CHAPTER 32

Monitoring Routing

You can use ASDM to monitor OSPF LSAs, OSPF and EIGRP neighbors, and the routing table. To access the routing monitoring screens, go to Monitoring > Routing in the ASDM interface.

This section contains the following topics:

- Monitoring BGP, page 32-1
- Monitoring OSPF LSAs, page 32-3
- Monitoring OSPF Neighbors, page 32-7
- Monitoring EIGRP Neighbors, page 32-9
- Displaying Routes, page 32-9

Monitoring BGP

You can monitor the following BGP information:

- BGP Neighbor, page 32-1
- BGP Networks, page 32-2
- BGP Summary, page 32-2

For information about configuring the BGP routing process, see the “Configuring BGP Stub Routing” section on page 11-4.

BGP Neighbor

The BGP Neighbor pane displays detailed information about the connection to the BGP neighbor.

Fields

- BGP Neighbor—The BGP neighbor field contains the output of the `show bgp neighbors` command. It provides detailed information about the connection with the BGP neighbor. For information about displayed output, see the `show bgp neighbors` command information in the Catalyst 6500 Series and Cisco 7600 Series Switch Firewall Services Module Command Reference.
- Clear BGP Session—Click this button to reset the BGP connection with the neighbor and to reset the BGP statistical counters.
BGP Networks

Fields

- Router identifier—The router ID of the FWSM. The router ID is the IP address assigned by the `bgp router-id` command. If this command is not in the running configuration, then the router ID defaults to the highest IP address configured on the FWSM.

- BGP Networks—Displays the networks advertised by the BGP routing process. Each row of the table contains the following information:
 - Network—The IP address of the network being advertised.
 - Next Hop—IP address of the next system used to forward a packet to the destination network. An entry of 0.0.0.0 indicates that there are non-BGP routes in the path to the destination network.
 - Metric—If shown, this is the value of the inter-autonomous system metric. This field is not used frequently.
 - LocPrf—Local preference value. The default value is 100.
 - Weight—Weight of the route as set via autonomous system filters.
 - Path—Autonomous system paths to the destination network. There can be one entry in this field for each autonomous system in the path.

Clear BGP Session—Click this button to reset the BGP connection with the neighbor and to reset the BGP statistical counters.

BGP Summary

The BGP Summary pane displays the status of the BGP connection with the BGP neighbor.

Fields

- Router ID—The router ID of the FWSM. The router ID is the IP address assigned by the `bgp router-id` command. If this command is not in the running configuration, then the router ID defaults to the highest IP address configured on the FWSM.

- Local AS Number—The autonomous system number of the FWSM.

- BGP Session Table—Displays information about the BGP session. Each row contains the following information:
 - Neighbor—The IP address of the BGP neighbor.
 - Version—BGP version number spoken to the neighbor.
 - AS Number—The autonomous system number of the neighbor.
 - Messages Received—The number of messages received from the neighbor.
 - Messages Sent—The number of messages sent to the neighbor.
 - Table Version—Last version of the BGP database that was sent to the neighbor.
 - InQ—Number of messages queued to be processed from the neighbor.
 - OutQ—Number of messages queued to be sent to the neighbor.
- **Up/Down**—The length of time that the BGP session has been in the Established state, or the current status if not in the Established state.
- **State/PfxRcd**—Current state of the BGP session, and the number of prefixes that have been received from a neighbor or peer group. When the maximum number is reached, the string “PfxRcd” appears in the entry, the neighbor is shut down, and the connection is set to Idle.

An (Admin) entry with Idle status indicates that the connection has been shut down.

- **Clear BGP Session**—Click this button to reset the BGP connection with the neighbor and to reset the BGP statistical counters.

Monitoring OSPF LSAs

You can view the LSAs stored in the FWSM OSPF database in the Monitoring > Routing > OSPF LSAs area. There are 4 types of LSAs stored in the database, each with its own particular format. The following briefly describes the LSA types:

- **Router LSAs** (Type 1 LSAs) describe the routers attached to a network.
- **Network LSAs** (Type 2 LSAs) describe the networks attached to an OSPF router.
- **Summary LSAs** (Type 3 and Type 4 LSAs) condense routing information at area borders.
- **External LSAs** (Type 5 and Type 7 LSAs) describe routes to external networks.

To learn more about the information displayed for each LSAs type, see the following:

- **Type 1**
- **Type 2**
- **Type 3**
- **Type 4**
- **Type 5**
- **Type 7**

Type 1

Type 1 LSAs are router link advertisements that are passed within an area by all OSPF routers. They describe the router links to the network. Type 1 LSAs are only flooded within a particular area.

The Type 1 pane displays all Type 1 LSAs received by the FWSM. Each row in the table represents a single LSA.

Fields

- **Process**—*Display only.* Displays the OSPF process for the LSA.
- **Area**—*Display only.* Displays the OSPF area for the LSA.
- **Router ID**—*Display only.* Displays the OSPF router ID of the router originating the LSA.
- **Advertiser**—*Display only.* Displays the ID of the router originating the LSA. For router LSAs, this is identical to the Router ID.
- **Age**—*Display only.* Displays the age of the link state.
Monitoring OSPF LSAs

- **Sequence #**—*Display only.* Displays the link state sequence number. The link state sequence number is used to detect old or duplicate LSAs.
- **Checksum**—*Display only.* Displays the checksum of the contents of the LSA.
- **Link Count**—*Display only.* Displays the number of interfaces detected for the router.

Modes

The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed</td>
<td>Transparent</td>
</tr>
<tr>
<td>Multiple</td>
<td>Context</td>
</tr>
<tr>
<td>•</td>
<td>—</td>
</tr>
</tbody>
</table>

Type 2

Type 2 LSAs are network link advertisements that are flooded within an area by the Designated Router. They describe the routers attached to specific networks.

The Type 2 pane displays the IP address of the Designated Router that advertises the routes.

Fields

- **Process**—*Display only.* Displays the OSPF process for the LSA.
- **Area**—*Display only.* Displays the OSPF area for the LSA.
- **Designated Router**—*Display only.* Displays the IP address of the Designated Router interface that sent the LSA.
- **Adresser**—*Display only.* Displays the OSPF router ID of the Designated Router that sent the LSA.
- **Age**—*Display only.* Displays the age of the link state.
- **Sequence #**—*Display only.* Displays the link state sequence number. The link state sequence number is used to detect old or duplicate LSAs.
- **Checksum**—*Display only.* Displays the checksum of the contents of the LSA.

Modes

The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed</td>
<td>Transparent</td>
</tr>
<tr>
<td>Multiple</td>
<td>Context</td>
</tr>
<tr>
<td>•</td>
<td>—</td>
</tr>
</tbody>
</table>

Type 3

Type 3 LSA are summary link advertisements that are passed between areas. They describe the networks within an area.
Fields
- **Process**—*Display only*. Displays the OSPF process for the LSA.
- **Area**—*Display only*. Displays the OSPF area for the LSA.
- **Destination**—*Display only*. Displays the address of the destination network being advertised.
- **Advertiser**—*Display only*. Displays the ID of the ABR that sent the LSA.
- **Age**—*Display only*. Displays the age of the link state.
- **Sequence #**—*Display only*. Displays the link state sequence number. The link state sequence number is used to detect old or duplicate LSAs.
- **Checksum**—*Display only*. Displays the checksum of the contents of the LSA.

Modes
The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed</td>
<td>Transparent</td>
</tr>
<tr>
<td></td>
<td>Single</td>
</tr>
<tr>
<td></td>
<td>Multiple</td>
</tr>
<tr>
<td></td>
<td>Context</td>
</tr>
<tr>
<td></td>
<td>System</td>
</tr>
</tbody>
</table>

Type 4

Type 4 LSAs are summary link advertisements that are passed between areas. They describe the path to the ASBR. Type 4 LSAs do not get flooded into stub areas.

Fields
- **Process**—*Display only*. Displays the OSPF process for the LSA.
- **Area**—*Display only*. Displays the OSPF area for the LSA.
- **Router ID**—*Display only*. Displays the router ID of the ASBR.
- **Advertiser**—*Display only*. Displays the ID of the ABR that sent the LSA.
- **Age**—*Display only*. Displays the age of the link state.
- **Sequence #**—*Display only*. Displays the link state sequence number. The link state sequence number is used to detect old or duplicate LSAs.
- **Checksum**—*Display only*. Displays the checksum of the contents of the LSA.

Modes
The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed</td>
<td>Transparent</td>
</tr>
<tr>
<td></td>
<td>Single</td>
</tr>
<tr>
<td></td>
<td>Multiple</td>
</tr>
<tr>
<td></td>
<td>Context</td>
</tr>
<tr>
<td></td>
<td>System</td>
</tr>
</tbody>
</table>
Type 5

Type 5 LSAs are passed between and flooded into areas by ABSRs. They describe routes external to the AS. Stub areas and NSSAs do not receive these LSAs.

Fields

- Process—Display only. Displays the OSPF process for the LSA.
- Network—Display only. Displays the address of the AS external network.
- Advertiser—Display only. Displays the router ID of the ASBR.
- Age—Display only. Displays the age of the link state.
- Sequence #—Display only. Displays the link state sequence number. The link state sequence number is used to detect old or duplicate LSAs.
- Checksum—Display only. Displays the checksum of the contents of the LSA.
- Tag—Display only. Displays the external route tag, a 32-bit field attached to each external route. This is not used by the OSPF protocol itself.

Modes

The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Routed Transparent</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type 7

Type 7 LSAs are NSSA AS-external routes that are flooded by the ASBR. They are similar to Type 5 LSAs, but unlike Type 5 LSAs, which are flooded into multiple areas, Type 7 LSAs are only flooded into NSSAs. Type 7 LSAs are converted to Type 5 LSAs by ABRs before being flooded into the area backbone.

Fields

- Process—Display only. Displays the OSPF process for the LSA.
- Area—Display only. Displays the OSPF area for the LSA.
- Network—Display only. Displays the address of the external network.
- Advertiser—Display only. Displays the router ID of the ASBR that sent the LSA.
- Age—Display only. Displays the age of the link state.
- Sequence #—Display only. Displays the link state sequence number. The link state sequence number is used to detect old or duplicate LSAs.
- Checksum—Display only. Displays the checksum of the contents of the LSA.
- Tag—Display only. Displays the external route tag, a 32-bit field attached to each external route. This is not used by the OSPF protocol itself.
Monitoring OSPF Neighbors

The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed</td>
<td>Transparent</td>
</tr>
<tr>
<td>Single</td>
<td>Multiple</td>
</tr>
<tr>
<td></td>
<td>Context</td>
</tr>
<tr>
<td></td>
<td>System</td>
</tr>
</tbody>
</table>

Fields

- **Neighbor**—*Display only*. Displays the neighbor router ID.
- **Priority**—*Display only*. Displays the router priority.
- **State**—*Display only*. Displays the OSPF state for the neighbor:
 - **Down**—This is the first OSPF neighbor state. It means that no hello packets have been received from this neighbor, but hello packets can still be sent to the neighbor in this state.
 - **During the fully adjacent neighbor state, if the FWSM does not receive hello packet from a neighbor within the dead interval time, or if the manually configured neighbor is being removed from the configuration, then the neighbor state changes from Full to Down.**
 - **Attempt**—This state is only valid for manually configured neighbors in an NBMA environment. In Attempt state, the FWSM sends unicast hello packets every poll interval to the neighbor from which hellos have not been received within the dead interval.
 - **Init**—This state specifies that the FWSM has received a hello packet from its neighbor, but the ID of the receiving router was not included in the hello packet. When a router receives a hello packet from a neighbor, it should list the router ID of the sender in its hello packet as an acknowledgment that it received a valid hello packet. At the end of this stage, the DR and BDR for broadcast and non-broadcast multiaccess networks are elected.

Note
Receiving a Database Descriptor packet from a neighbor in the Init state will also cause a transition to 2-way state.
Monitoring OSPF Neighbors

- **Exstart**—Once the DR and BDR are elected, the actual process of exchanging link state information begins between the FWSM and the DR and BDR.

In this state, the FWSM and the DR and BDR establish a master-slave relationship and choose the initial sequence number for adjacency formation. The device with the higher router ID becomes the master and starts the exchange and is therefore the only device that can increment the sequence number.

Note

DR/BDR election occurs by virtue of a higher priority configured on the device instead of highest router ID. Therefore, it is possible that a DR plays the role of slave in this state. Master/slave election is on a per-neighbor basis. If multiple devices have the same DR priority, then the device with the highest IP address becomes the DR.

- **Exchange**—In the exchange state, OSPF neighbors exchange DBD packets. Database descriptors contain LSA headers only and describe the contents of the entire link state database. Each DBD packet has a sequence number which can be incremented only by master which is explicitly acknowledged by slave. Routers also send link state request packets and link state update packets (which contain the entire LSA) in this state. The contents of the DBD received are compared to the information contained in the routers link state database to check if new or more current link state information is available with the neighbor.

- **Loading**—In this state, the actual exchange of link state information occurs. Based on the information provided by the DBDs, routers send link state request packets. The neighbor then provides the requested link state information in link state update packets. During the adjacency, if a the FWSM receives an outdated or missing LSA, it requests that LSA by sending a link state request packet. All link state update packets are acknowledged.

- **Full**—In this state, the neighbors are fully adjacent with each other. All the router and network LSAs are exchanged and the router databases are fully synchronized.

 Full is the normal state for an OSPF router. The only exception to this is the 2-way state, which is normal in a broadcast network. Routers achieve the full state with their DR and BDR only. Neighbors always see each other as 2-way.

- **Dead Time**—*Display only*. Displays the amount of time remaining that the router waits to receive an OSPF hello packet from the neighbor before declaring the neighbor down.

- **Address**—*Display only*. Displays the IP address of the interface to which this neighbor is directly connected.

- **Interface**—*Display only*. Displays the interface on which the OSPF neighbor has formed adjacency.

Modes

The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
<th>Multiple Context</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed</td>
<td>Transparent</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monitoring EIGRP Neighbors

The EIGRP Neighbors pane displays dynamically discovered EIGRP neighbors. Statically defined neighbors do not appear in this pane. To see the statically defined EIGRP neighbors, see Configuration > Device Setup > Routing > EIGRP > Static Neighbor.

Fields

- Address—IP address of the EIGRP neighbor.
- Interface—Interface on which the FWSM receives hello packets from the neighbor.
- Holdtime—Length of time (in seconds) that the FWSM waits to hear from the neighbor before declaring it down. This hold time is received from the neighbor in the hello packet, and begins decreasing until another hello packet is received from the neighbor.

 If the neighbor is using the default hold time, this number will be less than 15. If the peer configures a non-default hold time, the non-default hold time will be displayed.

 If this value reaches 0, the FWSM considers the neighbor unreachable.
- Uptime—Elapsed time (in hours:minutes:seconds) since the FWSM first heard from this neighbor.
- Queue Length—Number of EIGRP packets (update, query, and reply) that the FWSM is waiting to send.
- Sequence Number—Sequence number of the last update, query, or reply packet that was received from the neighbor.
- SRTT—Smooth round-trip time. This is the number of milliseconds required for an EIGRP packet to be sent to this neighbor and for the FWSM to receive an acknowledgment of that packet.
- RTO—Retransmission timeout (in milliseconds). This is the amount of time the FWSM waits before resending a packet from the retransmission queue to a neighbor.
- Clear Neighbors—Click the Clear Neighbors button to clear dynamically-learned neighbors from the neighbor table.

Modes

The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed Transparent Single</td>
<td></td>
<td>Context System</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>— —</td>
</tr>
</tbody>
</table>

Displaying Routes

The Routes pane displays the statically configured, connected, and discovered routes in the FWSM routing table.

Fields

- Protocol—Display only. Displays the origin of the route information.

 - RIP—The route was derived using RIP.
- OSPF—The route was derived using OSPF.
- EIGRP—The route was derived using EIGRP.
- CONNECTED—The route is a network directly connected to the interface.
- STATIC—The route is statically defined.

- **Type**—*Display only*. Displays the type of route. It can be one of the following values:
 - - (dash)—Indicates that the type column does not apply to the specified route.
 - IA—The route is an OSPF interarea route.
 - E1—The route is an OSPF external type 1 route.
 - E2—The route is an OSPF external type 2 route.
 - N1—The route is an OSPF not so stubby area (NSSA) external type 1 route.
 - N2—The route is an OSPF NSSA external type 2 route.

- **Destination**—*Display only*. Displays the IP address/netmask of the destination network.
- **Gateway**—*Display only*. Displays the IP address of the next router to the remote network.
- **Interface**—*Display only*. Displays the interface through which the specified network can be reached.
- **[AD/Metric]**—*Display only*. Displays the administrative distance/metric for the route.

Modes

The following table shows the modes in which this feature is available:

<table>
<thead>
<tr>
<th>Firewall Mode</th>
<th>Security Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed</td>
<td>Transparent</td>
</tr>
<tr>
<td></td>
<td>Single</td>
</tr>
<tr>
<td>Multiple</td>
<td>Context</td>
</tr>
<tr>
<td></td>
<td>System</td>
</tr>
</tbody>
</table>