

Cisco IOS XR MPLS Configuration Guide for the Cisco XR 12000 Series Router, Release 5.1.x

Americas Headquarters Cisco Systems, Inc.

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883

Text Part Number: 0L-30410-03

© 2014 Cisco Systems, Inc. All rights reserved.

CONTENTS

Preface	Preface xv
	Changes to This Document xv
	Obtaining Documentation and Submitting a Service Request xv
CHAPTER 1	— New and Changed Feature Information in Cisco IOS XR Release 5.1.x 1
	New and Changed Feature Information in Cisco IOS XR Release 5.1.x 1
CHAPTER 2	Implementing MPLS Label Distribution Protocol 5
	Prerequisites for Implementing Cisco MPLS LDP 6
	Information About Implementing Cisco MPLS LDP 6
	Overview of Label Distribution Protocol 7
	Label Switched Paths 7
	LDP Control Plane 7
	Exchanging Label Bindings 8
	LDP Forwarding 9
	LDP Graceful Restart 10
	Control Plane Failure 11
	Phases in Graceful Restart 12
	Recovery with Graceful-Restart 13
	Label Advertisement Control (Outbound Filtering) 14
	Label Acceptance Control (Inbound Filtering) 14
	Local Label Allocation Control 15
	Session Protection 15
	IGP Synchronization 16
	IGP Auto-configuration 17
	IGP Synchronization Process Restart Delay 17
	LDP Nonstop Routing 18

IP LDP Fast Reroute Loop Free Alternate 18 Downstream on Demand 20 How to Implement MPLS LDP 20 Configuring LDP Discovery Parameters 20 Configuring LDP Discovery Over a Link 22 Configuring LDP Discovery for Active Targeted Hellos 24 Configuring LDP Discovery for Passive Targeted Hellos 26 Configuring Label Advertisement Control (Outbound Filtering) 27 Setting Up LDP Neighbors 29 Setting Up LDP Forwarding 31 Setting Up LDP NSF Using Graceful Restart 33 Configuring Label Acceptance Control (Inbound Filtering) 35 Configuring Local Label Allocation Control 37 Configuring Session Protection 38 Configuring LDP IGP Synchronization: OSPF 39 Configuring LDP IGP Synchronization: ISIS 40 Configuring LDP IGP Synchronization Delay Interval 42 Configuring LDP IGP Synchronization Process Restart Delay 43 Enabling LDP Auto-Configuration for a Specified OSPF Instance 44 Enabling LDP Auto-Configuration in an Area for a Specified OSPF Instance 46 Disabling LDP Auto-Configuration 48 Configuring LDP Nonstop Routing 49 Configuring LDP Downstream on Demand mode 51 Configuration Examples for Implementing MPLS LDP 52 Configuring LDP with Graceful Restart: Example 52 Configuring LDP Discovery: Example 52 Configuring LDP Link: Example 52 Configuring LDP Discovery for Targeted Hellos: Example 53 Configuring Label Advertisement (Outbound Filtering): Example 53 Configuring LDP Neighbors: Example 54 Configuring LDP Forwarding: Example 54 Configuring LDP Nonstop Forwarding with Graceful Restart: Example 54 Configuring Label Acceptance (Inbound Filtering): Example 55 Configuring Local Label Allocation Control: Example 55 Configuring LDP Session Protection: Example 55

	Configuring LDP IGP Synchronization—OSPF: Example 56
	Configuring LDP IGP Synchronization—ISIS: Example 56
	Configuring LDP Auto-Configuration: Example 56
	Configure IP LDP Fast Reroute Loop Free Alternate: Examples 57
	Verify IP LDP Fast Reroute Loop Free Alternate: Example 58
	Additional References 60
CHAPTER 3	Implementing MPLS Static Labeling 63
	Enable MPLS Encapsulation on an Interface 64
	Define a Range for Static MPLS Labels 65
	Setup a Static LSP 66
	Allocate Static MPLS Label to an IP Prefix and Configure a LSP 67
	Allocate Static MPLS Label for a Specific VRF 69
	Verify MPLS Static Bindings 70
	Identify and Clear Label Discrepancy 71
CHAPTER 4	Implementing RSVP for MPLS-TE and MPLS O-UNI 73
	Prerequisites for Implementing RSVP for MPLS-TE and MPLS O-UNI 74
	Information About Implementing RSVP for MPLS-TE and MPLS O-UNI 74
	Overview of RSVP for MPLS-TE and MPLS O-UNI 74
	LSP Setup 75
	High Availability 76
	Graceful Restart 76
	Graceful Restart: Standard and Interface-Based 76
	Graceful Restart: Figure 77
	ACL-based Prefix Filtering 78
	RSVP MIB 79
	Information About Implementing RSVP Authentication 79
	RSVP Authentication Functions 79
	RSVP Authentication Design 79
	Global, Interface, and Neighbor Authentication Modes 80
	Security Association 81
	Key-source Key-chain 83
	Guidelines for Window-Size and Out-of-Sequence Messages 83
	Caveats for Out-of-Sequence 84

How to Implement RSVP 84 Configuring Traffic Engineering Tunnel Bandwidth 84 Confirming DiffServ-TE Bandwidth 84 Configuring MPLS O-UNI Bandwidth 86 Enabling Graceful Restart 86 Configuring ACL-based Prefix Filtering 87 Configuring ACLs for Prefix Filtering 87 Configuring RSVP Packet Dropping 89 Verifying RSVP Configuration 90 Enabling RSVP Traps 93 How to Implement RSVP Authentication 95 Configuring Global Configuration Mode RSVP Authentication 95 Enabling RSVP Authentication Using the Keychain in Global Configuration Mode 95 Configuring a Lifetime for RSVP Authentication in Global Configuration Mode 96 Configuring the Window Size for RSVP Authentication in Global Configuration Mode 97 Configuring an Interface for RSVP Authentication 99 Specifying the RSVP Authentication Keychain in Interface Mode 99 Configuring a Lifetime for an Interface for RSVP Authentication 100 Configuring the Window Size for an Interface for RSVP Authentication 102 Configuring RSVP Neighbor Authentication 103 Specifying the Keychain for RSVP Neighbor Authentication 103 Configuring a Lifetime for RSVP Neighbor Authentication 105 Configuring the Window Size for RSVP Neighbor Authentication 106 Verifying the Details of the RSVP Authentication 107 Eliminating Security Associations for RSVP Authentication 107 Configuration Examples for RSVP 107 Bandwidth Configuration (Prestandard): Example 108 Bandwidth Configuration (MAM): Example 108 Bandwidth Configuration (RDM): Example 108 Refresh Reduction and Reliable Messaging Configuration: Examples 109 Refresh Interval and the Number of Refresh Messages Configuration: Example 109 Retransmit Time Used in Reliable Messaging Configuration: Example 109 Acknowledgement Times Configuration: Example 109 Summary Refresh Message Size Configuration: Example 109

	Disable Refresh Reduction: Example 110
	Configure Graceful Restart: Examples 110
	Enable Graceful Restart: Example 110
	Enable Interface-Based Graceful Restart: Example 110
	Change the Restart-Time: Example 110
	Change the Hello Interval: Example 111
	Configure ACL-based Prefix Filtering: Example 111
	Set DSCP for RSVP Packets: Example 111
	Enable RSVP Traps: Example 111
	Configuration Examples for RSVP Authentication 112
	RSVP Authentication Global Configuration Mode: Example 112
	RSVP Authentication for an Interface: Example 113
	RSVP Neighbor Authentication: Example 113
	RSVP Authentication by Using All the Modes: Example 113
	Additional References 114
	_
CHAPTER 5	Implementing MPLS Forwarding 117
CHAPTER 5	Implementing MPLS Forwarding 117 Prerequisites for Implementing Cisco MPLS Forwarding 117
CHAPTER 5	
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119 MFI Control-Plane Services 119
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119 MFI Control-Plane Services 119 MFI Data-Plane Services 120
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119 MFI Control-Plane Services 119 MFI Data-Plane Services 120 Time-to-Live Propagation in Hierarchical MPLS 120
CHAPTER 5	 Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119 MFI Control-Plane Services 119 MFI Data-Plane Services 120 Time-to-Live Propagation in Hierarchical MPLS 120 MPLS Maximum Transmission Unit 120
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119 MFI Control-Plane Services 119 MFI Data-Plane Services 120 Time-to-Live Propagation in Hierarchical MPLS 120 MPLS Maximum Transmission Unit 120 MPLS OAM Support for BGP 3107 120
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119 MFI Control-Plane Services 119 MFI Data-Plane Services 120 Time-to-Live Propagation in Hierarchical MPLS 120 MPLS Maximum Transmission Unit 120 MPLS OAM Support for BGP 3107 120 How to Implement MPLS Forwarding 120
CHAPTER 5	Prerequisites for Implementing Cisco MPLS Forwarding 117 Restrictions for Implementing Cisco MPLS Forwarding 118 Information About Implementing MPLS Forwarding 118 MPLS Forwarding Overview 118 Label Switching Functions 118 Distribution of Label Bindings 119 MFI Control-Plane Services 119 MFI Data-Plane Services 120 Time-to-Live Propagation in Hierarchical MPLS 120 MPLS Maximum Transmission Unit 120 MPLS OAM Support for BGP 3107 120 How to Implement MPLS Forwarding 120 Configuring the Time-to-Live Propagation in Hierarchical MPLS 121

CHAPTER 6 Implementing MPLS Traffic Engineering 127

```
Prerequisites for Implementing Cisco MPLS Traffic Engineering 129
Information About Implementing MPLS Traffic Engineering 129
  Overview of MPLS Traffic Engineering 129
      Benefits of MPLS Traffic Engineering 130
      How MPLS-TE Works 130
  MPLS Traffic Engineering 131
      Backup AutoTunnels 131
          Link Protection 132
          Node Protection 132
          Backup AutoTunnel Assignment 133
          Explicit Paths 134
      Periodic Backup Promotion 134
  Protocol-Based CLI 134
  Differentiated Services Traffic Engineering 135
      Prestandard DS-TE Mode 135
      IETF DS-TE Mode 135
      Bandwidth Constraint Models 136
          Maximum Allocation Bandwidth Constraint Model 136
          Russian Doll Bandwidth Constraint Model 136
      TE Class Mapping 137
  Flooding 137
      Flooding Triggers 137
      Flooding Thresholds 138
  Fast Reroute 138
      IS-IS IP Fast Reroute Loop-free Alternative 139
  MPLS-TE and Fast Reroute over Link Bundles 139
  Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE 140
  DWDM Transponder Integration 141
      GMPLS Benefits 141
      GMPLS Support 141
      GMPLS Protection and Restoration 142
          1:1 LSP Protection 142
          Shared Mesh Restoration and M:N Path Protection 142
          End-to-end Recovery 143
          GMPLS Protection Requirements 143
```

GMPLS Prerequisites 143 Flexible Name-based Tunnel Constraints 143 MPLS Traffic Engineering Interarea Tunneling 144 Interarea Support 144 Multiarea Support 144 Loose Hop Expansion 145 Loose Hop Reoptimization 145 ABR Node Protection 146 Fast Reroute Node Protection 146 MPLS-TE Forwarding Adjacency 146 MPLS-TE Forwarding Adjacency Benefits 146 MPLS-TE Forwarding Adjacency Restrictions 147 MPLS-TE Forwarding Adjacency Prerequisites 147 Unequal Load Balancing 147 Path Computation Element 148 Policy-Based Tunnel Selection 149 Policy-Based Tunnel Selection 149 Policy-Based Tunnel Selection Functions 150 PBTS with Dynamic Tunnel Selection 151 PBTS Restrictions 151 PBTS Default Class Enhancement 151 MPLS-TE Automatic Bandwidth 152 MPLS-TE Automatic Bandwidth Overview 152 Adjustment Threshold 153 **Overflow Detection** 154 Restrictions for MPLS-TE Automatic Bandwidth 154 MPLS Traffic Engineering Shared Risk Link Groups 154 Explicit Path 155 Fast ReRoute with SRLG Constraints 156 Importance of Protection 157 Delivery of Packets During a Failure 158 Multiple Backup Tunnels Protecting the Same Interface 158 SRLG Limitations 158 MPLS TE SRLG Scale Enhancements 159 Soft-Preemption 159

Path Option Attributes 160 Configuration Hierarchy of Path Option Attributes 160 Traffic Engineering Bandwidth and Bandwidth Pools 161 Path Option Switchover 161 Path Option and Path Protection 162 Auto-Tunnel Mesh 162 Destination List (Prefix-List) 163 VRF Redirection to MPLS TE Tunnels 163 MPLS TE Extended Admin Groups 164 Stateful Path Computation Element 164 Stateful PCE State Reporting 165 Stateful PCE State Synchronization 166 Stateful PCE Delegation 166 Stateful PCE State Updating 166 Stateful PCE Creation of LSPs 166 MPLS TE Usability Enhancements 166 MPLS TE IPv6 Autoroute 167 MPLS TE IPv6 Autoroute Restrictions 167 MPLS TE Path Cost Limit 167 Soft-preemption over FRR Backup Tunnels 168 MPLS TE Auto-tunnel Mesh One-hop 169 Inter-area Traffic Engineering with Dynamic ABR Discovery 169 How to Implement Traffic Engineering 169 Building MPLS-TE Topology 169 Creating an MPLS-TE Tunnel 172 Configuring Forwarding over the MPLS-TE Tunnel 175 Protecting MPLS Tunnels with Fast Reroute 177 Enabling an AutoTunnel Backup 181 Removing an AutoTunnel Backup 183 Establishing MPLS Backup AutoTunnels to Protect Fast Reroutable TE LSPs 184 Establishing Next-Hop Tunnels with Link Protection 185 Configuring a Prestandard DS-TE Tunnel 187 Configuring an IETF DS-TE Tunnel Using RDM 189 Configuring an IETF DS-TE Tunnel Using MAM 191 Configuring MPLS -TE and Fast-Reroute on OSPF 194

Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE 196 Configuring GMPLS 197 Configuring IPCC Control Channel Information 197 Configuring Router IDs 198 Configuring OSPF over IPCC 199 Configuring Local and Remote TE Links 201 Configuring Numbered and Unnumbered Links 202 Configuring Local Reservable Bandwidth 203 Configuring Local Switching Capability Descriptors 204 Configuring Persistent Interface Index 206 Enabling LMP Message Exchange 207 Disabling LMP Message Exchange 208 Configuring Remote TE Link Adjacency Information for Numbered Links 210 Configuring Remote TE Link Adjacency Information for Unnumbered Links 212 Configuring Numbered and Unnumbered Optical TE Tunnels 214 Configuring an Optical TE Tunnel Using Dynamic Path Option 215 Configuring an Optical TE Tunnel Using Explicit Path Option 217 Configuring LSP Hierarchy 219 Configuring Border Control Model 220 Configuring Path Protection 220 Configuring an LSP 220 Forcing Reversion of the LSP 223 Configuring Flexible Name-based Tunnel Constraints 224 Assigning Color Names to Numeric Values 224 Associating Affinity-Names with TE Links 226 Associating Affinity Constraints for TE Tunnels 227 Configuring IS-IS to Flood MPLS-TE Link Information 228 Configuring an OSPF Area of MPLS-TE 230 Configuring Explicit Paths with ABRs Configured as Loose Addresses 231 Configuring MPLS-TE Forwarding Adjacency 233 Configuring Unequal Load Balancing 234 Setting Unequal Load Balancing Parameters 234 Enabling Unequal Load Balancing 235 Configuring a Path Computation Client and Element 237 Configuring a Path Computation Client 237

Configuring a Path Computation Element Address 238 Configuring PCE Parameters 239 Configuring Policy-based Tunnel Selection 242 Configuring the Automatic Bandwidth 244 Configuring the Collection Frequency 244 Forcing the Current Application Period to Expire Immediately 246 Configuring the Automatic Bandwidth Functions 247 Configuring the Shared Risk Link Groups 250 Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link 250 Creating an Explicit Path With Exclude SRLG 252 Using Explicit Path With Exclude SRLG 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint 259 Enabling Soft-Preemption on a Node 262 Enabling Soft-Preemption on a Tunnel 263 Configuring Attributes within a Path-Option Attribute 264 Configuring Auto-Tunnel Mesh Tunnel ID 266 Configuring Auto-tunnel Mesh Unused Timeout 267 Configuring Auto-Tunnel Mesh Group 269 Configuring Tunnel Attribute-Set Templates 270 Enabling LDP on Auto-Tunnel Mesh 273 Enabling Stateful PCE Client 274 Configuring VRF Redirection 275 Configuring IPv6 Routing Over IPv4 MPLS-TE Tunnels 277 Configuring Path-selection Cost Limit 279 Configuring Global Path-selection Cost Limit on MPLS TE Tunnels 279 Configuring Path-selection Cost Limit per TE Tunnel 280 Configuring Path-selection Cost Limit per Path-option Attribute-set 281 Enabling Soft-preemption over FRR Backup Tunnels 282 Enabling Auto-onehop Tunnels to Next-hop Neighbors 283 Configuration Examples for Cisco MPLS-TE 285 Configure Fast Reroute and SONET APS: Example 285 Build MPLS-TE Topology and Tunnels: Example 285 Configure IETF DS-TE Tunnels: Example 287

Configure MPLS-TE and Fast-Reroute on OSPF: Example 287 Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example 287 Configure GMPLS: Example 288 Configure Flexible Name-based Tunnel Constraints: Example 290 Configure an Interarea Tunnel: Example 292 Configure Forwarding Adjacency: Example 292 Configure Unequal Load Balancing: Example 292 Configure PCE: Example 293 Configure PCE: Example 293 Configure Policy-based Tunnel Selection: Example 294 Configure Automatic Bandwidth: Example 295 Configure the MPLS-TE Shared Risk Link Groups: Example 297 Additional References 297

I

Preface

The Cisco IOS XR MPLS Configuration Guide for the Cisco XR 12000 Series Router preface contains these sections:

- Changes to This Document, page xv
- · Obtaining Documentation and Submitting a Service Request, page xv

Changes to This Document

This table lists the technical changes made to this document since it was first printed.

Revision	Date	Change Summary
OL-30410-03	May 2014	Republished with documentation updates for Cisco IOS XR Release 5.1.2 features.
OL-30410-02	January 2014	Republished with documentation updates for Cisco IOS XR Release 5.1.1 features.
OL-30410-01	September 2013	Initial release of this document.

Table 1: Changes to This Document

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see *What's New in Cisco Product Documentation*, at: http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Subscribe to *What's New in Cisco Product Documentation*, which lists all new and revised Cisco technical documentation, as an RSS feed and deliver content directly to your desktop using a reader application. The RSS feeds are a free service.

CHAPTER

New and Changed Feature Information in Cisco IOS XR Release 5.1.x

This table summarizes the new and changed feature information for the *Cisco IOS XR MPLS Configuration Guide for the Cisco XR 12000 Series Router*, and tells you where they are documented.

For a complete list of new and changed features in *Cisco IOS XR Software, Release 5.1.x*, see the *New and Changed Features in Cisco IOS XR Software, Release 5.1.x for Cisco XR 12000 Series Router* document.

• New and Changed Feature Information in Cisco IOS XR Release 5.1.x, page 1

New and Changed Feature Information in Cisco IOS XR Release 5.1.x

Table 2: New and	Changed Featur	res in Cisco IOS	S XR Software

Feature	Description	Introduced/Changed in Release	Where Documented
	No new features.	Release 5.1	
Stateful Path Computation Element	This feature was introduced.	Release 5.1.1	Implementing MPLS Traffic Engineering chapter: Stateful Path Computation
			Element, on page 164
MPLS TE Extended Admin Groups	This feature was introduced.	Release 5.1.1	Implementing MPLS Traffic Engineering chapter:
			MPLS TE Extended Admin Groups, on page 164

Feature	Description	Introduced/Changed in Release	Where Documented
VRF Redirection to MPLS TE Tunnels	This feature was introduced.	Release 5.1.1	<i>Implementing MPLS Traffic</i> <i>Engineering</i> chapter:
			VRF Redirection to MPLS TE Tunnels, on page 163
MPLS TE IPv6 Autoroute	This feature was introduced.	Release 5.1.1	<i>Implementing MPLS Traffic Engineering</i> chapter:
			MPLS TE IPv6 Autoroute, on page 167
MPLS TE SRLG Scale Enhancements	This feature was introduced.	Release 5.1.1	<i>Implementing MPLS Traffic Engineering</i> chapter:
			MPLS TE SRLG Scale Enhancements, on page 159
MPLS TE Usability Enhancements	This feature was introduced.	Release 5.1.1	<i>Implementing MPLS Traffic Engineering</i> chapter:
			MPLS TE Usability Enhancements, on page 166
MPLS TE Path Cost Limit	This feature was introduced.	Release 5.1.2	<i>Implementing MPLS Traffic</i> <i>Engineering</i> chapter:
			MPLS TE Path Cost Limit, on page 167
			Configuring Path-selection Cost Limit, on page 279
			Configure MPLS TE Path-selection Cost Limit: Example, on page 297
Soft-preemption over FRR Backup Tunnels	This feature was introduced.	Release 5.1.2	<i>Implementing MPLS Traffic Engineering</i> chapter:
			Soft-preemption over FRR Backup Tunnels, on page 168
			Enabling Soft-preemption over FRR Backup Tunnels, on page 282

Feature	Description	Introduced/Changed in Release	Where Documented
MPLS TE Auto-tunnel Primary One-hop	This feature was introduced.	Release 5.1.2	Implementing MPLS Traffic Engineering chapter:
			MPLS TE Auto-tunnel Mesh One-hop, on page 169
			Enabling Auto-onehop Tunnels to Next-hop Neighbors, on page 283
Inter-area Traffic Engineering with Dynamic ABR Discovery	This feature was introduced.	Release 5.1.2	Implementing MPLS Traffic Engineering chapter:
			Inter-area Traffic Engineering with Dynamic ABR Discovery, on page 169

Implementing MPLS Label Distribution Protocol

The Multiprotocol Label Switching (MPLS) is a standards-based solution driven by the Internet Engineering Task Force (IETF) that was devised to convert the Internet and IP backbones from best-effort networks into business-class transport mediums.

MPLS, with its label switching capabilities, eliminates the need for an IP route look-up and creates a virtual circuit (VC) switching function, allowing enterprises the same performance on their IP-based network services as with those delivered over traditional networks such as Frame Relay or ATM.

Label Distribution Protocol (LDP) performs label distribution in MPLS environments. LDP provides the following capabilities:

- LDP performs hop-by-hop or dynamic path setup; it does not provide end-to-end switching services.
- LDP assigns labels to routes using the underlying Interior Gateway Protocols (IGP) routing protocols.
- LDP provides constraint-based routing using LDP extensions for traffic engineering.

Finally, LDP is deployed in the core of the network and is one of the key protocols used in MPLS-based Layer 2 and Layer 3 virtual private networks (VPNs).

Release	Modification
Release 3.2	Support was added for conceptual and configuration information about LDP label advertisement control (Outbound label filtering).
Release 3.3.0	Support was added for these features:
	Inbound Label Filtering
	Local Label Allocation Control
	Session Protection
	LDP-IGP Synchronization
Release 3.5.0	Support was added for LDP Auto-configuration.
Release 3.6.0	Support was added for LDP nonstop routing (NSR).

Feature History for Implementing MPLS LDP

Release	Modification
Release 3.8.0	The feature LDP IGP Synchronization Process Restart Delay was introduced.
Release 4.0.1	 Support was added for these features: IP LDP Fast Reroute Loop Free Alternate Downstream on Demand
Release 5.1	Support was added for MPLS over IRB.

- Prerequisites for Implementing Cisco MPLS LDP, page 6
- Information About Implementing Cisco MPLS LDP, page 6
- How to Implement MPLS LDP, page 20
- Configuration Examples for Implementing MPLS LDP, page 52
- Additional References, page 60

Prerequisites for Implementing Cisco MPLS LDP

These prerequisites are required to implement MPLS LDP:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- You must be running Cisco IOS XR software.
- You must install a composite mini-image and the MPLS package.
- You must activate IGP.
- We recommend to use a lower session holdtime bandwidth such as neighbors so that a session down occurs before an adjacency-down on a neighbor. Therefore, the following default values for the hello times are listed:
 - Holdtime is 15 seconds.
 - Interval is 5 seconds.

For example, the LDP session holdtime can be configured as 30 seconds by using the holdtime command.

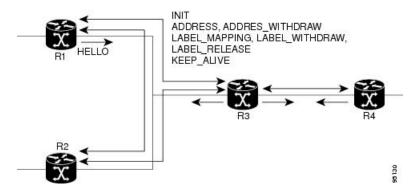
Information About Implementing Cisco MPLS LDP

To implement MPLS LDP, you should understand these concepts:

Overview of Label Distribution Protocol

LDP performs label distribution in MPLS environments. LDP uses hop-by-hop or dynamic path setup, but does not provide end-to-end switching services. Labels are assigned to routes that are chosen by the underlying IGP routing protocols. The Label Switched Paths (LSPs) that result from the routes, forward labeled traffic across the MPLS backbone to adjacent nodes.

Label Switched Paths


LSPs are created in the network through MPLS. They can be created statically, by RSVP traffic engineering (TE), or by LDP. LSPs created by LDP perform hop-by-hop path setup instead of an end-to-end path.

LDP Control Plane

The control plane enables label switched routers (LSRs) to discover their potential peer routers and to establish LDP sessions with those peers to exchange label binding information.

This figure shows the control messages exchanged between LDP peers.

Figure 1: LDP Control Protocol

LDP uses the hello discovery mechanism to discover its neighbor or peer on the network. When LDP is enabled on an interface, it sends hello messages to a link-local multicast address, and joins a specific multicast group to receive hellos from other LSRs present on the given link. When LSRs on a given link receive hellos, their neighbors are discovered and the LDP session (using TCP) is established.

Note

Hellos are not only used to discover and trigger LDP sessions; they are also required to maintain LDP sessions. If a certain number of hellos from a given peer are missed in sequence, LDP sessions are brought down until the peer is discovered again.

LDP also supports non-link neighbors that could be multiple hops away on the network, using the targeted hello mechanism. In these cases, hellos are sent on a directed, unicast address.

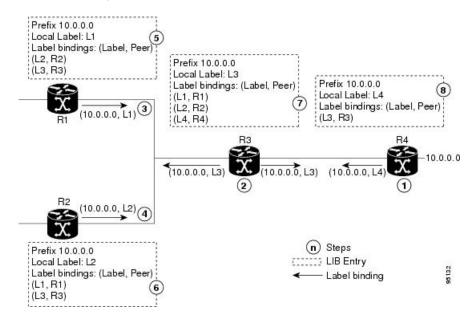
The first message in the session establishment phase is the initialization message, which is used to negotiate session parameters. After session establishment, LDP sends a list of all its interface addresses to its peers in an address message. Whenever a new address becomes available or unavailable, the peers are notified regarding such changes via ADDRESS or ADDRESS_WITHDRAW messages respectively.

When MPLS LDP learns an IGP prefix it allocates a label locally as the inbound label. The local binding between the prefix label is conveyed to its peers via LABEL_MAPPING message. If the binding breaks and becomes unavailable, a LABEL_WITHDRAW message is sent to all its peers, which responds with LABEL_RELEASE messages.

The local label binding and remote label binding received from its peer(s) is used to setup forwarding entries. Using routing information from the IGP protocol and the forwarding information base (FIB), the next active hop is selected. Label binding is learned from the next hop peer, and is used as the outbound label while setting up the forwarding plane.

The LDP session is also kept alive using the LDP keepalive mechanism, where an LSR sends a keepalive message periodically to its peers. If no messages are received and a certain number of keepalive messages are missed from a peer, the session is declared dead, and brought down immediately.

Related Topics


Configuring LDP Discovery Parameters, on page 20 Configuring LDP Discovery Over a Link, on page 22 Configuring LDP Link: Example, on page 52 Configuring LDP Discovery for Active Targeted Hellos, on page 24 Configuring LDP Discovery for Passive Targeted Hellos, on page 26 Configuring LDP Discovery for Targeted Hellos: Example, on page 53

Exchanging Label Bindings

LDP creates LSPs to perform the hop-by-hop path setup so that MPLS packets can be transferred between the nodes on the MPLS network.

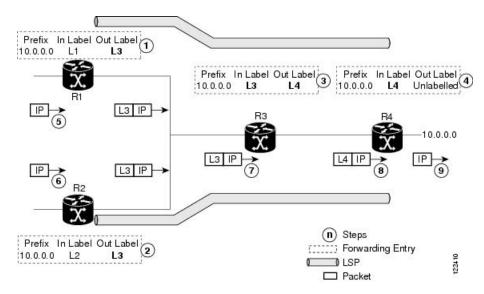
This figure illustrates the process of label binding exchange for setting up LSPs.

Figure 2: Setting Up Label Switched Paths

For a given network (10.0.0.0), hop-by-hop LSPs are set up between each of the adjacent routers (or, nodes) and each node allocates a local label and passes it to its neighbor as a binding:

- 1 R4 allocates local label L4 for prefix 10.0.0.0 and advertises it to its neighbors (R3).
- 2 R3 allocates local label L3 for prefix 10.0.0.0 and advertises it to its neighbors (R1, R2, R4).
- 3 R1 allocates local label L1 for prefix 10.0.0.0 and advertises it to its neighbors (R2, R3).
- **4** R2 allocates local label L2 for prefix 10.0.0.0 and advertises it to its neighbors (R1, R3).
- 5 R1's label information base (LIB) keeps local and remote labels bindings from its neighbors.
- 6 R2's LIB keeps local and remote labels bindings from its neighbors.
- 7 R3's LIB keeps local and remote labels bindings from its neighbors.
- 8 R4's LIB keeps local and remote labels bindings from its neighbors.

Related Topics


Setting Up LDP Neighbors, on page 29 Configuring LDP Neighbors: Example, on page 54

LDP Forwarding

Once label bindings are learned, the LDP control plane is ready to setup the MPLS forwarding plane as shown in the following figure.

Once label bindings are learned, the LDP control plane is ready to setup the MPLS forwarding plane as shown in this figure.

Figure 3: Forwarding Setup

1 Because R3 is next hop for 10.0.0.0 as notified by the FIB, R1 selects label binding from R3 and installs forwarding entry (Layer 1, Layer 3).

- 2 Because R3 is next hop for 10.0.0.0 (as notified by FIB), R2 selects label binding from R3 and installs forwarding entry (Layer 2, Layer 3).
- **3** Because R4 is next hop for 10.0.0.0 (as notified by FIB), R3 selects label binding from R4 and installs forwarding entry (Layer 3, Layer 4).
- 4 Because next hop for 10.0.0.0 (as notified by FIB) is beyond R4, R4 uses NO-LABEL as the outbound and installs the forwarding entry (Layer 4); the outbound packet is forwarded IP-only.
- 5 Incoming IP traffic on ingress LSR R1 gets label-imposed and is forwarded as an MPLS packet with label L3.
- 6 Incoming IP traffic on ingress LSR R2 gets label-imposed and is forwarded as an MPLS packet with label L3.
- 7 R3 receives an MPLS packet with label L3, looks up in the MPLS label forwarding table and switches this packet as an MPLS packet with label L4.
- **8** R4 receives an MPLS packet with label L4, looks up in the MPLS label forwarding table and finds that it should be Unlabeled, pops the top label, and passes it to the IP forwarding plane.
- 9 IP forwarding takes over and forwards the packet onward.

Related Topics

Setting Up LDP Forwarding, on page 31 Configuring LDP Forwarding: Example, on page 54

LDP Graceful Restart

LDP (Label Distribution Protocol) graceful restart provides a control plane mechanism to ensure high availability and allows detection and recovery from failure conditions while preserving Nonstop Forwarding (NSF) services. Graceful restart is a way to recover from signaling and control plane failures without impacting forwarding.

Without LDP graceful restart, when an established session fails, the corresponding forwarding states are cleaned immediately from the restarting and peer nodes. In this case LDP forwarding restarts from the beginning, causing a potential loss of data and connectivity.

The LDP graceful restart capability is negotiated between two peers during session initialization time, in FT SESSION TLV. In this typed length value (TLV), each peer advertises the following information to its peers:

Reconnect time

Advertises the maximum time that other peer will wait for this LSR to reconnect after control channel failure.

Recovery time

Advertises the maximum time that the other peer has on its side to reinstate or refresh its states with this LSR. This time is used only during session reestablishment after earlier session failure.

FT flag

Specifies whether a restart could restore the preserved (local) node state for this flag.

Once the graceful restart session parameters are conveyed and the session is up and running, graceful restart procedures are activated.

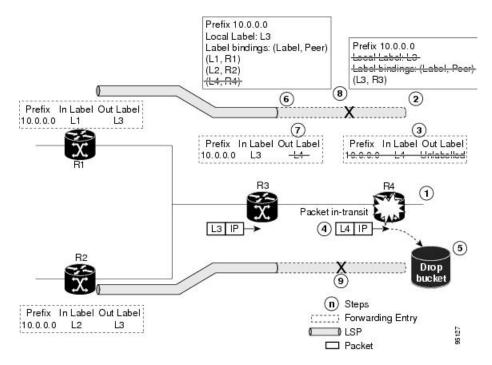
When configuring the LDP graceful restart process in a network with multiple links, targeted LDP hello adjacencies with the same neighbor, or both, make sure that graceful restart is activated on the session before any hello adjacency times out in case of neighbor control plane failures. One way of achieving this is by configuring a lower session hold time between neighbors such that session timeout occurs before hello adjacency timeout. It is recommended to set LDP session hold time using the following formula:

Session Holdtime <= (Hello holdtime - Hello interval) * 3

This means that for default values of 15 seconds and 5 seconds for link Hello holdtime and interval respectively, session hold time should be set to 30 seconds at most.

For more information about LDP commands, see *MPLS Label Distribution Protocol Commands* module of the *Cisco IOS XR MPLS Command Reference for the Cisco XR 12000 Series Router*.

Related Topics


Setting Up LDP NSF Using Graceful Restart, on page 33 Configuring LDP Nonstop Forwarding with Graceful Restart: Example, on page 54

Control Plane Failure

When a control plane failure occurs, connectivity can be affected. The forwarding states installed by the router control planes are lost, and the in-transit packets could be dropped, thus breaking NSF.

This figure illustrates a control plane failure and shows the process and results of a control plane failure leading to loss of connectivity.

Figure 4: Control Plane Failure

- 1 The R4 LSR control plane restarts.
- 2 LIB is lost when the control plane restarts.
- 3 The forwarding states installed by the R4 LDP control plane are immediately deleted.
- 4 Any in-transit packets flowing from R3 to R4 (still labeled with L4) arrive at R4.
- 5 The MPLS forwarding plane at R4 performs a lookup on local label L4 which fails. Because of this failure, the packet is dropped and NSF is not met.
- **6** The R3 LDP peer detects the failure of the control plane channel and deletes its label bindings from R4.
- 7 The R3 control plane stops using outgoing labels from R4 and deletes the corresponding forwarding state (rewrites), which in turn causes forwarding disruption.
- 8 The established LSPs connected to R4 are terminated at R3, resulting in broken end-to-end LSPs from R1 to R4.
- **9** The established LSPs connected to R4 are terminated at R3, resulting in broken LSPs end-to-end from R2 to R4.

Phases in Graceful Restart

The graceful restart mechanism is divided into different phases:

Control communication failure detection

Control communication failure is detected when the system detects either:

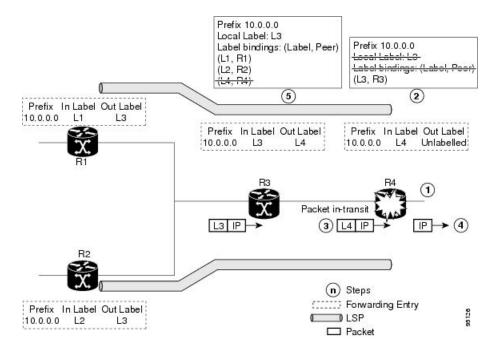
- Missed LDP hello discovery messages
- Missed LDP keepalive protocol messages
- Detection of Transmission Control Protocol (TCP) disconnection a with a peer

Forwarding state maintenance during failure

Persistent forwarding states at each LSR are achieved through persistent storage (checkpoint) by the LDP control plane. While the control plane is in the process of recovering, the forwarding plane keeps the forwarding states, but marks them as stale. Similarly, the peer control plane also keeps (and marks as stale) the installed forwarding rewrites associated with the node that is restarting. The combination of local node forwarding and remote node forwarding plane states ensures NSF and no disruption in the traffic.

Control state recovery

Recovery occurs when the session is reestablished and label bindings are exchanged again. This process allows the peer nodes to synchronize and to refresh stale forwarding states.


Related Topics

Setting Up LDP NSF Using Graceful Restart, on page 33 Configuring LDP Nonstop Forwarding with Graceful Restart: Example, on page 54

Recovery with Graceful-Restart

This figure illustrates the process of failure recovery using graceful restart.

Figure 5: Recovering with Graceful Restart

- 1 The router R4 LSR control plane restarts.
- 2 With the control plane restart, LIB is gone but forwarding states installed by R4's LDP control plane are not immediately deleted but are marked as stale.
- **3** Any in-transit packets from R3 to R4 (still labeled with L4) arrive at R4.
- **4** The MPLS forwarding plane at R4 performs a successful lookup for the local label L4 as forwarding is still intact. The packet is forwarded accordingly.
- 5 The router R3 LDP peer detects the failure of the control plane and channel and deletes the label bindings from R4. The peer, however, does not delete the corresponding forwarding states but marks them as stale.
- 6 At this point there are no forwarding disruptions.
- 7 The peer also starts the neighbor reconnect timer using the reconnect time value.
- 8 The established LSPs going toward the router R4 are still intact, and there are no broken LSPs.

When the LDP control plane recovers, the restarting LSR starts its forwarding state hold timer and restores its forwarding state from the checkpointed data. This action reinstates the forwarding state and entries and marks them as old.

The restarting LSR reconnects to its peer, indicated in the FT Session TLV, that it either was or was not able to restore its state successfully. If it was able to restore the state, the bindings are resynchronized.

The peer LSR stops the neighbor reconnect timer (started by the restarting LSR), when the restarting peer connects and starts the neighbor recovery timer. The peer LSR checks the FT Session TLV if the restarting

peer was able to restore its state successfully. It reinstates the corresponding forwarding state entries and receives binding from the restarting peer. When the recovery timer expires, any forwarding state that is still marked as stale is deleted.

If the restarting LSR fails to recover (restart), the restarting LSR forwarding state and entries will eventually timeout and is deleted, while neighbor-related forwarding states or entries are removed by the Peer LSR on expiration of the reconnect or recovery timers.

Related Topics

Setting Up LDP NSF Using Graceful Restart, on page 33 Configuring LDP Nonstop Forwarding with Graceful Restart: Example, on page 54

Label Advertisement Control (Outbound Filtering)

By default, LDP advertises labels for all the prefixes to all its neighbors. When this is not desirable (for scalability and security reasons), you can configure LDP to perform outbound filtering for local label advertisement for one or more prefixes to one more peers. This feature is known as *LDP outbound label filtering*, or *local label advertisement control*.

Related Topics

Configuring Label Advertisement Control (Outbound Filtering), on page 27 Configuring Label Advertisement (Outbound Filtering): Example, on page 53

Label Acceptance Control (Inbound Filtering)

By default, LDP accepts labels (as remote bindings) for all prefixes from all peers. LDP operates in liberal label retention mode, which instructs LDP to keep remote bindings from all peers for a given prefix. For security reasons, or to conserve memory, you can override this behavior by configuring label binding acceptance for set of prefixes from a given peer.

The ability to filter remote bindings for a defined set of prefixes is also referred to as *LDP inbound label filtering*.

Inbound filtering can also be implemented using an outbound filtering policy; however, you may not be able to implement this system if an LDP peer resides under a different administration domain. When both inbound and outbound filtering options are available, we recommend that you use outbound label filtering.

Related Topics

Configuring Label Acceptance Control (Inbound Filtering), on page 35 Configuring Label Acceptance (Inbound Filtering): Example, on page 55

Local Label Allocation Control

By default, LDP allocates local labels for all prefixes that are not Border Gateway Protocol (BGP) prefixes¹. This is acceptable when LDP is used for applications other than Layer 3 virtual private networks (L3VPN) core transport. When LDP is used to set up transport LSPs for L3VPN traffic in the core, it is not efficient or even necessary to allocate and advertise local labels for, potentially, thousands of IGP prefixes. In such a case, LDP is typically required to allocate and advertise local label for loopback /32 addresses for PE routers. This is accomplished using LDP local label allocation control, where an access list can be used to limit allocation of local labels to a set of prefixes. Limiting local label allocation provides several benefits, including reduced memory usage requirements, fewer local forwarding updates, and fewer network and peer updates.

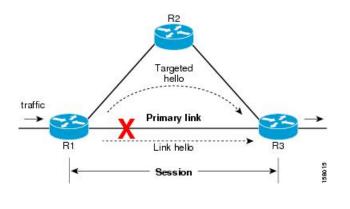
You can configure label allocation using an IP access list to specify a set of prefixes that local labels can allocate and advertise.

Related Topics

Configuring Local Label Allocation Control, on page 37 Configuring Local Label Allocation Control: Example, on page 55

Session Protection

When a link comes up, IP converges earlier and much faster than MPLS LDP and may result in MPLS traffic loss until MPLS convergence. If a link flaps, the LDP session will also flap due to loss of link discovery. LDP session protection minimizes traffic loss, provides faster convergence, and protects existing LDP (link) sessions by means of "parallel" source of targeted discovery hello. An LDP session is kept alive and neighbor label bindings are maintained when links are down. Upon reestablishment of primary link adjacencies, MPLS convergence is expedited as LDP need not relearn the neighbor label bindings.


LDP session protection lets you configure LDP to automatically protect sessions with all or a given set of peers (as specified by peer-acl). When configured, LDP initiates backup targeted hellos automatically for neighbors for which primary link adjacencies already exist. These backup targeted hellos maintain LDP sessions when primary link adjacencies go down.

The Session Protection figure illustrates LDP session protection between neighbors R1 and R3. The primary link adjacency between R1 and R3 is directly connected link and the backup; targeted adjacency is maintained between R1 and R3. If the direct link fails, LDP link adjacency is destroyed, but the session is kept up and

¹ For L3VPN Inter-AS option C, LDP may also be required to assign local labels for some BGP prefixes.

running using targeted hello adjacency (through R2). When the direct link comes back up, there is no change in the LDP session state and LDP can converge quickly and begin forwarding MPLS traffic.

Figure 6: Session Protection

Note

When LDP session protection is activated (upon link failure), protection is maintained for an unlimited period time.

Related Topics

Configuring Session Protection, on page 38 Configuring LDP Session Protection: Example, on page 55

IGP Synchronization

Lack of synchronization between LDP and IGP can cause MPLS traffic loss. Upon link up, for example, IGP can advertise and use a link before LDP convergence has occurred; or, a link may continue to be used in IGP after an LDP session goes down.

LDP IGP synchronization synchronizes LDP and IGP so that IGP advertises links with regular metrics only when MPLS LDP is converged on that link. LDP considers a link converged when at least one LDP session is up and running on the link for which LDP has sent its applicable label bindings and received at least one label binding from the peer. LDP communicates this information to IGP upon link up or session down events and IGP acts accordingly, depending on sync state.

In the event of an LDP graceful restart session disconnect, a session is treated as converged as long as the graceful restart neighbor is timed out. Additionally, upon local LDP restart, a checkpointed recovered LDP graceful restart session is used and treated as converged and is given an opportunity to connect and resynchronize.

Under certain circumstances, it might be required to delay declaration of resynchronization to a configurable interval. LDP provides a configuration option to delay declaring synchronization up for up to 60 seconds. LDP communicates this information to IGP upon linkup or session down events.

The configuration for LDP IGP synchronization resides in respective IGPs (OSPF and IS-IS) and there is no LDP-specific configuration for enabling of this feature. However, there is a specific LDP configuration for IGP sync delay timer.

Related Topics

Configuring LDP IGP Synchronization: OSPF, on page 39 Configuring LDP IGP Synchronization—OSPF: Example, on page 56 Configuring LDP IGP Synchronization: ISIS, on page 40 Configuring LDP IGP Synchronization—ISIS: Example, on page 56 Configuring LDP IGP Synchronization Delay Interval, on page 42

IGP Auto-configuration

To enable LDP on a large number of interfaces, IGP auto-configuration lets you automatically configure LDP on all interfaces associated with a specified IGP interface; for example, when LDP is used for transport in the core network. However, there needs to be one IGP set up to enable LDP auto-configuration.

Typically, LDP assigns and advertises labels for IGP routes and must often be enabled on all active interfaces by an IGP. Without IGP auto-configuration, you must define the set of interfaces under LDP, a procedure that is time-intensive and error-prone.

LDP auto-configuration is supported for IPv4 unicast family in the default VRF. The IGP is responsible for verifying and applying the configuration.

You can also disable auto-configuration on a per-interface basis. This permits LDP to enable all IGP interfaces except those that are explicitly disabled and prevents LDP from enabling an interface when LDP auto-configuration is configured under IGP.

Related Topics

Enabling LDP Auto-Configuration for a Specified OSPF Instance, on page 44 Enabling LDP Auto-Configuration in an Area for a Specified OSPF Instance, on page 46 Disabling LDP Auto-Configuration, on page 48 Configuring LDP Auto-Configuration: Example, on page 56

IGP Synchronization Process Restart Delay

In the LDP IGP synchronization process, failures and restarts bear a heavy stress on the network. Multiple IGP synchronization notifications from LDP to IGP, and potential generation of multiple SPF and LSAs are known to effect the CPU load considerably. This results in considerable traffic loss when the LDP process fails.

The LDP IGP Synchronization Process Restart Delay is a feature that enables a process-level delay for synchronization events when the LDP fails or restarts. This delay defers the sending of sync-up events to the IGP until most or all the LDP sessions converge and also allows the LDP to stabilize. This allows the LDP

process failure to be less stressful, since IGPs receive all the sync-up events in one bulk. This means that IGP is required to run the SPF and LSAs only one time with an overall view of the sync-up events.

By default the IGP Synchronization Process Restart Delay is disabled and can be enabled by running the configuration command **mpls ldp igp sync delay on-proc-restart**.

Related Topics

Configuring LDP IGP Synchronization Process Restart Delay, on page 43

LDP Nonstop Routing

LDP nonstop routing (NSR) functionality makes failures, such as Route Processor (RP) or Distributed Route Processor (DRP) failover, invisible to routing peers with minimal to no disruption of convergence performance. By default, NSR is globally enabled on all LDP sessions except AToM.

A disruption in service may include any of these events:

- Route processor (RP) or distributed route processor (DRP) failover
- · LDP process restart
- In-service system upgrade (ISSU)
- Minimum disruption restart (MDR)

Note Unlike graceful restart functionality, LDP NSR does not require protocol extensions and does not force software upgrades on other routers in the network, nor does LDP NSR require peer routers to support NSR.

Process failures of active TCP or LDP results in session loss and, as a result, NSR cannot be provided unless RP switchover is configured as a recovery action. For more information about how to configure switchover as a recovery action for NSR, see *Configuring Transports* module in *Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco XR 12000 Series Router*.

Related Topics

Configuring LDP Nonstop Routing, on page 49

IP LDP Fast Reroute Loop Free Alternate

The IP Fast Reroute is a mechanism that enables a router to rapidly switch traffic, after an adjacent link failure, node failure, or both, towards a pre-programmed loop-free alternative (LFA) path. This LFA path is used to switch traffic until the router installs a new primary next hop again, as computed for the changed network topology.

The goal of LFA FRR is to reduce failure reaction time to 50 milliseconds by using a pre-computed alternate next hop, in the event that the currently selected primary next hop fails, so that the alternate can be rapidly used when the failure is detected.

This feature targets to address the fast convergence ability by detecting, computing, updating or enabling prefix independent pre-computed alternate loop-free paths at the time of failure.

IGP pre-computes a backup path per IGP prefix. IGP selects one and only one backup path per primary path. RIB installs the best path and download path protection information to FIB by providing correct annotation for protected and protecting paths. FIB pre-installs the backup path in dataplane. Upon the link or node failure, the routing protocol detects the failure, all the backup paths of the impacted prefixes are enabled in a prefix-independent manner.

Prerequisites

The Label Distribution Protocol (LDP) can use the loop-free alternates as long as these prerequisites are met:

The Label Switching Router (LSR) running LDP must distribute its labels for the Forwarding Equivalence Classes (FECs) it can provide to all its neighbors, regardless of whether they are upstream, or not.

There are two approaches in computing LFAs:

- Link-based (per-link)--In link-based LFAs, all prefixes reachable through the primary (protected) link share the same backup information. This means that the whole set of prefixes, sharing the same primary, also share the repair or fast reroute (FRR) ability. The per-link approach protects only the next hop address. The per-link approach is suboptimal and not the best for capacity planning. This is because all traffic is redirected to the next hop instead of being spread over multiple paths, which may lead to potential congestion on link to the next hop. The per-link approach does not provide support for node protection.
- **Prefix-based (per-prefix)**--Prefix-based LFAs allow computing backup information per prefix. It protects the destination address. The per-prefix approach is the preferred approach due to its greater applicability, and the greater protection and better bandwidth utilization that it offers.

Note

The repair or backup information computed for a given prefix using prefix-based LFA may be different from the computed by link-based LFA.

The per-prefix LFA approach is preferred for LDP IP Fast Reroute LFA for these reasons:

- Better node failure resistance
- · Better capacity planning and coverage

Features Not Supported

These interfaces and features are not supported for the IP LDP Fast Reroute Loop Free Alternate feature:

- BVI interface (IRB) is not supported either as primary or backup path.
- GRE tunnel is not supported either as primary or backup path.
- In a multi-topology scenerio, the route in topology T can only use LFA within topology T. Hence, the availability of a backup path depends on the topology.

For more information about configuring the IP Fast Reroute Loop-free alternate, see Implementing IS-IS on Cisco IOS XR Software module of the *Cisco IOS XR Routing Configuration Guide for the Cisco XR 12000 Series Router*.

Related Topics

Configure IP LDP Fast Reroute Loop Free Alternate: Examples, on page 57 Verify IP LDP Fast Reroute Loop Free Alternate: Example, on page 58

Downstream on Demand

This Downstream on demand feature adds support for downstream-on-demand mode, where the label is not advertised to a peer, unless the peer explicitly requests it. At the same time, since the peer does not automatically advertise labels, the label request is sent whenever the next-hop points out to a peer that no remote label has been assigned.

To enable downstream-on-demand mode, this configuration must be applied at mpls ldp configuration mode:

mpls ldp downstream-on-demand with ACL

The ACL contains a list of peer IDs that are configured for downstream-on-demand mode. When the ACL is changed or configured, the list of established neighbors is traversed. If a session's downstream-on-demand configuration has changed, the session is reset in order that the new down-stream-on-demand mode can be configured. The reason for resetting the session is to ensure that the labels are properly advertised between the peers. When a new session is established, the ACL is verified to determine whether the session should negotiate for downstream-on-demand mode. If the ACL does not exist or is empty, downstream-on-demand mode is not configured for any neighbor.

For it to be enabled, the Downstream on demand feature has to be configured on both peers of the session. If only one peer in the session has downstream-on-demand feature configured, then the session does not use downstream-on-demand mode.

If, after, a label request is sent, and no remote label is received from the peer, the router will periodically resend the label request. After the peer advertises a label after receiving the label request, it will automatically readvertise the label if any label attribute changes subsequently.

Related Topics

Configuring LDP Downstream on Demand mode, on page 51

How to Implement MPLS LDP

A typical MPLS LDP deployment requires coordination among several global neighbor routers. Various configuration tasks are required to implement MPLS LDP :

Configuring LDP Discovery Parameters

Perform this task to configure LDP discovery parameters (which may be crucial for LDP operations).

The LDP discovery mechanism is used to discover or locate neighbor nodes.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- **3.** router-id *ip-address*
- 4. discovery { hello | targeted-hello } holdtime seconds
- 5. discovery { hello | targeted-hello } interval seconds
- **6.** Use the **commit** or **end** command.
- 7. (Optional) show mpls ldp parameters

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	router-id ip-address	Specifies the router ID of the local node.
	Example:	• In Cisco IOS XR software, the router ID is specified as an interface IP address. By default, LDP uses the global router
	<pre>RP/0/0/CPU0:router(config-ldp) # router-id 192.168.70.1</pre>	ID (configured by the global router ID process).
Step 4	discovery { hello targeted-hello } holdtime seconds	Specifies the time that a discovered neighbor is kept without receipt of any subsequent hello messages. The default value for the <i>seconds</i> argument is 15 seconds for link hello and 90 seconds for targeted
	Example:	hello messages.
	<pre>RP/0/0/CPU0:router(config-ldp)# discovery hello holdtime 30 RP/0/0/CPU0:router(config-ldp)# discovery targeted-hello holdtime 180</pre>	
Step 5	discovery { hello targeted-hello } interval seconds	Selects the period of time between the transmission of consecutive hello messages. The default value for the <i>seconds</i> argument is 5 seconds for link hello messages and 10 seconds for targeted hello
	Example:	messages.
	<pre>RP/0/0/CPU0:router(config-ldp)# discovery hello interval 15 RP/0/0/CPU0:router(config-ldp)# discovery targeted-hello interval 20</pre>	

	Command or Action	Purpose
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 7	show mpls ldp parameters	(Optional) Displays all the current MPLS LDP parameters.
	Example:	
	RP/0/0/CPU0:router # show mpls ldp parameters	

LDP Control Plane, on page 7

Configuring LDP Discovery Over a Link

Perform this task to configure LDP discovery over a link.

Note Th

There is no need to enable LDP globally.

Before You Begin

A stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- **3.** router-id *ip-address*
- 4. interface type interface-path-id
- 5. Use the commit or end command.
- 6. (Optional) show mpls ldp discovery

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	router-id ip-address	Specifies the router ID of the local node.
	Example:	• In Cisco IOS XR software, the router ID is specified as an interface name or IP address. By default, LDP uses the global router ID
	RP/0/0/CPU0:router(config-ldp)# router-id 192.168.70.1	(configured by the global router ID process).
Step 4	interface type interface-path-id	Enters interface configuration mode for the LDP protocol. Interface type must be Tunnel-TE.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# interface tunnel-te 12001 RP/0/0/CPU0:router(config-ldp-if)#</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

	Command or Action	Purpose
Step 6	<pre>show mpls ldp discovery Example: RP/0/0/CPU0:router# show mpls ldp discovery</pre>	(Optional) Displays the status of the LDP discovery process. This command, without an interface filter, generates a list of interfaces over which the LDP discovery process is running. The output information contains the state of the link (xmt/rcv hellos), local LDP identifier, the discovered peer's LDP identifier, and holdtime values.

LDP Control Plane, on page 7 Configuring LDP Link: Example, on page 52

Configuring LDP Discovery for Active Targeted Hellos

Perform this task to configure LDP discovery for active targeted hellos.

The active side for targeted hellos initiates the unicast hello toward a specific destination.

Before You Begin

These prerequisites are required to configure LDP discovery for active targeted hellos:

- Stable router ID is required at either end of the targeted session. If you do not assign a router ID to the routers, the system will default to the global router ID. Please note that default router IDs are subject to change and may cause an unstable discovery.
- One or more MPLS Traffic Engineering tunnels are established between non-directly connected LSRs.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. router-id ip-address
- 4. interface type interface-path-id
- 5. Use the commit or end command.
- 6. (Optional) show mpls ldp discovery

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config) # mpls ldp</pre>	
Step 3	router-id ip-address	Specifies the router ID of the local node.
	Example:	In Cisco IOS XR software, the router ID is specified as an interface name or IP address. By default, LDP uses the global router ID (configured by
	<pre>RP/0/0/CPU0:router(config-ldp)# router-id 192.168.70.1</pre>	global router ID process).
Step 4	interface type interface-path-id	Enters interface configuration mode for the LDP protocol.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# interface tunnel-te 12001</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 6	show mpls ldp discovery	(Optional)
	Example: RP/0/0/CPU0:router# show mpls ldp	Displays the status of the LDP discovery process. This command, without an interface filter, generates a list of interfaces over which the LDP discovery process is running. The output information contains the state of the link (xmt/rcv hellos), local LDP identifier, the discovered peer's
	•	discovery process is running. The output information cont

Related Topics

LDP Control Plane, on page 7

Configuring LDP Discovery for Targeted Hellos: Example, on page 53

Configuring LDP Discovery for Passive Targeted Hellos

Perform this task to configure LDP discovery for passive targeted hellos.

A passive side for targeted hello is the destination router (tunnel tail), which passively waits for an incoming hello message. Because targeted hellos are unicast, the passive side waits for an incoming hello message to respond with hello toward its discovered neighbor.

Before You Begin

Stable router ID is required at either end of the link to ensure that the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. router-id ip-address
- 4. discovery targeted-hello accept
- 5. Use the commit or end command.
- 6. (Optional) show mpls ldp discovery

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	router-id ip-address	Specifies the router ID of the local node.
	Example:	• In Cisco IOS XR software, the router ID is specified as an interface IP address. By default, LDP uses the global router ID (configured by global
	<pre>RP/0/0/CPU0:router(config-ldp)# router-id 192.168.70.1</pre>	router ID process).

	Command or Action	Purpose
Step 4	discovery targeted-hello accept Example: RP/0/0/CPU0:router(config-ldp)# discovery targeted-hello accept	 Directs the system to accept targeted hello messages from any source and activates passive mode on the LSR for targeted hello acceptance. This command is executed on the receiver node (with respect to a given MPLS TE tunnel). You can control the targeted-hello acceptance using the discovery targeted-hello accept command.
Step 5	Use the commit or end command.	 commit—Saves the configuration changes and remains within the configuration session. end—Prompts user to take one of these actions: Yes— Saves configuration changes and exits the configuration session. No—Exits the configuration session without committing the configuration changes. Cancel—Remains in the configuration session, without committing the configuration changes.
Step 6	show mpls ldp discovery Example: RP/0/0/CPU0:router# show mpls ldp discovery	(Optional) Displays the status of the LDP discovery process. This command, without an interface filter, generates a list of interfaces over which the LDP discovery process is running. The output information contains the state of the link (xmt/rcv hellos), local LDP identifier, the discovered peer's LDP identifier, and holdtime values.

LDP Control Plane, on page 7 Configuring LDP Discovery for Targeted Hellos: Example, on page 53

Configuring Label Advertisement Control (Outbound Filtering)

Perform this task to configure label advertisement (outbound filtering).

By default, a label switched router (LSR) advertises all incoming label prefixes to each neighboring router. You can control the exchange of label binding information using the **mpls ldp label advertise** command. Using the optional keywords, you can advertise selective prefixes to all neighbors, advertise selective prefixes to defined neighbors, or disable label advertisement to all peers for all prefixes.

Prefixes and peers advertised selectively are defined in the access list.

Before You Begin

Before configuring label advertisement, enable LDP and configure an access list.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- **3.** label advertise { disable | for *prefix-acl* [to *peer-acl*] | interface *type interface-path-id* }
- **4.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	label advertise { disable for <i>prefix-acl</i> [to <i>peer-acl</i>] interface <i>type</i> <i>interface-path-id</i> }	Configures label advertisement by specifying one of the following options:
		disable
	<pre>Example: RP/0/0/CPU0:router(config-ldp)# label advertise interface POS 0/1/0/0 RP/0/0/CPU0:router(config-ldp)# for pfx_acl1 to peer_acl1</pre>	Disables label advertisement to all peers for all prefixes (if there are no other conflicting rules).
		Specifies an interface for label advertisement of an interface address.
		for <i>prefix-acl</i>
		to peer-acl
		Specifies neighbors to advertise and receive label advertisements.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.

 Command or Action	Purpose
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Label Advertisement Control (Outbound Filtering), on page 14 Configuring Label Advertisement (Outbound Filtering): Example, on page 53

Setting Up LDP Neighbors

Perform this task to set up LDP neighbors.

Before You Begin

Stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- **3.** interface type interface-path-id
- 4. discovery transport-address [*ip-address* | interface]
- 5. exit
- 6. holdtime seconds
- 7. neighbor *ip-address* password [*encryption*] password
- 8. backoff initial maximum
- 9. Use the commit or end command.
- 10. (Optional) show mpls ldp neighbor

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	

	Command or Action	Purpose
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	interface type interface-path-id	Enters interface configuration mode for the LDP protocol.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# interface POS 0/1/0/0</pre>	
Step 4	discovery transport-address [ip-address	Provides an alternative transport address for a TCP connection.
	interface]	• Default transport address advertised by an LSR (for TCP connections) to its peer is the router ID.
	Example:	Transport address configuration is applied for a given LDP-enabled
	<pre>RP/0/0/CPU0:router(config-ldp-if)# discovery transport-address 192.168.1.42</pre>	interface.
	or	• If the interface version of the command is used, the configured IP address of the interface is passed to its neighbors as the transport
	RP/0/0/CPU0:router(config-ldp)# discovery transport-address interface	address.
Step 5	exit	Exits the current configuration mode.
	Example:	
	RP/0/0/CPU0:router(config-ldp-if)# exit	
Step 6	holdtime seconds	Changes the time for which an LDP session is maintained in the absence of LDP messages from the peer.
	Example:	• Outgoing keepalive interval is adjusted accordingly (to make three
	RP/0/0/CPU0:router(config-ldp)# holdtime 30	
		• Session holdtime is also exchanged when the session is established.
		• In this example holdtime is set to 30 seconds, which causes the peer session to timeout in 30 seconds, as well as transmitting outgoing keepalive messages toward the peer every 10 seconds.
Step 7	neighbor <i>ip-address</i> password [<i>encryption</i>] <i>password</i>	Configures password authentication (using the TCP MD5 option) for a given neighbor.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# neighbor 192.168.2.44 password secretpasswd</pre>	

	Command or Action	Purpose
Step 8	<pre>backoff initial maximum Example: RP/0/0/CPU0:router(config-ldp)# backoff 10 20</pre>	Configures the parameters for the LDP backoff mechanism. The LDP backoff mechanism prevents two incompatibly configured LSRs from engaging in an unthrottled sequence of session setup failures. If a session setup attempt fails due to such incompatibility, each LSR delays its next attempt (backs off), increasing the delay exponentially with each successive failure until the maximum backoff delay is reached.
Step 9	Use the commit or end command.	 commit—Saves the configuration changes and remains within the configuration session. end—Prompts user to take one of these actions: Yes— Saves configuration changes and exits the configuration session. No—Exits the configuration session without committing the configuration changes. Cancel—Remains in the configuration session, without committing the configuration changes.
Step 10	<pre>show mpls ldp neighbor Example: RP/0/0/CPU0:router# show mpls ldp neighbor</pre>	(Optional) Displays the status of the LDP session with its neighbors. This command can be run with various filters as well as with the brief option.

Configuring LDP Neighbors: Example, on page 54

Setting Up LDP Forwarding

Perform this task to set up LDP forwarding.

By default, the LDP control plane implements the penultimate hop popping (PHOP) mechanism. The PHOP mechanism requires that label switched routers use the implicit-null label as a local label for the given Forwarding Equivalence Class (FEC) for which LSR is the penultimate hop. Although PHOP has certain advantages, it may be required to extend LSP up to the ultimate hop under certain circumstances (for example, to propagate MPL QoS). This is done using a special local label (explicit-null) advertised to the peers after which the peers use this label when forwarding traffic toward the ultimate hop (egress LSR).

Before You Begin

Stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. explicit-null
- **4.** Use the **commit** or **end** command.
- 5. (Optional) show mpls ldp forwarding
- 6. (Optional) show mpls forwarding
- 7. (Optional) ping ip-address

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	explicit-null	Causes a router to advertise an explicit null label in situations where it normally advertises an implicit null label (for example, to enable an
	Example:	ultimate-hop disposition instead of PHOP).
	RP/0/0/CPU0:router(config-ldp)# explicit-null	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 5	show mpls ldp forwarding	(Optional) Displays the MPLS LDP view of installed forwarding states (rewrites).
	Example:	
	RP/0/0/CPU0:router# show mpls ldp forwarding	

	Command or Action	Purpose
Step 6	show mpls forwarding	(Optional) Displays a global view of all MPLS installed forwarding states (rewrites)
	Example:	by various applications (LDP, TE, and static).
	RP/0/0/CPU0:router# show mpls forwarding	
Step 7	ping ip-address	(Optional) Checks for connectivity to a particular IP address (going through MPLS
	Example:	LSP as shown in the show mpls forwarding command).
	RP/0/0/CPU0:router# ping 192.168.2.55	

LDP Forwarding, on page 9 Configuring LDP Forwarding: Example, on page 54

Setting Up LDP NSF Using Graceful Restart

Perform this task to set up NSF using LDP graceful restart.

LDP graceful restart is a way to enable NSF for LDP. The correct way to set up NSF using LDP graceful restart is to bring up LDP neighbors (link or targeted) with additional configuration related to graceful restart.

Before You Begin

Stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- **3.** interface type interface-path-id
- 4. exit
- 5. graceful-restart
- 6. graceful-restart forwarding-state-holdtime seconds
- 7. graceful-restart reconnect-timeout seconds
- 8. Use the commit or end command.
- 9. (Optional) show mpls ldp parameters
- 10. (Optional) show mpls ldp neighbor
- 11. (Optional) show mpls ldp graceful-restart

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	interface type interface-path-id	Enters interface configuration mode for the LDP protocol.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# interface POS 0/1/0/0 RP/0/0/CPU0:router(config-ldp-if)#</pre>	
Step 4	exit	Exits the current configuration mode.
	Example:	
	RP/0/0/CPU0:router(config-ldp-if)# exit	
Step 5	graceful-restart	Enables the LDP graceful restart feature.
	Example:	
	RP/0/0/CPU0:router(config-ldp)# graceful-restart	
Step 6	graceful-restart forwarding-state-holdtime seconds	Specifies the length of time that forwarding can keep LDP-installed forwarding states and rewrites, and specifies when the LDP control plane restarts.
	Example:	• After restart of the control plane, when the forwarding state
	<pre>RP/0/0/CPU0:router(config-ldp)# graceful-restart forwarding-state-holdtime 180</pre>	holdtime expires, any previously installed LDP forwarding state or rewrite that is not yet refreshed is deleted from the forwarding.
		• Recovery time sent after restart is computed as the current remaining value of the forwarding state hold timer.
Step 7	graceful-restart reconnect-timeout seconds	Specifies the length of time a neighbor waits before restarting the node to reconnect before declaring an earlier graceful restart session
	Example: RP/0/0/CPU0:router(config-ldp)#	as down. This command is used to start a timer on the peer (upon a neighbor restart). This timer is referred to as <i>Neighbor Liveness</i> timer.
	graceful-restart reconnect-timeout 169	

	Command or Action	Purpose
Step 8	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 9	show mpls ldp parameters	(Optional) Displays all the current MPLS LDP parameters.
	Example:	
	RP/0/0/CPU0:router# show mpls ldp parameters	
Step 10	show mpls ldp neighbor	(Optional)
	Example:	Displays the status of the LDP session with its neighbors. This command can be run with various filters as well as with the brief option.
	RP/0/0/CPU0:router# show mpls ldp neighbor	opnom.
Step 11	show mpls ldp graceful-restart	(Optional) Displays the status of the LDP graceful restart feature. The output of
	Example:	this command not only shows states of different graceful restart timers,
	RP/0/0/CPU0:router# show mpls ldp graceful-restart	but also a list of graceful restart neighbors, their state, and reconr count.

LDP Graceful Restart, on page 10 Phases in Graceful Restart, on page 12 Recovery with Graceful-Restart, on page 13 Configuring LDP Nonstop Forwarding with Graceful Restart: Example, on page 54

Configuring Label Acceptance Control (Inbound Filtering)

Perform this task to configure LDP inbound label filtering.

By default, there is no inbound label filtering performed by LDP and thus an LSR accepts (and retains) all remote label bindings from all peers.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. label accept for *prefix-acl* from *ip-address*
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters the MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	label accept for prefix-acl from ip-address	Configures inbound label acceptance for prefixes specified by prefix-acl from neighbor (as specified by its IP address).
	Example:	
	RP/0/0/CPU0:router(config-ldp)# label accept for pfx_acl_1 from 192.168.1.1 RP/0/0/CPU0:router(config-ldp)# label accept for pfx_acl_2 from 192.168.2.2	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Label Acceptance Control (Inbound Filtering), on page 14 Configuring Label Acceptance (Inbound Filtering): Example, on page 55

Configuring Local Label Allocation Control

Perform this task to configure label allocation control.

By default, local label allocation control is disabled and all non-BGP prefixes are assigned local labels.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. label allocate for *prefix-acl*
- 4. Use the commit or end command.

Command or Action	Purpose
configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
mpls ldp	Enters the MPLS LDP configuration mode.
Example:	
<pre>RP/0/0/CPU0:router(config)# mpls ldp</pre>	
label allocate for prefix-acl	Configures label allocation control for prefixes as specified by prefix-acl.
Example:	
<pre>RP/0/0/CPU0:router(config-ldp)# label allocate for pfx_acl_1</pre>	
Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No—Exits the configuration session without committing the configuration changes.
-	<pre>configure configure Example: RP/0/0/CPU0:router# configure mpls ldp Example: RP/0/0/CPU0:router(config)# mpls ldp label allocate for prefix-acl Example: RP/0/0/CPU0:router(config-ldp)# label allocate for pfx_acl_1</pre>

Command or Action	Purpose
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Local Label Allocation Control, on page 15 Configuring Local Label Allocation Control: Example, on page 55

Configuring Session Protection

Perform this task to configure LDP session protection.

By default, there is no protection is done for link sessions by means of targeted hellos.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- **3.** session protection [for *peer-acl*][duration *seconds*]
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters the MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	session protection [for <i>peer-acl</i>] [duration <i>seconds</i>]	Configures LDP session protection for peers specified by peer-acl with a maximum duration, in seconds.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# session protection for peer_acl_1 duration 60</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.

Command or Action	Purpose
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Session Protection, on page 15 Configuring LDP Session Protection: Example, on page 55

Configuring LDP IGP Synchronization: OSPF

Perform this task to configure LDP IGP Synchronization under OSPF.

By default, there is no synchronization between LDP and IGPs.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- **3.** Use one of the following commands:
 - mpls ldp sync
 - area area-id mpls ldp sync
 - area area-id interface name mpls ldp sync
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	router ospf process-name	Identifies the OSPF routing process and enters OSPF configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# router ospf 100</pre>	
Step 3	Use one of the following commands:	Enables LDP IGP synchronization on an interface.
	• mpls ldp sync	
	• area area-id mpls ldp sync	
	• area area-id interface name mpls ldp sync	
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf) # mpls ldp sync</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

IGP Synchronization, on page 16 Configuring LDP IGP Synchronization—OSPF: Example, on page 56

Configuring LDP IGP Synchronization: ISIS

Perform this task to configure LDP IGP Synchronization under ISIS.

By default, there is no synchronization between LDP and ISIS.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3.** interface type interface-path-id
- 4. address-family ipv4 unicast
- 5. mpls ldp sync
- **6.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	router isis instance-id	Enables the Intermediate System-to-Intermediate System (IS-IS) routing protocol and defines an IS-IS instance.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# router isis 100 RP/0/0/CPU0:router(config-isis)#</pre>	
Step 3	interface type interface-path-id	Configures the IS-IS protocol on an interface and enters ISIS interface configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-isis)# interface POS 0/2/0/0 RP/0/0/CPU0:router(config-isis-if)#</pre>	
Step 4	address-family ipv4 unicast	Enters address family configuration mode for configuring IS-IS routing for a standard IP Version 4 (IPv4) address prefix.
	Example:	
	<pre>RP/0/0/CPU0:router(config-isis-if)# address-family ipv4 unicast RP/0/0/CPU0:router(config-isis-if-af)#</pre>	
Step 5	mpls ldp sync	Enables LDP IGP synchronization.
	Example:	
	<pre>RP/0/0/CPU0:router(config-isis-if-af)# mpls ldp sync</pre>	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.

Command or Action	Purpose
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

IGP Synchronization, on page 16 Configuring LDP IGP Synchronization—ISIS: Example, on page 56

Configuring LDP IGP Synchronization Delay Interval

Perform this task to configure the LDP IGP synchronization delay interval.

By default, LDP does not delay declaring sync up as soon as convergence conditions are met.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. igp sync delay delay-time
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters the MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	

	Command or Action	Purpose
Step 3	igp sync delay delay-time	Configures LDP IGP synchronization delay in seconds.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# igp sync delay 30</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

IGP Synchronization, on page 16

Configuring LDP IGP Synchronization Process Restart Delay

Perform this task to enable process restart delay when an LDP fails or restarts.

By default, the LDP IGP Synchronization Process Restart Delay feature is disabled.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- **3.** Use one of the following commands:
 - igp sync delay seconds
 - igp sync delay on-proc-restart delay-time
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters the MPLS LDP configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls ldp</pre>	
Step 3	Use one of the following commands:	Configures LDP IGP delay in seconds.
	• igp sync delay seconds	
	• igp sync delay on-proc-restart delay-time	
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# igp sync delay 30</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

IGP Synchronization Process Restart Delay, on page 17

Enabling LDP Auto-Configuration for a Specified OSPF Instance

Perform this task to enable IGP auto-configuration globally for a specified OSPF process name.

You can disable auto-configuration on a per-interface basis. This lets LDP enable all IGP interfaces except those that are explicitly disabled.

This feature is supported for IPv4 unicast family in default VRF only.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. mpls ldp auto-config
- 4. area area-id
- **5.** interface type interface-path-id
- **6.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	router ospf process-name	Enters a uniquely identifiable OSPF routing process. The process name is any alphanumeric string no longer than 40 characters without
	Example:	spaces.
	<pre>RP/0/0/CPU0:router(config)# router ospf 190 RP/0/0/CPU0:router(config-ospf)#</pre>	
Step 3	mpls ldp auto-config	Enables LDP auto-configuration.
	Example:	
	RP/0/0/CPU0:router(config-ospf)# mpls ldp auto-config	
Step 4	area area-id	Configures an OSPF area and identifier.
	Example:	area-id
	RP/0/0/CPU0:router(config-ospf)# area 8	Either a decimal value or an IP address.
Step 5	interface type interface-path-id	Enables LDP auto-configuration on the specified interface.
	Example:	Note LDP configurable limit for maximum number of interfaces does not apply to IGP auto-configuration interfaces.
	<pre>RP/0/0/CPU0:router(config-ospf-ar)# interface pos 0/6/0/0</pre>	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.

Ce	ommand or Action	Purpose
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

IGP Auto-configuration, on page 17 Configuring LDP Auto-Configuration: Example, on page 56 Disabling LDP Auto-Configuration, on page 48

Enabling LDP Auto-Configuration in an Area for a Specified OSPF Instance

Perform this task to enable IGP auto-configuration in a defined area with a specified OSPF process name.

You can disable auto-configuration on a per-interface basis. This lets LDP enable all IGP interfaces except those that are explicitly disabled.

This feature is supported for IPv4 unicast family in default VRF only.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. area area-id
- 4. mpls ldp auto-config
- 5. interface type interface-path-id
- 6. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	router ospf process-name	Enters a uniquely identifiable OSPF routing process. The process name is any alphanumeric string no longer than 40 characters
	Example:	without spaces.
	<pre>RP/0/0/CPU0:router(config) # router ospf 100 RP/0/0/CPU0:router(config-ospf) #</pre>	
Step 3	area area-id	Configures an OSPF area and identifier.
	Example:	area-id
	• RP/0/0/CPU0:router(config-ospf)# area 8 RP/0/0/CPU0:router(config-ospf-ar)#	Either a decimal value or an IP address.
Step 4	mpls ldp auto-config	Enables LDP auto-configuration.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf-ar)# mpls ldp auto-config</pre>	
Step 5	interface type interface-path-id	Enables LDP auto-configuration on the specified interface. The LDP configurable limit for maximum number of interfaces does
	Example:	not apply to IGP auto-config interfaces.
	<pre>RP/0/0/CPU0:router(config-ospf-ar)# interface pos 0/6/0/0 RP/0/0/CPU0:router(config-ospf-ar-if)</pre>	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

IGP Auto-configuration, on page 17 Configuring LDP Auto-Configuration: Example, on page 56 Disabling LDP Auto-Configuration, on page 48

Disabling LDP Auto-Configuration

Perform this task to disable IGP auto-configuration.

You can disable auto-configuration on a per-interface basis. This lets LDP enable all IGP interfaces except those that are explicitly disabled.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. interface type interface-path-id
- 4. igp auto-config disable
- 5. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters the MPLS LDP configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls ldp RP/0/0/CPU0:router(config-ldp)#</pre>	
Step 3	interface type interface-path-id	Enters interface configuration mode and configures an interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# interface pos 0/6/0/0</pre>	
Step 4	igp auto-config disable	Disables auto-configuration on the specified interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp-if)# igp auto-config disable</pre>	

	Command or Action	Purpose
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		 No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

IGP Auto-configuration, on page 17 Configuring LDP Auto-Configuration: Example, on page 56

Configuring LDP Nonstop Routing

Perform this task to configure LDP NSR.

By default, NSR is globally-enabled on all LDP sessions except AToM.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. nsr
- 4. Use the commit or end command.
- 5. show mpls ldp nsr statistics
- 6. show mpls ldp nsr summary
- 7. show mpls ldp nsr pending

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters the MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	nsr	Enables LDP nonstop routing.
	Example:	
	RP/0/0/CPU0:router(config-ldp)# nsr	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains withir the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 5	show mpls ldp nsr statistics	Displays MPLS LDP NSR statistics.
	Example:	
	RP/0/0/CPU0:router# show mpls ldp nsr statistics	
Step 6	show mpls ldp nsr summary	Displays MPLS LDP NSR summarized information.
	Example:	
	<pre>RP/0/0/CPU0:router# show mpls ldp nsr summary</pre>	
Step 7	show mpls ldp nsr pending	Displays MPLS LDP NSR pending information.
	Example:	
	RP/0/0/CPU0:router# show mpls ldp nsr pending	

LDP Nonstop Routing, on page 18

Configuring LDP Downstream on Demand mode

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. downstream-on-demand
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls ldp	
Step 3	downstream-on-demand	Enters downstream on demand label advertisement mode. The ACL
	Example:	contains the list of peer IDs that are configured for downstream-on-demand mode. When the ACL is changed or configured, the list of established
		neighbor is traversed.
	<pre>RP/0/0/CPU0:router(config-ldp)# downstream-on-demand with access-list</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

	Command or Action	Purpose
--	-------------------	---------

Downstream on Demand, on page 20

Configuration Examples for Implementing MPLS LDP

These configuration examples are provided to implement LDP:

Configuring LDP with Graceful Restart: Example

The example shows how to enable LDP with graceful restart on the POS interface 0/2/0/0.

```
mpls ldp
graceful-restart
interface pos0/2/0/0
```

Configuring LDP Discovery: Example

The example shows how to configure LDP discovery parameters.

```
mpls ldp
router-id 192.168.70.1
discovery hello holdtime 15
discovery hello interval 5
!
show mpls ldp parameters
show mpls ldp discovery
```

Configuring LDP Link: Example

The example shows how to configure LDP link parameters.

```
mpls ldp
interface pos 0/1/0/0
!
show mpls ldp discovery
```

Related Topics

Configuring LDP Discovery Over a Link, on page 22 LDP Control Plane, on page 7

Configuring LDP Discovery for Targeted Hellos: Example

The examples show how to configure LDP Discovery to accept targeted hello messages.

Active (tunnel head)

```
mpls ldp
router-id 192.168.70.1
interface tunnel-te 12001
!
```

Passive (tunnel tail)

```
mpls ldp
router-id 192.168.70.2
discovery targeted-hello accept
!
```

Related Topics

Configuring LDP Discovery for Active Targeted Hellos, on page 24 Configuring LDP Discovery for Passive Targeted Hellos, on page 26 LDP Control Plane, on page 7

Configuring Label Advertisement (Outbound Filtering): Example

The example shows how to configure LDP label advertisement control.

```
mpls ldp
    label
         advertise
             disable
             for pfx_acl_1 to peer_acl_1
for pfx_acl_2 to peer_acl_2
for pfx_acl_3
             interface POS 0/1/0/0
             interface POS 0/2/0/0
         !
     !
Т
ipv4 access-list pfx_acl_1
    10 permit ip host 1.\overline{0}.0.0 any
ipv4 access-list pfx acl 2
    10 permit ip host 2.0.0.0 any
ipv4 access-list peer acl 1
    10 permit ip host 1.1.1.1 any
    20 permit ip host 1.1.1.2 any
ipv4 access-list peer acl 2
    10 permit ip host 2.2.2.2 any
show mpls ldp binding
```

Configuring Label Advertisement Control (Outbound Filtering), on page 27 Label Advertisement Control (Outbound Filtering), on page 14

Configuring LDP Neighbors: Example

The example shows how to disable label advertisement.

```
mpls ldp
router-id 192.168.70.1
neighbor 1.1.1.1 password encrypted 110A1016141E
neighbor 2.2.2.2 implicit-withdraw
```

Related Topics

Setting Up LDP Neighbors, on page 29

Configuring LDP Forwarding: Example

The example shows how to configure LDP forwarding.

```
mpls ldp
explicit-null
!
show mpls ldp forwarding
```

show mpls forwarding

Related Topics

Setting Up LDP Forwarding, on page 31 LDP Forwarding, on page 9

Configuring LDP Nonstop Forwarding with Graceful Restart: Example

The example shows how to configure LDP nonstop forwarding with graceful restart.

```
mpls ldp
log
graceful-restart
!
graceful-restart forwarding state-holdtime 180
graceful-restart forwarding state-holdtime 180
graceful-restart reconnect-timeout 15
interface pos0/1/0/0
!
show mpls ldp graceful-restart
show mpls ldp neighbor gr
show mpls ldp forwarding
show mpls forwarding
```

Setting Up LDP NSF Using Graceful Restart, on page 33 LDP Graceful Restart, on page 10 Phases in Graceful Restart, on page 12 Recovery with Graceful-Restart, on page 13

Configuring Label Acceptance (Inbound Filtering): Example

The example shows how to configure inbound label filtering.

```
mpls ldp
label
accept
for pfx_acl_2 from 192.168.2.2
!
!
```

Related Topics

Configuring Label Acceptance Control (Inbound Filtering), on page 35 Label Acceptance Control (Inbound Filtering), on page 14

Configuring Local Label Allocation Control: Example

The example shows how to configure local label allocation control.

```
mpls ldp
label
allocate for pfx_acl_1
 !
```

Related Topics

Configuring Local Label Allocation Control, on page 37 Local Label Allocation Control, on page 15

Configuring LDP Session Protection: Example

The example shows how to configure session protection.

```
mpls ldp
session protection for peer_acl_1 duration
60
'
```

Related Topics

```
Configuring Session Protection, on page 38
Session Protection, on page 15
```

Configuring LDP IGP Synchronization—OSPF: Example

The example shows how to configure LDP IGP synchronization for OSPF.

```
router ospf 100
mpls ldp sync
!
mpls ldp
igp sync delay 30
!
```

Related Topics

Configuring LDP IGP Synchronization: OSPF, on page 39 IGP Synchronization, on page 16

Configuring LDP IGP Synchronization—ISIS: Example

The example shows how to configure LDP IGP synchronization.

```
router isis 100
interface POS 0/2/0/0
address-family ipv4 unicast
mpls ldp sync
!
!
mpls ldp
igp sync delay 30
!
```

Related Topics

Configuring LDP IGP Synchronization: ISIS, on page 40 IGP Synchronization, on page 16

Configuring LDP Auto-Configuration: Example

The example shows how to configure the IGP auto-configuration feature globally for a specific OSPF interface ID.

```
router ospf 100
mpls ldp auto-config
area 0
interface pos 1/1/1/1
```

The example shows how to configure the IGP auto-configuration feature on a given area for a given OSPF interface ID.

```
router ospf 100
area 0
mpls ldp auto-config
interface pos 1/1/1/1
```

Related Topics

Enabling LDP Auto-Configuration for a Specified OSPF Instance, on page 44 Enabling LDP Auto-Configuration in an Area for a Specified OSPF Instance, on page 46 Disabling LDP Auto-Configuration, on page 48 IGP Auto-configuration, on page 17

Configure IP LDP Fast Reroute Loop Free Alternate: Examples

This example shows how to configure LFA FRR with default tie-break configuration:

```
router isis TEST
net 49.0001.0000.0000.0001.00
address-family ipv4 unicast
 metric-style wide
interface GigabitEthernet0/6/0/13
 point-to-point
 address-family ipv4 unicast
  fast-reroute per-prefix
   # primary path GigabitEthernet0/6/0/13 will exclude the interface
   # GigabitEthernet0/6/0/33 in LFA backup path computation.
  fast-reroute per-prefix exclude interface GigabitEthernet0/6/0/33
1
interface GigabitEthernet0/6/0/23
 point-to-point
 address-family ipv4 unicast
I
interface GigabitEthernet0/6/0/24
 point-to-point
 address-family ipv4 unicast
I.
interface GigabitEthernet0/6/0/33
 point-to-point
 address-family ipv4 unicast
I.
```

This example shows how to configure TE tunnel as LFA backup:

```
router isis TEST
net 49.0001.0000.0000.0001.00
address-family ipv4 unicast
 metric-style wide
interface GigabitEthernet0/6/0/13
 point-to-point
 address-family ipv4 unicast
   fast-reroute per-prefix
   # primary path GigabitEthernet0/6/0/13 will exclude the interface
   # GigabitEthernet0/6/0/33 in LFA backup path computation. TE tunnel 1001
   # is using the link GigabitEthernet0/6/0/33.
   fast-reroute per-prefix exclude interface GigabitEthernet0/6/0/33
   fast-reroute per-prefix lfa-candidate interface tunnel-te1001
interface GigabitEthernet0/6/0/33
 point-to-point
 address-family ipv4 unicast
```

This example shows how to configure LFA FRR with configurable tie-break configuration:

```
router isis TEST
net 49.0001.0000.0000.0001.00
 address-family ipv4 unicast
 metric-style wide
  fast-reroute per-prefix tiebreaker ?
 lc-disjoint
                         Prefer backup path via downstream node
                         Prefer line card disjoint backup path
  lowest-backup-metric Prefer backup path with lowest total metric
 node-protectingPrefer node protecting backup pathprimary-pathPrefer backup path from ECMP setsecondary-pathPrefer non-ECMP backup path
  fast-reroute per-prefix tiebreaker lc-disjoint index ?
  <1-255> Index
  fast-reroute per-prefix tiebreaker lc-disjoint index 10
Sample configuration:
router isis TEST
net 49.0001.0000.0000.0001.00
 address-family ipv4 unicast
 metric-style wide
  fast-reroute per-prefix tiebreaker downstream index 60
  fast-reroute per-prefix tiebreaker lc-disjoint index 10
  fast-reroute per-prefix tiebreaker lowest-backup-metric index 40
  fast-reroute per-prefix tiebreaker node-protecting index 30
  fast-reroute per-prefix tiebreaker primary-path index 20
  fast-reroute per-prefix tiebreaker secondary-path index 50
interface GigabitEthernet0/6/0/13
  point-to-point
  address-family ipv4 unicast
   fast-reroute per-prefix
1
 interface GigabitEthernet0/1/0/13
 point-to-point
  address-family ipv4 unicast
   fast-reroute per-prefix
I
 interface GigabitEthernet0/3/0/0.1
 point-to-point
  address-family ipv4 unicast
I
 interface GigabitEthernet0/3/0/0.2
 point-to-point
  address-family ipv4 unicast
```

Related Topics

IP LDP Fast Reroute Loop Free Alternate, on page 18

Verify IP LDP Fast Reroute Loop Free Alternate: Example

The following examples show how to verify the IP LDP FRR LFA feature on the router. The following example shows how to verify ISIS FRR output:

RP/0/0/CPU0:router#show i	sis fast-re	route summa	ry		
IS-IS 1 IPv4 Unicast FRR	summary				
Prefixes reachable in L1	Critical Priority	High Priority	Medium Priority	Low Priority	Total
All paths protected	0	0	4	1008	1012
Some paths protected	0	0	0	0	0
Unprotected	0	0	0	0	0
Protection coverage	0.00%	0.00%	100.00%	100.00%	100.00%

Prefixes reachable in L2					
All paths protected	0	0	1	0	1
Some paths protected	0	0	0	0	0
Unprotected	0	0	0	0	0
Protection coverage	0.00%	0.00%	100.00%	0.00%	100.00%

The following example shows how to verify the IGP route 211.1.1.1/24 in ISIS Fast Reroute output:

```
RP/0/0/CPU0:router#show isis fast-reroute 211.1.1.1/24
L1 211.1.1/24 [40/115]
via 12.0.0.2, GigabitEthernet0/6/0/13, NORTH
FRR backup via 14.0.2.2, GigabitEthernet0/6/0/0.3, SOUTH
RP/0/0/CPU0:router#show isis fast-reroute 211.1.1.1/24 detail
L1 211.1.1.1/24 [40/115] low priority
via 12.0.0.2, GigabitEthernet0/6/0/13, NORTH
FRR backup via 14.0.2.2, GigabitEthernet0/6/0/0.3, SOUTH
P: No, TM: 130, LC: No, NP: Yes, D: Yes
src sr1.00-00, 173.1.1.2
L2 adv [40] native, propagated
```

The following example shows how to verify the IGP route 211.1.1.1/24 in RIB output:

```
RP/0/0/CPU0:router#show route 211.1.1.1/24
Routing entry for 211.1.1.0/24
Known via "isis 1", distance 115, metric 40, type level-1
Installed Nov 27 10:22:20.311 for 1d08h
Routing Descriptor Blocks
12.0.0.2, from 173.1.1.2, via GigabitEthernet0/6/0/13, Protected
Route metric is 40
14.0.2.2, from 173.1.1.2, via GigabitEthernet0/6/0/0.3, Backup
Route metric is 0
No advertising protos.
```

The following example shows how to verify the IGP route 211.1.1.1/24 in FIB output:

```
RP/0/0/CPU0:router#show cef 211.1.1.1/24
211.1.1.0/24, version 0, internal 0x40040001 (ptr 0x9d9e1a68) [1], 0x0 (0x9ce0ec40), 0x4500 (0x9e2c69e4)
 Updated Nov 27 10:22:29.825
 remote adjacency to GigabitEthernet0/6/0/13
 Prefix Len 24, traffic index 0, precedence routine (0)
   via 12.0.0.2, GigabitEthernet0/6/0/13, 0 dependencies, weight 0, class 0,
protected [flags 0x400]
    path-idx 0, bkup-idx 1 [0x9e5b71b4 0x0]
    next hop 12.0.0.2
    local label 16080
                             labels imposed {16082}
   via 14.0.2.2, GigabitEthernet0/6/0/0.3, 3 dependencies, weight 0, class 0,
backup [flags 0x300]
    path-idx 1
    next hop 14.0.2.2
    remote adjacency
     local label 16080
                             labels imposed {16079}
RP/0/0/CPU0:router#show cef 211.1.1.1/24 detail
211.1.1.0/24, version 0, internal 0x40040001 (ptr 0x9d9e1a68) [1], 0x0
(0x9ce0ec40), 0x4500 (0x9e2c69e4)
 Updated Nov 27 10:22:29.825
 remote adjacency to GigabitEthernet0/6/0/13
 Prefix Len 24, traffic index 0, precedence routine (0)
  gateway array (0x9cc622f0) reference count 1158, flags 0x28000d00, source lsd
(2),
                [387 type 5 flags 0x101001 (0x9df32398) ext 0x0 (0x0)]
  LW-LDI[type=5, refc=3, ptr=0x9ce0ec40, sh-ldi=0x9df32398]
   via 12.0.0.2, GigabitEthernet0/6/0/13, 0 dependencies, weight 0, class 0,
                                                                                         \
```

```
protected [flags 0x400]
   path-idx 0, bkup-idx 1 [0x9e5b71b4 0x0]
   next hop 12.0.0.2
    local label 16080
                           labels imposed {16082}
  via 14.0.2.2, GigabitEthernet0/6/0/0.3, 3 dependencies, weight 0, class 0,
backup [flags 0x300]
   path-idx 1
   next hop 14.0.2.2
   remote adjacency
    local label 16080
                           labels imposed {16079}
    Load distribution: 0 (refcount 387)
    Hash OK Interface
                                        Address
             GigabitEthernet0/6/0/13
    0
          Y
                                      remote
```

The following example shows how to verify the IGP route 211.1.1.1/24 in MPLS LDP output:

RP/0/0/CPU0:router#show mpls ldp forwarding 211.1.1.1/24

Prefix	Label In	Label Out	Outgoing Interface	Next	Нор	GR	Stale
211.1.1.0/24	16080	16082	Gi0/6/0/13	12.0	.0.2	Y	Ν
		16079	Gi0/6/0/0.3	14.0	.2.2 (!)	Y	Ν

RP/0/0/CPU0:router#show mpls ldp forwarding 211.1.1.1/24 detail

Prefix	Label In	Label Out	Outgoing Interface	Next Hop	GR	Stale
211.1.1.0/24	16080	[Protecte	Gi0/6/0/13 d; path-id 1 1 20.20.20:0]	12.0.0.2 backup-path-id 33;	Y	N
Routing update Forwarding upd		[Backup;] 27 10:22:1	9.560 (1d08h	eer 40.40.40.40:0] ago)	Y	Ν

Related Topics

IP LDP Fast Reroute Loop Free Alternate, on page 18

Additional References

For additional information related to Implementing MPLS Label Distribution Protocol, refer to the following references:

Related Documents

Related Topic	Document Title
LDP Commands	MPLS Label Distribution Protocol Commands module in Cisco IOS XR MPLS Command Reference for the Cisco XR 12000 Series Router.

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
	To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/ sw-center/netmgmt/cmtk/mibs.shtml

RFCs

RFCs Note Not all supported RFCs are listed.	Title
RFC 3031	Multiprotocol Label Switching Architecture
RFC 3036	LDP Specification
RFC 3037	LDP Applicability
RFC 3478	Graceful Restart Mechanism for Label Distribution Protocol
RFC 3815	Definitions of Managed Objects for MPLS LDP
RFC 5036	Label Distribution and Management Downstream on Demand Label Advertisement
RFC 5286	Basic Specification for IP Fast Reroute: Loop-Free Alternates

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	http://www.cisco.com/techsupport

Implementing MPLS Static Labeling

The MPLS static feature enables you to statically assign local labels to an IPv4 prefix per VRF. Also, Label Switched Paths (LSPs) can be provisioned for these static labels by specifying the next-hop information that is required to forward the packets containing static label.

If there is any discrepancy between labels assigned statically and dynamically, the router issues a warning message in the console log. By means of this warning message, the discrepancy can be identified and resolved.

Static labels are more advantageous than dynamic labels because static labels:

- Improve security because the risk of receiving unwanted labels from peers (running a compromised MPLS dynamic labeling protocol) is reduced.
- Gives users full control over defined LSPs.
- Utilize system resources optimally because dynamic labeling is not processed.

To perform static binding of MPLS labels, you need to:

- Enable MPLS Encapsulation on an Interface, on page 64
- Define a Range for Static MPLS Labels, on page 65
- Allocate static label:
 - Setup a Static LSP, on page 66
 - or
 - Allocate Static MPLS Label to an IP Prefix and Configure a LSP, on page 67
 - Allocate Static MPLS Label for a Specific VRF, on page 69
- Verify MPLS Static Bindings, on page 70
- Identify and Clear Label Discrepancy, on page 71

Restrictions

- Static labeling on IPv6 packets is not supported.
- The router does not prevent label discrepancy at the time of configuring static labels. Any generated discrepancy needs to be subsequently cleared.

- Equal-cost multi-path routing (ECMP) is not supported.
- Interfaces must be explicitly configured to handle traffic with static MPLS labels.
- The MPLS per-VRF labels cannot be shared between MPLS static and other applications.

Feature History for Implementing MPLS Static Labeling

Release	Modification
Release 5.1.1	This feature was introduced.

- Enable MPLS Encapsulation on an Interface, page 64
- Define a Range for Static MPLS Labels, page 65
- Setup a Static LSP, page 66
- Allocate Static MPLS Label to an IP Prefix and Configure a LSP, page 67
- Allocate Static MPLS Label for a Specific VRF, page 69
- Verify MPLS Static Bindings, page 70
- Identify and Clear Label Discrepancy, page 71

Enable MPLS Encapsulation on an Interface

By default, MPLS encapsulation is disabled on all interfaces. MPLS encapsulation has to be explicitly enabled on all ingress and egress MPLS interfaces through which the static MPLS labeled traffic travels.

SUMMARY STEPS

- 1. configure
- 2. mpls static
- 3. interface interface
- 4. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/0/CPU0:router# configure Enters global configuration mode.

Step 2 mpls static

RP/0/0/CPU0:router(config) # mpls static Enters MPLS-static configuration mode.

Step 3 interface interface

Example:

 $\label{eq:RP/0/0/CPU0:router(config-mpls-static) \# interface gigabitethernet 0/0/0/3 Enables MPLS encapsulation on the specified interface.$

Step 4 Use the **commit** or **end** command.

commit—Saves the configuration changes and remains within the configuration session.

end—Prompts user to take one of these actions:

- Yes— Saves configuration changes and exits the configuration session.
- No-Exits the configuration session without committing the configuration changes.
- Cancel—Remains in the configuration session, without committing the configuration changes.

What to Do Next

To verify the interfaces on which MPLS is enabled, use the **show mpls interfaces** command from the EXEC mode. For example:

```
RP/0/0/CPU0:router# show mpls interfacesMon May 12 06:21:30.937 DSTInterfaceLDPTunnelStaticGigabitEthernet0/0/0/3NoNoYesYes
```

For the interface on which MPLS static is enabled, the "Static" column displays "Yes".

Define a Range for Static MPLS Labels

The MPLS label range configuration defines the dynamic label range. Any label that falls outside this dynamic range is available for manually allocating as static labels. The router does not verify statically-configured labels against the specified label range. Therefore, to prevent label discrepancy, ensure that you do not configure static MPLS labels that fall within the dynamic label range.

Note

The allocable range for MPLS labels is from 16 to 1048575. Label values from 0 to 15 are reserved according to RFC-3032.

SUMMARY STEPS

- 1. configure
- 2. mpls label range minimum_value maximum_value
- 3. Use the commit or end command.

DETAILED STEPS

Step 1	configure
	Example:
	RP/0/0/CPU0:router# configure Enters global configuration mode.
Step 2	mpls label range minimum_value maximum_value
	Example: RP/0/0/CPU0:router(config) # mpls label range 20000 30000 Specifies the range through which dynamic MPLS labels are allocated. All labels falling outside this range (16 to 19999 and 30001 to 1048575) can be manually allocated as static labels.
Step 3	Use the commit or end command. commit —Saves the configuration changes and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel—Remains in the configuration session, without committing the configuration changes.

Setup a Static LSP

In this task, a static MPLS LSP is setup for a specific ingress label.

SUMMARY STEPS

- 1. configure
- 2. mpls static
- 3. address-family ipv4 unicast
- 4. local-label *label-value* allocate
- 5. forward path *path_id* nexthop *nexthop_address* interface_type interface_id out-label outgoing_label
- 6. Use the commit or end command.

DETAILED STEPS

Step 1 configure

RP/0/0/CPU0:router# configure Enters global configuration mode.

Step 2 mpls static

Example:

RP/0/0/CPU0:router(config)# mpls static Enters MPLS-static configuration mode.

Step 3 address-family ipv4 unicast

Example:

RP/0/0/CPU0:router(config-mpls-static)# address-family ipv4 unicast Applies the static configuration to an IPv4 address family in the default VRF.

Step 4 local-label label-value allocate

Example:

RP/0/0/CPU0:router(config-mpls-static-af) # local-label 30500 allocate Specifies the incoming label value as 30500.

Step 5 forward path *path_id* **nexthop** *nexthop_address interface_type interface_id* **out-label** *outgoing_label*

Example:

RP/0/0/CPU0:router(config-mpls-static-af-lbl) # forward path 1 nexthop 10.2.2.2 gigabitEthernet 0/0/0/1 out-label 30501

For packets that are received with the label, 30500, the MPLS protocol swaps labels and applies the label, 30501. After applying the new label, it forwards the packets to the next hop, 10.2.2.2, through the GigabitEthernet interface, 0/0/0/1.

Step 6 Use the **commit** or **end** command.

commit—Saves the configuration changes and remains within the configuration session.

end—Prompts user to take one of these actions:

- Yes- Saves configuration changes and exits the configuration session.
- No-Exits the configuration session without committing the configuration changes.
- Cancel-Remains in the configuration session, without committing the configuration changes.

Allocate Static MPLS Label to an IP Prefix and Configure a LSP

Static MPLS label bindings for IP prefixes are used by MPLS applications such as Label Distribution Protocol (LDP) or Border Gateway Protocol (BGP) for MPLS switching. It is possible to define a static LSP for the static label.

SUMMARY STEPS

- 1. configure
- 2. mpls static
- 3. address-family ipv4 unicast
- 4. local-label label-value allocate per-prefix IPv4_prefix_entry
- 5. forward path path id nexthop nexthop address out-label outgoing label
- 6. Use the commit or end command.

DETAILED STEPS

Step 1	configure

Example:

RP/0/0/CPU0:router# configure Enters global configuration mode.

Step 2 mpls static

Example:

RP/0/0/CPU0:router(config) # mpls static Enters MPLS-static configuration mode.

Step 3 address-family ipv4 unicast

Example:

RP/0/0/CPU0:router(config-mpls-static)# address-family ipv4 unicast Applies the static configuration to an IPv4 address family in the default VRF.

Step 4 local-label *label-value* **allocate per-prefix** *IPv4_prefix_entry*

Example:

RP/0/0/CPU0:router(config-mpls-static-af)# local-label 30500 allocate per-prefix 100.1.1.0/24 The MPLS protocol requests label 30500 to be statically bound as a local label for the prefix 100.1.1.0/24.

Step 5 forward path path id nexthop nexthop address out-label outgoing label

Example:

RP/0/0/CPU0:router(config-mpls-static-af-lbl) # forward path 1 nexthop 10.2.2.2 out-label 30501 For packets that are received with the label, 30500, the MPLS protocol swaps labels and applies the label, 30501. After applying the new label, it forwards the packets to the next hop, 10.2.2.2.

Example:

RP/0/0/CPU0:router(config-mpls-static-af-lbl)# forward path 1 nexthop gigabitEthernet 0/0/0/4 out-label pop

For packets that are received with the label, 30500, the MPLS protocol removes the existing label. After removing the label, it forwards the packets to the next hop through the egress interface, GigabitEthernet 0/0/0/4.

Step 6 Use the **commit** or **end** command.

commit—Saves the configuration changes and remains within the configuration session.

end—Prompts user to take one of these actions:

- Yes— Saves configuration changes and exits the configuration session.
- No-Exits the configuration session without committing the configuration changes.
- Cancel-Remains in the configuration session, without committing the configuration changes.

Allocate Static MPLS Label for a Specific VRF

In this task, a static MPLS label is allocated to an IP prefix for a specific VRF.

Note

When a static MPLS label is allocated to an IP prefix for a specific VRF, it is not possible to define a static LSP for that static label.

SUMMARY STEPS

- 1. configure
- 2. mpls static
- 3. vrf vrf_name address-family ipv4 unicast
- 4. local-label *label-value* allocate per-prefix *IPv4_prefix_entry*
 - local-label label-value allocate per-vrf forward path path-id pop-and-lookup
- 5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/0/CPU0:router# configure Enters global configuration mode.

Step 2 mpls static

Example:

RP/0/0/CPU0:router(config)# mpls static Enters MPLS-static configuration mode.

Step 3 vrf vrf name address-family ipv4 unicast

RP/0/0/CPU0:router(config-mpls-static) # vrf vrf1 address-family ipv4 unicast Applies the static configuration to an IPv4 address family in the VRF named vrf1.

Step 4

local-label label-value allocate per-prefix IPv4_prefix_entry

• local-label label-value allocate per-vrf forward path path-id pop-and-lookup

Example:

RP/0/0/CPU0: router (config-mpls-static-vrf-af) # local-label 30500 allocate per-prefix 100.1.1.0/24 The MPLS protocol requests label 30500 to be statically bound as a local label for the prefix 100.1.1.0/24 in the VRF named *vrf1*.

Example:

```
RP/0/0/CPU0:router(config-mpls-static-vrf-af)# local-label 30500 allocate per-vrf forward path 1 pop-and-lookup
```

The MPLS protocol requests single label 30500 to be statically bound as a local label for all the prefixes in the VRF named *vrf1*. When the router receives packets with VRF label 30500, it removes the label and then performs IP-based lookup to forward the packets.

Step 5 Use the **commit** or **end** command.

commit—Saves the configuration changes and remains within the configuration session.

end—Prompts user to take one of these actions:

- Yes- Saves configuration changes and exits the configuration session.
- No-Exits the configuration session without committing the configuration changes.
- Cancel-Remains in the configuration session, without committing the configuration changes.

Verify MPLS Static Bindings

These are the show commands that can be used to verify MPLS static bindings and LSPs.

SUMMARY STEPS

- 1. show mpls static local-label label_value
- 2. show mpls label range
- 3. show mpls lsd forwarding

DETAILED STEPS

Step 1 show mpls static local-label label_value

 RP/0/0/CPU0:router#show mpls static local-label 200

 Tue Apr 22 18:21:55.764 UTC

 Label VRF
 Type

 Prefix
 RW Configured

 200
 default

 Per-Prefix
 10.10.10/32

 Yes
 Created

 Verifies that the status is "Created" for the specified label value.

Step 2 show mpls label range

Example:

RP/0/0/CPU0:router#show mpls label range Mon Apr 28 19:56:00.596 IST Range for dynamic labels: Min/Max: 16000/1048575 Checks the dynamic range and ensures that the specified local-label value is outside this range.

Step 3 show mpls lsd forwarding

Example:

```
RP/0/0/CPU0:router#show mpls lsd forwarding
Tue Apr 29 15:59:52.011 UTC
In_Label, (ID), Path_Info: <Type>
89, (IPv4, 'default':4U, 5.6.78.55/32), 1 Paths
1/1: IPv4, 'default':4U, Gi0/0/0/21, nh=0.0.0.0, lbl=89, tun_id=0, flags=0x0 ()
110, (IPv4, 'default':4U, 2.2.2.2/32), 1 Paths
1/1: IPv4, 'default':4U, Gi0/1/0/0, nh=1.12.1.2, lbl=Pop, tun_id=0, flags=0x0 ()
120, (IPv4, 'default':4U, 3.3.3.3/32), 1 Paths
1/1: IPv4, 'default':4U, Gi0/1/0/0, nh=1.12.1.2, lbl=0, tun_id=0, flags=0x0 ()
130, (IPv4, 'default':4U, Gi0/1/0/0, nh=1.12.1.2, lbl=0, tun_id=0, flags=0x0 ()
130, (IPv4, 'default':4U, Gi0/1/0/0, nh=1.12.1.2, lbl=200, tun_id=0, flags=0x0 ()
Verifies that the MPLS static configuration has taken effect, and the label forwarding is taking place.
```

Identify and Clear Label Discrepancy

During configuring or de-configuring static labels or a label range, a label discrepancy can get generated when:

- A static label is configured for an IP prefix (per VRF) that already has a binding with a dynamic label.
- A static label is configured for an IP prefix, when the same label value is dynamically allocated to another IP prefix.

Complete these steps to identify and clear the discrepancies.

- **Step 1** To identify a label discrepancy, execute one of these:
 - show mpls static local-label discrepancy

show log

		-	local-label discr	epancy	
Tue Apr	22 18:36:31.614	UTC			
Label	VRF	Туре	Prefix	RW Configured	Status
16003	default	Per-Prefix	1.1.1/32	No	Discrepancy

Example:

RP/0/0/CPU0:router#show log Thu Apr 24 14:18:57.655 UTC Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns) Console logging: level warnings, 199 messages logged Monitor logging: level debugging, 0 messages logged Trap logging: level informational, 0 messages logged Buffer logging: level debugging, 2 messages loggedLog Buffer (307200 bytes):

RP/0/RSP0/CPU0:Apr 24 14:18:53.743 : mpls_static[1043]: %ROUTING-MPLS_STATIC-7-ERR_STATIC_LABEL_DISCREPANCY : The system detected 1 label discrepancies (static label could not be allocated due to conflict with other applications). Please use 'clear mpls static local-label discrepancy' to fix this issue. RP/0/RSP0/CPU0:Apr 24 14:18:53.937 : config[65762]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by user 'cisco'. Use 'show configuration commit changes 100000020' to view the changes.

Step 2 clear mpls static local-label discrepancy all

Example:

RP/0/0/CPU0:router# clear mpls static local-label discrepancy all Clears label discrepancy by allocating a new label to those IP prefixes that are allocated dynamic label. The static label configuration takes precedence while clearing discrepancy. Traffic can be affected while clearing discrepancy.

CHAPTER

Implementing RSVP for MPLS-TE and MPLS 0-UNI

The Multiprotocol Label Switching (MPLS) is a standards-based solution, driven by the Internet Engineering Task Force (IETF), devised to convert the Internet and IP backbones from best-effort networks into business-class transport media.

Resource Reservation Protocol (RSVP) is a signaling protocol that enables systems to request resource reservations from the network. RSVP processes protocol messages from other systems, processes resource requests from local clients, and generates protocol messages. As a result, resources are reserved for data flows on behalf of local and remote clients. RSVP creates, maintains, and deletes these resource reservations.

RSVP provides a secure method to control quality-of-service (QoS) access to a network.

MPLS Traffic Engineering (MPLS-TE) and MPLS Optical User Network Interface (MPLS O-UNI) use RSVP to signal label switched paths (LSPs).

ReleaseModificationRelease 3.2This feature was introduced.Release 3.2Support was added for ACL-based prefix filtering.Release 3.4.1Support was added for RSVP authentication.Release 3.9.0The RSVP MIB feature was added.

Feature History for Implementing RSVP for MPLS-TE and MPLS O-UNI

- Prerequisites for Implementing RSVP for MPLS-TE and MPLS O-UNI, page 74
- Information About Implementing RSVP for MPLS-TE and MPLS O-UNI, page 74
- Information About Implementing RSVP Authentication, page 79
- How to Implement RSVP, page 84
- How to Implement RSVP Authentication, page 95
- Configuration Examples for RSVP, page 107

- Configuration Examples for RSVP Authentication, page 112
- Additional References, page 114

Prerequisites for Implementing RSVP for MPLS-TE and MPLS 0-UNI

These prerequisites are required to implement RSVP for MPLS-TE and MPLS O-UNI:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- Either a composite mini-image plus an MPLS package, or a full image, must be installed.

Information About Implementing RSVP for MPLS-TE and MPLS 0-UNI

To implement MPLS RSVP, you must understand the these concepts:

Related Topics

How to Implement RSVP Authentication, on page 95

Overview of RSVP for MPLS-TE and MPLS O-UNI

RSVP is a network control protocol that enables Internet applications to signal LSPs for MPLS-TE, and LSPs for O-UNI. The RSVP implementation is compliant with the IETF RFC 2205, RFC 3209, and OIF2000.125.7.

When configuring an O-UNI LSP, the RSVP session is bidirectional. The exchange of data between a pair of machines actually constitutes a single RSVP session. The RSVP session is established using an Out-Of-Band (OOB) IP Control Channel (IPCC) with the neighbor. The RSVP messages are transported over an interface other than the data interface.

RSVP supports extensions according to OIF2000.125.7 requirements, including:

- · Generalized Label Request
- · Generalized UNI Attribute
- UNI Session
- New Error Spec sub-codes

RSVP is automatically enabled on interfaces on which MPLS-TE is configured. For MPLS-TE LSPs with nonzero bandwidth, the RSVP bandwidth has to be configured on the interfaces. There is no need to configure RSVP, if all MPLS-TE LSPs have zero bandwidth. For O-UNI, there is no need for any RSVP configuration

RSVP Refresh Reduction, defined in RFC 2961, includes support for reliable messages and summary refresh messages. Reliable messages are retransmitted rapidly if the message is lost. Because each summary refresh message contains information to refresh multiple states, this greatly reduces the amount of messaging needed to refresh states. For refresh reduction to be used between two routers, it must be enabled on both routers. Refresh Reduction is enabled by default.

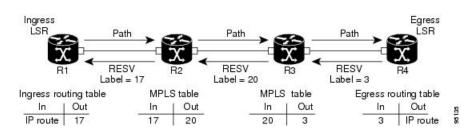
Message rate limiting for RSVP allows you to set a maximum threshold on the rate at which RSVP messages are sent on an interface. Message rate limiting is disabled by default.

The process that implements RSVP is restartable. A software upgrade, process placement or process failure of RSVP or any of its collaborators, has been designed to ensure Nonstop Forwarding (NSF) of the data plane.

RSVP supports graceful restart, which is compliant with RFC 3473. It follows the procedures that apply when the node reestablishes communication with the neighbor's control plane within a configured restart time.

It is important to note that RSVP is not a routing protocol. RSVP works in conjunction with routing protocols and installs the equivalent of dynamic access lists along the routes that routing protocols calculate. Because of this, implementing RSVP in an existing network does not require migration to a new routing protocol.

Related Topics


Figure 7: RSVP Operation

Configuring RSVP Packet Dropping, on page 89 Set DSCP for RSVP Packets: Example, on page 111 Verifying RSVP Configuration, on page 90

LSP Setup

LSP setup is initiated when the LSP head node sends path messages to the tail node (see the RSVP Operation figure).

This figure illustrates an LSP setup for non-O-UNI applications. In the case of an O-UNI application, the RSVP signaling messages are exchanged on a control channel, and the corresponding data channel to be used is acquired from the LMP Manager module based on the control channel. Also the O-UNI LSP's are by default bidirectional while the MPLS-TE LSP's are uni-directional.

The Path messages reserve resources along the path to each node, creating Path soft states on each node. When the tail node receives a path message, it sends a reservation (RESV) message with a label back to the previous node. When the reservation message arrives at the previous node, it causes the reserved resources to be locked and forwarding entries are programmed with the MPLS label sent from the tail-end node. A new MPLS label is allocated and sent to the next node upstream.

When the reservation message reaches the head node, the label is programmed and the MPLS data starts to flow along the path.

High Availability

RSVP is designed to ensure nonstop forwarding under the following constraints:

- Ability to tolerate the failure of one or more MPLS/O-UNI processes.
- Ability to tolerate the failure of one RP of a 1:1 redundant pair.
- Hitless software upgrade.

The RSVP high availability (HA) design follows the constraints of the underlying architecture where processes can fail without affecting the operation of other processes. A process failure of RSVP or any of its collaborators does not cause any traffic loss or cause established LSPs to go down. When RSVP restarts, it recovers its signaling states from its neighbors. No special configuration or manual intervention are required. You may configure RSVP graceful restart, which offers a standard mechanism to recover RSVP state information from neighbors after a failure.

Graceful Restart

RSVP graceful restart provides a control plane mechanism to ensure high availability (HA), which allows detection and recovery from failure conditions while preserving nonstop forwarding services on the systems running Cisco IOS XR software.

RSVP graceful restart provides a mechanism that minimizes the negative effects on MPLS traffic caused by these types of faults:

- Disruption of communication channels between two nodes when the communication channels are separate from the data channels. This is called *control channel failure*.
- Control plane of a node fails but the node preserves its data forwarding states. This is called *node failure*.

The procedure for RSVP graceful restart is described in the "Fault Handling" section of RFC 3473, *Generalized MPLS Signaling, RSVP-TE Extensions*. One of the main advantages of using RSVP graceful restart is recovery of the control plane while preserving nonstop forwarding and existing labels.

Graceful Restart: Standard and Interface-Based

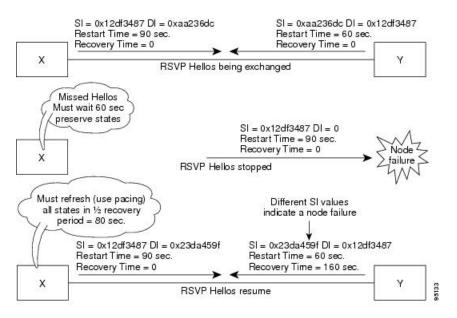
When you configure RSVP graceful restart, Cisco IOS XR software sends and expects node-id address based Hello messages (that is, Hello Request and Hello Ack messages). The RSVP graceful restart Hello session is not established if the neighbor router does not respond with a node-id based Hello Ack message.

You can also configure graceful restart to respond (send Hello Ack messages) to interface-address based Hello messages sent from a neighbor router in order to establish a graceful restart Hello session on the neighbor router. If the neighbor router does not respond with node-id based Hello Ack message, however, the RSVP graceful restart Hello session is not established.

Cisco IOS XR software provides two commands to configure graceful restart:

- signalling hello graceful-restart
- signalling hello graceful-restart interface-based

By default, graceful restart is disabled. To enable interface-based graceful restart, you must first enable standard graceful restart. You cannot enable interface-based graceful restart independently.


Related Topics

Enabling Graceful Restart, on page 86 Enable Graceful Restart: Example, on page 110 Enable Interface-Based Graceful Restart: Example, on page 110

Graceful Restart: Figure

This figure illustrates how RSVP graceful restart handles a node failure condition.

Figure 8: Node Failure with RSVP

RSVP graceful restart requires the use of RSVP hello messages. Hello messages are used between RSVP neighbors. Each neighbor can autonomously issue a hello message containing a hello request object. A receiver that supports the hello extension replies with a hello message containing a hello acknowledgment (ACK) object. This means that a hello message contains either a hello Request or a hello ACK object. These two objects have the same format.

The restart cap object indicates a node's restart capabilities. It is carried in hello messages if the sending node supports state recovery. The restart cap object has the following two fields:

Restart Time

Time after a loss in Hello messages within which RSVP hello session can be reestablished. It is possible for a user to manually configure the Restart Time.

Recovery Time

Time that the sender waits for the recipient to re-synchronize states after the re-establishment of hello messages. This value is computed and advertised based on number of states that existed before the fault occurred.

For graceful restart, the hello messages are sent with an IP Time to Live (TTL) of 64. This is because the destination of the hello messages can be multiple hops away. If graceful restart is enabled, hello messages (containing the restart cap object) are send to an RSVP neighbor when RSVP states are shared with that neighbor.

Restart cap objects are sent to an RSVP neighbor when RSVP states are shared with that neighbor. If the neighbor replies with hello messages containing the restart cap object, the neighbor is considered to be graceful restart capable. If the neighbor does not reply with hello messages or replies with hello messages that do not contain the restart cap object, RSVP backs off sending hellos to that neighbor. If graceful restart is disabled, no hello messages (Requests or ACKs) are sent. If a hello Request message is received from an unknown neighbor, no hello ACK is sent back.

ACL-based Prefix Filtering

RSVP provides for the configuration of extended access lists (ACLs) to forward, drop, or perform normal processing on RSVP router-alert (RA) packets. Prefix filtering is designed for use at core access routers in order that RA packets (identified by a source/destination address) can be seamlessly forwarded across the core from one access point to another (or, conversely to be dropped at this node). RSVP applies prefix filtering rules only to RA packets because RA packets contain source and destination addresses of the RSVP flow.

RA packets forwarded due to prefix filtering must not be sent as RSVP bundle messages, because bundle messages are hop-by-hop and do not contain RA. Forwarding a Bundle message does not work, because the node receiving the messages is expected to apply prefix filtering rules only to RA packets.

For each incoming RSVP RA packet, RSVP inspects the IP header and attempts to match the source/destination IP addresses with a prefix configured in an extended ACL. The results are as follows:

- If an ACL does not exist, the packet is processed like a normal RSVP packet.
- If the ACL match yields an explicit permit (and if the packet is not locally destined), the packet is forwarded. The IP TTL is decremented on all forwarded packets.
- If the ACL match yields an explicit deny, the packet is dropped.

If there is no explicit permit or explicit deny, the ACL infrastructure returns an implicit (default) deny. RSVP can be configured to drop the packet. By default, RSVP processes the packet if the ACL match yields an implicit (default) deny.

Related Topics

Configuring ACLs for Prefix Filtering, on page 87 Configure ACL-based Prefix Filtering: Example, on page 111

RSVP MIB

RFC 2206, RSVP Management Information Base Using SMIv2 defines all the SNMP MIB objects that are relevant to RSVP. By implementing the RSVP MIB, you can perform these functions:

- Specifies two traps (NetFlow and LostFlow) which are triggered when a new flow is created or deleted.
- Lets you use SNMP to access objects belonging to RSVP.

Related Topics

Enabling RSVP Traps, on page 93

Enable RSVP Traps: Example, on page 111

Information About Implementing RSVP Authentication

Before implementing RSVP authentication, you must configure a keychain first. The name of the keychain must be the same as the one used in the keychain configuration. For more information about configuring keychains, see *Cisco IOS XR System Security Configuration Guide for the Cisco XR 12000 Series Router*.

Note R

RSVP authentication supports only keyed-hash message authentication code (HMAC) type algorithms.

To implement RSVP authentication on Cisco IOS XR software, you must understand the following concepts:

RSVP Authentication Functions

You can carry out these tasks with RSVP authentication:

- Set up a secure relationship with a neighbor by using secret keys that are known only to you and the neighbor.
- Configure RSVP authentication in global, interface, or neighbor configuration modes.
- Authenticate incoming messages by checking if there is a valid security relationship that is associated based on key identifier, incoming interface, sender address, and destination address.
- · Add an integrity object with message digest to the outgoing message.
- Use sequence numbers in an integrity object to detect replay attacks.

RSVP Authentication Design

Network administrators need the ability to establish a security domain to control the set of systems that initiates RSVP requests.

The RSVP authentication feature permits neighbors in an RSVP network to use a secure hash to sign all RSVP signaling messages digitally, thus allowing the receiver of an RSVP message to verify the sender of the message without relying solely on the sender's IP address.

The signature is accomplished on a per-RSVP-hop basis with an RSVP integrity object in the RSVP message as defined in RFC 2747. This method provides protection against forgery or message modification. However, the receiver must know the security key used by the sender to validate the digital signature in the received RSVP message.

Network administrators manually configure a common key for each RSVP neighbor on the shared network.

The following reasons explain how to choose between global, interface, or neighbor configuration modes:

- Global configuration mode is optimal when a router belongs to a single security domain (for example, part of a set of provider core routers). A single common key set is expected to be used to authenticate all RSVP messages.
- Interface, or neighbor configuration mode, is optimal when a router belongs to more than one security domain. For example, a provider router is adjacent to the provider edge (PE), or a PE is adjacent to an edge device. Different keys can be used but not shared.

Global configuration mode configures the defaults for interface and neighbor interface modes. These modes, unless explicitly configured, inherit the parameters from global configuration mode, as follows:

- Window-size is set to 1.
- Lifetime is set to 1800.
- key-source key-chain command is set to none or disabled.

Related Topics

Configuring a Lifetime for an Interface for RSVP Authentication, on page 100 RSVP Authentication by Using All the Modes: Example, on page 113

Global, Interface, and Neighbor Authentication Modes

You can configure global defaults for all authentication parameters including key, window size, and lifetime. These defaults are inherited when you configure authentication for each neighbor or interface. However, you can also configure these parameters individually on a neighbor or interface basis, in which case the global values (configured or default) are no longer inherited.

RSVP uses the following rules when choosing which authentication parameter to use when that parameter is configured at multiple levels (interface, neighbor, or global). RSVP goes from the most specific to least specific; that is, neighbor, interface, and global.

Global keys simplify the configuration and eliminate the chances of a key mismatch when receiving messages from multiple neighbors and multiple interfaces. However, global keys do not provide the best security.

Interface keys are used to secure specific interfaces between two RSVP neighbors. Because many of the RSVP messages are IP routed, there are many scenarios in which using interface keys are not recommended. If all keys on the interfaces are not the same, there is a risk of a key mismatch for the following reasons:

• When the RSVP graceful restart is enabled, RSVP hello messages are sent with a source IP address of the local router ID and a destination IP address of the neighbor router ID. Because multiple routes can exist between the two neighbors, the RSVP hello message can traverse to different interfaces.

- When the RSVP fast reroute (FRR) is active, the RSVP Path and Resv messages can traverse multiple interfaces.
- When Generalized Multiprotocol Label Switching (GMPLS) optical tunnels are configured, RSVP messages are exchanged with router IDs as the source and destination IP addresses. Since multiple control channels can exist between the two neighbors, the RSVP messages can traverse different interfaces.

Neighbor-based keys are particularly useful in a network in which some neighbors support RSVP authentication procedures and others do not. When the neighbor-based keys are configured for a particular neighbor, you are advised to configure all the neighbor's addresses and router IDs for RSVP authentication.

Related Topics

Configuring a Lifetime for RSVP Authentication in Global Configuration Mode, on page 96 RSVP Authentication Global Configuration Mode: Example, on page 112 Specifying the RSVP Authentication Keychain in Interface Mode, on page 99 RSVP Authentication by Using All the Modes: Example, on page 113

Security Association

A security association (SA) is defined as a collection of information that is required to maintain secure communications with a peer to counter replay attacks, spoofing, and packet corruption.

This table lists the main parameters that define a security association.

Parameter	Description
src	IP address of the sender.
dst	IP address of the final destination.
interface	Interface of the SA.
direction	Send or receive type of the SA.
Lifetime	Expiration timer value that is used to collect unused security association data.
Sequence Number	Last sequence number that was either sent or accepted (dependent of the direction type).
key-source	Source of keys for the configurable parameter.
keyID	Key number (returned form the key-source) that was last used.
digest	Algorithm last used (returned from the key-source).

Table 3: Security Association Main Parameters

Parameter	Description
Window Size	Specifies the tolerance for the configurable parameter. The parameter is applicable when the direction parameter is the receive type.
Window	Specifies the last <i>window size</i> value sequence number that is received or accepted. The parameter is applicable when the direction parameter is the receive type.

An SA is created dynamically when sending and receiving messages that require authentication. The neighbor, source, and destination addresses are obtained either from the IP header or from an RSVP object, such as a HOP object, and whether the message is incoming or outgoing.

When the SA is created, an expiration timer is created. When the SA authenticates a message, it is marked as recently used. The lifetime timer periodically checks if the SA is being used. If so, the flag is cleared and is cleaned up for the next period unless it is marked again.

This table shows how to locate the source and destination address keys for an SA that is based on the message type.

Message Type	Source Address Location	Destination Address Location
Path	HOP object	SESSION object
PathTear	HOP object	SESSION object
PathError	HOP object	IP header
Resv	HOP object	IP header
ResvTear	HOP object	IP header
ResvError	HOP object	IP header
ResvConfirm	IP header	CONFIRM object
Ack	IP header	IP header
Srefresh	IP header	IP header
Hello	IP header	IP header
Bundle	-	-

Table 4: Source and Destination Address Locations for Different Message Types

Related Topics

Specifying the Keychain for RSVP Neighbor Authentication, on page 103 RSVP Neighbor Authentication: Example, on page 113 Configuring a Lifetime for RSVP Neighbor Authentication, on page 105 RSVP Authentication Global Configuration Mode: Example, on page 112

Key-source Key-chain

The key-source key-chain is used to specify which keys to use.

You configure a list of keys with specific IDs and have different lifetimes so that keys are changed at predetermined intervals automatically, without any disruption of service. Rollover enhances network security by minimizing the problems that could result if an untrusted source obtained, deduced, or guessed the current key.

RSVP handles rollover by using the following key ID types:

- On TX, use the youngest eligible key ID.
- On RX, use the key ID that is received in an integrity object.

For more information about implementing keychain management, see *Cisco IOS XR System Security Configuration Guide for the Cisco XR 12000 Series Router*.

Related Topics

Enabling RSVP Authentication Using the Keychain in Global Configuration Mode, on page 95 RSVP Authentication Global Configuration Mode: Example, on page 112 Specifying the Keychain for RSVP Neighbor Authentication, on page 103 RSVP Neighbor Authentication: Example, on page 113

Guidelines for Window-Size and Out-of-Sequence Messages

These guidelines are required for window-size and out-of-sequence messages:

- Default window-size is set to 1. If a single message is received out-of-sequence, RSVP rejects it and displays a message.
- When RSVP messages are sent in burst mode (for example, tunnel optimization), some messages can become out-of-sequence for a short amount of time.
- Window size can be increased by using the **window-size** command. When the window size is increased, replay attacks can be detected with duplicate sequence numbers.

Related Topics

Configuring the Window Size for RSVP Authentication in Global Configuration Mode, on page 97 Configuring the Window Size for an Interface for RSVP Authentication, on page 102 Configuring the Window Size for RSVP Neighbor Authentication, on page 106 RSVP Authentication by Using All the Modes: Example, on page 113 RSVP Authentication for an Interface: Example, on page 113

Caveats for Out-of-Sequence

These caveats are listed for out-of-sequence:

- When RSVP messages traverse multiple interface types with different maximum transmission unit (MTU) values, some messages can become out-of-sequence if they are fragmented.
- · Packets with some IP options may be reordered.
- · Change in QoS configurations may lead to a transient reorder of packets.
- QoS policies can cause a reorder of packets in a steady state.

Because all out-of-sequence messages are dropped, the sender must retransmit them. Because RSVP state timeouts are generally long, out-of-sequence messages during a transient state do not lead to a state timeout.

How to Implement RSVP

RSVP requires coordination among several routers, establishing exchange of RSVP messages to set up LSPs. Depending on the client application, RSVP requires some basic configuration, as described in these topics:

Configuring Traffic Engineering Tunnel Bandwidth

To configure traffic engineering tunnel bandwidth, you must first set up TE tunnels and configure the reserved bandwidth per interface (there is no need to configure bandwidth for the data channel or the control channel).

Cisco IOS XR software supports two MPLS DS-TE modes: Prestandard and IETF.

For prestandard DS-TE you do not need to configure bandwidth for the data channel or the control channel. There is no other specific RSVP configuration required for this application. When no RSVP bandwidth is specified for a particular interface, you can specify zero bandwidth in the LSP setup if it is configured under RSVP interface configuration mode or MPLS-TE configuration mode.

Related Topics

Configuring a Prestandard DS-TE Tunnel, on page 187 Configuring an IETF DS-TE Tunnel Using RDM, on page 189 Configuring an IETF DS-TE Tunnel Using MAM, on page 191

Confirming DiffServ-TE Bandwidth

Perform this task to confirm DiffServ-TE bandwidth.

In RSVP global and subpools, reservable bandwidths are configured per interface to accommodate TE tunnels on the node. Available bandwidth from all configured bandwidth pools is advertised using IGP. RSVP signals the TE tunnel with appropriate bandwidth pool requirements.

SUMMARY STEPS

- 1. configure
- 2. rsvp
- **3.** interface type interface-path-id
- 4. bandwidth total-bandwidth max-flow sub-pool-bw
- **5.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example:		
	RP/0/0/CPU0:router# configure		
Step 2	rsvp	Enters RSVP configuration mode.	
	Example:		
	RP/0/0/CPU0:router(config)# rsvp		
Step 3	interface type interface-path-id	Enters interface configuration mode for the RSVP protocol.	
	Example:		
	<pre>RP/0/0/CPU0:router(config-rsvp)# interface pos 0/2/0/0</pre>		
Step 4	bandwidth <i>total-bandwidth max-flow</i> sub-pool <i>sub-pool-bw</i>	Sets the reservable bandwidth, the maximum RSVP bandwidth available for a flow and the sub-pool bandwidth on this interface.	
	Example:		
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# bandwidth 1000 100 sub-pool 150</pre>		
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end—Prompts user to take one of these actions:	
		• Yes— Saves configuration changes and exits the configuration session.	
		• No—Exits the configuration session without committing the configuration changes.	
		• Cancel —Remains in the configuration session, without committing the configuration changes.	

Command or Action	Purpose

Related Topics

Differentiated Services Traffic Engineering, on page 135 Bandwidth Configuration (MAM): Example, on page 108 Bandwidth Configuration (RDM): Example, on page 108

Configuring MPLS O-UNI Bandwidth

For this application you do not need to configure bandwidth for the data channel or the control channel. There is no other specific RSVP configuration needed for this application.

Enabling Graceful Restart

Perform this task to enable graceful restart for implementations using both node-id and interface-based hellos.

RSVP graceful restart provides a control plane mechanism to ensure high availability, which allows detection and recovery from failure conditions while preserving nonstop forwarding services.

SUMMARY STEPS

- 1. configure
- 2. rsvp
- 3. signalling graceful-restart
- 4. signalling graceful-restart interface-based
- 5. Use the commit or end command.

DETAILED STEPS

Command or Action	Purpose
configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
rsvp	Enters the RSVP configuration mode.
Example:	
RP/0/0/CPU0:router(config)# rsvp	
	configure Example: RP/0/0/CPU0:router# configure rsvp Example:

	Command or Action	Purpose	
Step 3	signalling graceful-restart	Enables the graceful restart process on the node.	
	Example:		
	<pre>RP/0/0/CPU0:router(config-rsvp)# signalling graceful-restart</pre>		
Step 4	signalling graceful-restart interface-based	Enables interface-based graceful restart process on the node.	
	Example:		
	<pre>RP/0/0/CPU0:router(config-rsvp)# signalling graceful-restart interface-based</pre>		
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end—Prompts user to take one of these actions:	
		• Yes— Saves configuration changes and exits the configuration session.	
		• No —Exits the configuration session without committing the configuration changes.	
		• Cancel —Remains in the configuration session, without committing the configuration changes.	

Related Topics

Graceful Restart: Standard and Interface-Based, on page 76 Enable Graceful Restart: Example, on page 110 Enable Interface-Based Graceful Restart: Example, on page 110

Configuring ACL-based Prefix Filtering

Two procedures are provided to show how RSVP Prefix Filtering is associated:

- Configuring ACLs for Prefix Filtering, on page 87
- Configuring RSVP Packet Dropping, on page 89

Configuring ACLs for Prefix Filtering

Perform this task to configure an extended access list ACL that identifies the source and destination prefixes used for packet filtering.

The extended ACL needs to be configured separately using extended ACL configuration commands.

SUMMARY STEPS

- 1. configure
- 2. rsvp
- 3. signalling prefix-filtering access-list
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example:		
	RP/0/0/CPU0:router# configure		
Step 2	rsvp	Enters the RSVP configuration mode.	
	Example:		
	RP/0/0/CPU0:router(config)# rsvp		
Step 3	signalling prefix-filtering access-list	Enter an extended access list name as a string.	
	Example:		
	<pre>RP/0/0/CPU0:router(config-rsvp)# signalling prefix-filtering access-list banks</pre>		
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end—Prompts user to take one of these actions:	
		• Yes— Saves configuration changes and exits the configuration session.	
		• No—Exits the configuration session without committing the configuration changes.	
		• Cancel —Remains in the configuration session, without committing the configuration changes.	

Related Topics

ACL-based Prefix Filtering, on page 78 Configure ACL-based Prefix Filtering: Example, on page 111

Configuring RSVP Packet Dropping

Perform this task to configure RSVP to drop RA packets when the ACL match returns an implicit (default) deny.

The default behavior performs normal RSVP processing on RA packets when the ACL match returns an implicit (default) deny.

SUMMARY STEPS

- 1. configure
- 2. rsvp
- 3. signalling prefix-filtering default-deny-action
- **4.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example:		
	RP/0/0/CPU0:router# configure		
Step 2	rsvp	Enters the RSVP configuration mode.	
	Example:		
	<pre>RP/0/0/CPU0:router(config)# rsvp</pre>		
Step 3	signalling prefix-filtering default-deny-action	Drops RA messages.	
	Example:		
	<pre>RP/0/0/CPU0:router(config-rsvp)# signalling prefix-filtering default-deny-action</pre>		
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end—Prompts user to take one of these actions:	
		• Yes— Saves configuration changes and exits the configuration session.	

Command or Action	Purpose
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Overview of RSVP for MPLS-TE and MPLS O-UNI, on page 74 Set DSCP for RSVP Packets: Example, on page 111

Verifying RSVP Configuration

This figure illustrates the topology.

Figure 9: Sample Topology

51.51.51.51	60.60.60.60	70.70.70.70
33	<u>~</u>	23
Router 1	Router 2	Router 3
7 <u>6-</u>	LSP from R1 to R3	→ ²

Perform the following steps to verify RSVP configuration.

SUMMARY STEPS

- 1. show rsvp session
- 2. show rsvp counters messages summary
- 3. show rsvp counters events
- 4. show rsvp interface type interface-path-id [detail]
- 5. show rsvp graceful-restart
- 6. show rsvp graceful-restart [neighbors *ip-address* | detail]
- 7. show rsvp interface
- 8. show rsvp neighbor

DETAILED STEPS

Step 1 show rsvp session

Verifies that all routers on the path of the LSP are configured with at least one Path State Block (PSB) and one Reservation State Block (RSB) per session.

RP/0/0/CPU0:router# show rsvp session

```
Type Destination Add DPort Proto/ExtTunID PSBs RSBs Reqs
---- ----- LSP4
172.16.70.70 6 10.51.51.51 1 1 0
```

In the example, the output represents an LSP from ingress (head) router 10.51.51.51 to egress (tail) router 172.16.70.70. The tunnel ID (also called the *destination port*) is 6.

Example:

```
If no states can be found for a session that should be up, verify the
    application (for example, MPLS-TE and O-UNI) to see if
    everything is in order. If a session has one PSB but no RSB, this indicates
    that either the Path message is not making it to the egress (tail) router or
    the reservation message is not making it back to the router R1 in question.
```

Go to the downstream router R2 and display the session information:

Example:

```
If R2 has no PSB, either the path message is not making it to the
router or the path message is being rejected (for example, due to lack of
resources). If R2 has a PSB but no RSB, go to the next downstream router R3
to investigate. If R2 has a PSB and an RSB, this means the reservation is
not making it from R2 to R1 or is being rejected.
```

Step 2 show rsvp counters messages summary

Verifies whether the RSVP message is being transmitted and received.

Example:

RP/0/0/CPU0:router# show rsvp counters messages summary

```
All RSVP Interfaces Recv Xmit Recv Xmit Path 0 25
Resv 30 0 PathError 0 0 ResvError 0 1 PathTear 0 30 ResvTear 12 0
ResvConfirm 0 0 Ack 24 37 Bundle 0 Hello 0 5099 SRefresh 8974 9012
OutOfOrder 0 Retransmit 20 Rate Limited 0
```

Step 3 show rsvp counters events

Verifies how many RSVP states have expired. Because RSVP uses a soft-state mechanism, some failures will lead to RSVP states to expire due to lack of refresh from the neighbor.

Example:

RP/0/0/CPU0:router# show rsvp counters events

mgmtEthernet0/0/0/0 tunnel6 Expired Path states 0 Expired
Path states 0 Expired Resv states 0 Expired Resv states 0 NACKs received 0
NACKs received 0 POS0/3/0/0 POS0/3/0/1 Expired
Path states 0 Expired Path states 0 Expired Resv states 0 Expired Resv
states 0 NACKs received 0 NACKs received 0 POS0/3/0/2
POS0/3/0/3 Expired Path states 0 Expired Path
states 0 Expired Resv states 0 Expired Resv states 1 NACKs received 0 NACKs

received 1

Step 4 show rsvp interface *type interface-path-id* [**detail**] Verifies that refresh reduction is working on a particular interface.

Example:

RP/0/0/CPU0:router# show rsvp interface pos0/3/0/3 detail

Step 5 show rsvp graceful-restart

Verifies that graceful restart is enabled locally.

Example:

RP/0/0/CPU0:router# show rsvp graceful-restart

```
Graceful restart: enabled Number of global
    neighbors: 1 Local MPLS router id: 10.51.51.51 Restart time: 60 seconds
    Recovery time: 0 seconds Recovery timer: Not running Hello interval: 5000
    milliseconds Maximum Hello miss-count: 3
```

Step 6 show rsvp graceful-restart [neighbors *ip-address* | detail]

Verifies that graceful restart is enabled on the neighbor(s). These examples show that neighbor 192.168.60.60 is not responding to hello messages.

Example:

RP/0/0/CPU0:router# show rsvp graceful-restart neighbors 192.168.60.60

Neighbor App State Recovery Reason Since LostCnt ------ 192.168.60.60 MPLS INIT DONE N/A 12/06/2003 19:01:49 0

```
RP/0/0/CPU0:router# show rsvp graceful-restart neighbors detail
```

Neighbor: 192.168.60.60 Source: 10.51.51.51 (MPLS) Hello instance for application MPLS Hello State: INIT (for 3d23h) Number of times communications with neighbor lost: 0 Reason: N/A Recovery State: DONE Number of Interface neighbors: 1 address: 10.64.64.65 Restart time: 0 seconds Recovery time: 0 seconds Restart timer: Not running Recovery timer: Not running Hello interval: 5000 milliseconds Maximum allowed missed Hello messages: 3

Step 7 show rsvp interface

Verifies the available RSVP bandwidth.

Example:

RP/0/0/CPU0:router# show rsvp interface

```
Interface MaxBW MaxFlow Allocated MaxSub -----

----- Et0/0/0/0 0 0 0 (0%) 0 PO0/3/0/0

1000M 1000M 0 (0%) 0 PO0/3/0/1 1000M 1000M 0 (0%) 0 PO0/3/0/2 1000M 1000M

0 (0%) 0 PO0/3/0/3 1000M 1000M 1K (0%) 0
```

Step 8 show rsvp neighbor

Verifies the RSVP neighbors.

Example:

```
RP/0/0/CPU0:router# show rsvp neighbor detail
Global Neighbor: 40.40.40.40 Interface Neighbor: 1.1.1.1
Interface: POS0/0/0/0 Refresh Reduction: "Enabled" or "Disabled". Remote
epoch: 0xXXXXXXX Out of order messages: 0 Retransmitted messages: 0
Interface Neighbor: 2.2.2.2 Interface: POS0/1/0/0 Refresh Reduction:
"Enabled" or "Disabled". Remote epoch: 0xXXXXXXXX Out of order messages: 0
Retransmitted messages: 0
```

Related Topics

Overview of RSVP for MPLS-TE and MPLS O-UNI, on page 74

Enabling RSVP Traps

With the exception of the RSVP MIB traps, no action is required to activate the MIBs. This MIB feature is automatically enabled when RSVP is turned on; however, RSVP traps must be enabled.

Perform this task to enable all RSVP MIB traps, NewFlow traps, and LostFlow traps.

SUMMARY STEPS

- 1. configure
- 2. snmp-server traps rsvp lost-flow
- 3. snmp-server traps rsvp new-flow
- 4. snmp-server traps rsvp all
- 5. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	snmp-server traps rsvp lost-flow	Sends RSVP notifications to enable RSVP LostFlow traps.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# snmp-server traps rsvp lost-flow</pre>	
Step 3	snmp-server traps rsvp new-flow	Sends RSVP notifications to enable RSVP NewFlow traps.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# snmp-server traps rsvp new-flow</pre>	
Step 4	snmp-server traps rsvp all	Sends RSVP notifications to enable all RSVP MIB traps.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# snmp-server traps rsvp all</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

RSVP MIB, on page 79 Enable RSVP Traps: Example, on page 111

How to Implement RSVP Authentication

There are three types of RSVP authentication modes—global, interface, and neighbor. These topics describe how to implement RSVP authentication for each mode:

Configuring Global Configuration Mode RSVP Authentication

These tasks describe how to configure RSVP authentication in global configuration mode:

Enabling RSVP Authentication Using the Keychain in Global Configuration Mode

Perform this task to enable RSVP authentication for cryptographic authentication by specifying the keychain in global configuration mode.

You must configure a keychain before completing this task (see *Cisco IOS XR System Security Configuration Guide for the Cisco XR 12000 Series Router*).

SUMMARY STEPS

- 1. configure
- **2**. rsvp authentication
- 3. key-source key-chain key-chain-name
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp authentication	Enters RSVP authentication configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp authentication RP/0/0/CPU0:router(config-rsvp-auth)#</pre>	

	Command or Action	Purpose
Step 3	key-source key-chain key-chain-name	Specifies the source of the key information to authenticate RSVP signaling messages.
	Example:	key-chain-name
	<pre>RP/0/0/CPU0:router(config-rsvp-auth)# key-source key-chain mpls-keys</pre>	Name of the keychain. The maximum number of characters is 32.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Key-source Key-chain, on page 83 RSVP Authentication Global Configuration Mode: Example, on page 112

Configuring a Lifetime for RSVP Authentication in Global Configuration Mode

Perform this task to configure a lifetime value for RSVP authentication in global configuration mode.

SUMMARY STEPS

- 1. configure
- 2. rsvp authentication
- 3. life-time seconds
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp authentication	Enters RSVP authentication configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp authentication RP/0/0/CPU0:router(config-rsvp-auth)#</pre>	
Step 3	life-time seconds	Controls how long RSVP maintains security associations with other trusted RSVP neighbors.
	Example:	seconds
	<pre>RP/0/0/CPU0:router(config-rsvp-auth)# life-time 2000</pre>	Length of time (in seconds) that RSVP maintains idle security associations with other trusted RSVP neighbors. Range is from 30 to 86400. The default value is 1800.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		 No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Global, Interface, and Neighbor Authentication Modes, on page 80 RSVP Authentication Global Configuration Mode: Example, on page 112

Configuring the Window Size for RSVP Authentication in Global Configuration Mode

Perform this task to configure the window size for RSVP authentication in global configuration mode.

SUMMARY STEPS

- 1. configure
- 2. rsvp authentication
- 3. window-size N
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp authentication	Enters RSVP authentication configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp authentication RP/0/0/CPU0:router(config-rsvp-auth)#</pre>	
Step 3	window-size N	Specifies the maximum number of RSVP authenticated messages that can be received out-of-sequence.
	Example:	N
	<pre>RP/0/0/CPU0:router(config-rsvp-auth)# window-size 33</pre>	Size of the window to restrict out-of-sequence messages. The range is from 1 to 64. The default value is 1, in which case all out-of-sequence messages are dropped.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Guidelines for Window-Size and Out-of-Sequence Messages, on page 83 RSVP Authentication by Using All the Modes: Example, on page 113 RSVP Authentication for an Interface: Example, on page 113

Configuring an Interface for RSVP Authentication

These tasks describe how to configure an interface for RSVP authentication:

Specifying the RSVP Authentication Keychain in Interface Mode

Perform this task to specify RSVP authentication keychain in interface mode.

You must configure a keychain first (see *Cisco IOS XR System Security Configuration Guide for the Cisco XR 12000 Series Router*).

SUMMARY STEPS

- 1. configure
- 2. rsvp interface type interface-path-id
- 3. authentication
- 4. key-source key-chain key-chain-name
- 5. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp interface type interface-path-id	Enters RSVP interface configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp interface POS 0/2/1/0 RP/0/0/CPU0:router(config-rsvp-if)#</pre>	
Step 3	authentication	Enters RSVP authentication configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# authentication RP/0/0/CPU0:router(config-rsvp-if-auth)#</pre>	

	Command or Action	Purpose
Step 4	key-source key-chain key-chain-name	Specifies the source of the key information to authenticate RSVP signaling messages.
	Example:	key-chain-name
	<pre>RP/0/0/CPU0:router(config-rsvp-if-auth)# key-source key-chain mpls-keys</pre>	Name of the keychain. The maximum number of characters is 32.
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Global, Interface, and Neighbor Authentication Modes, on page 80 RSVP Authentication by Using All the Modes: Example, on page 113

Configuring a Lifetime for an Interface for RSVP Authentication

Perform this task to configure a lifetime for the security association for an interface.

SUMMARY STEPS

- 1. configure
- 2. rsvp interface type interface-path-id
- 3. authentication
- 4. life-time seconds
- 5. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp interface type interface-path-id	Enters RSVP interface configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp interface POS 0/2/1/0 RP/0/0/CPU0:router(config-rsvp-if)#</pre>	
Step 3	authentication	Enters RSVP authentication configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# authentication RP/0/0/CPU0:router(config-rsvp-if-auth)#</pre>	
Step 4	life-time seconds	Controls how long RSVP maintains security associations with other trusted RSVP neighbors.
	Example:	seconds
	<pre>RP/0/0/CPU0:router(config-rsvp-if-auth)# life-time 2000</pre>	Length of time (in seconds) that RSVP maintains idle security associations with other trusted RSVP neighbors. Range is from 30 to 86400. The default value is 1800.
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

RSVP Authentication Design, on page 79

RSVP Authentication by Using All the Modes: Example, on page 113

Configuring the Window Size for an Interface for RSVP Authentication

Perform this task to configure the window size for an interface for RSVP authentication to check the validity of the sequence number received.

SUMMARY STEPS

- 1. configure
- 2. rsvp interface type interface-path-d
- 3. authentication
- 4. window-size N
- 5. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp interface type interface-path-d	Enters RSVP interface configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp interface POS 0/2/1/0 RP/0/0/CPU0:router(config-rsvp-if)#</pre>	
Step 3	authentication	Enters RSVP interface authentication configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# authentication RP/0/0/CPU0:router(config-rsvp-if-auth)#</pre>	
Step 4	window-size N	Specifies the maximum number of RSVP authenticated messages that can be received out-of-sequence.
	Example:	N
	<pre>RP/0/0/CPU0:router(config-rsvp-if-auth)# window-size 33</pre>	Size of the window to restrict out-of-sequence messages. The range is from 1 to 64. The default value is 1, in which case all out-of-sequence messages are dropped.

Command or Action	Purpose
Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Guidelines for Window-Size and Out-of-Sequence Messages, on page 83 RSVP Authentication by Using All the Modes: Example, on page 113 RSVP Authentication for an Interface: Example, on page 113

Configuring RSVP Neighbor Authentication

These tasks describe how to configure the RSVP neighbor authentication:

- Specifying the Keychain for RSVP Neighbor Authentication, on page 103
- Configuring a Lifetime for RSVP Neighbor Authentication, on page 105
- Configuring the Window Size for RSVP Neighbor Authentication, on page 106

Specifying the Keychain for RSVP Neighbor Authentication

Perform this task to specify the keychain RSVP neighbor authentication.

You must configure a keychain first (see *Cisco IOS XR System Security Configuration Guide for the Cisco XR 12000 Series Router*).

SUMMARY STEPS

- 1. configure
- 2. rsvp neighbor IP-address authentication
- 3. key-source key-chain key-chain-name
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp neighbor <i>IP-address</i> authentication Example:	Enters neighbor authentication configuration mode. Use the rsvp neighbor command to activate RSVP cryptographic authentication for a neighbor.
		IP address
	RP/0/0/CPU0:router(config) # rsvp neighbor 1.1.1.1 authentication	
	RP/0/0/CPU0:router(config-rsvp-nbor-auth)#	IP address of the neighbor. A single IP address for a specific neighbor; usually one of the neighbor's physical or logical (loopback) interfaces.
		authentication
		Configures the RSVP authentication parameters.
Step 3	key-source key-chain key-chain-name	Specifies the source of the key information to authenticate RSVP signaling messages.
	Example:	key-chain-name
	<pre>RP/0/0/CPU0:router(config-rsvp-nbor-auth)# key-source key-chain mpls-keys</pre>	Name of the keychain. The maximum number of characters is 32.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Key-source Key-chain, on page 83 Security Association, on page 81 RSVP Neighbor Authentication: Example, on page 113

Configuring a Lifetime for RSVP Neighbor Authentication

Perform this task to configure a lifetime for security association for RSVP neighbor authentication mode.

SUMMARY STEPS

- 1. configure
- 2. rsvp neighbor IP-address authentication
- **3**. **life-time** *seconds*
- **4.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp neighbor <i>IP-address</i> authentication	Enters RSVP neighbor authentication configuration mode. Use the rsvp neighbor command to specify a neighbor under RSVP.
	Example:	IP address
	<pre>RP/0/0/CPU0:router(config)# rsvp neighbor 1.1.1.1 authentication RP/0/0/CPU0:router(config-rsvp-nbor-auth)#</pre>	IP address of the neighbor. A single IP address for a specific neighbor; usually one of the neighbor's physical or logical (loopback) interfaces.
		authentication
		Configures the RSVP authentication parameters.
Step 3	life-time seconds	Controls how long RSVP maintains security associations with other trusted RSVP neighbors. The argument specifies the
	Example:	seconds
	<pre>RP/0/0/CPU0:router(config-rsvp-nbor-auth)# life-time 2000</pre>	Length of time (in seconds) that RSVP maintains idle security associations with other trusted RSVP neighbors. Range is from 30 to 86400. The default value is 1800.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.

Command or Action	Purpose
	• Cancel—Remains in the configuration session, without committing the configuration changes.

Security Association, on page 81 RSVP Authentication Global Configuration Mode: Example, on page 112

Configuring the Window Size for RSVP Neighbor Authentication

Perform this task to configure the RSVP neighbor authentication window size to check the validity of the sequence number received.

SUMMARY STEPS

- 1. configure
- 2. rsvp neighbor IP address authentication
- **3.** window-size N
- 4. Use the commit or end command.

Command or Action	Purpose
configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
rsvp neighbor IP address authentication	Enters RSVP neighbor authentication configuration mode. Use the rsvp neighbor command to specify a neighbor under RSVP.
Example:	IP address
<pre>RP/0/0/CPU0:router(config) # rsvp neighbor 1.1.1.1 authentication RP/0/0/CPU0:router(config-rsvp-nbor-auth)#</pre>	IP address of the neighbor. A single IP address for a specific neighbor; usually one of the neighbor's physical or logical (loopback) interfaces.
	authentication
	configure Example: RP/0/0/CPU0:router# configure rsvp neighbor IP address authentication Example: RP/0/0/CPU0:router(config)# rsvp neighbor 1.1.1.1 authentication

	Command or Action	Purpose
Step 3	window-size N	Specifies the maximum number of RSVP authenticated messages that is received out-of-sequence.
	Example:	N
	<pre>RP/0/0/CPU0:router(config-rsvp-nbor-auth)# window-size 33</pre>	Size of the window to restrict out-of-sequence messages. The range is from 1 to 64. The default value is 1, in which case all out-of-sequence messages are dropped.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Guidelines for Window-Size and Out-of-Sequence Messages, on page 83 RSVP Authentication by Using All the Modes: Example, on page 113 RSVP Authentication for an Interface: Example, on page 113

Verifying the Details of the RSVP Authentication

To display the security associations that RSVP has established with other RSVP neighbors, use the **show rsvp** authentication command.

Eliminating Security Associations for RSVP Authentication

To eliminate RSVP authentication SA's, use the **clear rsvp authentication** command. To eliminate RSVP counters for each SA, use the **clear rsvp counters authentication** command.

Configuration Examples for RSVP

Sample RSVP configurations are provided for some of the supported RSVP features.

• Bandwidth Configuration (Prestandard): Example, on page 108

- Bandwidth Configuration (MAM): Example, on page 108
- Bandwidth Configuration (RDM): Example, on page 108
- Refresh Reduction and Reliable Messaging Configuration: Examples, on page 109
- Configure Graceful Restart: Examples, on page 110
- Configure ACL-based Prefix Filtering: Example, on page 111
- Set DSCP for RSVP Packets: Example, on page 111
- Enable RSVP Traps: Example, on page 111

Bandwidth Configuration (Prestandard): Example

The example shows the configuration of bandwidth on an interface using prestandard DS-TE mode. The example configures an interface for a reservable bandwidth of 7500, specifies the maximum bandwidth for one flow to be 1000 and adds a sub-pool bandwidth of 2000.

```
rsvp interface pos 0/3/0/0
bandwidth 7500 1000 sub-pool 2000
```

Bandwidth Configuration (MAM): Example

The example shows the configuration of bandwidth on an interface using MAM. The example shows how to limit the total of all RSVP reservations on POS interface 0/3/0/0 to 7500 kbps, and allows each single flow to reserve no more than 1000 kbps.

```
rsvp interface pos 0/3/0/0
bandwidth mam 7500 1000
```

Related Topics

Confirming DiffServ-TE Bandwidth, on page 84 Differentiated Services Traffic Engineering, on page 135

Bandwidth Configuration (RDM): Example

The example shows the configuration of bandwidth on an interface using RDM. The example shows how to limit the total of all RSVP reservations on POS interface 0/3/0/0 to 7500 kbps, and allows each single flow to reserve no more than 1000 kbps.

```
rsvp interface pos 0/3/0/0
bandwidth rdm 7500 1000
```

Related Topics

Confirming DiffServ-TE Bandwidth, on page 84 Differentiated Services Traffic Engineering, on page 135

Refresh Reduction and Reliable Messaging Configuration: Examples

Refresh reduction feature as defined by RFC 2961 is supported and enabled by default. The examples illustrate the configuration for the refresh reduction feature. Refresh reduction is used with a neighbor only if the neighbor supports it also.

Refresh Interval and the Number of Refresh Messages Configuration: Example

The example shows how to configure the refresh interval to 30 seconds on POS 0/3/0/0 and how to change the number of refresh messages the node can miss before cleaning up the state from the default value of 4 to 6.

```
rsvp interface pos 0/3/0/0
signalling refresh interval 30
signalling refresh missed 6
```

Retransmit Time Used in Reliable Messaging Configuration: Example

The example shows how to set the retransmit timer to 2 seconds. To prevent unnecessary retransmits, the retransmit time value configured on the interface must be greater than the ACK hold time on its peer.

```
rsvp interface pos 0/4/0/1
signalling refresh reduction reliable retransmit-time 2000
```

Acknowledgement Times Configuration: Example

The example shows how to change the acknowledge hold time from the default value of 400 ms, to delay or speed up sending of ACKs, and the maximum acknowledgment message size from default size of 4096 bytes. The example shows how to change the acknowledge hold time from the default value of 400 ms and how to delay or speed up sending of ACKs. The maximum acknowledgment message default size is from 4096 bytes.

```
rsvp interface pos 0/4/0/1
signalling refresh reduction reliable ack-hold-time 1000
rsvp interface pos 0/4/0/1
signalling refresh reduction reliable ack-max-size 1000
```


Ensure retransmit time on the peers' interface is at least twice the amount of the ACK hold time to prevent unnecessary retransmissions.

Summary Refresh Message Size Configuration: Example

The example shows how to set the summary refresh message maximum size to 1500 bytes.

```
rsvp interface pos 0/4/0/1
signalling refresh reduction summary max-size 1500
```

Disable Refresh Reduction: Example

If the peer node does not support refresh reduction, or for any other reason you want to disable refresh reduction on an interface, the example shows how to disable refresh reduction on that interface.

```
rsvp interface pos 0/4/0/1
signalling refresh reduction disable
```

Configure Graceful Restart: Examples

RSVP graceful restart is configured globally or per interface (as are refresh-related parameters). These examples show how to enable graceful restart, set the restart time, and change the hello message interval.

Enable Graceful Restart: Example

The example shows how to enable the RSVP graceful restart by default. If disabled, enable it with the following command.

rsvp signalling graceful-restart

Related Topics

Enabling Graceful Restart, on page 86 Graceful Restart: Standard and Interface-Based, on page 76

Enable Interface-Based Graceful Restart: Example

The example shows how to enable the RSVP graceful restart feature on an interface.

```
RP/0/0/CPU0:router#configure
RP/0/0/CPU0:router(config-rsvp)#interface bundle-ether 17
RP/0/0/CPU0:router(config-rsvp-if)#signalling hello graceful-restart ?
interface-based Configure Interface-based Hello
RP/0/0/CPU0:router(config-rsvp-if)#signalling hello graceful-restart interface-based
RP/0/0/CPU0:router(config-rsvp-if)#
```

Related Topics

Enabling Graceful Restart, on page 86 Graceful Restart: Standard and Interface-Based, on page 76

Change the Restart-Time: Example

The example shows how to change the restart time that is advertised in hello messages sent to neighbor nodes.

rsvp signalling graceful-restart restart-time 200

Change the Hello Interval: Example

The example shows how to change the interval at which RSVP graceful restart hello messages are sent per neighbor, and change the number of hellos missed before the neighbor is declared down.

```
rsvp signalling hello graceful-restart refresh interval 4000 rsvp signalling hello graceful-restart refresh misses 4\,
```

Configure ACL-based Prefix Filtering: Example

The example shows when RSVP receives a Router Alert (RA) packet from source address 1.1.1.1 and 1.1.1.1 is not a local address. The packet is forwarded with IP TTL decremented. Packets destined to 2.2.2.2 are dropped. All other RA packets are processed as normal RSVP packets.

```
show run ipv4 access-list
ipv4 access-list rsvpacl
10 permit ip host 1.1.1.1 any
20 deny ip any host 2.2.2.2
!
show run rsvp
rsvp
signalling prefix-filtering access-list rsvpacl
!
```

Related Topics

```
Configuring ACLs for Prefix Filtering, on page 87
ACL-based Prefix Filtering, on page 78
```

Set DSCP for RSVP Packets: Example

The configuration example sets the Differentiated Services Code Point (DSCP) field in the IP header of RSVP packets.

```
rsvp interface pos0/2/0/1
signalling dscp 20
```

Related Topics

Configuring RSVP Packet Dropping, on page 89 Overview of RSVP for MPLS-TE and MPLS O-UNI, on page 74

Enable RSVP Traps: Example

The example enables the router to send all RSVP traps:

```
configure
snmp-server traps rsvp all
```

The example enables the router to send RSVP LostFlow traps:

configure snmp-server traps rsvp lost-flow The example enables the router to send RSVP RSVP NewFlow traps:

configure
snmp-server traps rsvp new-flow

Related Topics

Enabling RSVP Traps, on page 93

```
RSVP MIB, on page 79
```

Configuration Examples for RSVP Authentication

These configuration examples are used for RSVP authentication:

- RSVP Authentication Global Configuration Mode: Example, on page 112
- RSVP Authentication for an Interface: Example, on page 113
- RSVP Neighbor Authentication: Example, on page 113
- RSVP Authentication by Using All the Modes: Example, on page 113

RSVP Authentication Global Configuration Mode: Example

The configuration example enables authentication of all RSVP messages and increases the default lifetime of the SAs.

```
rsvp
authentication
key-source key-chain default_keys
life-time 3600
!
!
```


Note

The specified keychain (default_keys) must exist and contain valid keys, or signaling will fail.

Related Topics

Enabling RSVP Authentication Using the Keychain in Global Configuration Mode, on page 95 Key-source Key-chain, on page 83 Configuring a Lifetime for RSVP Authentication in Global Configuration Mode, on page 96 Global, Interface, and Neighbor Authentication Modes, on page 80 Configuring a Lifetime for RSVP Neighbor Authentication, on page 105 Security Association, on page 81

RSVP Authentication for an Interface: Example

The configuration example enables authentication of all RSVP messages that are being sent or received on one interface only, and sets the window-size of the SAs.

```
rsvp
interface GigabitEthernet0/6/0/0
authentication
window-size 64
!
!
```


Because the key-source keychain configuration is not specified, the global authentication mode keychain is used and inherited. The global keychain must exist and contain valid keys or signaling fails.

Related Topics

Configuring the Window Size for RSVP Authentication in Global Configuration Mode, on page 97 Configuring the Window Size for an Interface for RSVP Authentication, on page 102 Configuring the Window Size for RSVP Neighbor Authentication, on page 106 Guidelines for Window-Size and Out-of-Sequence Messages, on page 83

RSVP Neighbor Authentication: Example

The configuration example enables authentication of all RSVP messages that are being sent to and received from only a particular IP address.

```
rsvp
neighbor 10.0.0.1
authentication
key-source key-chain nbr_keys
!
!
!
```

Related Topics

Specifying the Keychain for RSVP Neighbor Authentication, on page 103 Key-source Key-chain, on page 83 Security Association, on page 81

RSVP Authentication by Using All the Modes: Example

The configuration example shows how to perform the following functions:

- Authenticates all RSVP messages.
- Authenticates the RSVP messages to or from 10.0.0.1 by setting the keychain for the **key-source key-chain** command to nbr_keys, SA lifetime is set to 3600, and the default window-size is set to 1.

Authenticates the RSVP messages not to or from 10.0.0.1 by setting the keychain for the key-source key-chain command to default_keys, SA lifetime is set to 3600, and the window-size is set 64 when using GigabitEthernet0/6/0/0; otherwise, the default value of 1 is used.

```
rsvp
 interface GigabitEthernet0/6/0/0
  authentication
   window-size 64
  !
 1
neighbor 10.0.0.1
 authentication
  key-source key-chain nbr keys
  !
 I.
authentication
 key-source key-chain default keys
 life-time 3600
 !
1
```

```
Note
```

If a keychain does not exist or contain valid keys, this is considered a configuration error because signaling fails. However, this can be intended to prevent signaling. For example, when using the above configuration, if the nbr_keys does not contain valid keys, all signaling with 10.0.0.1 fails.

Related Topics

Configuring the Window Size for RSVP Authentication in Global Configuration Mode, on page 97 Configuring the Window Size for an Interface for RSVP Authentication, on page 102 Configuring the Window Size for RSVP Neighbor Authentication, on page 106 Guidelines for Window-Size and Out-of-Sequence Messages, on page 83 Specifying the RSVP Authentication Keychain in Interface Mode, on page 99 Global, Interface, and Neighbor Authentication Modes, on page 80 Configuring a Lifetime for an Interface for RSVP Authentication, on page 100 RSVP Authentication Design, on page 79

Additional References

For additional information related to implementing GMPLS UNI, refer to the following references:

Related Topic	Document Title
GMPLS UNI commands	<i>GMPLS UNI Commands</i> module in <i>Cisco IOS XR</i> <i>MPLS Command Reference for the Cisco XR 12000</i> <i>Series Router</i>
MPLS Traffic Engineering commands	MPLS Traffic Engineering commands module in Cisco IOS XR MPLS Command Reference for the Cisco XR 12000 Series Router

Related Documents

Related Topic	Document Title
RSVP commands	<i>RSVP commands</i> module in <i>Cisco IOS XR MPLS</i> <i>Command Reference for the Cisco XR 12000 Series</i> <i>Router</i>
Getting started material	Cisco IOS XR Getting Started Guide for the Cisco XR 12000 Series Router
Information about user groups and task IDs	Configuring AAA Services module in Cisco IOS XR System Security Configuration Guide for the Cisco XR 12000 Series Router

Standards

Standard	Title
OIF UNI 1.0	User Network Interface (UNI) 1.0 Signaling Specification

MIBs

MIBs	MIBs Link
	To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/ mibs.shtml

RFCs

RFCs	Title
RFC 3471	Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description
RFC 3473	Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions
RFC 4208	Generalized Multiprotocol Label Switching (GMPLS) User-Network Interface (UNI): Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Support for the Overlay Model

RFCs	Title
RFC 4872	RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery
RFC 4874	Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)
RFC 6205	Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	http://www.cisco.com/techsupport

Implementing MPLS Forwarding

All Multiprotocol Label Switching (MPLS) features require a core set of MPLS label management and forwarding services; the MPLS Forwarding Infrastructure (MFI) supplies these services.

Feature History for Implementing MPLS-TE

Release	Modification
Release 3.2	This feature was introduced.
Release 3.9.0	The MPLS IP Time-to-Live Propagation feature was added.

- Prerequisites for Implementing Cisco MPLS Forwarding, page 117
- Restrictions for Implementing Cisco MPLS Forwarding, page 118
- Information About Implementing MPLS Forwarding, page 118
- How to Implement MPLS Forwarding, page 120
- Additional References, page 124

Prerequisites for Implementing Cisco MPLS Forwarding

These prerequisites are required to implement MPLS Forwarding:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- Router that runs Cisco IOS XR software.
- Installed composite mini-image and the MPLS package, or a full composite image.

Restrictions for Implementing Cisco MPLS Forwarding

- Label switching on a Cisco router requires that Cisco Express Forwarding (CEF) be enabled.
- CEF is mandatory for Cisco IOS XR software and it does not need to be enabled explicitly.

Information About Implementing MPLS Forwarding

To implement MPLS Forwarding, you should understand these concepts:

MPLS Forwarding Overview

MPLS combines the performance and capabilities of Layer 2 (data link layer) switching with the proven scalability of Layer 3 (network layer) routing. MPLS enables service providers to meet the challenges of growth in network utilization while providing the opportunity to differentiate services without sacrificing the existing network infrastructure. The MPLS architecture is flexible and can be employed in any combination of Layer 2 technologies. MPLS support is offered for all Layer 3 protocols, and scaling is possible well beyond that typically offered in today's networks.

Based on routing information that is stored in the VRF IP routing table and VRF CEF table, packets are forwarded to their destination using MPLS.

A PE router binds a label to each customer prefix learned from a CE router and includes the label in the network reachability information for the prefix that it advertises to other PE routers. When a PE router forwards a packet received from a CE router across the provider network, it labels the packet with the label learned from the destination PE router. When the destination PE router receives the labeled packet it pops the label and uses it to direct the packet to the correct CE router. Label forwarding across the provider backbone, is based on either dynamic label switching or traffic engineered paths. A customer data packet carries two levels of labels when traversing the backbone:

- Top label directs the packet to the correct PE router
- · Second label indicates how that PE router should forward the packet to the CE router

Related Topics

Configuring the Size of the Local Label, on page 122

Label Switching Functions

In conventional Layer 3 forwarding mechanisms, as a packet traverses the network, each router extracts all the information relevant to forwarding the packet from the Layer 3 header. This information is then used as an index for a routing table lookup to determine the next hop for the packet.

In the most common case, the only relevant field in the header is the destination address field, but in some cases, other header fields might also be relevant. As a result, the header analysis must be done independently at each router through which the packet passes. In addition, a complicated table lookup must also be done at each router.

In label switching, the analysis of the Layer 3 header is done only once. The Layer 3 header is then mapped into a fixed-length, unstructured value called a *label*.

Many different headers can map to the same label, as long as those headers always result in the same choice of next hop. In effect, a label represents a forwarding equivalence class—that is, a set of packets which, however different they may be, are indistinguishable by the forwarding function.

The initial choice of a label need not be based exclusively on the contents of the Layer 3 packet header; for example, forwarding decisions at subsequent hops can also be based on routing policy.

Once a label is assigned, a short label header is added at the front of the Layer 3 packet. This header is carried across the network as part of the packet. At subsequent hops through each MPLS router in the network, labels are swapped and forwarding decisions are made by means of MPLS forwarding table lookup for the label carried in the packet header. Hence, the packet header does not need to be reevaluated during packet transit through the network. Because the label is of fixed length and unstructured, the MPLS forwarding table lookup process is both straightforward and fast.

Distribution of Label Bindings

Each label switching router (LSR) in the network makes an independent, local decision as to which label value to use to represent a forwarding equivalence class. This association is known as a label binding.

Note

The distribution of label bindings cannot be done statically for the Layer 2 VPN pseudowire.

Each LSR informs its neighbors of the label bindings it has made. This awareness of label bindings by neighboring routers is facilitated by these protocols:

Label Distribution Protocol (LDP)

Supports MPLS forwarding along normally routed paths.

Resource Reservation Protocol (RSVP)

Supports MPLS traffic engineering.

Border Gateway Protocol (BGP)

Supports MPLS virtual private networks (VPNs).

When a labeled packet is sent from LSR A to the neighboring LSR B, the label value carried by the IP packet is the label value that LSR B assigned to represent the forwarding equivalence class of the packet. Thus, the label value changes as the IP packet traverses the network.

MFI Control-Plane Services

The MFI control-plane provides services to MPLS applications, such as Label Distribution Protocol (LDP) and Traffic Engineering (TE), that include enabling and disabling MPLS on an interface, local label allocation, MPLS rewrite setup (including backup links), management of MPLS label tables, and the interaction with other forwarding paths (IP Version 4 [IPv4] for example) to set up imposition and disposition.

MFI Data-Plane Services

The MFI data-plane provides a software implementation of MPLS forwarding in all of these forms:

- Imposition
- Disposition
- · Label swapping

Time-to-Live Propagation in Hierarchical MPLS

Cisco IOS XR software provides the flexibility to enable or disable the time-to-live (TTL) propagation for locally generated packets that are independent of packets forwarded form a customer edge (CE) device.

The IP header contains a field of 8 bits that signifies the time that a packet still has before its life ends and is dropped. When an IP packet is sent, its TTL is usually 255 and is then decremented by 1 at each hop. When the TTL field is decremented down to zero, the datagram is discarded. In such a case, the router that dropped the IP packet for which the TTL reached 0 sends an Internet Control Message Protocol (ICMP) message type 11 and code 0 (time exceeded) to the originator of the IP packet.

Related Topics

Configuring the Time-to-Live Propagation in Hierarchical MPLS, on page 121

MPLS Maximum Transmission Unit

MPLS maximum transmission unit (MTU) indicates that the maximum size of the IP packet can still be sent on a data link, without fragmenting the packet. In addition, data links in MPLS networks have a specific MTU, but for labeled packets. All IPv4 packets have one or more labels. This does imply that the labeled packets are slightly bigger than the IP packets, because for every label, four bytes are added to the packet. So, if n is the number of labels, n * 4 bytes are added to the size of the packet when the packet is labeled. The MPLS MTU parameter pertains to labeled packets.

Related Topics

Configuring the Maximum Transmission Unit Size on an MPLS Interface, on page 123

MPLS OAM Support for BGP 3107

The MPLS OAM Support for BGP 3107 feature provides support for ping, traceroute and treetrace (traceroute multipath) operations for LSPs signaled via BGP for the IPv4 unicast prefix FECs in the default VRF, according to the *RFC 3107 - Carrying Label Information in BGP-4*. This feature adds support for MPLS OAM operations in the seamless MPLS architecture deployments, i.e., combinations of BGP and LDP signaled LSPs.

How to Implement MPLS Forwarding

These topics explain how to configure a router for MPLS forwarding.

Configuring the Time-to-Live Propagation in Hierarchical MPLS

Perform this task to enable or disable the time-to-live (TTL) propagation for locally generated packets that are independent of packets forwarded form a customer edge (CE) device.

SUMMARY STEPS

- 1. configure
- 2. mpls ip-ttl-propagate disable [forwarded | local]
- **3.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ip-ttl-propagate disable [forwarded local]	Stops the propagation of IP TTL to and from the MPLS header. The example shows how to disable IP TTL propagation for forwarded MPLS packets.
	Example:	forwarded
RP/0/0/CPU0:router(config)# mpls	RP/0/0/CPU0:router(config) # mpls ip-ttl-propagate disable forwarded	Prevents the traceroute command from showing the hops for the forwarded packets.
		local
		Prevents the traceroute command from showing the hops only for local packets.
Step 3	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Time-to-Live Propagation in Hierarchical MPLS, on page 120

Configuring the Size of the Local Label

Perform this task to configure the dynamic range of local labels that are available on packet interfaces.

SUMMARY STEPS

- 1. configure
- 2. mpls label range table table-id {minimum maximum}
- **3.** Use the **commit** or **end** command.
- 4. show mpls label range

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls label range table <i>table-id</i> { <i>minimum maximum</i> }	Configures the size of the local label space. The example shows how to configure the size of the local label space using a minimum of 16200 and a maximum of 120000.
	Example:	
	<pre>RP/0/0/CPU0:router(config)#mpls label range 16200 120000</pre>	
Step 3	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 4	show mpls label range	Displays the range of local labels available for use on packet interfaces.
	Example:	
	RP/0/0/CPU0:router# show mpls label range	

MPLS Forwarding Overview, on page 118

Configuring the Maximum Transmission Unit Size on an MPLS Interface

Perform this task to configure the maximum packet size or maximum transmission unit (MTU) size on an MPLS interface.

SUMMARY STEPS

- 1. configure
- 2. interface type interface-path-id
- **3.** mpls mtu bytes
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface type interface-path-id	Configures the POS interface in location 0/2/0/0.
	Example:	
	<pre>RP/0/0/CPU0:router(config) #interface POS 0/2/0/0 RP/0/0/CPU0:router(config-if) #</pre>	
Step 3	mpls mtu bytes	Configures the MTU size of 70 bytes on an MPLS interface.
	Example:	
	RP/0/0/CPU0:router(config-if)# mpls mtu 70	
Step 4	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.

MPLS Maximum Transmission Unit, on page 120

Additional References

For additional information related to implementing MPLS Forwarding, refer to the following references:

Related Documents

Related Topic	Document Title
MPLS Forwarding commands	MPLS Forwarding Commands on Cisco IOS XR Software module in Cisco IOS XR MPLS Command Reference for the Cisco XR 12000 Series Router
Getting started material	Cisco IOS XR Getting Started Guide for the Cisco XR 12000 Series Router
Information about user groups and task IDs	Configuring AAA Services on Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco XR 12000 Series Router

Standards

Standards	Title
Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	

M	IR	s

MIBs	MIBs Link
	To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/ sw-center/netmgmt/cmtk/mibs.shtml

RFCs

RFCs	Title
RFC 3031	Multiprotocol Label Switching Architecture
RFC 3443	Time to Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks
RFC 4105	Requirements for Inter-Area MPLS Traffic Engineering

Implementing MPLS Traffic Engineering

Multiprotocol Label Switching (MPLS) is a standards-based solution driven by the Internet Engineering Task Force (IETF) that was devised to convert the Internet and IP backbones from best-effort networks into business-class transport mediums.

MPLS, with its label switching capabilities, eliminates the need for an IP route look-up and creates a virtual circuit (VC) switching function, allowing enterprises the same performance on their IP-based network services as with those delivered over traditional networks such as Frame Relay or Asynchronous Transfer Mode (ATM).

MPLS traffic engineering (MPLS-TE) software enables an MPLS backbone to replicate and expand upon the TE capabilities of Layer 2 ATM and Frame Relay networks. MPLS is an integration of Layer 2 and Layer 3 technologies. By making traditional Layer 2 features available to Layer 3, MPLS enables traffic engineering. Thus, you can offer in a one-tier network what now can be achieved only by overlaying a Layer 3 network on a Layer 2 network.

The LMP and GMPLS-NNI features are not supported on PRP hardware.

Release	Modification
Release 3.2	This feature was introduced.
Release 3.3.0	Support was added for Generalized MPLS.
Release 3.4.0	Support was added for Flexible Name-based Tunnel Constraints, Interarea MPLS-TE, MPLS-TE Forwarding Adjacency, GMPLS Protection and Restoration, and GMPLS Path Protection.
Release 3.5.0	Support was added for Unequal Load Balancing, IS-IS IP Fast Reroute Loop-free Alternative routing functionality, and Path Computation Element (PCE).

Feature History for Implementing MPLS-TE

Modification
Support was added for the following features:
• PBTS for L2VPN and IPv6 traffic.
• Ignore Intermediate System-to-Intermediate System (IS-IS) overload bit setting in MPLS-TE.
Support was added for the following features:
MPLS-TE Automatic Bandwidth.
• Policy Based Tunnel Selection (PBTS) IPv6 that includes the Interior Gateway Protocol (IGP) default path.
PBTS default class enhancement feature was added.
Support was added for the following features:
Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE
The Auto-Tunnel Mesh feature was added.
Support was added for the following features:
Soft-Preemption
Path Option Attributes
The Auto-Tunnel Attribute-set feature was added for auto-backup tunnels.
Support was added for the following features:
MPLS TE Extended Admin Groups
• VRF Redirection to MPLS TE Tunnels
Stateful Path Computation Element
MPLS TE Usability Enhancements
MPLS TE SRLG Scale Enhancements

Release	Modification	
Release 5.1.2	Support was added for the following features:	
	• MPLS TE Path Cost Limit	
	Soft-preemption over FRR Backup Tunnels	
	MPLS TE Auto-tunnel Primary One-hop	
	Inter-area Traffic Engineering with Dynamic ABR Discovery	

- Prerequisites for Implementing Cisco MPLS Traffic Engineering, page 129
- Information About Implementing MPLS Traffic Engineering, page 129
- How to Implement Traffic Engineering, page 169
- Configuration Examples for Cisco MPLS-TE, page 285
- Additional References, page 297

Prerequisites for Implementing Cisco MPLS Traffic Engineering

These prerequisites are required to implement MPLS TE:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- Router that runs Cisco IOS XR software .
- Installed composite mini-image and the MPLS package, or a full composite image.
- IGP activated.
- Enable LDP globally by using the mpls ldp command to allocate local labels even in RSVP (MPLS TE) only core. You do not have to specify any interface if the core is LDP free.

Information About Implementing MPLS Traffic Engineering

To implement MPLS-TE, you should understand these concepts:

Overview of MPLS Traffic Engineering

MPLS-TE software enables an MPLS backbone to replicate and expand upon the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks. MPLS is an integration of Layer 2 and Layer 3 technologies. By making traditional Layer 2 features available to Layer 3, MPLS enables traffic engineering. Thus, you can offer in a one-tier network what now can be achieved only by overlaying a Layer 3 network on a Layer 2 network.

MPLS-TE is essential for service provider and Internet service provider (ISP) backbones. Such backbones must support a high use of transmission capacity, and the networks must be very resilient so that they can withstand link or node failures. MPLS-TE provides an integrated approach to traffic engineering. With MPLS, traffic engineering capabilities are integrated into Layer 3, which optimizes the routing of IP traffic, given the constraints imposed by backbone capacity and topology.

Related Topics

Configuring Forwarding over the MPLS-TE Tunnel, on page 175

Benefits of MPLS Traffic Engineering

MPLS-TE enables ISPs to route network traffic to offer the best service to their users in terms of throughput and delay. By making the service provider more efficient, traffic engineering reduces the cost of the network.

Currently, some ISPs base their services on an overlay model. In the overlay model, transmission facilities are managed by Layer 2 switching. The routers see only a fully meshed virtual topology, making most destinations appear one hop away. If you use the explicit Layer 2 transit layer, you can precisely control how traffic uses available bandwidth. However, the overlay model has numerous disadvantages. MPLS-TE achieves the TE benefits of the overlay model without running a separate network and without a non-scalable, full mesh of router interconnects.

How MPLS-TE Works

MPLS-TE automatically establishes and maintains label switched paths (LSPs) across the backbone by using RSVP. The path that an LSP uses is determined by the LSP resource requirements and network resources, such as bandwidth. Available resources are flooded by means of extensions to a link-state-based Interior Gateway Protocol (IGP).

MPLS-TE tunnels are calculated at the LSP headend router, based on a fit between the required and available resources (constraint-based routing). The IGP automatically routes the traffic to these LSPs.

Typically, a packet crossing the MPLS-TE backbone travels on a single LSP that connects the ingress point to the egress point. MPLS-TE is built on these mechanisms:

Tunnel interfaces

From a Layer 2 standpoint, an MPLS tunnel interface represents the headend of an LSP. It is configured with a set of resource requirements, such as bandwidth and media requirements, and priority. From a Layer 3 standpoint, an LSP tunnel interface is the headend of a unidirectional virtual link to the tunnel destination.

MPLS-TE path calculation module

This calculation module operates at the LSP headend. The module determines a path to use for an LSP. The path calculation uses a link-state database containing flooded topology and resource information.

RSVP with TE extensions

RSVP operates at each LSP hop and is used to signal and maintain LSPs based on the calculated path.

MPLS-TE link management module

This module operates at each LSP hop, performs link call admission on the RSVP signaling messages, and performs bookkeeping on topology and resource information to be flooded.

Link-state IGP (Intermediate System-to-Intermediate System [IS-IS] or Open Shortest Path First [OSPF]—each with traffic engineering extensions)

These IGPs are used to globally flood topology and resource information from the link management module.

Enhancements to the shortest path first (SPF) calculation used by the link-state IGP (IS-IS or OSPF)

The IGP automatically routes traffic to the appropriate LSP tunnel, based on tunnel destination. Static routes can also be used to direct traffic to LSP tunnels.

Label switching forwarding

This forwarding mechanism provides routers with a Layer 2-like ability to direct traffic across multiple hops of the LSP established by RSVP signaling.

One approach to engineering a backbone is to define a mesh of tunnels from every ingress device to every egress device. The MPLS-TE path calculation and signaling modules determine the path taken by the LSPs for these tunnels, subject to resource availability and the dynamic state of the network.

The IGP (operating at an ingress device) determines which traffic should go to which egress device, and steers that traffic into the tunnel from ingress to egress. A flow from an ingress device to an egress device might be so large that it cannot fit over a single link, so it cannot be carried by a single tunnel. In this case, multiple tunnels between a given ingress and egress can be configured, and the flow is distributed using load sharing among the tunnels.

Related Topics

Building MPLS-TE Topology, on page 169 Creating an MPLS-TE Tunnel, on page 172 Build MPLS-TE Topology and Tunnels: Example, on page 285

MPLS Traffic Engineering

Multiprotocol Label Switching (MPLS) is an Internet Engineering Task Force (IETF)-specified framework that provides efficient designation, routing, forwarding, and switching of traffic flows through the network.

TE is the process of adjusting bandwidth allocations to ensure that enough bandwidth is available for high-priority traffic.

In MPLS TE, the upstream router creates a network tunnel for a particular traffic stream and sets the bandwidth available for that tunnel.

Backup AutoTunnels

The MPLS Traffic Engineering AutoTunnel Backup feature enables a router to dynamically build backup tunnels on the interfaces that are configured with MPLS TE tunnels. This feature enables a router to dynamically build backup tunnels when they are needed. This prevents you from having to build MPLS TE tunnels **statically**.

The MPLS Traffic Engineering (TE)—AutoTunnel Backup feature has these benefits:

• Backup tunnels are built automatically, eliminating the need for users to preconfigure each backup tunnel and then assign the backup tunnel to the protected interface.

• Protection is expanded—FRR does not protect IP traffic that is not using the TE tunnel or Label Distribution Protocol (LDP) labels that are not using the TE tunnel.

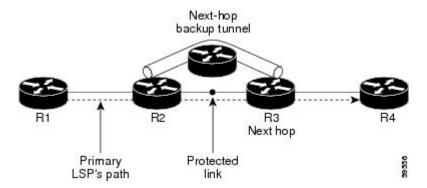
This feature protects against these failures:

- P2P Tunnel NHOP protection—Protects against link failure for the associated P2P protected tunnel
- P2P Tunnel NNHOP protection—Protects against node failure for the associated P2P protected tunnel
- **P2MP Tunnel NHOP protection**—Protects against link failure for the associated P2MP protected tunnel

Related Topics

Enabling an AutoTunnel Backup, on page 181

Removing an AutoTunnel Backup, on page 183

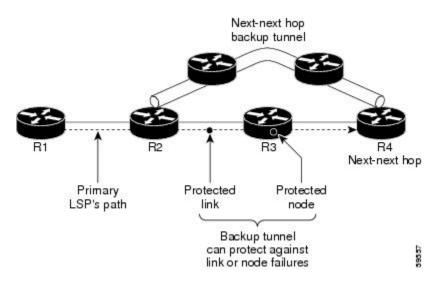

Establishing MPLS Backup AutoTunnels to Protect Fast Reroutable TE LSPs, on page 184 Establishing Next-Hop Tunnels with Link Protection, on page 185

Link Protection

The backup tunnels that bypass only a single link of the LSP path provide link protection. They protect LSPs, if a link along their path fails, by rerouting the LSP traffic to the next hop, thereby bypassing the failed link. These are referred to as NHOP backup tunnels because they terminate at the LSP's next hop beyond the point of failure.

This figure illustrates link protection.

Figure 10: Link Protection



Node Protection

The backup tunnels that bypass next-hop nodes along LSP paths are called NNHOP backup tunnels because they terminate at the node following the next-hop node of the LSPs, thereby bypassing the next-hop node. They protect LSPs by enabling the node upstream of a link or node failure to reroute the LSPs and their traffic around a node failure to the next-hop node. NNHOP backup tunnels also provide protection from link failures because they bypass the failed link and the node.

This figure illustrates node protection.

Figure 11: Node Protection

Backup AutoTunnel Assignment

At the head or mid points of a tunnel, the backup assignment finds an appropriate backup to protect a given primary tunnel for FRR protection.

The backup assignment logic is performed differently based on the type of backup configured on the output interface used by the primary tunnel. Configured backup types are:

- Static Backup
- AutoTunnel Backup
- No Backup (In this case no backup assignment is performed and the tunnels is unprotected.)

Note Static backup and Backup AutoTunnel cannot exist together on the same interface or link.

Note Node protection is always preferred over link protection in the Backup AutoTunnel assignment.

In order that the Backup AutoTunnel feature operates successfully, the following configuration must be applied at global configuration level:

Note

The Loopback 0 is used as router ID.

ipv4 unnumbered mpls traffic-eng Loopback 0

Explicit Paths

Explicit paths are used to create backup autotunnels as follows:

For NHOP Backup Autotunnels:

- NHOP excludes the protected link's local IP address.
- NHOP excludes the protected link's remote IP address.
- The explicit-path name is _autob_nhop_tunnelxxx, where xxx matches the dynamically created backup tunnel ID.

For NNHOP Backup Autotunnels:

- NNHOP excludes the protected link's local IP address.
- NNHOP excludes the protected link's remote IP address (link address on next hop).
- NNHOP excludes the NHOP router ID of the protected primary tunnel next hop.
- The explicit-path name is _autob_nnhop_tunnelxxx, where xxx matches the dynamically created backup tunnel ID.

Periodic Backup Promotion

The periodic backup promotion attempts to find and assign a better backup for primary tunnels that are already protected.

With AutoTunnel Backup, the only scenario where two backups can protect the same primary tunnel is when both an NHOP and NNHOP AutoTunnel Backups get created. The backup assignment takes place as soon as the NHOP and NNHOP backup tunnels come up. So, there is no need to wait for the periodic promotion.

Although there is no exception for AutoTunnel Backups, periodic backup promotion has no impact on primary tunnels protected by AutoTunnel Backup.

One exception is when a manual promotion is triggered by the user using the **mpls traffic-eng fast-reroute timers promotion** command, where backup assignment or promotion is triggered on all FRR protected primary tunnels--even unprotected ones. This may trigger the immediate creation of some AutoTunnel Backup, if the command is entered within the time window when a required AutoTunnel Backup has not been yet created.

You can configure the periodic promotion timer using the global configuration **mpls traffic-eng fast-reroute timers promotion** *sec* command. The range is 0 to 604800 seconds.

Note A value of 0 for the periodic promotion timer disables the periodic promotion.

Protocol-Based CLI

Cisco IOS XR software provides a protocol-based command line interface. The CLI provides commands that can be used with the multiple IGP protocols supported by MPLS-TE.

Differentiated Services Traffic Engineering

MPLS Differentiated Services (Diff-Serv) Aware Traffic Engineering (DS-TE) is an extension of the regular MPLS-TE feature. Regular traffic engineering does not provide bandwidth guarantees to different traffic classes. A single bandwidth constraint is used in regular TE that is shared by all traffic. To support various classes of service (CoS), users can configure multiple bandwidth constraints. These bandwidth constraints can be treated differently based on the requirement for the traffic class using that constraint.

MPLS DS-TE provides the ability to configure multiple bandwidth constraints on an MPLS-enabled interface. Available bandwidths from all configured bandwidth constraints are advertised using IGP. TE tunnel is configured with bandwidth value and class-type requirements. Path calculation and admission control take the bandwidth and class-type into consideration. RSVP is used to signal the TE tunnel with bandwidth and class-type requirements.

MPLS DS-TE is deployed with either Russian Doll Model (RDM) or Maximum Allocation Model (MAM) for bandwidth calculations.

Cisco IOS XR software supports two DS-TE modes: Prestandard and IETF.

Related Topics

Confirming DiffServ-TE Bandwidth, on page 84 Bandwidth Configuration (MAM): Example, on page 108 Bandwidth Configuration (RDM): Example, on page 108

Prestandard DS-TE Mode

Prestandard DS-TE uses the Cisco proprietary mechanisms for RSVP signaling and IGP advertisements. This DS-TE mode does not interoperate with third-party vendor equipment. Note that prestandard DS-TE is enabled only after configuring the sub-pool bandwidth values on MPLS-enabled interfaces.

Prestandard Diff-Serve TE mode supports a single bandwidth constraint model a Russian Doll Model (RDM) with two bandwidth pools: global-pool and sub-pool.

TE class map is not used with Prestandard DS-TE mode.

Related Topics

Configuring a Prestandard DS-TE Tunnel, on page 187 Configure IETF DS-TE Tunnels: Example, on page 287

IETF DS-TE Mode

IETF DS-TE mode uses IETF-defined extensions for RSVP and IGP. This mode interoperates with third-party vendor equipment.

IETF mode supports multiple bandwidth constraint models, including RDM and MAM, both with two bandwidth pools. In an IETF DS-TE network, identical bandwidth constraint models must be configured on all nodes.

TE class map is used with IETF DS-TE mode and must be configured the same way on all nodes in the network.

Bandwidth Constraint Models

IETF DS-TE mode provides support for the RDM and MAM bandwidth constraints models. Both models support up to two bandwidth pools.

Cisco IOS XR software provides global configuration for the switching between bandwidth constraint models. Both models can be configured on a single interface to preconfigure the bandwidth constraints before swapping to an alternate bandwidth constraint model.

Note N

NSF is not guaranteed when you change the bandwidth constraint model or configuration information.

By default, RDM is the default bandwidth constraint model used in both pre-standard and IETF mode.

Maximum Allocation Bandwidth Constraint Model

The MAM constraint model has the following characteristics:

- Easy to use and intuitive.
- Isolation across class types.
- Simultaneously achieves isolation, bandwidth efficiency, and protection against QoS degradation.

Related Topics

Configuring an IETF DS-TE Tunnel Using MAM, on page 191

Russian Doll Bandwidth Constraint Model

The RDM constraint model has these characteristics:

- · Allows greater sharing of bandwidth among different class types.
- Ensures bandwidth efficiency simultaneously and protection against QoS degradation of all class types.
- Specifies that it is used in conjunction with preemption to simultaneously achieve isolation across class-types such that each class-type is guaranteed its share of bandwidth, bandwidth efficiency, and protection against QoS degradation of all class types.

We recommend that RDM not be used in DS-TE environments in which the use of preemption is precluded. Although RDM ensures bandwidth efficiency and protection against QoS degradation of class types, it does guarantee isolation across class types.

Related Topics

Configuring an IETF DS-TE Tunnel Using RDM, on page 189

TE Class Mapping

Each of the eight available bandwidth values advertised in the IGP corresponds to a TE class. Because the IGP advertises only eight bandwidth values, there can be a maximum of only eight TE classes supported in an IETF DS-TE network.

TE class mapping must be exactly the same on all routers in a DS-TE domain. It is the responsibility of the operator configure these settings properly as there is no way to automatically check or enforce consistency.

The operator must configure TE tunnel class types and priority levels to form a valid TE class. When the TE class map configuration is changed, tunnels already up are brought down. Tunnels in the down state, can be set up if a valid TE class map is found.

The default TE class and attributes are listed. The default mapping includes four class types.

TE Class	Class Type	Priority
0	0	7
1	1	7
2	Unused	—
3	Unused	—
4	0	0
5	1	0
6	Unused	—
7	Unused	

Table 5: TE Classes and Priority

Flooding

Available bandwidth in all configured bandwidth pools is flooded on the network to calculate accurate constraint paths when a new TE tunnel is configured. Flooding uses IGP protocol extensions and mechanisms to determine when to flood the network with bandwidth.

Flooding Triggers

TE Link Management (TE-Link) notifies IGP for both global pool and sub-pool available bandwidth and maximum bandwidth to flood the network in these events:

- Periodic timer expires (this does not depend on bandwidth pool type).
- Tunnel origination node has out-of-date information for either available global pool or sub-pool bandwidth, causing tunnel admission failure at the midpoint.

• Consumed bandwidth crosses user-configured thresholds. The same threshold is used for both global pool and sub-pool. If one bandwidth crosses the threshold, both bandwidths are flooded.

Flooding Thresholds

Flooding frequently can burden a network because all routers must send out and process these updates. Infrequent flooding causes tunnel heads (tunnel-originating nodes) to have out-of-date information, causing tunnel admission to fail at the midpoints.

You can control the frequency of flooding by configuring a set of thresholds. When locked bandwidth (at one or more priority levels) crosses one of these thresholds, flooding is triggered.

Thresholds apply to a percentage of the maximum available bandwidth (the global pool), which is locked, and the percentage of maximum available guaranteed bandwidth (the sub-pool), which is locked. If, for one or more priority levels, either of these percentages crosses a threshold, flooding is triggered.

Setting up a global pool TE tunnel can cause the locked bandwidth allocated to sub-pool tunnels to be reduced (and hence to cross a threshold). A sub-pool TE tunnel setup can similarly cause the locked bandwidth for global pool TE tunnels to cross a threshold. Thus, sub-pool TE and global pool TE tunnels can affect each other when flooding is triggered by thresholds.

Fast Reroute

Fast Reroute (FRR) provides link protection to LSPs enabling the traffic carried by LSPs that encounter a failed link to be rerouted around the failure. The reroute decision is controlled locally by the router connected to the failed link. The headend router on the tunnel is notified of the link failure through IGP or through RSVP. When it is notified of a link failure, the headend router attempts to establish a new LSP that bypasses the failure. This provides a path to reestablish links that fail, providing protection to data transfer.

FRR (link or node) is supported over sub-pool tunnels the same way as for regular TE tunnels. In particular, when link protection is activated for a given link, TE tunnels eligible for FRR are redirected into the protection LSP, regardless of whether they are sub-pool or global pool tunnels.

Note The ability to configure FRR on a per-LSP basis makes it possible to provide different levels of fast restoration to tunnels from different bandwidth pools.

You should be aware of these requirements for the backup tunnel path:

- Backup tunnel must not pass through the element it protects.
- Primary tunnel and a backup tunnel should intersect at least at two points (nodes) on the path: point of local repair (PLR) and merge point (MP). PLR is the headend of the backup tunnel, and MP is the tailend of the backup tunnel.

When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.

Related Topics

Protecting MPLS Tunnels with Fast Reroute, on page 177

IS-IS IP Fast Reroute Loop-free Alternative

For bandwidth protection, there must be sufficient backup bandwidth available to carry primary tunnel traffic. Use the **ipfrr lfa** command to compute loop-free alternates for all links or neighbors in the event of a link or node failure. To enable node protection on broadcast links, IPRR and bidirectional forwarding detection (BFD) must be enabled on the interface under IS-IS.

MPLS FRR and IPFRR cannot be configured on the same interface at the same time.

For information about configuring BFD, see *Cisco IOS XR Interface and Hardware Configuration Guide for the Cisco XR 12000 Series Router*.

MPLS-TE and Fast Reroute over Link Bundles

MPLS Traffic Engineering (TE) and Fast Reroute (FRR) are supported over bundle interfaces (Ethernet and POS). MPLS-TE over virtual local area network (VLAN) interfaces is supported. FRR over VLAN interfaces is not supported.

These link bundle types are supported for MPLS-TE/FRR:

- Over POS link bundles.
- Over Ethernet link bundles.
- Over VLANs over Ethernet link bundles.
- Number of links are limited to 100 for MPLS-TE and FRR.
- VLANs go over any Ethernet interface (for example, GigabitEthernet, TenGigE, and FastEthernet, so forth).

FRR is supported over bundle interfaces in the following ways:

- Uses minimum links as a threshold to trigger FRR over a bundle interface.
- Uses the minimum total available bandwidth as a threshold to trigger FRR.

Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE

The Ignore Intermediate System-to-Intermediate System (IS-IS) overload bit avoidance feature allows network administrators to prevent RSVP-TE label switched paths (LSPs) from being disabled, when a router in that path has its Intermediate System-to-Intermediate System (IS-IS) overload bit set.

The IS-IS overload bit avoidance feature is activated using this command:

mpls traffic-eng path-selection ignore overload

The IS-IS overload bit avoidance feature is deactivated using the **no** form of this command:

no mpls traffic-eng path-selection ignore overload

When the IS-IS overload bit avoidance feature is activated, all nodes, including head nodes, mid nodes, and tail nodes, with the overload bit set, are ignored. This means that they are still available for use with RSVP-TE label switched paths (LSPs). This feature enables you to include an overloaded node in CSPF.

Enhancement Options of IS-IS OLA

You can restrict configuring IS-IS overload bit avoidance with the following enhancement options:

· path-selection ignore overload head

The tunnels stay up if **set-overload-bit** is set by IS-IS on the head router. Ignores overload during CSPF for LSPs originating from an overloaded node. In all other cases (mid, tail, or both), the tunnel stays down.

path-selection ignore overload mid

The tunnels stay up if **set-overload-bit** is set by IS-IS on the mid router. Ignores overload during CSPF for LSPs transiting from an overloaded node. In all other cases (head, tail, or both), the tunnel stays down.

path-selection ignore overload tail

The tunnels stay up if **set-overload-bit** is set by IS-IS on the tail router. Ignores overload during CSPF for LSPs terminating at an overloaded node. In all other cases (head, mid, or both), the tunnel stays down.

path-selection ignore overload

The tunnels stay up irrespective of on which router the set-overload-bit is set by IS-IS.

Note

When you do not select any of the options, including head nodes, mid nodes, and tail nodes, you get a behavior that is applicable to all nodes. This behavior is backward compatible in nature.

For more information related to IS-IS overload avoidance related commands, see *Cisco IOS XR MPLS Command Reference for the Cisco XR 12000 Series Router*.

Related Topics

Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE, on page 196

Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example, on page 287

DWDM Transponder Integration

A GMPLS UNI based solution preserves all the advantages of the integration of the DWDM transponder into the router blade. These advantages include:

- · improved CAPEX and OPEX models
- · component, space and power savings
- improved IP availability through pro-active protection.

GMPLS Benefits

GMPLS bridges the IP and photonic layers, thereby making possible interoperable and scalable parallel growth in the IP and photonic dimensions.

This allows for rapid service deployment and operational efficiencies, as well as for increased revenue opportunities. A smooth transition becomes possible from a traditional segregated transport and service overlay model to a more unified peer model.

By streamlining support for multiplexing and switching in a hierarchical fashion, and by utilizing the flexible intelligence of MPLS-TE, optical switching GMPLS becomes very helpful for service providers wanting to manage large volumes of traffic in a cost-efficient manner.

GMPLS Support

GMPLS-TE provides support for:

- Open Shortest Path First (OSPF) for bidirectional TE tunnel
- Frame, lambda, and port (fiber) labels
- Numbered or Unnumbered links
- OSPF extensions-Route computation with optical constraints
- RSVP extensions-Graceful Restart
- Graceful deletion
- · LSP hierarchy
- Peer model
- · Border model Control plane separation
- · Interarea or AS-Verbatim
- BGP4 or MPLS
- Restoration-Dynamic path computation
- Control channel manager
- Link summary

· Protection and restoration

Related Topics

Configuring Router IDs, on page 198 Configuring OSPF over IPCC, on page 199

GMPLS Protection and Restoration

GMPLS provides protection against failed channels (or links) between two adjacent nodes (span protection) and end-to-end dedicated protection (path protection). After the route is computed, signaling to establish the backup paths is carried out through RSVP-TE or CR-LDP. For span protection, 1+1 or M:N protection schemes are provided by establishing secondary paths through the network. In addition, you can use signaling messages to switch from the failed primary path to the secondary path.

Only 1:1 end-to-end path protection is supported.

The restoration of a failed path refers to the dynamic establishment of a backup path. This process requires the dynamic allocation of resources and route calculation. The following restoration methods are described:

- Line restoration—Finds an alternate route at an intermediate node.
- Path restoration—Initiates at the source node to route around a failed path within the path for a specific LSP.

Restoration schemes provide more bandwidth usage, because they do not preallocate any resource for an LSP.

GMPLS combines MPLS-FRR and other types of protection, such as SONET/SDH and wavelength.

In addition to SONET alarms in POS links, protection and restoration is also triggered by bidirectional forwarding detection (BFD).

1:1 LSP Protection

When one specific protecting LSP or span protects one specific working LSP or span, 1:1 protection scheme occurs. However, normal traffic is transmitted only over one LSP at a time for working or recovery.

1:1 protection with extra traffic refers to the scheme in which extra traffic is carried over a protecting LSP when the protecting LSP is not being used for the recovery of normal traffic. For example, the protecting LSP is in standby mode. When the protecting LSP is required to recover normal traffic from the failed working LSP, the extra traffic is preempted. Extra traffic is not protected, but it can be restored. Extra traffic is transported using the protected LSP resources.

Shared Mesh Restoration and M:N Path Protection

Both shared mesh restoration and M:N (1:N is more practical) path protection offers sharing for protection resources for multiple working LSPs. For 1:N protection, a specific protecting LSP is dedicated to the protection of up to N working LSPs and spans. Shared mesh is defined as preplanned LSP rerouting, which reduces the restoration resource requirements by allowing multiple restoration LSPs to be initiated from distinct ingress nodes to share common resources, such as links and nodes.

End-to-end Recovery

End-to-end recovery refers to an entire LSP from the source for an ingress router endpoint to the destination for an egress router endpoint.

GMPLS Protection Requirements

The GMPLS protection requirements are specific to the protection scheme that is enabled at the data plane. For example, SONET APS or MPLS-FRR are identified as the data level for GMPLS protection.

GMPLS Prerequisites

The following prerequisites are required to implement GMPLS on Cisco IOS XR software:

- You must be in a user group associated with a task group that includes the proper task IDs for GMPLS commands.
- Router that runs Cisco IOS XR software.
- Installation of the Cisco IOS XR softwaremini-image on the router.

Flexible Name-based Tunnel Constraints

MPLS-TE Flexible Name-based Tunnel Constraints provides a simplified and more flexible means of configuring link attributes and path affinities to compute paths for MPLS-TE tunnels.

In the traditional TE scheme, links are configured with attribute-flags that are flooded with TE link-state parameters using Interior Gateway Protocols (IGPs), such as Open Shortest Path First (OSPF).

MPLS-TE Flexible Name-based Tunnel Constraints lets you assign, or map, up to 32 color names for affinity and attribute-flag attributes instead of 32-bit hexadecimal numbers. After mappings are defined, the attributes can be referred to by the corresponding color name in the command-line interface (CLI). Furthermore, you can define constraints using *include*, *include-strict*, *exclude*, and *exclude-all* arguments, where each statement can contain up to 10 colors, and define include constraints in both loose and strict sense.

You can configure affinity constraints using attribute flags or the Flexible Name Based Tunnel Constraints scheme; however, when configurations for both schemes exist, only the configuration pertaining to the new scheme is applied.

Related Topics

Assigning Color Names to Numeric Values, on page 224 Associating Affinity-Names with TE Links, on page 226 Associating Affinity Constraints for TE Tunnels, on page 227 Configure Flexible Name-based Tunnel Constraints: Example, on page 290

MPLS Traffic Engineering Interarea Tunneling

These topics describe the following new extensions of MPLS-TE:

- Interarea Support, on page 144
- Multiarea Support, on page 144
- Loose Hop Expansion, on page 145
- Loose Hop Reoptimization, on page 145
- Fast Reroute Node Protection, on page 146

Interarea Support


The MPLS-TE interarea tunneling feature allows you to establish P2P tunnels spanning multiple Interior Gateway Protocol (IGP) areas and levels, thereby eliminating the requirement that headend and tailend routers reside in a single area.

Interarea support allows the configuration of a TE LSP that spans multiple areas, where its headend and tailend label switched routers (LSRs) reside in different IGP areas.

Multiarea and Interarea TE are required by the customers running multiple IGP area backbones (primarily for scalability reasons). This lets you limit the amount of flooded information, reduces the SPF duration, and lessens the impact of a link or node failure within an area, particularly with large WAN backbones split in multiple areas.

This figure shows a typical interarea TE network.

Figure 12: Interarea (OSPF) TE Network Diagram

Multiarea Support


Multiarea support allows an area border router (ABR) LSR to support MPLS-TE in more than one IGP area. A TE LSP is still confined to a single area.

Multiarea and Interarea TE are required when you run multiple IGP area backbones. The Multiarea and Interarea TE allows you to:

• Limit the volume of flooded information.

- Reduce the SPF duration.
- Decrease the impact of a link or node failure within an area.

Figure 13: Interlevel (IS-IS) TE Network

As shown in the figure, R2, R3, R7, and R4 maintain two databases for routing and TE information. For example, R3 has TE topology information related to R2, flooded through Level-1 IS-IS LSPs plus the TE topology information related to R4, R9, and R7, flooded as Level 2 IS-IS Link State PDUs (LSPs) (plus, its own IS-IS LSP).

Note

You can configure multiple areas within an IS-IS Level 1. This is transparent to TE. TE has topology information about the IS-IS level, but not the area ID.

Loose Hop Expansion

Loose hop optimization allows the reoptimization of tunnels spanning multiple areas and solves the problem which occurs when an MPLS-TE LSP traverses hops that are not in the LSP's headend's OSPF area and IS-IS level.

Interarea MPLS-TE allows you to configure an interarea traffic engineering (TE) label switched path (LSP) by specifying a loose source route of ABRs along the path. It is the then the responsibility of the ABR (having a complete view of both areas) to find a path obeying the TE LSP constraints within the next area to reach the next hop ABR (as specified on the headend). The same operation is performed by the last ABR connected to the tailend area to reach the tailend LSR.

You must be aware of these considerations when using loose hop optimization:

- You must specify the router ID of the ABR node (as opposed to a link address on the ABR).
- When multiarea is deployed in a network that contains subareas, you must enable MPLS-TE in the subarea for TE to find a path when loose hop is specified.
- You must specify the reachable explicit path for the interarea tunnel.

Loose Hop Reoptimization

Loose hop reoptimization allows the reoptimization of the tunnels spanning multiple areas and solves the problem which occurs when an MPLS-TE headend does not have visibility into other IGP areas.

Whenever the headend attempts to reoptimize a tunnel, it tries to find a better path to the ABR in the headend area. If a better path is found then the headend initiates the setup of a new LSP. In case a suitable path is not found in the headend area, the headend initiates a querying message. The purpose of this message is to query the ABRs in the areas other than the headend area to check if there exist any better paths in those areas. The purpose of this message is to query the ABRs in the areas other than the headend area to check if there exist any better paths in those areas. The purpose of this message is to query the ABRs in the areas other than the headend area, to check if a better path exists. If a better path does not exist, ABR forwards the query to the next router downstream. Alternatively, if better path is found, ABR responds with a special Path Error to the headend to indicate the existence of a better path outside the headend area. Upon receiving the Path Error that indicates the existence of a better path, the headend router initiates the reoptimization.

ABR Node Protection

Because one IGP area does not have visibility into another IGP area, it is not possible to assign backup to protect ABR node. To overcome this problem, node ID sub-object is added into the record route object of the primary tunnel so that at a PLR node, backup destination address can be checked against primary tunnel record-route object and assign a backup tunnel.

Fast Reroute Node Protection

If a link failure occurs within an area, the upstream router directly connected to the failed link generates an RSVP path error message to the headend. As a response to the message, the headend sends an RSVP path tear message and the corresponding path option is marked as invalid for a specified period and the next path-option (if any) is evaluated.

To retry the ABR immediately, a second path option (identical to the first one) should be configured. Alternatively, the retry period (path-option hold-down, 2 minutes by default) can be tuned to achieve a faster retry.

Related Topics

Protecting MPLS Tunnels with Fast Reroute, on page 177

MPLS-TE Forwarding Adjacency

The MPLS-TE Forwarding Adjacency feature allows a network administrator to handle a traffic engineering, label-switched path (LSP) tunnel as a link in an Interior Gateway Protocol (IGP) network based on the Shortest Path First (SPF) algorithm. A forwarding adjacency can be created between routers regardless of their location in the network.

MPLS-TE Forwarding Adjacency Benefits

TE tunnel interfaces are advertised in the IGP network just like any other links. Routers can then use these advertisements in their IGPs to compute the SPF even if they are not the head end of any TE tunnels.

Related Topics

Configuring MPLS-TE Forwarding Adjacency, on page 233 Configure Forwarding Adjacency: Example, on page 292

MPLS-TE Forwarding Adjacency Restrictions

The MPLS-TE Forwarding Adjacency feature has these restrictions:

- Using the MPLS-TE Forwarding Adjacency increases the size of the IGP database by advertising a TE tunnel as a link.
- The MPLS-TE Forwarding Adjacency is supported by Intermediate System-to-Intermediate System (IS-IS).
- When the MPLS-TE Forwarding Adjacency is enabled on a TE tunnel, the link is advertised in the IGP network as a Type-Length-Value (TLV) 22 without any TE sub-TLV.
- MPLS-TE forwarding adjacency tunnels must be configured bidirectionally.
- Multicast intact is not supported with MPLS-TE Forwarding Adjacency.

MPLS-TE Forwarding Adjacency Prerequisites

Your network must support the following features before enabling the MPLS -TE Forwarding Adjacency feature:

- MPLS
- IP Cisco Express Forwarding
- Intermediate System-to-Intermediate System (IS-IS)

Unequal Load Balancing

Unequal load balancing permits the routing of unequal proportions of traffic through tunnels to a common destination. Load shares on tunnels to the same destination are determined by TE from the tunnel configuration and passed through the MPLS Label Switching Database (LSD) to the Forwarding Information Base (FIB).

Note

Load share values are renormalized by the FIB using values suitable for use by the forwarding code. The exact traffic ratios observed may not, therefore, exactly mirror the configured traffic ratios. This effect is more pronounced if there are many parallel tunnels to a destination, or if the load shares assigned to those tunnels are very different. The exact renormalization algorithm used is platform-dependent.

There are two ways to configure load balancing:

Explicit configuration

Using this method, load shares are explicitly configured on each tunnel.

Bandwidth configuration

If a tunnel is not configured with load-sharing parameters, the tunnel bandwidth and load-share values are considered equivalent for load-share calculations between tunnels, and a direct comparison between bandwidth and load-share configuration values is calculated.

Load shares are not dependent on any configuration other than the load share and bandwidth configured on the tunnel and the state of the global configuration switch.

Related Topics

Setting Unequal Load Balancing Parameters, on page 234 Enabling Unequal Load Balancing, on page 235 Configure Unequal Load Balancing: Example, on page 292

Path Computation Element

Path Computation Element (PCE) solves the specific issue of inter-domain path computation for MPLS-TE label switched path (LSPs), when the head-end router does not possess full network topology information (for example, when the head-end and tail-end routers of an LSP reside in different IGP areas).

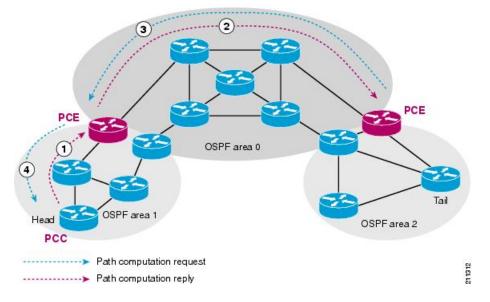
PCE uses area border routers (ABRs) to compute a TE LSP spanning multiple IGP areas as well as computation of Inter-AS TE LSP.

PCE is usually used to define an overall architecture, which is made of several components, as follows:

Path Computation Element (PCE)

Represents a software module (which can be a component or application) that enables the router to compute paths applying a set of constraints between any pair of nodes within the router's TE topology database. PCEs are discovered through IGP.

Path Computation Client (PCC)


Represents a software module running on a router that is capable of sending and receiving path computation requests and responses to and from PCEs. The PCC is typically an LSR (Label Switching Router).

PCC-PCE communication protocol (PCEP)

Specifies that PCEP is a TCP-based protocol defined by the IETF PCE WG, and defines a set of messages and objects used to manage PCEP sessions and to request and send paths for multi-domain TE LSPs. PCEP is used for communication between PCC and PCE (as well as between two PCEs) and employs IGP extensions to dynamically discover PCE.

This figure shows a typical PCE implementation.

Figure 14: Path Computation Element Network Diagram

Path computation elements provides support for the following message types and objects:

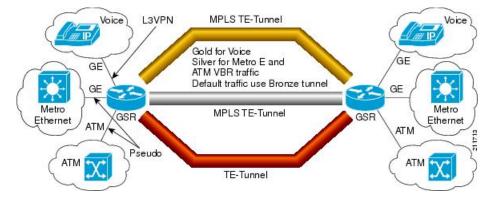
- Message types: Open, PCReq, PCRep, PCErr, Close
- Objects: OPEN, CLOSE, RP, END-POINT, LSPA, BANDWIDTH, METRIC, and NO-PATH

Related Topics

Configuring a Path Computation Client, on page 237 Configuring a Path Computation Element Address, on page 238 Configuring PCE Parameters, on page 239 Configure PCE: Example, on page 293

Policy-Based Tunnel Selection

These topics provide information about policy-based tunnel selection (PBTS):


Policy-Based Tunnel Selection

Policy-Based Tunnel Selection (PBTS) provides a mechanism that lets you direct traffic into specific TE tunnels based on different criteria. PBTS will benefit Internet service providers (ISPs) who carry voice and data traffic through their MPLS and MPLS/VPN networks, who want to route this traffic to provide optimized voice service.

PBTS works by selecting tunnels based on the classification criteria of the incoming packets, which are based on the IP precedence, experimental (EXP), or type of service (ToS) field in the packet.

This figure illustrates a PBTS implementation.

Figure 15: Policy-Based Tunnel Selection Implementation

PBTS is supported on the ingress interface and any of the L3 interfaces (physical, sub-interface, and bundle interface).

PBTS supports modification of the class-map and forward-group to TE association.

Related Topics

Configuring Policy-based Tunnel Selection, on page 242 Configure Policy-based Tunnel Selection: Example, on page 294

Policy-Based Tunnel Selection Functions

The following PBTS functions are supported:

- IPv4 traffic arrives unlabeled on the VRF interface and the non-VRF interface.
- MPLS traffic is supported on the VRF interface and the non-VRF interface.
- Load balancing across multiple TE tunnels with the same traffic class attribute is supported.
- Selected TE tunnels are used to service the lowest tunnel class as default tunnels.
- LDP over TE tunnel and single-hop TE tunnel are supported.
- Both Interior Gateway Protocol (IGP) and Label Distribution Protocol (LDP) paths are used as the default path for all traffic that belongs to a class that is not configured on the TE tunnels.
- According to the quality-of-service (QoS) policy, tunnel selection is based on the outgoing experimental (EXP) value and the remarked EXP value.
- L2VPN preferred path selection lets traffic be directed to a particular TE tunnel.
- IPv6 traffic for both 6VPE and 6PE scenarios are supported.

Related Topics

Configuring Policy-based Tunnel Selection, on page 242 Configure Policy-based Tunnel Selection: Example, on page 294

PBTS with Dynamic Tunnel Selection

This feature is supported only on the Cisco XR 12000 Series Router.

Dynamic tunnel selection, which is based on class-of-service-based tunnel selection (CBTS), uses post-QoS EXP to select the tunnel. The TE tunnel contains a class attribute that is based on CoS or EXP. Traffic is forwarded on the TE tunnels based on the class attribute. For the balancing group, the traffic can be load-balanced among the tunnels of the same class. The default path is a LDP LSP or a default tunnel.

PBTS Restrictions

When implementing PBTS, the following restrictions are listed:

- When QoS EXP remarking on an interface is enabled, the EXP value is used to determine the egress tunnel interface, not the incoming EXP value.
- Egress-side remarking does not affect PBTS tunnel selection.

PBTS Default Class Enhancement

Policy Based Tunnel Selection (PBTS) provides a mechanism that directs traffic into TE tunnels based on incoming packets TOS/EXP bits. The PBTS default class enhancement can be explained as follows:

- Add a new class called default so that you can configure a tunnel of class (1-7 or default). You can configure more than one default tunnels. By default, tunnels of class 0 no longer serves as default tunnel.
- The control plane can pick up to 8 default tunnels to carry default traffic.
- The forwarding plane applies the same load-balancing logic on the default tunnels such that default traffic load is shared over them.
- Default tunnels are not used to forward traffic if each class of traffic is served by at least one tunnel of the respective class.
- A tunnel is implicitly assigned to class 0 if the tunnel is not configured with a specific class.
- If no default tunnel is available for forwarding, the lowest class tunnels are assigned to carry default traffic only.
- Both LDP and IGP paths are assigned to a new default class. LDP and IGP no longer statically associate to class 0 in the platforms, which support this new default class enhancement.

PBTS Default Class Enhancement Restrictions

The class 0 tunnel is not the default tunnel. The **default** class that does not associate with any of existing classes starting from 1 to 7. For a class of traffic that does not have a respective class tunnel to serve it, the forwarding plane uses the available default tunnels and IGP and LDP paths to carry that class of traffic.

The new behavior becomes effective only when the control plan resolves a prefix to use at least one default tunnel to forward the traffic. When a prefix is resolved to not use any default tunnel to forward traffic, it will fall back to the existing behavior. The lowest class tunnels are used to serve as default tunnels. The class 0

tunnels are used as default tunnels, if no default tunnel is configured, supporting the backward compatibility to support the existing configurations.

MPLS-TE Automatic Bandwidth

The MPLS-TE automatic bandwidth feature measures the traffic in a tunnel and periodically adjusts the signaled bandwidth for the tunnel.

These topics provide information about MPLS-TE automatic bandwidth:

MPLS-TE Automatic Bandwidth Overview

MPLS-TE automatic bandwidth is configured on individual Label Switched Paths (LSPs) at every head-end. MPLS-TE monitors the traffic rate on a tunnel interface. Periodically, MPLS-TE resizes the bandwidth on the tunnel interface to align it closely with the traffic in the tunnel. MPLS-TE automatic bandwidth can perform these functions:

- · Monitors periodic polling of the tunnel output rate
- Resizes the tunnel bandwidth by adjusting the highest rate observed during a given period

For every traffic-engineered tunnel that is configured for an automatic bandwidth, the average output rate is sampled, based on various configurable parameters. Then, the tunnel bandwidth is readjusted automatically based upon either the largest average output rate that was noticed during a certain interval, or a configured maximum bandwidth value.

This table lists the automatic bandwidth functions.

Function	Command	Description	Default Value
Application frequency	application command	Configures how often the tunnel bandwidths changed for each tunnel. The application period is the period of A minutes between the bandwidth applications during which the output rate collection is done.	24 hours
Requested bandwidth	bw-limit command	Limits the range of bandwidth within the automatic-bandwidth feature that can request a bandwidth.	0 Kbps
Collection frequency	auto-bw collect command	Configures how often the tunnel output rate is polled globally for all tunnels.	5 min

Table 6: Automatic Bandwidth Variables

Function	Command	Description	Default Value
Highest collected bandwidth		You cannot configure this value.	_
Delta		You cannot configure this value.	

The output rate on a tunnel is collected at regular intervals that are configured by using the **application** command in MPLS-TE auto bandwidth interface configuration mode. When the application period timer expires, and when the difference between the measured and the current bandwidth exceeds the adjustment threshold, the tunnel is reoptimized. Then, the bandwidth samples are cleared to record the new largest output rate at the next interval.

When reoptimizing the LSP with the new bandwidth, a new path request is generated. If the new bandwidth is not available, the last good LSP continues to be used. This way, the network experiences no traffic interruptions.

If minimum or maximum bandwidth values are configured for a tunnel, the bandwidth, which the automatic bandwidth signals, stays within these values.

Note

When more than 100 tunnels are **auto-bw** enabled, the algorithm will jitter the first application of every tunnel by a maximum of 20% (max 1hour). The algorithm does this to avoid too many tunnels running auto bandwidth applications at the same time.

If a tunnel is shut down, and is later brought again, the adjusted bandwidth is lost and the tunnel is brought back with the initial configured bandwidth. In addition, the application period is reset when the tunnel is brought back.

Related Topics

Configuring the Collection Frequency, on page 244 Configuring the Automatic Bandwidth Functions, on page 247 Configure Automatic Bandwidth: Example, on page 295

Adjustment Threshold

Adjustment Threshold is defined as a percentage of the current tunnel bandwidth and an absolute (minimum) bandwidth. Both thresholds must be fulfilled for the automatic bandwidth to resignal the tunnel. The tunnel bandwidth is resized only if the difference between the largest sample output rate and the current tunnel bandwidth is larger than the adjustment thresholds.

For example, assume that the automatic bandwidth is enabled on a tunnel in which the highest observed bandwidth B is 30 Mbps. Also, assume that the tunnel was initially configured for 45 Mbps. Therefore, the difference is 15 mbit/s. Now, assuming the default adjustment thresholds of 10% and 10kbps, the tunnel is signalled with 30 Mbps when the application timer expires. This is because 10% of 45Mbit/s is 4.5 Mbit/s, which is smaller than 15 Mbit/s. The absolute threshold, which by default is 10kbps, is also crossed.

Overflow Detection

Overflow detection is used if a bandwidth must be resized as soon as an overflow condition is detected, without having to wait for the expiry of an automatic bandwidth application frequency interval.

For overflow detection one configures a limit N, a percentage threshold Y% and optionally, a minimum bandwidth threshold Z. The percentage threshold is defined as the percentage of the actual signalled tunnel bandwidth. When the difference between the measured bandwidth and the actual bandwidth are both larger than Y% and Z threshold, for N consecutive times, then the system triggers an overflow detection.

The bandwidth adjustment by the overflow detection is triggered only by an increase of traffic volume through the tunnel, and not by a decrease in the traffic volume. When you trigger an overflow detection, the automatic bandwidth application interval is reset.

By default, the overflow detection is disabled and needs to be manually configured.

Restrictions for MPLS-TE Automatic Bandwidth

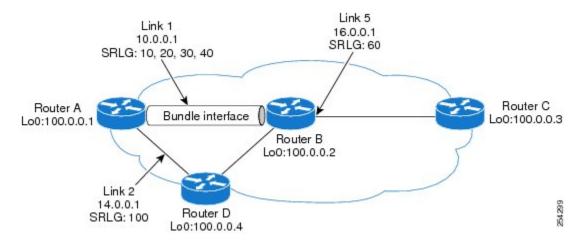
When the automatic bandwidth cannot update the tunnel bandwidth, the following restrictions are listed:

- Tunnel is in a fast reroute (FRR) backup, active, or path protect active state. This occurs because of the assumption that protection is a temporary state, and there is no need to reserve the bandwidth on a backup tunnel. You should prevent taking away the bandwidth from other primary or backup tunnels.
- Reoptimization fails to occur during a lockdown. In this case, the automatic bandwidth does not update the bandwidth unless the bandwidth application is manually triggered by using the **mpls traffic-eng auto-bw apply** command in EXEC mode.

Related Topics

Forcing the Current Application Period to Expire Immediately, on page 246

MPLS Traffic Engineering Shared Risk Link Groups


Shared Risk Link Groups (SRLG) in MPLS traffic engineering refer to situations in which links in a network share a common fiber (or a common physical attribute). These links have a shared risk, and that is when one link fails, other links in the group might fail too.

OSPF and Intermediate System-to-Intermediate System (IS-IS) flood the SRLG value information (including other TE link attributes such as bandwidth availability and affinity) using a sub-type length value (sub-TLV), so that all routers in the network have the SRLG information for each link.

To activate the SRLG feature, configure the SRLG value of each link that has a shared risk with another link. A maximum of 30 SRLGs per interface is allowed. You can configure this feature on multiple interfaces including the bundle interface.

Figure 16: Shared Risk Link Group illustrates the MPLS TE SRLG values configured on the bundle interface.

Figure 16: Shared Risk Link Group

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252

Using Explicit Path With Exclude SRLG, on page 253

Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256

Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259

Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Explicit Path

The Explicit Path configuration allows you to configure the explicit path. An IP explicit path is a list of IP addresses, each representing a node or link in the explicit path.

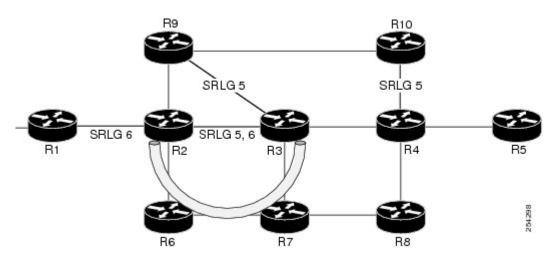
The MPLS Traffic Engineering (TE)—IP Explicit Address Exclusion feature provides a means to exclude a link or node from the path for an Multiprotocol Label Switching (MPLS) TE label-switched path (LSP).

This feature is enabled through the **explicit-path** command that allows you to create an IP explicit path and enter a configuration submode for specifying the path. The feature adds to the submode commands of the **exclude-address** command for specifying addresses to exclude from the path.

The feature also adds to the submode commands of the **exclude-srlg** command that allows you to specify the IP address to get SRLGs to be excluded from the explicit path.

If the excluded address or excluded srlg for an MPLS TE LSP identifies a flooded link, the constraint-based shortest path first (CSPF) routing algorithm does not consider that link when computing paths for the LSP. If the excluded address specifies a flooded MPLS TE router ID, the CSPF routing algorithm does not allow paths for the LSP to traverse the node identified by the router ID.

Related Topics

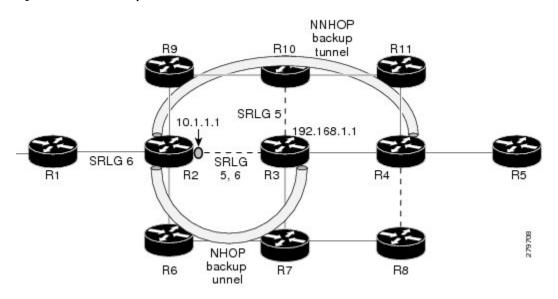

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252 Using Explicit Path With Exclude SRLG, on page 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Fast ReRoute with SRLG Constraints

Fast ReRoute (FRR) protects MPLS TE Label Switch Paths (LSPs) from link and node failures by locally repairing the LSPs at the point of failure. This protection allows data to continue to flow on LSPs, while their headend routers attempt to establish new end-to-end LSPs to replace them. FRR locally repairs the protected LSPs by rerouting them over backup tunnels that bypass failed links or nodes.

Backup tunnels that bypass only a single link of the LSP's path provide Link Protection. They protect LSPs by specifying the protected link IP addresses to extract SRLG values that are to be excluded from the explicit path, thereby bypassing the failed link. These are referred to as **next-hop (NHOP) backup tunnels** because they terminate at the LSP's next hop beyond the point of failure. Figure 17: NHOP Backup Tunnel with SRLG constraint illustrates an NHOP backup tunnel.

Figure 17: NHOP Backup Tunnel with SRLG constraint


In the topology shown in the above figure, the backup tunnel path computation can be performed in this manner:

- Get all SRLG values from the exclude-SRLG link (SRLG values 5 and 6)
- · Mark all the links with the same SRLG value to be excluded from SPF
- Path computation as CSPF R2->R6->R7->R3

FRR provides Node Protection for LSPs. Backup tunnels that bypass next-hop nodes along LSP paths are called **NNHOP backup tunnels** because they terminate at the node following the next-hop node of the LSP paths, thereby bypassing the next-hop node. They protect LSPs when a node along their path fails, by enabling the node upstream to the point of failure to reroute the LSPs and their traffic, around the failed node to the next-next hop. They also protect LSPs by specifying the protected link IP addresses that are to be excluded from the explicit path, and the SRLG values associated with the IP addresses excluded from the explicit path.

NNHOP backup tunnels also provide protection from link failures by bypassing the failed link as well as the node. Figure 18: NNHOP Backup Tunnel with SRLG constraint illustrates an NNHOP backup tunnel.

Figure 18: NNHOP Backup Tunnel with SRLG constraint

In the topology shown in the above figure, the backup tunnel path computation can be performed in this manner:

- Get all SRLG values from the exclude-SRLG link (SRLG values 5 and 6)
- · Mark all links with the same SRLG value to be excluded from SPF
- · Verify path with SRLG constraint
- Path computation as CSPF R2->R9->R10->R4

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252 Using Explicit Path With Exclude SRLG, on page 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Importance of Protection

This section describes the following:

- Delivery of Packets During a Failure
- Multiple Backup Tunnels Protecting the Same Interface

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252 Using Explicit Path With Exclude SRLG, on page 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Delivery of Packets During a Failure

Backup tunnels that terminate at the NNHOP protect both the downstream link and node. This provides protection for link and node failures.

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252 Using Explicit Path With Exclude SRLG, on page 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Multiple Backup Tunnels Protecting the Same Interface

- Redundancy-If one backup tunnel is down, other backup tunnels protect LSPs.
- Increased backup capacity—If the protected interface is a high-capacity link and no single backup path
 exists with an equal capacity, multiple backup tunnels can protect that one high-capacity link. The LSPs
 using this link falls over to different backup tunnels, allowing all of the LSPs to have adequate bandwidth
 protection during failure (rerouting). If bandwidth protection is not desired, the router spreads LSPs
 across all available backup tunnels (that is, there is load balancing across backup tunnels).

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252 Using Explicit Path With Exclude SRLG, on page 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

SRLG Limitations

There are few limitations to the configured SRLG feature:

• The exclude-address and exclude-srlg options are not allowed in the IP explicit path strict-address network.

• Whenever SRLG values are modified after tunnels are signalled, they are verified dynamically in the next path verification cycle.

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252 Using Explicit Path With Exclude SRLG, on page 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

MPLS TE SRLG Scale Enhancements

MPLS Traffic Engineering Shared Risk Link Groups (SRLG) feature has been enhanced to support:

- Increase from 32 to 64 (59 for ISIS) groups.
- Increase from 250 to 500 interfaces.

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252

Using Explicit Path With Exclude SRLG, on page 253

Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256

Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259

Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Soft-Preemption

MPLS-TE preemption consists of freeing the resources of an established LSP, and assigning them to a new LSP. The freeing of resources causes a traffic disruption to the LSP that is being preempted. Soft preemption is an extension to the RSVP-TE protocol to minimize and even eliminate such traffic disruption over the preempted LSP.

The soft-preemption feature attempts to preempt the LSPs in a graceful manner to minimize or eliminate traffic loss. However, the link might be over-subscribed for a period of time.

In a network that implements soft preemption, zero traffic loss is achieved in this manner:

- When signaling a new LSP, the ingress router indicates to all the intermediate nodes that the existing LSP is to be softly preempted, in case its resources are needed and is to be reassigned.
- When a given intermediate node needs to soft-preempt the existing LSP, it sends a new or special path error (preemption pending) to the ingress router. The intermediate node does not dismantle the LSP and maintains its state.
- When the ingress router receives the path error (preemption pending) from the intermediate node, it immediately starts a re-optimization that avoids the link that caused the preemption.
- When the re-optimization is complete, the ingress router tears down the soft-preempted LSP.

Related Topics

Enabling Soft-Preemption on a Node, on page 262 Enabling Soft-Preemption on a Tunnel, on page 263

Path Option Attributes

The path option attributes are configurable through a template configuration. This template, named **attribute-set**, is configured globally in the MPLS traffic-engineering mode.

You can apply an **attribute-set** to a path option on a per-LSP basis. The path option configuration is extended to take a path option attribute name. LSPs computed with a particular path option uses the attributes as specified by the attribute-set under that path option.

These prerequisites are required to implement path option attributes:

- Path option type attribute-set is configured in the MPLS TE mode
- · Path option CLI extended to accept an attribute-set name

Note

The signalled-bandwidth and affinity attributes are supported under the attribute-set template.

Related Topics

Configuring Attributes within a Path-Option Attribute, on page 264

Configuration Hierarchy of Path Option Attributes

You can specify a value for an attribute within a path option **attribute-set** template. This does not prevent the configuring of the same attribute at a tunnel level. However, it is important to note that only one level is taken into account. So, the configuration at the LSP level is considered more specific than the one at the level of the tunnel, and it is used from this point onwards.

Attributes that are not specified within an attribute-set take their values as usual--configuration at the tunnel level, configuration at the global MPLS level, or default values. Here is an example:

```
attribute-set path-option MYSET
affinity 0xBEEF mask 0xBEEF
interface tunnel-te 10
affinity 0xCAFE mask 0xCAFE
signalled-bandwidth 1000
path-option 1 dynamic attribute-set name MYSET
path-option 2 dynamic
```

In this example, the attribute-set named **MYSET** is specifying affinity as 0xBEEF. The signalled bandwidth has not been configured in this **MYSET**. The **tunnel 10**, meanwhile, has affinity 0xCAFE configured. LSPs computed from path-option 1 uses the affinity 0xBEEF/0xBEEF, while LSPs computed from path-option 2 uses the affinity 0xCAFE. All LSPs computed using any of these path-options use **signalled-bandwidth** as 1000, as this is the only value that is specified only at the tunnel level.

The attributes configured in a path option **attribute-set** template takes precedence over the same attribute configured under a tunnel. An attribute configured under a tunnel is used only if the equivalent attribute is **not** specified by the in-use path option **attribute-set** template.

Related Topics

Configuring Attributes within a Path-Option Attribute, on page 264

Traffic Engineering Bandwidth and Bandwidth Pools

MPLS traffic engineering allows constraint-based routing (CBR) of IP traffic. One of the constraints satisfied by CBR is the availability of required bandwidth over a selected path. Regular TE tunnel bandwidth is called the **global pool**. The **subpool bandwidth** is a portion of the global pool. If it is not in use, the subpool bandwidth is not reserved from the global pool. Therefore, subpool tunnels require a priority higher than that of non-subpool tunnels.

You can configure the signalled-bandwidth path option attribute to use either the global pool (default) or the subpool bandwidth. The signalled-bandwidth value for the path option may be any valid value and the pool does not have to be the same as that which is configured on the tunnel.

When you configure signalled-bandwidth for path options with the **signalled-bandwidth bandwidth [sub-pool | global]** *kbps* command, use either all subpool bandwidths or all global-pool bandwidth values.

Related Topics

Configuring Attributes within a Path-Option Attribute, on page 264

Path Option Switchover

Reoptimization to a particular path option is not possible if the in-use path option and the new path option do not share the same bandwidth class. The path option switchover operation would fail in such a scenario. Use this command at the EXEC configuration mode to switchover to a newer path option :

mpls traffic-eng switchover tunnel-xx ID path-option index

The switchover to a newer path option is achieved, in these instances:

- when a lower index path option is available
- when any signalling message or topology update causes the primary LSP to go down
- when a local interface fails on the primary LSP or a path error is received on the primary LSP

Path option switchover between various path options with different bandwidth classes is not allowed.

Related Topics

Configuring Attributes within a Path-Option Attribute, on page 264

Path Option and Path Protection

When path-protection is enabled, a standby LSP is established to protect traffic going over the tunnel. The standby LSP may be established using either the same path option as the primary LSP, or a different one.

The standby LSP is computed to be diverse from the primary LSP, so bandwidth class differences does not matter. This is true in all cases of diversity except node-diversity. With node diversity, it is possible for the standby LSP to share up to two links with the primary LSP, the link exiting the head node, and the link entering the tail node.

If you want to switchover from one path option to another path option and these path options have different classes, the path option switchover is rejected. However, the path option switchover can not be blocked in the path-protection feature. When the standby LSP becomes active using another path option of a different class type, the path option switchover cannot be rejected at the head end. It might get rejected by the downstream node.

Node-diversity is only possible under limited conditions. The conditions that must be met are:

- there is no second path that is both node and link diverse
- the current LSP uses a shared-media link at the head egress or tail ingress
- the shared-media link used by the current LSP permits computation of a node-diverse path

In Cisco IOS XR, reoptimization between different class types would actually be rejected by the next hop. This rejection will occur by an admission failure.

Related Topics

Configuring Attributes within a Path-Option Attribute, on page 264

Auto-Tunnel Mesh

The MPLS traffic engineering auto-tunnel mesh (Auto-mesh) feature allows you to set up full mesh of TE P2P tunnels automatically with a minimal set of MPLS traffic engineering configurations. You may configure one or more mesh-groups. Each mesh-group requires a destination-list (IPv4 prefix-list) listing destinations, which are used as destinations for creating tunnels for that mesh-group.

You may configure MPLS TE auto-mesh type attribute-sets (templates) and associate them to mesh-groups. LSR creates tunnels using the tunnel properties defined in the attribute-set.

Auto-Tunnel mesh provides benefits:

• Minimizes the initial configuration of the network.

You may configure tunnel properties template and mesh-groups or destination-lists on each TE LSRs that further creates full mesh of TE tunnels between those LSRs.

• Minimizes future configurations resulting due to network growth.

It eliminates the need to reconfigure each existing TE LSR in order to establish a full mesh of TE tunnels whenever a new TE LSR is added in the network.

Related Topics

Configuring Auto-Tunnel Mesh Tunnel ID, on page 266 Configuring Auto-tunnel Mesh Unused Timeout, on page 267 Configuring Auto-Tunnel Mesh Group, on page 269 Configuring Tunnel Attribute-Set Templates, on page 270 Enabling LDP on Auto-Tunnel Mesh, on page 273

Destination List (Prefix-List)

Auto-mesh tunnels can be automatically created using prefix-list. Each TE enabled router in the network learns about the TE router IDs through a existing IGP extension.

You can view the router IDs on the router using this command:

```
show mpls traffic-eng topology | include TE Id
```

IGP Id: 0001.0000.0010.00, MPLS TE Id:100.1.1.1 Router Node (ISIS 1 level-2) IGP Id: 0001.0000.0011.00, MPLS TE Id:100.2.2.2 Router Node (ISIS 1 level-2) IGP Id: 0001.0000.0012.00, MPLS TE Id:100.3.3.3 Router Node (ISIS 1 level-2)

A prefix-list may be configured on each TE router to match a desired set of router IDs (MPLS TE ID as shown in the above output). For example, if a prefix-list is configured to match addresses of 100.0.0.0 with wildcard 0.255.255.255, then all 100.x.x.x router IDs are included in the auto-mesh group.

When a new TE router is added in the network and its router ID is also in the block of addresses described by the prefix-list, for example, 100.x.x.x, then it is added in the auto-mesh group on each existing TE router without having to explicitly modify the prefix-list or perform any additional configuration.

Auto-mesh does not create tunnels to its own (local) TE router IDs.

Note

When prefix-list configurations on all routers are not identical, it can result in non- symmetrical mesh of tunnels between those routers.

Related Topics

Configuring Auto-Tunnel Mesh Tunnel ID, on page 266 Configuring Auto-tunnel Mesh Unused Timeout, on page 267 Configuring Auto-Tunnel Mesh Group, on page 269 Configuring Tunnel Attribute-Set Templates, on page 270 Enabling LDP on Auto-Tunnel Mesh, on page 273

VRF Redirection to MPLS TE Tunnels

The VRF redirection to MPLS TE tunnels feature adds automatic route MPLS TE tunnels through autoroute destination configuration. The VRF redirection to MPLS TE tunnels maps VRF prefixes over TE tunnels in the core to reach the same egress provider edge (PE). This enables to load-balance prefix traffic on multiple tunnels based on equal cost multi-path (ECMP). The ECMP is used to load-share the flow(s) on multiple available paths towards the destination PE. The route added by autoroute destination inherits the same IGP

computed metric to the tunnel endpoint. Any changes to the IGP route metric to the tunnel endpoint is automatically reflected on the autoroute destination route too.

In a typical VPN deployment over a TE core network, an operator creates a mesh of TE tunnels between PE routers and then configures autoroute announce to these tunnels. This leads to a mix of default VRF and VPNv4 traffic on the same tunnel connecting the PE routers. An operator my want to segregate their VPNv4 traffic on different tunnels. This can be achieved by creating multiple tunnels to the egress PE(s). The limitation of this approach is that the static routes are added with zero metrics. The VRF Redirection to MPLS TE Tunnels feature is a solution to resolve this limitation. Multiple VRFs can be mapped on the same tunnel by adding multiple autoroute destination addresses (BGP next-hops) to the same tunnel.

Routes added by static route are always added with zero cost metric. This results in traffic that is mapped on multiple tunnels to always load-balance due to ECMP. This may be undesirable when some of those tunnels have sub-optimal paths (have higher underlying cost to the endpoint). With autoroute destination, only the tunnel whose IGP cost to its endpoint is lowest will be considered for carrying traffic.

VRF redirection over TE tunnels feature supports:

- Automatic redirection of VRF traffic over TE tunnels.
- Multiple autoroute destinations under one tunnel to aggregate VRF traffic. If two VRFs are to be mapped on same tunnel, then two autoroute destination prefixes (BGP next-hops) will be configured under the tunnel.
- One autoroute destination under multiple tunnels to enable ECMP load-balance of VRF traffic.
- Implicit /32 mask for each route. Only host addresses residing on the tunnel endpoint are supported.
- High availability, RP failover, and non-stop forwarding (NSF) scenarios by proving hitless to traffic mechanisms.

MPLS TE Extended Admin Groups

The MPLS TE extended admin groups (EAG) configuration assigns EAG/AG name to bit-position and associates affinity-names with TE links. The configuration extends to assign names, up to 256, to TE links over the selected interface and assigns 32 names per attribute-set and index.

Use the **affinity-map** *map-name* **bit-position** *value* command to assign EAG/AG name to bit-position. Use the **attribute-names** *attribute-name1 attribute-name2* ... and **attribute-names index** *index-number attribute-name1 attribute-name2* ... commands to assign up to 32 names per attribute-set and index value.

Stateful Path Computation Element

The stateful path computation element (PCE) describes a set of procedures by which a path computation client (PCC) can report and delegate control of head-end tunnels sourced from the PCC to a PCE peer. The PCE peer can request the PCC to update and modify parameters of label switched paths (LSPs) it controls. The stateful model also enables a PCC to allow the PCE to initiate computations allowing the PCE to perform network-wide orchestration.

The transfer of LSP state and computation constraints is independent from the computation request, such that a PCE may see how state changes over time, without a computation request ever taking place. This allows the PCE to have better visibility into network state, as well as improve the efficiency of computation requests, as these can rely on state present on the PCE.

- Both PCE/PCC functionality runs on routers
- PCE function router need special image or official image with SMU installed
- PCE server could be external third party PCE server, such as Cariden

Stateful PCE provides support for these following request types and objects:

- Request types
 - ° PCReq-requests used by current stateless PCE implementation
 - ° PCCreate-LSP instantiation requests
 - ° PCUpd—LSP update requests
- LSP Objects
 - Operational flag
 - ° Delegation flag
 - ° Remove flag
 - Symbolic path name
 - ° LSP Identifiers
- Path list
 - ERO

Stateful PCE State Reporting

State reporting refers to the PCC sending information to PCEs about the state of LSPs. This is done as state changes occur and is used to keep PCEs informed of changes to the LSP as they occur. State reporting is also used as part of *state synchronization* and *delegation*.

A state report is a message sent by a PCC to a PCE reporting on the state of one or more TE tunnels. This allows the PCE to stay abreast of changes as they occur. Reports are triggered when the PCE needs to be informed of state. These occur when:

- State synchronization happens
- The PCC attempts to delegate control of a tunnel to a PCE
- The PCC revokes control of a tunnel from a PCE
- The PCC deletes a tunnel
- A signalling error occurs on a tunnel
- Reportable information about a tunnel changes

Stateful PCE State Synchronization

Synchronization refers to a procedure that occurs after a PCEP session is established between a PCE and a PCC. The purpose of state synchronization is to download the current LSP database of the PCC to a PCE. This is done through a set of state reports which are marked as *synchronizations*. This is the first communication to occur after the session is brought up. A full re-send of state reports can also be avoided when the PCE already has an up-to-date version of the LSP database as the version number can be indicated by the PCE during PCEP session establishment.

Stateful PCE Delegation

Delegation is the action by which control of a state is granted to a PCE by the PCC. A PCE to which control was delegated can alter attributes of the LSP. Control is only delegated to one PCE at a time.

- Delegation of control can be revoked from a PCE by the PCC.
- Delegation of control can also be returned to the PCC by the PCE.

Stateful PCE State Updating

State updating refers to the PCE sending information to a PCC to alter the attributes of an LSP. A state update is a message sent by a PCE to a PCC to alter the state of one or more TE tunnels. State updating is allowed only if the PCE has previously been delegated control of the LSP. State updating is also used to return delegated control.

Stateful PCE Creation of LSPs

Creation (or instantiation) of an LSP is a procedure by which a PCE instructs a PCC to create an LSP respecting certain attributes. For LSPs created in this manner, the PCE is delegated control automatically. Stateful PCE procedures enable a PCE to instruct a PCC to create a locally sourced tunnel.

MPLS TE Usability Enhancements

MPLS traffic engineering command line interface and logging output messages are enhanced as follows:

- The **show mpls traffic engineering** commands display **signaled-name** and supports **signaled-name** filter.
- Ability to allow immediate teardown of all labelled switched paths (LSPs) of the specified tunnel and to create new LSPs.
- Default behavior when affinity check fails at head-end is to reoptimize all LSP types.
- Logging output messages include MPLS TE tunnel signaled name.
- Logging of path change events and available bandwidth on the new for all auto-bandwidth operations.
- · Auto-bandwidth logging output includes signaled name.

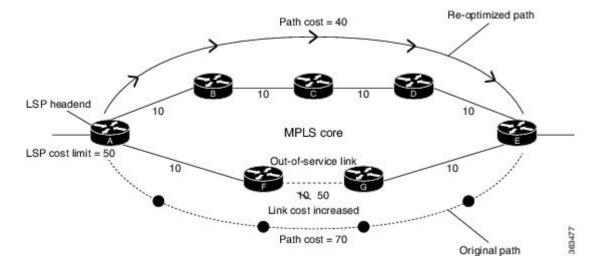
MPLS TE IPv6 Autoroute

The MPLS TE IPv6 Autoroute feature enables the use of IPv4 MPLS TE tunnels for IPv6 routing. The routing protocol IGP (IS-IS) considers the IPv4 MPLS TE tunnel for IPv6 routing path calculation only if the tunnel is advertised to carry IPv6 traffic. To advertise the tunnel, either IPv6 autoroute announce (AA) configuration or IPv6 forwarding adjacency (FA) configuration should be made on the tunnel. Also, the IPv6 has to be enabled on the tunnel so that the tunnel can handle IPv6 traffic.

To configure IPv6 routing on an MPLS TEv4 tunnel, see Configuring IPv6 Routing Over IPv4 MPLS-TE Tunnels, on page 277.

MPLS TE IPv6 Autoroute Restrictions

- IGP support is only for IS-IS.
- IS-IS IPv4 and IPv6 must be configured under the same IS-IS instance.
- Unequal load balancing (UELB) does not apply to IPv6 traffic. While it may still be configured and used for IPv4 traffic, IPv6 traffic does not acknowledge the UELB configuration. However, equal loadsharing works for IPv6.
- Policy-based tunnel selection (PBTS) does not apply for IPv6 traffic. While it may still be configured and used for IPv4 traffic, IPv6 traffic does not acknowledge the PBTS configuration.
- MPLS auto tunnels do not support IPv6 autoroute announce and IPv6 forwarding adjacency configurations.


MPLS TE Path Cost Limit

The MPLS TE path cost limit feature enables graceful migration of TE label switched paths (LSPs) away from a link without affecting the traffic. This is useful when a link is scheduled to be decommissioned or brought down for maintenance.

In order to take a link out of service and gracefully migrate the LSPs away from it, the cost assigned to the link is to be set higher than the path cost limit (path aggregate admin-weight) assigned at the LSP headend. The cost of the tunnel is equal to the aggregate cost of the links through which the tunnel passes. The headend routers recalculate the total path costs at the time of periodic path verification. At this stage, the headend routers automatically check if the path limit is crossed and reroute the LSPs away from the out-of-service link.

This sample illustration explains the TE path cost limit application:

Figure 19: MPLS TE path cost limit application

Here, the path cost limit for the LSP is set at 50. To move the LSP away from the link between F and G, the link cost is increased to 50.

The total path cost is the aggregate of individual costs assigned to the links through which the LSP traverses. The effect of specifying a limit to the path cost (admin-weight) are:

- For new LSPs, if the path cost limit is crossed, the LSP is considered invalid and does not get signaled across its calculated path. However, if an alternate path that is below the cost limit is available, then that path is signaled.
- For existing LSPs, if the path cost limit is crossed, the LSP is considered as 'failed'. If the current LSP fails (for both FRR and non-FRR LSPs), the standby LSP will be activated if it exists. If there is no standby LSP, the tunnel will be re-optimized. If there is no standby LSP and no path is found for a re-optimized tunnel then the tunnel is put in 'reroute pending' state and re-optimization is attempted periodically.
- To recover from a cost limit failure, re-optimization will be triggered using any available path option.

Soft-preemption over FRR Backup Tunnels

The soft-preemption over FRR backup tunnels feature enables to move LSP traffic over the backup tunnels when the LSP is soft- preempted. MPLS TE tunnel soft-preemption allows removal of extra TE traffic in a graceful manner, by giving the preempted LSP a grace period to move away from the link. Though this mechanism saves the traffic of the preempted LSP from being dropped, this might cause traffic drops due to congestion as more bandwidth is reserved on the link than what is available. When the soft-preemption over FRR backup tunnel is enabled, the traffic of the preempted LSP is moved onto the FRR backup, if it is available and ready. This way, the capacity of the backup tunnel is used to remove the potential congestion that might be caused by soft-preemption.

MPLS TE Auto-tunnel Mesh One-hop

The MPLS TE Auto-tunnel primary one-hop feature allows automatic creation of tunnels over TE enabled interfaces to next hop neighbors. The Auto-tunnel primary one-hop is configurable under the MPLS TE Auto-tunnel mesh group mode and for each mesh group. The Auto-tunnel primary one-hop configuration automatically creates one-hop tunnels to next hop neighbors. A router that becomes a next hop neighbor will have a set of one-hop tunnels created automatically.

Inter-area Traffic Engineering with Dynamic ABR Discovery

The inter-area traffic engineering with dynamic ABR discovery feature adds support for inter-area point-to-point (P2P) and point-to-multi-point (P2MP) traffic engineering with dynamic ABR discovery. With this feature, there is no need to specify transit ABR addresses in the explicit paths to allow for dynamic/best path computation for inter-area tunnels.

How to Implement Traffic Engineering

Traffic engineering requires coordination among several global neighbor routers, creating traffic engineering tunnels, setting up forwarding across traffic engineering tunnels, setting up FRR, and creating differential service.

These procedures are used to implement MPLS-TE:

Building MPLS-TE Topology

Perform this task to configure MPLS-TE topology (required for traffic engineering tunnel operations).

Before You Begin

Before you start to build the MPLS-TE topology, you must have enabled:

- IGP such as OSPF or IS-IS for MPLS-TE.
- MPLS Label Distribution Protocol (LDP).
- RSVP on the port interface.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.
- If you are going to use nondefault holdtime or intervals, you must decide the values to which they are set.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. interface type interface-path-id
- 4. exit
- 5. exit
- 6. router ospf process-name
- 7. area area-id
- 8. exit
- 9. mpls traffic-eng router-id ip-address
- **10.** Use the **commit** or **end** command.
- **11.** (Optional) **show mpls traffic-eng topology**
- 12. (Optional) show mpls traffic-eng link-management advertisements

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng RP/0/0/CPU0:router(config-mpls-te)#</pre>	
Step 3	interface type interface-path-id	Enables traffic engineering on a particular interface on the originating node and enters MPLS-TE interface
	Example:	configuration mode.
	<pre>RP/0/0/CPU0:router(config-mpls-te)#interface POS0/6/0/0 RP/0/0/CPU0:router(config-mpls-te-if)#</pre>	
Step 4	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if)# exit RP/0/0/CPU0:router(config-mpls-te)#</pre>	

	Command or Action	Purpose
Step 5	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# exit RP/0/0/CPU0:router(config)#</pre>	
Step 6	router ospf process-name	Enters a name for the OSPF process.
	Example:	
	<pre>RP/0/0/CPU0:router(config) # router ospf 1</pre>	
Step 7	area area-id	Configures an area for the OSPF process.
	Example:	• Backbone areas have an area ID of 0.
	RP/0/0/CPU0:router(config-router)# area 0	• Non-backbone areas have a non-zero area ID.
Step 8	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf-ar)# exit RP/0/0/CPU0:router(config-ospf)#</pre>	
Step 9	mpls traffic-eng router-id <i>ip-address</i>	Sets the MPLS-TE loopback interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf)# mpls traffic-eng router-id 192.168.70.1</pre>	
Step 10	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 11	show mpls traffic-eng topology	(Optional) Verifies the traffic engineering topology.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng	

	Command or Action	Purpose
	topology	
Step 12	show mpls traffic-eng link-management advertisements	(Optional) Displays all the link-management advertisements for the links on this node.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng link-management advertisements	

How MPLS-TE Works, on page 130 Build MPLS-TE Topology and Tunnels: Example, on page 285

Creating an MPLS-TE Tunnel

Creating an MPLS-TE tunnel is a process of customizing the traffic engineering to fit your network topology. Perform this task to create an MPLS-TE tunnel after you have built the traffic engineering topology.

Before You Begin

The following prerequisites are required to create an MPLS-TE tunnel:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.
- If you are going to use nondefault holdtime or intervals, you must decide the values to which they are set.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- **3.** destination *ip-address*
- 4. ipv4 unnumbered type interface-path-id
- 5. path-option preference priority dynamic
- **6.** signalled- bandwidth {bandwidth [class-type ct] | sub-pool bandwidth}
- 7. Use the commit or end command.
- 8. (Optional) show mpls traffic-eng tunnels
- **9.** (Optional) **show ipv4 interface brief**
- **10.** (Optional) **show mpls traffic-eng link-management admission-control**

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example:	
	RP/0/0/CPU0:router# interface tunnel-te 1	
Step 3	destination <i>ip-address</i>	Assigns a destination address on the new tunnel.
	Example:	The destination address is the remote node's MPLS-TE router ID.
	<pre>RP/0/0/CPU0:router(config-if)# destination 192.168.92.125</pre>	
Step 4	ipv4 unnumbered type interface-path-id	Assigns a source address so that forwarding can be performed on the new tunnel. Loopback is commonly used as the interface
	Example:	type.
	<pre>RP/0/0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</pre>	
Step 5	path-option preference - priority dynamic	Sets the path option to dynamic and assigns the path ID.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if) # path-option l dynamic</pre>	

	Command or Action	Purpose
Step 6	<pre>signalled- bandwidth {bandwidth [class-type ct] sub-pool bandwidth}</pre>	Sets the CT0 bandwidth required on this interface. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# signalled-bandwidth 100</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.
Step 8	show mpls traffic-eng tunnels	(Optional) Verifies that the tunnel is connected (in the UP state) and
	Example:	displays all configured TE tunnels.
	<pre>RP/0/0/CPU0:router# show mpls traffic-eng tunnels</pre>	
Step 9	show ipv4 interface brief	(Optional) Displays all TE tunnel interfaces.
	Example:	
	RP/0/0/CPU0:router# show ipv4 interface brief	
Step 10	show mpls traffic-eng link-management admission-control	(Optional) Displays all the tunnels on this node.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng link-management admission-control	
		1

Related Topics

How MPLS-TE Works, on page 130 Build MPLS-TE Topology and Tunnels: Example, on page 285 Building MPLS-TE Topology, on page 169

Configuring Forwarding over the MPLS-TE Tunnel

Perform this task to configure forwarding over the MPLS-TE tunnel created in the previous task . This task allows MPLS packets to be forwarded on the link between network neighbors.

Before You Begin

The following prerequisites are required to configure forwarding over the MPLS-TE tunnel:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. ipv4 unnumbered type interface-path-id
- 4. autoroute announce
- 5. exit
- 6. router static address-family ipv4 unicast prefix mask ip-address interface type
- 7. Use the commit or end command.
- 8. (Optional) ping {*ip-address* | *hostname*}
- 9. (Optional) show mpls traffic-eng autoroute

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Enters MPLS-TE interface configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 1</pre>	
Step 3	ipv4 unnumbered type interface-path-id	Assigns a source address so that forwarding can be performed on the new tunnel.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# ipv4</pre>	

I

	Command or Action	Purpose
	unnumbered Loopback0	
Step 4	autoroute announce	Enables messages that notify the neighbor nodes about the routes that are forwarding.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# autoroute announce</pre>	
Step 5	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# exit</pre>	
Step 6	router static address-family ipv4 unicast prefix mask ip-address interface type	Enables a route using IP version 4 addressing, identifies the destination address and the tunnel where forwarding is enabled.
	Example:	This configuration is used for static routes when the autoroute announce command is not used.
	<pre>RP/0/0/CPU0:router(config) # router static address-family ipv4 unicast 2.2.2.2/32 tunnel-te 1</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 8	<pre>ping {ip-address hostname}</pre>	(Optional) Checks for connectivity to a particular IP address or host name.
	Example:	
	RP/0/0/CPU0:router# ping 192.168.12.52	
Step 9	show mpls traffic-eng autoroute	(Optional) Verifies forwarding by displaying what is advertised to IGP for
	Example:	the TE tunnel.
	RP/0/0/CPU0:router# show mpls traffic-eng autoroute	

Overview of MPLS Traffic Engineering, on page 129 Creating an MPLS-TE Tunnel, on page 172

Protecting MPLS Tunnels with Fast Reroute

Perform this task to protect MPLS-TE tunnels, as created in the previous task.

Although this task is similar to the previous task, its importance makes it necessary to present as part of the tasks required for traffic engineering on Cisco IOS XR software.

Before You Begin

The following prerequisites are required to protect MPLS-TE tunnels:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.
- You must first configure a primary tunnel.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. fast-reroute
- 4. exit
- 5. mpls traffic-eng
- 6. interface type interface-path-id
- 7. backup-path tunnel-te tunnel-number
- 8. exit
- 9. exit
- **10. interface tunnel-te** *tunnel-id*
- **11.** backup-bw {backup bandwidth | sub-pool {bandwidth | unlimited} | global-pool {bandwidth | unlimited} }
- 12. ipv4 unnumbered type interface-path-id
- **13.** path-option preference-priority {explicit name explicit-path-name}
- **14. destination** *ip-address*
- **15.** Use the **commit** or **end** command.
- **16.** (Optional) **show mpls traffic-eng tunnels backup**
- 17. (Optional) show mpls traffic-eng tunnels protection frr
- **18.** (Optional) show mpls traffic-eng fast-reroute database

Command or Action	Purpose
configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
Example:	
RP/0/0/CPU0:router# interface tunnel-te 1	
fast-reroute	Enables fast reroute.
Example:	
<pre>RP/0/0/CPU0:router(config-if)# fast-reroute</pre>	
	<pre>configure Example: RP/0/0/CPU0:router# configure interface tunnel-te tunnel-id Example: RP/0/0/CPU0:router# interface tunnel-te 1 fast-reroute Example:</pre>

	Command or Action	Purpose
Step 4	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# exit</pre>	
Step 5	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng RP/0/0/CPU0:router(config-mpls-te)#</pre>	
Step 6	interface type interface-path-id	Enables traffic engineering on a particular interface on the originating node.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# interface pos0/6/0/0 RP/0/0/CPU0:router(config-mpls-te-if)#</pre>	
Step 7	backup-path tunnel-te tunnel-number	Sets the backup path to the backup tunnel.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if)# backup-path tunnel-te 2</pre>	
Step 8	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if) # exit RP/0/0/CPU0:router(config-mpls-te) #</pre>	
Step 9	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# exit RP/0/0/CPU0:router(config)#</pre>	
Step 10	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 2</pre>	
Step 11	backup-bw {backup bandwidth sub-pool {bandwidth	Sets the CT0 bandwidth required on this interface.
	unlimited} global-pool {bandwidth unlimited} }	Note Because the default tunnel priority is 7, tunnels use the default TE class map.

	Command or Action	Purpose
	Example: RP/0/0/CPU0:router(config-if)#backup-bw global-pool 5000	
Step 12	ipv4 unnumbered type interface-path-id	Assigns a source address to set up forwarding on the new tunnel.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</pre>	
Step 13	path-option <i>preference-priority</i> { explicit name <i>explicit-path-name</i> }	Sets the path option to explicit with a given name (previously configured) and assigns the path ID.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# path-option l explicit name backup-path</pre>	
Step 14	destination <i>ip-address</i>	Assigns a destination address on the new tunnel.
	Example:	• Destination address is the remote node's MPLS-TE router ID.
	<pre>RP/0/0/CPU0:router(config-if)# destination 192.168.92.125</pre>	• Destination address is the merge point between backup and protected tunnels.
		Note When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.
Step 15	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.
Step 16	show mpls traffic-eng tunnels backup	(Optional) Displays the backup tunnel information.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng tunnels	

	Command or Action	Purpose
	backup	
Step 17	show mpls traffic-eng tunnels protection frr Example:	(Optional) Displays the tunnel protection information for Fast-Rerout (FRR).
	<pre>RP/0/0/CPU0:router# show mpls traffic-eng tunnels protection frr</pre>	
Step 18	show mpls traffic-eng fast-reroute database	(Optional) Displays the protected tunnel state (for example, the
	Example:	tunnel's current ready or active state).
	RP/0/0/CPU0:router# show mpls traffic-eng fast-reroute database	

Fast Reroute, on page 138 Fast Reroute Node Protection, on page 146 Creating an MPLS-TE Tunnel, on page 172 Configuring Forwarding over the MPLS-TE Tunnel, on page 175

Enabling an AutoTunnel Backup

Perform this task to configure the AutoTunnel Backup feature. By default, this feature is disabled. You can configure the AutoTunnel Backup feature for each interface. It has to be explicitly enabled for each interface or link.

SUMMARY STEPS

- 1. configure
- 2. ipv4 unnumbered mpls traffic-eng Loopback 0
- 3. mpls traffic-eng
- 4. auto-tunnel backup timers removal unused frequency
- 5. auto-tunnel backup tunnel-id min minmax max
- 6. Use the commit or end command.
- 7. show mpls traffic-eng auto-tunnel backup summary

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Stop 2		Configurate the globally configured IDy 4 address that can be used
Step 2	ipv4 unnumbered mpls traffic-eng Loopback 0	Configures the globally configured IPv4 address that can be used by the AutoTunnel Backup Tunnels.
	Example: RP/0/0/CPU0:router(config)#ipv4 unnumbered mpls traffic-eng Loopback 0	Note Loopback 0 is the router ID. The AutoTunnel Backup tunnels will not come up until a global IPv4 address is configured.
Step 3	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 4	auto-tunnel backup timers removal unused frequency	Configures how frequently a timer scans the backup automatic tunnels and removes tunnels that are not in use.
	Example: RP/0/0/CPU0:router(config-mpls-te)# auto-tunnel backup timers removal unused 20	• Use the frequency argument to scan the backup automatic tunnel. Range is 0 to 10080.
		Note You can also configure the auto-tunnel backup command at mpls traffic-eng interface mode.
Step 5	auto-tunnel backup tunnel-id min minmax max	Configures the range of tunnel interface numbers to be used for automatic backup tunnels. Range is 0 to 65535.
	Example: RP/0/0/CPU0:router(config-mpls-te)# auto-tunnel backup tunnel-id min 6000 max 6500	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 7	show mpls traffic-eng auto-tunnel backup summary	Displays information about configured MPLS-TE backup autotunnels.
	Example:	

Command or Action	Purpose
RP/0/0/CPU0:router# show mpls traffic-eng auto-tunnel backup summary	

Backup AutoTunnels, on page 131

Removing an AutoTunnel Backup

To remove all the backup autotunnels, perform this task to remove the AutoTunnel Backup feature.

SUMMARY STEPS

- 1. clear mpls traffic-eng auto-tunnel backup unused { all | tunnel-tenumber}
- **2.** Use the **commit** or **end** command.
- 3. show mpls traffic-eng auto-tunnel summary

Command or Action	Purpose
<pre>clear mpls traffic-eng auto-tunnel backup unused { all tunnel-tenumber}</pre>	Clears all MPLS-TE automatic backup tunnels from the EXEC mode. You can also remove the automatic backup tunnel marked with specific tunnel-te, provided it is currently unused.
Example: RP/0/0/CPU0:router# clear mpls traffic-eng auto-tunnel backup unused all	
Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.
	<pre>clear mpls traffic-eng auto-tunnel backup unused { all tunnel-tenumber} Example: RP/0/0/CPU0:router# clear mpls traffic-eng auto-tunnel backup unused all</pre>

	Command or Action	Purpose
Step 3	show mpls traffic-eng auto-tunnel summary	Displays information about MPLS-TE autotunnels including the ones removed.
	<pre>Example: RP/0/0/CPU0:router# show mpls traffic-eng auto-tunnel summary</pre>	

Backup AutoTunnels, on page 131

Establishing MPLS Backup AutoTunnels to Protect Fast Reroutable TE LSPs

To establish an MPLS backup autotunnel to protect fast reroutable TE LSPs, perform these steps:

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- **3.** interface type interface-path-id
- 4. auto-tunnel backup
- 5. Use the commit or end command.
- 6. show mpls traffic-eng auto-tunnel backup summary

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 3	interface type interface-path-id	Enables traffic engineering on a specific interface on the originating node.
	Example: RP/0/0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0	
Step 4	auto-tunnel backup	Enables an auto-tunnel backup feature for the specified interface

	Command or Action	Purpose
	Example: RP/0/0/CPU0:router(config-mpls-te-if)# auto-tunnel backup	Note You cannot configure the static backup on the similar link.
Step 5	Use the commit or end command.	 commit—Saves the configuration changes and remains within the configuration session. end—Prompts user to take one of these actions: Yes— Saves configuration changes and exits the configuration session. No—Exits the configuration session without committing the configuration changes. Cancel—Remains in the configuration session, without committing the configuration changes.
Step 6	<pre>show mpls traffic-eng auto-tunnel backup summary Example: RP/0/0/CPU0:router# show mpls traffic auto-tunnel backup summary</pre>	Displays information about configured MPLS-TE backup autotunnels.

Backup AutoTunnels, on page 131

Establishing Next-Hop Tunnels with Link Protection

To establish a next-hop tunnel and link protection on the primary tunnel, perform these steps:

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- **3. interface** *type interface-path-id*
- 4. auto-tunnel backup nhop-only
- 5. auto-tunnel backup exclude srlg [preferred]
- 6. Use the commit or end command.
- 7. show mpls traffic-eng tunnels number detail

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 3	interface type interface-path-id	Enables traffic engineering on a specific interface on the originating node.
	Example: RP/0/0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0	
Step 4	auto-tunnel backup nhop-only	Enables the creation of dynamic NHOP backup tunnels. By default, both NHOP and NNHOP protection are enabled.
	<pre>Example: RP/0/0/CPU0:router(config-mpls-te-if)# auto-tunnel backup nhop-only</pre>	Note Using this nhop-only option, only link protection is provided.
Step 5	auto-tunnel backup exclude srlg [preferred]	Enables the exclusion of SRLG values on a given link for the AutoTunnel backup associated with a given interface.
	<pre>Example: RP/0/0/CPU0:router(config-mpls-te-if)# auto-tunnel backup exclude srlg preferred</pre>	The preferred option allows the AutoTunnel Backup tunnels to come up even if no path excluding all SRLG is found.
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 7	show mpls traffic-eng tunnels number detail	Displays information about configured NHOP tunnels and SRLG information.
	<pre>Example: RP/0/0/CPU0:router# show mpls traffic-eng tunnels 1 detail</pre>	

Backup AutoTunnels, on page 131

Configuring a Prestandard DS-TE Tunnel

Perform this task to configure a Prestandard DS-TE tunnel.

Before You Begin

The following prerequisites are required to configure a Prestandard DS-TE tunnel:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

SUMMARY STEPS

- 1. configure
- 2. rsvp interface type interface-path-id
- **3. bandwidth** [*total reservable bandwidth*] [**bc0** *bandwidth*] [**global-pool** *bandwidth*] [**sub-pool** *reservable-bw*]
- 4. exit
- 5. exit
- 6. interface tunnel-te tunnel-id
- 7. signalled-bandwidth {bandwidth [class-type ct] | sub-pool bandwidth}
- 8. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp interface type interface-path-id	Enters RSVP configuration mode and selects an RSVP interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config) # rsvp interface pos0/6/0/0</pre>	
Step 3	bandwidth [total reservable bandwidth] [bc0 bandwidth] [global-pool bandwidth] [sub-pool reservable-bw]	Sets the reserved RSVP bandwidth available on this interface by using the prestandard DS-TE mode. The range for the <i>total</i> <i>reserve bandwidth</i> argument is 0 to 4294967295.

	Command or Action	Purpose
		Physical interface bandwidth is not used by MPLS-TE.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# bandwidth 100 150 sub-pool 50</pre>	
Step 4	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# exit RP/0/0/CPU0:router(config-rsvp)#</pre>	
Step 5	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp)# exit RP/0/0/CPU0:router(config)#</pre>	
Step 6	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 2</pre>	
Step 7	signalled-bandwidth { <i>bandwidth</i> [class-type <i>ct</i>] sub-pool <i>bandwidth</i> }	Sets the bandwidth required on this interface. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# signalled-bandwidth sub-pool 10</pre>	
Step 8	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.

Configuring Traffic Engineering Tunnel Bandwidth, on page 84 Prestandard DS-TE Mode, on page 135 Configure IETF DS-TE Tunnels: Example, on page 287

Configuring an IETF DS-TE Tunnel Using RDM

Perform this task to create an IETF mode DS-TE tunnel using RDM.

Before You Begin

The following prerequisites are required to create an IETF mode DS-TE tunnel using RDM:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

SUMMARY STEPS

- 1. configure
- 2. rsvp interface type interface-path-id
- **3.** bandwidth rdm {total-reservable-bw | bc0 | global-pool} {sub-pool | bc1 reservable-bw}
- 4. exit
- 5. exit
- 6. mpls traffic-eng
- 7. ds-te mode ietf
- 8. exit
- 9. interface tunnel-te tunnel-id
- **10.** signalled-bandwidth {*bandwidth* [class-type *ct*] | sub-pool *bandwidth*}
- **11.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp interface type interface-path-id	Enters RSVP configuration mode and selects an RSVF interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp interface</pre>	

	Command or Action	Purpose
	pos0/6/0/0	
Step 3	<pre>bandwidth rdm {total-reservable-bw bc0 global-pool} {sub-pool bc1 reservable-bw} Example: RP/0/0/CPU0:router(config-rsvp-if) # bandwidth rdm 100 150</pre>	 Sets the reserved RSVP bandwidth available on this interface by using the Russian Doll Model (RDM) bandwidth constraints model. The range for the <i>total reserve bandwidth</i> argument is 0 to 4294967295. Note Physical interface bandwidth is not used by MPLS-TE.
Step 4	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# exit RP/0/0/CPU0:router(config-rsvp)</pre>	
Step 5	exit	Exits the current configuration mode.
	Example:	
	RP/0/0/CPU0:router(config-rsvp) exit RP/0/0/CPU0:router(config)	
Step 6	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng RP/0/0/CPU0:router(config-mpls-te)#</pre>	
Step 7	ds-te mode ietf	Enables IETF DS-TE mode and default TE class map. IETF DS-TE mode is configured on all network nodes.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# ds-te mode ietf</pre>	
Step 8	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# exit</pre>	
Step 9	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface</pre>	
	<pre>tunnel-te 4 RP/0/0/CPU0:router(config-if)#</pre>	

	Command or Action	Purpose
Step 10	<pre>signalled-bandwidth {bandwidth [class-type ct] sub-pool bandwidth}</pre>	Configures the bandwidth required for an MPLS TE tunnel. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# signalled-bandwidth 10 class-type 1</pre>	
Step 11	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.

Configuring Traffic Engineering Tunnel Bandwidth, on page 84 Russian Doll Bandwidth Constraint Model, on page 136

Configuring an IETF DS-TE Tunnel Using MAM

Perform this task to configure an IETF mode differentiated services traffic engineering tunnel using the Maximum Allocation Model (MAM) bandwidth constraint model.

Before You Begin

The following prerequisites are required to configure an IETF mode differentiated services traffic engineering tunnel using the MAM bandwidth constraint model:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

SUMMARY STEPS

- 1. configure
- 2. rsvp interface type interface-path-id
- **3. bandwidth mam** {*total reservable bandwidth* | **max-reservable-bw** *maximum-reservable-bw*} [**bc0** *reservable bandwidth*] [**bc1** *reservable bandwidth*]
- 4. exit
- 5. exit
- 6. mpls traffic-eng
- 7. ds-te mode ietf
- 8. ds-te bc-model mam
- 9. exit
- **10. interface tunnel-te** *tunnel-id*
- **11.** signalled-bandwidth {*bandwidth* [class-type *ct*] | sub-pool *bandwidth*}
- 12. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp interface type interface-path-id	Enters RSVP configuration mode and selects the RSVP interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config) # rsvp interface pos0/6/0/0</pre>	
Step 3	bandwidth mam { <i>total reservable bandwidth</i> max-reservable-bw <i>maximum-reservable-bw</i> } [bc0	Sets the reserved RSVP bandwidth available on this interface.
	reservable bandwidth] [bc1 reservable bandwidth]	Note Physical interface bandwidth is not used by MPLS-TE
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if) # bandwidth mam max-reservable-bw 400 bc0 300 bc1 200</pre>	
Step 4	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# exit RP/0/0/CPU0:router(config-rsvp)#</pre>	

	Command or Action	Purpose
Step 5	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp)# exit RP/0/0/CPU0:router(config)#</pre>	
Step 6	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng RP/0/0/CPU0:router(config-mpls-te)#</pre>	
Step 7	ds-te mode ietf	Enables IETF DS-TE mode and default TE class map. Configure IETF DS-TE mode on all nodes in the network.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# ds-te mode ietf</pre>	
Step 8	ds-te bc-model mam	Enables the MAM bandwidth constraint model globally.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# ds-te bc-model mam</pre>	
Step 9	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# exit</pre>	
Step 10	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example:	
	RP/0/0/CPU0:router(config)# interface tunnel-te	
	4 RP/0/0/CPU0:router(config-if)#	
Step 11	<pre>signalled-bandwidth {bandwidth [class-type ct] sub-pool bandwidth}</pre>	Configures the bandwidth required for an MPLS TE tunnel. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# signalled-bandwidth 10 class-type 1</pre>	

	Command or Action	Purpose
Step 12	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Traffic Engineering Tunnel Bandwidth, on page 84 Maximum Allocation Bandwidth Constraint Model, on page 136

Configuring MPLS - TE and Fast-Reroute on OSPF

Perform this task to configure MPLS-TE and Fast Reroute (FRR) on OSPF.

Before You Begin

Note

Only point-to-point (P2P) interfaces are supported for OSPF multiple adjacencies. These may be either native P2P interfaces or broadcast interfaces on which the **OSPF P2P configuration** command is applied to force them to behave as P2P interfaces as far as OSPF is concerned. This restriction does not apply to IS-IS.

The tunnel-te interface is not supported under IS-IS.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- **3.** path-option [protecting] *preference-priority* {dynamic [pce [address ipv4 *address*] | explicit {name *pathname* | identifier *path-number* } } [isis *instance name* {level *level*}] [ospf *instance name* {area *area ID*}]] [verbatim] [lockdown]
- 4. Repeat Step 3 as many times as needed.
- 5. Use the commit or end command.
- 6. show mpls traffic-eng tunnels [tunnel-number]

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface. The range for the tunnel ID number is 0 to 65535.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 1 RP/0/0/CPU0:router(config-if)#</pre>	
Step 3	path-option [protecting] preference-priority {dynamic[pce [address ipv4 address] explicit {name pathname identifier path-number } } [isis instance name {level level}] [ospf instance name {area area ID}]] [verbatim][lockdown]	Configures an explicit path option for an MPLS-TE tunnel. OSPF is limited to a single OSPF instance and area.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if) # path-option 1 explicit identifier 6 ospf green area 0</pre>	
Step 4	Repeat Step 3 as many times as needed.	Configures another explicit path option.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# path-option 2 explicit name 234 ospf 3 area 7 verbatim</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.
Step 6	show mpls traffic-eng tunnels [tunnel-number]	Displays information about MPLS-TE tunnels.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng tunnels	

C	Command or Action	Purpose
1	1	

Configure MPLS-TE and Fast-Reroute on OSPF: Example, on page 287

Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE

Perform this task to configure an overload node avoidance in MPLS-TE. When the overload bit is enabled, tunnels are brought down when the overload node is found in the tunnel path.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. path-selection ignore overload {head | mid | tail}
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng RP/0/0/CPU0:router(config-mpls-te)#</pre>	
Step 3	path-selection ignore overload {head mid tail}	Ignores the Intermediate System-to-Intermediate System (IS-IS) overload bit setting for MPLS-TE.
	Example:	If set-overload-bit is set by IS-IS on the head router, the tunnels stay up.
	<pre>RP/0/0/CPU0:router(config-mpls-te)# path-selection ignore overload head</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.

Command or Action	Purpose
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE, on page 140 Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example, on page 287

Configuring GMPLS

To fully configure GMPLS, you must complete these high-level tasks in order:

- Configuring IPCC Control Channel Information, on page 197
- Configuring Local and Remote TE Links, on page 201
- Configuring Numbered and Unnumbered Optical TE Tunnels, on page 214
- Configuring LSP Hierarchy, on page 219
- Configuring Border Control Model, on page 220
- Configuring Path Protection, on page 220

These high-level tasks are broken down into, in some cases, several subtasks.

Configuring IPCC Control Channel Information

To configure IPCC control channel information, complete these subtasks:

- Configuring Router IDs, on page 198
- Configuring OSPF over IPCC, on page 199

You must configure each subtask on both the headend and tailend router.

Configuring Router IDs

Perform this task to configure the router ID for the headend and tailend routers.

SUMMARY STEPS

- 1. configure
- 2. interface type interface-path-id
- 3. ipv4 address ipv4-address mask
- 4. exit
- **5.** router ospf process-name
- 6. mpls traffic-eng router-id type interface-path-id
- 7. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface type interface-path-id	Enters MPLS-TE interface configuration mode and enables traffic engineering on a particular interface on the originating node.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface POS0/6/0/0</pre>	
Ex	ipv4 address ipv4-address mask	Specifies a primary or secondary IPv4 address for an interface.
	Example: RP/0/0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.0.0.0	 Network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means that the corresponding address bit belongs to the network address. Network mask can be indicated as a slash (/) and a number (prefix length). The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value, and there is no space between the IP address and the slash.
Step 4	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# exit RP/0/0/CPU0:router(config)#</pre>	

	Command or Action	Purpose
Step 5	router ospf process-name Example:	Configures an Open Shortest Path First (OSPF) routing process. The process name is any alphanumeric string no longer than 40 characters without spaces.
	<pre>RP/0/0/CPU0:router(config)# router ospf 1 RP/0/0/CPU0:router(config-ospf)#</pre>	
Step 6	mpls traffic-eng router-id <i>type</i> <i>interface-path-id</i>	Specifies that the TE router identifier for the node is the IP address that is associated with a given interface. The router ID is specified with an interface name or an IP address. By default, MPLS uses the global router
	Example:	ID.
	<pre>RP/0/0/CPU0:router(config-ospf)# mpls traffic-eng router id Loopback0</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

GMPLS Support, on page 141

Configuring OSPF over IPCC

Perform this task to configure OSPF over IPCC on both the headend and tailend routers. The IGP interface ID is configured for control network, specifically for the signaling plane in the optical domain.

IPCC support is restricted to routed, out-of-fiber, and out-of-band.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. area area-id
- 4. interface type interface-path-id
- 5. exit
- 6. exit
- 7. mpls traffic-eng router-id {type interface-path-id | ip-address }
- 8. area area-id
- **9.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	router ospf process-name	Configures OSPF routing and assigns a process name.
	Example:	
	<pre>RP/0/0/CPU0:router(config) # router ospf 1</pre>	
Step 3	area area-id	Configures an area ID for the OSPF process (either as a decimal value or IP address):
	Example:	• Backbone areas have an area ID of 0.
	<pre>RP/0/0/CPU0:router(config-ospf)# area 0</pre>	• Non-backbone areas have a nonzero area ID.
Step 4	interface type interface-path-id	Enables IGP on the interface. This command is used to configure any interface included in the control network.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf-ar)# interface Loopback0</pre>	
Step 5	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf-ar-if)# exit RP/0/0/CPU0:router(config-ospf-ar)#</pre>	

	Command or Action	Purpose
Step 6	exit	Exits the current configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf-ar)# exit RP/0/0/CPU0:router(config-ospf)#</pre>	
Step 7	mpls traffic-eng router-id { <i>type interface-path-id</i> <i>ip-address</i> }	Configures a router ID for the OSPF process using an IP address.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf)# mpls traffic-eng router-id 192.168.25.66</pre>	
Step 8	area area-id	Configures the MPLS-TE area.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf)# area 0 RP/0/0/CPU0:router(config-ospf-ar)#</pre>	
Step 9	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

GMPLS Support, on page 141

Configuring Local and Remote TE Links

These subtasks describe how to configure local and remote MPLS-TE link parameters for numbered and unnumbered TE links on both headend and tailend routers.

- Configuring Numbered and Unnumbered Links, on page 202
- Configuring Local Reservable Bandwidth, on page 203
- Configuring Local Switching Capability Descriptors, on page 204

- Configuring Persistent Interface Index, on page 206
- Enabling LMP Message Exchange, on page 207
- Disabling LMP Message Exchange, on page 208
- Configuring Remote TE Link Adjacency Information for Numbered Links, on page 210
- Configuring Remote TE Link Adjacency Information for Unnumbered Links, on page 212

Configuring Numbered and Unnumbered Links

Perform this task to configure numbered and unnumbered links.

Unnumbered TE links use the IP address of the associated interface.

SUMMARY STEPS

- 1. configure
- 2. interface type interface-path-id
- **3.** Do one of the following:
 - ipv4 address ipv4-address mask
 - ipv4 unnumbered interface type interface-path-id
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface type interface-path-id	Enters MPLS-TE interface configuration mode and enables traffic engineering on a particular interface on the originating node.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface POS0/6/0/0</pre>	
Step 3	Do one of the following:	Specifies a primary or secondary IPv4 address for an interface.
	• ipv4 address ipv4-address mask	• Network mask is a four-part dotted decimal address. For example, 255.0.0.0
	• ipv4 unnumbered interface type interface-path-id	indicates that each bit equal to 1 means that the corresponding address bit belongs to the network address.

	Command or Action	Purpose	
	Example: RP/0/0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.0.0.0	• Network mask is indicated as a slash (/) and a number (prefix length). The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value, and there is no space between the IP address and the slash.	
		or	
		• Enables IPv4 processing on a point-to-point interface without assigning an explicit IPv4 address to that interface.	
		Note If you configured a unnumbered GigabitEthernet interface in Step 2 and selected the ipv4 unnumbered interface command type option in this step, you must enter the ipv4 point-to-point command to configure point-to-point interface mode.	
Step 4	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.	
		end—Prompts user to take one of these actions:	
		• Yes— Saves configuration changes and exits the configuration session.	
		• No —Exits the configuration session without committing the configurati changes.	
		• Cancel —Remains in the configuration mode, without committing the configuration changes.	

Configuring Local Reservable Bandwidth

Perform this task to configure the local reservable bandwidth for the data bearer channels.

SUMMARY STEPS

- 1. configure
- 2. rsvp interface type interface-path-id
- **3. bandwidth** [*total reservable bandwidth*] [**bc0** *bandwidth*] [**global-pool** *bandwidth*] [**sub-pool** *reservable-bw*]
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	rsvp interface type interface-path-id	Enters RSVP configuration mode and selects an RSVP interface ID.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# rsvp interface pos0/6/0/0</pre>	
Step 3	bandwidth [total reservable bandwidth] [bc0	Sets the reserved RSVP bandwidth available on this interface.
-	bandwidth] [global-pool bandwidth] [sub-pool reservable-bw]	Note MPLS-TE can use only the amount of bandwidth specified using this command on the configured interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config-rsvp-if)# bandwidth 2488320 2488320</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Local Switching Capability Descriptors

Perform this task to configure the local switching capability descriptor.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- **3. interface** *type interface-path-id*
- 4. flooding-igp ospf instance-id area area-id
- 5. switching key value [encoding encoding type]
- 6. switching key value [capability {psc1 | lsc | fsc}]
- 7. Use the commit or end command.

configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
mpls traffic-eng	Enters MPLS-TE configuration mode.
Example:	
RP/0/0/CPU0:router(config)# mpls traffic-eng	
interface type interface-path-id	Enters MPLS-TE interface configuration mode and enables traffic engineering on a particular interface on the originating node.
Example:	
<pre>RP/0/0/CPU0:router(config-mpls-te)# interface POS0/6/0/0</pre>	
flooding-igp ospf instance-id area area-id	Specifies the IGP OSPF interface ID and area where the TE links are to be flooded.
Example:	
<pre>RP/0/0/CPU0:router(config-mpls-te-if)# flooding-igp ospf 0 area 1</pre>	
switching key value [encoding encoding type]	Specifies the switching configuration for the interface and enters switching key mode where you will configure encoding and
Example:	capability.
<pre>RP/0/0/CPU0:router(config-mpls-te-if)# switching key 1 encoding ethernet</pre>	Note The recommended switch key value is 0.
_	RP/0/0/CPU0:router# configure mpls traffic-eng Example: RP/0/0/CPU0:router(config)# mpls traffic-eng interface type interface-path-id Example: RP/0/0/CPU0:router(config-mpls-te)# interface POS0/6/0/0 flooding-igp ospf instance-id area area-id Example: RP/0/0/CPU0:router(config-mpls-te)# flooding-igp ospf 0 area 1 switching key value [encoding encoding type] Example: RP/0/0/CPU0:router(config-mpls-te-if)#

	Command or Action	Purpose
Step 6	<pre>switching key value [capability {psc1 lsc fsc}]</pre>	Specifies the interface switching capability type. The recommended switch capability type is psc1 .
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if)# switching key 1 capability psc1</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Persistent Interface Index

Perform this task to preserve the LMP interface index across all interfaces on the router.

SUMMARY STEPS

- 1. configure
- 2. snmp-server ifindex persist
- **3.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	snmp-server ifindex persist	Enables ifindex persistence globally on all Simple Network Management Protocol (SNMP) interfaces.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# snmp-server ifindex persist</pre>	

	Command or Action	Purpose
Step 3	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Enabling LMP Message Exchange

Perform the following task to enable LMP message exchange. LMP is enabled by default. You can disable LMP on a per neighbor basis using the **Imp static** command in LMP protocol neighbor mode.

Note

LMP is recommended unless the peer optical device does not support LMP (in which case it is necessary to disable it at both ends).

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. Imp neighbor name
- 4. ipcc routed
- **5.** remote node-id *node-id*
- 6. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	

	Command or Action	Purpose
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
Step 3	Imp neighbor name	Configures or updates a LMP neighbor and its associated parameters.
	Example:	F
	<pre>RP/0/0/CPU0:router(config-mpls-te)# lmp neighbor OXC1</pre>	
Step 4	ipcc routed	Configures a routable Internet Protocol Control Channel (IPCC).
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-nbr-OXC1)# ipcc routed</pre>	
Step 5	remote node-id node-id	Configures the remote node ID for an LMP neighbor. In addition, the <i>node-id</i> value can be an IPv4 address.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-nbr-OXC1)# remote node-id 2.2.2.2</pre>	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Disabling LMP Message Exchange

Perform the following task to disable LMP message exchange. LMP is enabled by default. You can disable LMP on a per neighbor basis using the **Imp static** command in LMP protocol neighbor mode.

LMP is recommended unless the peer optical device does not support LMP (in which case it is necessary to disable it at both ends).

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. Imp neighbor name
- 4. Imp static
- 5. ipcc routed
- 6. remote node-id node-id
- 7. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
Step 3	Imp neighbor name	Configures or updates a LMP neighbor and its associated parameters.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# lmp neighbor OXC1</pre>	
Step 4	Imp static	Disables dynamic LMP procedures for the specified neighbor,
	Example:	including LMP hello and LMP link summary. This command is used for neighbors that do not support dynamic LMP procedures.
	<pre></pre>	
Step 5	ipcc routed	Configures a routable IPCC.
	Example:	
	RP/0/0/CPU0:router(config-mpls-te-nbr-OXC1)#	

	Command or Action	Purpose
	ipcc routed	
Step 6	remote node-id node-id	Configures the remote node ID for an LMP neighbor. The node ID value must be an IPv4 address.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-nbr-0XC1)# remote node-id 2.2.2.2</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Remote TE Link Adjacency Information for Numbered Links

Perform this task to configure remote TE link adjacency information for numbered links.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. interface type interface-path-id
- 4. Imp data-link adjacency
- 5. remote switching-capability {fsc | lsc | psc1}
- 6. remote interface-id unnum value
- 7. remote node-id node-id
- 8. neighbor *name*
- 9. remote node-id address
- **10.** Use the **commit** or **end** command.
- 11. show mpls lmp

Command or Action	Purpose
configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
mpls traffic-eng	Enters MPLS-TE configuration mode.
Example:	
<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
interface type interface-path-id	Enters MPLS-TE interface configuration mode and enables TE on a particular interface on the originating node.
Example:	
<pre>RP/0/0/CPU0:router(config-mpls-te)# interface POS0/6/0/0</pre>	
Imp data-link adjacency	Configures LMP neighbor remote TE links.
Example:	
<pre>RP/0/0/CPU0:router(config-mpls-te-if)# lmp data-link adjacency</pre>	
remote switching-capability {fsc lsc psc1}	Configures the remote LMP MPLS-TE interface switching capability.
Example:	
<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote switching-capability lsc</pre>	
remote interface-id unnum value	Configures the unnumbered interface identifier. Identifiers, which you specify by using this command, are the values
Example:	assigned by the neighbor at the remote side.
<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote interface-id unnum 7</pre>	
remote node-id node-id	Configures the remote node ID.
Example:	
<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote node-id 10.10.10.10</pre>	
	<pre>configure Example: RP/0/0/CPU0:router# configure mpls traffic-eng Example: RP/0/0/CPU0:router(config)# mpls traffic-eng interface type interface-path-id Example: RP/0/0/CPU0:router(config-mpls-te)# interface POSO/6/0/0 Imp data-link adjacency Example: RP/0/0/CPU0:router(config-mpls-te-if)# lmp data-link adjacency remote switching-capability {fsc lsc pscl} Example: RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote interface-id unnum value Example: RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote interface-id unnum value Example: RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote interface-id unnum 7 remote interface-id unnum 7</pre>

	Command or Action	Purpose
Step 8	neighbor name	Configures or updates an LMP neighbor and its associated parameters.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# neighbor OXC1</pre>	
Step 9	remote node-id address	Configures the remote node ID.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote node-id 10.10.10.10</pre>	
Step 10	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 11	show mpls lmp	Verifies the assigned value for the local interface identifiers
	Example:	
	RP/0/0/CPU0:router# show mpls lmp	

Configuring Remote TE Link Adjacency Information for Unnumbered Links

Perform this task to configure remote TE link adjacency information for unnumbered links.

To display the assigned value for the local interface identifiers, use the **show mpls lmp** command.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- **3.** interface type interface-path-id
- 4. Imp data link adjacency
- 5. neighbor name
- 6. remote te-link-id unnum
- 7. remote interface-id unnum interface-dentifier
- 8. remote switching-capability {fsc | lsc | psc1}
- **9.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
Step 3	interface type interface-path-id	Enters MPLS-TE interface configuration mode and enables TE on a particular interface on the originating node.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te) # interface POS0/6/0/0</pre>	
Step 4	Imp data link adjacency	Configures LMP neighbor remote TE links.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if) # lmp data-link adjacency</pre>	
Step 5	neighbor name	Configures or updates a LMP neighbor and its associated parameters.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# neighbor OXC1</pre>	

	Command or Action	Purpose
Step 6	remote te-link-id unnum	Configures the unnumbered interface and identifier.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote te-link-id unnum 111</pre>	
Step 7	remote interface-id unnum interface-dentifier	Configures the unnumbered interface identifier. Identifiers, which you specify by using this command, are the values
	Example:	assigned by the neighbor at the remote side.
	<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote interface-id unnum 7</pre>	
Step 8	remote switching-capability {fsc lsc psc1}	Configures emote the LMP MPLS-TE interface switching capability.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if-adj)# remote switching-capability lsc</pre>	
Step 9	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Numbered and Unnumbered Optical TE Tunnels

These subtasks are included:

- Configuring an Optical TE Tunnel Using Dynamic Path Option, on page 215
- Configuring an Optical TE Tunnel Using Explicit Path Option, on page 217

Note Before you can successfully bring optical TE tunnels "up," you must complete the procedures in the preceding sections.

The following characteristics can apply to the headend (or, signaling) router:

- Tunnels can be numbered or unnumbered.
- Tunnels can be dynamic or explicit.

The following characteristics can apply to the tailend (or, passive) router:

- Tunnels can be numbered or unnumbered.
- Tunnels must use the explicit path-option.

Configuring an Optical TE Tunnel Using Dynamic Path Option

Perform this task to configure a numbered or unnumbered optical tunnel on a router; in this example, the dynamic path option on the headend router. The dynamic option does not require that you specify the different hops to be taken along the way. The hops are calculated automatically.

The examples describe how to configure optical tunnels. It does not include procedures for every option available on the headend and tailend routers.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-gte tunnel-id
- 3. ipv4 address ip-address/prefix or ipv4 unnumbered type interface-path-id
- 4. switching transit switching type encoding encoding type
- 5. priority setup-priority hold-priority
- **6.** signalled-bandwidth {*bandwidth* [class-type *ct*] | sub-pool *bandwidth*}
- 7. destination *ip-address*
- 8. path-option *path-id* dynamic
- 9. direction [bidirectional]
- **10.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-gte tunnel-id	Configures an MPLS-TE tunnel for GMPLS interfaces.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-gtel</pre>	

	Command or Action	Purpose
Step 3	<pre>ipv4 address ip-address/prefix or ipv4 unnumbered type interface-path-id Example: RP/0/0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.0.0.0</pre>	 Specifies a primary or secondary IPv4 address for an interface. Network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means that the corresponding address bit belongs to the network address. Network mask can be indicated as a slash (/) and a number (prefix length). The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address). A slash must precede the decimal value, and there is no space between the IP address and the slash. Or Enables IPv4 processing on a point-to-point interface without
Step 4	switching transit switching type encoding encoding type	assigning an explicit IPv4 address to that interface. Specifies the switching capability and encoding types for all transit TE links used to signal the optical tunnel.
	Example: RP/0/0/CPU0:router(config-if)# switching transit lsc encoding sonetsdh	
Step 5	<pre>priority setup-priority hold-priority Example: RP/0/0/CPU0:router(config-if)# priority 1 1</pre>	Configures setup and reservation priorities for MPLS-TE tunnels.
Step 6	<pre>signalled-bandwidth {bandwidth [class-type ct] sub-pool bandwidth} Example: RP/0/0/CPU0:router(config-if)# signalled-bandwidth 10 class-type 1</pre>	Sets the CT0 bandwidth required on this interface. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).
Step 7	<pre>destination ip-address Example: RP/0/0/CPU0:router(config-if)# destination 192.168.92.125</pre>	 Assigns a destination address on the new tunnel. Destination address is the remote node's MPLS-TE router ID. Destination address is the merge point between backup and protected tunnels.

Command or Action	Purpose
path-option path-id dynamic	Configures the dynamic path option and path ID.
Example:	
<pre>RP/0/0/CPU0:router(config-if)# path-option l dynamic</pre>	
direction [bidirectional]	Configures a bidirectional optical tunnel for GMPLS.
Example:	
<pre>RP/0/0/CPU0:router(config-if)# direction bidirection</pre>	
Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration mode, without committing the configuration changes.
	path-option path-id dynamic Example: RP/0/0/CPU0:router(config-if)# path-option 1 dynamic direction [bidirectional] Example: RP/0/0/CPU0:router(config-if)# direction bidirection

Configuring an Optical TE Tunnel Using Explicit Path Option

Perform this task to configure a numbered or unnumbered optical TE tunnel on a router. This task can be applied to both the headend and tailend router.

You cannot configure dynamic tunnels on the tailend router.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-gte tunnel-id
- 3. ipv4 address ipv4-address mask or ipv4 unnumbered type interface-path-id
- 4. passive
- 5. match identifier tunnel number
- 6. destination *ip-address*
- 7. Use the commit or end command.

I

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-gte tunnel-id	Configures an MPLS-TE tunnel interface for GMPLS interfaces.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-gte 1 RP/0/0/CPU0:router(config-if)#</pre>	
Step 3	ipv4 address ipv4-address mask or ipv4	Specifies a primary or secondary IPv4 address for an interface.
	unnumbered type interface-path-id Example:	• Network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means that the corresponding address bit belongs to the network address.
	<pre>RP/0/0/CPU0:router(config-if)# ipv4 address 127.0.0.1 255.0.0.0</pre>	• Network mask can be indicated as a slash (/) and a number (prefix length). The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value, and there is no space between the IP address and the slash.
		or • Enables IPv4 processing on a point-to-point interface without assigning an explicit IPv4 address to that interface.
Step 4	passive	Configures a passive interface.
	Example: RP/0/0/CPU0:router(config-if)# passive	Note The tailend (passive) router does not signal the tunnel, it simply accepts a connection from the headend router. The tailend router supports the same configuration as the headend router.
Step 5	match identifier <i>tunnel number</i> Example:	Configures the match identifier. You must enter the hostname for the head router then underscore _t, and the tunnel number for the head router. If tunnel-tel is configured on the head router with a hostname of gmpls1, CLI is match identifier gmpls1 t1.
	<pre>RP/0/0/CPU0:router(config-if) # match identifier gmpls1_t1</pre>	Note The match identifier must correspond to the tunnel-gte number configured on the headend router. Together with the address specified using the destination command, this identifier uniquely identifies acceptable incoming tunnel requests.
Step 6	destination <i>ip-address</i>	Assigns a destination address on the new tunnel.

	Command or Action	Purpose
		• Destination address is the remote node's MPLS-TE router ID.
	<pre>Example: RP/0/0/CPU0:router(config-if)# destination 10.1.1.1</pre>	• Destination address is the merge point between backup and protected tunnels.
Step 7	Use the commit or end command.	commit—Saves the configuration changes, and remains within the configuration session. end—Prompts user to take one of these actions: • Yes— Saves configuration changes and exits the configuration session. • No—Exits the configuration session without committing the configuration changes. • Cancel—Remains in the configuration mode, without committing the configuration changes.

Configuring LSP Hierarchy

These tasks describe the high-level steps that are required to configure LSP hierarchy.

LSP hierarchy allows standard MPLS-TE tunnels to be established over GMPLS-TE tunnels.

Consider the following information when configuring LSP hierarchy:

- LSP hierarchy supports numbered optical TE tunnels with IPv4 addresses only.
- LSP hierarchy supports numbered optical TE tunnels using numbered or unnumbered TE links.

Before you can successfully configure LSP hierarchy, you must first establish a numbered optical tunnel between the headend and tailend routers.

To configure LSP hierarchy, you must perform a series of tasks that have been previously described in this GMPLS configuration section. The tasks, which must be completed in the order presented, are as follows:

- 1 Establish an optical TE tunnel.
- 2 Configure an optical TE tunnel under IGP.
- **3** Configure the bandwidth on the optical TE tunnel.
- 4 Configure the optical TE tunnel as a TE link.
- 5 Configure an MPLS-TE tunnel.

Related Topics

Configuring Numbered and Unnumbered Optical TE Tunnels, on page 214

Configuring Border Control Model

Border control model lets you specify the optical core tunnels to be advertised to edge packet topologies. Using this model, the entire topology is stored in a separate packet instance, allowing packet networks where these optical tunnels are advertised to use LSP hierarchy to signal an MPLS tunnel over the optical tunnel.

Consider the following information when configuring protection and restoration:

- GMPLS optical TE tunnel must be numbered and have a valid IPv4 address.
- Router ID, which is used for the IGP area and interface ID, must be consistent in all areas.
- OSPF interface ID may be a numeric or alphanumeric.

Border control model functionality is provided for multiple IGP instances in one area or in multiple IGP areas.

To configure border control model functionality, you will perform a series of tasks that have been previously described in this GMPLS configuration section. The tasks, which must be completed in the order presented, are as follows:

1 Configure two optical tunnels on different interfaces.

When configuring IGP, you must keep the optical and packet topology information in separate routing tables.

- 2 Configure OSPF adjacency on each tunnel.
- **3** Configure bandwidth on each tunnel.
- 4 Configure packet tunnels.

Configuring Path Protection

These tasks describe how to configure path protection:

- Configuring an LSP, on page 220
- Forcing Reversion of the LSP, on page 223

Configuring an LSP

Perform this task to configure an LSP for an explicit path. Path protection is enabled on a tunnel by adding an additional path option configuration at the active end. The path can be configured either explicitly or dynamically.

When the dynamic option is used for both working and protecting LSPs, CSPF extensions are used to determine paths with different degrees of diversity. When the paths are computed, they are used over the lifetime of the LSPs. The nodes on the path of the LSP determine if the PSR is or is not for a given LSP. This determination is based on information that is obtained at signaling.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-gte number
- 3. ipv4 address ipv4-address mask or ipv4 unnumbered type interface-path-id
- 4. signalled-name name
- 5. switching transit capability-switching-type encoding encoding-type
- 6. switching endpoint capability-switching -ype encoding encoding-type
- 7. priority setup-priority hold-priority
- 8. signalled-bandwidth {bandwidth [class-type ct] | sub-pool bandwidth}
- **9. destination** *ip-address*
- **10.** path-option *path-id* explicit {name *pathname* |*path-number* }
- **11.** path-option protecting *path-id* explicit {name *pathname* | *path-number*}
- **12.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-gte number	Configures an MPLS-TE tunnel interface for GMPLS interfaces.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-gte 1</pre>	
Step 3	ipv4 address ipv4-address mask or ipv4 unnumbered type interface-path-id	 Specifies a primary or secondary IPv4 address for an interface. Network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means
	Example: RP/0/0/CPU0:router(config-if)# ipv4 address 99.99.99.2 255.255.255.254	that the corresponding address bit belongs to the network address.
		• Network mask can be indicated as a slash (/) and a number (prefix length). The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the

	Command or Action	Purpose
		address compose the prefix (the network portion of the address). A slash must precede the decimal value, and there is no space between the IP address and the slash.
		or
		• Enables IPv4 processing on a point-to-point interface without assigning an explicit IPv4 address to that interface.
Step 4	signalled-name name	Configures the name of the tunnel required for an MPLS TE tunnel. The <i>name</i> argument specifies the signal for the tunnel.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if) # signalled-name tunnel-gte1</pre>	
Step 5	switching transit capability-switching-type encoding encoding-type	Specifies the switching capability and encoding types for all transit TE links used to signal the optical tunnel to configure an optical LSP.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if) # switching transit lsc encoding sonetsdh</pre>	
Step 6	switching endpoint <i>capability-switching -ype</i> encoding <i>encoding-type</i>	Specifies the switching capability and encoding types for all endpoint TE links used to signal the optical tunnel that is mandatory to set up the GMPLS LSP.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# switching endpoint psc1 encoding sonetsdh</pre>	
Step 7	priority setup-priority hold-priority	Configures setup and reservation priorities for MPLS-TE tunnels.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if) # priority 2 2</pre>	
Step 8	<pre>signalled-bandwidth {bandwidth [class-type ct] sub-pool bandwidth}</pre>	Configures the bandwidth required for an MPLS TE tunnel. The signalled-bandwidth command supports two bandwidth pools (class-types) for the Diff-Serv Aware TE (DS-TE) feature.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if) # signalled-bandwidth 2488320</pre>	
Step 9	destination <i>ip-address</i>	Assigns a destination address on the new tunnel.

	Command or Action	Purpose
	Example: RP/0/0/CPU0:router(config-if)# destination 24.24.24.24	 Destination address is the remote node's MPLS-TE router ID. Destination address is the merge point between backup and protected tunnels.
Step 10	<pre>path-option path-id explicit {name pathname path-number } Example: RP/0/0/CPU0:router(config-if) # path-option l explicit name po4</pre>	Configures the explicit path option and path ID.
Step 11	<pre>path-option protecting path-id explicit {name pathname path-number} Example: RP/0/0/CPU0:router(config-if) # path-option protecting 1 explicit name po6</pre>	Configures the path setup option to protect a path.
Step 12	Use the commit or end command.	 commit—Saves the configuration changes, and remains within the configuration session. end—Prompts user to take one of these actions: Yes—Saves configuration changes and exits the configuration session. No—Exits the configuration session without committing the configuration changes. Cancel—Remains in the configuration mode, without committing the configuration changes.

Forcing Reversion of the LSP

Perform this task to allow a forced reversion of the LSPs, which is only applicable to 1:1 LSP protection.

SUMMARY STEPS

- 1. mpls traffic-eng path-protection switchover {gmpls tunnel-name | tunnel-te tunnel-id }
- **2.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	<pre>mpls traffic-eng path-protection switchover {gmpls tunnel-name tunnel-te tunnel-id } Example: RP/0/0/CPU0:router# mpls traffic-eng path-protection switchover tunnel-te 1</pre>	The mpls traffic-eng path-protection switchover command must be issued on both head and tail router of the GMPLS LSP to achieve the complete path switchover at both ends.
Step 2	Use the commit or end command.	 commit—Saves the configuration changes and remains within the configuration session. end—Prompts user to take one of these actions: Yes— Saves configuration changes and exits the configuration session. No—Exits the configuration session without committing the configuration changes. Cancel—Remains in the configuration session, without committing the configuration than the configuration changes.

Configuring Flexible Name-based Tunnel Constraints

To fully configure MPLS-TE flexible name-based tunnel constraints, you must complete these high-level tasks in order:

- 1 Assigning Color Names to Numeric Values, on page 224
- 2 Associating Affinity-Names with TE Links, on page 226
- **3** Associating Affinity Constraints for TE Tunnels, on page 227

Assigning Color Names to Numeric Values

The first task in enabling the new coloring scheme is to assign a numerical value (in hexadecimal) to each value (color).

An affinity color name cannot exceed 64 characters. An affinity value cannot exceed a single digit. For example, magental.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- **3.** affinity-map affinity name {affinity value | bit-position value}
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng RP/0/0/CPU0:router(config-mpls-te)#</pre>	
Step 3	affinity-map <i>affinity name</i> { <i>affinity value</i> bit-position <i>value</i> }	Enters an affinity name and a map value by using a color name (repeat this command to assign multiple colors up to a maximum of 64 colors). An affinity color name cannot exceed 64 characters. The value you assign to a color name must be a single digit.
	Example:	assign to a color name must be a single digit.
	<pre>RP/0/0/CPU0:router(config-mpls-te)# affinity-map red 1</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Flexible Name-based Tunnel Constraints, on page 143 Configure Flexible Name-based Tunnel Constraints: Example, on page 290

Associating Affinity-Names with TE Links

The next step in the configuration of MPLS-TE Flexible Name-based Tunnel Constraints is to assign affinity names and values to TE links. You can assign up to a maximum of 32 colors. Before you assign a color to a link, you must define the name-to-value mapping for each color.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- **3. interface** *type interface-path-id*
- 4. attribute-names attribute name
- 5. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
	RP/0/0/CPU0:router(config-mpls-te)#	
Step 3	interface type interface-path-id	Enables MPLS-TE on an interface and enters MPLS-TE interface configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# interface tunnel-te 2 RP/0/0/CPU0:router(config-mpls-te-if)#</pre>	
Step 4	attribute-names attribute name	Assigns colors to TE links over the selected interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-if)# attribute-names red</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:

C	Command or Action	Purpose
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Flexible Name-based Tunnel Constraints, on page 143 Configure Flexible Name-based Tunnel Constraints: Example, on page 290 Assigning Color Names to Numeric Values, on page 224

Associating Affinity Constraints for TE Tunnels

The final step in the configuration of MPLS-TE Flexible Name-based Tunnel Constraints requires that you associate a tunnel with affinity constraints.

Using this model, there are no masks. Instead, there is support for four types of affinity constraints:

- include
- include-strict
- exclude
- exclude-all

Note

For the affinity constraints above, all but the exclude-all constraint may be associated with up to 10 colors.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- **3.** affinity {affinity-value mask mask-value | exclude name | exclude -all | include name | include-strict name}
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 1</pre>	
Step 3	affinity {affinity-value mask mask-value exclude name exclude -all include name	Configures link attributes for links comprising a tunnel. You can have up to ten colors.
	<pre> include-strict name} Example: RP/0/0/CPU0:router(config-if)# affinity include red</pre>	Multiple include statements can be specified under tunnel configuration. With this configuration, a link is eligible for CSPF if it has at least a red color or has at least a green color. Thus, a link with red and any other colors as well as a link with green and any additional colors meet the above constraint.
Step 4	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.

Related Topics

Flexible Name-based Tunnel Constraints, on page 143 Configure Flexible Name-based Tunnel Constraints: Example, on page 290

Configuring IS-IS to Flood MPLS-TE Link Information

Perform this task to configure a router running the Intermediate System-to-Intermediate System (IS-IS) protocol to flood MPLS-TE link information into multiple IS-IS levels.

This procedure shows how to enable MPLS-TE in both IS-IS Level 1 and Level 2.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. net *network-entity-title*
- 4. address-family {ipv4 | ipv6} {unicast}
- 5. metric-style wide
- 6. mpls traffic-eng level
- 7. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	router isis instance-id	Enters an IS-IS instance.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# router isis 1</pre>	
Step 3	net network-entity-title	Enters an IS-IS network entity title (NET) for the routing process.
	Example:	
	<pre>RP/0/0/CPU0:router(config-isis)# net 47.0001.0000.0000.0002.00</pre>	
Step 4	address-family {ipv4 ipv6} {unicast}	Enters address family configuration mode for configuring IS-IS routing that uses IPv4 and IPv6 address prefixes.
	Example:	
	<pre>RP/0/0/CPU0:router(config-isis)# address-family ipv4 unicast</pre>	
Step 5	metric-style wide	Enters the new-style type, length, and value (TLV) objects.
	Example:	
	<pre>RP/0/0/CPU0:router(config-isis-af)# metric-style wide</pre>	

	Command or Action	Purpose
Step 6	mpls traffic-eng level	Enters the required MPLS-TE level or levels.
	Example:	
	<pre>RP/0/0/CPU0:router(config-isis-af)# mpls traffic-eng level-1-2</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring an OSPF Area of MPLS-TE

Perform this task to configure an OSPF area for MPLS-TE in both the OSPF backbone area 0 and area 1.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. mpls traffic-eng router-id *ip-address*
- 4. area area-id
- 5. interface type interface-path-id
- 6. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	

	Command or Action	Purpose
Step 2	router ospf process-name	Enters a name that uniquely identifies an OSPF routing process.
	Example: RP/0/0/CPU0:router(config)# router ospf 100	<i>process-name</i> Any alphanumeric string no longer than 40 characters without spaces.
Step 3	mpls traffic-eng router-id <i>ip-address</i> Example:	Enters the MPLS interface type. For more information, use the question mark (?) online help function.
	<pre>RP/0/0/CPU0:router(config-ospf)# mpls traffic-eng router-id 192.168.70.1</pre>	
Step 4	area area-id	Enters an OSPF area identifier.
	Example: RP/0/0/CPU0:router(config-ospf)# area 0	<i>area-id</i> Either a decimal value or an IP address.
Step 5	interface type interface-path-id	Identifies an interface ID. For more information, use the question mark (?) online help function.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ospf-ar)# interface POS 0/2/0/0</pre>	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Explicit Paths with ABRs Configured as Loose Addresses

Perform this task to specify an IPv4 explicit path with ABRs configured as loose addresses.

SUMMARY STEPS

- 1. configure
- 2. explicit-path name name
- 3. index index-id next-address [loose] ipv4 unicast ip-address
- 4. Use the commit or end command.

Command or Action	Purpose
configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
explicit-path name name	Enters a name for the explicit path.
Example:	
<pre>RP/0/0/CPU0:router(config)# explicit-path name interarea1</pre>	
index <i>index-id</i> next-address [loose] ipv4 unicast <i>ip-address</i>	Includes an address in an IP explicit path of a tunnel.
Example:	
<pre>RP/0/0/CPU0:router(config-expl-path)# index 1 next-address loose ipv4 unicast 10.10.10.10</pre>	
Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.
	<pre>configure Example: RP/0/0/CPU0:router# configure explicit-path name name Example: RP/0/0/CPU0:router(config)# explicit-path name interarea1 index index-id next-address [loose] ipv4 unicast ip-address Example: RP/0/0/CPU0:router(config-expl-path)# index 1 next-address loose ipv4 unicast 10.10.10</pre>

Configuring MPLS-TE Forwarding Adjacency

Perform this task to configure forwarding adjacency on a specific tunnel-te interface.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. forwarding-adjacency holdtime value
- 4. Use the commit or end command.

Command or Action	Purpose
configure	Enters global configuration mode.
Example:	
RP/0/0/CPU0:router# configure	
interface tunnel-te tunnel-id	Enters MPLS-TE interface configuration mode.
Example:	
<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 1</pre>	
forwarding-adjacency holdtime value	Configures forwarding adjacency using an optional specific holdtime value. By default, this value is 0 (milliseconds).
Example:	
<pre>RP/0/0/CPU0:router(config-if)# forwarding-adjacency holdtime 60</pre>	
Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration mode, without committing the configuration changes.
	configure Example: RP/0/0/CPU0:router# configure interface tunnel-te tunnel-id Example: RP/0/0/CPU0:router(config)# interface tunnel-te 1 forwarding-adjacency holdtime value Example: RP/0/0/CPU0:router(config-if)# forwarding-adjacency holdtime 60

Related Topics

MPLS-TE Forwarding Adjacency Benefits, on page 146 Configure Forwarding Adjacency: Example, on page 292

Configuring Unequal Load Balancing

Perform these tasks to configure unequal load balancing:

- Setting Unequal Load Balancing Parameters, on page 234
- Enabling Unequal Load Balancing, on page 235

Setting Unequal Load Balancing Parameters

The first step you must take to configure unequal load balancing requires that you set the parameters on each specific interface. The default load share for tunnels with no explicit configuration is the configured bandwidth.

Note

Equal load-sharing occurs if there is no configured bandwidth.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. load-share value
- 4. Use the commit or end command.
- 5. show mpls traffic-eng tunnels

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface configuration mode and enables traffic engineering on a particular interface on the originating
	Example:	node.
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 1</pre>	Note Only tunnel-te interfaces are permitted.

	Command or Action	Purpose
Step 3	load-share value	Configures the load-sharing parameters for the specified interface.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# load-share 1000</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.
Step 5	show mpls traffic-eng tunnels	Verifies the state of unequal load balancing, including bandwidth and load-share values.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng tunnels	

Related Topics

Unequal Load Balancing, on page 147 Configure Unequal Load Balancing: Example, on page 292

Enabling Unequal Load Balancing

This task describes how to enable unequal load balancing. (For example, this is a global switch used to turn unequal load-balancing on or off.)

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. load-share unequal
- 4. Use the commit or end command.
- 5. show mpls traffic-eng tunnels

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters the MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config) # mpls traffic-eng</pre>	
Step 3	load-share unequal	Enables unequal load sharing across TE tunnels to the same destination.
	Example:	
	RP/0/0/CPU0:router(config-mpls-te)# load-share unequal	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 5	show mpls traffic-eng tunnels	Verifies the state of unequal load balancing, including bandwidth and load-share values.
	Example:	
	<pre>RP/0/0/CPU0:router# show mpls traffic-eng tunnels</pre>	

Related Topics

Unequal Load Balancing, on page 147 Configure Unequal Load Balancing: Example, on page 292

Configuring a Path Computation Client and Element

Perform these tasks to configure Path Comptation Client (PCC) and Path Computation Element (PCE):

- Configuring a Path Computation Client, on page 237
- Configuring a Path Computation Element Address, on page 238
- Configuring PCE Parameters, on page 239

Configuring a Path Computation Client

Perform this task to configure a TE tunnel as a PCC.

Only one TE-enabled IGP instance can be used at a time.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. path-option preference-priority dynamic pce
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Enters MPLS-TE interface configuration mode and enables traffic engineering on a particular interface on the originating node.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# interface tunnel-te 6</pre>	
Step 3	path-option preference-priority dynamic pce	Configures a TE tunnel as a PCC.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# path-option 1 dynamic pce</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.

Command or Action	Purpose
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration mode, without committing the configuration changes.

Path Computation Element, on page 148 Configure PCE: Example, on page 293

Configuring a Path Computation Element Address

Perform this task to configure a PCE address.

Only one TE-enabled IGP instance can be used at a time.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. pce address ipv4 address
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters the MPLS-TE configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls	

	Command or Action	Purpose
	traffic-eng	
Step 3	pce address ipv4 address	Configures a PCE IPv4 address.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# pce address ipv4 10.1.1.1</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Path Computation Element, on page 148 Configure PCE: Example, on page 293

Configuring PCE Parameters

Perform this task to configure PCE parameters, including a static PCE peer, periodic reoptimization timer values, and request timeout values.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. pce address ipv4 address
- 4. pce peer ipv4 address
- 5. pce keepalive interval
- 6. pce deadtimer value
- 7. pce reoptimize value
- 8. pce request-timeout value
- 9. pce tolerance keepalive value
- **10.** Use the **commit** or **end** command.
- 11. show mpls traffic-eng pce peer [address | all]
- 12. show mpls traffic-eng pce tunnels

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
Step 3	pce address ipv4 address	Configures a PCE IPv4 address.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# pce address ipv4 10.1.1.1</pre>	
Step 4	pce peer ipv4 address	Configures a static PCE peer address. PCE peers are also discovered dynamically through OSPF or ISIS.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# pce peer address ipv4 10.1.1.1</pre>	

	Command or Action	Purpose
Step 5	pce keepalive interval Example:	Configures a PCEP keepalive interval. The range is from 0 to 255 seconds. When the keepalive interval is 0, the LSR does not send keepalive messages.
	RP/0/0/CPU0:router(config-mpls-te)# pce keepalive 10	
Step 6	pce deadtimer value	Configures a PCE deadtimer value. The range is from 0 to 255 seconds. When the dead interval is 0, the LSR does not timeout
	Example:	a PCEP session to a remote peer.
	RP/0/0/CPU0:router(config-mpls-te)# pce deadtimer 50	
Step 7	pce reoptimize value	Configures a periodic reoptimization timer value. The range is from 60 to 604800 seconds. When the dead interval is 0, the
	Example:	LSR does not timeout a PCEP session to a remote peer.
	<pre>RP/0/0/CPU0:router(config-mpls-te)# pce reoptimize 200</pre>	
Step 8	pce request-timeout value	Configures a PCE request-timeout. Range is from 5 to 100 seconds. PCC or PCE keeps a pending path request only for the
	Example:	request-timeout period.
	<pre>RP/0/0/CPU0:router(config-mpls-te)# pce request-timeout 10</pre>	
Step 9	pce tolerance keepalive value	Configures a PCE tolerance keepalive value (which is the minimum acceptable peer proposed keepalive).
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# pce tolerance keepalive 10</pre>	
Step 10	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

	Command or Action	Purpose
Step 11	show mpls traffic-eng pce peer [address all]	Displays the PCE peer address and state.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng pce peer	
Step 12	show mpls traffic-eng pce tunnels	Displays the status of the PCE tunnels.
	Example:	
	<pre>RP/0/0/CPU0:router# show mpls traffic-eng pce tunnels</pre>	

Path Computation Element, on page 148 Configure PCE: Example, on page 293

Configuring Policy-based Tunnel Selection

Perform this task to configure policy-based tunnel selection (PBTS).

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. ipv4 unnumbered type interface-path-id
- **4.** signalled-bandwidth {*bandwidth* [class-type *ct*] | sub-pool *bandwidth*}
- 5. autoroute announce
- 6. destination *ip-address*
- 7. policy-class $\{1 7\} \mid \{\text{default}\}$
- 8. path-option preference-priority {explicit name explicit-path-name}
- 9. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface and enables traffic engineering on a particular interface on the originating node.
	Example:	
	<pre>RP/0/0/CPU0:router(config) # interface tunnel-te 6</pre>	
Step 3	ipv4 unnumbered type interface-path-id	Assigns a source address so that forwarding can be performed on the new tunnel.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</pre>	
Step 4	<pre>signalled-bandwidth {bandwidth [class-type ct] sub-pool bandwidth}</pre>	Configures the bandwidth required for an MPLS TE tunnel. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# signalled-bandwidth 10 class-type 1</pre>	
Step 5	autoroute announce	Enables messages that notify the neighbor nodes about the routes that are forwarding.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# autoroute announce</pre>	
Step 6	destination <i>ip-address</i>	Assigns a destination address on the new tunnel.
	Example:	• Destination address is the remote node's MPLS-TE router ID.
	<pre>RP/0/0/CPU0:router(config-if)# destination 10.1.1.1</pre>	• Destination address is the merge point between backup and protected tunnels.
Step 7	policy-class {1 - 7} {default}	Configures PBTS to direct traffic into specific TE tunnels or default class.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# policy-class 1</pre>	

	Command or Action	Purpose
Step 8	path-option <i>preference-priority</i> { explicit name <i>explicit-path-name</i> }	Sets the path option to explicit with a given name (previously configured) and assigns the path ID.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)# path-option l explicit name backup-path</pre>	
Step 9	Use the commit or end command.	commit —Saves the configuration changes, and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration mode, without committing the configuration changes.

Policy-Based Tunnel Selection Functions, on page 150 Policy-Based Tunnel Selection, on page 149 Configure Policy-based Tunnel Selection: Example, on page 294

Configuring the Automatic Bandwidth

Perform these tasks to configure the automatic bandwidth:

Configuring the Collection Frequency

Perform this task to configure the collection frequency. You can configure only one global collection frequency.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. auto-bw collect frequency minutes
- 4. Use the commit or end command.
- 5. show mpls traffic-eng tunnels [auto-bw]

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	RP/0/0/CPU0:router(config) # mpls	
	<pre>traffic-eng RP/0/0/CPU0:router(config-mpls-te)#</pre>	
Step 3	auto-bw collect frequency minutes	Configures the automatic bandwidth collection frequency, and controls the manner in which the bandwidth for a tunnel collects output rate
	Example:	information; but does not adjust the tunnel bandwidth.
	RP/0/0/CPU0:router(config-mpls-te)#	minutes
	auto-bw collect frequency 1	Configures the interval between automatic bandwidth adjustments in minutes. Range is from 1 to 10080.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 5	show mpls traffic-eng tunnels [auto-bw]	Displays information about MPLS-TE tunnels for the automatic bandwidth. The globally configured collection frequency is displayed.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic tunnels auto-bw	

Related Topics

MPLS-TE Automatic Bandwidth Overview, on page 152 Configure Automatic Bandwidth: Example, on page 295

Forcing the Current Application Period to Expire Immediately

Perform this task to force the current application period to expire immediately on the specified tunnel. The highest bandwidth is applied on the tunnel before waiting for the application period to end on its own.

SUMMARY STEPS

- 1. mpls traffic-eng auto-bw apply {all | tunnel-te tunnel-number}
- 2. Use the commit or end command.
- 3. show mpls traffic-eng tunnels [auto-bw]

DETAILED STEPS

	Command or Action	Purpose
Step 1	<pre>mpls traffic-eng auto-bw apply {all tunnel-te tunnel-number}</pre>	Configures the highest bandwidth available on a tunnel without waiting for the current application period to end.
	Example: RP/0/0/CPU0:router# mpls traffic-eng auto-bw apply tunnel-te 1	 all Configures the highest bandwidth available instantly on all the tunnels. tunnel-te Configures the highest bandwidth instantly to the specified tunnel. Range is from 0 to 65535.
Step 2	Use the commit or end command.	 commit—Saves the configuration changes and remains within the configuration session. end—Prompts user to take one of these actions: Yes— Saves configuration changes and exits the configuration session. No—Exits the configuration session without committing the configuration changes. Cancel—Remains in the configuration session, without committing the configuration changes.
Step 3	show mpls traffic-eng tunnels [auto-bw] Example: RP/0/0/CPU0:router# show mpls traffic-eng tunnels auto-bw	Displays information about MPLS-TE tunnels for the automatic bandwidth

Restrictions for MPLS-TE Automatic Bandwidth, on page 154

Configuring the Automatic Bandwidth Functions

Perform this task to configure the following automatic bandwidth functions:

Application frequency

Configures the application frequency in which a tunnel bandwidth is updated by the automatic bandwidth.

Bandwidth collection

Configures only the bandwidth collection.

Bandwidth parameters

Configures the minimum and maximum automatic bandwidth to set on a tunnel.

Adjustment threshold

Configures the adjustment threshold for each tunnel.

Overflow detection

Configures the overflow detection for each tunnel.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. auto-bw
- 4. application *minutes*
- **5. bw-limit** {**min** *bandwidth* } {**max** *bandwidth*}
- 6. adjustment-threshold percentage [min minimum-bandwidth]
- 7. overflow threshold percentage [min bandwidth] limit limit
- 8. Use the commit or end command.
- 9. show mpls traffic-eng tunnels [auto-bw]

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	

I

	Command or Action	Purpose
Step 2	<pre>interface tunnel-te tunnel-id Example: RP/0/0/CPU0:router(config)# interface tunnel-te 6 RP/0/0/CPU0:router(config-if)#</pre>	Configures an MPLS-TE tunnel interface and enables traffic engineering on a particular interface on the originating node.
Step 3	auto-bw Example: RP/0/0/CPU0:router(config-if)# auto-bw RP/0/0/CPU0:router(config-if-tunte-autobw)#	Configures automatic bandwidth on a tunnel interface and enters MPLS-TE automatic bandwidth interface configuration mode.
Step 4	<pre>application minutes Example: RP/0/0/CPU0:router(config-if-tunte-autobw)# application 1000</pre>	Configures the application frequency in minutes for the applicable tunnel. <i>minutes</i> Frequency in minutes for the automatic bandwidth application. Range is from 5 to 10080 (7 days). The default value is 1440 (24 hours).
Step 5	<pre>bw-limit {min bandwidth } {max bandwidth} Example: RP/0/0/CPU0:router(config-if-tunte-autobw)# bw-limit min 30 max 80</pre>	Configures the minimum and maximum automatic bandwidth set on a tunnel. min Applies the minimum automatic bandwidth in kbps on a tunnel. Range is from 0 to 4294967295. max Applies the maximum automatic bandwidth in kbps on a tunnel. Range is from 0 to 4294967295.
Step 6	<pre>adjustment-threshold percentage [min minimum-bandwidth] Example: RP/0/0/CPU0:router(config-if-tunte-autobw)# adjustment-threshold 50 min 800</pre>	Configures the tunnel bandwidth change threshold to trigger an adjustment. <i>percentage</i> Bandwidth change percent threshold to trigger an adjustment if the largest sample percentage is higher or lower than the current tunnel bandwidth. Range is from 1 to 100 percent. The default value is 5 percent.

	Command or Action	Purpose
		min
		Configures the bandwidth change value to trigger an adjustment. The tunnel bandwidth is changed only if the largest sample is higher or lower than the current tunnel bandwidth. Range is from 10 to 4294967295 kilobits per second (kbps). The default value is 10 kbps.
Step 7	overflow threshold percentage [min bandwidth] limit limit	Configures the tunnel overflow detection. <i>percentage</i>
	Example: RP/0/0/CPU0:router(config-if-tunte-autobw)#	Bandwidth change percent to trigger an overflow. Range is from 1 to 100 percent.
	overflow threshold 100 limit 1	limit
		Configures the number of consecutive collection intervals that exceeds the threshold. The bandwidth overflow triggers an early tunnel bandwidth update. Range is from 1 to 10 collection periods. The default value is none.
		min
		Configures the bandwidth change value in kbps to trigger an overflow. Range is from 10 to 4294967295. The default value is 10.
Step 8	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 9	show mpls traffic-eng tunnels [auto-bw]	Displays the MPLS-TE tunnel information only for tunnels in which the automatic bandwidth is enabled.
	Example:	
	RP/0/0/CPU0:router# show mpls traffic-eng tunnels auto-bw	

MPLS-TE Automatic Bandwidth Overview, on page 152 Configure Automatic Bandwidth: Example, on page 295

Configuring the Shared Risk Link Groups

To activate the MPLS traffic engineering SRLG feature, you must configure the SRLG value of each link that has a shared risk with another link.

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link

Perform this task to configure the SRLG value for each link that has a shared risk with another link.

You can configure up to 30 SRLGs per interface.

SUMMARY STEPS

- 1. configure
- 2. srlg
- 3. interface type interface-path-id
- 4. value value
- 5. Use the commit or end command.
- 6. show srlg interface type interface-path-id
- 7. show srlg

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	srlg	Configures SRLG configuration commands on a specific interface configuration mode and assigns this SRLG a value.
	Example: RP/0/0/CPU0:router(config)# srlg	
Step 3	interface type interface-path-id	Configures an interface type and path ID to be associated with an SRLG and enters SRLG interface configuration mode.
	<pre>Example: RP/0/0/CPU0:router(config-srlg)# interface POS 0/6/0/0</pre>	

	Command or Action	Purpose	
Step 4	value value	Configures SRLG network values for a specific interface. Range is 0 to 4294967295.	
	<pre>Example: RP/0/0/CPU0:router(config-srlg-if)# value 100 RP/0/0/CPU0:router (config-srlg-if)# value 200 RP/0/0/CPU0:router(config-srlg-if)# value 300</pre>	Note You can also set SRLG values on multiple interfaces including bundle interface.	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end—Prompts user to take one of these actions:	
		• Yes— Saves configuration changes and exits the configuration session.	
		• No—Exits the configuration session without committing the configuration changes.	
		• Cancel —Remains in the configuration session, without committing the configuration changes.	
Step 6	show srlg interface type interface-path-id	(Optional) Displays the SRLG values configured for a specific interface.	
	Example: RP/0/0/CPU0:router# show srlg interface POS 0/6/0/0		
Step 7	show srlg	(Optional) Displays the SRLG values for all the configured interfaces	
	Example: RP/0/0/CPU0:router# show srlg	Note You can configure up to 250 interfaces.	

MPLS Traffic Engineering Shared Risk Link Groups, on page 154
Explicit Path, on page 155
Fast ReRoute with SRLG Constraints, on page 156
Importance of Protection, on page 157
Delivery of Packets During a Failure, on page 158
Multiple Backup Tunnels Protecting the Same Interface, on page 158
SRLG Limitations, on page 158
MPLS TE SRLG Scale Enhancements, on page 159
Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Creating an Explicit Path With Exclude SRLG

Perform this task to create an explicit path with the exclude SRLG option.

SUMMARY STEPS

- 1. configure
- 2. explicit-path {identifier number [disable | index]}{ name explicit-path-name}
- **3.** index 1 exclude-address 192.168.92.1
- 4. index 2 exclude-srlg 192.168.92.2
- 5. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	<pre>explicit-path {identifier number [disable index]}{ name explicit-path-name}</pre>	Enters the explicit path configuration mode. Identifer range is 1 to 65535.
	Example: RP/0/0/CPU0:router(config)# explicit-path name backup-srlg	
Step 3	index 1 exclude-address 192.168.92.1	Specifies the IP address to be excluded from the explicit path.
	Example: RP/0/0/CPU0:router router(config-expl-path)# index 1 exclude-address 192.168.92.1	
Step 4	index 2 exclude-srlg 192.168.92.2	Specifies the IP address to extract SRLGs to be excluded from the explicit path.
	<pre>Example: RP/0/0/CPU0:router(config-expl-path)# index 2 exclude-srlg 192.168.192.2</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

 Command or Action	Purpose
	•

MPLS Traffic Engineering Shared Risk Link Groups, on page 154 Explicit Path, on page 155 Fast ReRoute with SRLG Constraints, on page 156 Importance of Protection, on page 157 Delivery of Packets During a Failure, on page 158 Multiple Backup Tunnels Protecting the Same Interface, on page 158 SRLG Limitations, on page 158 MPLS TE SRLG Scale Enhancements, on page 159 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Using Explicit Path With Exclude SRLG

Perform this task to use an explicit path with the exclude SRLG option on the static backup tunnel.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. interface type interface-path-id
- 4. backup-path tunnel-te tunnel-number
- 5. exit
- 6. exit
- 7. interface tunnel-tetunnel-id
- 8. ipv4 unnumbered type interface-path-id
- 9. path-option preference-priority{ dynamic | explicit {identifier | name explicit-path-name}}}
- **10. destination** *ip-address*
- 11. exit
- **12.** Use the **commit** or **end** command.
- 13. show run explicit-path name name
- 14. show mpls traffic-eng topology path destination name explicit-path name

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 3	interface type interface-path-id	Enables traffic engineering on a specific interface on the originating node.
	<pre>Example: RP/0/0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</pre>	
Step 4	backup-path tunnel-te tunnel-number	Configures an MPLS TE backup path for a specific interface.
	Example: RP/0/0/CPU0:router(config-mpls-te)# backup-path tunnel-te 2	
Step 5	exit	Exits the current configuration mode.
	Example: RP/0/0/CPU0:router(config-mpls-te-if)# exit	
Step 6	exit	Exits the current configuration mode.
	Example: RP/0/0/CPU0:router(config-mpls-te)# exit	
Step 7	interface tunnel-tetunnel-id	Configures an MPLS-TE tunnel interface.
	<pre>Example: RP/0/0/CPU0:router(config)# interface tunnel-te 2</pre>	
Step 8	ipv4 unnumbered type interface-path-id	Assigns a source address to set up forwarding on the new tunnel.
	Example: RP/0/0/CPU0:router(config-if)# ipv4 unnumbered Loopback0	
Step 9	path-option preference-priority { dynamic explicit {identifier name explicit-path-name}}	Sets the path option to explicit with a given name (previously configured) and assigns the path ID.
	Example: RP/0/0/CPU0:router(config-if)# path-option l explicit name backup-srlg	Note You can use the dynamic option to dynamically assign a path.
Step 10	destination <i>ip-address</i>	Assigns a destination address on the new tunnel.

	Command or Action	Purpose
	Example: RP/0/0/CPU0:router(config-if)# destination 192.168.92.125	 Destination address is the remote node's MPLS-TE router ID. Destination address is the merge point between backup and protected tunnels.
		Note When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.
Step 11	exit	Exits the current configuration mode.
	Example: RP/0/0/CPU0:router(config-if)# exit	
Step 12	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 13	show run explicit-path name name	Displays the SRLG values that are configured for the link.
	Example: RP/0/0/CPU0:router# show run explicit-path name backup-srlg	
Step 14	show mpls traffic-eng topology path destination name explicit-path name	Displays the SRLG values that are configured for the link.
	Example: RP/0/0/CPU0:router#show mpls traffic-eng topology path destination 192.168.92.125 explicit-path backup-srlg	

MPLS Traffic Engineering Shared Risk Link Groups, on page 154 Explicit Path, on page 155 Fast ReRoute with SRLG Constraints, on page 156 Importance of Protection, on page 157 Delivery of Packets During a Failure, on page 158 Multiple Backup Tunnels Protecting the Same Interface, on page 158 SRLG Limitations, on page 158 MPLS TE SRLG Scale Enhancements, on page 159 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Creating a Link Protection on Backup Tunnel with SRLG Constraint

Perform this task to create an explicit path with the exclude SRLG option on the static backup tunnel.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. interface type interface-path-id
- 4. backup-path tunnel-te tunnel-number
- 5. exit
- 6. exit
- 7. interface tunnel-tetunnel-id
- 8. ipv4 unnumbered type interface-path-id
- 9. path-option preference-priority{ dynamic | explicit {identifier | name explicit-path-name}}}
- **10. destination** *ip-address*
- 11. exit
- **12.** explicit-path {identifier number [disable | index]}{ name *explicit-path-name*}
- 13. index 1 exclude-srlg 192.168.92.2
- 14. Use the commit or end command.
- 15. show mpls traffic-eng tunnelstunnel-number detail

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	

	Command or Action	Purpose
Step 3	<pre>interface type interface-path-id Example: RP/0/0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</pre>	Enables traffic engineering on a particular interface on the originating node.
Step 4	<pre>backup-path tunnel-te tunnel-number Example: RP/0/0/CPU0:router(config-mpls-te)# backup-path tunnel-te 2</pre>	Sets the backup path to the primary tunnel outgoing interface.
Step 5	<pre>exit Example: RP/0/0/CPU0:router(config-mpls-te-if)# exit</pre>	Exits the current configuration mode.
Step 6	exit Example: RP/0/0/CPU0:router(config-mpls-te)# exit	Exits the current configuration mode.
Step 7	<pre>interface tunnel-tetunnel-id Example: RP/0/0/CPU0:router(config)# interface tunnel-te 2</pre>	Configures an MPLS-TE tunnel interface.
Step 8	<pre>ipv4 unnumbered type interface-path-id Example: RP/0/0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</pre>	Assigns a source address to set up forwarding on the new tunnel.
Step 9	<pre>path-option preference-priority{ dynamic explicit {identifier name explicit-path-name}} Example: RP/0/0/CPU0:router(config-if)# path-option 1 explicit name backup-srlg</pre>	Sets the path option to explicit with a given name (previously configured) and assigns the path ID. Identifier range is from 1 to 4294967295.NoteYou can use the dynamic option to dynamically assign a path.
Step 10	<pre>destination ip-address Example: RP/0/0/CPU0:router(config-if)# destination 192.168.92.125</pre>	 Assigns a destination address on the new tunnel. Destination address is the remote node's MPLS-TE router ID. Destination address is the merge point between backup and protected tunnels. Note When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.

	Command or Action	Purpose
Step 11	exit	Exits the current configuration mode.
	Example: RP/0/0/CPU0:router(config-if)# exit	
Step 12	<pre>explicit-path {identifier number [disable index]}{ name explicit-path-name}</pre>	Enters the explicit path configuration mode. Identifer range is 1 to 65535.
	<pre>Example: RP/0/0/CPU0:router(config)# explicit-path name backup-srlg-nodep</pre>	
Step 13	index 1 exclude-srlg 192.168.92.2	Specifies the protected link IP address to get SRLGs to be excluded from the explicit path.
	<pre>Example: RP/0/0/CPU0:router:router(config-if)# index 1 exclude-srlg 192.168.192.2</pre>	
Step 14	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 15	show mpls traffic-eng tunnelstunnel-number detail	Display the tunnel details with SRLG values that are configured for the link.
	Example: RP/0/0/CPU0:router# show mpls traffic-eng tunnels 2 detail	

MPLS Traffic Engineering Shared Risk Link Groups, on page 154 Explicit Path, on page 155 Fast ReRoute with SRLG Constraints, on page 156 Importance of Protection, on page 157 Delivery of Packets During a Failure, on page 158 Multiple Backup Tunnels Protecting the Same Interface, on page 158 SRLG Limitations, on page 158 MPLS TE SRLG Scale Enhancements, on page 159 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Creating a Node Protection on Backup Tunnel with SRLG Constraint

Perform this task to configure node protection on backup tunnel with SRLG constraint.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. interface type interface-path-id
- 4. backup-path tunnel-te tunnel-number
- 5. exit
- 6. exit
- 7. interface tunnel-tetunnel-id
- **8.** ipv4 unnumbered type interface-path-id
- **9.** path-option *preference-priority*{ dynamic | explicit {identifier | name *explicit-path-name*}}
- **10. destination** *ip-address*
- **11**. exit
- **12.** explicit-path {identifier number [disable | index]}{ name explicit-path-name}
- **13. index 1 exclude-address** 192.168.92.1
- 14. index 2 exclude-srlg 192.168.92.2
- **15.** Use the **commit** or **end** command.
- 16. show mpls traffic-eng tunnels topology path destination *ip-address* explicit-path-name name

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 3	interface type interface-path-id	Enables traffic engineering on a particular interface on the originating node.
	<pre>Example: RP/0/0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</pre>	
Step 4	backup-path tunnel-te tunnel-number	Sets the backup path for the primary tunnel outgoing interface.
	<pre>Example: RP/0/0/CPU0:router(config-mpls-te)# backup-path tunnel-te 2</pre>	

I

	Command or Action	Purpose
Step 5	exit	Exits the current configuration mode.
	Example: RP/0/0/CPU0:router(config-mpls-te-if)# exit	
Step 6	exit	Exits the current configuration mode.
	Example: RP/0/0/CPU0:router(config-mpls-te)# exit	
Step 7	interface tunnel-tetunnel-id	Configures an MPLS-TE tunnel interface.
	Example: RP/0/0/CPU0:router(config)# interface tunnel-te 2	
Step 8	ipv4 unnumbered type interface-path-id	Assigns a source address to set up forwarding on the new tunnel.
	Example: RP/0/0/CPU0:router(config-if)# ipv4 unnumbered Loopback0	
Step 9	<pre>path-option preference-priority{ dynamic explicit {identifier name explicit-path-name}}</pre>	Sets the path option to explicit with a given name (previously configured) and assigns the path ID. Identifier range is 1 to 4294967295.
	<pre>Example: RP/0/0/CPU0:router(config-if)# path-option 1 explicit name backup-srlg</pre>	Note You can use the dynamic option to dynamically assign path.
Step 10	destination <i>ip-address</i>	Assigns a destination address on the new tunnel.
	Example: RP/0/0/CPU0:router(config-if)# destination	• Destination address is the remote node's MPLS-TE router ID.
	192.168.92.125	• Destination address is the merge point between backup and protected tunnels.
		Note When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.
Step 11	exit	Exits the current configuration mode.
	Example: RP/0/0/CPU0:router(config-if)# exit	
Step 12	<pre>explicit-path {identifier number [disable index]}{ name explicit-path-name}</pre>	Enters the explicit path configuration mode. Identifer range is 1 to 65535.
	<pre>Example: RP/0/0/CPU0:router(config)# explicit-path name backup-srlg-nodep</pre>	

	Command or Action	Purpose
Step 13	index 1 exclude-address 192.168.92.1	Specifies the protected node IP address to be excluded from the explicit path.
	<pre>Example: RP/0/0/CPU0:router:router(config-if)# index 1 exclude-address 192.168.92.1</pre>	
Step 14	index 2 exclude-srlg 192.168.92.2	Specifies the protected link IP address to get SRLGs to be excluded from the explicit path.
	<pre>Example: RP/0/0/CPU0:router(config-if)# index 2 exclude-srlg 192.168.192.2</pre>	
Step 15	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 16	show mpls traffic-eng tunnels topology path destination <i>ip-address</i> explicit-path-name <i>name</i>	Displays the path to the destination with the constraint specified in the explicit path.
	Example: RP/0/0/CPU0:router# show mpls traffic-eng tunnels topology path destination 192.168.92.125 explicit-path-name backup-srlg-nodep	

MPLS Traffic Engineering Shared Risk Link Groups, on page 154 Explicit Path, on page 155 Fast ReRoute with SRLG Constraints, on page 156 Importance of Protection, on page 157 Delivery of Packets During a Failure, on page 158 Multiple Backup Tunnels Protecting the Same Interface, on page 158 SRLG Limitations, on page 158 MPLS TE SRLG Scale Enhancements, on page 159 Configure the MPLS-TE Shared Risk Link Groups: Example, on page 295

Enabling Soft-Preemption on a Node

Perform this task to enable the soft-preemption feature in the MPLS TE configuration mode. By default, this feature is disabled. You can configure the soft-preemption feature for each node. It has to be explicitly enabled for each node.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. soft-preemption
- 4. timeout seconds
- 5. Use the commit or end command.

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example:		
	RP/0/0/CPU0:router# configure		
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.	
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng		
Step 3	soft-preemption	Enables soft-preemption on a node.	
	Example: RP/0/0/CPU0:router(config-mpls-te)# soft-preemption	Note If soft-preemption is enabled, the head-end node tracks whether an LSP desires the soft-preemption treatment. However, when a soft-preemption feature is disabled on a node, this node continues to track all LSPs desiring soft-preemption. This is needed in a case when soft-preemption is re-enabled, TE will have the property of the existing LSPs without any re-signaling.	
Step 4	timeout seconds	Specifies the timeout for the soft-preempted LSP, in seconds. The range is from 1 to 300.	
	Example: RP/0/0/CPU0:router(config-soft-preemption)# timeout 20		
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end—Prompts user to take one of these actions:	
		• Yes— Saves configuration changes and exits the configuration session.	

 Command or Action	Purpose
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Soft-Preemption, on page 159

Enabling Soft-Preemption on a Tunnel

Perform this task to enable the soft-preemption feature on a MPLS TE tunnel. By default, this feature is disabled. It has to be explicitly enabled.

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. soft-preemption
- 4. Use the commit or end command.

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example:		
	RP/0/0/CPU0:router# configure		
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.	
	Example: RP/0/0/CPU0:router# interface tunnel-te 10		
Step 3	soft-preemption	Enables soft-preemption on a tunnel.	
	<pre>Example: RP/0/0/CPU0:router(config-if)# soft-preemption</pre>	 When soft preemption is enabled on a tunnel, these actions occur: A path-modify message is sent for the current LSP with the soft preemption desired property. A path-modify message is sent for the reopt LSP with the soft preemption desired property. 	

Command or Action	 Purpose A path-modify message is sent for the path protection LSP with the soft preemption desired property. A path-modify message is sent for the current LSP in FRR active state with the soft preemption desired property. 	
	Note The soft-preemption is not available in the interface tunnel-mte and interface tunnel-gte configuration modes.	
Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
	end—Prompts user to take one of these actions:	
	• Yes— Saves configuration changes and exits the configuration session.	
	• No —Exits the configuration session without committing the configuration changes.	
	• Cancel —Remains in the configuration session, without committing the configuration changes.	

Soft-Preemption, on page 159

Configuring Attributes within a Path-Option Attribute

Perform this task to configure attributes within a path option attribute-set template.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. attribute-set path-option attribute-set-name
- 4. affinity affinity-value mask mask-value
- 5. signalled-bandwidth kbps class-type class-type number
- 6. Use the commit or end command.
- 7. show mpls traffic-eng attribute-set
- 8. show mpls traffic-eng tunnelsdetail

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
Step 2		Enters Mi ES-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 3	attribute-set path-option attribute-set-name	Enters attribute-set path option configuration mode.
	Example: RP/0/0/CPU0:router(config-mpls-te)# attribute-set path-option myset	Note The configuration at the path-option level takes precedence over the values configured at the level of the tunnel, and therefore is applied.
Step 4	affinity affinity-value mask mask-value	Configures affinity attribute under a path option attribute-set. The attribute values that are required for links to carry this tunnel.
	<pre>Example: RP/0/0/CPU0:router(config-te-attribute-set)# affinity 0xBEEF mask 0xBEEF</pre>	
Step 5	signalled-bandwidth kbps class-type class-type number	Configures the bandwidth attribute required for an MPLS-TE tunnel under a path option attribute-set.
	<pre>Example: RP/0/0/CPU0:router(config-te-attribute-set)# signalled-bandwidth 1000 class-type 0</pre>	Note You can configure the class type of the tunnel bandwidth request. The class-type 0 is strictly equivalent to global-pool and class-type 1 is strictly equivalent to subpool .
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 7	show mpls traffic-eng attribute-set	Displays the attributes that are defined in the attribute-set for the link.
	Example: RP/0/0/CPU0:router# show mpls traffic-eng attribute-set	

	Command or Action	Purpose
Step 8	show mpls traffic-eng tunnelsdetail	Displays the attribute-set path option information on a specific tunnel.
	<pre>Example: RP/0/0/CPU0:router# show mpls traffic-eng tunnels detail</pre>	

Path Option Attributes, on page 160 Configuration Hierarchy of Path Option Attributes, on page 160 Traffic Engineering Bandwidth and Bandwidth Pools, on page 161 Path Option Switchover, on page 161 Path Option and Path Protection, on page 162

Configuring Auto-Tunnel Mesh Tunnel ID

Perform this activity to configure the tunnel ID range that can be allocated to Auto-tunnel mesh tunnels.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. auto-tunnel mesh
- 4. tunnel-id min value max value
- 5. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS TE configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls traffic-eng	

	Command or Action	Purpose
Step 3	auto-tunnel mesh	Enters auto-tunnel mesh configuration mode. You can configure auto-tunnel mesh related options from this mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te)# auto-tunnel mesh</pre>	
Step 4	tunnel-id min <i>value</i> max <i>value</i> Example:	Specifies the minimum and maximum number of auto-tunnel mesh tunnels that can be created on this router. The range of tunnel ID is from 0 to 65535.
	<pre>. RP/0/0/CPU0:router(config-te-auto-mesh)# tunnel-id min 10 max 50</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Auto-Tunnel Mesh, on page 162 Destination List (Prefix-List), on page 163

Configuring Auto-tunnel Mesh Unused Timeout

Perform this task to configure a global timer to remove unused auto-mesh tunnels.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. auto-tunnel mesh
- 4. timer removal unused timeout
- 5. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 3	auto-tunnel mesh	Enables auto-tunnel mesh groups globally.
	Example:	
	RP/0/0/CPU0:router(config-mpls-te)# auto-tunnel mesh	
Step 4	timer removal unused timeout	Specifies a timer, in minutes, after which a down auto-tunnel mesh gets deleted whose destination was not in TE topology. The default value for this timer is 60.
	Example: RP/0/0/CPU0:router(config-mpls-te-auto-mesh)# timers removal unused 10	The timer gets started when these conditions are met:
		• Tunnel destination node is removed from the topology
		• Tunnel is in down state
		Note The unused timer runs per tunnel because the same destination in different mesh-groups may have different tunnels created.
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Auto-Tunnel Mesh, on page 162 Destination List (Prefix-List), on page 163

Configuring Auto-Tunnel Mesh Group

Perform this task to configure an auto-tunnel mesh group globally on the router.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. auto-tunnel mesh
- 4. group value
- 5. disable
- 6. attribute-setname
- 7. destination-list
- **8.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
Step 3	auto-tunnel mesh	Enables auto-tunnel mesh groups globally.
	Example:	
	RP/0/0/CPU0:router(config-mpls-te)# auto-tunnel mesh	
Step 4	group value	Specifies the membership of auto-tunnel mesh. The range is from 0 to 4294967295.
	Example:	Note When the destination-list is not supplied,
	<pre>RP/0/0/CPU0:router(config-mpls-te-auto-mesh)# group 65</pre>	head and will automatically build destination list
Step 5	disable	Disables the meshgroup and deletes all tunnels created for this meshgroup.
	Example:	
	<pre>RP/0/0/CPU0:router(config-mpls-te-auto-mesh-group)# disable</pre>	

	Command or Action	Purpose
Step 6	attribute-setname	Specifies the attributes used for all tunnels created for the meshgroup. If it is not defined, this meshgroup does not
	Example:	create any tunnel.
	<pre>RP/0/0/CPU0:router(config-mpls-te-auto-mesh-group)# attribute-set am-65</pre>	
Step 7	destination-list	This is a mandatory configuration under a meshgroup. If a given destination-list is not defined as a prefix-list, this
	Example:	meshgroup create tunnels to all nodes available in TE topology.
	<pre>RP/0/0/CPU0:router(config-mpls-te-auto-mesh-group)# destination-list dl-65</pre>	upplogy.
Step 8	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Related Topics

Auto-Tunnel Mesh, on page 162 Destination List (Prefix-List), on page 163

Configuring Tunnel Attribute-Set Templates

Perform this task to define attribute-set templates for auto-mesh tunnels.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. attribute-set auto-mesh attribute-set-name
- 4. affinity value mask mask-value
- 5. signalled-bandwidth kbps class-type class-type number
- 6. autoroute announce
- 7. fast-reroute protect bandwidth node
- 8. auto-bw collect-bw-only
- 9. logging events lsp-status {state | insufficient-bandwidth | reoptimize | reroute }
- **10.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config)# mpls traffic-eng</pre>	
Step 3	attribute-set auto-mesh attribute-set-name	Specifies name of the attribute-set of auto-mesh type.
	Example:	
	<pre>RP/0/0/CPU0:router(config-te)# attribute-set auto-mesh attribute-set-mesh</pre>	
Step 4	affinity value mask mask-value	Configures the affinity properties the tunnel requires in its links for an MPLS-TE tunnel under an auto-mesh attribute-set.
	Example:	
	<pre>RP/0/0/CPU0:router(config-te)# affinity 0101 mask 320</pre>	
Step 5	signalled-bandwidth kbps class-type class-type number	Configures the bandwidth attribute required for an MPLS-TE tunnel under an auto-mesh attribute-set. Because the default tunnel priority is 7, tunnels use the default TE class map (namely,
	Example:	class-type 0, priority 7).
	<pre>RP/0/0/CPU0:router(config-te-attribute-set)# signalled-bandwidth 1000 class-type 0</pre>	Note You can configure the class type of the tunnel bandwidth request. The class-type 0 is strictly equivalent to global-pool and class-type 1 is strictly equivalent to subpool.

Command or Action	Purpose
autoroute announce	Enables parameters for IGP routing over tunnel.
Example:	
<pre>RP/0/0/CPU0:router(config-te-attribute-set)# autoroute announce</pre>	
fast-reroute protect bandwidth node	Enables fast-reroute bandwidth protection and node protection for auto-mesh tunnels.
Example:	
<pre>RP/0/0/CPU0:router(config-te-attribute-set)# fast-reroute</pre>	
auto-bw collect-bw-only	Enables automatic bandwidth collection frequency, and controls the manner in which the bandwidth for a tunnel collects output
Example:	rate information, but does not adjust the tunnel bandwidth.
<pre>RP/0/0/CPU0:router(config-te-attribute-set)# auto-bw collect-bw-only</pre>	
logging events lsp-status {state insufficient-bandwidth reoptimize reroute }	Sends out the log message when the tunnel LSP goes up or down when the software is enabled.
Example:	Sends out the log message when the tunnel LSP undergoes setup or reoptimize failure due to bandwidth issues.
RP/0/0/CPU0:router(config-te-attribute-set)#	Sends out the log message for the LSP reoptimize change alarms.
Togging events isp status state	Sends out the log message for the LSP reroute change alarms.
Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
	end—Prompts user to take one of these actions:
	• Yes— Saves configuration changes and exits the configuration session.
	• No—Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.
	autoroute announce Example: RP/0/0/CPU0:router(config-te-attribute-set)# autoroute announce fast-reroute protect bandwidth node Example: RP/0/0/CPU0:router(config-te-attribute-set)# fast-reroute auto-bw collect-bw-only Example: RP/0/0/CPU0:router(config-te-attribute-set)# auto-bw collect-bw-only Example: RP/0/0/CPU0:router(config-te-attribute-set)# auto-bw collect-bw-only Example: RP/0/0/CPU0:router(config-te-attribute-set)# logging events lsp-status {state insufficient-bandwidth reoptimize reroute } Example: RP/0/0/CPU0:router(config-te-attribute-set)# logging events lsp-status state

Related Topics

Auto-Tunnel Mesh, on page 162 Destination List (Prefix-List), on page 163

Enabling LDP on Auto-Tunnel Mesh

Perform this task to enable LDP on auto-tunnel mesh group.

SUMMARY STEPS

- 1. configure
- 2. mpls ldp
- 3. traffic-eng auto-tunnel mesh
- 4. groupidall
- 5. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls ldp	Enters MPLS LDP configuration mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp)# mpls ldp</pre>	
Step 3	traffic-eng auto-tunnel mesh	Enters auto-tunnel mesh configuration mode. You can configure TE auto-tunnel mesh groups from this mode.
	Example:	
	<pre>RP/0/0/CPU0:router(config-ldp-te-auto-mesh)# traffic-eng auto-tunnel mesh</pre>	
Step 4	groupidall	Configures an auto-tunnel mesh group of interfaces in LDP. You can enable LDP on all TE meshgroup interfaces or you can specify
	Example:	the TE mesh group ID on which the LDP is enabled. The range
	<pre>RP/0/0/CPU0:router(config-ldp-te-auto-mesh)# group all</pre>	of group ID is from 0 to 4294967295.
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.

Command or Action	Purpose
	• Cancel—Remains in the configuration session, without committing the configuration changes.

Related Topics

Auto-Tunnel Mesh, on page 162 Destination List (Prefix-List), on page 163

Enabling Stateful PCE Client

Perform these steps to enable stateful PCE client.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. pce
- 4. stateful-client
- 5. capabilities { instantiation | update}
- 6. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS TE configuration mode.
	<pre>Example: RP/0/0/CPU0:router(config)#mpls traffic-eng</pre>	
Step 3	pce	Enters PCE configuration mode.
	Example: RP/0/0/CPU0:router(config-mpls-te)#pce	
Step 4	stateful-client	Enters stateful PCE client configuration mode.

	Command or Action	Purpose
	Example: RP/0/0/CPU0:router(config-mpls-te-pce)#stateful-client	When the stateful-client configuration is added to the node, it will close all existing PCEP peer connections, and add the stateful capabilities TLV to the OPEN object it exchanges during the PCEP session establishment.
		When the stateful-client configuration is removed from the node, it will delete all PCE instantiated tunnels, close all existing PCEP connections, and no longer add the stateful capabilities TLV to the OPEN object it exchanges during the PCEP session establishment.
Step 5	capabilities { instantiation update}	Enables stateful client capabilities.
	<pre>Example: RP/0/0/CPU0:router(config-mpls-te-pce-stateful)#capabilities instantiation</pre>	 instantiation—enables stateful instantiate capability update—enables stateful update capability
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring VRF Redirection

Perform these steps to configure VRF redirection by installing multiple routes in the routing information base (RIB) per MPLS TE tunnel:

SUMMARY STEPS

- 1. configure
- **2.** interface tunnel-te tunnel-id
- 3. autoroute destination *ip-address*
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	<pre>Example: RP/0/0/CPU0:router(config)#interface tunnel-te 10</pre>	
Step 3	autoroute destination <i>ip-address</i>	Adds a route (ip-address) in RIB with TE tunnel as outgoing interface. to the tunnel destination.
	Example:	
	<pre>RP/0/0/CPU0:router(config-if)#autoroute destination 192.168.1.2 RP/0/0/CPU0:router(config-if)#autoroute destination 192.168.2.2 RP/0/0/CPU0:router(config-if)#autoroute destination 192.168.3.2 RP/0/0/CPU0:router(config-if)#autoroute destination 192.168.4.2</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		 No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

This example shows how to configure installing four autoroute destination routes into the RIB along with the default route:

```
interface tunnel-te10
autoroute destination 192.168.1.2
autoroute destination 192.168.2.2
autoroute destination 192.168.3.2
autoroute destination 192.168.4.2
```

Configuring IPv6 Routing Over IPv4 MPLS-TE Tunnels

Perform these steps to configure IPv6 routing over IPv4 MPLS-TE tunnels:

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. ipv4 unnumbered type interface-path-id
- 4. ipv6 enable
- 5. signalled-bandwidth bandwidth
- **6.** destination *ip-address*
- **7.** Use one of these options:
 - autoroute announce include-ipv6
 - forwarding-adjacency include-ipv6
- 8. path-option preference-priority dynamic
- **9.** Use the **commit** or **end** command.
- **10.** (Optional) show mpls traffic-eng autoroute
- 11. (Optional) show mpls traffic-eng forwarding-adjacency

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example: RP/0/0/CPU0:router# interface tunnel-te 1	
Step 3	ipv4 unnumbered type interface-path-id	Assigns a source address so that forwarding can be performed on the new tunnel. Loopback is the
	Example: RP/0/0/CPU0:router(config-if)#ipv4 unnumbered Loopback 0	commonly-used interface type.
Step 4	ipv6 enable	Enables IPv6 on interface.
	Example: RP/0/0/CPU0:router(config-if)#ipv6 enable	

I

	Command or Action	Purpose
Step 5	signalled-bandwidth bandwidth	Sets the tunnel bandwidth requirement to be signalled in Kbps.
	<pre>Example: RP/0/0/CPU0:router(config-if)# signalled-bandwidth 10</pre>	
Step 6	destination ip-address	Specifies tunnel destination.
	Example: RP/0/0/CPU0:router(config-if)#destination 3.3.3.3	
Step 7	Use one of these options:	Announces the tunnel as an IPv6 autoroute or an IPv6 forwarding adjacency.
	 autoroute announce include-ipv6 	
	 forwarding-adjacency include-ipv6 	
	Example: RP/0/0/CPU0:router(config-if)#autoroute announce include-ipv6 Or	
	<pre>RP/0/0/CPU0:router(config-if)#forwarding-adjacency include-ipv6</pre>	
Step 8	path-option preference-priority dynamic	Sets the path option to dynamic and assigns the path ID.
	Example: RP/0/0/CPU0:router(config-if)#path-option 1 dynamic	
Step 9	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 10	show mpls traffic-eng autoroute	(Optional) Verifies that the tunnel announces IPv6 autoroute
	Example:	information.
	RP/0/0/CPU0:router#show mpls traffic-eng autoroute	
	Destination 192.168.0.2 has 1 tunnels in IS-IS ring	
	<pre>level 1 tunnel-te1 (traffic share 0, nexthop 192.168.0.2)</pre>	
	(IPv4 unicast) (IPv6 unicast)	

Command or Action show mpls traffic-eng forwarding-adjacency		Purpose (Optional) Verifies that the tunnel announces IPv6 forwarding adjacency information.
RP/0/0/CPU0:router#show mpl forwarding-adjacency	s traffic-eng	
destination 3.3.3.3 has 1 tunnels		
tunnel-te10	(traffic share 0,	
next-nop 5.5.5.5)	(Adjacency Announced:	
yes, holdtime 0)	(IS-IS 100, IPv4	
unicast)	х <i>Г</i>	
unicast)	(IS-IS 100, IPv6	
	<pre>show mpls traffic-eng forward Example: RP/0/0/CPU0:router#show mpl forwarding-adjacency destination 3.3.3.3 has 1 tunnel-te10 next-hop 3.3.3.3) yes, holdtime 0) unicast)</pre>	<pre>show mpls traffic-eng forwarding-adjacency Example: RP/0/0/CPU0:router#show mpls traffic-eng forwarding-adjacency destination 3.3.3 has 1 tunnels</pre>

Configuring Path-selection Cost Limit

Apply the path-selection cost-limit configuration to set the upper limit on the path aggregate admin-weight when computing paths for MPLS-TE LSPs. Once the path-selection cost is configured, the periodic path verification will check if the cost-limit is crossed. Path-selection cost limit can be configured at global MPLS TE, per interface tunnel, and per path-option attribute set. The path-selection cost limit per path-option attribute set takes the highest priority, followed by per interface and MPLS TE global path-selection cost limit values.

Configuring Global Path-selection Cost Limit on MPLS TE Tunnels

Perform these steps to configure path-selection cost limit globally for MPLS TE tunnels:

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. path-selection cost-limit cost-limit
- 4. Use the commit or end command.

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example:		
	RP/0/0/CPU0:router# configure		

	Command or Action	Purpose
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config) # mpls traffic-eng	
Step 3	path-selection cost-limit cost-limit	Sets the upper limit on the path aggregate admin-weight when computing paths for MPLS TE LSPs.
	<pre>Example: RP/0/0/CPU0:router(config-mpls-te)# path-selection cost-limit 3</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Path-selection Cost Limit per TE Tunnel

Perform these steps to configure path-selection cost limit per MPLS TE tunnel:

SUMMARY STEPS

- 1. configure
- 2. interface tunnel-te tunnel-id
- 3. path-selection cost-limit cost-limit
- 4. Use the commit or end command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	

	Command or Action	Purpose
Step 2	interface tunnel-te tunnel-id	Configures an MPLS-TE tunnel interface.
	Example: RP/0/0/CPU0:router(config)#interface tunnel-te 1	
Step 3	path-selection cost-limit cost-limit	Sets the upper limit on the path aggregate admin-weight when computing paths for MPLS TE LSPs for the specified MPLS TE tunnel.
	<pre>Example: RP/0/0/CPU0:router(config-if)# path-selection cost-limit 2</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Path-selection Cost Limit per Path-option Attribute-set

Perform these steps to configure path-selection cost limit per path-option attribute-set:

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- **3.** attribute-set path-option *attribute-set-name*
- 4. path-selection cost-limit 3

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	

	Command or Action	Purpose
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)# mpls traffic-eng	
Step 3	attribute-set path-option attribute-set-name Example: RP/0/0/CPU0:router(config-mpls-te)# attribute-set path-option PO3AttrSet	Enters attribute-set path option configuration mode. Note The configuration at the attribute-set path-option level takes precedence over the values configured at global and interface tunnel level.
Step 4	<pre>path-selection cost-limit 3 Example: RP/0/0/CPU0:router(config-te-attribute-set)# path-selection cost-limit 3</pre>	Sets the upper limit on the path aggregate admin-weight when computing paths for MPLS TE LSPs per path-option attribute set.

Enabling Soft-preemption over FRR Backup Tunnels

Perform these tasks to enable LSP traffic to be moved over the backup tunnel when the LSP is soft-preempted. With this configuration, when there is a soft-preemption, the MPLS TE process triggers a rewrite to move the traffic on the backup tunnel, if the backup tunnel is ready. The rest of the soft-preemption process remains unchanged.

Before You Begin

Ensure that the following configurations are enabled before enabling soft-preemption over FRR backup:

- Soft-preemption enabled.
- Fast-reroute (FRR) backup tunnel is activated.

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng
- 3. soft-preemption frr-rewrite
- 4. Use the commit or end command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	mpls traffic-eng	Enters MPLS-TE configuration mode.
	Example: RP/0/0/CPU0:router(config)#mpls traffic-eng	
Step 3	soft-preemption frr-rewrite	Moves FRR LSP traffic over the backup tunnel, when LSP is soft-preempted.
	Example: RP/0/0/CPU0:router(config-mpls-te)#soft-preemption frr-rewrite	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Enabling Auto-onehop Tunnels to Next-hop Neighbors

Perform these tasks to enable automatic creation of one-hop tunnels over MPLS traffic-engineering enabled interfaces to nexthop neighbors. A router that becomes a next hop neighbor will have a set of one-hop tunnels created automatically.

Before You Begin

The **ipv4 unnumbered mpls traffic-eng Loopback** *Number* configuration must be applied at the global configuration level.

SUMMARY STEPS

- 1. configure
- 2. ipv4 unnumbered mpls traffic-eng Loopback N
- 3. mpls traffic-eng
- 4. auto-tunnel mesh
- 5. tunne-id min value max value
- 6. group group-id
- 7. onehop
- **8.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/0/CPU0:router# configure	
Step 2	ipv4 unnumbered mpls traffic-eng Loopback N	Configures the globally configured IPv4 address that can be used by the Auto-tunnel backup tunnels.
	Example: RP/0/0/CPU0:router(config)#ipv4 unnumbered mpls traffic-eng loopback 0	
Step 3	mpls traffic-eng	Enters the MPLS-TE submode.
	Example: RP/0/0/CPU0:router(config)#mpls traffic-eng	
Step 4	auto-tunnel mesh	Enters the auto-tunnel mesh configuration submode.
	Example: RP/0/0/CPU0:router(config-mpls-te)#auto-tunnel mesh	
Step 5	tunne-id min value max value	Specifies the minimum and maximum number of auto-tunnel mesh tunnels that can be created on this router. The range of
	<pre>Example: RP/0/0/CPU0:ios(config-te-auto-mesh)# tunnel-id min 4000 max 6000</pre>	tunnel ID is from 0 to 65535.
Step 6	group group-id	Enters the auto-tunnel mesh group configuration submode and creates a group ID.
	Example: RP/0/0/CPU0:router(config-te-auto-mesh)#group 50	

	Command or Action	Purpose
Step 7	<pre>onehop Example: RP/0/0/CPU0:router(config-te-mesh-group)#onehop</pre>	Enables automatic creation of one-hop tunnels to all next hop neighbors. The onehop keyword can be applied to as many mesh groups as desired.
Step 8 U	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end—Prompts user to take one of these actions:
		• Yes— Saves configuration changes and exits the configuration session.
		• No—Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuration Examples for Cisco MPLS-TE

These configuration examples are used for MPLS-TE:

Configure Fast Reroute and SONET APS: Example

When SONET Automatic Protection Switching (APS) is configured on a router, it does not offer protection for tunnels; because of this limitation, fast reroute (FRR) still remains the protection mechanism for MPLS-TE.

When APS is configured in a SONET core network, an alarm might be generated toward a router downstream. If this router is configured with FRR, the hold-off timer must be configured at the SONET level to prevent FRR from being triggered while the core network is performing a restoration. Enter the following commands to configure the delay:

```
RP/0/0/CPU0:router(config)# controller sonet 0/6/0/0 delay trigger line 250
RP/0/0/CPU0:router(config)# controller sonet 0/6/0/0 path delay trigger 300
```

Build MPLS-TE Topology and Tunnels: Example

The following examples show how to build an OSPF and IS-IS topology:

```
(OSPF)
...
configure
mpls traffic-eng
interface pos 0/6/0/0
router id loopback 0
router ospf 1
```

```
router-id 192.168.25.66
 area O
  interface pos 0/6/0/0
 interface loopback 0
 mpls traffic-eng router-id 192.168.70.1
 mpls traffic-eng area 0
 rsvp
  interface pos 0/6/0/0
 bandwidth 100
 commit
show mpls traffic-eng topology
show mpls traffic-eng link-management advertisement
(IS-IS)
. . .
configure
 mpls traffic-eng
 interface pos 0/6/0/0
 router id loopback 0
 router isis lab
  address-family ipv4 unicast
 mpls traffic-eng level 2
 mpls traffic-eng router-id 192.168.70.2
  interface POS0/0/0/0
  address-family ipv4 unicast
1
```

The following example shows how to configure tunnel interfaces:

```
interface tunnel-te1
 destination 192.168.92.125
  ipv4 unnumbered loopback 0
 path-option 1 dynamic
 bandwidth 100
 commit
show mpls traffic-eng tunnels
show ipv4 interface brief
show mpls traffic-eng link-management admission-control
interface tunnel-te1
 autoroute announce
 route ipv4 192.168.12.52/32 tunnel-te1
 commit
ping 192.168.12.52
show mpls traffic autoroute
interface tunnel-te1
 fast-reroute
 mpls traffic-eng interface pos 0/6/0/0
 backup-path tunnel-te 2
  interface tunnel-te2
 backup-bw global-pool 5000
 ipv4 unnumbered loopback 0
 path-option 1 explicit name backup-path
  destination 192.168.92.125
 commit
show mpls traffic-eng tunnels backup
show mpls traffic-eng fast-reroute database
rsvp
 interface pos 0/6/0/0
 bandwidth 100 150 sub-pool 50
 interface tunnel-te1
 bandwidth sub-pool 10
commit
```

Related Topics

Building MPLS-TE Topology, on page 169 Creating an MPLS-TE Tunnel, on page 172 How MPLS-TE Works, on page 130

Configure IETF DS-TE Tunnels: Example

The following example shows how to configure DS-TE:

```
rsvp
 interface pos 0/6/0/0
bandwidth rdm 100 150 bc1 50
mpls traffic-eng
ds-te mode ietf
interface tunnel-te 1
bandwidth 10 class-type 1
 commit
configure
rsvp interface 0/6/0/0
bandwidth mam max-reservable-bw 400 bc0 300 bc1 200
mpls traffic-eng
ds-te mode ietf
ds-te model mam
interface tunnel-te 1bandwidth 10 class-type 1
 commit
```

Related Topics

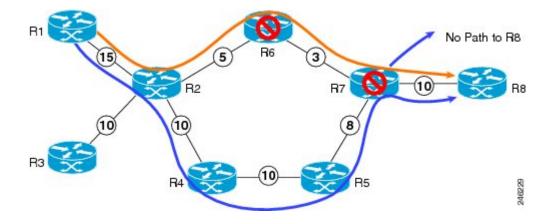
Configuring a Prestandard DS-TE Tunnel, on page 187 Prestandard DS-TE Mode, on page 135

Configure MPLS-TE and Fast-Reroute on OSPF: Example

CSPF areas are configured on a per-path-option basis. The following example shows how to use the traffic-engineering tunnels (tunnel-te) interface and the active path for the MPLS-TE tunnel:

```
configure
interface tunnel-te 0
path-option 1 explicit id 6 ospf 126 area 0
path-option 2 explicit name 234 ospf 3 area 7 verbatim
path-option 3 dynamic isis mtbf level 1 lockdown
commit
```

Related Topics


Configuring MPLS -TE and Fast-Reroute on OSPF, on page 194

Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example

This example shows how to configure the IS-IS overload bit setting in MPLS-TE:

This figure illustrates the IS-IS overload bit scenario:

Figure 20: IS-IS overload bit

Consider a MPLS TE topology in which usage of nodes that indicated an overload situation was restricted. In this topology, the router R7 exhibits overload situation and hence this node can not be used during TE CSPF. To overcome this limitation, the IS-IS overload bit avoidance (OLA) feature was introduced. This feature allows network administrators to prevent RSVP-TE label switched paths (LSPs) from being disabled when a router in that path has its Intermediate System-to-Intermediate System (IS-IS) overload bit set.

The IS-IS overload bit avoidance feature is activated at router R1 using this command:

```
mpls traffic-eng path-selection ignore overload
```

```
configure
mpls traffic-eng
path-selection ignore overload
commit
```

Related Topics

Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE, on page 196 Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE, on page 140

Configure GMPLS: Example

This example shows how to set up headend and tailend routers with bidirectional optical unnumbered tunnels using numbered TE links:

Headend Router

```
router ospf roswell
router-id 11.11.11.11
nsf cisco
area 23
!
area 51
interface Loopback 0
!
interface MgmtEth0/0/CPU0/1
!
```

```
interface POS0/4/0/1
    !
   !
   mpls traffic-eng router-id Loopback 0
   mpls traffic-eng area 51
  T.
  rsvp
  interface POS0/2/0/3
   bandwidth 2000
   1
  Т
  interface tunnel-gte 1
  ipv4 unnumbered Loopback 0
   switching transit fsc encoding
sonetsdh
   switching endpoint psc1 encoding packet
   priority 3 3
signalled-bandwidth 500
   destination 55.55.55.55
   path-option 1 dynamic
  !
  mpls traffic-eng
   interface POS0/2/0/3
    flooding-igp ospf roswell area 51
    switching key 1
     encoding packet
capability psc1
    1
    switching link
    encoding
sonetsdh
    capability fsc
    1
    lmp data-link adjacency
    neighbor gmpls5
     remote te-link-id ipv4 10.0.0.5
     remote interface-id unnum 12
     remote switching-capability psc1
    !
   I.
   1mp neighbor gmpls5
    ipcc routed
    remote node-id 55.55.55.55
   1
  !
```

Tailend Router

```
router ospf roswell
router-id 55.55.55.55
nsf cisco
area 23
area 51
 interface Loopback 0
  interface MgmtEth0/0/CPU0/1
  interface POS0/4/0/2
  !
 1
mpls traffic-eng router-id Loopback 0
mpls traffic-eng area 51
1
mpls traffic-eng
interface POS0/2/0/3
  flooding-igp ospf roswell area 51
```

```
switching key 1
     encoding packet
     capability psc1
    switching link
    encoding
sonetsdh
    capability fsc
    lmp data-link adjacency
     neighbor gmpls1
     remote te-link-id ipv4 10.0.0.1
    remote interface-id unnum 12
     remote switching-capability psc1
    1
  lmp neighbor gmpls1
   ipcc routed
   remote node-id 11.11.11.11
   1
  T
 rsvp
  interface POS0/2/0/3
   bandwidth 2000
   !
  interface tunnel-gte 1
  ipv4 unnumbered Loopback 0
  passive
  match identifier head router hostname t1
  destination 11.11.11.11.11
  1
```

Configure Flexible Name-based Tunnel Constraints: Example

The following configuration shows the three-step process used to configure flexible name-based tunnel constraints.

```
R2
line console
 exec-timeout 0 0
 width 250
logging console debugging
explicit-path name mypath
 index 1 next-address loose ipv4 unicast 3.3.3.3 !
explicit-path name ex_path1
 index 10 next-address loose ipv4 unicast 2.2.2.2 index 20 next-address loose ipv4 unicast
3.3.3.3 !
interface Loopback0
  ipv4 address 22.22.22.22 255.255.255.255 !
interface tunnel-te1
 ipv4 unnumbered Loopback0
 signalled-bandwidth 1000000
 destination 3.3.3.3
 affinity include green
 affinity include yellow affinity exclude white
 affinity exclude orange
 path-option 1 dynamic
router isis 1
 is-type level-1
 net 47.0001.0000.0000.0001.00
 nsf cisco
 address-family ipv4 unicast
  metric-style wide
  mpls traffic-eng level-1
```

```
mpls traffic-eng router-id 192.168.70.1
 interface Loopback0
 passive
  address-family ipv4 unicast
  Т
 1
 interface GigabitEthernet0/1/0/0
 address-family ipv4 unicast
  interface GigabitEthernet0/1/0/1
 address-family ipv4 unicast
  1
 I.
 interface GigabitEthernet0/1/0/2
 address-family ipv4 unicast
  !
 1
 interface GigabitEthernet0/1/0/3
 address-family ipv4 unicast
  !
 !
1
rsvp
 interface GigabitEthernet0/1/0/0
 bandwidth 1000000 1000000
 1
interface GigabitEthernet0/1/0/1
 bandwidth 1000000 1000000
 interface GigabitEthernet0/1/0/2
 bandwidth 1000000 1000000
 interface GigabitEthernet0/1/0/3
 bandwidth 1000000 1000000
 1
1
mpls traffic-eng
interface GigabitEthernet0/1/0/0
 attribute-names red purple
interface GigabitEthernet0/1/0/1
 attribute-names red orange
 interface GigabitEthernet0/1/0/2
 attribute-names green purple
 I
 interface GigabitEthernet0/1/0/3
 attribute-names green orange
 1
affinity-map red 1
affinity-map blue 2
affinity-map black 80
affinity-map green 4
affinity-map white 40
affinity-map orange 20
affinity-map purple 10
affinity-map yellow 8
ļ
```

Related Topics

Assigning Color Names to Numeric Values, on page 224 Associating Affinity-Names with TE Links, on page 226 Associating Affinity Constraints for TE Tunnels, on page 227 Flexible Name-based Tunnel Constraints, on page 143

Configure an Interarea Tunnel: Example

The following configuration example shows how to configure a traffic engineering interarea tunnel. Router R1 is the headend for tunnel1, and router R2 (20.0.0.20) is the tailend. Tunnel1 is configured with a path option that is loosely routed through Ra and Rb.

Note

Specifying the tunnel tailend in the loosely routed path is optional.

```
configure
interface Tunnel-tel
ipv4 unnumbered Loopback0
destination 192.168.20.20
signalled-bandwidth 300
path-option 1 explicit name path-tunnel1
explicit-path name path-tunnel1
index 10 next-address loose ipv4 unicast 192.168.40.40
index 20 next-address loose ipv4 unicast 192.168.60.60
index 30 next-address loose ipv4 unicast 192.168.20.20
```

Configure Forwarding Adjacency: Example

The following configuration example shows how to configure an MPLS-TE forwarding adjacency on tunnel-te 68 with a holdtime value of 60:

```
configure
interface tunnel-te 68
forwarding-adjacency holdtime 60
commit
```

Related Topics

Configuring MPLS-TE Forwarding Adjacency, on page 233 MPLS-TE Forwarding Adjacency Benefits, on page 146

Configure Unequal Load Balancing: Example

The following configuration example illustrates unequal load balancing configuration:

```
configure
interface tunnel-te0
destination 1.1.1.1
path-option 1 dynamic
ipv4 unnumbered Loopback0
interface tunnel-te1
destination 1.1.1.1
path-option 1 dynamic
ipv4 unnumbered Loopback0
load-share 5
interface tunnel-te2
destination 1.1.1.1
path-option 1 dynamic
```

ipv4 unnumbered Loopback0 signalled-bandwidth 5 interface tunnel-te10 destination 2.2.2.2 path-option 1 dynamic ipv4 unnumbered Loopback0 signalled-bandwidth 10 interface tunnel-tel1 destination 2.2.2.2 path-option 1 dynamic ipv4 unnumbered Loopback0 signalled-bandwidth 10 interface tunnel-te12 destination 2.2.2.2 path-option 1 dynamic ipv4 unnumbered Loopback0 signalled-bandwidth 20 interface tunnel-te20 destination 3.3.3.3 path-option 1 dynamic ipv4 unnumbered Loopback0 signalled-bandwidth 10 interface tunnel-te21 destination 3.3.3.3 path-option 1 dynamic ipv4 unnumbered Loopback0 signalled-bandwidth 10 load-share 20 interface tunnel-te30 destination 4.4.4.4 path-option 1 dynamic ipv4 unnumbered Loopback0 signalled-bandwidth 10 load-share 5 interface tunnel-te31 destination 4.4.4.4 path-option 1 dynamic ipv4 unnumbered Loopback0 signalled-bandwidth 10 load-share 20 mpls traffic-eng load-share unequal

```
end
```

Related Topics

Setting Unequal Load Balancing Parameters, on page 234 Enabling Unequal Load Balancing, on page 235 Unequal Load Balancing, on page 147

Configure PCE: Example

The following configuration example illustrates a PCE configuration:

```
configure
mpls traffic-eng
interface pos 0/6/0/0
pce address ipv4 192.168.25.66
router id loopback 0
router ospf 1
router-id 192.168.25.66
area 0
interface pos 0/6/0/0
interface loopback 0
mpls traffic-eng router-id 192.168.70.1
```

mpls traffic-eng area 0
rsvp
interface pos 0/6/0/0
bandwidth 100
ccmmit

The following configuration example illustrates PCC configuration:

```
configure
  interface tunnel-te 10
  ipv4 unnumbered loopback 0
 destination 1.2.3.4
 path-option 1 dynamic pce
 mpls traffic-eng
 interface pos 0/6/0/0
 router id loopback 0
 router ospf 1
 router-id 192.168.25.66
  area O
 interface pos 0/6/0/0
 interface loopback 0
 mpls traffic-eng router-id 192.168.70.1
 mpls traffic-eng area 0
  rsvp
  interface pos 0/6/0/0
 bandwidth 100
 commit
```

Related Topics

Configuring a Path Computation Client, on page 237 Configuring a Path Computation Element Address, on page 238 Configuring PCE Parameters, on page 239 Path Computation Element, on page 148

Configure Policy-based Tunnel Selection: Example

The following configuration example illustrates a PBTS configuration:

```
configure
interface tunnel-te0
ipv4 unnumbered Loopback3
signalled-bandwidth 50000
autoroute announce
destination 1.5.177.2
policy-class 2
path-option 1 dynamic
```

Related Topics

Configuring Policy-based Tunnel Selection, on page 242 Policy-Based Tunnel Selection Functions, on page 150 Policy-Based Tunnel Selection, on page 149

Configure Automatic Bandwidth: Example

The following configuration example illustrates an automatic bandwidth configuration:

```
configure
interface tunnel-te6
auto-bw
bw-limit min 10000 max 500000
overflow threshold 50 min 1000 limit 3
adjustment-threshold 20 min 1000
application 180
```

Related Topics

Configuring the Collection Frequency, on page 244 Configuring the Automatic Bandwidth Functions, on page 247 MPLS-TE Automatic Bandwidth Overview, on page 152

Configure the MPLS-TE Shared Risk Link Groups: Example

The following configuration example shows how to specify the SRLG value of each link that has a shared risk with another link:

```
config t
srlg
interface POS0/4/0/0
value 10
value 11
interface POS0/4/0/1
value 10
```

The following example shows the SRLG values configured on a specific link.

```
RP/0/0/CPU0:router# show mpls traffic-eng topology brief
My System id: 100.0.0.2 (OSPF 0 area 0)
My System id: 0000.0000.0002.00 (IS-IS 1 level-1)
My System id: 0000.0000.0002.00 (IS-IS 1 level-2)
My BC Model Type: RDM
Signalling error holddown: 10 sec Global Link Generation 389225
IGP Id: 0000.0000.0002.00, MPLS TE Id: 100.0.0.2 Router Node (IS-IS 1 level-1)
IGP Id: 0000.0000.0002.00, MPLS TE Id: 100.0.0.2 Router Node (IS-IS 1 level-2)
    Link[1]:Broadcast, DR:0000.0000.0002.07, Nbr Node Id:21, gen:389193
      Frag Id:0, Intf Address:51.2.3.2, Intf Id:0
      Nbr Intf Address:51.2.3.2, Nbr Intf Id:0
      TE Metric:10, IGP Metric:10, Attribute Flags:0x0
      Attribute Names:
      SRLGs: 1, 4, 5
      Switching Capability:, Encoding:
      BC Model ID:RDM
      Physical BW:1000000 (kbps), Max Reservable BW Global:10000 (kbps)
      Max Reservable BW Sub:10000 (kbps)
```

The following example shows the configured tunnels and associated SRLG values.

```
RP/0/0/CPU0:router# show mpls traffic-eng tunnels
<snip>
Signalling Summary:
             LSP Tunnels Process: running
                    RSVP Process: running
                      Forwarding:
                                   enabled
          Periodic reoptimization: every 3600 seconds, next in 1363 seconds
          Periodic FRR Promotion: every 300 seconds, next in 181 seconds
          Auto-bw enabled tunnels: 0 (disabled)
Name: tunnel-tel Destination: 100.0.0.3
  Status:
                                           Signalling: recovered
    Admin:
             up Oper:
                            Path: valid
                       up
    path option 1, type explicit path123 (Basis for Setup, path weight 2)
          OSPF 0 area 0
    G-PID: 0x0800 (derived from egress interface properties)
    SRLGs excluded: 2,3,4,5
                    6,7,8,9
    Bandwidth Requested: 0 kbps CT0
<snip>
```

The following example shows all the interfaces associated with SRLG.

```
RP/0/0/CPU0:router# show mpls traffic-eng topo srlg
My_System_id: 100.0.0.5 (OSPF 0 area 0)
My System id: 0000.0000.0005.00 (IS-IS 1 level-2)
My System id: 0000.0000.0005.00 (IS-IS ISIS-instance-123 level-2)
      SRLG
                Interface Addr TE Router ID
                                                 TGP Area TD
                50.4.5.5
                                 100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
                50.2.3.3
                                 100.0.0.3
        11
                                                 IS-IS 1 level-2
        12
                50.2.3.3
                                 100.0.0.3
                                                 IS-IS 1 level-2
        30
                50.4.5.5
                                100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
        77
                50.4.5.5
                                 100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
        88
                50.4.5.5
                                 100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
      1500
                50.4.5.5
                                 100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
  10000000
                50.4.5.5
                                 100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
4294967290
                50.4.5.5
                                 100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
4294967295
                50.4.5.5
                                 100.0.0.5
                                                 IS-IS ISIS-instance-123 level-2
```

The following example shows the NHOP and NNHOP backup tunnels with excluded SRLG values.

```
RP/0/0/CPU0:router# show mpls traffic-eng topology path dest 100.0.0.5 exclude-srlg ipaddr
Path Setup to 100.0.0.2:
bw 0 (CT0), min_bw 0, metric: 30
setup_pri 7, hold_pri 7
affinity_bits 0x0, affinity_mask 0xffff
Exclude SRLG Intf Addr : 50.4.5.5
SRLGs Excluded : 10, 30, 1500, 10000000, 4294967290, 4294967295
Hop0:50.5.1.5
Hop1:50.5.1.1
Hop2:50.1.3.1
Hop3:50.1.3.3
Hop5:50.2.3.2
```

The following example shows an extract of explicit-path set to protect a specific interface.

Hop6:100.0.2

RP/0/0/CPU0:router#sh mpls traffic-eng topology path dest 10.0.0.5 explicit-path name name

Related Topics

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 250 Creating an Explicit Path With Exclude SRLG, on page 252 Using Explicit Path With Exclude SRLG, on page 253 Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 256 Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 259 MPLS Traffic Engineering Shared Risk Link Groups, on page 154 Explicit Path, on page 155 Fast ReRoute with SRLG Constraints, on page 156 Importance of Protection, on page 157 Delivery of Packets During a Failure, on page 158 Multiple Backup Tunnels Protecting the Same Interface , on page 158 SRLG Limitations, on page 158 MPLS TE SRLG Scale Enhancements, on page 159

Configure MPLS TE Path-selection Cost Limit: Example

This example shows how to set the path-selection cost limit for MPLS TE tunnels at global, TE tunnel interface, and path-option attribute-set levels. By default, the cost-limit set at path-option attribute set takes the priority, if all options are configured and per tunnel interface level takes priority over global cost-limit. At per tunnel interface level, the global cost-limit takes the priority.

```
interface tunnel-te1
path-selection cost-limit 2
!
mpls traffic-eng
attribute-set path-option PO3AttrSet
path-selection cost-limit 3
!
path-selection cost-limit 1
!
```

Additional References

For additional information related to implementing MPLS-TE, refer to the following references:

Related Documents

Related Topic	Document Title
MPLS-TE commands	MPLS Traffic Engineering Commands module in Cisco IOS XR MPLS Command Reference for the Cisco XR 12000 Series Router.

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
	To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/ sw-center/netmgmt/cmtk/mibs.shtml

RFCs

RFCs	Title
RFC 4124	Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering, F. Le Faucheur, Ed. June 2005.
	(Format: TXT=79265 bytes) (Status: PROPOSED STANDARD)
RFC 4125	Maximum Allocation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering, F. Le Faucheur, W. Lai. June 2005.
	(Format: TXT=22585 bytes) (Status: EXPERIMENTAL)

RFCs	Title
RFC 4127	Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering, F. Le Faucheur, Ed. June 2005. (Format: TXT=23694 bytes) (Status: EXPERIMENTAL)

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	

INDEX

Α

access-lists, extended 78 ACK (hello acknowledgment) 77 objects 77 RSVP messages 77 ACL match, how to return implicit deny 89 ACL-based prefix filtering 78, 87 ACL-based prefix filtering, RSVP 78 active targeted hellos, how to configure 24 active targeted hellos, prerequisites 24 Additional References command 60, 124, 297 advertisement, label 14 auto-tunnel mesh 273 automatic bandwidth, configuring 244 automatic bandwidth, MPLS-TE 154 restrictions 154

В

backbone 129 bandwidth 84, 136 constraint models 136 control channel, how to configure 84 data channel, how to configure 84 pools 136 Bandwidth Configuration (MAM) 108 Example command 108 Bandwidth Configuration (Prestandard) 108 Example command 108 Bandwidth Configuration (RDM) 108 Example command 108 bandwidth constraints 135 bandwidth pools 161 bandwidth, how to configure 84, 86 benefits 130, 141 border control model 220 how to configure 220 overview 220 Build MPLS-TE Topology and Tunnels 285 Example command 285

С

changing restart time 110 class and attributes 137 class mapping 137 compliance 74 concepts 130 configuration 74, 84, 86, 87, 89, 90 ACL-based prefix filtering 87 diffserv TE bandwidth 84 graceful restart 86 how to verify **90** interface-based graceful restart 86 O-UNI LSP 74 Packet dropping 89 Configuration Examples for Cisco MPLS-TE 285 Configuration Examples for RSVP Authentication command 112 Configuration Examples for RSVP command 107 Configure an Interarea Tunnel 292 Example command 292 Configure Automatic Bandwidth 295 Example command 295 Configure Fast Reroute and SONET APS 285 Example command **285** Configure Flexible Name-based Tunnel Constraints 290 Example command 290 Configure Forwarding Adjacency 292 Example command 292 Configure GMPLS 288 Example command 288 Configure IETF DS-TE Tunnels 287 Example command 287 Configure IP LDP Fast Reroute Loop Free Alternate 57 Example 57 Configure MPLS-TE and Fast-Reroute on OSPF 287 Example command 287 Configure PCE 293 Example command 293 Configure Policy-based Tunnel Selection 294 Example command 294 Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE 287 Example command 287

Configure Unequal Load Balancing 292 Example command 292 configuring 8, 196, 214, 219, 250 Configuring ACL-based Prefix Filtering 111 Example command 111 Configuring Graceful Restart 110 Example command 110 configuring LDP downstream on demand mode 51 configuring SRLG 250 constraint models 136 RDM and MAM 136 overview 136 control 14 control channel, how to configure 84 control communication failure 12 control message 7 with LDP 7 control messages 7 control plane 7, 11, 119 failure 11 Control Protocol (example) 7 control state recovery 12 control, LDP 14 creating 172

D

data channel, how to configure 84 data plane services 120 data plane services, about 120 defining 7, 140 description 73, 127 Diff-Serv 135 RDM (russian doll model) and MAM (maximum allocation model) 135 Russian Doll Model (RDM) and Maximum Allocation Model (MAM) 135 Differentiated Services Traffic-Engineering 84, 135 bandwidth, how to configure 84 bandwidth constraints 135 overview 135 diffserv TE bandwidth 84 diffserv-TE bandwidth, how to confirm 84 disabling 208 discovery 20, 24, 26 active targeted hellos, how to configure 24 parameters, configuring 20 passive targeted hellos, how to configure 26 discovery over a link 22 how to configure 22 prerequisites 22 downstream on demand 20

DS-TE modes, prestandard and IETF 84 dynamic path setup 7 dynamic tunnel selection 151

E

enable soft-preemption 263 enabling 207 end-to-end recovery 143 end-to-end recovery, GMPLS 143 engineering a backbone 130 exchanging 8 extended access-lists 78 extensions 74, 130 generalized label request 74 generalized UNI attribute 74 New Error Spec sub-codes 74 UNI session 74 extensions, MPLS TE 130

F

failure 11 failure recovery 13 failure recovery, graceful restart 13 fast reroute 138 fault handling 76 figure, implementation 149 flooding 137, 138 thresholds 138 MPLS-TE 137 thresholds 138 triggers 137 flooding thresholds 138 flooding triggers 137 for active targeted hellos 24 for passive targeted hellos 26 forced reversion procedure 223 FRR (fast reroute) 138, 139 link protection 138 over link bundles 139 with MPLS TE 138 FRR (Fast Reroute) 139 over link bundles 139 functions 150

G

generalized label request **74** generalized UNI attribute **74**

GMPLS (generalized multiprotocol label switching) 197 how to configure 197 GMPLS (Generalized Multiprotocol Label Switching) 141, 142, 143 benefits 141 prerequisites 143 protection and restoration 142 support 141 graceful restart 10, 12, 13, 18, 33, 76, 86 failure recovery 13 how to set up LDP NSF 33 LDP 10, 33 mechanism 12 NSR 18 phases 12 RSVP 76 session parameters **10** graceful restart, how to enable 86

Η

head node 75 hello discovery mechanism 7 hello interval, how to change 111 hello messages 77 hierarchy 219 high availability 75 high availability, RSVP 75 high-availability 76 hop-by-hop 7 how to buildi 169 how to configure 8, 22, 27, 31, 84, 196, 197, 199, 220, 242 tunnel bandwidth, engineering 84 how to configure over IPCC 199 how to define 7, 18, 140, 149 how to exchange 8 how to set up 9 how to set up LDP NSF 33 how to verify 90

I

IETF DS-TE mode 135 Ignore Intermediate System-to-Intermediate System (IS-IS) 140, 196 overload bit setting 140, 196 Ignore IS-IS 196 overload bit setting 196 IGP (interior gateway protocols) 7, 16 prefixes 7 routing protocols 7 IGP (interior gateway protocols) (continued) synchronizing with LDP 16 IGP (Interior Gateway Protocols) 5,7 prefixes 7 routing protocols 7 with LDP 5 IGP prefixes 7 IGP synchronization **16** implementation 20 implementing 84 interface-based graceful restart 86 IP Fast Reroute Loopfree Alternative 139 IP LDP Fast Reroute Loop Free Alternate 18 IP Time to Live (TTL) 77 IPCC (IP Control Channel) 197 how to configure 197 IS-IS (ignore intermediate system-to-intermediate system) 140 overload bit setting 140 IS-IS (intermediate system-to-intermediate system) 139 IP Fast Reroute Loopfree Alternative 139

K

keepalive mechanism 7

L

Label Acceptance (Inbound Filtering), example 55 label advertisement 14, 27 control 14 control, LDP 14 how to configure 27 prerequisites 27 Label Advertisement (Outbound Filtering), example 53 label bindings 8 configuring 8 exchanging 8 how to configure 8 how to exchange 8 ldp 273 LDP 7, 8, 10, 18, 33, 119 control messages 7 control plane 7 Control Protocol (example) 7 dynamic path setup 7 hello discovery mechanism 7 hop-by-hop 7 IGP prefixes 7 keepalive mechanism 7 local and remote label binding 7 LSPs, setting up 8

LDP (continued) neighbors 7 NSR 18 LDP (label distribution protocol) 7, 8, 10, 12, 13, 14, 15, 18, 20, 22, 24, 26, 33, 52 configuration examples 52 control communication failure 12 control state recovery 12 discovery 20, 24, 26 discovery over a link 22 failure recovery 13 graceful restart 33 IGP prefixes 7 implementation 20 keepalive mechanism 7 label advertisement 14 local and remote label binding 7 local label advertisement control 14 local label allocation control 15 LSPs, setting up 8 neighbors 7 NSF services 10 **NSR** 18 peer control plane 12 persistent forwarding 12 session protection 15 LDP (label distribution protocol) forwarding 31 how to configure 31 prerequisites 31 LDP Auto-Configuration, example 56 LDP Discovery for Targeted Hellos, example 53 LDP discovery prerequisites 22, 24, 26 for active targeted hellos 24 for passive targeted hellos 26 over a link 22 LDP Discovery, example 52 LDP forwarding 9 how to set up 9 LDP Forwarding, example 54 LDP IGP Synchronization—ISIS, example 56 LDP IGP Synchronization—OSPF, example 56 LDP label advertisement 14 LDP Link, example 52 LDP Neighbors, example 54 LDP neighbors, how to set up 29 LDP Nonstop Forwarding with Graceful Restart, example 54 LDP NSF graceful restart prerequisites 33 LDP Session Protection, example 55 LDP with Graceful Restart, example 52 LDP(label distribution protocol) 6, 7, 11, 16 control messages 7 control plane 11 Control Protocol (example) 7 dynamic path setup 7

LDP(label distribution protocol) (continued) hello discovery mechanism 7 hop-by-hop 7 IGP synchronization **16** prerequisites 6 link management module 130 link protection 138 LMP message exchange 207, 208 disabling 208 enabling 207 local and remote label binding 7 local and remote TE links 201, 202 numbered and unnumbered links, how to configure 202 local label advertisement control 14 local label advertisement control, LDP 14 local label allocation control 15 Local Label Allocation Control, example 55 local label allocation control, LDP 15 local label binding 7 local reservable bandwidth, how to configure 203 local switching capability descriptors, how to configure 204 loose hop reoptimization 145 LSP 7, 130, 219, 220 configuring 219 defining 7 hierarchy 219 how to define 7 MPLS-TE 130 overview 220 procedure 220 with LDP 7 LSPs, setting up 8

Μ

MAM (maximum allocation model), constraint characteristics 136 MAM, how to configure 84 Maximum Allocation Model (MAM), constraint characteristics 136 mechanism 12 mesh restoration, GMPLS 142 message rate limiting 74 MFI (MPLS forwarding infrastructure) 119, 120 control plane 119 data plane services 120 LDP 119 TE 119 MFI (MPLS Forwarding Infrastructure) 119, 120 control plane 119 data plane services, about 120 LDP 119 TE 119

MPLS forwarding forms 120 MPLS-TE 129, 130, 137, 138, 169, 172 backbone 129 benefits 130 concepts 130 engineering a backbone 130 extensions 130 fast reroute 138 flooding 137, 138 flooding thresholds 138 flooding triggers 137 link management module 130 overview 129 path calculation module 130 prerequisites 129 topology 169 tunnels 172 with label switching forwarding 130 with RSVP 130

Ν

neighbors 7 support for 7 New Error Spec sub-codes 74 node failure 77 NSF (nonstop forwarding) 76 high-availability 76 with RSVP 76 NSF (Nonstop Forwarding) 76, 86 graceful restart, how to enable 86 high-availability 76 with RSVP 76 NSF services 10 **NSR** 18 NSR (non-stop routing) 18 graceful restart 18 how to define **18** LDP 18 numbered and unnumbered links, how to configure 202

0

O-UNI (Optical User Network Interface) 86 bandwidth, how to configure 86 O-UNI LSP 74 objects 77 OSPF 199 how to configure 199 how to configure 0ver IPCC 199 over IPCC 199 over a link 22 over IPCC 199 over link bundles 139 overload bit setting 140, 196 configuring 196 defining 140 how to configure 196 how to define 140 overview 74, 129, 135, 136, 220

Ρ

Packet dropping 89 parameters, configuring 20 passive targeted hellos, how to configure 26 path calculation module 130 path calculation module, MPLS-TE 130 path option attributes 160 configuration hierarchy 160 path option switchover 161 path protection 162 path protection, GMPLS 220, 223 forced reversion procedure 223 LSP 220 PBTS default class enhancement 151 peer control plane 12 persistent forwarding 12 persistent interface index, how to configure 206 phases 12 Policy-Based Tunnel Selection (PBTS) 149, 150, 151, 242 dynamic tunnel selection 151 figure, implementation 149 functions 150 how to configure 242 how to define 149 pools 136 prefixes 7 prerequisites 6, 22, 27, 31, 74, 129, 143, 172 Prestandard DS-TE mode 135 protection and restoration 142 protection and restoration, GMPLS 142, 143 end-to-end recovery 143 requirements 143 shared mesh 142 span protection 142 protocol-based CLI 134

R

RDM (russian doll model) and MAM (maximum allocation model) **135**

RDM and MAM 136 RDM bandwidth constraint model 136 RDM, how to configure 84 recovery time 77 refresh interval, how to change 109 refresh reduction 74 Refresh Reduction and Reliable Messaging Configuration 109 Example command 109 remote label binding 7 requirements 143 Resource Reservation Protocol (RSVP) 79 Management Information Base (MIB) 79 restart time 77 restart time, how to change 110 restrictions 154 router IDs, how to configure 198 routing protocols 7 RSVP 73, 74, 75, 76, 77, 78, 84, 86, 87, 89, 90 ACL-based prefix filtering 78 compliance 74 configuration 74, 84, 86, 87, 89, 90 description 73 diffserv-TE bandwidth, how to confirm 84 extensions 74 fault handling 76 graceful restart 76 head node 75 hello messages 77 high availability 75 how to configure 84 implementing 84 message rate limiting 74 node failure 77 overview 74 prerequisites 74 recovery time 77 refresh reduction 74 restart time 77 support for graceful restart 74 tail node 75 topology 90 with O-UNI LSP, configuring 74 RSVP Authentication by Using All the Modes 113 Example command 113 **RSVP** Authentication for an Interface **113** Example command 113 RSVP Authentication Global Configuration Mode 112 Example command 112 RSVP messages 77 **RSVP** Neighbor Authentication 113 Example command 113 RSVP nodes 75 head node 75 tail node 75

Russian Doll Model (RDM) and Maximum Allocation Model (MAM) 135 RVSP node failure 77

S

session parameters 10 session protection 15 session protection, LDP 15 Setting DSCP for RSVP Packets 111 Example command 111 shared mesh 142 soft-preemption 159 span protection 142 SRLG (shared-risk link group) 250 configuring 250 summary refresh message size, how to change 109 support 141 support for 7 support for 7 support for 7 support for 7 support for 715

T

tail node 75 TE 119, 127, 137 class and attributes 137 class mapping 137 description 127 thresholds 138 thresholds, flooding 138 topology 90, 169 how to build 169 triggers 137 triggers, flooding 137 TTL 77 RSVP 77 with graceful restart 77 tunnel bandwidth 84 MAM, how to configure 84 RDM, how to configure 84 tunnel bandwidth, engineering 84 tunnels 172 creating 172 prerequisites 172

U

UNI session 74

unnumbered and numbered optical TE tunnels 214 configuring 214

V

Verify IP LDP Fast Reroute Loop Free Alternate 58 Example 58

W

with graceful restart 77 with label switching forwarding 130 with LDP 5, 7 with MPLS TE 138 with O-UNI LSP, configuring 74 with RSVP 76, 130 Index

I