabled
                                                   Uр
          Untagged
Active
 2
             Port-channel2 Data
                                         Enabled
                                                  Failed
            All
Active
                  No operational members
              Port-channel48 Cluster
                                         Enabled
  4.8
                                                   Up
            All
Active
```

show detail

View forwarding table and VLAN group usage for shared interfaces.

```
Firepower# scope fabric-interconnect
DFirepower /fabric-interconnect # show detail
Fabric Interconnect:
   Product Name: Cisco FPR9K-SUP
   PID: FPR9K-SUP
   VID: V02
   Vendor: Cisco Systems, Inc.
    Serial (SN): JAD104807YN
   HW Revision: 0
   Total Memory (MB): 16185
   OOB IP Addr: 10.10.5.14
   OOB Gateway: 10.10.5.1
   OOB Netmask: 255.255.255.0
   OOB IPv6 Address: ::
   OOB IPv6 Gateway: ::
   Prefix: 64
   Operability: Operable
   Thermal Status: Ok
    Ingress VLAN Group Entry Count (Current/Max): 0/500
   Switch Forwarding Path Entry Count (Current/Max): 16/1021
   Current Task 1:
   Current Task 2:
   Current Task 3:
```

· show subinterface

Shows subinterfaces for a given interface.

· show mac-address

Shows MAC address assignments for container instance interfaces.

```
Firepower# scope ssa
Firepower /ssa # scope auto-macpool
Firepower /ssa/auto-macpool # show mac-address
Mac Address Item:
   Mac Address
                       Owner Profile
                                               Owner Name
   A2:46:C4:00:00:1E ftd13
A2:46:C4:00:00:20 ftd14
                                                 Port-channel14
                                                 Port-channel15
   A2:46:C4:00:01:7B ftd1
                                                 Ethernet1/3
   A2:46:C4:00:01:7C ftd12
                                                Port-channel11
   A2:46:C4:00:01:7D ftd13
                                                Port-channel14
   A2:46:C4:00:01:7E ftd14
                                                 Port-channel15
```

A2:46:C4:00:01:7F	ftd1	Ethernet1/2
A2:46:C4:00:01:80	ftd12	Ethernet1/2
A2:46:C4:00:01:81	ftd13	Ethernet1/2
A2:46:C4:00:01:82	ftd14	Ethernet1/2
A2:46:C4:00:01:83	ftd2	Ethernet3/1/4
A2:46:C4:00:01:84	ftd2	Ethernet3/1/1
A2:46:C4:00:01:85	ftd2	Ethernet3/1/3
A2:46:C4:00:01:86	ftd2	Ethernet3/1/2
A2:46:C4:00:01:87	ftd2	Ethernet1/2
A2:46:C4:00:01:88	ftd1	Port-channel21
A2:46:C4:00:01:89	ftd1	Ethernet1/8

Troubleshooting Interfaces

Error: The Switch Forwarding Path has 1076 entries and exceeds the limit of 1024. If you are adding an interface, reduce the number of shared interfaces assigned to logical devices, reduce the number of logical devices sharing interfaces, or use non-shared subinterfaces instead. If you are deleting a subinterface, you are seeing this message because the remaining configuration is no longer optimized to fit within the Switch Forwarding Path table. See the FXOS configuration guide for troubleshooting information about the deletion use case. Use 'show detail' under scope 'fabric-interconnect' to view the current Switch Forwarding Path Entry Count.

If you see this error when trying to delete a shared subinterface from a logical device, it is because your new configuration is not following this guideline for shared subinterfaces: use the same set of subinterfaces with the same group of logical devices. If you delete a shared subinterface from one logical device, you can end up with more VLAN groups and therefore less efficient usage of the forwarding table. To work around this situation, you need to add and delete shared subinterfaces simultaneously using the CLI so that you maintain the same set of subinterfaces for the same group of logical devices.

See the following scenarios for more information. These scenarios start with the following interfaces and logical devices:

- Shared subinterface set on the same parent: Port-Channel1.100 (VLAN 100), Port-Channel1.200 (VLAN 200), Port-Channel1.300 (VLAN 300)
- Logical device group: LD1, LD2, LD3, and LD4

Scenario 1: Remove a subinterface from one logical device, but leave it assigned to other logical devices

Do not remove the subinterface. Instead, just disable it in the application configuration. If you have to remove the subinterface, you will need to reduce the number of shared interfaces in general to continue to fit in the forwarding table.

Scenario 2: Remove all subinterfaces in the set from one logical device

Remove all subinterfaces in the set from the logical device at the CLI, and then save the configuration so that the removal is simultaneous.

1. View the VLAN groups for reference. In the following output, group 1 includes VLAN 100, 200, and 300, representing the 3 shared subinterfaces.

```
firepower# connect fxos
[...]
firepower(fxos)# show ingress-vlan-groups
```

2. View the shared subinterfaces assigned to the logical device you want to change.

```
firepower# scope ssa
firepower /ssa # scope logical-device LD1
firepower /ssa/logical-device # show external-port-link
External-Port Link:
   Name
                                    Port or Port Channel Name Port Type
   Description
                                    Ethernet1/4
   Ethernet14 ftd
                                                                                    ft.d
                                                               Mamt
    PC1.100_ftd
                           Port-channel1.100 Data Sharing
Port-channel1.200 Data Sharing
Port-channel1.300 Data Sharing
                                                                                   ftd
    PC1.200 ftd
                                                                                   ftd
    PC1.300 ftd
                                                                                    ftd
```

3. Remove the subinterfaces from the logical device, and then save the configuration.

```
firepower /ssa/logical-device # delete external-port-link PC1.100_ftd firepower /ssa/logical-device* # delete external-port-link PC1.200_ftd firepower /ssa/logical-device* # delete external-port-link PC1.300_ftd firepower /ssa/logical-device* # commit-buffer firepower /ssa/logical-device #
```

If you had committed the configuration in the middle, you would have ended up with 2 VLAN groups, which could have generated the switch forwarding path error and prevented you from saving the configuration.

Scenario 3: Remove a subinterface from all logical devices in the group

Remove the subinterface from all logical devices in the group at the CLI, and then save the configuration so that the removal is simultaneous. For example:

1. View the VLAN groups for reference. In the following output, group 1 includes VLAN 100, 200, and 300, representing the 3 shared subinterfaces.

```
2049 511 configured 0 present
```

2. View the interfaces assigned to each logical device, and note the shared subinterfaces in common. If they are on the same parent interface, they will belong to one VLAN group, and should match the **show** ingress-vlan-groups list. In chassis manager, you can hover over each shared subinterface to see which instances it is allocated to.

Figure 6: Instances per shared interface

At the CLI, you can view characteristics of all logical devices, including the allocated interfaces.

```
firepower# scope ssa
firepower /ssa # show logical-device expand
Logical Device:
   Name: LD1
    Description:
    Slot ID: 1
   Mode: Standalone
    Oper State: Ok
    Template Name: ftd
    External-Port Link:
        Name: Ethernet14 ftd
        Port or Port Channel Name: Ethernet1/4
        Port Type: Mgmt
        App Name: ftd
        Description:
        Name: PC1.100 ftd
        Port or Port Channel Name: Port-channel1.100
        Port Type: Data Sharing
        App Name: ftd
        Description:
        Name: PC1.200 ftd
        Port or Port Channel Name: Port-channel1.200
        Port Type: Data Sharing
        App Name: ftd
        Description:
        System MAC address:
            Mac Address
            A2:F0:B0:00:00:25
        Name: PC1.300 ftd
```

```
Port or Port Channel Name: Port-channel1.300
       Port Type: Data Sharing
       App Name: ftd
       Description:
[...]
   Name: LD2
   Description:
   Slot ID: 1
   Mode: Standalone
   Oper State: Ok
   Template Name: ftd
   External-Port Link:
       Name: Ethernet14_ftd
       Port or Port Channel Name: Ethernet1/4
       Port Type: Mgmt
       App Name: ftd
       Description:
       Name: PC1.100 ftd
       Port or Port Channel Name: Port-channel1.100
       Port Type: Data Sharing
       App Name: ftd
       Description:
       Name: PC1.200 ftd
       Port or Port Channel Name: Port-channel1.200
       Port Type: Data Sharing
       App Name: ftd
       Description:
        System MAC address:
           Mac Address
           A2:F0:B0:00:00:28
       Name: PC1.300 ftd
       Port or Port Channel Name: Port-channel1.300
       Port Type: Data Sharing
       App Name: ftd
       Description:
[...]
   Name: LD3
   Description:
   Slot ID: 1
   Mode: Standalone
   Oper State: Ok
   Template Name: ftd
   External-Port Link:
       Name: Ethernet14 ftd
       Port or Port Channel Name: Ethernet1/4
       Port Type: Mgmt
       App Name: ftd
       Description:
       Name: PC1.100 ftd
       Port or Port Channel Name: Port-channel1.100
       Port Type: Data Sharing
       App Name: ftd
```

```
Description:
       Name: PC1.200 ftd
       Port or Port Channel Name: Port-channel1.200
       Port Type: Data Sharing
       App Name: ftd
        Description:
        System MAC address:
           Mac Address
           A2:F0:B0:00:00:2B
       Name: PC1.300 ftd
       Port or Port Channel Name: Port-channel1.300
       Port Type: Data Sharing
       App Name: ftd
       Description:
[...]
   Name: LD4
   Description:
   Slot ID: 1
   Mode: Standalone
   Oper State: Ok
   Template Name: ftd
   External-Port Link:
       Name: Ethernet14 ftd
       Port or Port Channel Name: Ethernet1/4
       Port Type: Mgmt
       App Name: ftd
       Description:
       Name: PC1.100 ftd
       Port or Port Channel Name: Port-channel1.100
       Port Type: Data Sharing
       App Name: ftd
       Description:
       Name: PC1.200 ftd
       Port or Port Channel Name: Port-channel1.200
       Port Type: Data Sharing
       App Name: ftd
       Description:
        System MAC address:
           Mac Address
           A2:F0:B0:00:00:2E
       Name: PC1.300 ftd
        Port or Port Channel Name: Port-channel1.300
       Port Type: Data Sharing
       App Name: ftd
       Description:
[...]
```

3. Remove the subinterface from each logical device, and then save the configuration.

```
firepower /ssa # scope logical device LD1
```

```
firepower /ssa/logical-device # delete external-port-link PC1.300_ftd firepower /ssa/logical-device* # exit firepower /ssa* # scope logical-device LD2 firepower /ssa/logical-device* # delete external-port-link PC1.300_ftd firepower /ssa/logical-device* # exit firepower /ssa* # scope logical-device LD3 firepower /ssa/logical-device* # delete external-port-link PC1.300_ftd firepower /ssa/logical-device* # exit firepower /ssa/logical-device* # exit firepower /ssa* # scope logical-device LD4 firepower /ssa/logical-device* # delete external-port-link PC1.300_ftd firepower /ssa/logical-device* # delete external-port-link PC1.300_ftd firepower /ssa/logical-device* # commit-buffer firepower /ssa/logical-device #
```

If you had committed the configuration in the middle, you would have ended up with 2 VLAN groups, which could have generated the switch forwarding path error and prevented you from saving the configuration.

Scenario 4: Add a subinterface to one or more logical devices

Add the subinterface to *all* logical devices in the group at the CLI, and then save the configuration so that the addition is simultaneous.

1. Add the subinterface to each logical device, and then save the configuration.

```
firepower# scope ssa
firepower /ssa # scope logical-device LD1
firepower /ssa/logical-device # create external-port-link PC1.400 ftd Port-channel1.400
ftd
firepower /ssa/logical-device/external-port-link* # exit
firepower /ssa/logical-device* # exit
firepower /ssa # scope logical-device LD2
firepower /ssa/logical-device # create external-port-link PC1.400 ftd Port-channel1.400
ftd
firepower /ssa/logical-device/external-port-link* # exit
firepower /ssa/logical-device* # exit
firepower /ssa # scope logical-device LD3
firepower /ssa/logical-device # create external-port-link PC1.400 ftd Port-channel1.400
firepower /ssa/logical-device/external-port-link* # exit
firepower /ssa/logical-device* # exit
firepower /ssa # scope logical-device LD4
firepower /ssa/logical-device # create external-port-link PC1.400_ftd Port-channel1.400
firepower /ssa/logical-device/external-port-link* # commit-buffer
firepower /ssa/logical-device/external-port-link #
```

If you had committed the configuration in the middle, you would have ended up with 2 VLAN groups, which could have generated the switch forwarding path error and prevented you from saving the configuration.

2. You can check that the Port-channel 1.400 VLAN ID was added to VLAN group 1.

```
firepower /ssa/logical-device/external-port-link # connect fxos
[...]
firepower(fxos)# show ingress-vlan-groups
ID Class ID Status INTF Vlan Status
1 1 configured

200 present
100 present
300 present
400 present
```

2048 512 configured 0 present
2049 511 configured 0 present
firepower(fxos) # exit
firepower /ssa/logical-device/external-port-link #

History for Interfaces

Feature Name	Platform Releases	Feature Information
Synchronization between the threat defense operational link state and the physical link state	2.9.1	The chassis can now synchronize the threat defense operational link state with the physical link state for data interfaces. Currently, interfaces will be in an Up state as long as the FXOS admin state is up and the physical link state is up. The threat defense application interface admin state is not considered. Without synchronization from threat defense, data interfaces can be in an Up state physically before the threat defense application has completely come online, for example, or can stay Up for a period of time after you initiate an threat defense shutdown. For inline sets, this state mismatch can result in dropped packets because external routers may start sending traffic to the threat defense before the threat defense can handle it. This feature is disabled by default, and can be enabled per logical device in FXOS.
		Note This feature is not supported for clustering, container instances, or an threat defense with a Radware vDP decorator. It is also not supported for the ASA.
		New/Modified chassis manager screens: Logical Devices > Enable Link State
		New/Modified FXOS commands: set link-state-sync enabled, show interface expand detail
Support for VLAN subinterfaces on a Cluster type interface (multi-instance use only)	2.8.1	For use with multi-instance clusters, you can now create VLAN subinterfaces on cluster type interfaces. Because each cluster requires a unique cluster control link, VLAN subinterfaces provide a simple method to fulfill this requirement. You can alternatively assign a dedicated EtherChannel per cluster. Multiple Cluster type interfaces are now allowed. New/Modified commands: set port-type cluster
Support for 500 VLANs, without contingencies	2.7.1	Previously, the device supported between 250 and 500 VLANs, depending on the number of parent interfaces and other deployment decisions. You can now use 500 VLANs in all cases.
VLAN subinterfaces for use with container	2.4.1	To provide flexible physical interface use, you can create VLAN subinterfaces in FXOS and also share interfaces between multiple instances.
instances		Note Requires threat defense Version 6.3 or later.
		New/Modified commands: create subinterface, set vlan, show interface, show subinterface
		New/Modified management center screens:
		Devices > Device Management > Edit icon > Interfaces tab

Feature Name	Platform Releases	Feature Information
Data-sharing interfaces for container instances	2.4.1	To provide flexible physical interface use, you can share interfaces between multiple instances.
		Note Requires threat defense Version 6.3 or later.
		New/Modified commands: set port-type data-sharing, show interface
Support for data EtherChannels in On mode	2.4.1	You can now set data and data-sharing EtherChannels to either Active LACP mode or to On mode. Other types of EtherChannels only support Active mode.
		New/Modified commands: set port-channel-mode
Support for EtherChannels in threat defense inline sets	2.1.1	You can now use EtherChannels in a threat defense inline set.
Inline set link state propagation support for the threat defense	2.0.1	When you configure an inline set in the threat defense application and enable link state propagation, the threat defense sends inline set membership to the FXOS chassis. Link state propagation means that the chassis automatically brings down the second interface in the inline interface pair when one of the interfaces in an inline set goes down.
		New/Modified commands: show fault grep link-down, show interface detail
Support for Hardware bypass network modules for the threat defense	2.0.1	Hardware Bypass ensures that traffic continues to flow between an inline interface pair during a power outage. This feature can be used to maintain network connectivity in the case of software or hardware failures.
		New/Modified management center screens:
		Devices > Device Management > Interfaces > Edit Physical Interface
Firepower-eventing type interface for threat defense	1.1.4	You can specify an interface as firepower-eventing for use with the threat defense. This interface is a secondary management interface for threat defense devices. To use this interface, you must configure its IP address and other parameters at the threat defense CLI. For example, you can separate management traffic from events (such as web events). See the "Management Interfaces" section in the management center configuration guide <i>System Configuration</i> chapter.
		New/Modified FXOS commands: set port-type firepower-eventing, show interface