cisco.

Cisco 4000 Series ISRs Software Configuration Guide

Last Modified: 2017-04-17

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883

Text Part Number: 0L-29328-03

© 2016–2017 Cisco Systems, Inc. All rights reserved.

CONTENTS

P R E F A C E	Preface xiii
	Objectives xiii
	Important Information on Features and Commands xiii
	Related Documentation xiii
	Document Conventions xiv
	Obtaining Documentation and Submitting a Service Request xvi
CHAPTER 1	Read Me First 1
	Short Description 2
CHAPTER 2	Overview 3
	Introduction 3
	Processes 4
CHAPTER 3	Using Cisco IOS XE Software 7
	Accessing the CLI Using a Router Console 7
	Accessing the CLI Using a Directly-Connected Console 7
	Connecting to the Console Port 7
	Using the Console Interface 8
	Using SSH to Access Console 8
	Accessing the CLI from a Remote Console Using Telnet 9
	Preparing to Connect to the Router Console Using Telnet 9
	Using Telnet to Access a Console Interface 10
	Accessing the CLI from a USB Serial Console Port 10
	Using Keyboard Shortcuts 11
	Using the History Buffer to Recall Commands 11

Understanding Command Modes 11
Understanding Diagnostic Mode 13
Getting Help 14
Using the no and default Forms of Commands 18
Saving Configuration Changes 18
Managing Configuration Files 18
Filtering Output from the show and more Commands 19
Powering Off a Router 19
Finding Support Information for Platforms and Cisco Software Images 19
Using Cisco Feature Navigator 20
Using Software Advisor 20
Using Software Release Notes 20
CLI Session Management 20
Information About CLI Session Management 20
Changing the CLI Session Timeout 21
Locking a CLI Session 21

CHAPTER 4

Smart Licensing 23

Introduction to Smart Licensing 23
Prerequisites for Cisco Smart Licensing Client 23
Restrictions for Cisco Smart Licensing Client 24
Information About Cisco Smart Licensing Client 24
Cisco Smart Licensing - An Overview 24
Transitioning from CSL to Smart Licensing 24
Cisco ONE Suites 24
How to Activate Cisco Smart Licensing Client 25
Enable Smart Licensing 25
Smart License Disable 26
Device Registration 27
Troubleshooting for Cisco Smart Licensing Client 28
Configuration Examples for Cisco Smart Licensing Client 28
Example: Displays summary information about all licenses 28
Example: Enabling Smart Licensing 29

 I

CHAPTER 5	Managing the Device Using Web User Interface 31
	Setting Up Factory Default Device Using WebUI 31
	Using Basic or Advanced Mode Setup Wizard 32
	Configure LAN Settings 32
	Configure Primary WAN Settings 33
	Configure Secondary WAN Settings 34
	Configure Security Settings 34
	Using Web User Interface for Day One Setup 35
	Monitor and Troubleshoot Device Plug and Play (PnP) Onboarding using WebUI 36
CHAPTER 6	Console Port, Telnet, and SSH Handling 39
	Notes and Restrictions for Console Port, Telnet, and SSH 39
	Console Port Overview 39
	Console Port Handling Overview 40
	Telnet and SSH Overview 40
	Persistent Telnet and Persistent SSH Overview 40
	Configuring a Console Port Transport Map 41
	Configuring Persistent Telnet 43
	Configuring Persistent SSH 45
	Viewing Console Port, SSH, and Telnet Handling Configurations 48
	Configuring Auxiliary Port for Modem Connection 53
CHAPTER 7	Installing the Software 55
	Overview 55
	ROMMON Images 55
	Rommon Compatibility Matrix 56
	Provisioning Files 60
	File Systems 60
	Autogenerated File Directories and Files 61
	Flash Storage 62
	Configuring the Configuration Register for Autoboot 62
	Licensing 63
	Cisco Software Licensing 63

	Consolidated Packages 63
	Technology Packages 64
	securityk9 64
	uck9 64
	appxk9 64
	Feature Licenses 64
	HSECK9 65
	Performance 65
	Boost Performance Licenses 66
	LED Indicators 69
	Related Documentation 70
	How to Install and Upgrade the Software 70
	Managing and Configuring a Router to Run Using a Consolidated Package 70
	Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example 71
	Managing and Configuring a Router to Run Using Individual Packages 75
	Installing Subpackages from a Consolidated Package 75
	Installing Subpackages from a Consolidated Package on a Flash Drive 80
	How to Install and Upgrade the Software for Cisco IOS XE Denali Release 16.3 81
	Upgrading to Cisco IOS XE Denali Release 16.3 81
	Installing a Firmware Subpackage 86
	Upgrading the Firmware on xDSL NIMs 92
CHAPTER 8	Basic Router Configuration 103
	Default Configuration 103
	Configuring Global Parameters 105
	Configuring Gigabit Ethernet Interfaces 105
	Configuring a Loopback Interface 106
	Hardware Limitations for MAC Filters 108
	MAC Filter Distribution 109
	Configuring Module Interfaces 110

Enabling Cisco Discovery Protocol **110**

Configuring Command-Line Access 110

Configuring Static Routes **112**

	Configuring Dynamic Routes 114
	Configuring Routing Information Protocol 114
	Configuring Enhanced Interior Gateway Routing Protocol 117
CHAPTER 9	Slot and Subslot Configuration 119
	Configuring the Interfaces 119
	Configuring Gigabit Ethernet Interfaces 119
	Configuring the Interfaces: Example 121
	Viewing a List of All Interfaces: Example 121
	Viewing Information About an Interface: Example 121
CHAPTER 10	Process Health Monitoring 123
	Monitoring Control Plane Resources 123
	Avoiding Problems Through Regular Monitoring 123
	Cisco IOS Process Resources 124
	Overall Control Plane Resources 124
	Monitoring Hardware Using Alarms 126
	Router Design and Monitoring Hardware 127
	BootFlash Disk Monitoring 127
	Approaches for Monitoring Hardware Alarms 127
	Onsite Network Administrator Responds to Audible or Visual Alarms 127
	Viewing the Console or Syslog for Alarm Messages 128
	Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP 130
CHAPTER 11	System Messages 133
	Information About Process Management 133
	How to Find Error Message Details 133
CHAPTER 12	Trace Management 139
	Tracing Overview 139
	How Tracing Works 139
	Tracing Levels 140
	Viewing a Tracing Level 141

	Setting a Tracing Level 143
	Viewing the Content of the Trace Buffer 143
CHAPTER 13	Environmental Monitoring and PoE Management 145
	Environmental Monitoring 145
	Environmental Monitoring and Reporting Functions 146
	Environmental Monitoring Functions 146
	Environmental Reporting Functions 148
	Configuring Power Supply Mode 160
	Configuring the Router Power Supply Mode 161
	Configuring the External PoE Service Module Power Supply Mode 161
	Examples for Configuring Power Supply Mode 161
	Available PoE Power 163
	Managing PoE 165
	PoE Support for FPGE Ports 165
	Monitoring Your Power Supply 165
	Enabling Cisco Discovery Protocol 167
	Configuring PoE for FPGE Ports 168
	Additional References 170
	Technical Assistance 171
CHAPTER 14	— Configuring High Availability 173
	About Cisco High Availability 173
	Interchassis High Availability 173
	IPsec Failover 174
	Bidirectional Forwarding Detection 174
	Bidirectional Forwarding Detection Offload 175
	Configuring Cisco High Availability 175
	Configuring Interchassis High Availability 175
	Configuring Bidirectional Forwarding 176
	Configuring BFD Offload 176
	Verifying Interchassis High Availability 176
	Verifying BFD Offload 184
	Additional References 186

I

CHAPTER 15

Configuring Call Home 189

Finding Feature Information 189 Prerequisites for Call Home 189 Information About Call Home 190 Benefits of Using Call Home 190 Obtaining Smart Call Home Services 191 Anonymous Reporting 191 How to Configure Call Home 192 Configuring Smart Call Home (Single Command) 192 Configuring and Enabling Smart Call Home 193 Enabling and Disabling Call Home 194 Configuring Contact Information 194 Configuring Destination Profiles 196 Creating a New Destination Profile 197 Copying a Destination Profile 198 Setting Profiles to Anonymous Mode 199 Subscribing to Alert Groups 199 Periodic Notification **202** Message Severity Threshold 203 Configuring a Snapshot Command List 203 Configuring General E-Mail Options 204 Specifying Rate Limit for Sending Call Home Messages 206 Specifying HTTP Proxy Server 207 Enabling AAA Authorization to Run IOS Commands for Call Home Messages 208 Configuring Syslog Throttling 208 Configuring Call Home Data Privacy 209 Sending Call Home Communications Manually 210 Sending a Call Home Test Message Manually 210 Sending Call Home Alert Group Messages Manually 210 Submitting Call Home Analysis and Report Requests 211 Manually Sending Command Output Message for One Command or a Command List 213 Configuring Diagnostic Signatures 214 Information About Diagnostic Signatures 215

Diagnostic Signatures Overview 215 Prerequisites for Diagnostic Signatures 216 Downloading Diagnostic Signatures 216 Diagnostic Signature Workflow 216 Diagnostic Signature Events and Actions 217 Diagnostic Signature Event Detection 217 **Diagnostic Signature Actions** 217 Diagnostic Signature Variables 218 How to Configure Diagnostic Signatures 218 Configuring the Call Home Service for Diagnostic Signatures 218 Configuring Diagnostic Signatures 220 Displaying Call Home Configuration Information 222 Default Call Home Settings 228 Alert Group Trigger Events and Commands 228 Message Contents 235 Sample Syslog Alert Notification in Long-Text Format 240 Sample Syslog Alert Notification in XML Format 242 Additional References 244

CHAPTER 16 Managing Cisco Enhanced Services and Network Interface Modules 247

Information About Cisco Enhanced Services and Network Interface Modules 247 Modules Supported 248 Network Interface Modules 248 Cisco Fourth-Generation LTE Network Interface Module 248 Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module 248 Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module 248 Cisco SSD/HDD Carrier Card NIM 249 Cisco 1-, 2-, and 4-Port Serial NIM 249 Upgrading the SSD or HDD Firmware 249 Error Monitoring 250 Enhanced Service Modules 250 Cisco SM-1 T3/E3 Service Module 250 Cisco UCS E-Series Server 251 Cisco SM-X Layer 2/3 EtherSwitch Service Module 251

	Cisco 6-Port GE SFP Service Module 251
	Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module 251
	Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules 251
	Implementing SMs and NIMs on Your Router 252
	Downloading the Module Firmware 252
	Installing SMs and NIMs 252
	Accessing Your Module Through a Console Connection or Telnet 252
	Online Insertion and Removal 253
	Preparing for Online Removal of a Module 253
	Deactivating a Module 253
	Deactivating Modules and Interfaces in Different Command Modes 254
	Deactivating and Reactivating an SSD/HDD Carrier Card NIM 255
	Reactivating a Module 256
	Verifying the Deactivation and Activation of a Module 256
	Managing Modules and Interfaces 260
	Managing Module Interfaces 260
	Managing Modules and Interfaces Using Backplane Switch 260
	Backplane Ethernet Switch 260
	Viewing Module and Interface Card Status on a Router 261
	Viewing Backplane Switch Statistics 261
	Viewing Backplane Switch Port Statistics 262
	Viewing Slot Assignments 263
	Monitoring and Troubleshooting Modules and Interfaces 263
	Configuration Examples 271
17	SFP Auto-Detect and Auto-Failover 273
	Enabling Auto-Detect 273
	Configuring Auto-Detect 273
	Configuring the Primary and Secondary Media 274
18	Cellular IPv6 Address 277
	Cellular IPv6 Address 277
	IPv6 Unicast Routing 277

Link-Lock Address 278

CHAPTER

CHAPTER

I

Global Address **278** Configuring Cellular IPv6 Address **278**

CHAPTER 19Configuring Voice Functionality283Call Waiting283Call Transfers283E1 R2 Signaling Configuration283Feature Group D Configuration289Media and Signaling Authentication and Encryption291Multicast Music-on-Hold291TLS 1.2 support on SCCP Gateways292

CHAPTER 20 Configuration Examples 299 Copying the Consolidated Package from the TFTP Server to the Router 299 Configuring the Router to Boot Using the Consolidated Package Stored on the Router 300 Extracting the Subpackages from a Consolidated Package into the Same File System 302 Extracting the Subpackages from a Consolidated Package into a Different File System 304 Configuring the Router to Boot Using Subpackages **305** Backing Up Configuration Files 311 Copying a Startup Configuration File to BootFlash 311 Copying a Startup Configuration File to a USB Flash Drive **312** Copying a Startup Configuration File to a TFTP Server **312** Displaying Digitally Signed Cisco Software Signature Information 312 Obtaining the Description of a Module or Consolidated Package 316

APPENDIX A Unsupported Commands 317

Preface

This section briefly describes the objectives of this document and provides links to additional information on related products and services:

- Objectives, on page xiii
- Important Information on Features and Commands, on page xiii
- Related Documentation, on page xiii
- Document Conventions, on page xiv
- Obtaining Documentation and Submitting a Service Request, on page xvi

Objectives

This guide provides an overview of the Cisco 4000 Series Integrated Services Routers (ISRs) and explains how to configure the various features on these routers.

The structure of this document is explained in Overview, on page 3.

Important Information on Features and Commands

For more information about Cisco IOS XE software, including features available on the router (described in configuration guides), see the Cisco IOS XE 3S Software Documentation set. In addition to the features described in the Cisco IOS XE 3S Configuration Guides, there also separate configuration guides for features such as *No Service Password Recovery, Multilink PPP Support*, and *Network Synchronization*. See the Configuration Guides for the Cisco ISR 4400 Series.

To verify support for specific features, use Cisco Feature Navigator. For more information about this, see Using Cisco Feature Navigator, on page 20.

Related Documentation

- Documentation Roadmap for the Cisco 4400 Series Integrated Services Routers
- Release Notes for the Cisco 4400 Series Integrated Services Routers

Commands

Cisco IOS XE commands are identical in look, feel, and usage to Cisco IOS commands on most platforms.

Features

The router runs Cisco IOS XE software which is used on multiple platforms. For more information on the available software features, see the configuration guides on the Cisco IOS XE Software Documentation page.

In addition to the features in the Cisco IOS XE Configuration Guides, there are also separate configuration guides for the features listed in the following table.

Feature	URL
No Service Password Recovery	http://www.cisco.com/c/en/us/td/docs/routers/access/ 4400/feature/guide/isr4451nspr.html
Multilink PPP Support	http://www.cisco.com/c/en/us/td/docs/routers/access/ 4400/feature/guide/isr4451mlpp.html
Network Synchronization	http://www.cisco.com/c/en/us/td/docs/routers/access/ 4400/feature/guide/isr4400netclock.html
Integrated AppNav/AppNav-XE and ISR-WAAS	http://www.cisco.com/c/en/us/td/docs/routers/access/ 4400/appnav/isr/isr_appnav.html

To verify support for specific features, use the Cisco Feature Navigator tool. For more information, see Using Cisco Feature Navigator, on page 20.

Document Conventions

This documentation uses the following conventions:

Convention	Description
^ or Ctrl	The ^ and Ctrl symbols represent the Control key. For example, the key combination ^ D or Ctrl-D means hold down the Control key while you press the D key. Keys are indicated in capital letters but are not case sensitive.
string	A string is a nonquoted set of characters shown in italics. For example, when setting an SNMP community string to public, do not use quotation marks around the string or the string will include the quotation marks.

Command syntax descriptions use the following conventions:

Convention	Description
bold	Bold text indicates commands and keywords that you enter exactly as shown.

Convention	Description
italics	Italic text indicates arguments for which you supply values.
[x]	Square brackets enclose an optional element (keyword or argument).
	A vertical line indicates a choice within an optional or required set of keywords or arguments.
[x y]	Square brackets enclosing keywords or arguments separated by a vertical line indicate an optional choice.
$\{x \mid y\}$	Braces enclosing keywords or arguments separated by a vertical line indicate a required choice.

Nested sets of square brackets or braces indicate optional or required choices within optional or required elements. For example:

Convention	Description
$[x \{y \mid z\}]$	Braces and a vertical line within square brackets indicate a required choice within an optional element.

Examples use the following conventions:

Convention	Description
screen	Examples of information displayed on the screen are set in Courier font.
bold screen	Examples of text that you must enter are set in Courier bold font.
<>	Angle brackets enclose text that is not printed to the screen, such as passwords.
!	An exclamation point at the beginning of a line indicates a comment line. (Exclamation points are also displayed by the Cisco IOS XE software for certain processes.)
[]	Square brackets enclose default responses to system prompts.

 \triangle

Caution

n Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Note Means *reader take note*. Notes contain helpful suggestions or references to materials that may not be contained in this manual.

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly *What's New in Cisco Product Documentation*, which also lists all new and revised Cisco technical documentation at: http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Read Me First

Important Information

Note

For CUBE feature support information in Cisco IOS XE Bengaluru 17.6.1a and later releases, see Cisco Unified Border Element IOS-XE Configuration Guide.

Note The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on standards documentation, or language that is used by a referenced third-party product.

Feature Information

Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References

Cisco IOS Command References, All Releases

Obtaining Documentation and Submitting a Service Request

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

• Short Description, on page 2

Short Description

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

Overview

This document is a summary of software functionality that is specific to the Cisco 4000 Series Integrated Services Routers (ISRs).

The following table lists the router models that belong to the Cisco 4000 Series ISRs.

Table 1: Cisco 4000 Series Router Models

Cisco 4400 Series ISRs	Cisco 4300 Series ISR s	Cisco 4200 Series ISRs	
• Cisco 4431 ISR	Cisco 4321 ISR	Cisco 4221 ISR	
• Cisco 4451 ISR	• Cisco 4331 ISR		
• Cisco 4461 ISR	• Cisco 4351 ISR		

Note Unless otherwise specified, the information in this document is applicable to both Cisco 4400 Series, Cisco 4300 Series and Cisco 4200 Series routers.

The following sections are included in this chapter:

- Introduction, on page 3
- Processes, on page 4

Introduction

The Cisco 4000 Series ISRs are modular routers with LAN and WAN connections that can be configured by means of interface modules, including Cisco Enhanced Service Modules (SM-Xs), and Network Interface Modules (NIMs). NIM slots also support removable storage for hosted applications.

The following features are provided for enterprise and service provider applications:

- Enterprise Applications
 - High-end branch gateway
 - Regional site aggregation
 - Key server or PfR primary controller

- Device consolidation or "Rack in a Box"
- Service Provider Applications
 - High-end managed services in Customer-Premises Equipment (CPE)
 - · Services consolidation platform
 - Route reflector or shadow router
 - · Flexible customer edge router

The router runs Cisco IOS XE software, and uses software components in many separate processes. This modular architecture increases network resiliency, compared to standard Cisco IOS software.

Processes

The list of background processes in the following table may be useful for checking router state and troubleshooting. However, you do not need to understand these processes to understand most router operations.

Process	Purpose	Affected FRUs	Sub Package Mapping
Chassis Manager	Controls chassis management functions, including management of the High Availability (HA) state, environmental monitoring, and FRU state control.	RP SIP ESP	RPControl SIPBase ESPBase
Host Manager	Provides an interface between the IOS process and many of the information gathering functions of the underlying platform kernel and operating system.	RP SIP ESP	RPControl SIPBase ESPBase
Logger	Provides IOS logging services to processes running on each FRU.	RP SIP ESP	RPControl SIPBase ESPBase
IOS	Implements all forwarding and routing features for the router.	RP	RPIOS

Table 2: Individual Processes

Process	Purpose	Affected FRUs	Sub Package Mapping
Forwarding Manager	Manages downloading of configuration details to the ESP and the communication of forwarding plane information, such as statistics, to the IOS process.	RP ESP	RPControl ESPBase
Pluggable Services	Provide integration between platform policy applications, such as authentication and the IOS process.	RP	RPControl
Shell Manager	Provides user interface (UI) features relating to non-IOS components of the consolidated package. These features are also available for use in diagnostic mode when the IOS process fails.	RP	RPControl
IO Module process	Exchanges configuration and other control messages with a NIM, or Enhanced Service Module (SM-X).	IO Module	SIPSPA
CPP driver process	Manages CPP hardware forwarding engine on the ESP.	ESP	ESPBase
CPP HA process	Manages HA state for the CPP hardware forwarding engine.	ESP	ESPBase
CPP SP process	Performs high-latency tasks for the CPP-facing functionality in the ESP instance of the Forwarding Manager process.	ESP	ESPBase

For further details of router capabilities and models, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

Using Cisco IOS XE Software

This chapter describes the basics of using the Cisco IOS XE software and includes the following section:

• Accessing the CLI Using a Router Console, on page 7

Accessing the CLI Using a Router Console

Before you begin

There are two serial ports: a console (CON) port and an auxiliary (AUX) port. Use the CON port to access the command-line interface (CLI) directly or when using Telnet.

The following sections describe the main methods of accessing the router:

- Accessing the CLI Using a Directly-Connected Console, on page 7
- Using SSH to Access Console, on page 8
- Accessing the CLI from a Remote Console Using Telnet, on page 9
- Accessing the CLI from a USB Serial Console Port, on page 10

Accessing the CLI Using a Directly-Connected Console

The CON port is an EIA/TIA-232 asynchronous, serial connection with no-flow control and an RJ-45 connector. The CON port is located on the front panel of the chassis.

The following sections describe the procedure to access the control interface:

- Connecting to the Console Port, on page 7
- Using the Console Interface, on page 8

Connecting to the Console Port

Step 1 Configure your terminal emulation software with the following settings:

• 9600 bits per second (bps)

- 8 data bits
- No parity
- No flow control
- Step 2 Connect to the CON port using the RJ-45-to-RJ-45 cable and the RJ-45-to-DB-25 DTE adapter or the RJ-45-to-DB-9 DTE adapter (labeled Terminal).

Using the Console Interface

Step 1 Enter the following command:

Router> enable

Step 2 (Go to Step 3 if the enable password has not been configured.) At the password prompt, enter your system password:

Password: enablepass

When your password is accepted, the privileged EXEC mode prompt is displayed.

Router#

You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.

- **Step 3** If you enter the **setup** command, see "Using Cisco Setup Command Facility" in the "Initial Configuration" section of the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.
- **Step 4** To exit the console session, enter the **quit** command:

Router# quit

Using SSH to Access Console

Secure Shell (SSH) is a protocol which provides a secure remote access connection to network devices. To enable SSH support on the device:

Step 1 Configure the hostname:

Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#hostname xxx_lab

Here, *host name* is the router hostname or IP address.

Step 2 Configure the DNS domain of the router:

xxx lab(config) # **xxx.cisco.com**

Step 3 Generate an SSH key to be used with SSH:

```
xxx_lab(config)# crypto key generate rsa
The name for the keys will be: xxx lab.xxx.cisco.com Choose the size of the key modulus in the range
```

of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) xxx lab(config)#

Step 4 By default, the vtys? transport is Telnet. In this case, Telnet is disabled and only SSH is supported:

```
xxx_lab(config)#line vty 0 4
xxx_lab(config-line)#transport input SSH
```

Step 5 Create a username for SSH authentication and enable login authentication:

xxx_lab(config)# username jsmith privilege 15 secret 0 p@ss3456 xxx_lab(config)#line vty 0 4 xxx lab(config-line)# login local

Step 6 Verify remote connection to the device using SSH.

Accessing the CLI from a Remote Console Using Telnet

The following topics describe the procedure to access the CLI from a remote console using Telnet:

- Preparing to Connect to the Router Console Using Telnet, on page 9
- Using Telnet to Access a Console Interface, on page 10

Preparing to Connect to the Router Console Using Telnet

To access the router remotely using Telnet from a TCP/IP network, configure the router to support virtual terminal lines using the **line vty** global configuration command. Configure the virtual terminal lines to require users to log in and specify a password.

See the Cisco IOS Terminal Services Command Reference document for more information about the line **vty global** configuration command.

To prevent disabling login on a line, specify a password with the **password** command when you configure the **login** command.

If you are using authentication, authorization, and accounting (AAA), configure the **login authentication** command. To prevent disabling login on a line for AAA authentication when you configure a list with the login authentication command, you must also configure that list using the **aaa authentication login** global configuration command.

For more information about AAA services, see the Cisco IOS XE Security Configuration Guide: Secure Connectivity and the Cisco IOS Security Command Reference documents. For more information about the **login line-configuration** command, see the Cisco IOS Terminal Services Command Reference document.

In addition, before you make a Telnet connection to the router, you must have a valid hostname for the router or have an IP address configured on the router. For more information about the requirements for connecting to the router using Telnet, information about customizing your Telnet services, and using Telnet key sequences, see the Cisco IOS Configuration Fundamentals Configuration Guide.

Using Telnet to Access a Console Interface

- **Step 1** From your terminal or PC, enter one of the following commands:
 - connect host [port] [keyword]
 - telnet host [port] [keyword]

Here, *host* is the router hostname or IP address, *port* is a decimal port number (23 is the default), and *keyword* is a supported keyword. For more information about these commands, see the Cisco IOS Terminal Services Command Reference document.

Note If you are using an access server, specify a valid port number, such as **telnet 172.20.52.40 2004**, in addition to the hostname or IP address.

The following example shows how to use the **telnet** command to connect to a router named **router**:

unix_host% **telnet router** Trying 172.20.52.40... Connected to 172.20.52.40. Escape character is '^]'. unix host% connect

Step 2 Enter your login password:

User Access Verification Password: mypassword

Note If no password has been configured, press **Return**.

Step 3 From user EXEC mode, enter the **enable** command:

Router> enable

Step 4 At the password prompt, enter your system password:

Password: enablepass

Step 5 When the **enable** password is accepted, the privileged EXEC mode prompt is displayed:

Router#

- **Step 6** You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.
- **Step 7** To exit the Telnet session, use the **exit** or **logout** command. Router# **logout**

Accessing the CLI from a USB Serial Console Port

The router provides an additional mechanism for configuring the system: a type B miniport USB serial console that supports remote administration of the router using a type B USB-compliant cable. See the "Connecting to a Console Terminal or Modem" section in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

Using Keyboard Shortcuts

Commands are not case sensitive. You can abbreviate commands and parameters if the abbreviations contain enough letters to be different from any other currently available commands or parameters.

The following table lists the keyboard shortcuts for entering and editing commands.

Table 3: Keyboard Shortcuts

Key Name	Purpose
Ctrl-B or the Left Arrow key ¹	Move the cursor back one character.
Ctrl-F or the Right Arrow key ¹	Move the cursor forward one character.
Ctrl-A	Move the cursor to the beginning of the command line.
Ctrl-E	Move the cursor to the end of the command line.
Esc B	Move the cursor back one word.
Esc F	Move the cursor forward one word.

Using the History Buffer to Recall Commands

The history buffer stores the last 20 commands you entered. History substitution allows you to access these commands without retyping them, by using special abbreviated commands.

The following table lists the history substitution commands.

Table 4: History Substitution Commands

	-
Command	Purpose
Ctrl-P or the Up Arrow key ¹	Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.
Ctrl-N or the Down Arrow key ¹	Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the Up Arrow key.
Router# show history	While in EXEC mode, lists the last few commands you entered.

¹ The arrow keys function only on ANSI-compatible terminals such as VT100s.

Understanding Command Modes

The command modes available in Cisco IOS XE are the same as those available in traditional Cisco IOS. Use the CLI to access Cisco IOS XE software. Because the CLI is divided into many different modes, the commands

available to you at any given time depend on the mode that you are currently in. Entering a question mark (?) at the CLI prompt allows you to obtain a list of commands available for each command mode.

When you log in to the CLI, you are in user EXEC mode. User EXEC mode contains only a limited subset of commands. To have access to all commands, you must enter privileged EXEC mode, normally by using a password. From privileged EXEC mode, you can issue any EXEC command—user or privileged mode—or you can enter global configuration mode. Most EXEC commands are one-time commands. For example, **show** commands show important status information, and **clear** commands clear counters or interfaces. The EXEC commands are not saved when the software reboots.

Configuration modes allow you to make changes to the running configuration. If you later save the running configuration to the startup configuration, these changed commands are stored when the software is rebooted. To enter specific configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and a variety of other modes, such as protocol-specific modes.

ROM monitor mode is a separate mode used when the Cisco IOS XE software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode.

The following table describes how to access and exit various common command modes of the Cisco IOS XE software. It also shows examples of the prompts displayed for each mode.

Command Mode	Access Method	Prompt	Exit Method
User EXEC	Log in.	Router>	Use the logout command.
Privileged EXEC	From user EXEC mode, use the enable command.	Router#	To return to user EXEC mode, use the disable command.
Global configuration	From privileged EXEC mode, use the configure terminal command.	Router(config)#	To return to privileged EXEC mode from global configuration mode, use the exit or end command.
Interface configuration	From global configuration mode, specify an interface using an interface command.	Router(config-if)#	To return to global configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.

Table 5: Accessing and Exiting Command Modes

Command Mode	Access Method	Prompt	Exit Method
Diagnostic	 The router boots up or accesses diagnostic mode in the following scenarios: In some cases, diagnostic mode will be reached when the Cisco IOS process or processes fail. In most scenarios, however, the router will reload. A user-configured access policy is configured using the transport-map command that directs a user into diagnostic mode. A break signal (Ctrl-C, Ctrl-Shift-6, or the send break command) is entered and the router is configured to go to diagnostic mode when the break signal is received. 	Router (diag) #	If failure of the Cisco IOS process is the reason for entering diagnostic mode, the Cisco IOS problem must be resolved and the router rebooted to get out of diagnostic mode. If the router is in diagnostic mode because of a transport-map configuration, access the router through another port or by using a method that is configured to connect to the Cisco IOS CLI.
ROM monitor	From privileged EXEC mode, use the reload EXEC command. Press the Break key during the first 60 seconds while the system is booting.	rommon#>	To exit ROM monitor mode, manually boot a valid image or perform a reset with autoboot set so that a valid image is loaded.

Understanding Diagnostic Mode

The router boots up or accesses diagnostic mode in the following scenarios:

- The IOS process or processes fail, in some scenarios. In other scenarios, the system resets when the IOS process or processes fail.
- A user-configured access policy was configured using the **transport-map** command that directs the user into the diagnostic mode.
- A send break signal (Ctrl-C or Ctrl-Shift-6) was entered while accessing the router, and the router was configured to enter diagnostic mode when a break signal was sent.

In the diagnostic mode, a subset of the commands that are available in user EXEC mode are made available to the users. Among other things, these commands can be used to:

- Inspect various states on the router, including the IOS state.
- Replace or roll back the configuration.
- Provide methods of restarting the IOS or other processes.
- Reboot hardware, such as the entire router, a module, or possibly other hardware components.
- Transfer files into or off of the router using remote access methods such as FTP, TFTP, and SCP.

The diagnostic mode provides a more comprehensive user interface for troubleshooting than previous routers, which relied on limited access methods during failures, such as ROMMON, to diagnose and troubleshoot Cisco IOS problems. The diagnostic mode commands can work when the Cisco IOS process is not working properly. These commands are also available in privileged EXEC mode on the router when the router is working normally.

Getting Help

Entering a question mark (?) at the CLI prompt displays a list of commands available for each command mode. You can also get a list of keywords and arguments associated with any command by using the context-sensitive help feature.

To get help that is specific to a command mode, a command, a keyword, or an argument, use one of the following commands.

Command	Purpose	
help	Provides a brief description of the help system in any command mode.	
abbreviated-command-entry?	Provides a list of commands that begin with a particular character string.	
	Note There is no space between the command and the question mark.	
abbreviated-command-entry <tab></tab>	Completes a partial command name.	
?	Lists all the commands that are available for a particular command mode.	
command ?	Lists the keywords or arguments that you must enter next on the command line.	
	Note There is a space between the command and the question mark.	

Finding Command Options: Example

This section provides information about how to display the syntax for a command. The syntax can consist of optional or required keywords and arguments. To display keywords and arguments for a command, enter a question mark (?) at the configuration prompt or after entering a part of a command followed by a space. The

L

Cisco IOS XE software displays a list and brief descriptions of the available keywords and arguments. For example, if you are in global configuration mode and want to see all the keywords and arguments for the **arap** command, you should type **arap**?

The <cr> symbol in command help output stands for carriage return. On older keyboards, the carriage return key is the **Return** key. On most modern keyboards, the carriage return key is the **Enter** key. The <cr> symbol at the end of command help output indicates that you have the option to press **Enter** to complete the command and that the arguments and keywords in the list preceding the <cr> symbol are optional. The <cr> symbol by itself indicates that no more arguments or keywords are available, and that you must press **Enter** to complete the command.

The following table shows examples of using the question mark (?) to assist you in entering commands.

Command	Comment
Router> enable Password: <password> Router#</password>	Enter the enable command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to a " # " from the ">", for example, Router> to Router#
Router# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#	Enter the configure terminal privileged EXEC command to enter global configuration mode. You are in global configuration mode when the prompt changes to Router (config) #
<pre>Router(config)# interface GigabitEthernet ? <0-0> GigabitEthernet interface number <0-2> GigabitEthernet interface number Router(config)# interface GigabitEthernet 1/?</pre>	Enter interface configuration mode by specifying the interface that you want to configure, using the interface GigabitEthernet global configuration command.
<pre><0-4> Port Adapter number Router (config)# interface GigabitEthernet 1/3/?</pre>	Enter ? to display what you must enter next on the command line.
<0-15> GigabitEthernet interface number	When the <cr> symbol is displayed, you can press Enter to complete the command.</cr>
<pre>Router (config)# interface GigabitEthernet 1/3/8? . <0-3> Router (config)# interface GigabitEthernet 1/3/8.0</pre>	You are in interface configuration mode when the prompt changes to Router (config-if) #
Router(config-if)#	

Table 6: Finding Command Options

Command		Comment
Router(config-if)# ? Interface configurat	ion commands:	Enter ? to display a list of all the interface configuration commands available for the interface. This example shows only some of the available interface configuration commands
ip	Interface Internet	interface configuration commands.
Protocol	110011000 11001100	
	config commands	
keepalive	Enable keepalive	
lan-name	LAN Name command	
llc2	LLC2 Interface Subcommands	
load-interval calculation	Specify interval for load	
	for an interface	
locaddr-priority	Assign a priority group	
logging	Configure logging for	
interface		
loopback	Configure internal	
loopback on an		
	interface	
mac-address	Manually set interface	
MAC address		
mls	mls router sub/interface	
commands		
mpoa	MPOA interface	
configuration comman	lds	
mtu	Set the interface	
	Maximum Transmission Unit	
(MTU)		
netbios	Use a defined NETBIOS	
access list		
	or enable	
	name-caching	
no	Negate a command or set	
its defaults		
nrzi-encoding	Enable use of NRZI	
encoding		
ntp	Configure NTP	
•		
•		
·		
Kouter(Contig=11)#		

Command		Comment
Router (config-if) # ip Interface IP configur access-group for packets accounting this interface address interface authentication bandwidth-percent broadcast-address of an interface cgmp directed-broadcasts dvmrp hello-interval interval helper-address address for UDP broad hold-time time	<pre>? ation subcommands: Specify access control Enable IP accounting on Set the IP address of an authentication subcommands Set EIGRP bandwidth limit Set the broadcast address Enable/disable CGMP Enable forwarding of DVMRP interface commands Configures IP-EIGRP hello Specify a destination casts Configures IP-EIGRP hold</pre>	Enter the command that you want to configure for the interface. This example uses the ip command. Enter ? to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.
Router(config-if) # ip	address ?	Enter the command that you want to configure for
A.B.C.D negotiated PPP	IP address IP Address IP Address negotiated over	the interface. This example uses the ip address command.
Router(config-if)# ip	address	Enter ? to display what you must enter next on the command line. In this example, you must enter an IP address or the negotiated keyword.
		A carriage return (<cr>) is not displayed. Therefore, you must enter additional keywords or arguments to complete the command.</cr>
Router(config-if)# ip A.B.C.D Router(config-if)# ip	address 172.16.0.1 ? IP subnet mask address 172.16.0.1	Enter the keyword or argument that you want to use. This example uses the 172.16.0.1 IP address.
		Enter ? to display what you must enter next on the command line. In this example, you must enter an IP subnet mask.
		<cr> is not displayed. Therefore, you must enter additional keywords or arguments to complete the command.</cr>

Command	Comment
Router(config-if) # ip address 172.16.0.1 255.255.255.0 ? secondary Make this IP address a	Enter the IP subnet mask. This example uses the 255.255.255.0 IP subnet mask.
<pre>secondary address</pre>	Enter ? to display what you must enter next on the command line. In this example, you can enter the secondary keyword, or you can press Enter .
	<cr> is displayed. Press Enter to complete the command, or enter another keyword.</cr>
Router(config-if)# ip address 172.16.0.1 255.255.255.0 Router(config-if)#	Press Enter to complete the command.

Using the no and default Forms of Commands

Almost every configuration command has a **no** form. In general, use the **no** form to disable a function. Use the command without the **no** keyword to re-enable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, use the **no ip routing** command; to re-enable IP routing, use the **ip routing** command. The Cisco IOS software command reference publications provide the complete syntax for the configuration commands and describe what the **no** form of a command does.

Many CLI commands also have a **default** form. By issuing the *<command>* **default** command-name, you can configure the command to its default setting. The Cisco IOS software command reference publications describe the function from a **default** form of the command when the **default** form performs a different function than the plain and **no** forms of the command. To see what default commands are available on your system, enter **default** ? in the appropriate command mode.

Saving Configuration Changes

Use the **copy running-config startup-config** command to save your configuration changes to the startup configuration so that the changes will not be lost if the software reloads or a power outage occurs. For example:

Router# copy running-config startup-config Building configuration...

It may take a few minutes to save the configuration. After the configuration has been saved, the following output is displayed:

[OK] Router#

This task saves the configuration to the NVRAM.

Managing Configuration Files

The startup configuration file is stored in the nvram: file system and the running configuration files are stored in the system: file system. This configuration file storage setup is also used on several other Cisco router platforms.

As a matter of routine maintenance on any Cisco router, users should back up the startup configuration file by copying the startup configuration file from NVRAM to one of the router's other file systems and, additionally, to a network server. Backing up the startup configuration file provides an easy method of recovering the startup configuration file if the startup configuration file in NVRAM becomes unusable for any reason.

The copy command can be used to back up startup configuration files.

For more detailed information on managing configuration files, see the "Managing Configuration Files" section in the Cisco IOS XE Configuration Fundamentals Configuration Guide.

Filtering Output from the show and more Commands

You can search and filter the output of **show** and **more** commands. This functionality is useful if you need to sort through large amounts of output or if you want to exclude output that you need not see.

To use this functionality, enter a **show** or **more** command followed by the "pipe" character (|); one of the keywords **begin**, **include**, or **exclude**; and a regular expression on which you want to search or filter (the expression is case sensitive):

show command | {append | begin | exclude | include | redirect | section | tee} regular-expression

The output matches certain lines of information in the configuration file.

Example

In this example, a modifier of the **show interface** command (**include protocol**) is used to provide only the output lines in which the expression **protocol** is displayed:

```
Router# show interface | include protocol
GigabitEthernet0/0/0 is administratively down, line protocol is down
        0 unknown protocol drops
GigabitEthernet0/0/1 is administratively down, line protocol is down
        0 unknown protocol drops
GigabitEthernet0/0/2 is administratively down, line protocol is down
        0 unknown protocol drops
GigabitEthernet0/0/3 is administratively down, line protocol is down
        0 unknown protocol drops
GigabitEthernet0 //3 is administratively down, line protocol is down
        0 unknown protocol drops
GigabitEthernet0 is up, line protocol is up
        0 unknown protocol drops
Loopback0 is up, line protocol is up
        0 unknown protocol drops
```

Powering Off a Router

The router can be safely turned off at any time by moving the router's power supply switch to the Off position. However, any changes to the running config since the last WRITE of the config to the NVRAM is lost.

Ensure that any configuration needed after startup is saved before powering off the router. The copy running-config startup-config command saves the configuration in NVRAM and after the router is powered up, the router initializes with the saved configuration.

Finding Support Information for Platforms and Cisco Software Images

The Cisco IOS XE software is packaged in feature sets consisting of software images that support specific platforms. The group of feature sets that are available for a specific platform depends on which Cisco software

images are included in a release. To identify the set of software images available in a specific release or to find out if a feature is available in a given Cisco IOS XE software image, you can use Cisco Feature Navigator or see the Release Notes for Cisco IOS XE.

Using Cisco Feature Navigator

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator is a tool that enables you to determine which Cisco IOS XE software images support a specific software release, feature set, or platform. To use the navigator tool, an account on Cisco.com is not required.

Using Software Advisor

Cisco maintains the Software Advisor tool. See Tools and Resources. Use the Software Advisor tool to see if a feature is supported in a Cisco IOS XE release, to locate the software document for that feature, or to check the minimum software requirements of Cisco IOS XE software with the hardware installed on your router. You must be a registered user on Cisco.com to access this tool.

Using Software Release Notes

See the Release Notes document for the Cisco 4000 Series ISRs for information about the following:

- · Memory recommendations
- · Open and resolved severity 1 and 2 caveats

Release notes are intended to be release-specific for the most current release, and the information provided in these documents may not be cumulative in providing information about features that first appeared in previous releases. For cumulative feature information, refer to the Cisco Feature Navigator at: http://www.cisco.com/go/cfn/.

CLI Session Management

An inactivity timeout is configurable and can be enforced. Session locking provides protection from two users overwriting changes that the other has made. To prevent an internal process from using all the available capacity, some spare capacity is reserved for CLI session access. For example, this allows a user to remotely access a router.

- Changing the CLI Session Timeout, on page 21
- Locking a CLI Session, on page 21

Information About CLI Session Management

An inactivity timeout is configurable and can be enforced. Session locking provides protection from two users overwriting changes that each other has made. To prevent an internal process from using all the available capacity, some spare capacity is reserved for CLI session access. For example, this allows a user to remotely access the router.
Changing the CLI Session Timeout

Step 1	configure terminal
	Enters global configuration mode
Step 2	line console 0
Step 3	session-timeout minutes
	The value of <i>minutes</i> sets the amount of time that the CLI waits before timing out. Setting the CLI session timeout increases the security of a CLI session. Specify a value of 0 for <i>minutes</i> to disable session timeout.
Step 4	show line console 0 Verifies the value to which the session timeout has been set, which is shown as the value for " Idle Session ".

Locking a CLI Session

Before you begin

To configure a temporary password on a CLI session, use the **lock** command in EXEC mode. Before you can use the **lock** command, you need to configure the line using the **lockable** command. In this example the line is configured as **lockable**, and then the **lock** command is used and a temporary password is assigned.

Step 1 Router# configure terminal

Enters global configuration mode.

Step 2 Enter the line upon which you want to be able to use the **lock** command.

Router(config)# line console 0

Step 3 Router(config) # lockable

Enables the line to be locked.

Step 4 Router(config) # exit

Step 5 Router# lock

The system prompts you for a password, which you must enter twice.

Password: <password> Again: <password> Locked

Smart Licensing

This chapter provides an overview of the Cisco Smart Licensing Client feature and describes the several tools and processes required to complete the products registration and authorization.

This chapter includes this section:

• Introduction to Smart Licensing, on page 23

Introduction to Smart Licensing

Cisco Smart Licensing is a flexible licensing model that provides you with an easier, faster, and more consistent way to purchase and manage software across the Cisco portfolio and across your organization. And it's secure – you control what users can access. With Smart Licensing, you get:

- Easy Activation: Smart Licensing establishes a pool of software licenses that can be used across the entire organization—no more PAKs (Product Activation Keys).
- Unified Management: My Cisco Entitlements (MCE) provides a complete view into all of your Cisco products and services in an easy-to-use portal, so you always know what you have and what you are using.
- License Flexibility: Your software is not node-locked to your hardware, so you can easily use and transfer licenses as needed.

To use Smart Licensing, you must first set up a Smart Account on Cisco Software Central (http://software.cisco.com/).

For a more detailed overview on Cisco Licensing, go to https://cisco.com/go/licensingguide.

For Smart Licensing configuration information for access and edge routers, see the https://www.cisco.com/ c/en/us/td/docs/ios-xml/ios/smart-licensing/qsg/b_Smart_Licensing_QuickStart/b_Smart_Licensing_QuickStart_ chapter_01.html.

Prerequisites for Cisco Smart Licensing Client

- Ensure that Call Home is enabled before using the Smart Licensing Client feature.
- Ensure that the device is running the Cisco IOS XE Everest 16.6.1 version that supports the Smart Licensing mode.

Restrictions for Cisco Smart Licensing Client

 Cisco 4000 Series ISR platforms support Cisco One Suites License, Technology Package License, Throughput License, and HSECK9 license in Cisco Smart Licensing from Cisco IOS XE Release 16.6.1.

Information About Cisco Smart Licensing Client

Cisco Smart Licensing - An Overview

Smart licensing has the capability to capture a customer's order and to communicate with Cisco Cloud License Service through the Smart Call Home Transport Gateway. Additionally, the Smart Call Home Transport Gateway helps to complete product registration and authorization based on the desired performance and technology levels of Cisco products. To know more about Call Home, refer to *Call Home*.

Benefits of Smart Licensing are the following:

- Support for CiscoONE suites in the Cisco IOS Software License (CISL) and Smart Licensing mode, including the Foundation Suite and Active Directory Users and Computers (ADUC) Suite.
- The ability to switch between traditional licensing (CSL) and Smart Licensing mode
- Support for four software universal images NPE, NO-LI, NPE-NO-LI, and Non-NPE images.

Transitioning from CSL to Smart Licensing

In the Smart Licensing Model, customers can activate licensed objects without the use of a special software key or upgrade license file. Customers simply activate the new functionality using the appropriate product commands and configurations and the functionality is activated. A software reboot may or may not be required depending on the product capabilities and requirements.

Similarly, downgrading or removing an advanced feature, performance, or functionality would require removal of the configuration or command.

After either of the above actions has been taken, the change in license state is noted by the Smart Software Manager upon next synchronization and an appropriate action is taken.

Cisco ONE Suites

Cisco ONE Suites is a new way for customers to purchase infrastructure software. Cisco ONE offers a simplified purchasing model, centered on common customer scenarios in the data center, wide area network, and local access networks.

Smart Licensing supports Smart License Cisco ONE suite level licenses and image licenses, such as ipbase, Advanced IP Services (AIS), Advanced Enterprise Services (AES) and feature license and throughput performance, crypto throughput and port licensing.

To know more about Cisco One Suites, please refer to Cisco ONE Suites.

How to Activate Cisco Smart Licensing Client

Enable Smart Licensing

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. license smart enable
- 4. exit
- 5. write memory
- 6. show license all

DETAILED STEPS

	Command or Action	Purpose		
Step 1	enable	Enables privileged EXEC mode.		
	Example:	• Enter your password if prompted.		
	Device> enable			
Step 2	configure terminal	Enters global configuration mode.		
	Example:			
	Device# configure terminal			
Step 3	license smart enable	Activates Smart Licensing on the device.		
	Example:	Note When you enable Smart Licensing, the Cisco		
	Device# license smart enable	pass through the Smart Agent.		
		For the 'no' case, if Smart Licensing is already registered, the Smart Agent performs the "license smart deregister" operation that deactivates Smart Licensing. Reload the device to activate the CSL on the device.		
Step 4	exit	Exits the global configuration mode.		
	Example:			
	Device# exit			
Step 5	write memory	Saves the running configuration to NVRAM.		
	Example:			
	Device# write memory			

L

	Command or Action	Purpose	
Step 6	show license all	(Optional) Displays summary information about all licenses	
	Example:		
	Device# show license all		

Smart License Disable

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. no license smart enable
- 4. exit
- 5. write memory
- 6. reload
- 7. show license all

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	no license smart enable	Deactivates Smart Licensing on the device.
	<pre>Example: Device(config)# no license smart enable</pre>	Note When you enable Smart Licensing, the Cisco Software License (CSL) and all licensing calls pass through the Smart Agent. For the 'no' case, if Smart Licensing is already registered, the Smart Agent performs the "license smart deregister" operation that deactivates Smart Licensing. Reload the device to activate the CSL on the device.
Step 4	exit Example: Device(config)# exit	Exits the global configuration mode.

	Command or Action	Purpose		
Step 5	write memory	Saves the running configuration to NVRAM.		
	Example:			
	Device# write memory			
Step 6	reload	(Optional) Restarts the device to enable the new feature set.		
	Example:	Note Reload the device if you have not reloaded the device after configuring the Cisco One Suites.		
	Device# reload			
Step 7	show license all	(Optional) Displays summary information about all licenses.		
	Example:			
	Device# show license all			

Device Registration

SUMMARY STEPS

- 1. enable
- 2. license smart register idtoken idtoken [force]
- **3**. license smart deregister
- 4. license smart renew [ID | auth]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	license smart register idtoken idtoken [force]	Registers the device with the back-end server. Token id can
	Example:	be obtained from your virtual a/c in the Smart Licensing server.
	Device# license smart register idtoken 123	• force : To forcefully register your device irrespective of either the device is registered or not.
		Note The device supplies the token ID to the Cisco server, which sends back a "Device Certificate" that is valid for 365 days.
Step 3	license smart deregister	Deregisters the device from the backend server.
	Example:	
	Device# license smart deregister	

	Command or Action	Purpose	
Step 4	license smart renew [ID auth]	(Optional) Manually renews the ID certification or	
-	Example: Device# license smart renew ID	authorization. For more information on license boot level, license featur hseck9, and platform hardware throughput level, see the	
		Smart Licensing Guide for Access and Edge Routers.	

Troubleshooting for Cisco Smart Licensing Client

You can troubleshoot Smart Licensing enabling issues using the following commands on the device:

- show version
- show running-config
- show license summary
- show license all
- show license tech support
- debug smart_lic error
- debug smart_lic trace

Configuration Examples for Cisco Smart Licensing Client

Example: Displays summary information about all licenses

The following example shows how to use the **show license all** command to display summary information about all licenses.

```
Device#show license all
Smart Licensing Status
------
Smart Licensing is ENABLED
Registration:
Status: REGISTERED
Smart Account: BU Production Test
Virtual Account: ISR4K
Export-Controlled Functionality: Allowed
Initial Registration: SUCCEEDED on Sep 04 15:40:03 2015 PDT
Last Renewal Attempt: None
Next Renewal Attempt: Mar 02 15:40:02 2016 PDT
Registration Expires: Sep 03 15:34:53 2016 PDT
License Authorization:
Status: AUTHORIZED on Sep 04 15:40:09 2015 PDT
Last Communication Attempt: SUCCEEDED on Sep 04 15:40:09 2015 PDT
Next Communication Attempt: Oct 04 15:40:08 2015 PDT
Communication Deadline: Dec 03 15:35:01 2015 PDT
```

License Usage

```
ISR 4400 FoundationSuite (ISR 4400 FoundationSuite):
Description: Cisco ONE Foundation Perpetual License ISR 4400
Count: 1
Version: 1.0
Status: AUTHORIZED
ISR 4400 AdvancedUCSuite (ISR 4400 AdvancedUCSuite):
Description: Cisco ONE Advanced UC Perpetual License ISR 4400
Count: 1
Version: 1.0
Status: AUTHORIZED
ISR 4451 2G Performance (ISR 4451 2G Performance):
Description: Performance on Demand License for 4450 Series
Count: 1
Version: 1.0
Status: AUTHORIZED
Product Information
_____
UDI: PID:ISR4451-X/K9, SN:FOC17042FJ9
Agent Version
_____
Smart Agent for Licensing: 1.4.0 rel/16
Component Versions: SA:(1 4 rel)1.0.15, SI:(dev22)1.2.6, CH:(dev5)1.0.32, PK:(dev18)1.0.17
```

Device#

Example: Enabling Smart Licensing

The following example shows how to use the **license smart enable** command to confirm if the Cisco ONE Suite is enabled.

Note

The warning message that is displayed in the following example applies only for Cisco ISR G2 platform. For Cisco 4000 Series ISR platform, it does not display warning message when you enable the smart license.

Device# license smart enable

```
Currently only Cisco ONE license suites are supported by Smart Licensing.
Please make sure your Cisco ONE suites are enabled before turning on Smart Licensing.
Any other licenses outside of Cisco ONE suites would be disabled and made unusable in Smart
Licensing.
If you have any questions, please get in touch with your Cisco representative before using
this mmode.
```

Please confirm Cisco ONE suites are enabled? [yes/no]: yes

Managing the Device Using Web User Interface

The Web User Interface (Web UI) is an embedded GUI-based device-management tool that provides the ability to provision the device, to simplify device deployment and manageability, and to enhance the user experience. It comes with the default image, so there is no need to enable anything or install any license on the device. You can use Web UI to build configurations, and to monitor and troubleshoot the device without having CLI expertise. This chapter includes the following sections:

- Setting Up Factory Default Device Using WebUI, on page 31
- Using Web User Interface for Day One Setup, on page 35
- Monitor and Troubleshoot Device Plug and Play (PnP) Onboarding using WebUI, on page 36

Setting Up Factory Default Device Using WebUI

Quick Setup Wizard allows you to perform the basic router configuration. To configure the router:

Before you begin

• Before you access the WebUI, you need to have the basic configuration on the device.

Step 1 Connect the RJ-45 end of a serial cable to the RJ-45 console port on the router.

Step 2 After the device initial configuration wizard appears, enter **No** to get into the device prompt when the following system message appears on the router.

Would you like to enter the initial configuration dialog? [yes/no]: no

Step 3 From the configuration mode, enter the following configuration parameters.

```
ip dhcp pool WEBUIPool
network 192.168.1.0 255.255.255.0
default-router 192.168.1.1
username webui privilege 15 password cisco
!
interface gig 0/0/1
ip address 192.168.1.1 255.255.255.0
```

- **Step 4** Connect your device to the router using an Ethernet cable to the gig 0/0/1 interface.
- **Step 5** Set up your system as a DHCP client to obtain the IP address of the router automatically.

Step 6 Launch the browser and enter the device IP address in your browser's address line. For a secure connection, type https://192.168.1.1/#/dayZeroRouting. For a less secure connection, enter http://192.168.1.1/#/dayZeroRouting.
 Step 7 Enter the default username (webui) and default password (cisco).

Using Basic or Advanced Mode Setup Wizard

To configure the router using the basic or advanced mode setup:

- **Step 1** Choose the **Basic Mode** or **Advanced Mode** and click **Go To Account Creation Page**.
- **Step 2** Enter the username and password. Reenter the password to confirm.
- Step 3 Click Create and Launch Wizard.
- **Step 4** Enter the device name and domain name.
- **Step 5** Select the appropriate time zone from the **Time Zone** drop-down list.
- **Step 6** Select the appropriate date and time mode from the **Date and Time** drop-down list.
- Step 7 Click LAN Settings.

cisco WELCOME !	Check Video Demo			
This device is detected as factory fresh device. As a first step create a new user account and launch the guided setup wizard to bring up the device guickly.				
Basic Mode Advanced Mode Basic StatingsLAN.Primary WAN Baskap WAN.ANC.Additional Settings				
READ THE BELOW INSTRUCTIONS BEFORE YOU BEGIN				
 Ensure that you have all information from your service provider for completing the configuration. Click here for checklist 				
If you are configuring non 3G/4G based WAN connection then ensure physical WAN cable connectivity with Service Provider is proper.				
If 3G/4G is configured as WAN then ensure SIM (Subscriber Information Module) is inserted properly in the Router slot.				
The wizard by default enables some recommended configuration. Unless you have strong reason to change that have them as desired.				
This wizard helps to bring up your WAN/LAN connectivity quickly. You can always change the configuration and add advanced feature support				
once the configuration is successfully completed.				
Best Practice: When you use WEBUI for configuring a device, do not delete or modify the configuration directly by logging onto the device whi	ch			
will lead to misconfiguration.				
ουτο το	Account Creation Page >			

Configure LAN Settings

Step 1 Choose the Web DHCP Pool/DHCP Pool name or the Create and Associate Access VLAN option.

- a) If you choose the Web DHCP Pool, specify the following:
 Pool Name—Enter the DHCP Pool Name.
 Network—Enter network address and the subnet mask.
- b) If you choose the Create and Associate Access VLAN option, specify the following:
 Access VLAN—Enter the Access VLAN identification number. The range is from 1 to 4094.
 Network—Enter the IP address of the VLAN.

Management Interfaces—Select the interface and move to the selected list box using the right and left arrows. You can also double click or drag and drop to move the interface to the selected list box.

Step 2 Click Primary WAN Settings.

BASIC		PRIMARY WAN	WI-FI	SECURITY / APP VISIBILITY	J SUMMARY
LAN Configuration				HELP AN	DITIPS
Webui DHCP Pool				An admin user will be created	I with the below details
LAN Network	192.168.1.0				
Subnet Mask	255.255.255.0 -				
Available IP	254~				
LAN Interface	~				
< Basic Device Se	ttings			PRIMAR	Y WAN SETTINGS >

Configure Primary WAN Settings

- **Step 1** Select the primary WAN type. You can configure Serial, 3G/4G, Ethernet, or Broadband (xDSL) as primary WAN depending on the WAN types supported by the router.
- **Step 2** Select the interface from the drop-down list.
- **Step 3** Check the **Get DNS Server info directly from ISP** check box to get the DNS server information directly from the service provider. You can also manually enter the Primary DNS and Secondary DNS.
- **Step 4** Check the **Get IP automatically from ISP** check box to get the IP address information directly from the service provider. You can also manually enter the IP address and subnet mask.
- **Step 5** Check the **Enable NAT** check box to enable NAT. It is recommended to enable NAT.
- **Step 6** Check the **Enable PPPOE** check box to enable PPPoE. If you have enabled PPPoE, select the required authentication mode. The options are: **PAP** and **CHAP**.
- **Step 7** Enter the username and password provided by the service provider.
- Step 8 Click Security / APP Visibility WAN Settings.

BASIC		PRIMARY WAN	WI-FI		J SUMMARY
WAN Configuration	_			HELP AM	ND TIPS
WAN Type * Interface * DNS / IP Address Get DNS Server info directly Get IP automatically from ISP Get IP automatically from ISP Enable NAT Profile		•		An admin user will be create	d with the below details
Access Point Name (APN) * Configure username and pa	ssword if provided by service				
< LAN SETTINGS					Wi-Fi >

Configure Secondary WAN Settings

For advanced configuration, you should configure the secondary WAN connection.

- **Step 1** Select the secondary WAN type. You can configure Serial, 3G/4G, Ethernet, or Broadband (xDSL) as a secondary WAN depending on the WAN types supported by the router.
- **Step 2** Select the interface from the drop-down list.
- **Step 3** Check the **Get DNS Server info directly from ISP** check box to get the DNS server information directly from the service provider. You can also manually enter the Primary DNS and Secondary DNS.
- **Step 4** Check the **Get IP automatically from ISP** check box to get the IP address information directly from the service provider. You can also manually enter the IP address and subnet mask.
- **Step 5** Check the **Enable NAT** check box to enable NAT. It is recommended to enable NAT.
- **Step 6** Check the **Enable PPPOE** check box to enable PPPoE. If you have enabled PPPoE, select the required authentication mode. The options are **PAP** and **CHAP**.
- **Step 7** Enter the username and password provided by the service provider.
- Step 8 Click Security / APP Visibility WAN Settings.

Configure Security Settings

- **Step 1** Check the **Enable Cisco Recommended Security Settings** check box to ensure that all passwords are not shown in plain text. The passwords are encrypted.
- Step 2 Click Day 0 Config Summary.
- **Step 3** To preview the configuration, click **CLI Preview** to preview the configuration.
- **Step 4** Click **Finish** to complete the Day Zero setup.

BASIC		PRIMARY WAN	((WI-FI	SECURITY / APP VISIBILITY	
UMMARY					CLI Preview
T	This screen provides the summ	nary of all the steps configured as a part of	the day zero configuration. Pleas	e click Finish to configure the device.	
> Basic	🛩 Router Name: geo,	✓ Domain Name: mydomain.com, ✓ Time	Zone: 5.30, 🗸 Date & Time Mor	de: Automatic	
> LAN	✓ LAN Interface: , ✓ I	IP Address: , 🗸 Subnet Mask: , 🗸 Use as D	DHCP Server: Yes, 🗸 Pool Name	: , - Network: (), × Management Interface Co	nfigured: No
> Primary WAN	🗸 WAN Interface: , 🗸	✓ WAN Interface: , ✓ IP Address: Automatic, ✓ DNS: Automatic, ✓ NAT: Enabled			
> Wi-Fi	× Wi-Fi Configuration:				
> Security / App Visibility	 Cisco recommende 	d security settings: Enabled, × Application	Visibility: Disabled		
< SECURITY / APP VISIBILI	ΓY				Finish >

Using Web User Interface for Day One Setup

To configure the Web user interface:

Before you begin

- You need to configure at least 30 VTY lines on the device for the Web UI information to be displayed without errors.
- You need a user with privilege 15 to access the configuration screens on Web UI. If the privilege is less than 15, you can access only the Dashboard and Monitoring screens on Web UI.

To create a user account, use the **username** <username > **privilege** <privilege> **password 0** <p

```
Device #configure terminal
Device (config)# username <username> privilege <privilege> password 0
<passwordtext>
```

Step 1 Configure the HTTP server. By default, the HTTP server configuration should be present on the device. Ensure the configuration by checking if the **ip http server** and **ip http secure-server** commands are present in the running configuration.

```
Device #configure terminal
Device (config)#ip http server
Device (config)#ip http secure-server
```

- **Step 2** Set up the authentication options to log into Web UI. You can use one of these methods to authenticate:
 - a) You can authenticate using local database. To use a local database for Web UI authentication, ensure to have the ip http authentication local command in the running configuration. This command is preconfigured on the device. If the command is not present, configure the device as shown in this example:

```
Device #configure terminal
Device (config)#ip http authentication local
```

b) Authenticate using AAA options. To use AAA authentication for Web UI, ensure to configure 'ip http authentication aaa' on the device. Also, ensure that the required AAA server configuration is present on the device.

```
Device #configure terminal
Device (config)#ip http authentication local
```

Step 3 Launch the browser. In the address bar, type the IP address of the device. For a secure connection, type https://ip-address.

Step 4 Enter the default username (webui) and default password (cisco).

Step 5 Click Log In.

Monitor and Troubleshoot Device Plug and Play (PnP) Onboarding using WebUI

Table 7: Feature History

Feature Name	Release Information	Description
Monitor and Troubleshoot Device PnP Onboarding using WebUI	Cisco IOS XE Release 17.5.1a	You can now monitor and troubleshoot your Day-0 device onboarding using WebUI through PnP onboarding. If the automated PnP onboarding fails, you can manually onboard your device.

A device can be automatically onboarded to Cisco vManage through either Zero Touch Provisioning (ZTP) or the Plug and Play (PnP) process. This section describes the procedure to monitor and troubleshoot device onboarding through the PnP method. This feature on WebUI enables you to monitor and troubleshoot the PnP onboarding process, and also see its real-time status. If this onboarding is stuck or fails, you can terminate the process and onboard your device manually.

Prerequisites

- Your device (a computer that can run a web browser) running the WebUI and the device you are onboarding must be connected through an L2 switch port (NIM) on the device.
- The DHCP client-identifier on your device must be set to string "webui".
- Your device must support Cisco SD-WAN Day-0 device onboarding on WebUI.

Troubleshoot Device PnP Onboarding

To troubleshoot device onboarding through PnP in controller mode:

- **1.** Enter the controller mode in WebUI:
 - Switching from autonomous mode to controller mode:

Usually, when you boot your device for the first time it is in autonomous mode. Go to the URL https://192.168.1.1/webui/ and log in using the default credentials— webui/cisco. If your device supports Cisco SD-WAN Day-0 device onboarding on WebUI, you can switch to the controller

mode by selecting **Controller Mode.** A dialogue box appears, asking if you want to continue. Click **Yes.** Your device reloads to switch to controller mode.

• Booting your device in controller mode:

If your device is already in the controller mode, you do not have to make any changes to the mode. Go to the URL https://192.168.1.1 or https://192.168.1.1/webui. If your device supports Cisco SD-WAN Day-0 device onboarding on WebUI, the URL is redirected to https://192.168.1.1/ciscosdwan/ and you can log in using the default credentials for Cisco IOS XE SD-WAN devices - admin/admin.

Note If the device does not have start-up configuration at the time of PnP onboarding, the WebUI is enabled by default on supported devices.

2. On the Welcome to Cisco SDWAN Onboarding Wizard page, click Reset Default Password.

- **Note** The default password of your Day-0 device is weak. Therefore, for a secure log in, you must reset the password when you first log in to the device on WebUI. The WebUI configuration is automatically deleted after the device is onboarded successfully. In rare cases where the template configuration for your device on Cisco vManage has the WebUI configuration, it is not deleted even after a successful device onboarding.
- **3.** You are redirected to the Device hardware and software details page. Enter your password and click **Submit.**
- **4.** The next page displays the onboarding progress and lists statuses of different components of the PnP Connect Portal and Cisco SD-WAN controllers. If the PnP IPv4 component fails, it indicates that the device PnP onboarding has failed.

To view and download logs for the onboarding process, click the information icon on the right hand side of the SDWAN Onboarding Progress bar.

- 5. If the automated PnP onboarding fails, click **Terminate Automated Onboarding.** This allows you to onboard your device manually.
- 6. A dialogue box appears. To continue with the termination, click Yes. It might take a few minutes for the termination to complete.
- 7. On the Bootstrap Configuration page click **Select File** and choose the bootstrap file for your device. This file can be either a generic bootstrap file (common platform-specific file) or a full configuration bootstrap file that you can download from Cisco vManage. This file must contain details such as the vBond number, UUID, WAN interface, root CA and configuration.
- 8. Click Upload.
- 9. After your file is successfully uploaded, click Submit.
- **10.** You can see the SDWAN Onboarding Progress page again with statuses of the Cisco SD-WAN controllers. To open the Controller Connection History table click the information icon on the right hand side of the SDWAN Control Connections bar. In this table you can see the state of your onboarded device. After the onboarding is complete, the state of your device changes to **connect**.

Console Port, Telnet, and SSH Handling

This chapter includes the following sections:

- Notes and Restrictions for Console Port, Telnet, and SSH, on page 39
- Console Port Overview, on page 39
- Console Port Handling Overview, on page 40
- Telnet and SSH Overview, on page 40
- Persistent Telnet and Persistent SSH Overview, on page 40
- Configuring a Console Port Transport Map, on page 41
- Configuring Persistent Telnet, on page 43
- Configuring Persistent SSH, on page 45
- Viewing Console Port, SSH, and Telnet Handling Configurations, on page 48
- Configuring Auxiliary Port for Modem Connection, on page 53

Notes and Restrictions for Console Port, Telnet, and SSH

- Telnet and Secure Shell (SSH) settings configured in the transport map override any other Telnet or SSH settings when the transport map is applied to the Ethernet management interface.
- Only local usernames and passwords can be used to authenticate users entering a Ethernet management interface. AAA authentication is not available for users accessing the router through a Ethernet management interface using persistent Telnet or persistent SSH.
- Applying a transport map to a Ethernet management interface with active Telnet or SSH sessions can disconnect the active sessions. Removing a transport map from an interface, however, does not disconnect any active Telnet or SSH session.
- Configuring the diagnostic and wait banners is optional, but recommended. The banners are especially useful as indicators to users about the status of their Telnet or SSH attempts.

Console Port Overview

The console port on the router is an EIA/TIA-232 asynchronous, serial connection with no flow control and an RJ-45 connector. The console port is used to access the router and is located on the front panel of the Route Processor.

For information on accessing the router using the console port, see Using Cisco IOS XE Software, on page 7.

Console Port Handling Overview

If you are using the console port to access the router, you are automatically directed to the Cisco IOS command-line interface (CLI).

If you are trying to access the router through the console port and send a break signal (by entering **Ctrl-C** or **Ctrl-Shift-6**, or by entering the **send break** command at the Telnet prompt) before connecting to the CLI, you are directed to a diagnostic mode if the non-RPIOS subpackages are accessible. These settings can be changed by configuring a transport map for the console port and applying that transport map to the console interface.

Telnet and SSH Overview

Telnet and SSH on the router can be configured and handled like Telnet and SSH on other Cisco platforms. For information on traditional Telnet, see the line command in the Cisco IOS Terminal Services Command Reference, Release 12.2 document. For more information on AAA authentication methods, see the line command in the Authentication Commands chapter.

For information on configuring traditional SSH, see the "Configuring Secure Shell" chapter in the Cisco IOS Terminal Services Command Reference, Release 12.2 document.

On the router, persistent Telnet and persistent SSH allow network administrators to more clearly define the treatment of incoming traffic when users access the router through the management ethernet port using Telnet or SSH. Notably, persistent Telnet and persistent SSH provide more robust network access by allowing the router to be configured to be accessible through the Ethernet management port using Telnet or SSH even when the Cisco IOS process has failed.

Persistent Telnet and Persistent SSH Overview

In traditional Cisco routers, accessing the router using Telnet or SSH is not possible if the Cisco IOS software fails. When Cisco IOS fails on a traditional Cisco router, the only method of accessing the router is through the console port. Similarly, if all the active Cisco IOS processes have failed on a router that is not using persistent Telnet or persistent SSH, the only method of accessing the router is through the console port.

However, with persistent Telnet and persistent SSH, you can configure a transport map that defines the treatment of incoming Telnet or SSH traffic on the Ethernet management interface. Among the many configuration options, a transport map can be configured to direct all traffic to the Cisco IOS CLI, diagnostic mode, or to wait for a Cisco IOS VTY line to become available and then direct users to diagnostic mode when a user sends a break signal while waiting for the IOS VTY line to become available. If a user uses Telnet or SSH to access diagnostic mode, that Telnet or SSH connection will be usable even in scenarios when no Cisco IOS process is active. Therefore, persistent Telnet and persistent SSH introduce the ability to access the router via diagnostic mode when the Cisco IOS process is not active. For information on diagnostic mode, see Using Cisco IOS XE Software. For information on the options that are can be configured using persistent Telnet or persistent SSH transport maps, see Configuring Persistent Telnet, on page 43 and Configuring Persistent SSH, on page 45.

Configuring a Console Port Transport Map

This task describes how to configure a transport map for a console port interface on the router.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. transport-map type console transport-map-name
- 4. connection wait [allow [interruptible] | none [disconnect]]
- 5. (Optional) banner [diagnostic | wait] banner-message
- 6. exit
- 7. transport type console console-line-number input transport-map-name

DETAILED STEPS

	Command or Action	Purpose					
Step 1	enable	Enables privileged EXEC mode.					
	Example:	Enter your password if prompted.					
	Router> enable						
Step 2	configure terminal	Enters global configuration mode.					
	Example:						
	Router# configure terminal						
Step 3	transport-map type console <i>transport-map-name</i> Example:	Creates and names a transport map for handling console connections, and enters transport map configuration mode.					
	Router(config)# transport-map type console consolehandler						
Step 4	connection wait [allow [interruptible] none [disconnect]]	Specifies how a console connection will be handled using this transport map.					
	<pre>Example: Router(config-tmap)# connection wait none</pre>	• allow interruptible—The console connection waits for a Cisco IOS VTY line to become available, and also allows users to enter diagnostic mode by interrupting a console connection that is waiting for a Cisco IOS VTY line to become available. This is the default setting.					
		Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6 .					
		• none —The console connection immediately enters diagnostic mode.					

	Command or Action	Purpose				
Step 5	<pre>(Optional) banner [diagnostic wait] banner-message Example: Router(config-tmap)# banner diagnostic X Enter TEXT message. End with the character 'X'. Welcome to Diagnostic Mode X Router(config-tmap)#</pre>	 (Optional) Creates a banner message that will be seen by users entering diagnostic mode or waiting for the Cisco IOS VTY line because of the console transport map configuration. diagnostic—Creates a banner message seen by users directed to diagnostic mode because of the console transport map configuration. Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6. wait—Creates a banner message seen by users waiting for Cisco IOS VTY to become available. <i>banner-message</i>—Banner message, which begins and ends with the same delimiting character. 				
Step 6	exit Example: Router(config-tmap)# exit	Exits transport map configuration mode to re-enter global configuration mode.				
Step 7	<pre>transport type console console-line-number input transport-map-name Example: Router(config)# transport type console 0 input consolehandler</pre>	Applies the settings defined in the transport map to the console interface. The <i>transport-map-name</i> for this command must match the <i>transport-map-name</i> defined in the transport-map type console command.				

Examples

The following example shows how to create a transport map to set console port access policies and attach to console port 0:

```
Router(config)# transport-map type console consolehandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
--Welcome to diagnostic mode--
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
Waiting for IOS vty line
X
Router(config-tmap)# exit
Router(config)# transport type console 0 input consolehandler
```

L

Configuring Persistent Telnet

For a persistent Telnet connection to access an Cisco IOS vty line on the router, local login authentication must be configured for the vty line (the **login** command in line configuration mode). If local login authentication is not configured, users will not be able to access Cisco IOS using a Telnet connection into the management Ethernet interface with an applied transport map. Diagnostic mode will still be accessible in this scenario.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. transport-map type persistent telnet transport-map-name
- 4. connection wait [allow [interruptible] | none [disconnect]]
- 5. (Optional) banner [diagnostic | wait] banner-message
- 6. transport interface gigabitethernet 0
- 7. exit
- 8. transport type persistent telnetinput transport-map-name

DETAILED STEPS

	Command or Action	Purpose					
Step 1	enable	Enables privileged EXEC mode.					
	Example:	• Enter your password if prompted.					
	Router> enable						
Step 2	configure terminal	Enters global configuration mode.					
	Example:						
	Router# configure terminal						
Step 3	transport-map type persistent telnet	Creates and names a transport map for handling persistent Telnet connections, and enters transport map configuration mode.					
	transport-map-name						
	Example:						
	Router(config)# transport-map type persistent telnet telnethandler						
Step 4	connection wait [allow [interruptible] none [disconnect]]	Specifies how a persistent Telnet connection will be handled using this transport map:					
	Example:	• allow —The Telnet connection waits for a Cisco IOS vty line to become available, and exits the router if					
	Router(config-tmap)# connection wait none	interrupted.					
		• allow interruptible—The Telnet connection waits for the Cisco IOS vty line to become available, and also allows user to enter diagnostic mode by interrupting					

	Command or Action	Purpose				
		a Telnet connection waiting for the Cisco IOS vty line to become available. This is the default setting.				
		Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6 .				
		• none —The Telnet connection immediately enters diagnostic mode.				
		• none disconnect —The Telnet connection does not wait for the Cisco IOS vty line and does not enter diagnostic mode, so all Telnet connections are rejected if no vty line is immediately available in the Cisco IOS software.				
Step 5	(Optional) banner [diagnostic wait] banner-message Example:	(Optional) Creates a banner message that will be seen by users entering diagnostic mode or waiting for the Cisco IOS vty line because of the persistent Telnet configuration.				
	Router(config-tmap)# banner diagnostic X Enter TEXT message. End with the character 'X'. Welcome to Diagnostic Mode X	• diagnostic —Creates a banner message seen by users directed into diagnostic mode because of the persistent Telnet configuration.				
	Router(config-tmap)#	Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6 .				
		• wait—Creates a banner message seen by users waiting for the vty line to become available.				
		• <i>banner-message</i> —The banner message, which begins and ends with the same delimiting character.				
Step 6	transport interface gigabitethernet 0	Applies the transport map settings to the management Ethernet interface (interface gigabitethernet 0).				
	Example: Router(config-tmap)# transport interface gigabitethernet 0	Persistent Telnet can be applied only to the management Ethernet interface on the router. This step must be taken before applying the transport map to the management Ethernet interface.				
Step 7	exit	Exits transport map configuration mode to re-enter global				
	Example:	comgutation mode.				
	Router(config-tmap)# exit					
Step 8	transport type persistent telnetinput <i>transport-map-name</i>	Applies the settings defined in the transport map to the management Ethernet interface.				
	Example:	The <i>transport-map-name</i> for this command must match the <i>transport-map-name</i> defined in the transport-map type				
	Router(config)# transport type persistent telnet input telnethandler	persistent telnet command.				

Examples

In the following example, a transport map that will make all Telnet connections wait for a Cisco IOS XE vty line to become available before connecting to the router, while also allowing the user to interrupt the process and enter diagnostic mode, is configured and applied to the management Ethernet interface (interface gigabitethernet 0).

A diagnostic and a wait banner are also configured.

The transport map is then applied to the interface when the **transport type persistent telnet input** command is entered to enable persistent Telnet.

```
Router(config) # transport-map type persistent telnet telnethandler
Router(config-tmap) # connection wait allow interruptible
Router(config-tmap) # banner diagnostic X
Enter TEXT message. End with the character 'X'.
--Welcome to diagnostic mode--
X
Router(config-tmap) # banner wait X
Enter TEXT message. End with the character 'X'.
Waiting for IOS IOS Process--
X
Router(config-tmap) # transport interface gigabitethernet 0
Router(config-tmap) # exit
Router(config) # transport type persistent telnet input telnethandler
```

Configuring Persistent SSH

This task describes how to configure persistent SSH on the router.

SUMMARY STEPS

- **2**. configure terminal
- 3. transport-map type persistent ssh transport-map-name
- 4. connection wait [allow [interruptible] | none [disconnect]]
- 5. rsa keypair-name rsa-keypair-name
- 6. (Optional) authentication-retries number-of-retries
- 7. (Optional) banner [diagnostic | wait] banner-message
- 8. (Optional) time-out timeout-interval
- 9. transport interface gigabitethernet 0
- **10**. exit
- **11.** transport type persistent ssh input transport-map-name

DETAILED STEPS

	Command or Action	Purpose			
Step 1	enable	Enables privileged EXEC mode.			
	Example:	Enter your password if prompted.			

	Command or Action	Purpose
	Router> enable	
Step 2	configure terminal Example: Router# configure terminal	Enters global configuration mode.
Step 3	<pre>transport-map type persistent ssh transport-map-name Example: Router(config) # transport-map type persistent telnet telnethandler</pre>	Creates and names a transport map for handling persistent SSH connections, and enters transport map configuration mode.
Step 4	<pre>connection wait [allow [interruptible] none [disconnect]] Example: Router(config-tmap)# connection wait interruptible</pre>	 Specifies how a persistent SSH connection will be handled using this transport map: allow—The SSH connection waits for a Cisco IOS VTY line to become available, and exits the router if interrupted. allow interruptible—The SSH connection waits for the VTY line to become available, and also allows a user to enter diagnostic mode by interrupting an SSH connection waiting for the VTY line to become available. This is the default setting. Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6. none—The SSH connection immediately enters diagnostic mode. none disconnect—The SSH connection does not wait for the VTY line and does not enter diagnostic mode. Therefore all SSH connections are rejected if no VTY
Step 5	<pre>rsa keypair-name rsa-keypair-name Example: Router(config)# rsa keypair-name sshkeys</pre>	line is immediately available. Names the RSA keypair to be used for persistent SSH connections. For persistent SSH connections, the RSA keypair name must be defined using this command in transport map configuration mode. The RSA keypair definitions defined elsewhere on the router, such as through the use of the ip ssh rsa keypair-name command, do not apply to persistent SSH connections. No <i>rsa-keypair-name</i> is defined by default.

	Command or Action	Purpose				
Step 6	(Optional) authentication-retries number-of-retries Example:	(Optional) Specifies the number of authentication retries before dropping the connection.				
	Router(config-tmap)# authentication-retries 4	The default number-of-retries is 3.				
Step 7	<pre>(Optional) banner [diagnostic wait] banner-message Example: Router(config-tmap)# banner diagnostic X Enter TEXT message. End with the character 'X'. Welcome to Diagnostic Mode x Router(config-tmap)#</pre>	 (Optional) Creates a banner message that will be seen by users entering diagnostic mode or waiting for the VTY line because of the persistent SSH configuration. diagnostic—Creates a banner message seen by users directed to diagnostic mode because of the persistent SSH configuration. wait—Creates a banner message seen by users waiting for the VTY line to become available. <i>banner-message</i>—The banner message, which begins and ends with the same delimiting character. 				
Step 8	(Optional) time-out <i>timeout-interval</i> Example: Router(config-tmap)# time-out 30	(Optional) Specifies the SSH time-out interval, in seconds. The default <i>timeout-interval</i> is 120 seconds.				
Step 9	<pre>transport interface gigabitethernet 0 Example: Router(config-tmap)# transport interface gigabitethernet 0</pre>	Applies the transport map settings to the Ethernet management interface (interface gigabitethernet 0). Persistent SSH can be applied only to the Ethernet management interface on the router.				
Step 10	exit Example: Router(config-tmap)# exit	Exits transport map configuration mode to re-enter global configuration mode.				
Step 11	<pre>transport type persistent ssh input transport-map-name Example: Router(config)# transport type persistent ssh input sshhandler</pre>	Applies the settings defined in the transport map to the Ethernet management interface. The <i>transport-map-name</i> for this command must match the <i>transport-map-name</i> defined in the transport-map type persistent ssh command.				

Examples

The following example shows a transport map that will make all SSH connections wait for the VTY line to become active before connecting to the router being configured and applied to the Ethernet management interface (interface gigabitethernet 0). The RSA keypair is named sshkeys.

This example only uses the commands required to configure persistent SSH.

```
Router(config)# transport-map type persistent ssh sshhandler
Router(config-tmap)# connection wait allow
Router(config-tmap)# rsa keypair-name sshkeys
Router(config-tmap)# transport interface gigabitethernet 0
Enter TEXT message. End with the character 'X'.
--Welcome to diagnostic mode--
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
--Waiting for IOS IOS Process--
X
Router(config-tmap)# transport interface gigabitethernet 0
Router(config-tmap)# exit
Router(config-tmap)# exit
Router(config)# transport type persistent telnet input telnethandler
```

In the following example, a transport map is configured and will apply the following settings to users attempting to access the Ethernet management port via SSH:

- SSH users will wait for the VTY line to become active, but will enter diagnostic mode if the attempt to access the Cisco IOS software through the VTY line is interrupted.
- The RSA keypair name is sshkeys.
- The connection allows one authentication retry.
- The banner --welcome to Diagnostic Mode-- will appear if diagnostic mode is entered as a result of SSH handling through this transport map.
- The banner --Waiting for vty line-- will appear if the connection is waiting for the VTY line to become active.
- The transport map is then applied to the interface when the **transport type persistent ssh input** command is entered to enable persistent SSH:

```
Router(config) # transport-map type persistent ssh sshhandler
Router (config-tmap) # connection wait allow interruptible
Router(config-tmap) # rsa keypair-name sshkeys
Router(config-tmap) # authentication-retries 1
Router(config-tmap) # banner diagnostic X
Enter TEXT message. End with the character 'X'.
--Welcome to diagnostic mode--
Х
Router(config-tmap) # banner wait X
Enter TEXT message. End with the character 'X'.
--Waiting for vty line--
Х
Router(config-tmap) # time-out 30
Router(config-tmap)# transport interface gigabitethernet 0
Router(config-tmap) # exit
Router(config) # transport type persistent ssh input sshhandler
```

Viewing Console Port, SSH, and Telnet Handling Configurations

Use the following commands to view console port, SSH, and Telnet handling configurations:

- show transport-map
- show platform software configuration access policy

Use the **show transport-map** command to view transport map configurations.

show transport-map [all | name transport-map-name | type [console | persistent [ssh | telnet]]]

This command can be used either in user EXEC mode or privileged EXEC mode.

Example

The following example shows transport maps that are configured on the router: a console port (consolehandler), persistent SSH (sshhandler), and persistent Telnet transport (telnethandler):

Router# show transport-map all Transport Map: Name: consolehandler Type: Console Transport Connection: Wait option: Wait Allow Interruptable Wait banner: Waiting for the IOS CLI bshell banner: Welcome to Diagnostic Mode Transport Map: Name: sshhandler Type: Persistent SSH Transport Interface: GigabitEthernet0 Connection: Wait option: Wait Allow Interruptable Wait banner: Waiting for IOS prompt Bshell banner: Welcome to Diagnostic Mode SSH: Timeout: 120 Authentication retries: 5 RSA keypair: sshkeys Transport Map: Name: telnethandler Type: Persistent Telnet Transport Interface: GigabitEthernet0

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for IOS process

Bshell banner:

Welcome to Diagnostic Mode

Transport Map: Name: telnethandling1 Type: Persistent Telnet Transport

Connection: Wait option: Wait Allow

Router# show transport-map type console Transport Map: Name: consolehandler Type: Console Transport

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for the IOS CLI

Bshell banner:

Welcome to Diagnostic Mode

```
Router# show transport-map type persistent ssh
Transport Map:
Name: sshhandler
Type: Persistent SSH Transport
```

Interface: GigabitEthernet0

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for IOS prompt

Bshell banner:

Welcome to Diagnostic Mode

SSH: Timeout: 120 Authentication retries: 5 RSA keypair: sshkeys

Router# show transport-map type persistent telnet Transport Map: Name: telnethandler Type: Persistent Telnet Transport

Interface: GigabitEthernet0

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for IOS process

Bshell banner:

Welcome to Diagnostic Mode

Transport Map: Name: telnethandling1 Type: Persistent Telnet Transport

Connection: Wait option: Wait Allow

Router# show transport-map name telnethandler Transport Map: Name: telnethandler Type: Persistent Telnet Transport

Interface: GigabitEthernet0

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for IOS process

Bshell banner:

Welcome to Diagnostic Mode

Router# show transport-map name consolehandler Transport Map: Name: consolehandler Type: Console Transport

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for the IOS CLI

Bshell banner:

Welcome to Diagnostic Mode

Router# show transport-map name sshhandler Transport Map: Name: sshhandler Type: Persistent SSH Transport

Interface: GigabitEthernet0

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for IOS prompt

Bshell banner:

Welcome to Diagnostic Mode SSH: Timeout: 120 Authentication retries: 5 RSA keypair: sshkeys

Router#

Use the **show platform software configuration access policy** command to view the current configurations for handling the incoming console port, SSH, and Telnet connections. The output of this command provides the current wait policy for each type of connection (Telnet, SSH, and console), as well as information on the currently configured banners.

Unlike the **show transport-map** command, the **show platform software configuration access policy** command is available in diagnostic mode so that it can be entered in scenarios where you need transport map configuration information, but cannot access the Cisco IOS CLI.

Example

```
Router# show platform software configuration access policy
The current access-policies
Method : telnet
Rule : wait
Shell banner:
Wait banner :
Method : ssh
Rule : wait
Shell banner:
Wait banner :
Method : console
Rule : wait with interrupt
Shell banner:
Wait banner :
```

Example

The following example shows the **show platform software configuration access policy** command being issued both before and after a new transport map for SSH are configured. During the configuration, the connection policy and banners are set for a persistent SSH transport map, and the transport map for SSH is enabled.

```
Router# show platform software configuration access policy
The current access-policies
Method : telnet
Rule : wait with interrupt
Shell banner:
Welcome to Diagnostic Mode
Wait banner :
Waiting for IOS Process
```

Method : ssh Rule : wait Shell banner: Wait banner : Method : console Rule : wait with interrupt Shell banner: Wait banner : Router# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config) # transport-map type persistent ssh sshhandler Router(config-tmap) # connection wait allow interruptible Router(config-tmap) # banner diagnostic X Enter TEXT message. End with the character 'X'. Welcome to Diag Mode Х Router(config-tmap) # banner wait X Enter TEXT message. End with the character 'X'. Waiting for IOS Х Router(config-tmap) # rsa keypair-name sshkeys Router(config-tmap) # transport interface gigabitethernet 0 Router(config-tmap) # exit Router(config)# transport type persistent ssh input sshhandler Router(config) # exit Router# show platform software configuration access policy The current access-policies Method : telnet Rule : wait with interrupt Shell banner: Welcome to Diagnostic Mode Wait banner : Waiting for IOS process Method : ssh Rule : wait with interrupt Shell banner: Welcome to Diag Mode Wait banner : Waiting for IOS

Method : console Rule : wait with interrupt Shell banner: Wait banner :

Configuring Auxiliary Port for Modem Connection

Cisco 4000 Series ISR supports connecting a modem to the router auxiliary port for EXEC dial in connectivity. When a modem is connected to the auxiliary port, a remote user can dial in to the router and configure it. To configure a modem on the auxiliary port, perform these steps:

Step 1 Connect the RJ-45 end of the adapter cable to the black AUX port on the router.

Use the **show line** command to determine the async interface of the AUX port: Step 2

```
Router# show line
Tty Typ
            Tx/Rx
                  A Modem Roty AccO AccI Uses
      0 0 m v
```

U CII		-	-	_	_	-	0	0	0/0	_
1 AUX	9600/9600	-	-	-	-	-	0	0	0/0	-
2 VTY		-	-	-	-	-	0	0	0/0	-
3 VTY		-	-	-	-	-	0	0	0/0	-
4 VTY		-	-	-	-	-	0	0	0/0	-
5 VTY		-	-	-	-	-	0	0	0/0	-
6 VTY		-	-	-	-	-	0	0	0/0	-

 \cap

 \cap / \cap

Step 3 Use the following commands to configure the router AUX line::

```
Router(config) # line 1
```

```
Router(config-line) #modem inOut
Router(config-line) #modem autoconfigure type usr sportster
Router (config-line) #speed 115200 [Speed to be set according to the modem manual]
Router (config-line) #stopbits 1 [Stopbits to be set according to the modem manual]
Router (config-line) #transport input all
Router (config-line) #flowcontrol hardware [flowcontrol to be set according to the modem manual]
Router(config-line) #password cisco
Router (config-line) #login
Router (config-line) #end
Router(config) #enable password lab
```

Noise Overruns

Int

Step 4 Use the reverse telnet method on the modem to verify the modem connectivity and configuration string:

```
Router(config) #int loopback 0
Router(config-if) #ip add 192.0.2.1 255.255.255.0
Router(config-if) #end
Router#telnet 192.0.2.1 2001
Trying 192.0.2.1, 2001 ... Open
User Access Verification
Password: <enter the password given under line configuration>
     <<<=== Modem command
at.
OK
   <<<=== This OK indicates that the modem is connected successully to the AUX port.
```

- Step 5 Use an analog phone to verify that the phone line is active and functions properly. Then, connect the analog phone line to the modem.
- Step 6 Initialize an EXEC modem call to the router from another device (PC) to test the modem connection.
- Step 7 When the connection is established, the dial in client is prompted for a password. Enter the correct password.

Note: This password should match the one that is configured on the auxiliary port line.

Installing the Software

This chapter includes the following sections:

- Overview, on page 55
- ROMMON Images, on page 55
- Rommon Compatibility Matrix , on page 56
- Provisioning Files, on page 60
- File Systems, on page 60
- Autogenerated File Directories and Files, on page 61
- Flash Storage, on page 62
- Configuring the Configuration Register for Autoboot, on page 62
- Licensing, on page 63

Overview

Installing software on the router involves installing a consolidated package (bootable image). This consists of a bundle of subpackages (modular software units), with each subpackage controlling a different set of functions.

These are the two main methods to install the software:

- Managing and Configuring a Router to Run Using a Consolidated Package, on page 70—This method allows for individual upgrade of subpackages and generally has reduced boot times compared to the method below. Use this method if you want to individually upgrade a module's software.
- Managing and Configuring a Router to Run Using Individual Packages, on page 75—This a simple method that is similar to a typical Cisco router image installation and management that is supported across Cisco routers.

It is better to upgrade software in a planned period of maintenance when an interruption in service is acceptable. The router needs to be rebooted for a software upgrade to take effect.

ROMMON Images

A ROMMON image is a software package used by ROM Monitor (ROMMON) software on a router. The software package is separate from the consolidated package normally used to boot the router. For more

information on ROMMON, see the "ROM Monitor Overview and Basic Procedures" section in the Upgrading Field-Programmable Hardware Devices for Cisco 4000 Series ISRs guide.

An independent ROMMON image (software package) may occasionally be released and the router can be upgraded with the new ROMMON software. For detailed instructions, see the documentation that accompanies the ROMMON image.

Note

A new version of the ROMMON image is not necessarily released at the same time as a consolidated package for a router.

Rommon Compatibility Matrix

The following table provides information about Cisco 4000 Series Integrated Services Routers supported in each ROMMON release.

Table 8: Supported	ROMMON Releases	for Cisco 4000 Serie	es Integrated Service	Routers

Platform	16.2(1r)	16.2(2r)	16.4(3r)	16.7(3r)	16.7(4r)	16.7(5r)	16.8(1r)	16.9(1r)	16.12(1r)	16.12(2r)	17.6.1
Cisco 4221 ISR			Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes
Cisco 4321 ISR	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes
Cisco 4331 ISR	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes
Cisco 4351 ISR	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes
Cisco 4431 ISR	Yes				Yes	Yes				Yes	Yes
Cisco 4451 ISR	Yes				Yes	Yes				Yes	Yes
Cisco 4461 ISR								Yes	Yes	Yes	Yes

Minimum Supported ROMMON Release

The following table provides the minimum supported ROMMON release in Cisco IOS XE 16.x..x releases.

Table 9: Minimum Supported ROMMON Release in Cisco IOS XE 16.x.x Releases

Cisco IOS XE Release	Cisco 4321 ISR	Cisco 4321 ISR	Cisco 4331 ISR	Cisco 4351 ISR	Cisco 4431 ISR	Cisco 4451 ISR	Cisco 4461 ISR
Cisco IOS XE 16.3.x		16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	-
Cisco IOS XE 16.4.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	-
Cisco IOS XE 16.5.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	_
Cisco IOS XE 16.6.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	-

Cisco IOS XE Release	Cisco 4321 ISR	Cisco 4321 ISR	Cisco 4331 ISR	Cisco 4351 ISR	Cisco 4431 ISR	Cisco 4451 ISR	Cisco 4461 ISR
Cisco IOS XE 16.7.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	—
Cisco IOS XE 16.8.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	—
Cisco IOS XE 16.9.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	16.9(1r)
Cisco IOS XE 16.10.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	16.9(1r)
Cisco IOS XE 16.11.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	16.9(1r)
Cisco IOS XE 16.12.x	16.7(4r)	16.7(3r)	16.7(3r)	16.7(3r)	16.7(4r)	16.7(4r)	16.9(1r)
Cisco IOS XE 17.1.x	16.12(2r)						
Cisco IOS XE 17.2.x	16.12(2r)						
Cisco IOS XE 17.3.x	16.12(2r)						
Cisco IOS XE 17.4.x	16.12(2r)						
Cisco IOS XE 17.5.x	16.12(2r)						
Cisco IOS XE 17.6.x	16.12(2r)						

For devices with manufacturing date equal or later than 2535, the minimum supported ROMMON version is 17.6.1. These devices cannot downgrade to older ROMMON versions.

Recommended ROMMON Release

The following table lists the recommended ROMMON release for the routing platforms in each Cisco IOS XE 16.x.x releases.

Cisco IOS XE Release	Cisco 4321 ISR	Cisco 4321 ISR	Cisco 4331 ISR	Cisco 4351 ISR	Cisco 4431 ISR	Cisco 4451 ISR	Cisco 4461 ISR
Cisco IOS XE 16.3.x	—	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	_
Cisco IOS XE 16.4.x	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	_
Cisco IOS XE 16.5.x	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	_
Cisco IOS XE 16.6.x	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	_
Cisco IOS XE 16.7.x	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	_
Cisco IOS XE 16.8.x	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	16.7(5r)	_
Cisco IOS XE 16.9.x	16.9(1r)	16.9(1r)	16.9(1r)	16.9(1r)	16.12(2r)	16.12(2r)	16.9(1r)
Cisco IOS XE 16.10.x	16.9(1r)	16.9(1r)	16.9(1r)	16.9(1r)	16.12(2r)	16.12(2r)	16.9(1r)
Cisco IOS XE 16.11.x	16.9(1r)	16.9(1r)	16.9(1r)	16.9(1r)	16.12(2r)	16.12(2r)	16.9(1r)
Cisco IOS XE 16.12.x	16.12(2r)						
Cisco IOS XE 17.1.x	16.12(2r)						
Cisco IOS XE 17.2.x	16.12(2r)						
Cisco IOS XE 17.3.x	16.12(2r)						
Cisco IOS XE 17.4.x	16.12(2r)						
Cisco IOS XE 17.5.x	16.12(2r)						
Cisco IOS XE 17.6.x	16.12(2r)						

Table 10: Recommended ROMMON Release for Cisco IOS XE 16.x.x Releases

I

Note

For devices with manufacturing date equal or later than 2535, the minimum supported ROMMON version is 17.6.1. These devices cannot downgrade to older ROMMON versions. For devices with IOS XE 16.12 and preinstalled ROMMON 17.6.1r, the minimum supported ROMMON version is 17.6.1r. Do not downgrade the ROMMON to 16.12(2r); these devices cannot downgrade to older ROMMON versions.

Provisioning Files

This section provides background information about the files and processes used in Managing and Configuring a Router to Run Using Individual Packages, on page 75.

The consolidated package on a router consists of a collection of subpackages and a provisioning file titled packages.conf. To run the software, the usual method used is to boot the consolidated package, which is copied into memory, expanded, mounted, and run within memory. The provisioning file's name can be renamed but subpackage file's names cannot be renamed. The provisioning file and subpackage files must be kept in the same directory. The provisioning file does not work properly if any individual subpackage file is contained within a different directory.

Note

An exception to this is that if a new or upgraded module firmware package is subsequently installed, it need not be in the same directory as the provisioning file.

Configuring a router to boot, using the provisioning file packages.conf, is beneficial because no changes have to be made to the boot statement after the Cisco IOS XE software is upgraded.

File Systems

The following table provides a list of file systems that can be seen on the Cisco 4000 series routers.

Table 11: Router File Sys	tems
---------------------------	------

File System	Description	
bootflash:	Boot flash memory file system.	
flash:	Alias to the boot flash memory file system above.	
harddisk:	Hard disk file system (if NIM-SSD, NIM-HDD, or internal mSATA flash device is present in the router).	
	Note The internal mSATA flash device is supported only on Cisco ISR4300 Series routers.	
cns:	Cisco Networking Services file directory.	
nvram:	Router NVRAM. You can copy the startup configuration to NVRAM or from NVRAM.	

File System	Description		
obfl:	File system for Onboard Failure Logging (OBFL) files.		
system:	System memory file system, which includes the running configuration.		
tar:	Archive file system.		
tmpsys:	Temporary system files file system.		
usb0:	The Universal Serial Bus (USB) flash drive file systems.		
usb1:	Note The USB flash drive file system is visible only if a USB drive is installed in usb0: or usb1: ports.		

Use the ? help option, or use the **copy** command in command reference guides, if you find a file system that is not listed in the table above.

Autogenerated File Directories and Files

This section discusses the autogenerated files and directories that can be created, and how the files in these directories can be managed.

File or Directory	Description
crashinfo files	Crashinfo files may appear in the bootflash: file system.
	These files provide descriptive information of a crash and may be useful for tuning or troubleshooting purposes. However, the files are not part of router operations, and can be erased without impacting the functioning of the router.
core directory	The storage area for .core files.
	If this directory is erased, it will automatically regenerate itself at bootup. The .core files in this directory can be erased without impacting any router functionality, but the directory itself should not be erased.
lost+found directory	This directory is created on bootup if a system check is performed. Its appearance is completely normal and does not indicate any issues with the router.
tracelogs directory	The storage area for trace files.
	Trace files are useful for troubleshooting. If the Cisco IOS process fails, for instance, users or troubleshooting personnel can access trace files using diagnostic mode to gather information related to the Cisco IOS failure.
	Trace files, however, are not a part of router operations, and can be erased without impacting the router's performance.

Table 12: Autogenerated Files

Important Notes About Autogenerated Directories

Important information about autogenerated directories include:

Autogenerated files on the bootflash: directory should not be deleted, renamed, moved, or altered in any
way unless directed by Cisco customer support.

Note Altering autogenerating files on the bootflash: may have unpredictable consequences for system performance.

• Crashinfo, core, and trace files can be deleted.

Flash Storage

Subpackages are installed to local media storage, such as flash. For flash storage, use the **dir bootflash:** command to list the file names.

Note F

Flash storage is required for successful operation of a router.

Configuring the Configuration Register for Autoboot

The configuration register can be used to change router behavior. This includes controlling how the router boots. Set the configuration register to 0x0 to boot into ROM, by using one of the following commands:

- In Cisco IOS configuration mode, use the config-reg 0x0 command.
- From the ROMMON prompt, use the confreg 0x0 command.

For more information about the configuration register, see Use of the Configuration Register on All Cisco Routers and Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example, on page 71.

Note Setting the configuration register to 0x2102 will set the router to autoboot the Cisco IOS XE software.

Note

The console baud rate is set to 9600 after changing the **confreg** to 0x2102 or 0x0. If you cannot establish a console session after setting **confreg**, or garbage output appears, change the setting on your terminal emulation software to 9600.

Licensing

Cisco Software Licensing

Cisco software licensing consists of processes and components to activate Cisco IOS software feature sets by obtaining and validating Cisco software licenses.

You can enable licensed features and store license files in the bootflash of your router. Licenses pertain to consolidated packages, technology packages, or individual features.

An evaluation license is automatically converted to a Right to Use model after 60 days and this license is valid permanently. The conversion to a permanent license applies only to evaluation licenses. For other features supported on your router, you must purchase a permanent license.

See the "Configuring the Cisco IOS Software Activation Feature" chapter of the Software Activation Configuration Guide, Cisco IOS XE Release 3S.

Consolidated Packages

One of the following two consolidated packages (images) is preinstalled on the router:

- universalk9—Contains the ipbasek9 base package and the securityk9, uck9, and appxk9 technology packages.
- universalk9_npe—Contains the ipbasek9 base package and the securityk9_npe, uck9, and appxk9 technology packages. This image has limited crypto functionality.

Note

The term npe stands for No Payload Encryption.

Note

The terms super package and image also refer to a consolidated package.

To obtain software images for the router, go to http://software.cisco.com/download/navigator.html.

An image-based license is used to help bring up all the subsystems that correspond to a license. This license is enforced only at boot time.

Apart from the **universalk9** and **universalk9_npe** images, a Boot ROMMON image is available. For more information, see *ROMMON Images* section.

For more information about identifying digitally signed Cisco software and how to show the digital signature information of an image file, see the "Digitally Signed Cisco Software" section in the Loading and Managing System Images Configuration Guide, Cisco IOS XE Release 3S.

The following examples show how to obtain software authenticity information and internal details of a package:

- Displaying Digitally Signed Cisco Software Signature Information section
- Obtaining the Description of a Module or Consolidated Package section

Many features within the consolidated package are contained in the **ipbasek9** base package. The license key for the **ipbasek9** package is activated by default.

Technology Packages

Technology packages contain software features within a consolidated package. To use different sets of features, enable the licenses of selected technology packages. You can enable the licenses for any combination of technology packages.

Each technology package has an evaluation license that converts to a Right to Use (RTU) license after 60 days and is then valid permanently.

The following is a list of technology packages:

Note In Cisco 1000 Series Integrated Series Routers, although L2TPv2 sessions comes up without appxk9, you need the appxk9 license for the traffic to go through the sessions. You also need the appxk9 license to apply the QoS policies to the L2TPv2 sessions.

securityk9

The **securityk9** technology package includes all crypto features, including IPsec, SSL/SSH, Firewall, and Secure VPN.

The **securityk9_npe** package (npe = No Payload Encryption) includes all the features in the **securityk9** technology package without the payload-encryption functionality. This is to fulfill export restriction requirements. The **securityk9_npe** package is available only in the **universalk9_npe** image. The difference in features between the **securityk9** package and the **securityk9_npe** package is therefore the set of payload-encryption-enabling features such as IPsec and Secure VPN.

uck9

The Unified Communications technology package is required to enable Cisco Unified Border Element (Cisco UBE) functionality. To use Cisco UBE features, you will require session licenses and a Security technology package to secure the media.

appxk9

The **appxk9** technology package contains Application Experience features, which are similar to the features in the DATA package of the Cisco Integrated Services Routers Generation 2 routers. For more information, see: http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/ software-activation-on-integrated-services-routers-isr/white paper c11 556985.html#wp9000791.

There are many features in the appxk9 package, including MPLS, PfR, L2/L3 VPN, Broadband, and AVC.

Feature Licenses

To use each of the following features, enable a corresponding feature license, as explained in the following sections:

The **HSECK9** license is required for a feature to have full crypto functionality. Without the **HSECK9** license, only 225 secure tunnels and 85 Mbps of crypto bandwidth would be available. The **HSECK9** license allows features in the **securityk9** technology package to use the maximum number of secure tunnels and crypto bandwidth. To enable the **HSECK9** license, purchase the **FL-44-HSEC-K9** license from Cisco.com and install it using the **license install** *license-files* command. For further information on obtaining and installing feature licenses, see Configuring the Cisco IOS Software Activation Feature.

Note

The **HSECK9** feature does not have an evaluation license that converts to an RTU license after 60 days; a feature license must be obtained.

If you do not enable the export control functionality, the device does not send the HSECK9 license request to the Smart Licensing server even if the HSECK9 license feature is configured on the device.

Note

Starting from IOS XE Fuji 16.8.1, limits for number of tunnels and crypto throughput are enhanced. Without HSEC, the new throughput limit is 250 Mbps each direction and number of tunnels is 1000.

To enable the license for the **HSECK9** feature, the **securityk9** technology package is also required. For more information about the **securityk9** technology package, see securityk9, on page 64.

Performance

OL-29328-03

The performance feature, which allows for increased throughput, is enabled by the performance license. This feature is part of the **ipbasek9** technology package. To enable the feature, order the performance license (part number FL-44-PERF-K9). The license is displayed as the throughput license.

You can upgrade the throughput of the ESP from 2.5 Gbps to 5 Gbps by activating the right-to-use license and then reloading the router. For more information on the right-to-use license activation, see **Configuring Cisco Right-To-Use License Configuration Guide**. If you want to determine the current throughput level of the ESP, run the show platform hardware throughput level command. The following example shows the output of this command before the performance upgrade license is applied:

To configure the throughput level, perform the following steps and to upgrade the throughput level use the platform hardware throughput level { 2500000 | 5000000} command.

- 1. In the user EXEC configuration mode, enter the enable command.
- 2. Enter configure terminal command to enter the global configuration mode.
- 3. To upgrade the throughput level, enter the platform hardware throughput level{2500000|5000000} command.
- 4. To exit global configuration mode, enter exit.
- 5. To save the configuration, enter the copy running-config startup-config command.
- 6. To reload the router enter reload. A reload is required to activate the throughput level.

```
show platform hardware throughput level
The current throughput level is 2500000 kb/s
```

To configure the throughput level, perform the following steps and to upgrade the throughput level use the platform hardware throughput level { 2500000 | 5000000} command.

- 1. In the user EXEC configuration mode, enter the enable command.
- **2.** Enter configure terminal command to enter the global configuration mode.
- 3. To upgrade the throughput level, enter the platform hardware throughput level{2500000|5000000} command.
- 4. To exit global configuration mode, enter exit.
- 5. To save the configuration, enter the copy running-config startup-config command.
- 6. To reload the router enter reload. A reload is required to activate the throughput level.

The following example shows how to upgrade the throughput level:

```
Router>enable
Router#configure terminal
Router(config)#platform hardware throughput level 5000000
% The config will take effect on next reboot
Router(config)#exit
Router#copy running-config startup-config
Router#reload
```

Boost Performance Licenses

Cisco Boost performance license allows you to increase the throughput bandwidth. You can enable Boost performance license in the following modes:

Note

To use the Boost performance license, the device must be running the Cisco IOS XE software version 16.07.01 or later. Also, the boost license command will not be available if the device is registered in CSSM before the license is added to license CSSM repository. You have to deregister and register back the device from the CSSM to execute the boost license command.

Note When you enable boost license on Cisco 4000 Series ISRs, you cannot configure the virtual-service container for Snort IPS and ISR-WAAS.

Activating Boost Performance License in CSL Mode

To activate the Boost performance license in Cisco Software License (CSL) mode, peform the following steps:

1. Configure the device with the **license install bootflash:xxx** command as shown in this example.

```
Device#license install bootflash:FD0203520HU_201804090203446350.lic
Installing licenses from "bootflash:FD0203520HU_201804090203446350.lic"
Installing...Feature:booster_performance...Successful:Supported
1/1 licenses were successfully installed
0/1 licenses were existing licenses
0/1 licenses were failed to install
Building configuration...
```

```
[OK] % Throughput boost is configured, it will take effect after reload
```

2. The following message will be displayed in the logs.

```
*Apr 9 07:40:11.674: %LICENSE-6-INSTALL: Feature booster_performance 1.0 was installed
in this device.
UDI=ISR4331/K9:FD0203520HU; StoreIndex=2:Primary License Storage
```

3. The platform hardware throughput level boost is automatically added to the configuration.

Device#show running-config | include throughput

platform hardware throughput level boost

 Save the configuration and reload the device to enable Boost performance license. After the reload, the Boost Performance is activated as shown in this example.

Device#show platform hardware throughput level

The current throughput level is unthrottled

Device#show license

<output omitted>

```
Index 11 Feature: booster_performance
Period left: Life time
License Type: Permanent
License State: Active, In Use
License Count: Non-Counted
License Priority: Medium
```

- 5. To exit global configuration mode, enter exit.
- 6. To save the configuration, enter the copy running-config startup-config command.

Boost Performance License in Smart License Mode

This section describes the processes to activate and deactivate the Boost performance license from the device with two use-cases.

Enable the boost performance license:

- Boot the device in Smart License mode. The boost performance command is not visible without registering in the Smart Portal.
- After successfully registering to the Smart Portal, check the availability of the boost performance licenses in the smart account.
- Use the **platform hardware throughput level boost** command to enable the feature. You need to save the configuration. If a valid license is still available in the smart account, the Boost Performance feature is enabled after the device is reloaded.
- To check for the platform hardware throughput level, use the **show platform hardware throughput level boost** command. If there are not enough licenses, it shows an Out of Compliance (OOC) message, and the throughput level change does not take effect even after the device is reloaded.

Return of license:

The device is in the smart license mode with boost performance command configured.

- Use **show running-config** and the **show license summary** commands to display the boost performance information from the smart account.
- Use the no platform hardware throughput level boost command to disable the functionality.

Note The command is removed from the configuration, but the license is released only after the device is reloaded.

The throughput level does not take effect until the device is reloaded.

The license visibility is available till the device is reloaded.

One count of boost performance license is reduced from the usage pool, and one license is returned to its original pool.

Cisco Software License to Smart Licensing

This section describe a use-case when the device is moving from Cisco Software License(CSL) to Smart License when **boost performance license** is on CSL. The boost performance behavior is determined by the availability of the license in its Smart Account with Boost Performance activated in CSL:

To configure the throughput level, perform the following steps and to upgrade the throughput level use the

- Configure the device with the platform hardware throughput level boost command and then use show running-config to check if the boost performance license is activated.
- 2. Use show license to verify if boost performance is in use and in a permanent license mode.
- **3.** Enable smart license by license smart enable command. After registration in success, the license request is sent to the smart portal for validation. Boost performance is valid if successful, no reload is required. Otherwise the **platform hardware throughput level boost** is unattached from configuration. Boost performance functionality is disabled after reload.
- **4.** During the transition but before the registration, we have to maintain the Evaluation mode for the license if the is existing to avoid an extra reload later.
- 5. To exit global configuration mode, enter exit.
- 6. To save the configuration, enter the copy running-config startup-config command.
- 7. To reload the router enter reload. A reload is required to activate the throughput level.

Smart Licensing to Cisco Software Licensing

This section includes these two use-cases that describe what happens during the transition from Smart License to Cisco Software License.

When boost performance is in use:

- Device # platform hardware throughput level boost
- Device# show license to ensure that Smart License and Boost performance licenses are enabled.
- Check the Smart License Account if the boost performance license is consumed from the corresponding device.
- Remove Smart License

- Device# no license smart enable
- Check the availability of the boost performance license, you may decide to retain the boost command.
- No extra reload is required.

When boost performance is not in use:

- Use no platform hardware throughput level boost in the show running-configuration.
- Device # show license to check if smart license is enabled, but boost performance license is not in the list.
- Check the Smart License Account, the boost performance license is not used from the corresponding device.
- To remove Smart License, use no license smart enable
- Check the availability of the boost permanent license to add the boost keyword.
- · Boost Performance is activated and is in-use after reload

Note If there is no permanent license available, then **no boost performance**command and functionality is likely to change.

- When hybrid Cisco IOS XE Release is in use:
- When you use the hybrid Cisco IOS XE Release (IOS XE 16.9.x) and want to rollback from Smart license to right-to-use (RTU) license, you must reload the router twice to move the license to the "Active, In-Use" state.
- Device# configuration terminal
- To remove Smart License, use no license smart enable
- Device# no license smart enable
- Device# exist
- To remove Smart License, reload the router.
- Device# configure terminal
- Enter yes to accept the end-user license agreement.
- Device# exist
- To move RTU license to In-Use state, reload the router.

LED Indicators

For information on LEDs on the router, see "LED Indicators" in the "Overview" section of the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

For information on LEDs on the SSD Carrier Card NIM, see "Overview of the SSD Carrier Card NIM (NIM-SSD)" in the "Installing and Upgrading Internal Modules and FRUs" section of the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

Related Documentation

For further information on software licenses, see Software Activation on Cisco Integrated Services Routers and Cisco Integrated Service Routers G2.

For further information on obtaining and installing feature licenses, see Configuring the Cisco IOS Software Activation Feature.

How to Install and Upgrade the Software

To install or upgrade the software, use one of the following methods to use the software from a consolidated package or an individual package. Also see the overview section.

- Managing and Configuring a Router to Run Using a Consolidated Package, on page 70
- Managing and Configuring a Router to Run Using Individual Packages, on page 75

Managing and Configuring a Router to Run Using a Consolidated Package

Note Do not use these procedures if you also need to install any optional subpackages or plan to upgrade individual subpackages. See Managing and Configuring a Router to Run Using Individual Packages, on page 75.

- Managing and Configuring a Consolidated Package Using copy and boot Commands, on page 70
- Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example, on page 71

Managing and Configuring a Consolidated Package Using copy and boot Commands

To upgrade a consolidated package, copy the consolidated package to the **bootflash:** directory on the router using the **copy** command. After making this copy of the consolidated package, configure the router to boot using the consolidated package file.

The following example shows the consolidated package file being copied to the **bootflash:** file system via TFTP. The config register is then set to boot using **boot system** commands, and the **boot system** commands instruct the router to boot using the consolidated package stored in the **bootflash:** file system. The new configuration is then saved using the **copy running-config startup-config** command, and the system is then reloaded to complete the process.

```
Router# dir bootflash:

Directory of bootflash:/

11 drwx 16384 Dec 4 2007 04:32:46 -08:00 lost+found

86401 drwx 4096 Dec 4 2007 06:06:24 -08:00 .ssh

14401 drwx 4096 Dec 4 2007 06:06:36 -08:00 .rollback_timer

28801 drwx 4096 Mar 18 2008 17:31:17 -07:00 .prst_sync

43201 drwx 4096 Dec 4 2007 04:34:45 -08:00 .installer

928862208 bytes total (712273920 bytes free)
```

```
Router# copy tftp: bootflash:
Address or name of remote host []? 172.17.16.81
Source filename []? /auto/tftp-users/user/isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
Destination filename [isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin]?
Accessing
tftp://172.17.16.81//auto/tftp-users/user/isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
Loading /auto/tftp-users/user/isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin from
172.17.16.81 (via GigabitEthernet0):
1111111
[OK - 208904396 bytes]
208904396 bytes copied in 330.453 secs (632176 bytes/sec)
Router# dir bootflash:
Directory of bootflash:/
11 drwx 16384 Dec 4 2007 04:32:46 -08:00 lost+found
86401 drwx 4096 Dec 4 2007 06:06:24 -08:00 .ssh
14401 drwx 4096 Dec 4 2007 06:06:36 -08:00 .rollback timer
28801 drwx 4096 Mar 18 2008 17:31:17 -07:00 .prst sync
43201 drwx 4096 Dec 4 2007 04:34:45 -08:00 .installer
12 -rw- 208904396 May 28 2008 16:17:34 -07:00
isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
928862208 bytes total (503156736 bytes free)
Router# configure terminal
Enter configuration commands, one per line. End with \ensuremath{\texttt{CNTL}/\texttt{Z}} .
Router (config) # boot system flash bootflash:isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
Router(config) # config-reg 0x2102
Router(config)# exit
Router# show run | include boot
boot-start-marker
boot system flash bootflash:isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
boot-end-marker
Router# copy run start
Destination filename [startup-config]?
Building configuration...
[OK]
Router# reload
```

Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #boot system tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin
Router(config)#config-register 0x2102
Router (config) #exit
Router# show run | include boot
boot-start-marker
boot system tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin
boot-end-marker
license boot level adventerprise
Router# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
Router# reload
Proceed with reload? [confirm]
Sep 13 17:42:54.445 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit with
```

```
reload chassis code
```

Initializing Hardware ... System integrity status: c0000600 Failures detected: Boot FPGA corrupt Key Sectors: (Primary, GOOD), (Backup, GOOD), (Revocation, GOOD) Size of Primary = 2288 Backup = 2288 Revocation = 300 ROM:RSA Self Test Passed ROM:Sha512 Self Test Passed Self Tests Latency: 58 msec System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM 20120618 GAMMA 101], DEVELOPMENT SOFTWARE Copyright (c) 1994-2014 by cisco Systems, Inc. Compiled Mon 05/27/2014 12:39:32.05 by username Current image running: Boot ROMO Last reset cause: LocalSoft Cisco ISR 4400 platform with 4194304 Kbytes of main memory IP ADDRESS: 172.18.42.119 IP SUBNET MASK: 255.255.255.0 DEFAULT GATEWAY: 172.18.42.1 TFTP SERVER: 10.81.116.4 TFTP FILE: rtp-isr4400-54/isr4400.bin TFTP MACADDR: a4:4c:11:9d:ad:97 TFTP VERBOSE: Progress TFTP RETRY COUNT: 18 TFTP TIMEOUT: 7200 TFTP CHECKSUM: Yes ETHER PORT: 0 ETHER SPEED MODE: Auto Detect link up... Receiving rtp-isr4400-54/isr4400.bin from 10.81.116.4 File reception completed. Boot image size = 424317088 (0x194a90a0) bytes ROM:RSA Self Test Passed ROM:Sha512 Self Test Passed Self Tests Latency: 58 msec Package header rev 1 structure detected Calculating SHA-1 hash...done validate package: SHA-1 hash: calculated 7294dffc:892a6c35:a7a133df:18c032fc:0670b303 expected 7294dffc:892a6c35:a7a133df:18c032fc:0670b303 Signed Header Version Based Image Detected Using FLASH based Keys of type = PRIMARY KEY STORAGE Using FLASH based Keys of type = ROLLOVER KEY STORAGE RSA Signed DEVELOPMENT Image Signature Verification Successful. Package Load Test Latency : 5116 msec Image validated

%IOSXEBOOT-4-BOOT_ACTIVITY_LONG_TIME: (local/local): load_modules took: 2 seconds, expected max time 2 seconds

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.4(20140527:095327) [v154_3_s_xe313_throttle-BLD-BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ios 156] Copyright (c) 1986-2014 by Cisco Systems, Inc. Compiled Tue 27-May-14 21:28 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Warning: the compile-time code checksum does not appear to be present. cisco ISR4451/K9 (2RU) processor with 1133585K/6147K bytes of memory. Processor board ID FGL1619100P 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of Compact flash at bootflash:. 7816688K bytes of USB flash at usb0:.

Press RETURN to get started!

Router> Router> Router>enable Router# show version Cisco IOS XE Software, Version BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ext Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.4(20140527:095327) v154 3 s xe313 throttle-BLD-BLD V154 3 S XE313 THROTTLE LATEST 20140527 070027-ios 156]

IOS XE Version: BLD_V154_3_S_XE313_THROTTLE_LATEST

Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 0 minutes Uptime for this control processor is 3 minutes System returned to ROM by reload System image file is "tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin" Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

License Level: adventerprise License Type: EvalRightToUse --More-- Next reload license Level: adventerprise

cisco ISR4451/K9 (2RU) processor with 1133585K/6147K bytes of memory. Processor board ID FGL1619100P 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of Compact flash at bootflash:. 7816688K bytes of USB flash at usb0:.

Configuration register is 0x2102

Managing and Configuring a Router to Run Using Individual Packages

To choose between running individual packages or a consolidated package, see *Installing the Software - Overview* section.

The following topics are included in this section:

- Installing Subpackages from a Consolidated Package, on page 75
- Installing a Firmware Subpackage, on page 86
- Installing Subpackages from a Consolidated Package on a Flash Drive, on page 80

Installing Subpackages from a Consolidated Package

Perform the following procedure to obtain the consolidated package from a TFTP server.

Another variation of this procedure obtains the consolidated package from a USB flash drive. This is described in Installing Subpackages from a Consolidated Package on a Flash Drive.

Before you begin

Copy the consolidated package to the TFTP server.

SUMMARY STEPS

- 1. show version
- 2. dir bootflash:
- 3. show platform
- **4.** mkdir bootflash: URL-to-directory-name
- **5.** request platform software package expand file *URL-to-consolidated-package* to *URL-to-directory-name*
- 6. reload
- 7. boot URL-to-directory-name/packages.conf
- 8. show version installed

DETAILED STEPS

	Command or Action	Purpose
Step 1	<pre>show version Example: Router# show version Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.3(20120627:221639) [build_151722 111] Copyright (c) 1986-2012 by Cisco Systems, Inc. Compiled Thu 28-Jun-12 15:17 by mcpre</pre>	Shows the version of software running on the router. This can later be compared with the version of software to be installed.
	•	

	Command or Action	Purpose
Step 2	dir bootflash: Example: Router# dir bootflash:	Displays the previous version of software and that a package is present.
Step 3	show platform Example:	Displays the inventory.
	Router# show platform Chassis type: ISR4451/K9	
Step 4	mkdir bootflash: URL-to-directory-name Example: Router# mkdir bootflash:mydir	Creates a directory to save the expanded software image. You can use the same name as the image to name the directory.
Step 5	<pre>request platform software package expand file URL-to-consolidated-package to URL-to-directory-name Example: Router# request platform software package expand file bootflash:isr4400-universalk9-NIM.bin to bootflash:mydir</pre>	Expands the software image from the TFTP server (<i>URL-to-consolidated-package</i>) into the directory used to save the image (<i>URL-to-directory-name</i>), which was created in Step 4.
Step 6	<pre>reload Example: Router# reload rommon ></pre>	Enables ROMMON mode, which allows the software in the consolidated file to be activated.
Step 7	<pre>boot URL-to-directory-name/packages.conf Example: rommon 1 > boot bootflash:mydir/packages.conf</pre>	Boots the consolidated package, by specifying the path and name of the provisioning file: packages.conf.
Step 8	<pre>show version installed Example: Router# show version installed Package: Provisioning File, version: n/a, status: active</pre>	Displays the version of the newly installed software.

Examples

The initial part of the example shows the consolidated package, isr4400-universalk9.164422SSA.bin, being copied to the TFTP server. This is a prerequisite step. The remaining part of the example shows the consolidated file, packages.conf, being booted.

```
Router# copy tftp:isr4400/isr4400-universalk9.164422SSA.bin bootflash:
Address or name of remote host []? 192.0.2.1
Destination filename [isr4400-universalk9.164422SSA.bin]?
Accessing tftp://192.0.2.1/isr4400/isr4400-universalk9.164422SSA.bin...
Loading isr4400/isr4400-universalk9.164422SSA.bin from 192.0.2.1 (via GigabitEthernet0):
!!!!!!!!
```

[OK - 410506248 bytes]

410506248 bytes copied in 338.556 secs (1212521 bytes/sec)

Router# show version

Cisco IOS Software, IOS-XE Software (X86 64 LINUX IOSD-UNIVERSALK9-M), Experimental Version

15.3(20120627:221639) [build_151722 111] Copyright (c) 1986-2012 by Cisco Systems, Inc. Compiled Thu 28-Jun-12 15:17 by mcpre

IOS XE Version: 2012-06-28 15.31 mcpre

Cisco IOS-XE software, Copyright (c) 2005-2012 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 0 minutes Uptime for this control processor is 3 minutes System returned to ROM by reload System image file is "tftp:isr4400/isr4400.bin" Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

License Level: adventerprise License Type: EvalRightToUse Next reload license Level: adventerprise cisco ISR4451/K9 (2RU) processor with 1136676K/6147K bytes of memory. Processor board ID FGL161611AB 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of Compact flash at bootflash:.

Configuration register is 0x8000

Router# **dir bootflash:** Directory of bootflash:/

11 drwx 16384 May 3 2012 19:58:37 +00:00 lost+found

178465 drwx 4096 Jun 6 2012 15:20:20 +00:00 core 584065 drwx 4096 Jul 13 2012 19:19:00 +00:00 .prst_sync 405601 drwx 4096 May 3 2012 19:59:30 +00:00 .rollback_timer 113569 drwx 40960 Jul 13 2012 19:19:32 +00:00 tracelogs 64897 drwx 4096 May 3 2012 19:59:42 +00:00 .installer 13 -rw- 1305 May 7 2012 17:43:42 +00:00 startup-config 14 -rw- 1305 May 7 2012 17:43:55 +00:00 running-config 15 -r-- 1541 Jun 4 2012 18:32:41 +00:00 debug.conf 16 -rw- 1252 May 22 2012 19:58:39 +00:00 running-config-20120522 519169 drwx 4096 Jun 4 2012 15:29:01 +00:00 vman_fdb

7451738112 bytes total (7067635712 bytes free)

```
Router# show platform
Chassis type: ISR4451/K9
```

SIOT	Туре	State	Insert time (ago)
0 0/0 1 1/0 2 2/0 R0	ISR4451/K9 ISR4451-6X1GE ISR4451/K9 SM-1T3/E3 ISR4451/K9 SM-1T3/E3 ISR4451/K9	ok ok ok ok ok ok, active	15:57:33 15:55:24 15:57:33 15:55:24 15:57:33 15:55:24 15:55:24 15:55:24
F0 P0 P1 P2	ISR4451-FP Unknown XXX-XXX-XX ACS-4450-FANASSY	ok, active ps, fail ok ok	15:57:33 never 15:56:58 15:56:58
Slot 0 1 2 R0	CPLD Version 12090323 12090323 12090323 12090323 12090323	Firmware Version 15.3(01r)S [ciscouser- 15.3(01r)S [ciscouser- 15.3(01r)S [ciscouser- 15.3(01r)S [ciscouser- 15.3(01r)S [ciscouser-	-ISRRO -ISRRO -ISRRO -ISRRO

Router# mkdir bootflash:isr4400-universalk9.dir1 Create directory filename [isr4400-universalk9.dir1]? Created dir bootflash:/isr4400-universalk9.dir1 Router# request platform software package expand file bootflash:isr4400-universalk9.NIM.bin

to bootflash:isr4400-universalk9.dir1

Verifying parameters Validating package type Copying package files SUCCESS: Finished expanding all-in-one software package.

Router# **reload** Proceed with reload? [confirm]

*Jul 13 19:39:06.354: %SYS-5-RELOAD: Reload requested by console.Reload Reason: Reload Command.

rommon 1 > boot bootflash:isr4400-universalk9.dir1/packages.conf

```
File size is 0x00002836
Located isr4400-universalk9.dir1/packages.conf
Image size 10294 inode num 324484, bks cnt 3 blk size 8*512
#
File is comprised of 1 fragments (33%)
```

```
is valid shalhash: SHA-1 hash:
calculated 62f6235a:fc98eb3a:85ce183e:834f1cb3:8a1f71d1
expected 62f6235a:fc98eb3a:85ce183e:834f1cb3:8a1f71d1
File size is 0x04b3dc00
Located isr4400-universalk9.dir1/isr4400-mono-universalk9-build 164422SSA.pkg
Image size 78896128 inode num 324491, bks cnt 19262 blk size 8*512
File is comprised of 21 fragments (0%)
. . . . .
Router# show version installed
Package: Provisioning File, version: n/a, status: active
File: bootflash:isr4400-universalk9.dir1/packages.conf, on: RP0
Built: n/a, by: n/a
File SHA1 checksum: ad09affd3f8820f4844f27acc1add502e0b8f459
Package: rpbase, version: 2012-07-10 16.22 mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9-build 164422SSA.pkg, on:
RPO
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 5e95c9cbc4eaf5a4a5a1ac846ee2d0f41d1a026b
Package: firmware attributes, version: 2012-07-10 16.22 mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware attributes 164422SSA.pkg, on:
RP0/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99
Package: firmware dsp sp2700, version: 2012-07-10 16.22 mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware dsp 164422SSA.pkg, on: RP0/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 8334565edf7843fe246783b1d5c6ed933d96d79e
Package: firmware fpge, version: 2012-07-10 16.22 mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware fpge 164422SSA.pkg, on: RP0/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: eb72900ab32c1c50652888ff486cf370ac901dd7
Package: firmware_sm_1t3e3, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware sm 1t3e3 164422SSA.pkg, on: RP0/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 803005f15d8ea71ab088647e2766727ac2269871
Package: rpcontrol, version: 2012-07-10 16.22 mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9 164422SSA.pkg, on: RP0/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 980fd58fe581e9346c44417b451d1c09ebb640c2
Package: rpios-universalk9, version: dir1, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9 164422SSA.pkg, on: RP0/0
Built: 2012-07-10 16.23, by: mcpre
File SHA1 checksum: 27084f7e30a1d69d45a33e05d1b00345040799fb
Package: rpaccess, version: 2012-07-10 16.22 mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9 164422SSA.pkg, on: RP0/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 0119802deda2da91c38473c47a998fb3ed423448
Package: firmware attributes, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware attributes 164422SSA.pkg, on:
RP0/1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99
```

```
Package: firmware dsp sp2700, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware dsp 164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 8334565edf7843fe246783b1d5c6ed933d96d79e
Package: firmware fpge, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware fpge-BLD-BLD MCP DEV LATEST 20120710
164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: eb72900ab32c1c50652888ff486cf370ac901dd7
Package: firmware sm 1t3e3, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware sm 1t3e3-BLD-BLD MCP DEV LATEST
20120710 164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 803005f15d8ea71ab088647e2766727ac2269871
Package: rpcontrol, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpcontrol-BLD-BLD MCP DEV LATEST 20120710
164422SSA.pkg, on: RP0/1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 980fd58fe581e9346c44417b451d1c09ebb640c2
Package: rpios-universalk9, version: 2012-07-10 16.23 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpios-universalk9-BLD-BLD MCP DEV LATEST
20120710 164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.23, by: mcpre
File SHA1 checksum: 27084f7e30a1d69d45a33e05d1b00345040799fb
Package: rpaccess, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpaccess-BLD-BLD MCP DEV LATEST 20120710
164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 0119802deda2da91c38473c47a998fb3ed423448
Package: rpbase, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpbase-BLD-BLD MCP DEV LATEST 20120710
164422SSA.pkg, on: RP1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 5e95c9cbc4eaf5a4a5a1ac846ee2d0f41d1a026b
Package: firmware attributes, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware attributes-BLD-BLD MCP DEV LATEST
20120710 164422SSA.pkg, on: RP1/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99
Package: firmware_dsp_sp2700, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware dsp sp2700-BLD-BLD MCP DEV LATEST
20120710 164422SSA.pkg, on: RP1/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 8334565edf7843fe246783b1d5c6ed933d96d79e
Package: firmware fpge, version: 2012-07-10 16.22 mcpre, status: n/a
```

Installing Subpackages from a Consolidated Package on a Flash Drive

The steps for installing subpackages from a consolidated package on a USB flash drive are similar to those described in Installing Subpackages from a Consolidated Pacakage section.

Step 1	show version
Step 2	dir usb <i>n</i> :
Step 3	show platform
Step 4	mkdir bootflash:URL-to-directory-name
Step 5	request platform software package expand fileusbn: package-name to URL-to-directory-name
Step 6	reload
Step 7	boot URL-to-directory-name/packages.conf
Step 8	show version installed

How to Install and Upgrade the Software for Cisco IOS XE Denali Release 16.3

To install or upgrade the software, use one of the following methods to use the software from a consolidated package or an individual package. Also see *Overview* section.

- Managing and Configuring a Router to Run Using a Consolidated Package section
- Managing and Configuring a Router to Run Using Individual Packages section
- Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example section
- Upgrading to Cisco IOS XE Denali Release 16.3 section

Upgrading to Cisco IOS XE Denali Release 16.3

Upgrading the device to Cisco IOS XE Denali Release 16.3 for the first time uses the same procedures as specified in the earlier section. In addition, Cisco IOS XE Denali Release 16.3 requires a minimum ROMMON version. When the device boots up with Cisco IOS XE Denali image for the first time, the device checks the installed version of the ROMMON, and upgrades if the system is running an older version. During the upgrade, do not power cycle the device. The system automatically power cycles the device after the new ROMMON is installed. After the installation, the system will boot up with the Cisco IOS XE image as normal.

Note

When the device boots up for first time and if the device requires an upgrade, the entire boot process may take several minutes. This process will be longer than a normal boot due to the ROMMON upgrade.

The following example illustrates the boot process of a consolidated package:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#boot system tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin
Router(config)#config-register 0x2102
Router(config)#exit
Router# show run | include boot
boot-start-marker
boot system tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin
boot-end-marker
license boot level adventerprise
Router# copy running-config startup-config
Destination filename [startup-config]?
```

Building configuration ... [OK] Router# reload Proceed with reload? [confirm] Sep 13 17:42:54.445 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit with reload chassis code Initializing Hardware ... System integrity status: c0000600 Key Sectors: (Primary, GOOD), (Backup, GOOD), (Revocation, GOOD) Size of Primary = 2288 Backup = 2288 Revocation = 300 ROM:RSA Self Test Passed ROM:Sha512 Self Test Passed Self Tests Latency: 58 msec System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM 20120618 GAMMA 101], DEVELOPMENT SOFTWARE Copyright (c) 1994-2014 by cisco Systems, Inc. Compiled Mon 05/27/2014 12:39:32.05 by username Current image running: Boot ROMO Last reset cause: LocalSoft Cisco ISR 4400 platform with 4194304 Kbytes of main memory IP ADDRESS: 172.18.42.119 IP SUBNET MASK: 255.255.255.0 DEFAULT GATEWAY: 172.18.42.1 TFTP_SERVER: 10.81.116.4 TFTP FILE: rtp-isr4400-54/isr4400.bin TFTP_MACADDR: a4:4c:11:9d:ad:97 TFTP VERBOSE: Progress TFTP RETRY COUNT: 18 TFTP_TIMEOUT: 7200 TFTP CHECKSUM: Yes ETHER PORT: 0 ETHER SPEED MODE: Auto Detect link up... Receiving rtp-isr4400-54/isr4400.bin from 10.81.116.4 File reception completed. Boot image size = 504063931 (0x1e0b67bb) bytes ROM:RSA Self Test Passed ROM:Sha512 Self Test Passed Self Tests Latency: 58 msec Package header rev 1 structure detected Calculating SHA-1 hash...done validate_package: SHA-1 hash: calculated 7294dffc:892a6c35:a7a133df:18c032fc:0670b303 expected 7294dffc:892a6c35:a7a133df:18c032fc:0670b303 Signed Header Version Based Image Detected

```
Using FLASH based Keys of type = PRIMARY KEY STORAGE
Using FLASH based Keys of type = ROLLOVER KEY STORAGE
RSA Signed DEVELOPMENT Image Signature Verification Successful.
Package Load Test Latency : 5116 msec
Image validated
Detected old ROMMON version 12.2(20150910:184432), upgrade required
Upgrading to newer ROMMON version required by this version of IOS-XE, do not power cycle
the system. A reboot will automatically occur for the new ROMMON to take effect.
selected : 1
Booted : 1
Reset Reason: 1
Info: Upgrading entire flash from the rommon package
Switching to ROM 0
Upgrade image MD5 signature is b702a0a59a46a20a4924f9b17b8f0887
Upgrade image MD5 signature verification is b702a0a59a46a20a4924f9b17b8f0887
Switching back to ROM 1
ROMMON upgrade complete.
To make the new ROMMON permanent, you must restart the RP.
ROMMON upgrade successful. Rebooting for upgrade to take effect.
Initializing Hardware ...
System integrity status: 00300610
Key Sectors: (Primary, GOOD), (Backup, GOOD), (Revocation, GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300
ROM:RSA Self Test Passed
Expected hash:
ddaf35a193617abacc417349ae204131
12e6fa4e89a97ea20a9eeee64b55d39a
2192992a274fc1a836ba3c23a3feebbd
454d4423643ce80e2a9ac94fa54ca49f
Obtained hash:
ddaf35a193617abacc417349ae204131
12e6fa4e89a97ea20a9eeee64b55d39a
2192992a274fc1a836ba3c23a3feebbd
454d4423643ce80e2a9ac94fa54ca49f
ROM:Sha512 Self Test Passed
Self Tests Latency: 418 msec
Rom image verified correctly
System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM 20120618 GAMMA 101],
DEVELOPMENT SOFTWARE
Copyright (c) 1994-2014 by cisco Systems, Inc.
Compiled Mon 05/27/2014 12:39:32.05 by username
CPLD Version: 33 (MM/DD/YY): 06/23/14 Cisco ISR4351/K9 Slot:0
Current image running: Boot ROM1
Last reset cause: ResetRequest
Reading confreg 0x2102
Reading monitor variables from NVRAM
Enabling interrupts...done
```

Checking for PCIe device presence...done Cisco ISR4351/K9 platform with 16777216 Kbytes of main memory autoboot entry: NVRAM VALUES: bootconf: 0x0, autobootstate: 0 autobootcount: 0, autobootsptr: 0x0 Rommon upgrade requested Flash upgrade reset 0 in progress Initializing Hardware ... Checking for PCIe device presence...done Reading confreg 2102 System integrity status: 0x300610 Key Sectors: (Primary, GOOD), (Backup, GOOD), (Revocation, GOOD) Size of Primary = 2288 Backup = 2288 Revocation = 288 RSA Self Test Passed Expected hash: DDAF35A193617ABACC417349AE204131 12E6FA4E89A97EA20A9EEEE64B55D39A 2192992A274FC1A836BA3C23A3FEEBBD 454D4423643CE80E2A9AC94FA54CA49F Obtained hash: DDAF35A193617ABACC417349AE204131 12E6FA4E89A97EA20A9EEEE64B55D39A 2192992A274FC1A836BA3C23A3FEEBBD 454D4423643CE80E2A9AC94FA54CA49F Sha512 Self Test Passed Rom image verified correctly System Bootstrap, Version 16.2(1r), RELEASE SOFTWARE Copyright (c) 1994-2016 by cisco Systems, Inc. Current image running: *Upgrade in progress* Boot ROMO Last reset cause: BootRomUpgrade ISR4351/K9 platform with 16777216 Kbytes of main memory Cisco ISR 4400 platform with 4194304 Kbytes of main memory IP ADDRESS: 172.18.42.119 IP SUBNET MASK: 255.255.255.0 DEFAULT GATEWAY: 172.18.42.1 TFTP SERVER: 10.81.116.4 TFTP FILE: rtp-isr4400-54/isr4400.bin TFTP MACADDR: a4:4c:11:9d:ad:97 TFTP VERBOSE: Progress TFTP RETRY COUNT: 18 TFTP TIMEOUT: 7200 TFTP CHECKSUM: Yes ETHER PORT: 0 ETHER_SPEED_MODE: Auto Detect link up... Receiving rtp-isr4400-54/isr4400.bin from 10.81.116.4 File reception completed. Boot image size = 504063931 (0x1e0b67bb) bytes

```
Image Base is: 0x56834018
Image Size is: 0x1E089706
Package header rev 1 structure detected
Package type: 30000, flags: 0x0
IsoSize = 503874534
Parsing package TLV info:
000: 0000009000001D4B45595F544C565F -
                                                KEY TLV
010: 5041434B4147455F434F4D5041544942 - PACKAGE COMPATIB
020: 494C49545900000000000000000000 - ILITY
030: 4652555F52505F54595045000000009 - FRU RP TYPE
040: 000000184B45595F544C565F5041434B -
                                            KEY TLV PACK
050: 4147455F424F4F544152434800000009 - AGE BOOTARCH
060: 000000E415243485F693638365F5459 -
                                            ARCH_1686 TY
070: 50450000000000000000144B45595F - PE
                                                    KEY
080: 544C565F424F4152445F434F4D504154 - TLV BOARD COMPAT
090: 000000090000012424F4152445F6973 -
                                                BOARD is
OAO: 72343330305F5459504500000000000 - r4300 TYPE
0B0: 000000184B45595F544C565F43525950 - KEY TLV CRYP
0C0: 544F5F4B4559535452494E4700000009 - TO KEYSTRING
TLV: T=9, L=29, V=KEY_TLV_PACKAGE_COMPATIBILITY
TLV: T=9, L=11, V=FRU_RP_TYPE
TLV: T=9, L=24, V=KEY_TLV_PACKAGE BOOTARCH
TLV: T=9, L=14, V=ARCH i686 TYPE
TLV: T=9, L=20, V=KEY TLV BOARD COMPAT
TLV: T=9, L=18, V=BOARD_isr4300_TYPE
TLV: T=9, L=24, V=KEY_TLV_CRYPTO_KEYSTRING
TLV: T=9, L=10, V=EnCrYpTiOn
TLV: T=9, L=11, V=CW BEGIN=$$
TLV: T=9, L=19, V=CW FAMILY=$isr4300$
TLV: T=9, L=59, V=CW IMAGE=$isr4300-universalk9.2016-06-29 23.31 paj.SSA.bin$
TLV: T=9, L=19, V=CW VERSION=$16.3.1$
TLV: T=9, L=52, V=CW DESCRIPTION=$Cisco IOS Software, IOS-XE Software$
TLV: T=9, L=9, V=CW END=$$
Found DIGISIGN TLV type 12 length = 392
RSA Self Test Passed
Expected hash:
DDAF35A193617ABACC417349AE204131
12E6FA4E89A97EA20A9EEEE64B55D39A
2192992A274FC1A836BA3C23A3FEEBBD
454D4423643CE80E2A9AC94FA54CA49F
Obtained hash:
DDAF35A193617ABACC417349AE204131
12E6FA4E89A97EA20A9EEEE64B55D39A
2192992A274FC1A836BA3C23A3FEEBBD
454D4423643CE80E2A9AC94FA54CA49F
Sha512 Self Test Passed
Found package arch type ARCH i686 TYPE
Found package FRU type FRU RP TYPE
Calculating SHA-1 hash...Validate package: SHA-1 hash:
 calculated 8B082C48:35C23C9E:8A091441:D6FACEE6:B5111533
 expected 8B082C48:35C23C9E:8A091441:D6FACEE6:B5111533
Image validated
Restricted Rights Legend
Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph
(c) of the Commercial Computer Software - Restricted
Rights clause at FAR sec. 52.227-19 and subparagraph
```

(c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS sec. 252.227-7013. cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

```
Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version
16.3(20160527:095327)
[v163_throttle]
Copyright (c) 1986-2016 by Cisco Systems, Inc.
Compiled Tue 27-May-16 21:28 by mcpre
```

Cisco IOS-XE software, Copyright (c) 2005-2016 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

```
Warning: the compile-time code checksum does not appear to be present.
cisco ISR4451/K9 (2RU) processor with 1133585K/6147K bytes of memory.
Processor board ID FGL1619100P
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of Compact flash at bootflash:.
7816688K bytes of USB flash at usb0:.
```

Press RETURN to get started!

Installing a Firmware Subpackage

Before you begin

Obtain a consolidated package that contains your required firmware package and expand the package. (See Managing and Configuring a Router to Run Using Individual Packages, on page 75.) Make a note of the

location and name of the firmware package and use this information in the steps below for *URL-to-package-name*.

You can install a firmware subpackage if the router has been configured using, for example, Managing and Configuring a Router to Run Using Individual Packages, on page 75.

Firmware subpackages are not released individually. You can select a firmware package from within a consolidated package after expanding the consolidated package. The firmware package can then be installed as shown in the procedure below.

Note

Read the Release Notes document pertaining to the consolidated package to verify that the firmware within the consolidated package is compatible with the version of Cisco IOS XE software that is currently installed on a router.

SUMMARY STEPS

- 1. show version
- 2. dir bootflash:
- **3**. show platform
- 4. mkdir bootflash: URL-to-directory-name
- **5.** request platform software package expand file *URL-to-consolidated-package* to *URL-to-directory-name*
- 6. reload
- 7. boot URL-to-directory-name /packages.conf
- 8. show version installed

DETAILED STEPS

	Command or Action	Purpose
Step 1	show version	Shows the version of software running on the router. This
	Example:	can later be compared with the version of software to be installed.
	<pre>Router# show version Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.3(20120627:221639) [build_151722 111] Copyright (c) 1986-2012 by Cisco Systems, Inc. Compiled Thu 28-Jun-12 15:17 by mcpre .</pre>	
Step 2	dir bootflash:	Displays the previous version of software and that a package
	Example:	is present.
	Router# dir bootflash:	
Step 3	show platform	Checks the inventory.
	Example: Router# show platform Chassis type: ISR4451/K9	Also see the example in Installing Subpackages from a Consolidated Package section.

	Command or Action	Purpose
Step 4	mkdir bootflash: URL-to-directory-name	Creates a directory to save the expanded software image.
	Example:	You can use the same name as the image to name the
	Router# mkdir bootflash:mydir	directory.
Step 5	request platform software package expand file	Expands the software image from the TFTP server (<i>URL-to-consolidated-package</i>) into the directory used to save the image (<i>URL-to-directory-name</i>), which was created in the Step 4.
	URL-to-consolidated-package to URL-to-directory-name	
	Example:	
	Router# request platform software package expand file	
	bootflash:isr4400-universalk9-NIM.bin to	
	bootflash:mydir	
Step 6	reload	Enables ROMMON mode, which allows the software in the consolidated file to be activated.
	Example:	
	Router# reload	
	rommon >	
Step 7	boot URL-to-directory-name /packages.conf	Boots the consolidated package by specifying the path and name of the provisioning file: packages.conf.
	Example:	
	<pre>rommon 1 > boot bootflash:mydir/packages.conf</pre>	
Step 8	show version installed	Displays the version of the newly installed software.
	Example:	
	Router# show version installed	
	Package: Provisioning File, version: n/a, status: active	

Examples

The initial part of the following example shows the consolidated package, isr4400-universalk9.164422SSA.bin, being copied to the TFTP server. This is a prerequisite step. The remaining part of the example shows the consolidated file, packages.conf, being booted.

```
Router# tftp:isr4400/isr4400-universalk9.164422SSA.bin bootflash:
```

```
Address or name of remote host []? 192.0.2.1
Destination filename [isr4400-universalk9.164422SSA.bin]?
Accessing tftp://192.0.2.1/isr4400/isr4400-universalk9.164422SSA.bin...
Loading isr4400/isr4400-universalk9.164422SSA.bin from 192.0.2.1 (via GigabitEthernet0):
!!!!!!!!
[OK - 410506248 bytes]
```

410506248 bytes copied in 338.556 secs (1212521 bytes/sec)

```
Router# show version
```

Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version

```
15.3(20120627:221639) [build_151722 111]
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Thu 28-Jun-12 15:17 by mcpre
```

IOS XE Version: 2012-06-28 15.31 mcpre

Cisco IOS-XE software, Copyright (c) 2005-2012 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 0 minutes Uptime for this control processor is 3 minutes System returned to ROM by reload System image file is "tftp:isr4400/isr4400.bin" Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

License Level: adventerprise License Type: EvalRightToUse Next reload license Level: adventerprise cisco ISR4451/K9 (2RU) processor with 1136676K/6147K bytes of memory. Processor board ID FGL161611AB 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of Compact flash at bootflash:.

Configuration register is 0x8000

Router# **dir bootflash:** Directory of bootflash:/

11 drwx 16384 May 3 2012 19:58:37 +00:00 lost+found 178465 drwx 4096 Jun 6 2012 15:20:20 +00:00 core 584065 drwx 4096 Jul 13 2012 19:19:00 +00:00 .prst_sync 405601 drwx 4096 May 3 2012 19:59:30 +00:00 .rollback_timer 113569 drwx 40960 Jul 13 2012 19:19:32 +00:00 tracelogs 64897 drwx 4096 May 3 2012 19:59:42 +00:00 .installer 13 -rw- 1305 May 7 2012 17:43:42 +00:00 startup-config 14 -rw- 1305 May 7 2012 17:43:55 +00:00 running-config 15 -r-- 1541 Jun 4 2012 18:32:41 +00:00 debug.conf 16 -rw- 1252 May 22 2012 19:58:39 +00:00 running-config-20120522 519169 drwx 4096 Jun 4 2012 15:29:01 +00:00 vman fdb

7451738112 bytes total (7067635712 bytes free)

Router# show platform Chassis type: ISR4451/K9 Slot Type State Insert time (ago) 0 ISR4451/K9 ok 15:57:33 0/0 ISR4451-6X1GE ok 15:55:24 1 ISR4451/K9 ok 15:57:33 1/0 SM-1T3/E3 ok 15:55:24 2 ISR4451/K9 ok 15:57:33 2/0 SM-1T3/E3 ok 15:55:24 R0 ISR4451/K9 ok, active 15:57:33 F0 ISR4451-FP ok, active 15:57:33 PO Unknown ps, fail never P1 XXX-XXXX-XX ok 15:56:58 P2 ACS-4450-FANASSY ok 15:56:58 Slot CPLD Version Firmware Version _____ 0 12090323 15.3(01r)S [ciscouser-ISRR0... 1 12090323 15.3(01r)S [ciscouser-ISRR0... 2 12090323 15.3(01r)S [ciscouser-ISRR0... R0 12090323 15.3(01r)S [ciscouser-ISRR0... F0 12090323 15.3(01r)S [ciscouser-ISRR0... Router# mkdir bootflash:isr4400-universalk9.dir1 Create directory filename [isr4400-universalk9.dir1]? Created dir bootflash:/isr4400-universalk9.dir1 Router# request platform software package expand file bootflash:isr4400-universalk9.NIM.bin to bootflash:isr4400-universalk9.dir1 Verifying parameters Validating package type Copying package files SUCCESS: Finished expanding all-in-one software package. Router# reload Proceed with reload? [confirm] *Jul 13 19:39:06.354: %SYS-5-RELOAD: Reload requested by console. Reload Reason: Reload Command. rommon 1 > boot bootflash:isr4400-universalk9.dir1/packages.conf File size is 0x00002836 Located isr4400-universalk9.dir1/packages.conf Image size 10294 inode num 324484, bks cnt 3 blk size 8*512 File is comprised of 1 fragments (33%) is valid shalhash: SHA-1 hash: calculated 62f6235a:fc98eb3a:85ce183e:834f1cb3:8a1f71d1 expected 62f6235a:fc98eb3a:85ce183e:834f1cb3:8a1f71d1 File size is 0x04b3dc00 Located isr4400-universalk9.dir1/isr4400-mono-universalk9-build 164422SSA.pkg Image size 78896128 inode num 324491, bks cnt 19262 blk size 8*512 ***** File is comprised of 21 fragments (0%)

Router# show version installed Package: Provisioning File, version: n/a, status: active File: bootflash:isr4400-universalk9.dir1/packages.conf, on: RP0 Built: n/a, by: n/a File SHA1 checksum: ad09affd3f8820f4844f27acc1add502e0b8f459 Package: rpbase, version: 2012-07-10 16.22 mcpre, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9-build 164422SSA.pkg, on: RP0 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: 5e95c9cbc4eaf5a4a5a1ac846ee2d0f41d1a026b Package: firmware attributes, version: 2012-07-10_16.22_mcpre, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-firmware attributes 164422SSA.pkg, on: RP0/0 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99 Package: firmware dsp sp2700, version: 2012-07-10 16.22 mcpre, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-firmware dsp 164422SSA.pkg, on: RP0/0 Built: 2012-07-10_16.22, by: mcpre File SHA1 checksum: 8334565edf7843fe246783b1d5c6ed933d96d79e Package: firmware fpge, version: 2012-07-10 16.22 mcpre, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_fpge_164422SSA.pkg, on: RP0/0 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: eb72900ab32c1c50652888ff486cf370ac901dd7 Package: firmware sm 1t3e3, version: 2012-07-10 16.22 mcpre, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-firmware sm 1t3e3 164422SSA.pkg, on: RP0/0 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: 803005f15d8ea71ab088647e2766727ac2269871 Package: rpcontrol, version: 2012-07-10 16.22 mcpre, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9 164422SSA.pkg, on: RP0/0 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: 980fd58fe581e9346c44417b451d1c09ebb640c2 Package: rpios-universalk9, version: dir1, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9 164422SSA.pkg, on: RP0/0 Built: 2012-07-10_16.23, by: mcpre File SHA1 checksum: 27084f7e30a1d69d45a33e05d1b00345040799fb Package: rpaccess, version: 2012-07-10 16.22 mcpre, status: active File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9 164422SSA.pkg, on: RP0/0 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: 0119802deda2da91c38473c47a998fb3ed423448 Package: firmware attributes, version: 2012-07-10 16.22 mcpre, status: n/a File: bootflash:isr4400-universalk9.dir1/isr4400-firmware attributes 164422SSA.pkg, on: RP0/1 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99 Package: firmware dsp sp2700, version: 2012-07-10 16.22 mcpre, status: n/a File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_dsp_164422SSA.pkg, on: RP0/1 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: 8334565edf7843fe246783b1d5c6ed933d96d79e Package: firmware fpge, version: 2012-07-10 16.22 mcpre, status: n/a File: bootflash:isr4400-universalk9.dir1/isr4400-firmware fpge-BLD-BLD MCP DEV LATEST 20120710_164422SSA.pkg, on: RP0/1 Built: 2012-07-10 16.22, by: mcpre File SHA1 checksum: eb72900ab32c1c50652888ff486cf370ac901dd7

```
Package: firmware sm 1t3e3, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware sm 1t3e3-BLD-BLD MCP DEV LATEST
20120710_164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 803005f15d8ea71ab088647e2766727ac2269871
Package: rpcontrol, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpcontrol-BLD-BLD MCP DEV LATEST 20120710
164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 980fd58fe581e9346c44417b451d1c09ebb640c2
Package: rpios-universalk9, version: 2012-07-10 16.23 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpios-universalk9-BLD-BLD_MCP_DEV_LATEST_
20120710 164422SSA.pkg, on: RP0/1
Built: 2012-07-10 16.23, by: mcpre
File SHA1 checksum: 27084f7e30a1d69d45a33e05d1b00345040799fb
Package: rpaccess, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpaccess-BLD-BLD MCP DEV LATEST 20120710
164422SSA.pkg, on: RP0/1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 0119802deda2da91c38473c47a998fb3ed423448
Package: rpbase, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpbase-BLD-BLD MCP DEV LATEST 20120710
164422SSA.pkg, on: RP1
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 5e95c9cbc4eaf5a4a5a1ac846ee2d0f41d1a026b
Package: firmware attributes, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware attributes-BLD-BLD MCP DEV LATEST
20120710 164422SSA.pkg, on: RP1/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99
Package: firmware dsp sp2700, version: 2012-07-10 16.22 mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware dsp sp2700-BLD-BLD MCP DEV LATEST
20120710 164422SSA.pkg, on: RP1/0
Built: 2012-07-10 16.22, by: mcpre
File SHA1 checksum: 8334565edf7843fe246783b1d5c6ed933d96d79e
Package: firmware fpge, version: 2012-07-10 16.22 mcpre, status: n/a
```

Upgrading the Firmware on xDSL NIMs

To upgrade the firmware on a xDSL Network Interface Module (NIM), perform these steps:

Before you begin

When you boot the router in packages.conf mode with the Cisco IOS XE image (super package) during the installation period, you can upgrade or downgrade the firmware without reloading the router. You need to follow the steps described in Installing a Firmware Subpackage section before proceeding with the firmware upgrade.

If you do not boot the router in packages.conf mode with the Cisco IOS XE image, you need to follow the below prerequisites before proceeding with the firmware upgrade:

• Copy the firmware subpackage (NIM firmware) into bootflash:/mydir.
- Send a request to the platform software package expand file *boot flash:/mydir/<IOS-XE image>* to expand the super package.
- Reload the hardware module subslot to boot the module with the new firmware.
- Verify that the module is booted up with the new firmware using the **show platform software subslot x/y module firmware** command.

SUMMARY STEPS

- 1. copy Cisco IOS XE image into bootflash: mydir.
- **2.** request platform software package expand file *bootflash:/mydir/<IOS-XE image* to expand super package.
- 3. reload.
- 4. boot bootflash:mydir/ /packages.conf.
- 5. copy NIM firmware subpackage to the folder bootflash:mydir/.
- **6.** request platform software package install rp 0 file bootflash:/mydir/<firmware subpackage>.
- 7. hw-module subslot x/y reload to boot the module with the new firmware.
- **8.** show platform software subslot 0/2 module firmware to verify that the module is booted up with the new firmware.

DETAILED STEPS

	Command or Action	Purpose
Step 1	copy Cisco IOS XE image into bootflash: mydir.	Creates a directory to save the expanded software image.
	Example: Router# mkdir bootflash:mydir	You can use the same name as the image to name the directory.
Step 2	request platform software package expand file <i>bootflash:/mydir /<ios-xe i="" image<=""> to expand super package.</ios-xe></i>	Expands the platform software package to super package.
	Example:	
	Router# request platform software package expand file bootflash:/mydir/isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bir	
Step 3	reload.	Enables ROMMON mode, which allows the software in
	Example:	the super package file to be activated.
	Router# reload rommon >	
Step 4	<pre>boot bootflash:mydir/ /packages.conf. Example: rommon l > boot bootflash:mydir/packages.conf</pre>	Boots the super package by specifying the path and name of the provisioning file: packages.conf.
Step 5	copy NIM firmware subpackage to the folder bootflash:mydir /.	Copies the NIM firmware subpackage into bootflash:mydir.
	Example:	

	Command or Action	Purpose
	Router#copy bootflash:isr4400-firmware_nim_xdsl.2014-11-17_11.05_39n.SSA.pkg	
	bootflash:mydir/	
Step 6	request platform software package install rp 0 file bootflash:/mydir/ <firmware subpackage="">.</firmware>	Installs the software package.
	Example:	
	Router#equest platform software package install rp 0 file hootflashundir/isr4400-firmare nim xds1.2014-11-17 11.05 39n.SSA rkg	
Step 7	hw-module subslot x/y reload to boot the module with the new firmware.	Reloads the hardware module subslot and boots the module with the new firmware.
	Example:	
	Router#hw-module subslot 0/2 reload	
Step 8	show platform software subslot 0/2 module firmware to verify that the module is booted up with the new firmware.	Displays the version of the newly installed firmware.
	Example:	
	Router# show platform software subslot 0/2 module firmware Pe	

Examples

The following example shows how to perform firmware upgrade in a router module:

```
Routermkdir bootflash:mydir
Create directory filename [mydir]?
Created dir bootflash:/mydir
Router#c
Router#copy bootflash:isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bin bootflash:mydir/
Destination filename [mydir/isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bin]?
CCCCC
425288648 bytes copied in 44.826 secs (9487544 bytes/sec)
Router#
Router#
Router#dir bootflash:mydir
Directory of bootflash:/mydir/
632738 -rw-
            425288648 Dec 12 2014 09:16:42 +00:00
isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bin
7451738112 bytes total (474025984 bytes free)
Router#
Router#request platform software package
```

expand file bootflash:/mydir/isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bin

```
Verifying parameters
Validating package type
Copying package files
SUCCESS: Finished expanding all-in-one software package.
Router#reload
Proceed with reload? [confirm]
*Dec 12 09:26:09.874: %SYS-5-RELOAD: Reload requested by console. Reload Reason:
Reload Command.Dec 12 09:26:25.156 R0/0: %PMAN-5-EXITACTION: Process manager is exiting:
process exit with reload chassis code
Initializing Hardware ...
System integrity status: 00000610
Rom image verified correctly
 System Bootstrap, Version 15.3(3r)S1, RELEASE SOFTWARE
Copyright (c) 1994-2013 by cisco Systems, Inc.
 Current image running: Boot ROMO
Last reset cause: LocalSoft
Cisco ISR4451-X/K9 platform with 4194304 Kbytes of main memory
rommon 1 boot bootflash:mydir/packages.conf
File size is 0x000028f1
 Located mydir/packages.conf
 Image size
10481 inode num 632741, bks cnt 3 blk size 8*512
#
 File size is 0x150ae3cc
Located mydir/isr4400-mono-universalk9.03.14.00.S.155-1.S-std.SPA.pkg
 Image size 353035212 inode num 356929, bks cnt 86191 blk size 8*512
 ****
**********
Boot image size = 353035212 (0x150ae3cc) bytes
 Package header rev 1 structure detected
 Calculating SHA-1 hash...done
validate package: SHA-1 hash:
 calculated 8e966678:8afb08f4:8a88bb8f:fe591121:8bddf4b3
           8e966678:8afb08f4:8a88bb8f:fe591121:8bddf4b3
 expected
RSA Signed RELEASE Image Signature Verification Successful.
 Package Load Test Latency : 3799 msec
 Image validated
Dec 12 09:28:50.338 R0/0: %FLASH CHECK-3-DISK QUOTA: Flash disk quota exceeded
[free space is 61864 kB] - Please clean up files on bootflash.
             Restricted Rights Legend
Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph
(c) of the Commercial Computer Software - Restricted
Rights clause at FAR sec. 52.227-19 and subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer
```

cisco Systems, Inc. 170 West Tasman Drive

Software clause at DFARS sec. 252.227-7013.

San Jose, California 95134-1706

Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 15.5(1)S, RELEASE SOFTWARE (fc5) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2014 by Cisco Systems, Inc. Compiled Thu 20-Nov-14 18:28 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

cisco ISR4451-X/K9 (2RU) processor with 1681388K/6147K bytes of memory. Processor board ID FTX1736AJUT 2 Ethernet interfaces 4 Gigabit Ethernet interfaces 2 ATM interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of flash memory at bootflash:.

Press RETURN to get started!

*Dec 12 09:28:58.922: %IOS_LICENSE_IMAGE_APPLICATION-6-LICENSE_LEVEL: Module name = esg Next reboot level = appxk9 and License = appxk9 *Dec 12 09:28:58.943: %IOS_LICENSE_IMAGE_APPLICATION-6-LICENSE_LEVEL: Module name = esg Next reboot level = ipbasek9 and License = ipbasek9 *Dec 12 09:28:58.981: %ISR_THROUGHPUT-6-LEVEL: Throughput level has been set to 1000000 kbps *Dec 12 09:29:13.302: %SPANTREE-5-EXTENDED_SYSID: Extended SysId enabled for type vlan *Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface Lsmpi0, changed state to up *Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface EOBC0, changed state to up *Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface GigabitEthernet0, changed state to down *Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface LIIN0, changed state to up *Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface LIIN0, changed state to up *Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface LIIN0, changed state to up

```
supply in slot 1
*Dec 12 09:29:01.256: %CMLIB-6-THROUGHPUT VALUE:cmand: Throughput license found, throughput
set to 1000000 kbps
*Dec 12 09:29:03.223: %CPPHA-7-START:cpp ha: CPP 0 preparing ucode
*Dec 12 09:29:03.238: %CPPHA-7-START:cpp_ha: CPP 0 startup init
*Dec 12 09:29:11.335: %CPPHA-7-START:cpp_ha: CPP 0 running init
*Dec 12 09:29:11.645: %CPPHA-7-READY:cpp_ha: CPP 0 loading and initialization complete
*Dec 12 09:29:11.711: %IOSXE-6-PLATFORM:cpp cp:
Process CPP PFILTER EA EVENT API CALL REGISTER
*Dec 12 09:29:16.280:
%IOSXE MGMTVRF-6-CREATE SUCCESS INFO:
Management vrf Mgmt-intf created with ID 1, ipv4 table-id 0x1, ipv6 table-id 0x1E000001
*Dec 12 09:29:16.330:
%LINEPROTO-5-UPDOWN: Line protocol on Interface Lsmpi0, changed state to up
*Dec 12 09:29:16.330:
%LINEPROTO-5-UPDOWN: Line protocol on Interface EOBCO, changed state to up
*Dec 12 09:29:16.330:
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0, changed state to down
*Dec 12 09:29:16.330:
%LINEPROTO-5-UPDOWN: Line protocol on Interface LIINO, changed state to up
*Dec 12 09:29:17.521: %SYS-5-LOG CONFIG CHANGE: Buffer logging disabled
*Dec 12 09:29:18.867: %SYS-5-CONFIG I: Configured from memory by console
*Dec 12 09:29:18.870:
%IOSXE OIR-6-REMSPA: SPA removed from subslot 0/0, interfaces disabled
*Dec 12 09:29:18.870:
%IOSXE_OIR-6-REMSPA: SPA removed from subslot 0/1, interfaces disabled
*Dec 12 09:29:18.871:
%IOSXE OIR-6-REMSPA: SPA removed from subslot 0/2, interfaces disabled
*Dec 12 09:29:18.873:
%SPA_OIR-6-OFFLINECARD: SPA (ISR4451-X-4x1GE) offline in subslot 0/0
*Dec 12 09:29:18.874: %SPA OIR-6-OFFLINECARD: SPA (NIM-VA-B) offline in subslot 0/1
*Dec 12 09:29:18.874: %SPA OIR-6-OFFLINECARD: SPA (NIM-VAB-A) offline in subslot 0/2
*Dec 12 09:29:18.876: %IOSXE_OIR-6-INSCARD: Card (fp) inserted in slot F0
*Dec 12 09:29:18.876: %IOSXE OIR-6-ONLINECARD: Card (fp) online in slot F0
*Dec 12 09:29:18.882: %IOSXE OIR-6-INSSPA: SPA inserted in subslot 0/0
*Dec 12 09:29:18.884: %IOSXE OIR-6-INSSPA: SPA inserted in subslot 0/1
*Dec 12 09:29:18.884: %IOSXE OIR-6-INSSPA: SPA inserted in subslot 0/2
*Dec 12 09:29:18.935: %SYS-5-RESTART: System restarted --
Cisco IOS Software, ISR Software (X86 64 LINUX IOSD-UNIVERSALK9-M), Version 15.5(1)S,
RELEASE SOFTWARE (fc5)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2014 by Cisco Systems, Inc.
Compiled Thu 20-Nov-14 18:28 by mcpre
*Dec 12 09:29:18.895: %SPA-3-ENVMON NOT MONITORED:iomd: Environmental monitoring
is not enabled for ISR4451-X-4x1GE[0/0]
*Dec 12 09:29:19.878: %LINK-5-CHANGED: Interface GigabitEthernet0,
changed state to administratively down
*Dec 12 09:29:22.419: %SPA_OIR-6-ONLINECARD: SPA (ISR4451-X-4x1GE) online in subslot 0/0
*Dec 12 09:29:22.610: %SYS-6-BOOTTIME: Time taken to reboot after reload = 194 seconds
*Dec 12 09:29:24.354: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/0,
changed state to down
*Dec 12 09:29:24.415: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/2,
changed state to down
*Dec 12 09:29:24.417: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/3,
changed state to down
*Dec 12 09:29:30.919: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/0,
changed state to up
*Dec 12 09:29:30.925: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/2,
changed state to up
*Dec 12 09:29:30.936: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/3,
 changed state to up
*Dec 12 09:29:31.919: %LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet0/0/0, changed state to up
```

*Dec 12 09:29:31.930: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/2, changed state to up *Dec 12 09:29:31.936: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/3, changed state to up *Dec 12 09:29:34.147: %SSH-5-ENABLED: SSH 1.99 has been enabled *Dec 12 09:30:29.152: %SPA OIR-6-ONLINECARD: SPA (NIM-VA-B) online in subslot 0/1 *Dec 12 09:30:29.470: %SPA OIR-6-ONLINECARD: SPA (NIM-VAB-A) online in subslot 0/2 *Dec 12 09:30:31.152: %LINK-3-UPDOWN: Interface Ethernet0/1/0, changed state to down *Dec 12 09:30:31.152: %LINK-3-UPDOWN: Interface ATM0/1/0, changed state to down *Dec 12 09:30:31.470: %LINK-3-UPDOWN: Interface Ethernet0/2/0, changed state to down *Dec 12 09:30:31.470: %LINK-3-UPDOWN: Interface ATM0/2/0, changed state to down *Dec 12 09:31:03.074: %CONTROLLER-5-UPDOWN: Controller VDSL 0/2/0, changed state to up *Dec 12 09:31:05.075: %LINK-3-UPDOWN: Interface Ethernet0/2/0, changed state to up *Dec 12 09:31:06.076: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0/2/0, changed state to up *Dec 12 09:31:12.559: %CONTROLLER-5-UPDOWN: Controller VDSL 0/1/0, changed state to up *Dec 12 09:31:20.188: %LINK-3-UPDOWN: Interface ATM0/1/0, changed state to up *Dec 12 09:31:21.188: %LINEPROTO-5-UPDOWN: Line protocol on Interface ATM0/1/0, changed state to up Router> Router>en Password: Router# Router#show controller vdsl 0/2/0 Controller VDSL 0/2/0 is UP Daemon Status: UP XTU-R (DS) XTU-C (US) Chip Vendor ID: 'BDCM' 'BDCM' Chip Vendor Specific: 0x0000 0xA41B Chip Vendor Country: 0xB500 0xB500 Modem Vendor ID: 'CSCO' ' Modem Vendor Specific: 0x4602 0x0000 Modem Vendor Country: 0xB500 0x0000 Serial Number Near: FOC18426DQ8 4451-X/K15.5(1)S Serial Number Far: Modem Version Near: 15.5(1) S Modem Version Far: 0xa41b Modem Status(L1): TC Sync (Showtime!) DSL Config Mode: VDSL2 Trained Mode(L1): G.993.2 (VDSL2) Profile 30a TC Mode: PTM Selftest Result: 0x00 DELT configuration: disabled DELT state: not running Failed full inits: 0 Short inits: 0 Failed short inits: 0 Modem FW Version: 4.14L.04 Modem PHY Version: A2pv6F039h.d24o rc1 Line 1: XTU-R (DS) XTU-C (US) Trellis: ON ON SRA: disabled disabled 0 0 SRA count: Bit swap: enabled enabled Bit swap count: 9 0

```
Profile 30a:
             enabled
                        0.0 dB
Line Attenuation: 3.5 dB
Signal Attenuation: 0.0 dB 0.0 dB
Noise Margin: 30.9 dB 12.4 dB
Attainable Rate: 200000 kbits/s 121186 kbits/s
Actual Power: 13.3 dBm 7.2 dBm
Per Band Status:
                    D1 D2 D3 U0 U1 U2 U3
Line Attenuation(dB): 0.9 1.5 5.5 N/A 0.1 0.9 3.8
Signal Attenuation(dB): 0.8 1.5 5.5 N/A 0.0 0.2 3.2
Noise Margin(dB):
                    31.1 31.0 30.9 N/A 12.3 12.4 12.5
Total FECC: 0 0
Total ES: 0
             0
Total SES: 0
             0
Total LOSS: 0
              0
Total UAS: 51 51
Total LPRS: 0
               0
Total LOFS: 0
               0
Total LOLS: 0
               0
    DS Channell DS Channel0 US Channel1 US Channel0
Speed (kbps): NA 100014 NA
                                      100014
SRA Previous Speed:
                  NA
                               0 NA
                                               0
                            0 NA
                                            0
Previous Speed: NA
Reed-Solomon EC: NA
                           0 NA
                                           0
CRC Errors: NA
                        0 NA
                                        0
                       0 NA
9.00 NA
Header Errors: NA
                                         0
Interleave (ms): NA
                                         0.00
                                     0.00
Actual INP: NA
                      4.00 NA
Training Log : Stopped
Training Log Filename : flash:vdsllog.bin
Router#
Router#
Router#copy bootflash:isr4400-firmware_nim_xdsl.2014-11-17_11.05_39n.SSA.pkg
bootflash:mydir/
Destination filename [mydir/isr4400-firmware nim xdsl.2014-11-17 11.05 39n.SSA.pkg]?
6640604 bytes copied in 1.365 secs (4864911 bytes/sec)
Router#
Router#request platform software package install rp 0 file
bootflash:mydir/isr4400-firmware nim xdsl.2014-11-17 11.05 39n.SSA.pkg
--- Starting local lock acquisition on R0 ---
Finished local lock acquisition on R0
--- Starting file path checking ---
Finished file path checking
--- Starting image file verification ---
Checking image file names
Locating image files and validating name syntax
 Found isr4400-firmware nim xdsl.2014-11-17 11.05 39n.SSA.pkg
Verifying image file locations
Inspecting image file types
Processing image file constraints
Creating candidate provisioning file
Finished image file verification
--- Starting candidate package set construction ---
Verifying existing software set
```

```
Processing candidate provisioning file
Constructing working set for candidate package set
Constructing working set for running package set
Checking command output
Constructing merge of running and candidate packages
Checking if resulting candidate package set would be complete
Finished candidate package set construction
--- Starting ISSU compatiblity verficiation ---
Verifying image type compatibility
Checking IPC compatibility with running software
Checking candidate package set infrastructure compatibility
Checking infrastructure compatibility with running software
Checking package specific compatibility
Finished ISSU compatiblity verficiation
--- Starting impact testing ---
Checking operational impact of change
Finished impact testing
--- Starting list of software package changes ---
Old files list:
  Removed isr4400-firmware nim xdsl.03.14.00.S.155-1.S-std.SPA.pkg
New files list:
 Added isr4400-firmware nim xdsl.2014-11-17 11.05 39n.SSA.pkg
Finished list of software package changes
--- Starting commit of software changes ---
Updating provisioning rollback files
Creating pending provisioning file
Committing provisioning file
Finished commit of software changes
--- Starting analysis of software changes ---
Finished analysis of software changes
--- Starting update running software ---
Blocking peer synchronization of operating information
Creating the command set placeholder directory
  Finding latest command set
  Finding latest command shortlist lookup file
 Finding latest command shortlist file
 Assembling CLI output libraries
 Assembling CLI input libraries
Skipping soft links for firmware upgrade
Skipping soft links for firmware upgrade
  Assembling Dynamic configuration files
 Applying interim IPC and database definitions
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19/
release/03.14.00.S/BLD-V03 14 00 S FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19/
release/03.14.00.S/BLD-V03 14 00 S FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19
/release/03.14.00.S/BLD-V03_14_00_S_FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
  Replacing running software
  Replacing CLI software
 Restarting software
 Applying final IPC and database definitions
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19/
release/03.14.00.S/BLD-V03 14 00 S FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
```

```
Generating software version information
 Notifying running software of updates
 Unblocking peer synchronization of operating information
Unmounting old packages
Cleaning temporary installation files
 Finished update running software
SUCCESS: Finished installing software.
Router#
Router#show platform software subslot 0/2 module firmware
Avg Load info
_____
                     _____
1.83 1.78 1.44 3/45 607
Kernel distribution info
_____
Linux version 3.4.11-rt19 (sapanwar@blr-atg-001) (gcc version 4.6.2
(Buildroot 2011.11) ) #3 SMP PREEMPT Fri Nov 7 09:26:19 IST 2014
Module firmware versions
_____
Modem Fw Version: 4.14L.04
Modem Phy Version: A2pv6F039h.d24o rc1
Boot Loader: Secondry
                  _____
Version: 1.1
Modem Up time
_____
OD OH 25M 38S
Router#
Router#hw-module subslot 0/2 reload
Proceed with reload of module? [confirm]
Router#
*Dec 12 09:55:59.645: %IOSXE_OIR-6-SOFT_RELOADSPA: SPA(NIM-VAB-A)
reloaded on subslot 0/2
*Dec 12 09:55:59.646: %SPA OIR-6-OFFLINECARD: SPA (NIM-VAB-A) offline in subslot 0/2
*Dec 12 09:55:59.647: %CONTROLLER-5-UPDOWN: Controller VDSL 0/2/0, changed state to down
*Dec 12 09:57:22.514: new extended attributes received from iomd(slot 0 bay 2 board 0)
*Dec 12 09:57:22.514: %IOSXE OIR-6-SOFT RELOADSPA: SPA(NIM-VAB-A)
reloaded on subslot 0/2
*Dec 12 09:57:22.515: %SPA OIR-6-OFFLINECARD: SPA (NIM-VAB-A) offline in subslot 0/2
Router#
Router#
*Dec 12 09:58:35.471: %SPA OIR-6-ONLINECARD: SPA (NIM-VAB-A) online in subslot 0/2
*Dec 12 09:58:37.470: %LINK-3-UPDOWN: Interface Ethernet0/2/0, changed state to down
*Dec 12 09:58:37.470: %LINK-3-UPDOWN: Interface ATM0/2/0, changed state to down
Router#
Router#show platform software subslot 0/2 module firmware
Avg Load info
               _____
_____
0.84 0.23 0.08 1/45 598
Kernel distribution info
Linux version 3.4.11-rt19 (sapanwar@blr-atg-001) (gcc version 4.6.2 (Buildroot 2011.11) )
#6 SMP PREEMPT Mon Nov 17 10:51:41 IST 2014
Module firmware versions
_____
```

Router#

Basic Router Configuration

This section includes information about some basic router configuration, and contains the following sections:

- Default Configuration, on page 103
- Configuring Global Parameters, on page 105
- Configuring Gigabit Ethernet Interfaces, on page 105
- Configuring a Loopback Interface, on page 106
- Hardware Limitations for MAC Filters, on page 108
- Configuring Module Interfaces, on page 110
- Enabling Cisco Discovery Protocol, on page 110
- Configuring Command-Line Access, on page 110
- Configuring Static Routes, on page 112
- Configuring Dynamic Routes, on page 114

Default Configuration

When you boot up the router, the router looks for a default file name-the PID of the router. For example, the Cisco 4000 Series Integrated Services Routers look for a file named isr 4451.cfg. The Cisco 4000 Series ISR looks for this file before finding the standard files-router-confg or the ciscortr.cfg.

The Cisco 4000 ISR looks for the isr4451.cfg file in the bootflash. If the file is not found in the bootflash, the router then looks for the standard files-router-confg and ciscortr.cfg. If none of the files are found, the router then checks for any inserted USB that may have stored these files in the same particular order.

Note If there is a configuration file with the PID as its name in an inserted USB, but one of the standard files are in bootflash, the system finds the standard file for use.

Use the **show running-config** command to view the initial configuration, as shown in the following example:

```
Router# show running-config
Building configuration...
Current configuration : 977 bytes
!
version 15.3
service timestamps debug datetime msec
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
!
```

```
hostname Router
1
boot-start-marker
boot-end-marker
1
!
vrf definition Mgmt-intf
!
address-family ipv4
exit-address-family
T.
address-family ipv6
exit-address-family
!
T.
no aaa new-model
ipv6 multicast rpf use-bgp
1
1
multilink bundle-name authenticated
1
!
redundancy
mode none
1
interface GigabitEthernet0/0/0
no ip address
negotiation auto
!
interface GigabitEthernet0/0/1
no ip address
negotiation auto
1
interface GigabitEthernet0/0/2
no ip address
negotiation auto
interface GigabitEthernet0/0/3
no ip address
negotiation auto
1
interface GigabitEthernet0
vrf forwarding Mgmt-intf
no ip address
negotiation auto
!
ip forward-protocol nd
1
no ip http server
no ip http secure-server
!
!
control-plane
1
1
line con O
stopbits 1
line vty 0 4
login
!
```

!

end

Configuring Global Parameters

To configure the global parameters for your router, follow these steps.

SUMMARY STEPS

- 1. configure terminal
- 2. hostname name
- 3. enable secret password
- 4. no ip domain-lookup

DETAILED STEPS

	Command or Action	Purpose
Step 1	<pre>configure terminal Example: Router> enable Router# configure terminal Router(config)#</pre>	Enters global configuration mode when using the console port. Use the following to connect to the router with a remote terminal: telnet router-name or address Login: login-id Password: ******** Router> enable
Step 2	<pre>hostname name Example: Router(config)# hostname Router</pre>	Specifies the name for the router.
Step 3	<pre>enable secret password Example: Router(config)# enable secret cr1ny5ho</pre>	Specifies an encrypted password to prevent unauthorized access to the router.
Step 4	no ip domain-lookup Example: Router(config)# no ip domain-lookup	Disables the router from translating unfamiliar words (typos) into IP addresses. For complete information on global parameter commands, see the Cisco IOS Release Configuration Guide documentation set.

Configuring Gigabit Ethernet Interfaces

To manually define onboard Gigabit Ethernet interfaces, follow these steps, beginning from global configuration mode.

SUMMARY STEPS

- 1. interface gigabitethernet slot/bay/port
- 2. ip address ip-address mask
- **3.** ipv6 address ipv6-address/prefix
- 4. no shutdown
- 5. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	<pre>interface gigabitethernet slot/bay/port Example: Router(config)# interface gigabitethernet 0/0/1</pre>	Enters the configuration mode for a Gigabit Ethernet interface on the router.
Step 2	<pre>ip address ip-address mask Example: Router(config-if)# ip address 192.168.12.2 255.255.255.0</pre>	Sets the IP address and subnet mask for the specified Gigabit Ethernet interface. Use this Step if you are configuring an IPv4 address.
Step 3	<pre>ipv6 address ipv6-address/prefix Example: Router(config-if)# ipv6 address 2001.db8::ffff:1/128</pre>	Sets the IPv6 address and prefix for the specified Gigabit Ethernet interface. Use this step instead of Step 2, if you are configuring an IPv6 address.
Step 4	<pre>no shutdown Example: Router(config-if)# no shutdown</pre>	Enables the Gigabit Ethernet interface and changes its state from administratively down to administratively up.
Step 5	exit Example: Router(config-if)# exit	Exits configuration mode for the Gigabit Ethernet interface and returns to privileged EXEC mode.

Configuring a Loopback Interface

Before you begin

The loopback interface acts as a placeholder for the static IP address and provides default routing information. To configure a loopback interface, follow these steps. L

SUMMARY STEPS

- **1.** interface type number
- 2. (Option 1) ip address ip-address mask
- **3.** (Option 2) **ipv6 address** *ipv6-address/prefix*
- 4. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	interface type number	Enters configuration mode on the loopback interface.
	Example:	
	Router(config)# interface Loopback 0	
Step 2	(Option 1) ip address <i>ip-address mask</i>	Sets the IP address and subnet mask on the loopback
	Example:	interface. (If you are configuring an IPv6 address, use the ipv6 address <i>ipv6-address/prefix</i> command described
	Router(config-if)# ip address 10.108.1.1 255.255.255.0	below.
Step 3	(Option 2) ipv6 address <i>ipv6-address/prefix</i>	Sets the IPv6 address and prefix on the loopback interface.
	Example:	
	Router(config-if)# 2001:db8::ffff:1/128	
Step 4	exit	Exits configuration mode for the loopback interface and
	Example:	returns to global configuration mode.
	Router(config-if)# exit	

Example

Verifying Loopback Interface Configuration

The loopback interface in this sample configuration is used to support Network Address Translation (NAT) on the virtual-template interface. This configuration example shows the loopback interface configured on the Gigabit Ethernet interface with an IP address of 192.0.2.0/24, which acts as a static IP address. The loopback interface points back to virtual-template1, which has a negotiated IP address.

```
!
interface loopback 0
ip address 192.0.2.0 255.255.255.0 (static IP address)
ip nat outside
!
interface Virtual-Template1
ip unnumbered loopback0
no ip directed-broadcast
ip nat outside
```

Enter the **show interface loopback** command. You should see an output similar to the following example:

```
Router# show interface loopback 0
Loopback0 is up, line protocol is up
 Hardware is Loopback
  Internet address is 203.0.113.1/24
  MTU 1514 bytes, BW 8000000 Kbit, DLY 5000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation LOOPBACK, loopback not set
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/0, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     0 packets input, 0 bytes, 0 no buffer
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```

Alternatively, use the **ping** command to verify the loopback interface, as shown in the following example:

```
Router# ping 192.0.2.0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.0.2.0, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

Hardware Limitations for MAC Filters

This section provides the number and distribution of supported virtual MAC addresses on the Cisco 4000 Series ISRs. The virtual MAC address filters are supported on the following interfaces:

- GigabitEthernet Interface MAC Filters
- TenGigabitEthernet Interface MAC Filters

GigabitEthernet Interface MAC Address Filters

The device supports a set of 32 MAC address filters. You can be use these filters across the four GE ports. Each 4 GEport reserves one entry for the primary MAC address (BIA). You can use the remaining 28 MAC filters for features such as Hot Standby Router Protocol (HSRP).

Note Each port can use any number of the available feature filters. A single port can use a maximum of 28 feature filters. If all the 4 GE ports uses the filters equally, then each port can have a maximum of seven filters.

TenGigabitEthernet Interface MAC Address Filters

The device supports a set of 32 MAC address filters. You can be use these filters across the two 10GE ports. Each 10GE port reserves one entry for the primary MAC address (BIA). You can use the remaining 30 MAC filters for features such as HSRP.

Ø

Note Each port can use any number of the available feature filters. A single port can use a maximum of 30 feature filters. If both the ports uses the filters equally, then each port can have a maximum of 15 filters.

MAC Filter Distribution

The following tables provide the MAC filter distribution for the Cisco 4000 Series ISRs:

Table	13: Cisco	4461 ISR	MAC Filter	Distribution
-------	-----------	----------	------------	--------------

Interface	Total Filters		Primary MAC Address (BIA)		Feature Filters
Gigabit0/0/0	32	=	1	+	28
Gigabit0/0/1			1		
Gigabit0/0/2	•		1		
Gigabit0/0/3	•		1		
TenGigabit0/0/0	32	=	1	+	30
TenGigabit0/0/1			1		

Table 14: Cisco 4451 and 4431 ISRs GigabitEthernet Interface MAC Filters Distribution

Interface	Total Filters		Primary MAC Address (BIA)		Feature Filters
Gigabit0/0/0	32	=	1	+	28
Gigabit0/0/1	-		1		
Gigabit0/0/2	•		1		
Gigabit0/0/3	•		1		

Interface	Total Filters		Primary MAC Address (BIA)		Feature Filters
Gigabit0/0/0	16	=	1	+	15
Gigabit0/0/1	16		1		15
Gigabit0/0/2	16	1	1		15

Table 15: Cisco ISR4351 and 4331 ISR MAC Filter Distribution

Table 16: Cisco 4321 and 4221 ISRs MAC Filter Distribution

Interface	Total Filters		Primary MAC Address (BIA)		Feature Filters
Gigabit0/0/0	16	=	1	+	15
Gigabit0/0/1	16	=	1	+	15

Configuring Module Interfaces

For detailed information about configuring service modules, see "Service Modules" in the "Service Module Management" section of the Cisco SM-1T3/E3 Service Module Configuration Guide.

Enabling Cisco Discovery Protocol

Cisco Discovery Protocol (CDP) is enabled by default on the router.

Note

CDP is not enabled by default on Cisco Aggregation Services Routers or on the Cisco CSR 1000v.

For more information on using CDP, see Cisco Discovery Protocol Configuration Guide, Cisco IOS XE Release 3S.

Configuring Command-Line Access

To configure parameters to control access to the router, follow these steps.

SUMMARY STEPS

- 1. line [aux | console | tty | vty] line-number
- 2. password password
- 3. login
- 4. exec-timeout minutes [seconds]
- 5. exit

- 6. line [aux | console | tty | vty] line-number
- 7. password password
- 8. login
- **9**. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	line [aux console tty vty] line-number	Enters line configuration mode, and specifies the type of line.
	Router(config)# line console 0	The example provided here specifies a console terminal for access.
Step 2	password password	Specifies a unique password for the console terminal line.
	Example:	
	Router(config-line)# password 5dr4Hepw3	
Step 3	login	Enables password checking at terminal session login.
	Example:	
	Router(config-line)# login	
Step 4	exec-timeout minutes [seconds]	Sets the interval during which the EXEC command
	Example:	10 minutes. Optionally, adds seconds to the interval value.
	Router(config-line)# exec-timeout 5 30 Router(config-line)#	The example provided here shows a timeout of 5 minutes and 30 seconds. Entering a timeout of 0 of specifies never to time out.
Step 5	exit	Exits line configuration mode to re-enter global
	Example:	configuration mode.
	Router(config-line)# exit	
Step 6	line [aux console tty vty] line-number	Specifies a virtual terminal for remote console access.
	Example:	
	Router(config)# line vty 0 4 Router(config-line)#	
Step 7	password password	Specifies a unique password for the virtual terminal line.
	Example:	
	Router(config-line)# password aldf2ad1	
Step 8	login	Enables password checking at the virtual terminal session
	Example:	login.

	Command or Action	Purpose
	Router(config-line)# login	
Step 9	end	Exits line configuration mode, and returns to privileged
	Example:	EXEC mode.
	Router(config-line)# end	

Example

The following configuration shows the command-line access commands.

You do not have to input the commands marked **default**. These commands appear automatically in the configuration file that is generated when you use the **show running-config** command.

```
:
line console 0
exec-timeout 10 0
password 4youreyesonly
login
transport input none (default)
stopbits 1 (default)
line vty 0 4
password secret
login
!
```

Configuring Static Routes

Static routes provide fixed routing paths through the network. They are manually configured on the router. If the network topology changes, the static route must be updated with a new route. Static routes are private routes unless they are redistributed by a routing protocol.

To configure static routes, follow these steps.

SUMMARY STEPS

- **1.** (Option 1) **ip route** *prefix mask* {*ip-address* | *interface-type interface-number* [*ip-address*]}
- **2.** (Option 2) **ipv6 route** *prefix/mask* {*ipv6-address* | *interface-type interface-number* [*ipv6-address*]}
- 3. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	(Option 1) ip route prefix mask {ip-address interface-type interface-number [ip-address]} Example:	Specifies a static route for the IP packets. (If you are configuring an IPv6 address, use the ipv6 route command described below.)

	Command or Action	Purpose		
	Router(config)# ip route 192.168.1.0 255.255.0.0 10.10.10.2			
Step 2	(Option 2) ipv6 route prefix/mask {ipv6-address interface-type interface-number [ipv6-address]}	Specifies a static route for the IP packets.		
	Example:			
	Router(config)# ipv6 route 2001:db8:2::/64			
Step 3	end	Exits global configuration mode and enters privileged EXEC		
	Example:	mode.		
	Router(config)# end			

Example

Verifying Configuration

In the following configuration example, the static route sends out all IP packets with a destination IP address of 192.168.1.0 and a subnet mask of 255.255.255.0 on the Gigabit Ethernet interface to another device with an IP address of 10.10.10.2. Specifically, the packets are sent to the configured PVC.

You do not have to enter the command marked **default**. This command appears automatically in the configuration file generated when you use the **running-config** command.

```
!
ip classless (default)
ip route 192.168.1.0 255.255.255.0
```

To verify that you have configured static routing correctly, enter the **show ip route** command (or **show ipv6 route** command) and look for static routes marked with the letter S.

When you use an IPv4 address, you should see verification output similar to the following:

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
10.10.10.2/24 is subnetted, 1 subnets
C 10.10.10.2 is directly connected, Loopback0
S* 0.0.0.0/0 is directly connected, FastEthernet0
```

When you use an IPv6 address, you should see verification output similar to the following:

Router# show ipv6 route

```
IPv6 Routing Table - default - 5 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
EX - EIGRP external, ND - ND Default, NDp - ND Prefix, DCE -
Destination
NDr - Redirect, O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1
OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
Is - LISP site, Id - LISP dyn-EID, a - ApplicationC 2001:DB8:3::/64 [0/0]
via GigabitEthernet0/0/2, directly connected
S 2001:DB8:2::/64 [1/0]
via 2001:DB8:3::1
```

Configuring Dynamic Routes

In dynamic routing, the network protocol adjusts the path automatically, based on network traffic or topology. Changes in dynamic routes are shared with other routers in the network.

A router can use IP routing protocols, such as Routing Information Protocol (RIP) or Enhanced Interior Gateway Routing Protocol (EIGRP), to learn about routes dynamically.

- Configuring Routing Information Protocol, on page 114
- Configuring Enhanced Interior Gateway Routing Protocol, on page 117

Configuring Routing Information Protocol

To configure the RIP on a router, follow these steps.

SUMMARY STEPS

- 1. router rip
- **2.** version $\{1 \mid 2\}$
- 3. network ip-address
- 4. no auto-summary
- 5. end

DETAILED STEPS

	Command or Action	Purpose			
Step 1 router rip		Enters router configuration mode, and enables RIP on the			
	Example:				
	Router(config)# router rip				
Step 2	version {1 2}	Specifies use of RIP version 1 or 2.			
	Example:				
	Router(config-router)# version 2				

	Command or Action	Purpose
Step 3	network ip-address Example:	Specifies a list of networks on which RIP is to be applied, using the address of the network of each directly connected network.
	Router(config-router)# network 192.168.1.1 Router(config-router)# network 10.10.7.1	
Step 4	no auto-summary Example:	Disables automatic summarization of subnet routes into network-level routes. This allows subprefix routing information to pass across classful network boundaries.
	Router(config-router)# no auto-summary	
Step 5	end Example:	Exits router configuration mode, and enters privileged EXEC mode.
	Router(config-router)# end	

Example

Verifying Configuration

The following configuration example shows RIP Version 2 enabled in IP networks 10.0.0.0 and 192.168.1.0. To see this configuration, use the **show running-config** command from privileged EXEC mode.

```
1
Router# show running-config
Building configuration...
Current configuration : 1616 bytes
!
! Last configuration change at 03:17:14 EST Thu Sep 6 2012
!
version 15.3
service timestamps debug datetime msec
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
1
hostname Router
1
boot-start-marker
boot-end-marker
1
!
vrf definition Mgmt-intf
1
address-family ipv4
exit-address-family
 address-family ipv6
exit-address-family
!
enable password cisco
1
```

```
no aaa new-model
transport-map type console consolehandler
banner wait ^C
Waiting for IOS vty line
^C
banner diagnostic ^C
Welcome to diag mode
^C
1
clock timezone EST -4 0
!
!
ip domain name cisco.com
ip name-server vrf Mgmt-intf 203.0.113.1
ip name-server vrf Mgmt-intf 203.0.113.129
ipv6 multicast rpf use-bgp
1
!
multilink bundle-name authenticated
1
redundancy
mode none
1
ip ftp source-interface GigabitEthernet0
ip tftp source-interface GigabitEthernet0
!
1
interface GigabitEthernet0/0/0
no ip address
negotiation auto
1
interface GigabitEthernet0/0/1
no ip address
negotiation auto
T.
interface GigabitEthernet0/0/2
no ip address
negotiation auto
1
interface GigabitEthernet0/0/3
no ip address
negotiation auto
!
interface GigabitEthernet0
vrf forwarding Mgmt-intf
ip address 172.18.77.212 255.255.255.240
negotiation auto
1
ip forward-protocol nd
1
no ip http server
no ip http secure-server
ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 172.18.77.209
1
control-plane
!
I.
line con 0
stopbits 1
```

```
line aux 0
stopbits 1
line vty 0 4
password cisco
login
!
transport type console 0 input consolehandler
!
ntp server vrf Mgmt-intf 10.81.254.131
!
end
```

To verify that you have configured RIP correctly, enter the **show ip route** command and look for RIP routes marked with the letter R. You should see an output similar to the one shown in the following example:

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
10.00.0/24 is subnetted, 1 subnets
C 10.108.1.0 is directly connected, Loopback0
R 10.0.0.0/8 [120/1] via 10.2.2.1, 00:00:02, Ethernet0/0/0
```

Configuring Enhanced Interior Gateway Routing Protocol

To configure Enhanced Interior Gateway Routing Protocol (EIGRP), follow these steps.

SUMMARY STEPS

- 1. router eigrp as-number
- 2. network ip-address
- 3. end

DETAILED STEPS

	Command or Action	Purpose		
Step 1	<pre>router eigrp as-number Example: Router(config)# router eigrp 109</pre>	Enters router configuration mode, and enables EIGRP on the router. The autonomous-system number identifies the route to other EIGRP routers and is used to tag the EIGRP information.		
Step 2	network ip-address Example:	Specifies a list of networks on which EIGRP is to be applied, using the IP address of the network of directly connected networks.		
	Router(config)# network 192.168.1.0 Router(config)# network 10.10.12.115			

	Command or Action	Purpose		
Step 3	end	Exits router configuration mode, and enters privileged		
	Example:	EXEC mode.		
	Router(config-router)# end			

Example

Verifying the Configuration

The following configuration example shows the EIGRP routing protocol enabled in IP networks 192.168.1.0 and 10.10.12.115. The EIGRP autonomous system number is 109. To see this configuration, use the **show running-config** command.

```
Router# show running-config

.

.

!

router eigrp 109

network 192.168.1.0

network 10.10.12.115

!

.

.
```

To verify that you have configured IP EIGRP correctly, enter the **show ip route** command, and look for EIGRP routes marked by the letter D. You should see verification output similar to the following:

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
10.0.0.0/24 is subnetted, 1 subnets
C 10.108.1.0 is directly connected, Loopback0
D 10.0.0.0/8 [90/409600] via 10.2.2.1, 00:00:02, Ethernet0/0
```


Slot and Subslot Configuration

This chapter contains information on slots and subslots. Slots specify the chassis slot number in your router and subslots specify the slot where the service modules are installed.

For further information on the slots and subslots, see the "About Slots and Interfaces" section in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

The following section is included in this chapter:

• Configuring the Interfaces, on page 119

Configuring the Interfaces

The following sections describe how to configure Gigabit interfaces and also provide examples of configuring the router interfaces:

- Configuring Gigabit Ethernet Interfaces, on page 119
- Configuring the Interfaces: Example, on page 121
- Viewing a List of All Interfaces: Example, on page 121
- Viewing Information About an Interface: Example, on page 121

Configuring Gigabit Ethernet Interfaces

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interface GigabitEthernet slot/subslot/port
- 4. ip address ip-address mask [secondary] dhcp pool
- 5. negotiation auto
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface GigabitEthernet slot/subslot/port	Configures a GigabitEthernet interface.
	Example:	• GigabitEthernet—Type of interface.
	Router(config)# interface GigabitEthernet 0/0/1	• <i>slot</i> —Chassis slot number.
		• <i>/subslot</i> —Secondary slot number. The slash (/) is required.
		 /port—Port or interface number. The slash (/) is required.
Step 4	ip address ip-address mask [secondary] dhcp pool	Assigns an IP address to the GigabitEthernet
	Example:	• ip address <i>ip-address</i> —IP address for the interface.
	Router(config-if)# ip address 10.0.0.1	• mask—Mask for the associated IP subnet.
	255.255.255.0 dhcp pool	• secondary (optional)—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.
		• dhcp —IP address negotiated via DHCP.
		• pool —IP address autoconfigured from a local DHCP pool.
Step 5	negotiation auto	Selects the negotiation mode.
	Example:	• auto—Performs link autonegotiation.
	Router(config-if) # negotiation auto	
Step 6	end	Ends the current configuration session and returns to
	Example:	privileged EXEC mode.
	Router(config-if)# end	

Configuring the Interfaces: Example

The following example shows the **interface gigabitEthernet** command being used to add the interface and set the IP address. **0/0/0** is the slot/subslot/port. The ports are numbered 0 to 3.

```
Router# show running-config interface gigabitEthernet 0/0/0
Building configuration...
Current configuration : 71 bytes
!
interface gigabitEthernet0/0/0
no ip address
negotiation auto
end
```

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitEthernet 0/0/0
```

Viewing a List of All Interfaces: Example

In this example, the **show platform software interface summary** and **show interfaces summary** commands are used to display all the interfaces:

R	Router# show platform software interface summary									
	Interface	IHQ	IQD	OHQ	OQD	RXBS	RXPS	TXBS	TXPS	TRTL
*	GigabitEthernet0/0/0	0	0	0	0	0	0	0	0	0
*	GigabitEthernet0/0/1	0	0	0	0	0	0	0	0	0
*	GigabitEthernet0/0/2	0	0	0	0	0	0	0	0	0
*	GigabitEthernet0/0/3	0	0	0	0	0	0	0	0	0
*	GigabitEthernet0	0	0	0	0	0	0	0	0	0

Router# show interfaces summary*: interface is upIHQ: pkts in input hold queueIQD: pkts dropped from input queueOHQ: pkts in output hold queueOQD: pkts dropped from output queueRXBS: rx rate (bits/sec)RXPS: rx rate (pkts/sec)TXBS: tx rate (bits/sec)TXPS: tx rate (pkts/sec)TRTL: throttle countTXPS: tx rate (pkts/sec)										
Interface	IHQ	IQD	OHQ	OQD	RXBS	RXPS	TXBS	TXPS	TRTL	
<pre>* GigabitEthernet0/0/0 * GigabitEthernet0/0/1 * GigabitEthernet0/0/2 * GigabitEthernet0/0/3 * GigabitEthernet</pre>	0 L 0 2 0 3 0 0	0 0 0 0								

Viewing Information About an Interface: Example

The following example shows how to display a brief summary of an interface's IP information and status, including the virtual interface bundle information, by using the **show ip interface brief** command:

Router# show ip interface brief							
Interface	IP-Address	OK?	Method	Status	Protocol		
GigabitEthernet0/0/0	10.0.0.1	YES	manual	down	down		
GigabitEthernet0/0/1	unassigned	YES	NVRAM	administratively down	down		

GigabitEthernet0/0/2	10.10.10.1	YES	NVRAM	up	up
GigabitEthernet0/0/3	10.8.8.1	YES	NVRAM	up	up
GigabitEthernet0	172.18.42.33	YES	NVRAM	up	up

Process Health Monitoring

This chapter describes how to manage and monitor the health of various components of your router. It contains the following sections:

- Monitoring Control Plane Resources, on page 123
- Monitoring Hardware Using Alarms, on page 126

Monitoring Control Plane Resources

The following sections explain the of memory and CPU monitoring from the perspective of the Cisco IOS process and the overall control plane:

- Avoiding Problems Through Regular Monitoring, on page 123
- Cisco IOS Process Resources, on page 124
- Overall Control Plane Resources, on page 124

Avoiding Problems Through Regular Monitoring

Processes should provide monitoring and notification of their status/health to ensure correct operation. When a process fails, a syslog error message is displayed and either the process is restarted or the router is rebooted. A syslog error message is displayed when a monitor detects that a process is stuck or has crashed. If the process can be restarted, it is restarted; else, the router is restarted.

Monitoring system resources enables you to detect potential problems before they occur, thus avoiding outages. The following are the advantages of regular monitoring:

- Lack of memory on line cards that are in operation for a few years can lead to major outages. Monitoring memory usage helps to identify memory issues in the line cards and enables you to prevent an outage.
- Regular monitoring establishes a baseline for a normal system load. You can use this information as a basis for comparison when you upgrade hardware or software—to see if the upgrade has affected resource usage.

Cisco IOS Process Resources

You can view CPU utilization statistics on active processes and see the amount of memory being used in these processes using the **show memory** command and the **show process cpu** command. These commands provide a representation of memory and CPU utilization from the perspective of only the Cisco IOS process; they do not include information for resources on the entire platform. For example, when the **show memory** command is used in a system with 8 GB RAM running a single Cisco IOS process, the following memory usage is displayed:

Router# show memory

	-					
	Head	Total(b)	Used(b)	Free(b)	Lowest(b)	Largest(b)
Processor	2ABEA4316010	4489061884	314474916	4174586968	3580216380	3512323496
lsmpi io	2ABFAFF471A8	6295128	6294212	916	916	916
Critical	2ABEB7C72EB0	1024004	92	1023912	1023912	1023912

The show process cpu command displays Cisco IOS CPU utilization average:

Router# show process cpu

CPU	utilization	for five s	econds: 0%/()%; one	minute:	0%; fi	ive n	ninutes: 0%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
1	583	48054	12	0.00%	0.00%	0.00%	0	Chunk Manager
2	991	176805	5	0.00%	0.00%	0.00%	0	Load Meter
3	0	2	0	0.00%	0.00%	0.00%	0	IFCOM Msg Hdlr
4	0	11	0	0.00%	0.00%	0.00%	0	Retransmission o
5	0	3	0	0.00%	0.00%	0.00%	0	IPC ISSU Dispatc
6	230385	119697	1924	0.00%	0.01%	0.00%	0	Check heaps
7	49	28	1750	0.00%	0.00%	0.00%	0	Pool Manager
8	0	2	0	0.00%	0.00%	0.00%	0	Timers
9	17268	644656	26	0.00%	0.00%	0.00%	0	ARP Input
10	197	922201	0	0.00%	0.00%	0.00%	0	ARP Background
11	0	2	0	0.00%	0.00%	0.00%	0	ATM Idle Timer
12	0	1	0	0.00%	0.00%	0.00%	0	ATM ASYNC PROC
13	0	1	0	0.00%	0.00%	0.00%	0	AAA_SERVER_DEADT
14	0	1	0	0.00%	0.00%	0.00%	0	Policy Manager
15	0	2	0	0.00%	0.00%	0.00%	0	DDR Timers
16	1	15	66	0.00%	0.00%	0.00%	0	Entity MIB API
17	13	1195	10	0.00%	0.00%	0.00%	0	EEM ED Syslog
18	93	46	2021	0.00%	0.00%	0.00%	0	PrstVbl
19	0	1	0	0.00%	0.00%	0.00%	0	RO Notify Timers

Overall Control Plane Resources

Control plane memory and CPU utilization on each control processor allows you to keep a tab on the overall control plane resources. You can use the **show platform software status control-processor brief** command (summary view) or the **show platform software status control-processor** command (detailed view) to view control plane memory and CPU utilization information.

All control processors should show status, Healthy. Other possible status values are Warning and Critical. Warning indicates that the router is operational, but that the operating level should be reviewed. Critical implies that the router is nearing failure.

If you see a Warning or Critical status, take the following actions:

- Reduce the static and dynamic loads on the system by reducing the number of elements in the configuration or by limiting the capacity for dynamic services.
- Reduce the number of routes and adjacencies, limit the number of ACLs and other rules, reduce the number of VLANs, and so on.

The following sections describe the fields in the **show platform software status control-processor** command output.

Load Average

Load average represents the process queue or process contention for CPU resources. For example, on a single-core processor, an instantaneous load of 7 would mean that seven processes are ready to run, one of which is currently running. On a dual-core processor, a load of 7 would mean that seven processes are ready to run, two of which are currently running.

Memory Utilization

Memory utilization is represented by the following fields:

- Total—Total line card memory
- Used—Consumed memory
- Free—Available memory
- Committed—Virtual memory committed to processes

CPU Utilization

CPU utilization is an indication of the percentage of time the CPU is busy, and is represented by the following fields:

- CPU—Allocated processor
- User—Non-Linux kernel processes
- System—Linux kernel process
- Nice-Low-priority processes
- Idle—Percentage of time the CPU was inactive
- IRQ—Interrupts
- SIRQ—System Interrupts
- IOwait-Percentage of time CPU was waiting for I/O

Example: show platform software status control-processor Command

The following are some examples of using the **show platform software status control-processor** command:

```
Router# show platform software status control-processor
RP0: online, statistics updated 5 seconds ago
Load Average: healthy
1-Min: 0.07, status: healthy, under 5.00
5-Min: 0.11, status: healthy, under 5.00
15-Min: 0.09, status: healthy, under 5.00
Memory (kb): healthy
Total: 3971216
Used: 3415976 (86%)
Free: 555240 (14%)
```

Committed: 2594412 (65%), status: healthy, under 90% Per-core Statistics CPU0: CPU Utilization (percentage of time spent) User: 1.40, System: 1.20, Nice: 0.00, Idle: 97.39 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU1: CPU Utilization (percentage of time spent) User: 0.89, System: 0.79, Nice: 0.00, Idle: 98.30 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU2: CPU Utilization (percentage of time spent) User: 0.80, System: 2.50, Nice: 0.00, Idle: 96.70 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU3: CPU Utilization (percentage of time spent) User: 3.09, System: 6.19, Nice: 0.00, Idle: 90.60 IRQ: 0.00, SIRQ: 0.09, IOwait: 0.00 CPU4: CPU Utilization (percentage of time spent) User: 0.10, System: 0.30, Nice: 0.00, Idle: 99.60 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU5: CPU Utilization (percentage of time spent) User: 0.89, System: 1.59, Nice: 0.00, Idle: 97.50 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU6: CPU Utilization (percentage of time spent) User: 0.80, System: 1.10, Nice: 0.00, Idle: 98.10 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU7: CPU Utilization (percentage of time spent) User: 0.20, System: 3.40, Nice: 0.00, Idle: 96.40 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 Router# show platform software status control-processor brief Load Average Slot Status 1-Min 5-Min 15-Min 0.09 RP0 Healthv 0.10 0.09 Memory (kB) Used (Pct) Slot Status Total Free (Pct) Committed (Pct) RPO Healthy 3971216 3426452 (86%) 544764 (14%) 2595212 (65%) CPU Utilization Slot CPU User System Nice Idle IRO SIRQ IOwait RP0 0 1.60 0.90 0.00 97.30 0.10 0.10 0.00 0.09 1.29 0.00 98.60 0.00 0.00 0.00 1 2 0.10 0.10 0.00 99.79 0.00 0.00 0.00 0.00 0.00 100.00 3 0.00 0.00 0.00 0.00 0.60 4.90 0.00 94.50 0.00 0.00 0.00 4 5 0.70 1.30 0.00 98.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 99.90 0.00 6 0.00 7 1.39 0.49 0.00 98.10 0.00 0.00 0.00

Monitoring Hardware Using Alarms

- Router Design and Monitoring Hardware, on page 127
- BootFlash Disk Monitoring, on page 127
- Approaches for Monitoring Hardware Alarms, on page 127

Router Design and Monitoring Hardware

The router sends alarm notifications when problems are detected, allowing you to monitor the network remotely. You do not need to use **show** commands to poll devices on a routine basis; however, you can perform onsite monitoring if you choose.

BootFlash Disk Monitoring

The bootflash disk must have enough free space to store two core dumps. This condition is monitored, and if the bootflash disk is too small to store two core dumps, a syslog alarm is generated, as shown in the following example:

```
Aug 22 13:40:41.038 R0/0: %FLASH_CHECK-3-DISK_QUOTA: Flash disk quota exceeded [free space is 7084440 kB] - Please clean up files on bootflash.
```

The size of the bootflash disk must be at least of the same size as that of the physical memory installed on the router. If this condition is not met, a syslog alarm is generated as shown in the following example:

```
%IOSXEBOOT-2-FLASH_SIZE_CHECK: (rp/0): Flash capacity (8 GB) is insufficient for fault
analysis based on
installed memory of RP (16 GB)
%IOSXEBOOT-2-FLASH_SIZE_CHECK: (rp/0): Please increase the size of installed flash to at
least 16 GB (same as
physical memory size)
```

Approaches for Monitoring Hardware Alarms

- Onsite Network Administrator Responds to Audible or Visual Alarms, on page 127
- Viewing the Console or Syslog for Alarm Messages, on page 128
- Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP, on page 130

Onsite Network Administrator Responds to Audible or Visual Alarms

- About Audible and Visual Alarms, on page 127
- Clearing an Audible Alarm, on page 127
- Clearing a Visual Alarm, on page 128

About Audible and Visual Alarms

An external element can be connected to a power supply using the DB-25 alarm connector on the power supply. The external element is a DC light bulb for a visual alarm and a bell for an audible alarm.

If an alarm illuminates the CRIT, MIN, or MAJ LED on the faceplate of the router, and a visual or audible alarm is wired, the alarm also activates an alarm relay in the power supply DB-25 connector, and either the bell rings or the light bulb flashes.

Clearing an Audible Alarm

To clear an audible alarm, perform one of the following tasks:

- Press the Audible Cut Off button on the faceplate.
- Enter the clear facility-alarm command.

Clearing a Visual Alarm

To clear a visual alarm, you must resolve the alarm condition. The **clear facility-alarm** command does not clear an alarm LED on the faceplate or turn off the DC light bulb. For example, if a critical alarm LED is illuminated because an active module was removed without a graceful deactivation, the only way to resolve that alarm is to replace the module.

Viewing the Console or Syslog for Alarm Messages

The network administrator can monitor alarm messages by reviewing alarm messages sent to the system console or to a system message log (syslog).

- Enabling the logging alarm Command, on page 128
- Examples of Alarm Messages, on page 128
- Reviewing and Analyzing Alarm Messages, on page 130

Enabling the logging alarm Command

The **logging alarm** command must be enabled for the system to send alarm messages to a logging device, such as the console or a syslog. This command is not enabled by default.

You can specify the severity level of the alarms to be logged. All the alarms at and above the specified threshold generate alarm messages. For example, the following command sends only critical alarm messages to logging devices:

Router(config) # logging alarm critical

If alarm severity is not specified, alarm messages for all severity levels are sent to logging devices.

Examples of Alarm Messages

The following are examples of alarm messages that are sent to the console when a module is removed before performing a graceful deactivation. The alarm is cleared when the module is reinserted.

Module Removed

```
*Aug 22 13:27:33.774: %ISR4451-X_OIR-6-REMSPA: Module removed from subslot 1/1, interfaces
disabled
*Aug 22 13:27:33.775: %SPA_OIR-6-OFFLINECARD: Module (SPA-4XT-SERIAL) offline in subslot
1/1
```

Module Reinserted

*Aug 22 13:32:29.447: %ISR4451-X_OIR-6-INSSPA: Module inserted in subslot 1/1 *Aug 22 13:32:34.916: %SPA_OIR-6-ONLINECARD: Module (SPA-4XT-SERIAL) online in subslot 1/1 *Aug 22 13:32:35.523: %LINK-3-UPDOWN: SIP1/1: Interface EOBC1/1, changed state to up

Alarms

To view alarms, use the **show facility-alarm status** command. The following example shows a critical alarm for the power supply:
Router# show facility-alar	n status	
System Totals Critical: 5	Major: 0 Mir	nor: 0
Source	Severity	Description [Index]
Power Supply Bay 0	CRITICAL	Power Supply/FAN Module Missing [0]
GigabitEthernet0/0/0	INFO	Physical Port Link Down [1]
GigabitEthernet0/0/1	INFO	Physical Port Link Down [1]
GigabitEthernet0/0/2	INFO	Physical Port Link Down [1]
GigabitEthernet0/0/3	INFO	Physical Port Link Down [1]
xcvr container 0/0/0	INFO	Transceiver Missing [0]
xcvr container 0/0/1	INFO	Transceiver Missing [0]
xcvr container 0/0/2	INFO	Transceiver Missing [0]
xcvr container 0/0/3	INFO	Transceiver Missing [0]

To view critical alarms, use the **show facility-alarm status critical** command, as shown in the following example:

```
Router# show facility-alarm status critical
System Totals Critical: 5 Major: 0 Minor: 0
                                    Description [Index]
Source
                        Severity
                         _____
_____
                                      _____
Power Supply Bay 0
                        CRITICAL
                                     Power Supply/FAN Module Missing [0]
GigabitEthernet0/0/0
                         INFO
                                      Physical Port Link Down [1]
GigabitEthernet0/0/1
                         INFO
                                      Physical Port Link Down [1]
                                      Physical Port Link Down [1]
                       TNFO
GigabitEthernet0/0/2
GigabitEthernet0/0/3
                       INFO
                                      Physical Port Link Down [1]
```

To view the operational state of the major hardware components on the router, use the **show platform diag** command. This example shows that power supply P0 has failed:

```
Router# show platform diag
Chassis type: ISR4451/K9
Slot: 0, ISR4451-NGSM
 Running state
                            : ok
  Internal state : online
Internal operational state : ok
 Physical insert detect time : 00:01:09 (1w0d ago)
  Software declared up time : 00:01:42 (1w0d ago)
 CPLD version
                           : 12061320
 Firmware version
                            : 12.2(20120618:163328)[ciscouser-ESGROM 20120618 GAMMA 101]
Sub-slot: 0/0, ISR4451-4X1GE
 Operational status : ok
  Internal state
                            : inserted
  Physical insert detect time : 00:02:48 (1w0d ago)
 Logical insert detect time : 00:02:48 (1w0d ago)
Slot: 1, ISR4451-NGSM
 Running state
                            : ok
  Internal state
                            : online
  Internal operational state : ok
  Physical insert detect time : 00:01:09 (1w0d ago)
  Software declared up time : 00:01:43 (1w0d ago)
 CPLD version
                             : 12061320
                            : 12.2(20120618:163328)[ciscouser-ESGROM 20120618 GAMMA 101]
  Firmware version
Slot: 2, ISR4451-NGSM
  Running state
                             : ok
  Internal state
                             : online
  Internal operational state : ok
```

Physical insert detect time : 00:01:09 (1w0d ago) Software declared up time : 00:01:44 (1w0d ago) CPLD version Firmware version : 12061320 : 12.2(20120618:163328)[ciscouser-ESGROM 20120618 GAMMA 101] Slot: R0, ISR4451/K9 Running state : ok, active Internal state : online Internal operational state : ok Physical insert detect time : 00:01:09 (1w0d ago) Software declared up time : 00:01:09 (1w0d ago)
 CPLD version
 : 12061320

 Firmware version
 : 12.2(20120618:163328)[ciscouser-ESGROM_20120618_GAMMA 101]
 CPLD version : 12061320 Slot: F0, ISR4451-FP Running state : init, active Internal state : online Internal operational state : ok Physical insert detect time : 00:01:09 (1w0d ago) Software declared up time : 00:01:37 (1w0d ago) Hardware ready signal time : 00:00:00 (never ago) Packet ready signal time : 00:00:00 (never ago) CPLD version Firmware version : 12.2(20120618:163328)[ciscouser-ESGROM_20120618_GAMMA 101] Slot: P0, Unknown State : ps, fail Physical insert detect time : 00:00:00 (never ago) Slot: P1, XXX-XXXX-XX State : ok Physical insert detect time : 00:01:26 (1w0d ago) Slot: P2, ACS-4450-FANASSY State : ok Physical insert detect time : 00:01:26 (1w0d ago)

Reviewing and Analyzing Alarm Messages

To facilitate the review of alarm messages, you can write scripts to analyze alarm messages sent to the console or syslog. Scripts can provide reports on events such as alarms, security alerts, and interface status.

Syslog messages can also be accessed through Simple Network Management Protocol (SNMP) using the history table defined in the CISCO-SYSLOG-MIB.

Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP

The SNMP is an application-layer protocol that provides a standardized framework and a common language used for monitoring and managing devices in a network. Of all the approaches to monitor alarms, SNMP is the best approach to monitor more than one router in an enterprise and service provider setup.

SNMP provides notification of faults, alarms, and conditions that might affect services. It allows a network administrator to access router information through a network management system (NMS) instead of reviewing logs, polling devices, or reviewing log reports.

To use SNMP to get alarm notification, use the following MIBs:

• ENTITY-MIB, RFC 4133 (required for the CISCO-ENTITY-ALARM-MIB and CISCO-ENTITY-SENSOR-MIB to work)

- CISCO-ENTITY-ALARM-MIB
- CISCO-ENTITY-SENSOR-MIB (for transceiver environmental alarm information, which is not provided through the CISCO-ENTITY-ALARM-MIB)

Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP

System Messages

System messages are saved in a log file or directed to other devices from the software running on a router. These messages are also known as syslog messages. System messages provide you with logging information for monitoring and troubleshooting purposes.

The following sections are included in this chapter:

- Information About Process Management, on page 133
- How to Find Error Message Details, on page 133

Information About Process Management

You can access system messages by logging in to the console through Telnet protocol and monitoring your system components remotely from any workstation that supports the Telnet protocol.

Starting and monitoring software is referred to as process management. The process management infrastructure for a router is platform independent, and error messages are consistent across platforms running on Cisco IOS XE. You do not have to be directly involved in process management, but we recommend that you read the system messages that refer to process failures and other issues.

How to Find Error Message Details

To show further details about a process management or a syslog error message, enter the error message into the Error Message Decoder tool at: https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi.

For example, enter the message %PMAN-0-PROCESS_NOTIFICATION into the tool to view an explanation of the error message and the recommended action to be taken.

The following are examples of the description and the recommended action displayed by the Error Message Decoder tool for some of the error messages.

Error Message: %PMAN-0-PROCESS_NOTIFICATION : The process lifecycle notification component failed because [chars]

Explanation	Recommended Action

The process lifecycle notification component failed,	Note the time of the message and investigate the
preventing proper detection of a process start and stop.	kernel error message logs to learn more about the
This problem is likely the result of a software defect	problem and see if it is correctable. If the problem
in the software subpackage.	cannot be corrected or the logs are not helpful, copy
	the error message exactly as it appears on the console
	along with the output of the show tech-support
	command and provide the gathered information to a
	Cisco technical support representative.

Error Message: %PMAN-0-PROCFAILCRIT A critical process [chars] has failed (rc [dec])

Explanation	Recommended Action
A process important to the functioning of the router has failed.	Note the time of the message and investigate the error message logs to learn more about the problem. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support commands and your pertinent troubleshooting logs.

Error Message: %PMAN-3-PROCFAILOPT An optional process [chars] has failed (rc [dec])

Explanation	Recommended Action

A process that does not affect the forwarding of traffic has failed.	Note the time of the message and investigate the kernel error message logs to learn more about the problem. Although traffic will still be forwarded after receiving this message, certain functions on the router may be disabled because of this message and the error should be investigated. If the logs are not helpful or indicate a problem you cannot correct, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support
	commands and your pertinent troubleshooting logs.

 $Error \ Message: \texttt{%PMAN-3-PROCFAIL} \ \texttt{The process [chars] has failed (rc [dec])}$

Explanation	Recommended Action
The process has failed as the result of an error.	This message will appear with other messages related to the process. Check the other messages to determine the reason for the failures and see if corrective action can be taken. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support commands and your pertinent troubleshooting logs.

Error Message: %PMAN-3-PROCFAIL_IGNORE [chars] process exits and failures are being ignored due to debug settings. Normal router functionality will be affected. Critical router functions like RP switchover, router reload, FRU resets, etc. may not function properly.

Explanation	Recommended Action
A process failure is being ignored due to the user-configured debug settings.	If this behavior is desired and the debug settings are set according to a user's preference, no action is needed. If the appearance of this message is viewed as a problem, change the debug settings. The router is not expected to behave normally with this debug setting. Functionalities such as SSO switchover, router reloads, FRU resets, and so on will be affected. This setting should only be used in a debug scenario. It is not normal to run the router with this setting.

 $Error \ Message: \texttt{PMAN-3-PROCHOLDDOWN} \ \texttt{The process [chars] has been helddown (rc [dec])}$

Explanation	Recommended Action
The process was restarted too many times with repeated failures and has been placed in the hold-down state.	This message will appear with other messages related to the process. Check the other messages to determine the reason for the failures and see if corrective action can be taken. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support commands and your pertinent troubleshooting logs.

Error Message: %PMAN-3-RELOAD_RP_SB_NOT_READY : Reloading: [chars]

Explanation	Recommended Action
The route processor is being reloaded because there is no ready standby instance.	Ensure that the reload is not due to an error condition.
Error Message : %PMAN-3-RELOAD_RP : Reloading: [chars]	
Explanation	Recommended Action

Ensure that the reload is not due to an error condition.
If it is due to an error condition, collect information
requested by the other log messages.

Error Message: %PMAN-3-RELOAD SYSTEM : Reloading: [chars]

Explanation	Recommended Action
The system is being reloaded.	Ensure that the reload is not due to an error condition. If it is due to an error condition, collect information requested by the other log messages.

Error Message: %PMAN-3-PROC_BAD_EXECUTABLE : Bad executable or permission problem with process [chars]

Explanation	Recommended Action
The executable file used for the process is bad or has permission problem.	Ensure that the named executable is replaced with the correct executable.

Error Message: %PMAN-3-PROC_BAD_COMMAND:Non-existent executable or bad library used for process <process name>

Explanation	Recommended Action
The executable file used for the process is missing, or a dependent library is bad.	Ensure that the named executable is present and the dependent libraries are good.
Error Message: %PMAN-3-PROC EMPTY EXEC FILE :	Empty executable used for process [chars]

Explanation	Recommended Action
The executable file used for the process is empty.	Ensure that the named executable is non-zero in size.

Error Message: %PMAN-5-EXITACTION : Process manager is exiting: [chars]

Explanation	Recommended Action
The process manager is exiting.	Ensure that the process manager is not exiting due to an error condition. If it is due to an error condition, collect information requested by the other log messages.

Error Message: %PMAN-6-PROCSHUT : The process [chars] has shutdown

Explanation	Recommended Action
The process has gracefully shut down.	No user action is necessary. This message is provided for informational purposes only.
Error Message: %PMAN-6-PROCSTART : The proce	ess [chars] has started

Explanation	Recommended Action

The process has launched and is operating properly.	No user action is necessary. This message is provided for informational purposes only.
Error Message: %PMAN-6-PROCSTATELESS : The pr	ocess [chars] is restarting stateless

ī

Explanation	Recommended Action
The process has requested a stateless restart.	No user action is necessary. This message is provided for informational purposes only.

Trace Management

The following sections are included in this chapter:

- Tracing Overview, on page 139
- How Tracing Works, on page 139
- Tracing Levels, on page 140
- Viewing a Tracing Level, on page 141
- Setting a Tracing Level, on page 143
- Viewing the Content of the Trace Buffer, on page 143

Tracing Overview

Tracing is a function that logs internal events. Trace files containing trace messages are automatically created and saved to the tracelogs directory on the hard disk: file system on the router, which stores tracing files in bootflash.

The contents of trace files are useful for the following purposes:

- Troubleshooting—Helps to locate and solve an issue with a router. The trace files can be accessed in diagnostic mode even if other system issues are occurring simultaneously.
- Debugging—Helps to obtain a detailed view of system actions and operations.

How Tracing Works

Tracing logs the contents of internal events on a router. Trace files containing all the trace output pertaining to a module are periodically created and updated and stored in the tracelog directory. Trace files can be erased from this directory to recover space on the file system without impacting system performance. The files can be copied to other destinations using file transfer functions (such as FTP and TFTP) and opened using a plain text editor.

Note Tracing cannot be disabled on a router.

Use the following commands to view trace information and set tracing levels:

- **show platform software trace message**—Shows the most recent trace information for a specific module. This command can be used in privileged EXEC and diagnostic modes. When used in diagnostic mode, this command can gather trace log information during a Cisco IOS XE failure.
- set platform software trace—Sets a tracing level that determines the types of messages that are stored in the output. For more information on tracing levels, see Tracing Levels, on page 140.

Tracing Levels

Tracing levels determine how much information should be stored about a module in the trace buffer or file.

The following table shows all the tracing levels that are available and provides descriptions of what types of messages are displayed with each tracing level.

Tracing Level	Level Number	Description
Emergency	0	The message is regarding an issue that makes the system unusable.
Alert	1	The message is regarding an action that must be taken immediately.
Critical	2	The message is regarding a critical condition. This is the default setting for every module on the router.
Error	3	The message is regarding a system error.
Warning	4	The message is regarding a system warning.
Notice	5	The message is regarding a significant issue, but the router is still working normally.
Informational	6	The message is useful for informational purposes only.
Debug	7	The message provides debug-level output.
Verbose	8	All possible tracing messages are sent.

Table 17: Tracing Levels and Descriptions

Tracing Level	Level Number	Description
Noise		All possible trace messages pertaining to a module are logged.
		The noise level is always equal to the highest possible tracing level. Even if a future enhancement to tracing introduces a higher tracing level than verbose level, the noise level will become equal to the level of the newly introduced tracing level.

If a tracing level is set, messages are collected from both lower tracing levels and from its own level.

For example, setting the tracing level to 3 (error) means that the trace file will contain output messages for levels: 0 (emergencies), 1 (alerts), 2 (critical), and 3 (error).

If you set the trace level to 4 (warning), it results in output messages for levels: 0 (emergencies), 1 (alerts), 2 (critical), 3 (error), and 4 (warning).

The default tracing level for every module on the router is 5 (notice).

A tracing level is not set in a configuration mode, which results in tracing-level settings being returned to default values after the router reloads.

<u>/!\</u>

Caution

Setting the tracing level of a module to debug level or higher can have a negative impact on the performance.

Setting high tracing levels on a large number of modules can severely degrade performance. If a high tracing level is required in a specific context, it is almost always preferable to set the tracing level of a single module to a higher level rather than setting multiple modules to high levels.

Viewing a Tracing Level

By default, all the modules on a router are set to 5 (notice). This setting is maintained unless changed by a user.

To see the tracing level for a module on a router, enter the **show platform software trace level** command in privileged EXEC mode or diagnostic mode.

The following example shows how the **show platform software trace level** command is used to view the tracing levels of the forwarding manager processes on an active RP:

 Router# show platform software trace level forwarding-manager rp active

 Module Name
 Trace Level

 acl
 Notice

 binos
 Notice

 binos/brand
 Notice

 bipc
 Notice

bsignal Notice btrace Notice cce Notice cdllib Notice cef Notice chasfs Notice chasutil Notice erspan Notice Notice ess ether-channel Notice evlib Notice evutil Notice file alloc Notice fman_rp Notice fpm Notice Notice fw icmp Notice interfaces Notice iosd Notice ipc Notice Notice ipclog iphc Notice IPsec Notice mgmte-acl Notice Notice mlp mqipc Notice nat Notice nbar Notice netflow Notice Notice om peer Notice qos Notice route-map Notice sbc Notice services Notice Notice sw wdog tdl_acl_config_type Notice tdl_acl_db_type Notice tdl cdlcore message Notice tdl_cef_config_common_type Notice tdl cef config_type Notice tdl dpidb config type Notice tdl_fman_rp_comm_type Notice tdl_fman_rp_message Notice tdl_fw_config_type Notice tdl_hapi_tdl_type Notice tdl_icmp_type Notice tdl ip options type Notice tdl_ipc_ack_type Notice tdl IPsec_db_type Notice tdl_mcp_comm_type Notice tdl_mlp_config_type Notice tdl_mlp_db_type Notice tdl_om_type Notice tdl ui message Notice tdl ui type Notice tdl_urpf_config_type Notice tdllib Notice trans avl Notice uihandler Notice uipeer Notice uistatus Notice Notice urpf vista Notice wccp

Notice

Setting a Tracing Level

To set a tracing level for a module on a router, or for all the modules within a process on a router, enter the **set platform software trace** command in the privileged EXEC mode or diagnostic mode.

The following example shows the tracing level for the ACL module in the Forwarding Manager of the ESP processor in slot 0 set to info:

set platform software trace forwarding-manager F0 acl info

Viewing the Content of the Trace Buffer

To view the trace messages in the trace buffer or file, enter the **show platform software trace message** command in privileged EXEC or diagnostic mode. In the following example, the trace messages for the Host Manager process in Route Processor slot 0 are viewed using the **show platform software trace message command**:

```
Router# show platform software trace message host-manager R0

08/23 12:09:14.408 [uipeer]: (info): Looking for a ui_req msg

08/23 12:09:14.408 [uipeer]: (info): Start of request handling for con 0x100a61c8

08/23 12:09:14.399 [uipeer]: (info): Accepted connection for 14 as 0x100a61c8

08/23 12:09:14.399 [uipeer]: (info): Received new connection 0x100a61c8 on descriptor 14

08/23 12:09:14.398 [uipeer]: (info): Accepting command connection on listen fd 7

08/23 11:53:57.440 [uipeer]: (info): Going to send a status update to the shell manager in

slot 0

08/23 11:53:47.417 [uipeer]: (info): Going to send a status update to the shell manager in

slot 0
```


Environmental Monitoring and PoE Management

The Cisco 4000 series Integrated Services routers have hardware and software features that periodically monitor the router's environment. For more information, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

This chapter provides information on the environmental monitoring features on your router that allow you to monitor critical events and generate statistical reports on the status of various router components and, includes the following sections:

- Environmental Monitoring, on page 145
- Environmental Monitoring and Reporting Functions, on page 146
- Configuring Power Supply Mode, on page 160
- Managing PoE, on page 165
- Additional References, on page 170

Environmental Monitoring

The router provides a robust environment-monitoring system with several sensors that monitor the system temperatures. Microprocessors generate interrupts to the HOST CPU for critical events and generate a periodic status and statistics report. The following are some of the key functions of the environmental monitoring system:

- · Monitoring temperature of CPUs, motherboard, and midplane
- Monitoring fan speed
- Recording abnormal events and generating notifications
- · Monitoring Simple Network Management Protocol (SNMP) traps
- · Generating and collecting Onboard Failure Logging (OBFL) data
- · Sending call home event notifications
- · Logging system error messages
- · Displaying present settings and status

Environmental Monitoring and Reporting Functions

Monitoring and reporting functions allow you to maintain normal system operation by identifying and resolving adverse conditions prior to loss of operation.

- Environmental Monitoring Functions, on page 146
- Environmental Reporting Functions, on page 148

Environmental Monitoring Functions

Environmental monitoring functions use sensors to monitor the temperature of the cooling air as it moves through the chassis.

The local power supplies provide the ability to monitor:

- · Input and output current
- Output voltage
- Input and output power
- Temperature
- · Fan speed

The router is expected to meet the following environmental operating conditions:

- Operating Temperature Nominal—32°F to 104°F (0°C to 40°C)
- Operating Humidity Nominal—10% to 85% RH noncondensing
- Operating Humidity Short Term—10% to 85% RH noncondensing
- Operating Altitude—Sea level 0 ft to 10,000 ft (0 to 3000 m)
- AC Input Range—85 to 264 VAC

In addition, each power supply monitors its internal temperature and voltage. A power supply is either within tolerance (normal) or out of tolerance (critical). If an internal power supply's temperature or voltage reaches a critical level, the power supply shuts down without any interaction with the system processor.

The following table displays the levels of status conditions used by the environmental monitoring system.

Table 18: Levels of Status Conditions Used by the Environmental Monitoring System

Status Level	Description
Normal	All monitored parameters are within normal tolerance.
Warning	The system has exceeded a specified threshold. The system continues to operate, but operator action is recommended to bring the system back to a normal state.

Status Level	Description
Critical	An out-of-tolerance temperature or voltage condition exists. Although the system continues to operate, it is approaching shutdown. Immediate operator action is required.

The environmental monitoring system sends system messages to the console, for example, when the conditions described here are met:

Fan Failure

When the system power is on, all the fans should be operational. Although the system continues to operate if a fan fails, the system displays the following message:

%IOSXE_PEM-3-FANFAIL: The fan in slot 2/0 is encountering a failure condition

Sensors Out of Range

When sensors are out of range, the system displays the following message:

%ENVIRONMENTAL-1-ALERT: V: 1.0v PCH, Location: R0, State: Warning, Reading: 1102 mV %ENVIRONMENTAL-1-ALERT: V: PEM Out, Location: P1, State: Warning, Reading: 0 mV %ENVIRONMENTAL-1-ALERT: Temp: Temp 3, Location R0, State : Warning, Reading : 90C

Fan Tray (Slot P2) Removed

When the fan tray for slot P2 is removed, the system displays the following message: %IOSXE PEM-6-REMPEM FM: PEM/FM slot P2 removed

Fan Tray (Slot P2) Reinserted

When the fan tray for slot P2 is reinserted, the system displays the following message: %IOSXE PEM-6-INSPEM FM: PEM/FM slot P2 inserted

Fan Tray (Slot 2) is Working Properly

When the fan tray for slot 2 is functioning properly, the system displays the following message: %IOSXE PEM-6-PEMOK: The PEM in slot P2 is functioning properly

Fan 0 in Slot 2 (Fan Tray) is Not Working

When Fan 0 in the fan tray of slot 2 is not functioning properly, the system displays the following message: %IOSXE_PEM-3-FANFAIL: The fan in slot 2/0 is encountering a failure condition

Fan 0 in Slot 2 (Fan Tray) is Working Properly

When Fan 0 in the fan tray of slot 2 is functioning properly, the system displays the following message: %IOSXE_PEM-6-FANOK: The fan in slot 2/0 is functioning properly

Main Power Supply in Slot 1 is Powered Off

When the main power supply in slot 1 is powered off, the system displays the following message:

 $IOSXE_PEM-3-PEMFAIL:$ The PEM in slot 1 is switched off or encountering a failure condition.

Main Power Supply is Inserted in Slot 1

When the main power supply is inserted in slot 1, the system displays the following messages:

```
%IOSXE_PEM-6-INSPEM_FM: PEM/FM slot P1 inserted
%IOSXE_PEM-6-PEMOK: The PEM in slot 1 is functioning properly
```

Temperature and Voltage Exceed Max/Min Thresholds

The following example shows the warning messages indicating the maximum and minimum thresholds of the temperature or voltage:

```
Warnings :
------
For all the temperature sensors (name starting with "Temp:") above,
the critical warning threshold is 100C (100C and higher)
the warning threshold is 80C (range from 80C to 99C)
the low warning threshold is 1C (range from -inf to 1C).
For all voltage sensors (names starting with "V:"),
the high warning threshold starts at that voltage +10%. (voltage + 10% is warning)
the low warning threshold starts at the voltage -10%. (voltage - 10% is warning)
```

Environmental Reporting Functions

You can retrieve and display environmental status reports using the following commands:

- debug environment
- debug platform software cman env monitor polling
- debug ilpower
- debug power [inline | main]
- · show diag all eeprom
- show diag slot R0 eeprom detail
- show environment
- show environment all
- show inventory
- show platform all
- show platform diag
- · show platform software status control-processor
- show version
- show power
- show power inline

These commands show the current values of parameters such as temperature and voltage.

The environmental monitoring system updates the values of these parameters every 60 seconds. Brief examples of these commands are shown below:

debug environment: Example

```
Router# debug environment location PO
Environmental sensor Temp: Temp 1 P0 debugging is on
Environmental sensor Temp: Temp 2 P0 debugging is on
Environmental sensor Temp: Temp 3 P0 debugging is on
Environmental sensor V: PEM Out PO debugging is on
Environmental sensor I: PEM In PO debugging is on
Environmental sensor I: PEM Out PO debugging is on
Environmental sensor W: In pwr PO debugging is on
Environmental sensor W: Out pwr P0 debugging is on
Environmental sensor RPM: fan0 P0 debugging is on
*Sep 12 00:45:13.956: Sensor: Temp: Temp 1 P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=29
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: Temp: Temp 1 P0 State=Normal Reading=29
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: Temp: Temp 2 P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=33
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: Temp: Temp 2 P0 State=Normal Reading=34
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: Temp: Temp 3 P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=34
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: Temp: Temp 3 P0 State=Normal Reading=35
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: V: PEM Out PO, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=12709
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: V: PEM Out P0 State=Normal Reading=12724
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: I: PEM In PO, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=1
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: I: PEM In PO State=Normal Reading=1
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: I: PEM Out PO, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=4
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: I: PEM Out P0 State=Normal Reading=4
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: W: In pwr P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=92
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: W: In pwr P0 State=Normal Reading=92
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: W: Out pwr P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=46
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: W: Out pwr P0 State=Normal Reading=46
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
```

*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: RPM: fan0 P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=3192
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: RPM: fan0 P0 State=Normal Reading=3180
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0

debug platform software cman env monitor polling: Example

Router#	debug platform	n software cman	env mon	nitor	polling				
platform software cman env monitor polling debugging is on									
Router#									
*Sep 12	00:46:13.962:	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Temp 1, P0, 29			
*Sep 12	00:46:13.962:	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Temp 2, P0, 34			
*Sep 12	00:46:13.962:	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Temp 3, P0, 35			
*Sep 12	00:46:13.962:	IOS-RP-ENVMON:	sensor	READ	callback	V: PEM Out, P0, 12709			
*Sep 12	00:46:13.962:	IOS-RP-ENVMON:	sensor	READ	callback	I: PEM In, PO, 1			
*Sep 12	00:46:13.962:	TOS-RP-ENVMON:	sensor	READ	callback	T: PEM Out, PO, 4			
*Sep 12	00:46:13.962:	TOS-RP-ENVMON:	sensor	READ	callback	W: In pwr, P0, 93			
*Sep 12	00:46:13.962:	TOS-RP-ENVMON:	sensor	READ	callback	W: Out pwr, P0, 48			
*Sep 12	00:46:13.962:	TOS-RP-ENVMON:	sensor	READ	callback	RPM: fan0. P0. 3192			
*Sep 12	00:46:13.962:	TOS-RP-ENVMON:	sensor	READ	callback	Temp: Temp 1. P1. 33			
*Sep 12	00.46.13 962.	IOS-RP-ENVMON.	sensor	READ	callback	Temp: Temp 2, P1, 32			
*Sep 12	00.46.13 962.	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Temp 3 P1 36			
*Sep 12	00.46.13 962.	IOS-RP-ENVMON:	sensor	READ	callback	V. PEM Out P1 12666			
*Sep 12	00.46.13 962.	TOS_PP_ENVMON:	sonsor	DEVD	callback	T. DEM Tr. D1 1			
*Sep 12	00.46.13 962.	TOS RI ENVMON.	sensor	DEVD	callback	T. DEM III, II, I T. DEM \cap_{ii} + D1 /			
*Sop 12	00.46.13 963.	TOS NI ENVMON.	sensor	DEVD	callback	W. In pure $D1 = 55$			
*Sep 12	00.40.13.903.	IOS-RE-ENVMON.	Sensor	DEND	callback	W. III DWI, FI, 55			
*Sep 12	00.46.12.963.	IOS-RP-ENVMON:	sensor	READ	callback	W: Out pwr, Pr, 40			
*Sep 12	00.40.13.903.	IOS-RE-ENVMON.	Sensor	DEND	callback	DDM. fam0 D2 4904			
*Sep 12	00.46.12.963.	IOS-RP-ENVMON:	sensor	READ	callback	RFM: IdllU, P2, 4094			
*Sep 12	00:40:13.903:	IOS-RP-ENVMON:	sensor	READ	callback	RFM: Idil, P2, 4790			
^Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	Callback	RPM: Ianz, P2, 5025			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	Callback	RPM: Ian3, P2, 5001			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	Callback	W: Ian pwr, P2, 8			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Inlet 1, R0, 25			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Inlet 2, R0, 28			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Outlet 1, R0, 30			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	Temp: Outlet 2, R0, 35			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 12v, R0, 12/35			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 5v, R0, 5125			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 3.3v, R0, 3352			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.05v, R0, 1052			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 2.5v, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.8v, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.2v, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.15v, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.1v, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.0v, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.8v PCH, R0, 1787			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.5v PCH, R0, 1516			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.5v CPUC, R0, 1526			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.5v CPUI, R0, 1529			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.0v PCH, R0, 1009			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: 1.5v OLM, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: VCore, R0, 0			
*Sep 12	00:46:13.963:	IOS-RP-ENVMON:	sensor	READ	callback	V: VTT, R0, 0			
*Sep 12	00:46:13.963	IOS-RP-ENVMON.	sensor	READ	callback	V: 0.75v CPUT. R0. 0			
*Sep 12	00:46:13.963	TOS-RP-ENVMON.	sensor	READ	callback	V: 0.75v CPUC. R0. 0			
*Sep 12	00:46:13.963	TOS-RP-ENVMON.	sensor	READ	callback	T: 12v, R0, 7			
*Sen 12	00.46.13 963.	TOS-RP-ENVMON.	sensor	BETD	callback	W. DWC R0 81			
DCD TZ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TOO IVE DIMARION.	JOURDE	עתייי	Currback	Fart 101 01			

debug ilpower: Example

Router# debug ilpower ? cdp ILPOWER CDP messages controller ILPOWER controller event ILPOWER event ha ILPOWER High-Availability port ILPOWER port management powerman ILPOWER powerman registries ILPOWER registries scp ILPOWER SCP messages

debug power [inline|main]: Example

In this example, there is one 1000W power supply and one 450W power supply. Inline and main power output is shown.

Router# **debug power ?** inline ILPM inline power related main Main power related <cr> Router# **debug power** POWER all debug debugging is on

Router# show debugging | include POWER POWER: POWER main debugging is on POWER inline debugging is on Router# *Jan 21 01:29:40.786: %ENVIRONMENTAL-6-NOTICE: V: PEM Out, Location: P1, State: Warning, Reading: 0 mV *Jan 21 01:29:43.968: %IOSXE PEM-6-PEMOK: The PEM in slot P1 is functioning properly *Jan 21 01:29:43.968: %PLATFORM_POWER-6-MODEMATCH: Main power is in Boost mode *Jan 21 01:29:43.968: Power M: Received Msg for 12V/Main, total power 1450, Run same as cfg Yes *Jan 21 01:29:43.968: Power M: Received Msg for POE/ILPM, total power 500, Run same as cfg No *Jan 21 01:29:43.968: Power I: Updating pool power is 500 watts *Jan 21 01:29:43.968: Power I: Intimating modules of total power 500 watts *Jan 21 01:29:46.488: Power M: Received Msg for 12V/Main, total power 1450, Run same as cfg Yes *Jan 21 01:29:46.488: Power M: Received Msg for POE/ILPM, total power 500, Run same as cfg No *Jan 21 01:29:46.488: Power I: Updating pool power is 500 watts *Jan 21 01:29:46.488: Power I: Intimating modules of total power 500 watts Router#

show diag all eeprom: Example

Router**# show diag all eeprom** MIDPLANE EEPROM data: Product Identifier (PID) : ISR4451/K9 Version Identifier (VID) : V01 PCB Serial Number : FOC15507S9K Hardware Revision : 1.0 Asset ID : P1B-R2C-CP1.0 CLEI Code : TDBTDBTDBT Power/Fan Module P0 EEPROM data:

Product Identifier (PID) : XXX-XXXX-XX Version Identifier (VID) : XXX PCB Serial Number : DCA1547X047 CLEI Code : 000000000 Power/Fan Module P1 EEPROM data:

Product Identifier (PID) : XXX-XXX-XX Version Identifier (VID) : XXX PCB Serial Number : DCA1533X022 CLEI Code : 000000000 Power/Fan Module P2 EEPROM data is not initialized

Internal PoE is not present Slot RO EEPROM data:

Product Identifier (PID) : ISR4451/K9 Version Identifier (VID) : V01 PCB Serial Number : FOC15507S9K Hardware Revision : 1.0 CLEI Code : TDBTDBTDBT Slot F0 EEPROM data:

Product Identifier (PID) : ISR4451-FP Version Identifier (VID) : V00 PCB Serial Number : FP123456789 Hardware Revision : 4.1 Slot 0 EEPROM data:

Product Identifier (PID) : ISR4451/K9 Version Identifier (VID) : V01 PCB Serial Number : FOC15507S9K Hardware Revision : 1.0 CLEI Code : TDBTDBTDBT Slot 1 EEPROM data:

Product Identifier (PID) : ISR4451/K9 Version Identifier (VID) : V01 PCB Serial Number : FOC15507S9K Hardware Revision : 1.0 CLEI Code : TDBTDBTDBT Slot 2 EEPROM data:

Product Identifier (PID) : ISR4451/K9 Version Identifier (VID) : V01 PCB Serial Number : FOC15507S9K Hardware Revision : 1.0 CLEI Code : TDBTDBTDBT SPA EEPROM data for subslot 0/0:

Product Identifier (PID) : ISR441-4X1GE Version Identifier (VID) : V01 PCB Serial Number : JAB092709EL Top Assy. Part Number : 68-2236-01 Top Assy. Revision : A0 Hardware Revision : 2.2 CLEI Code : CNUIAHSAAA SPA EEPROM data for subslot 0/1 is not available SPA EEPROM data for subslot 0/2 is not available

OL-29328-03

SPA EEPROM data for subslot 0/4 is not available SPA EEPROM data for subslot 1/0 is not available SPA EEPROM data for subslot 1/1 is not available SPA EEPROM data for subslot 1/2 is not available SPA EEPROM data for subslot 1/3 is not available SPA EEPROM data for subslot 1/4 is not available SPA EEPROM data for subslot 2/0 is not available SPA EEPROM data for subslot 2/1 is not available SPA EEPROM data for subslot 2/2 is not available SPA EEPROM data for subslot 2/2 is not available SPA EEPROM data for subslot 2/2 is not available SPA EEPROM data for subslot 2/3 is not available SPA EEPROM data for subslot 2/4 is not available

show environment: Example

In this example, note the output for the slots POE0 and POE1. Cisco IOS XE 3.10 and higher supports an external PoE module.

Router# show environment Number of Critical alarms: 0 Number of Major alarms: 0 Number of Minor alarms: 0 Slot Sensor Current State Reading ____ ____ PO Temp: Temp 1 Normal 28 Celsius PO Temp: Temp 2 Normal 43 Celsius PO Temp: Temp 3 Normal 44 Celsius PO V: PEM Out Normal 12404 mV PO I: PEM In Normal 1 A PO I: PEM Out Normal 7 A PO P: In pwr Normal 106 Watts PO P: Out pwr Normal 87 Watts PO RPM: fan0 Normal 2952 RPM P2 RPM: fan0 Normal 4421 RPM P2 RPM: fan1 Normal 4394 RPM P2 RPM: fan2 Normal 4433 RPM P2 RPM: fan3 Normal 4410 RPM P2 P: pwr Normal 6 Watts POE0 Temp: Temp 1 Normal 44 Celsius POE0 I: 12v In Normal 2 A POE0 V: 12v In Normal 12473 mV POE0 P: In pwr Normal 25 Watts POE1 Temp: Temp 1 Normal 40 Celsius POE1 I: 12v In Normal 2 mA POE1 V: 12v In Normal 12473 mV POE1 P: In pwr Normal 20 Watts R0 Temp: Inlet 1 Normal 24 Celsius R0 Temp: Inlet 2 Normal 26 Celsius RO Temp: Outlet 1 Normal 33 Celsius R0 Temp: Outlet 2 Normal 32 Celsius R0 Temp: core-B Normal 43 Celsius

R0 Temp: core-C Normal 38 Celsius R0 V: 12v Normal 12355 mV R0 V: 5v Normal 5090 mV R0 V: 3.3v Normal 3331 mV R0 V: 3.0v Normal 2998 mV R0 V: 2.5v Normal 2436 mV R0 V: 1.05v Normal 1049 mV R0 V: 1.8v Normal 1798 mV R0 V: 1.2v Normal 1234 mV R0 V: Vcore-C Normal 1155 mV R0 V: 1.1v Normal 1104 mV R0 V: 1.0v Normal 1012 mV R0 V: 1.8v-A Normal 1782 mV R0 V: 1.5v-A Normal 1505 mV R0 V: 1.5v-C1 Normal 1516 mV R0 V: 1.5v-B Normal 1511 mV R0 V: Vcore-A Normal 1099 mV R0 V: 1.5v-C2 Normal 1492 mV R0 V: Vcore-B1 Normal 891 mV R0 V: Vcore-B2 Normal 904 mV R0 V: 0.75v-B Normal 754 mV R0 V: 0.75v-C Normal 759 mV R0 I: 12v Normal 8 A R0 P: pwr Normal 86 Watts 0/1 P: pwr Normal 5 Watts P1 Temp: Temp 1 Normal 30 Celsius P1 Temp: Temp 2 Normal 38 Celsius P1 Temp: Temp 3 Normal 39 Celsius P1 V: PEM Out Normal 12404 mV P1 I: PEM In Normal 1 A P1 I: PEM Out Normal 6 A P1 P: In pwr Normal 86 Watts P1 P: Out pwr Normal 68 Watts P1 RPM: fan0 Normal 2940 RPM

show environment all: Example

Router# show environment all Sensor List: Environmental Monitoring Sensor Location State Reading Temp: Temp 1 PO Normal 29 Celsius Temp: Temp 2 PO Normal 43 Celsius Temp: Temp 3 P0 Normal 44 Celsius V: PEM Out PO Normal 12404 mV I: PEM In PO Normal 1 A I: PEM Out PO Normal 8 A P: In pwr PO Normal 111 Watts P: Out pwr PO Normal 91 Watts RPM: fan0 P0 Normal 2940 RPM RPM: fan0 P2 Normal 4419 RPM RPM: fan1 P2 Normal 4395 RPM RPM: fan2 P2 Normal 4426 RPM RPM: fan3 P2 Normal 4412 RPM P: pwr P2 Normal 6 Watts Temp: Temp 1 POE0 Normal 44 Celsius I: 12v In POEO Normal 2 A V: 12v In POEO Normal 12473 mV P: In pwr POEO Normal 25 Watts Temp: Temp 1 POE1 Normal 40 Celsius I: 12v In POEl Normal 2 mA V: 12v In POEl Normal 12473 mV

P: In pwr POEl Normal 20 Watts Temp: Inlet 1 R0 Normal 24 Celsius Temp: Inlet 2 R0 Normal 27 Celsius Temp: Outlet 1 R0 Normal 33 Celsius Temp: Outlet 2 R0 Normal 32 Celsius Temp: core-B R0 Normal 49 Celsius Temp: core-C R0 Normal 37 Celsius V: 12v R0 Normal 12355 mV V: 5v R0 Normal 5084 mV V: 3.3v R0 Normal 3331 mV V: 3.0v R0 Normal 2998 mV V: 2.5v R0 Normal 2433 mV V: 1.05v R0 Normal 1052 mV V: 1.8v R0 Normal 1798 mV V: 1.2v R0 Normal 1226 mV V: Vcore-C R0 Normal 1155 mV V: 1.1v R0 Normal 1104 mV V: 1.0v R0 Normal 1015 mV V: 1.8v-A R0 Normal 1782 mV V: 1.5v-A R0 Normal 1508 mV V: 1.5v-C1 R0 Normal 1513 mV V: 1.5v-B R0 Normal 1516 mV V: Vcore-A R0 Normal 1099 mV V: 1.5v-C2 R0 Normal 1492 mV V: Vcore-B1 R0 Normal 1031 mV V: Vcore-B2 R0 Normal 901 mV V: 0.75v-B R0 Normal 754 mV V: 0.75v-C R0 Normal 754 mV I: 12v R0 Normal 8 A P: pwr R0 Normal 97 Watts P: pwr 0/1 Normal 5 Watts Temp: Temp 1 P1 Normal 30 Celsius Temp: Temp 2 P1 Normal 39 Celsius Temp: Temp 3 P1 Normal 39 Celsius V: PEM Out P1 Normal 12404 mV I: PEM In P1 Normal 1 A I: PEM Out P1 Normal 6 A P: In pwr P1 Normal 87 Watts P: Out pwr P1 Normal 66 Watts RPM: fan0 P1 Normal 2940 RPM

show inventory: Example

Router# show inventory

NAME: "Chassis", DESCR: "Cisco ISR4451 Chassis" PID: ISR4451/K9 , VID: V01, SN: FGL160110QZ

NAME: "Power Supply Module 0", DESCR: "450W AC Power Supply for Cisco ISR4450" PID: XXX-XXXX-XX , VID: XXX, SN: DCA1547X047

NAME: "Power Supply Module 1", DESCR: "450W AC Power Supply for Cisco ISR4450" PID: XXX-XXXX-XX , VID: XXX, SN: DCA1614Y022

NAME: "Fan Tray", DESCR: "Cisco ISR4450 Fan Assembly" PID: ACS-4450-FANASSY , VID: , SN:

NAME: "POE Module 0", DESCR: "Single POE for Cisco ISR4451" PID: PWR-POE-4400 , VID: , SN: FHH1638P00E

NAME: "POE Module 1", DESCR: "Single POE for Cisco ISR4451" PID: PWR-POE-4400 , VID: , SN: FHH1638P00G

```
NAME: "GE-POE Module", DESCR: "POE Module for On Board GE for Cisco ISR4400"
PID: 800G2-POE-2 , VID: V01, SN: FOC151849W9
NAME: "module 0", DESCR: "Cisco ISR4451 Built-In NIM controller"
PID: ISR4451/K9 , VID: , SN:
NAME: "NIM subslot 0/2", DESCR: " NIM-4MFT-T1/E1 - T1/E1 Serial Module"
PID: NIM-4MFT-T1/E1 , VID: V01, SN: FOC16254E6W
NAME: "NIM subslot 0/3", DESCR: "NIM SSD Module"
PID: NIM-SSD , VID: V01, SN: FHH16510032
NAME: "NIM subslot 0/0", DESCR: "Front Panel 4 ports Gigabitethernet Module"
PID: ISR4451-X-4x1GE , VID: V01, SN: JAB092709EL
NAME: "module 1", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451/K9 , VID: , SN:
NAME: "SM subslot 1/0", DESCR: "SM-X-1T3/E3 - Clear T3/E3 Serial Module"
PID: SM-X-1T3/E3 , VID: V01, SN: FOC164750RG
NAME: "module 2", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451/K9 , VID: , SN:
NAME: "SM subslot 2/0", DESCR: "SM-ES3X-24-P: EtherSwitch SM L3 + PoEPlus + MACSec + 24
10/100/1000"
PID: SM-ES3X-24-P , VID: V01, SN: FHH1629007C
NAME: "module R0", DESCR: "Cisco ISR4451 Route Processor"
PID: ISR4451/K9 , VID: V01, SN: FOC15507S95
NAME: "module F0", DESCR: "Cisco ISR4451 Forwarding Processor"
PID: ISR4451/K9 , VID: , SN:
```

Note Cisco ISR 4321 does not display the serial numbers of power supply and fan tray with the **show inventory** command.

show platform: Example

```
Router# show platform
Chassis type: ISR4451/K9
```

Cisco 4000 Series ISRs Software Configuration Guide

POE1 PWR-POE-4400 ok 3d11h GE-POE 800G2-POE-2 ok 3d11h

show platform diag: Example

Router# show platform diag Chassis type: ISR4451/K9

```
Slot: 0, ISR4451/K9
Running state : ok
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:01:43 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S
```

Sub-slot: 0/0, ISR4451-X-4x1GE
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)

Sub-slot: 0/2, NIM-4MFT-T1/E1
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)

Sub-slot: 0/3, NIM-SSD
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)

Slot: 1, ISR4451/K9
Running state : ok
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:01:44 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S

Sub-slot: 1/0, SM-X-1T3/E3
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)

Slot: 2, ISR4451/K9
Running state : ok
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:01:45 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S

Sub-slot: 2/0, SM-ES3X-24-P Operational status : ok

Internal state : inserted Physical insert detect time : 00:03:03 (3d10h ago) Logical insert detect time : 00:03:03 (3d10h ago) Slot: R0, ISR4451/K9 Running state : ok, active Internal state : online Internal operational state : ok Physical insert detect time : 00:01:04 (3d10h ago) Software declared up time : 00:01:04 (3d10h ago) CPLD version : 12121625 Firmware version : 15.3(1r)S Slot: F0, ISR4451/K9 Running state : ok, active Internal state : online Internal operational state : ok Physical insert detect time : 00:01:04 (3d10h ago) Software declared up time : 00:02:39 (3d10h ago) Hardware ready signal time : 00:00:00 (never ago) Packet ready signal time : 00:02:48 (3d10h ago) CPLD version : 12121625 Firmware version : 15.3(1r)S Slot: PO, XXX-XXXX-XX State : ok Physical insert detect time : 00:01:29 (3d10h ago) Slot: P1, XXX-XXXX-XX State : ok Physical insert detect time : 00:01:29 (3d10h ago) Slot: P2, ACS-4450-FANASSY State : ok Physical insert detect time : 00:01:29 (3d10h ago) Slot: POE0, PWR-POE-4451 State : ok Physical insert detect time : 00:01:29 (3d10h ago) Slot: POE1, PWR-POE-4451 State : ok Physical insert detect time : 00:01:29 (3d10h ago)

Slot: GE-POE, 800G2-POE-2
State : ok
Physical insert detect time : 00:01:29 (3d10h ago)

show platform software status control-processor: Example

Router# show platform software status control-processor RP0: online, statistics updated 2 seconds ago Load Average: health unknown 1-Min: 0.13, status: health unknown, under 5-Min: 0.06, status: health unknown, under 15-Min: 0.06, status: health unknown, under Memory (kb): healthy Total: 3971244 Used: 2965856 (75%) Free: 1005388 (25%) Committed: 2460492 (62%), status: health unknown, under 0%

Per-core Statistics CPU0: CPU Utilization (percentage of time spent) User: 1.00, System: 2.90, Nice: 0.00, Idle: 96.00 IRQ: 0.10, SIRQ: 0.00, IOwait: 0.00 CPU1: CPU Utilization (percentage of time spent) User: 10.71, System: 29.22, Nice: 0.00, Idle: 60.06 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU2: CPU Utilization (percentage of time spent) User: 0.80, System: 1.30, Nice: 0.00, Idle: 97.90 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU3: CPU Utilization (percentage of time spent) User: 10.61, System: 34.03, Nice: 0.00, Idle: 55.25 IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00 CPU4: CPU Utilization (percentage of time spent) User: 0.60, System: 1.20, Nice: 0.00, Idle: 98.20 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU5: CPU Utilization (percentage of time spent) User: 13.18, System: 35.46, Nice: 0.00, Idle: 51.24 IRQ: 0.00, SIRQ: 0.09, IOwait: 0.00 CPU6: CPU Utilization (percentage of time spent) User: 0.80, System: 2.40, Nice: 0.00, Idle: 96.80 IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00 CPU7: CPU Utilization (percentage of time spent) User: 10.41, System: 33.63, Nice: 0.00, Idle: 55.85 IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00

show diag slot RO eeprom detail: Example

Router# show diag slot R0 eeprom detail Slot R0 EEPROM data:

EEPROM version : 4 Compatible Type : 0xFF PCB Serial Number : FHH153900AU Controller Type : 1902 Hardware Revision : 0.0 PCB Part Number : 73-13854-01 Top Assy. Part Number : 800-36894-01 Board Revision : 01 Deviation Number : 122081 Fab Version : 01 Product Identifier (PID) : CISCO-----<0A> Version Identifier (VID) : V01<0A> Chassis Serial Number : FHH1539P00Q Chassis MAC Address : 0000.0000.0000 MAC Address block size : 96 Asset ID : REV1B<0A> Asset ID :

show version: Example

```
Router# show version
Cisco IOS XE Software, Version 03.13.00.S - Standard Support Release
Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 15.4(3)S, RELEASE
SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2014 by Cisco Systems, Inc.
Compiled Tue 27-May-14 05:36 by mcpre
```

Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc.

All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 2 hours, 19 minutes Uptime for this control processor is 2 hours, 22 minutes System returned to ROM by reload System image file is "tftp: isr4400-universalk9.03.13.00.S.154-3.S-std.SPA.bin" Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Technology Package License Information:

Technology-package Current	Туре	Technology-package Next reboot
None	None	None
None	None	None
None	None	None
ipbasek9	Permanent	ipbasek9
	Technology-package Current None None None ipbasek9	Technology-package Current Type None None None None None None ipbasek9 Permanent

cisco 4451 ISR processor with 1213154K/6147K bytes of memory. Processor board ID FHH1539P00Q 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 3391455K bytes of Compact flash at bootflash:. Configuration register is 0x0"

Configuring Power Supply Mode

You can configure the power supplies of both the router and a connected Power over Ethernet (PoE) module.

Configuring the Router Power Supply Mode, on page 161

- Configuring the External PoE Service Module Power Supply Mode, on page 161
- Examples for Configuring Power Supply Mode, on page 161
- Available PoE Power, on page 163

Configuring the Router Power Supply Mode

Configure the main power supply on the router using the **power main redundant** command:

- power main redundant—Sets the main power supply in redundant mode.
- no power main redundant—Sets the main power supply in boost mode.

The default mode for the router power supply is redundant mode.

Configuring the External PoE Service Module Power Supply Mode

Configure the power supply of an external PoE service module using the **power inline redundant** command:

- power inline redundant—Sets the external PoE service module power supply in redundant mode.
- no power inline redundant—Sets the external PoE service module power supply in boost mode.

Note

The default mode for the external PoE service module power supply is redundant mode.

The **show power** command shows whether boost or redundant mode is configured and whether this mode is currently running on the system.

Examples for Configuring Power Supply Mode

Example—Configured Mode of Boost for Main PSU and PoE Module

In this example, the **show power** command shows the configured mode as BOOST, which is also the current runtime state. The Main PSU shows information about the main power supply. The POE Module shows information about the inline/PoE power. In this example, the current run-time state for the main power supply is the same as the configured state (BOOST mode).

```
Router# show power
Main PSU :
Configured Mode : Boost
Current runtime state same : Yes
Total power available : 2000 Watts
POE Module :
Configured Mode : Boost
Current runtime state same : Yes
Total power available : 1000 Watts
Router#
```

Example—Configured Mode of Boost for Main PSU and PoE Module

In this example, the **show power** command shows the power supplies that are present in the device. The Main PSU and POE Module are configured to the Boost mode, which differs from the current runtime state. The current runtime state is the Redundant mode. A likely explanation for this is that there is only one main power supply present in the router. See mode example 4 in the table titled "Modes of Operation" in Available PoE Power, on page 163.

You can enter the **show platform** command to show the power supplies that are present in the device.

```
Router# show power
Main PSU :
Configured Mode : Boost
Current runtime state same : No
Total power available : 1000 Watts
POE Module :
Configured Mode : Boost
Current runtime state same : No
Total power available : 500 Watts
Router#
```

Example—Configured Mode of Redundant for Main PSU and PoE Module

In this example, the **show power** command shows the configured mode is Redundant for both the main and inline power. The system has one 450 W and one 100 W power supply.

```
Router# show power
Main PSU :
Configured Mode : Redundant
Current runtime state same : Yes
Total power available : 450 Watts
POE Module :
Configured Mode : Redundant
Current runtime state same : No
Total power available : 0 Watts
Router#
```

Example—Configured Mode of Boost for Main Power

In this example, the main power is configured to be in boost mode by using the **no** form of the **power main redundant** command. This sets the main power to boost mode with 1450 W and inline power to redundant mode with 500 W.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# no power main redundant
Router(config)#
*Jan 31 03:35:22.284: %PLATFORM_POWER-6-MODEMATCH: Inline power is in Redundant mode
Router(config)#
Router(config)# exit
Router#
*Jan 31 03:36:13.111: %SYS-5-CONFIG_I: Configured from console by console
Router# show power
Main PSU :
Configured Mode : Boost
Current runtime state same : Yes
Total power available : 1450 Watts
POE Module :
```

```
Configured Mode : Redundant
Current runtime state same : Yes
Total power available : 500 Watts
Router#
```

Example—Configured Mode of Boost for PoE Power

In this example, an attempt is made to configure the inline power in boost mode by using the **no** form of the **power inline redundant** command. The inline power mode is **not** changed to boost mode because that would require a total power available in redundant mode of 1000 W. The inline power mode is redundant and is shown by the following values for the PoE Module:

```
• Configured Mode : Boost
```

```
• Current runtime state same : No
```

```
Router# configure terminal
```

```
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) # no power inline redundant
Router(config)#
*Jan 31 03:42:40.947: %PLATFORM POWER-6-MODEMISMATCH: Inline power not in Boost mode
Router (config) #
Router(config) # exit
Router#
*Jan 31 03:36:13.111: %SYS-5-CONFIG I: Configured from console by console
Router# show power
Main PSU :
Configured Mode : Boost
Current runtime state same : Yes
Total power available : 1450 Watts
POE Module :
Configured Mode : Boost
Current runtime state same : No
Total power available : 500 Watts
Router#
```

Available PoE Power

For the PoE feature to be available on the external PoE module, the total power from the power supplies must be 500 W or higher.

N.

Note

To ensure the PoE feature is functional on the external PoE module, verify the availability of PoE power on your router using the **show platform** and **show power** commands.

To determine there is enough PoE power for use by an external PoE service module, use the **show platform** and **show power** commands to calculate the available PoE power based on the wattage values of the main power supplies and PoE inverters.

Take the values of your main P0 and P1 power supplies to give the Total Power (for main power supplies.) Then take the values of your PoE1 and PoE2 power inverters to calculate the Total PoE Power.

The following table shows example modes of operation, which may be similar to your configuration.

The Total PoE Power value, in the final column of the table needs to be 500 W or higher for the PoE feature to be functional on a connected PoE service module.

Note Add power inverters to the router before inserting an external PoE module. Otherwise, even if the Total PoE Power is sufficient, the PoE power will not be used by the external PoE module and the module will need to be re-booted for the PoE feature to be functional.

Configuring a power mode of boost or redundant on the main power supplies, or PoE inverters, may affect the value for Total PoE Power.

The following table shows all power values in Watts. The wattage ratings of the main power supplies are shown in columns Main P0 and Main P1. The wattage ratings of the PoE inverters are shown in columns PoE0 and PoE1.

Mode Example	Main PO	Main P1	Config Mode	Total Power (Main)	ΡοΕΟ	PoE1	Config Mode	Total PoE Power
1	450	None	Redundant or Boost	450	None	500	Redundant or Boost	0 (None)
2	450	450	Boost	900	None	500	Redundant or Boost	0 (None)
3	450	450	Redundant	450	500	None	Redundant or Boost	0 (None)
4	1000	None	Redundant or Boost	1000	500	None	Redundant or Boost	500
5	1000	450	Redundant	450	500	500	Redundant or Boost	0 (None)
6	1000	450	Boost	1450	500	500	Boost	500
7	1000	1000	Redundant	1000	500	500	Boost	500
8	1000	1000	Boost	2000	500	500	Boost	1000

Table 19: Modes of Operation

Note In the table above, for 500 W or higher Total PoE Power to be available, the "Total Power" (of the main power supplies) must be 1000 W or higher.

For 1000 W Total PoE Power (see Mode Example 8 above), there must be two 1000 W main power supplies (in Boost mode) and two PoE inverters (also in Boost mode).

Caution

Care should be taken while removing the power supplies and power inverters (especially in Boost mode of operation). If the total power consumption is higher than can be supported by one power supply alone and in this condition a power supply is removed, the hardware can be damaged. This may then result in the system being unstable or unusable.

Similarly, in the case where there is only one PoE inverter providing PoE power to a service module, and in this condition the PoE inverter is removed, the hardware may be damaged, and may result in the system being unstable or unusable.

Managing PoE

The Power over Ethernet (PoE) feature allows you to manage power on the FPGE ports. By using PoE, you do not need to supply connected PoE-enabled devices with wall power. This eliminates the cost for additional electrical cabling that would otherwise be necessary for connected devices. The router supports PoE (802.3af) and PoE+ (802.3at). PoE provides up to 15.4 W of power, and PoE+ provides up to 30 W of power.

- PoE Support for FPGE Ports, on page 165
- Monitoring Your Power Supply, on page 165
- Enabling Cisco Discovery Protocol, on page 110
- Configuring PoE for FPGE Ports, on page 168

PoE Support for FPGE Ports

A PoE module supports PoE on the front panel gigabit ethernet ports (FPGE) such as gig0/0/0 and gig0/0/1. You can configure the PoE service module for the FPGE using the **power inline** command, which allows you to turn on or turn off the power to a connected device such as an IEEE phone or device. For more information, see Configuring PoE for FPGE Ports, on page 168.

Monitoring Your Power Supply

You can monitor the total available power budget on your router using the **show power inline [GigabitEthernet detail]** command in privileged EXEC mode.

This command allows you to check the availability of sufficient power for the powered device type before it is connected to the router.

Example—Inline power where there is no PoE module

In this example, there is no module present that supports PoE. Power is being supplied to an IP phone and a switch.

Router# show power inline Available:31.0(w) Used:30.3(w) Remaining:0.7(w) Interface Admin Oper Power Device Class Max (Watts) Gi0/0/0 auto on 14.9 IP Phone 7971 3 30.0 Gi0/0/1 auto on 15.4 WS-C2960CPD-8PT-L 4 30.0 Router#

In this example, the command includes the following information:

Available:31.0(w)—Available PoE power

Used:30.3(w)—PoE power used by all the router's ports

Oper-PoE power state of each connected powered device (on/off)

Power-PoE power used by each connected powered device

Class-PoE power classification

Example—Inline power for one PoE module

In this example, one module that supports PoE is present. Cisco IOS XE 3.10 and higher supports an external PoE module.

Router# show power inline Available:31.0(w) Used:30.3(w) Remaining:0.7(w)

Interface	Admin	Oper	Power (Watts)	Device	Class	Max
Gi0/0/0 Gi0/0/1	auto auto	on on	14.9 15.4	IP Phone 7971 WS-C2960CPD-8PT-L	3 4	30.0 30.0
Available	:500.0(v	v) Used:11.	7(w) Re	emaining:488.3(w)		
Interface	Admin	Oper	Power (Watts)	Device	Class	Max
 Et2/0/0 Router#	auto	off	11.7	n/a	n/a	750.0

Example—Inline power to connected IP phones

Router# **show power inline** Available:31.0(w) Used:30.8(w) Remaining:0.2(w)

Interface	Admin	Oper	Power (Watts)	Device	Class	Max	
Gi0/0/0	auto	on	15.4	Ieee PD	4	30.0	
Gi0/0/1	auto	on	15.4	Ieee PD	4	30.0	

Example—Inline power to one Gigabit Ethernet port

Router# s	how pow	er inline g	igabitEtl	nernet 0/0/0		
Interface	Admin	Oper	Power (Watts)	Device	Class	Max
Gi0/0/0	auto	on	15.4	Ieee PD	4	30.0

Example—Inline power to one Gigabit Ethernet port-detail

```
Router# show power inline gigabitEthernet 0/0/0 detail
Interface: Gi0/0/0
 Inline Power Mode: auto
Operational status: on
Device Detected: yes
Device Type: Ieee PD
IEEE Class: 4
Discovery mechanism used/configured: Ieee
Police: off
 Power Allocated
Admin Value: 30.0
 Power drawn from the source: 15.4
 Power available to the device: 15.4
Absent Counter: 0
Over Current Counter: 0
Short Current Counter: 0
 Invalid Signature Counter: 0
 Power Denied Counter: 0
```

Example—Inline power to an external PoE service module

In this example, after the output lines for Gi0/0/0, and Gi0/0/1, there are output lines for the external PoE service module. Cisco IOS XE 3.10 and higher supports an external PoE module. Et1/0/0 indicates the internal port (slot 1/0) for the first PoE service module. Et2/0/0 indicates the internal port (slot 2/0) in a second PoE service module.

Although both slots are capable of drawing 750 W of PoE power, in this device only 500 W of PoE power is available. Slot 2/0 (Et2/0/0) has been allocated 369.6 W of PoE power.

```
Router# show power inline
Available: 31.0(w) Used: 15.4(w) Remaining: 15.6(w)
Interface Admin Oper Power Device
                                            Class Max
                      (Watts)
_____ ____ ____
                                                 ___
Gi0/0/0 auto on 15.4 Ieee PD
                                           4
                                                30.0
Gi0/0/1 auto off
                     0.0 n/a
                                            n/a 30.0
Available:500.0(w) Used:369.6(w) Remaining:500.0(w)
Interface Admin Oper Power Device
                                            Class Max
                      (Watts)
_____ ___
             _____
                      ____
                                             ___
                                                 ___
                            _____
Et1/0/0 auto off 0.0 n/a
Et2/0/0 auto off 369.6 n/a
                                            n/a
                                                 750.
                                            n/a 750.
```

Enabling Cisco Discovery Protocol

Cisco Discovery Protocol (CDP) is enabled by default on the router.

CDP is not enabled by default on Cisco Aggregation Services Routers or on the Cisco CSR 1000v.

For more information on using CDP, see Cisco Discovery Protocol Configuration Guide, Cisco IOS XE Release 3S.

Configuring PoE for FPGE Ports

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. cdp run
- 4. interface gigabitethernet slot/subslot/port
- 5. cdp enable
- 6. power inline {auto { auto [max *milli-watts*] | never}
- 7. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	cdp run	Enables Cisco Discovery Protocol (CDP) on your router.
	Example:	
	Router(config)# cdp run	
Step 4	interface gigabitethernet slot/subslot/port	Allows to configure PoE on ports 0 and 1.
	Example:	• PoE can be configured on ports 0 and 1.
	Router(config)# interface gigabitEthernet 0/0/0	
Step 5	cdp enable	Enables CDP in the interface configuration mode.
	Example:	
	Router(config-if)# cdp enable	
Step 6	<pre>power inline {auto { auto [max milli-watts] never}</pre>	Allows you to set the power inline options for FPGE ports.
	Example:	• auto —The auto keyword automatically detects the power inline devices and supplies power to such
	Router(config-if)# power inline auto	aevices.

L

	Command or Action	Purpose
		• max <i>milli-watts</i> —The max keyword sets the maximum power allowed on the interface.
		• never —The never keyword disables the detection and ceases the application of inline power.
Step 7	exit	Exits the interface configuration mode.
	Example:	
	Router(config-if)# exit	

Verifying if PoE Is Enabled on FPGE Port

show platform: Example

show diag chassis eeprom: Example

You can verify whether the PoE is enabled on the FPGE port by looking at the external LED for this port. The external LED for the FPGE port is labelled as GE POE. The GE POE emits a green light when the internal PoE module is plugged in and functioning properly. The GE POE LED is yellow when the internal PoE is plugged in but not functioning properly. The GE POE LED is off when there are no PoE modules plugged in. For more information on LEDs, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

You can also detect PoE using the **show platform** and **show diag** commands.

For more information, see the following examples.

```
Router# show platform
Chassis type: ISR4451/K9
```

Chassis type: ISR4451/K9

Slot	Туре	State	Insert time (ago)
0	ISR4451/K9	ok	3d11h
0/0	ISR4451-X-4x1GE	ok	3d11h
0/2	NIM-4MFT-T1/E1	ok	3d11h
0/3	NIM-SSD	ok	3d11h
1	ISR4451/K9	ok	3d11h
1/0	SM-X-1T3/E3	ok	3d11h
2	ISR4451/K9	ok	3d11h
2/0	SM-ES3X-24-P	ok	3d11h
RO	ISR4451/K9	ok, active	3d11h
FO	ISR4451/K9	ok, active	3d11h
PO	XXX-XXXX-XX	ok	3d11h
P1	XXX-XXXX-XX	ok	3d11h
P2	ACS-4451-FANTRAY	ok	3d11h
POEO	PWR-POE-4451-X	ok	3d11h
POE1	PWR-POE-4451-X	ok	3d11h
GE-POE	800G2-POE-2	ok	3d11h
Slot	CPLD Version	Firmware Version	
0	12090323	15.3(01r)S	[ciscouser-ISRRO

1 12090323 15.3(01r)S [ciscouser-ISRRO... 2 12090323 15.3(01r)S [ciscouser-ISRRO... R0 12090323 15.3(01r)S [ciscouser-ISRRO... FΟ 12090323 15.3(01r)S [ciscouser-ISRRO... Router# show diag chassis eeprom MIDPLANE EEPROM data: Product Identifier (PID) : ISR-4451/K9 Version Identifier (VID) : V01 PCB Serial Number : FOC16145VL8 Hardware Revision : 1.0 : P1C-R03-CP1.0-UMT-RVC Asset TD CLEI Code : TBD Power/Fan Module P0 EEPROM data: Product Identifier (PID) : PWR-4450-AC Version Identifier (VID) : V01 PCB Serial Number : DCA1547X02U CLEI Code : 0000000000 Power/Fan Module P1 EEPROM data is not initialized Power/Fan Module P2 EEPROM data is not initialized Internal PoE EEPROM data: Product Identifier (PID) : PWR-GE-POE-4400 Version Identifier (VID) : V01 PCB Serial Number : FOC151849VD : 1.0 Hardware Revision CLEI Code : 0000000000

Additional References

MIBs

The following sections provide references related to the power efficiency management feature.

MIBs	MIBs Link
CISCO-ENTITY-FRU-CONTROL-MIB	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use the Cisco MIB Locator at: http://www.cisco.com/go/mibs.
	Also see MIB Specifications Guide for the Cisco 4451-X Integrated Services Router.

171

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/cisco/web/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Configuring High Availability

The Cisco High Availability (HA) technology enable network-wide protection by providing quick recovery from disruptions that may occur in any part of a network. A network's hardware and software work together with Cisco High Availability technology, which besides enabling quick recovery from disruptions, ensures fault transparency to users and network applications.

The following sections describe how to configure Cisco High Availability features on your router:

- About Cisco High Availability, on page 173
- Interchassis High Availability, on page 173
- Bidirectional Forwarding Detection, on page 174
- · Configuring Cisco High Availability, on page 175
- Additional References, on page 186

About Cisco High Availability

The unique hardware and software architecture of your router is designed to maximize router uptime during any network event, and thereby provide maximum uptime and resilience within any network scenario.

This section covers some aspects of Cisco High Availability that may be used on the Cisco 4000 series routers:

- Interchassis High Availability, on page 173
- Bidirectional Forwarding Detection, on page 174

Interchassis High Availability

The Interchassis High Availability feature is also known as the box-to-box redundancy feature. Interchassis High Availability enables the configuration of pairs of routers to act as backup for each other. This feature can be configured to determine the active router based on several failover conditions. When a failover occurs, the standby router seamlessly takes over and starts processing call signaling and performing media forwarding tasks.

Groups of redundant interfaces are known as redundancy groups. The following figure depicts the active-standby device scenario. It shows how the redundancy group is configured for a pair of routers that have a single outgoing interface.

Figure 1: Redundancy Group Configuration

The routers are joined by a configurable control link and data synchronization link. The control link is used to communicate the status of the routers. The data synchronization link is used to transfer stateful information to synchronize the stateful database for the calls and media flows. Each pair of redundant interfaces are configured with the same unique ID number, also known as the RII. For information on configuring Interchassis HA on your router, see Configuring Interchassis High Availability, on page 175.

IPsec Failover

The IPsec Failover feature increases the total uptime (or availability) of your IPsec network. Traditionally, the increased availability of your IPsec network is accomplished by employing a redundant (standby) router in addition to the original (active) router. When the active router becomes unavailable for a reason, the standby router takes over the processing of IKE and IPsec. IPsec failover falls into two categories: stateless failover and stateful failover.

On the router, only the stateless form of IPsec failover is supported. This stateless failover uses protocols such as the Hot Standby Router Protocol (HSRP) to provide primary to secondary cutover and also allows the active and standby VPN gateways to share a common virtual IP address.

Bidirectional Forwarding Detection

Bidirectional Forwarding Detection (BFD) is a detection protocol designed to provide fast-forwarding path-failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast-forwarding path-failure detection, BFD provides a consistent failure detection method for network administrators. Because a network administrator can use BFD to detect forwarding path failures at a uniform rate rather than variable rates for different routing protocol hello mechanisms, network profiling and planning is easier, and reconvergence time is consistent and predictable.

For more information on BFD, see the "Bidirectional Forwarding Detection" section in the IP Routing BFD Configuration Guide, Cisco IOS XE Release 3S.

Bidirectional Forwarding Detection Offload

The Bidirectional Forwarding Detection Offload feature allows the offload of BFD session management to the forwarding engine for improved failure detection times. BFD offload reduces the overall network convergence time by sending rapid failure detection packets (messages) to the routing protocols for recalculating the routing table. See Configuring BFD Offload, on page 176.

Configuring Cisco High Availability

- Configuring Interchassis High Availability, on page 175
- Configuring Bidirectional Forwarding, on page 176
- Verifying Interchassis High Availability, on page 176
- Verifying BFD Offload, on page 184

Configuring Interchassis High Availability

Prerequisites

- The active device and the standby device must run on the identical version of the Cisco IOS XE software.
- The active device and the standby device must be connected through an L2 connection for the control path.
- The Embedded Service Processor (ESP) must be the same on both the active and standby devices. Route processors must also match and have a similar physical configuration.
- Either the Network Time Protocol (NTP) must be configured or the clock must be set identical on both devices to allow timestamps and call timers to match.
- Virtual router forwarding (VRF) must be defined in the same order on both active and standby routers for an accurate synchronization of data.
- The latency times must be minimal on all control and data links to prevent timeouts.
- Physically redundant links, such as Gigabit EtherChannel, must be used for the control and data paths.

Restrictions

- The failover time for a box-to-box application is higher for a non-box-to-box application.
- LAN and MESH scenarios are not supported.
- VRFs are not supported and cannot be configured under ZBFW High Availability data and control interfaces.
- The maximum number of virtual MACs (and VRFs) supported by the Front Panel Gigabit Ethernet (FPGE) interfaces depends on the platform. The supported Interfaces and Modules are listed in the Interfaces and Modules page.. The Cisco 4451 ISR and Cisco 4431 ISR FPGE support two reserved MACs and 24 filters which can be shared across all four FPGE interfaces. The Cisco 4351 ISR, Cisco 4331 ISR, and Cisco 4321 ISR FPGE support a maximum of 16 MACs with one reserved (BIA) and 15

filters. The NIM-1GE-CU-SFP, NIM-2GE-CU-SFP, SM-X-6X1G, and SM-X-4X1G-1X10G modules, each port supports 1023 MAC filters. For information about the supported MAC filters for modules not listed, contact your Cisco representative.

• When the configuration is replicated to the standby router, it is not committed to the startup configuration; it is in the running configuration. A user must run the **write memory** command to commit the changes that have been synchronized from the active router, on the standby router.

How to Configure Interchassis High Availability

For more information on configuring Interchassis High Availability on the router, see the IP Addressing: NAT Configuration Guide, Cisco IOS XE Release 3S.

Configuring Bidirectional Forwarding

For information on configuring BFD on your router, see the IP Routing BFD Configuration Guide.

For BFD commands, see the Cisco IOS IP Routing: Protocol-Independent Command Reference document.

Configuring BFD Offload

Restrictions

- Only BFD version 1 is supported.
- When configured, only offloaded BFD sessions are supported;, BFD session on RP are not supported.
- Only Asynchronous mode or no echo mode of BFD is supported.
- 511 asynchronous BFD sessions are supported.
- BFD hardware offload is supported for IPv4 sessions with non-echo mode only.
- BFD offload is supported only on port-channel interfaces.
- BFD offload is supported only for the Ethernet interface.
- BFD offload is not supported for IPv6 BFD sessions.
- BFD offload is not supported for BFD with TE/FRR.

How to Configure BFD Offload

BFD offload functionality is enabled by default. You can configure BFD hardware offload on the route processor. For more information, see Configuring BFD and the IP Routing BFD Configuration Guide.

Verifying Interchassis High Availability

Use the following show commands to verify the Interchassis High Availability.

Note

Prerequisites and links to additional documentation configuring Interchassis High Availability are listed in Configuring Interchassis High Availability, on page 175.

- show redundancy application group [group-id | all]
- show redundancy application transport {client | group [group-id]}
- show redundancy application control-interface group [group-id]
- · show redundancy application faults group [group-id]
- show redundancy application protocol {protocol-id | group [group-id]}
- show redundancy application if-mgr group [group-id]
- show redundancy application data-interface group [group-id]

The following example shows the redundancy application groups configured on the router:

Router# show	<pre>redundancy application group</pre>	
Group ID	Group Name	State
1	Generic-Redundancy-1	STANDBY
2	Generic-Redundancy2	ACTIVE

The following example shows the details of redundancy application group 1:

```
Router# show redundancy application group 1
Group ID:1
Group Name:Generic-Redundancy-1
Administrative State: No Shutdown
Aggregate operational state : Up
My Role: STANDBY
Peer Role: ACTIVE
Peer Presence: Yes
Peer Comm: Yes
Peer Progression Started: Yes
RF Domain: btob-one
```

RF state: STANDBY HOT Peer RF state: ACTIVE

The following example shows the details of redundancy application group 2:

```
Router# show redundancy application group 2
Group ID:2
Group Name:Generic-Redundancy2
Administrative State: No Shutdown
Aggregate operational state : Up
My Role: ACTIVE
Peer Role: STANDBY
Peer Presence: Yes
Peer Comm: Yes
Peer Progression Started: Yes
RF Domain: btob-two
RF state: ACTIVE
```

Peer RF state: STANDBY HOT

The following example shows details of the redundancy application transport client:

R	outer#	show	redundan	cy applica	tion transpo	rt client	
C	lient		Conn#	Priority	Interface	L3	L4
(0)RF		0	1	CTRL	IPV4	SCTP
(1)MCP_	HA	1	1	DATA	IPV4	UDP_REL
(4)AR		0	1	ASYM	IPV4	UDP
(5)CF		0	1	DATA	IPV4	SCTP

The following example shows configuration details for the redundancy application transport group:

Router# show redundancy application transport group

Trans	sport ini	Ormation for RG	(1)					
Clier	nt = RF							
ΤI	conn_id	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
0	0	10.1.1.1	59000	10.2.2.2	59000	CTRL	IPV4	SCTP
Clier	nt = MCP_	HA						
ΤI	conn_id	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
1	1	10.9.9.2	53000	10.9.9.1	53000	DATA	IPV4	UDP_REL
Clier	nt = AR							
ΤI	conn_id	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
2	0	10.0.0.0	0	10.0.0.0	0	NONE_IN	NONE_L3	NONE_L4
Clier	nt = CF							
ΤI	conn_id	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
3	0	10.9.9.2	59001	10.9.9.1	59001	DATA	IPV4	SCTP
Trans	sport Inf	formation for RG	(2)					
Clier	nt = RF							
ΤI	conn_id	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
8	0	10.1.1.1	59004	10.1.1.2	59004 0	CTRL I	IPV4 S	SCTP
Clier	nt = MCP_	HA						
ΤI	conn_id	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
9	1	10.9.9.2	53002	10.9.9.1	53002	DATA	IPV4	UDP_REL
Clier	nt = AR							
ΤI	conn_id	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
10	0	10.0.0.0	0	10.0.0.0	0	NONE_IN	NONE_L3	NONE_L4
Clier	nt = CF							
ΤI	$\operatorname{conn_id}$	my_ip	my_port	peer_ip	peer_por	intf	L3	L4
11	0	10.9.9.2	59005	10.9.9.1	59005	DATA	IPV4	SCTP

The following example shows the configuration details of redundancy application transport group 1:

Router# show redundancy application transport group 1

Tran	sport In:	formation for RG	(1)					
Clie	nt = RF							
ΤI	conn id	my ip	my port	peer ip	peer por	intf	L3	L4
0	0	10.1.1.1	59000	10.1.1.2	59000 (CTRL I	IPV4 S	SCTP
Clie	nt = MCP	HA						
ΤI	conn id	my ip	my port	peer ip	peer por	intf	L3	L4
1	1	10.9.9.2	53000	10.9.9.1	53000	DATA	IPV4	UDP REL
Clie	nt = AR							_
ΤI	conn id	my ip	my port	peer ip	peer por	intf	L3	L4
2	0 —	10.0.0	0	10.0.0.0	0 —	NONE IN	NONE L3	NONE L4
Clie	nt = CF					_	_	_
ΤI	conn id	my ip	my port	peer ip	peer por	intf	L3	L4
3	0 —	10.9.9.2	59 <u>0</u> 01	10.9.9.1	59001	DATA	IPV4	SCTP

The following example shows configuration details of redundancy application transport group 2:

Router# show redundancy application transport group 2

'l'rar	nsport Ir	itormation	for RG	(2)					
Clie	ent = RF								
ΤI	conn_ic	l my_ip		my_port	peer_ip	peer_por	intf	L3	L4
8	0	10.1.1.1		59004	10.1.1.2	59004	CTRL	IPV4	SCTP

Clie	nt = MCP	HA						
ΤI	conn id	my ip	my port	peer ip	peer por	intf	L3	L4
9	1 -	10.9.9.2	53002	10.9.9.1	53002	DATA	IPV4	UDP_REL
Clie	nt = AR							
ΤI	conn id	my ip	my port	peer ip	peer por	intf	L3	L4
10	0	10.0.0.0	0	10.0.0.0	0	NONE_IN	NONE_L3	NONE_L4
Clie	nt = CF							
ΤI	conn id	my ip	my port	peer ip	peer por	intf	L3	L4
11	0	10.9.9.2	59005	10.9.9.1	59005	DATA	IPV4	SCTP

The following example shows configuration details of the redundancy application control-interface group:

```
Router# show redundancy application control-interface group

The control interface for rg[1] is GigabitEthernet0/0/0

Interface is Control interface associated with the following protocols: 2 1

BFD Enabled

Interface Neighbors:

Peer: 10.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0

The control interface for rg[2] is GigabitEthernet0/0/0

Interface is Control interface associated with the following protocols: 2 1

BFD Enabled

Interface Neighbors:
```

The following example shows configuration details of the redundancy application control-interface group 1:

```
Router# show redundancy application control-interface group 1
The control interface for rg[1] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 10.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0
```

Peer: 10.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0

The following example shows configuration details of the redundancy application control-interface group 2:

```
Router# show redundancy application control-interface group 2
The control interface for rg[2] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 10.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0
```

The following example shows configuration details of the redundancy application faults group:

Router# show redundancy application faults group

```
Faults states Group 1 info:
Runtime priority: [50]
RG Faults RG State: Up.
Total # of switchovers due to faults: 0
Total # of down/up state changes due to faults: 2
Faults states Group 2 info:
Runtime priority: [135]
RG Faults RG State: Up.
Total # of switchovers due to faults: 0
Total # of down/up state changes due to faults: 2
```

The following example shows configuration details specific to redundancy application faults group 1:

```
Router# show redundancy application faults group 1
Faults states Group 1 info:
Runtime priority: [50]
RG Faults RG State: Up.
Total # of switchovers due to faults: 0
Total # of down/up state changes due to faults: 2
```

The following example shows configuration details specific to redundancy application faults group 2:

Router# show redundancy application faults group 2 Faults states Group 2 info: Runtime priority: [135] RG Faults RG State: Up. Total # of switchovers due to faults: 0 Total # of down/up state changes due to faults: 2

The following example shows configuration details for the redundancy application protocol group:

```
Router# show redundancy application protocol group
RG Protocol RG 1
Role: Standby
Negotiation: Enabled
Priority: 50
Protocol state: Standby-hot
Ctrl Intf(s) state: Up
Active Peer: address 10.1.1.2, priority 150, intf Gi0/0/0
Standby Peer: Local
Log counters:
role change to active: 0
role change to standby: 1
disable events: rg down state 1, rg shut 0
ctrl intf events: up 2, down 1, admin_down 1
reload events: local request 0, peer request 0
RG Media Context for RG 1
Ctx State: Standby
Protocol ID: 1
Media type: Default
Control Interface: GigabitEthernet0/0/0
Current Hello timer: 3000
Configured Hello timer: 3000, Hold timer: 10000
Peer Hello timer: 3000, Peer Hold timer: 10000
Stats:
Pkts 117, Bytes 7254, HA Seq 0, Seq Number 117, Pkt Loss 0
Authentication not configured
Authentication Failure: 0
Reload Peer: TX 0, RX 0
Resign: TX 0, RX 0
Active Peer: Present. Hold Timer: 10000
Pkts 115, Bytes 3910, HA Seq 0, Seq Number 1453975, Pkt Loss 0
```

```
RG Protocol RG 2

Role: Active

Negotiation: Enabled

Priority: 135

Protocol state: Active

Ctrl Intf(s) state: Up

Active Peer: Local

Standby Peer: address 10.1.1.2, priority 130, intf Gi0/0/0

Log counters:

role change to active: 1

role change to standby: 1

disable events: rg down state 1, rg shut 0

ctrl intf events: up 2, down 1, admin_down 1

reload events: local request 0, peer request 0
```

```
RG Media Context for RG \rm 2
```

Ctx State: Active Protocol ID: 2 Media type: Default Control Interface: GigabitEthernet0/0/0 Current Hello timer: 3000 Configured Hello timer: 3000, Hold timer: 10000 Peer Hello timer: 3000, Peer Hold timer: 10000 Stats: Pkts 118, Bytes 7316, HA Seq 0, Seq Number 118, Pkt Loss 0 Authentication not configured Authentication Failure: 0 Reload Peer: TX 0, RX 0 Resign: TX 0, RX 1 Standby Peer: Present. Hold Timer: 10000 Pkts 102, Bytes 3468, HA Seq 0, Seq Number 1453977, Pkt Loss 0

The following example shows configuration details for the redundancy application protocol group 1:

Router# show redundancy application protocol group 1

RG Protocol RG 1 _____ Role: Standby Negotiation: Enabled Priority: 50 Protocol state: Standby-hot Ctrl Intf(s) state: Up Active Peer: address 10.1.1.2, priority 150, intf Gi0/0/0 Standby Peer: Local Log counters: role change to active: 0 role change to standby: 1 disable events: rg down state 1, rg shut 0 ctrl intf events: up 2, down 1, admin down 1 reload events: local request 0, peer request 0 RG Media Context for RG 1 _____ Ctx State: Standby Protocol ID: 1 Media type: Default Control Interface: GigabitEthernet0/0/0 Current Hello timer: 3000 Configured Hello timer: 3000, Hold timer: 10000 Peer Hello timer: 3000, Peer Hold timer: 10000 Stats: Pkts 120, Bytes 7440, HA Seq 0, Seq Number 120, Pkt Loss 0 Authentication not configured Authentication Failure: 0 Reload Peer: TX 0, RX 0 Resign: TX 0, RX 0 Active Peer: Present. Hold Timer: 10000

Pkts 118, Bytes 4012, HA Seq 0, Seq Number 1453978, Pkt Loss 0

The following example shows configuration details for the redundancy application protocol group 2:

Router# show redundancy application protocol group 2 RG Protocol RG 2

Role: Active Negotiation: Enabled Priority: 135 Protocol state: Active Ctrl Intf(s) state: Up Active Peer: Local

```
Standby Peer: address 10.1.1.2, priority 130, intf Gi0/0/0
Log counters:
role change to active: 1
role change to standby: 1
disable events: rg down state 1, rg shut 0 % \left( {{\left( {{{\left( {{{\left( {{{\left( {{{}}} \right)}} \right.} \right.} \right)}_{0}}}} \right)} \right)
ctrl intf events: up 2, down 1, admin down 1
reload events: local request 0, peer request 0
RG Media Context for RG \rm 2
-------
Ctx State: Active
Protocol ID: 2
Media type: Default
Control Interface: GigabitEthernet0/0/0
Current Hello timer: 3000
Configured Hello timer: 3000, Hold timer: 10000
Peer Hello timer: 3000, Peer Hold timer: 10000
Stats:
Pkts 123, Bytes 7626, HA Seq 0, Seq Number 123, Pkt Loss 0
Authentication not configured
Authentication Failure: 0
Reload Peer: TX 0, RX 0
Resign: TX 0, RX 1
Standby Peer: Present. Hold Timer: 10000
Pkts 107, Bytes 3638, HA Seq 0, Seq Number 1453982, Pkt Loss 0
```

The following example shows configuration details for the redundancy application protocol 1:

```
Router# show redundancy application protocol 1

Protocol id: 1, name: rg-protocol-1

BFD: ENABLE

Hello timer in msecs: 3000

Hold timer in msecs: 10000

OVLD-1#show redundancy application protocol 2

Protocol id: 2, name: rg-protocol-2

BFD: ENABLE

Hello timer in msecs: 3000

Hold timer in msecs: 10000
```

The following example shows configuration details for redundancy application interface manager group:

```
Router# show redundancy application if-mgr group
RG ID: 1
_____
interface
          GigabitEthernet0/0/3.152
_____
        0007.b421.4e21
VMAC
VIP
          10.1.1.255
Shut
          shut
Decrement
           10
interface
           GigabitEthernet0/0/2.152
             ------
       0007.b421.5209
VMAC
           10.1.2.255
VIP
Shut
           shut
           10
Decrement
RG ID: 2
 _____
interface
           GigabitEthernet0/0/3.166
 ------
```

L

VMAC	0007.b422.14d6
VIP	10.1.255.254
Shut	no shut
Decrement	10
interface	GigabitEthernet0/0/2.166
VMAC	0007.b422.0d06
VIP	10.2.255.254
Shut	no shut
Decrement	10

The following examples shows configuration details for redundancy application interface manager group 1 and group 2:

Router# show redundancy application if-mgr group 1

```
RG ID: 1
_____
interface
        GigabitEthernet0/0/3.152
-----
VMAC 0007.b421.4e21
VTP
          10.1.1.255
          shut
Shut
Decrement
           10
interface
          GigabitEthernet0/0/2.152
_____
      0007.b421.5209
VMAC
          10.2.1.255
shut
VIP
Shut
Decrement 10
Router# show redundancy application if-mgr group 2
RG ID: 2
_____
          GigabitEthernet0/0/3.166
interface
_____
      0007.b422.14d6
VMAC
          10.1.255.254
VIP
Shut no shut
Decrement 10
interface
          GigabitEthernet0/0/2.166
_____
     0007.b422.0d
10.2.255.254
VMAC
           0007.b422.0d06
VTP
          no shut
Shut
Decrement
          10
```

The following example shows configuration details for redundancy application data-interface group:

Router# show redundancy application data-interface group The data interface for rg[1] is GigabitEthernet0/0/1 The data interface for rg[2] is GigabitEthernet0/0/1

The following examples show configuration details specific to redundancy application data-interface group 1 and group 2:

```
Router# show redundancy application data-interface group 1
The data interface for rg[1] is GigabitEthernet0/0/1
```

```
Router # show redundancy application data-interface group 2 The data interface for rg[2] is GigabitEthernet0/0/1
```

Verifying BFD Offload

Use the following commands to verify and monitor BFD offload feature on your router.

Note

Configuration of BFD Offload is described in Configuring Bidirectional Forwarding, on page 176.

- show bfd neighbors [details]
- debug bfd [packet | event]
- · debug bfd event

The show bfd neighbors command displays the BFD adjacency database:

Router# show bfd neighbor

IPv4 Sessions				
NeighAddr	LD/RD	RH/RS	State	Int
192.0.2.10	362/1277	Up	Up	Gi0/0/1.2
192.0.2.11	445/1278	Up	Up	Gi0/0/1.3
192.0.2.12	1093/961	Up	Up	Gi0/0/1.4
192.0.2.13	1244/946	Up	Up	Gi0/0/1.5
192.0.2.14	1094/937	Up	Up	Gi0/0/1.6
192.0.2.15	1097/1260	Up	Up	Gi0/0/1.7
192.0.2.16	1098/929	Up	Up	Gi0/0/1.8
192.0.2.17	1111/928	Up	Up	Gi0/0/1.9
192.0.2.18	1100/1254	Up	Up	Gi0/0/1.10

The **debug bfd neighbor detail** command displays the debugging information related to BFD packets:

Router# show bfd neighbor detail

```
IPv4 Sessions
NeighAddr
                                      T.D/RD
                                                    RH/RS
                                                              State
                                                                        Tnt
192.0.2.10
                                     362/1277
                                                    Up
                                                              Up
                                                                        Gi0/0/1.2
Session state is UP and not using echo function.
Session Host: Hardware
OurAddr: 192.0.2.11
Handle: 33
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holddown (hits): 0(0), Hello (hits): 50(0)
Rx Count: 3465, Rx Interval (ms) min/max/avg: 42/51/46
Tx Count: 3466, Tx Interval (ms) min/max/avg: 39/52/46
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: CEF EIGRP
Uptime: 00:02:50
Last packet: Version: 1
                                        - Diagnostic: 0
            State bit: Up
                                        - Demand bit: 0
            Poll bit: 0
                                        - Final bit: 0
            C bit: 1
            Multiplier: 3
                                        - Length: 24
            My Discr.: 1277
                                       - Your Discr.: 362
            Min tx interval: 50000
                                        - Min rx interval: 50000
            Min Echo interval: 0
```

The show bfd summary command displays the BFD summary:

Router# show bfd summary

	Session	Up	Down
Total	400	400	0

The **show bfd drops** command displays the number of packets dropped in BFD:

Router# show bfd drops BFD Drop Statistics

	IPV4	IPV6	IPV4-M	IPV6-M	MPLS PW	MPLS TP LSP
Invalid TTL	0	0	0	0	_0	0
BFD Not Configured	0	0	0	0	0	0
No BFD Adjacency	33	0	0	0	0	0
Invalid Header Bits	0	0	0	0	0	0
Invalid Discriminator	1	0	0	0	0	0
Session AdminDown	94	0	0	0	0	0
Authen invalid BFD ver	0	0	0	0	0	0
Authen invalid len	0	0	0	0	0	0
Authen invalid seq	0	0	0	0	0	0
Authen failed	0	0	0	0	0	0

The **debug bfd packet** command displays debugging information about BFD control packets.

Router# debug bfd packet

*Nov 12 23:08:27.982: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1941/0 diag:0 (No Diagnostic) Down C cnt:4 ttl:254 (0) *Nov 12 23:08:27.982: BFD-DEBUG Packet: Tx IP:192.0.2.22 ld/rd:983/1941 diag:3(Neighbor Signaled Session Down) Init C cnt:44 (0) *Nov 12 23:08:28.007: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1941/983 diag:0(No Diagnostic) Up PC cnt:4 ttl:254 (0) *Nov 12 23:08:28.007: BFD-DEBUG Packet: Tx IP:192.0.2.22 ld/rd:983/1941 diag:0(No Diagnostic) Up F C cnt:0 (0) *Nov 12 23:08:28.311: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1941/983 diag:0(No Diagnostic) Up FC cnt:0 ttl:254 (0) *Nov 12 23:08:28.311: BFD-DEBUG Packet: Tx IP:192.0.2.22 ld/rd:983/1941 diag:0(No Diagnostic) Up C cnt:0 (0) *Nov 12 23:08:28.311: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1907/0 diag:0(No Diagnostic) Down C cnt:3 ttl:254 (0) *Nov 12 23:08:28.311: BFD-DEBUG Packet: Tx IP:192.0.2.22 ld/rd:993/1907 diag:3(Neighbor Signaled Session Down) Init C cnt:43 (0) *Nov 12 23:08:28.311: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1941/983 diag:0(No Diagnostic) Up C cnt:0 ttl:254 (0) *Nov 12 23:08:28.626: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1907/993 diag:0(No Diagnostic) Up PC cnt:3 ttl:254 (0) *Nov 12 23:08:28.626: BFD-DEBUG Packet: Tx IP:192.0.2.22 ld/rd:993/1907 diag:0(No Diagnostic) Up F C cnt:0 (0) *Nov 12 23:08:28.645: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1907/993 diag:0(No Diagnostic) Up C cnt:0 ttl:254 (0) *Nov 12 23:08:28.700: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1907/993 diag:0(No Diagnostic) Up FC cnt:0 ttl:254 (0) *Nov 12 23:08:28.700: BFD-DEBUG Packet: Tx IP:192.0.2.22 ld/rd:993/1907 diag:0(No Diagnostic) Up C cnt:0 (0) *Nov 12 23:08:28.993: BFD-DEBUG Packet: Rx IP:192.0.2.22 ld/rd:1907/993 diag:0(No Diagnostic) Up C cnt:0 ttl:254 (0)

The **debug bfd event** displays debugging information about BFD state transitions:

Router# deb bfd event

```
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(EIGRP) IP:192.0.2.153, ld:1401,
handle:77, event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.153, ld:1401, handle:77,
event:DOWN adminDown, (0)
```

```
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(EIGRP) IP:192.0.2.153, ld:1400,
handle:39, event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.153, ld:1400, handle:39,
event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(EIGRP) IP:192.0.2.153, ld:1399,
handle:25, event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.153, ld:1399, handle:25,
event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(EIGRP) IP:192.0.2.153, ld:1403,
handle:173, event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.153, ld:1403, handle:173,
 event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(EIGRP) IP:192.0.2.153, ld:1402,
handle:95, event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.153, ld:1402, handle:95,
event:DOWN adminDown, (0)
*Nov 12 23:11:30.639: BFD-HW-API: Handle 1404: Timers: Tx timer 1000000 Detect timer 0
*Nov 12 23:11:30.639: BFD-HW-API: Handle 1404: Flags: Poll 0 Final 0
*Nov 12 23:11:30.639: BFD-HW-API: Handle 1404: Buffer: 0x23480318 0x0000057C 0x00000000
0x000F4240 0x000F4240 0x00000000 size 24
*Nov 12 23:11:30.641: BFD-HW-API: Handle 1405: Timers: Tx timer 1000000 Detect timer 0
*Nov 12 23:11:30.641: BFD-HW-API: Handle 1405: Flags: Poll 0 Final 0
*Nov 12 23:11:30.641: BFD-HW-API: Handle 1405: Buffer: 0x23480318 0x0000057D 0x00000000
0x000F4240 0x000F4240 0x00000000 size 24
*Nov 12 23:11:30.649: BFD-DEBUG Packet: Rx IP:192.0.2.33 ld/rd:1601/1404
diag:7(Administratively Down) AdminDown C cnt:0 ttl:254 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: V1 FSM ld:1404 handle:207 event:RX ADMINDOWN state:UP
 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: resetting timestamps ld:1404 handle:207 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.33, ld:1404, handle:207,
event:DOWN adminDown, (0)
*Nov 12 23:11:30.650: BFD-DEBUG Packet: Tx IP:192.0.2.33 ld/rd:1404/0 diag:3(Neighbor
Signaled Session Down) Down C cnt:0 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Packet: Rx IP:192.0.2.85 ld/rd:1620/1405
diag:7(Administratively Down) AdminDown C cnt:0 ttl:254 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: V1 FSM ld:1405 handle:209 event:RX ADMINDOWN state:UP
 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: resetting timestamps ld:1405 handle:209 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.85, ld:1405, handle:209,
 event:DOWN adminDown, (0)
*Nov 12 23:11:30.650: BFD-DEBUG Packet: Tx IP:192.10.85.1 ld/rd:1405/0 diag:3(Neighbor
Signaled Session Down) Down C cnt:0 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(EIGRP) IP:192.0.2.33, ld:1404,
handle:207, event:DOWN adminDown, (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.33, ld:1404, handle:207,
event:DOWN adminDown, (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(EIGRP) IP:192.0.2.85, ld:1405,
handle:209, event:DOWN adminDown, (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(CEF) IP:192.0.2.85, ld:1405, handle:209,
event:DOWN adminDown, (0)
*Nov 12 23:11:31.035: %DUAL-5-NBRCHANGE: EIGRP-IPv4 100: Neighbor 192.0.2.191
```

Additional References

The following documents provide information related to the BFD feature.

Related Topic	Document Title
Configuring Stateful Interchassis Configuration.	Security Configuration Guide: Zone-Based Policy Firewall, Cisco IOS XE Release 3S at: http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ sec_data_zbf/configuration/xe-3s/ sec-data-zbf-xe-book.html.
IP Routing Protocol-Independent Commands.	Cisco IOS IP Routing: Protocol-Independent Command Reference at: http://www.cisco.com/c/en/ us/td/docs/ios-xml/ios/iproute_pi/command/ iri-cr-book.html.

Configuring Call Home

The Call Home feature provides e-mail-based and web-based notification of critical system events. A versatile range of message formats are available for optimal compatibility with pager services, standard e-mail, or XML-based automated parsing applications. Common uses of this feature may include direct paging of a network support engineer, e-mail notification to a Network Operations Center, XML delivery to a support website, and use of Cisco Smart Call Home services for direct case generation with the Cisco Systems Technical Assistance Center (TAC).

This chapter describes how to configure the Call Home feature in Cisco IOS Release 15.4(3)S and later releases for the Cisco ISR 4400 Series and Cisco ISR 4300 Series Routers.

This chapter includes the following sections:

- Finding Feature Information, on page 189
- Prerequisites for Call Home, on page 189
- Information About Call Home, on page 190
- How to Configure Call Home, on page 192
- Configuring Diagnostic Signatures, on page 214
- Displaying Call Home Configuration Information, on page 222
- Default Call Home Settings, on page 228
- Alert Group Trigger Events and Commands, on page 228
- Message Contents, on page 235
- Additional References, on page 244

Finding Feature Information

Your software release may not support all of the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release.

Use the Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, see http://tools.cisco.com/ITDIT/CFN/. A Cisco account is not required to access the Cisco Feature Navigator.

Prerequisites for Call Home

The following are the prerequisites before you configure Call Home:

- Contact e-mail address (required for full registration with Smart Call Home, optional if Call Home is enabled in anonymous mode), phone number (optional), and street address information (optional) should be configured so that the receiver can determine the origin of messages received.
- At least one destination profile (predefined or user-defined) must be configured. The destination profile you use depends on whether the receiving entity is a pager, an e-mail address, or an automated service such as Cisco Smart Call Home.

If the destination profile uses e-mail message delivery, you must specify a Simple Mail Transfer Protocol (SMTP) server.

- The router must have IP connectivity to an e-mail server or the destination HTTP server.
- If Cisco Smart Call Home is used, an active service contract covering the device is required to provide full Cisco Smart Call Home service.

Information About Call Home

The Call Home feature can deliver alert messages containing information on configuration, environmental conditions, inventory, syslog, snapshot, and crash events. It provides these alert messages as either e-mail-based or web-based messages. Multiple message formats are available, allowing for compatibility with pager services, standard e-mail, or XML-based automated parsing applications. This feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles, each with configurable message formats and content categories. A predefined destination profile is provided for sending alerts to the Cisco TAC (callhome@cisco.com). You can also define your own destination profiles.

Flexible message delivery and format options make it easy to integrate specific support requirements.

This section contains the following subsections:

- Benefits of Using Call Home
- Obtaining Smart Call Home Services

Benefits of Using Call Home

The Call Home feature offers the following benefits:

- Multiple message-format options, which include:
 - Short Text—Suitable for pagers or printed reports.
 - Plain Text—Full formatted message information suitable for human reading.
 - XML—Machine-readable format using XML and Adaptive Markup Language (AML) document type definitions (DTDs). The XML format enables communication with the Cisco TAC.
- Multiple concurrent message destinations.
- Multiple message categories including configuration, environmental conditions, inventory, syslog, snapshot, and crash events.
- · Filtering of messages by severity and pattern matching.

· Scheduling of periodic message sending.

Obtaining Smart Call Home Services

If you have a service contract directly with Cisco, you can register for the Smart Call Home service. Smart Call Home analyzes Smart Call Home messages and provides background information and recommendations. For known issues, particularly online diagnostics failures, Automatic Service Requests are generated with the Cisco TAC.

Smart Call Home offers the following features:

- Continuous device health monitoring and real-time diagnostic alerts.
- Analysis of Smart Call Home messages and, if needed, Automatic Service Request generation routed to the correct TAC team, including detailed diagnostic information to speed problem resolution.
- Secure message transport directly from your device or through an HTTP proxy server or a downloadable Transport Gateway (TG). You can use a TG aggregation point to support multiple devices or in cases where security dictates that your devices may not be connected directly to the Internet.
- Web-based access to Smart Call Home messages and recommendations, inventory, and configuration information for all Smart Call Home devices provides access to associated field notices, security advisories, and end-of-life information.

You need the following items to register for Smart Call Home:

- SMARTnet contract number for your router
- Your e-mail address
- Your Cisco.com username

For more information about Smart Call Home, see https://supportforums.cisco.com/community/4816/ smart-call-home.

Anonymous Reporting

Smart Call Home is a service capability included with many Cisco service contracts and is designed to assist customers resolve problems more quickly. In addition, the information gained from crash messages helps Cisco understand equipment and issues occurring in the field. If you decide not to use Smart Call Home, you can still enable Anonymous Reporting to allow Cisco to securely receive minimal error and health information from the device. If you enable Anonymous Reporting, your customer identity will remain anonymous, and no identifying information will be sent.

Note When you enable Anonymous Reporting, you acknowledge your consent to transfer the specified data to Cisco or to vendors operating on behalf of Cisco (including countries outside the United States). Cisco maintains the privacy of all customers. For information about how Cisco treats personal information, see the Cisco Privacy Statement at http://www.cisco.com/web/siteassets/legal/privacy.html.

When Call Home is configured in an anonymous way, only crash, inventory, and test messages are sent to Cisco. No customer identifying information is sent.

For more information about what is sent in these messages, see Alert Group Trigger Events and Commands, on page 228.

How to Configure Call Home

The following sections show how to configure Call Home using a single command:

- Configuring Smart Call Home (Single Command), on page 192
- Configuring and Enabling Smart Call Home, on page 193

The following sections show detailed or optional configurations:

- Enabling and Disabling Call Home, on page 194
- Configuring Contact Information, on page 194
- Configuring Destination Profiles, on page 196
- Subscribing to Alert Groups, on page 199
- Configuring General E-Mail Options, on page 204
- Specifying Rate Limit for Sending Call Home Messages, on page 206
- Specifying HTTP Proxy Server, on page 207
- Enabling AAA Authorization to Run IOS Commands for Call Home Messages, on page 208
- Configuring Syslog Throttling, on page 208
- Configuring Call Home Data Privacy, on page 209
- Sending Call Home Communications Manually, on page 210

Configuring Smart Call Home (Single Command)

To enable all Call Home basic configurations using a single command, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- **2.** call-home reporting {anonymous | contact-email-addr email-address} [http-proxy {ipv4-address | ipv6-address | name} port port-number]

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	

L

	Command or Action	Purpose
Step 2	Command or Action call-home reporting {anonymous contact-email-addr email-address} [http-proxy {ipv4-address ipv6-address name} port port-number] Example: Router(config)# call-home reporting contact-email-addr email@company.com	 Purpose Enables the basic configurations for Call Home using a single command. anonymous—Enables Call-Home TAC profile to send only crash, inventory, and test messages and send the messages anonymously. contact-email-addr—Enables Smart Call Home service full reporting capability and sends a full inventory message from Call-Home TAC profile to Smart Call Home server to start full registration process. http-proxy {<i>ipv4-address</i> <i>ipv6-address</i> <i>name</i>}—Configures an ipv4 or ipv6 address or server name. Maximum length is 64 characters. port <i>port-number</i>—Port number. Range is 1 to 65535.
		 Note The HTTP proxy option allows you to make use of your own proxy server to buffer and secure Internet connections from your devices. Note After successfully enabling Call Home either in anonymous or full registration mode using the call-home reporting command, an inventory message is sent out. If Call Home is enabled in full registration mode, a Full Inventory message for full registration mode is sent out. If Call Home is enabled in anonymous inventory message is sent out. For more information about what is sent in these messages, see Alert Group Trigger Events and Commands, on page 228.

Configuring and Enabling Smart Call Home

For application and configuration information about the Cisco Smart Call Home service, see the "Getting Started" section of the Smart Call Home User Guide at https://supportforums.cisco.com/community/4816/ smart-call-home. This document includes configuration examples for sending Smart Call Home messages directly from your device or through a transport gateway (TG) aggregation point.

For security reasons, we recommend that you use the HTTPS transport options, due to the additional payload encryption that HTTPS offers. The Transport Gateway software is downloadable from Cisco.com and is available if you require an aggregation point or a proxy for connection to the Internet.

Enabling and Disabling Call Home

To enable or disable the Call Home feature, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- 2. service call-home
- 3. no service call-home

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	service call-home	Enables the Call Home feature.
	Example:	
	Router(config)# service call-home	
Step 3	no service call-home	Disables the Call Home feature.
	Example:	
	Router(config)# no service call-home	

Configuring Contact Information

Each router must include a contact e-mail address (except if Call Home is enabled in anonymous mode). You can optionally include a phone number, street address, contract ID, customer ID, and site ID.

To assign the contact information, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- 2. call-home
- 3. contact-email-addr email-address
- 4. phone-number +phone-number
- 5. street-address street-address
- 6. customer-id text
- 7. site-id text
- 8. contract-id text

DETAILED STEPS

	Command or Action	Purpose		
Step 1	configure terminal	Enters configuration mode.		
	Example:			
	Router# configure terminal			
Step 2	call-home	Enters the Call Home configuration submode.		
	Example:			
	Router(config)# call-home			
Step 3	contact-email-addr email-address	Designates your e-mail address. Enter up to 200 characters		
	Example:	in e-mail address format with no spaces.		
	Router(cfg-call-home)# contact-email-addr username@example.com			
Step 4	phone-number +phone-number	(Optional) Assigns your phone number.		
	Example:	Note The number must begin with a plus (+) prefix		
	Router(cfg-call-home)# phone-number +1-800-555-4567	and may contain only dashes (-) and numbers. Enter up to 17 characters. If you include spaces, you must enclose your entry in quotes ("").		
Step 5	street-address street-address	(Optional) Assigns your street address where RMA		
	Example:	equipment can be shipped. Enter up to 200 characters. If		
	Router(cfg-call-home)# street-address "1234 Picaboo Street, Any city, Any state, 12345"	("").		
Step 6	customer-id text	(Optional) Identifies customer ID. Enter up to 64 characters.		
	Example:	If you include spaces, you must enclose your entry in quotes		
	Router(cfg-call-home)# customer-id Customer1234	().		
Step 7	site-id text	(Optional) Identifies customer site ID. Enter up to 200		
	Example:	characters. If you include spaces, you must enclose your		
	Router(cfg-call-home)# site-id Site1ManhattanNY			
Step 8	contract-id text	(Optional) Identifies your contract ID for the router. Enter		
	Example:	up to 64 characters. If you include spaces, you must enclose your entry in quotes ("")		
	Router(cfg-call-home)# contract-id Company1234			

Example

The following example shows how to configure contact information:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# call-home
Router(cfg-call-home)# contact-email-addr username@example.com
```

```
Router(cfg-call-home) # phone-number +1-800-555-4567
Router(cfg-call-home) # street-address "1234 Picaboo Street, Any city, Any state, 12345"
Router(cfg-call-home) # customer-id Customer1234
Router(cfg-call-home) # site-id SitelManhattanNY
Router(cfg-call-home) # contract-id Company1234
Router(cfg-call-home) # exit
```

Configuring Destination Profiles

A destination profile contains the required delivery information for an alert notification. At least one destination profile is required. You can configure multiple destination profiles of one or more types.

You can create and define a new destination profile or copy and use the predefined destination profile. If you define a new destination profile, you must assign a profile name.

Note If you use the Cisco Smart Call Home service, the destination profile must use the XML message format.

You can configure the following attributes for a destination profile:

• Profile name—String that uniquely identifies each user-defined destination profile. The profile name is limited to 31 characters and is not case-sensitive.

Note You cannot use all as a profile name.

- Transport method—Transport mechanism, either e-mail or HTTP (including HTTPS), for delivery of alerts.
 - For user-defined destination profiles, e-mail is the default, and you can enable either or both transport mechanisms. If you disable both methods, e-mail is enabled.
 - For the predefined Cisco TAC profile, you can enable either transport mechanism, but not both.
- Destination address—The actual address related to the transport method to which the alert should be sent.
- Message formatting—The message format used for sending the alert. The format options for a user-defined destination profile are long-text, short-text, or XML. The default is XML. For the predefined Cisco TAC profile, only XML is allowed.
- Message size—The maximum destination message size. The valid range is 50 to 3,145,728 Bytes. The default is 3,145,728 Bytes.

Anonymous reporting—You can choose for your customer identity to remain anonymous, and no identifying information is sent.

• Subscribing to interesting alert-groups—You can choose to subscribe to alert-groups highlighting your interests.

This section contains the following subsections:

• Creating a New Destination Profile, on page 197

- Copying a Destination Profile, on page 198
- Setting Profiles to Anonymous Mode, on page 199

Creating a New Destination Profile

To create and configure a new destination profile, perform the following steps:

SUMMARY STEPS

- **1.** configure terminal
- 2. call-home
- 3. profile name
- 4. [no] destination transport-method {email | http}
- **5. destination address** {**email** *email-address* | **http** *url*}
- 6. destination preferred-msg-format {long-text | short-text | xml}
- 7. destination message-size-limit bytes
- 8. active
- **9**. end
- **10.** show call-home profile {name | all}

DETAILED STEPS

	Command or Action	Purpose		
Step 1	configure terminal	Enters configuration mode.		
	Example:			
	Router# configure terminal			
Step 2	call-home	Enters the Call Home configuration submode.		
	Example:			
	Router(config)# call-home			
Step 3	profile name	Enters the Call Home destination profile configuration submode for the specified destination profile. If the specified destination profile does not exist, it is created. (Optional) Enables the message transport method. The no option disables the method.		
	Example:			
	Router(config-call-home)# profile profile1			
Step 4	[no] destination transport-method {email http}			
	Example:			
	<pre>Router(cfg-call-home-profile)# destination transport-method email</pre>			
Step 5	destination address {email email-address http	Configures the destination e-mail address or URL to which		
	url}	Call Home messages are sent.		
	Example:	Note When entering a destination URL, include either http:// or https:// depending on whether the		
	Router(cfg-call-home-profile)# destination address email myaddress@example.com	server is a secure server.		

	Command or Action	Purpose
Step 6	destination preferred-msg-format {long-text short-text xml}	(Optional) Configures a preferred message format. The default is XML.
	Example:	
	Router(cfg-call-home-profile)# destination preferred-msg-format xml	
Step 7	destination message-size-limit bytes	(Optional) Configures a maximum destination message size for the destination profile.
	Example:	
	Router(cfg-call-home-profile)# destination message-size-limit 3145728	
Step 8	active	Enables the destination profile. By default, the profile is enabled when it is created.
	Example:	
	Router(cfg-call-home-profile)# active	
Step 9	end	Returns to privileged EXEC mode.
	Example:	
	Router(cfg-call-home-profile)# end	
Step 10	show call-home profile {name all}	Displays the destination profile configuration for the specified profile or all configured profiles.
	Example:	
	Router# show call-home profile profile1	

Copying a Destination Profile

To create a new destination profile by copying an existing profile, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- 2. call-home
- **3.** copy profile source-profile target-profile

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	call-home	Enters the Call Home configuration submode.
	Example:	
	Router(config)# call-home	

	Command or Action	Purpose
Step 3	copy profile source-profile target-profile	Creates a new destination profile with the same
	Example:	configuration settings as the existing destination profile.
	Router(cfg-call-home)# copy profile profile1 profile2	

Setting Profiles to Anonymous Mode

To set an anonymous profile, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- **2**. call-home
- 3. profile name
- 4. anonymous-reporting-only

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	call-home	Enters the Call Home configuration submode.
	Example:	
	Router(config)# call-home	
Step 3	profile name	Enables the profile configuration mode.
	Example:	
	Router(cfg-call-home) profile Profile-1	
Step 4	anonymous-reporting-only	Sets the profile to anonymous mode.
	Example:	Note By default, Call Home sends a full report of all
	Router(cfg-call-home-profile)# anonymous-reporting-only	types of events subscribed in the profile. When anonymous-reporting-only is set, only crash, inventory, and test messages will be sent.

Subscribing to Alert Groups

An alert group is a predefined subset of Call Home alerts supported in all routers. Different types of Call Home alerts are grouped into different alert groups depending on their type. The following alert groups are available:

• Crash

- Configuration
- Environment
- Inventory
- Snapshot
- Syslog

This section contains the following subsections:

- Periodic Notification, on page 202
- Message Severity Threshold, on page 203
- Configuring a Snapshot Command List, on page 203

The triggering events for each alert group are listed in Alert Group Trigger Events and Commands, on page 228, and the contents of the alert group messages are listed in Message Contents, on page 235.

You can select one or more alert groups to be received by a destination profile.

Note A Call Home alert is only sent to destination profiles that have subscribed to the alert group containing that Call Home alert. In addition, the alert group must be enabled.

To subscribe a destination profile to one or more alert groups, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- **2**. call-home
- **3.** alert-group {all | configuration | environment | inventory | syslog | crash | snapshot}
- 4. profile name
- 5. subscribe-to-alert-group all
- **6.** subscribe-to-alert-group configuration [periodic {daily *hh:mm* | monthly *date hh:mm* | weekly *day hh:mm*}]
- 7. subscribe-to-alert-group environment [severity {catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging}]
- **8.** subscribe-to-alert-group inventory [periodic {daily *hh:mm* | monthly *date hh:mm* | weekly *day hh:mm*}]
- 9. subscribe-to-alert-group syslog [severity {catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging}]
- 10. subscribe-to-alert-group crash
- **11.** subscribe-to-alert-group snapshot periodic {daily *hh:mm* | hourly *mm* | interval *mm* | monthly *date hh:mm* | weekly *day hh:mm*}
- 12. exit
| | Command or Action | Purpose |
|--------|---|---|
| Step 1 | configure terminal | Enters configuration mode. |
| | Example: | |
| | Router# configure terminal | |
| Step 2 | call-home | Enters Call Home configuration submode. |
| | Example:
Router(config)# call-home | |
| Step 3 | alert-group {all configuration environment
inventory syslog crash snapshot} | Enables the specified alert group. Use the keyword all to
enable all alert groups. By default, all alert groups are |
| | Example: | enabled. |
| | Router(cfg-call-home)# alert-group all | |
| Step 4 | profile name | Enters the Call Home destination profile configuration |
| | Example: | submode for the specified destination profile. |
| | Router(cfg-call-home)# profile profile1 | |
| Step 5 | subscribe-to-alert-group all
Example: | Subscribes to all available alert groups using the lowest severity. |
| | Router(cfg-call-home-profile)#
subscribe-to-alert-group all | You can subscribe to alert groups individually by specific type, as described in Step 6 through Step 11. |
| | | Note This command subscribes to the syslog debug default severity. This causes a large number of syslog messages to generate. You should subscribe to alert groups individually, using appropriate severity levels and patterns when possible. |
| Step 6 | subscribe-to-alert-group configuration [periodic [daily hh:mm monthly date hh:mm weekly day hh:mm}] | Subscribes this destination profile to the Configuration
alert group. The Configuration alert group can be
configured for periodic notification, as described in |
| | Example: | Periodic Notification, on page 202. |
| | Router(cfg-call-home-profile)#
subscribe-to-alert-group configuration
periodic daily 12:00 | |
| Step 7 | subscribe-to-alert-group environment [severity
{catastrophic disaster fatal critical major
 minor warning notification normal
debugging}] | Subscribes this destination profile to the Environment alert
group. The Environment alert group can be configured to
filter messages based on severity, as described in Message
Severity Threshold, on page 203. |
| | Example: | |
| | Router(cfg-call-home-profile)#
subscribe-to-alert-group environment severity
major | |

	Command or Action	Purpose
Step 8	subscribe-to-alert-group inventory [periodic {dailyhh:mm monthly date hh:mm weekly dayhh:mm}]	Subscribes this destination profile to the Inventory alert group. The Inventory alert group can be configured for periodic notification, as described in Periodic Notification,
	Example:	on page 202.
	Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic monthly 1 12:00	
Step 9	subscribe-to-alert-group syslog [severity {catastrophic disaster fatal critical major minor warning notification normal debugging}]	Subscribes this destination profile to the Syslog alert group. The Syslog alert group can be configured to filter messages based on severity, as described in Message Severity Threshold, on page 203.
	<pre>Example: Router(cfg-call-home-profile)# subscribe-to-alert-group environment severity major</pre>	You can specify a text pattern to be matched within each syslog message. If you configure a pattern, a Syslog alert group message is sent only if it contains the specified pattern and meets the severity threshold. If the pattern contains spaces, you must enclose it in quotes (""). You can specify up to five patterns for each destination profile.
Step 10	<pre>subscribe-to-alert-group crash Example: Router(cfg-call-home-profile)# [no default] subscribe-to-alert-group crash</pre>	Subscribes to the Crash alert group in user profile. By default, TAC profile subscribes to the Crash alert group and cannot be unsubscribed.
Step 11	<pre>subscribe-to-alert-group snapshot periodic {daily hh:mm hourly mm interval mm monthly date hh:mm weekly day hh:mm}</pre>	Subscribes this destination profile to the Snapshot alert group. The Snapshot alert group can be configured for periodic notification, as described in Periodic Notification, on page 202.
	Router(cfg-call-home-profile)# subscribe-to-alert-group snapshot periodic daily 12:00	By default, the Snapshot alert group has no command to run. You can add commands into the alert group, as described in Configuring a Snapshot Command List, on page 203. In doing so, the output of the commands added in the Snapshot alert group will be included in the snapshot message.
Step 12	exit	Exits the Call Home destination profile configuration
	Example:	submode.
	Router(cfg-call-home-profile)# exit	

Periodic Notification

When you subscribe a destination profile to the Configuration, Inventory, or Snapshot alert group, you can choose to receive the alert group messages asynchronously or periodically at a specified time. The sending period can be one of the following:

• Daily—Specifies the time of day to send, using an hour:minute format *hh:mm*, with a 24-hour clock (for example, 14:30).

- Weekly—Specifies the day of the week and time of day in the format *day hh:mm*, where the day of the week is spelled out (for example, Monday).
- Monthly-Specifies the numeric date, from 1 to 31, and the time of day, in the format date hh:mm.
- Interval—Specifies the interval at which the periodic message is sent, from 1 to 60 minutes.
- Hourly-Specifies the minute of the hour at which the periodic message is sent, from 0 to 59 minutes.


```
Note
```

Hourly and by interval periodic notifications are available for the Snapshot alert group only.

Message Severity Threshold

When you subscribe a destination profile to the Environment or Syslog alert group, you can set a threshold for the sending of alert group messages based on the level of severity of the message. Any message with a value lower than the destination profile specified threshold is not sent to the destination.

The severity threshold is configured using the keywords listed in the following table. The severity threshold ranges from catastrophic (level 9, highest level of urgency) to debugging (level 0, lowest level of urgency). If no severity threshold is configured for the Syslog or Environment alert groups, the default is debugging (level 0). The Configuration and Inventory alert groups do not allow severity configuration; severity is always set as normal.

Note Call Home severity levels are not the same as system message logging severity levels.

Level	Keyword	Syslog Level	Description
9	catastrophic		Network-wide catastrophic failure.
8	disaster	—	Significant network impact.
7	fatal	Emergency (0)	System is unusable.
6	critical	Alert (1)	Critical conditions, immediate attention needed.
5	major	Critical (2)	Major conditions.
4	minor	Error (3)	Minor conditions.
3	warning	Warning (4)	Warning conditions.
2	notification	Notice (5)	Basic notification and informational messages. Possibly independently insignificant.
1	normal	Information (6)	Normal event signifying return to normal state.
0	debugging	Debug (7)	Debugging messages.

Table 20: Severity and Syslog Level Mapping

Configuring a Snapshot Command List

To configure a snapshot command list, perform the following steps:

SUMMARY STEPS

- **1.** configure terminal
- 2. call-home
- 3. [no | default] alert-group-config snapshot
- 4. [no | default] add-command command string
- 5. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	call-home	Enters Call Home configuration submode.
	Example:	
	Router(config)# call-home	
Step 3	[no default] alert-group-config snapshot	Enters snapshot configuration mode.
	Example:	The no or default command will remove all snapshot
	Router(cfg-call-home)# alert-group-config snapshot	command.
Step 4	[no default] add-command command string	Adds the command to the Snapshot alert group. The no or
	Example:	default command removes the corresponding command.
	Router(cfg-call-home-snapshot) # add-command "show	• <i>command string</i> —IOS command. Maximum length is
	VELSTON	120.
Step 5	exit	Exits and saves the configuration.
	Example:	
	Router(cfg-call-home-snapshot) # exit	

Configuring General E-Mail Options

To use the e-mail message transport, you must configure at least one Simple Mail Transfer Protocol (SMTP) e-mail server address. You can configure the from and reply-to e-mail addresses, and you can specify up to four backup e-mail servers.

Note the following guidelines when configuring general e-mail options:

- Backup e-mail servers can be defined by repeating the **mail-server** command using different priority numbers.
- The **mail-server priority** number parameter can be configured from 1 to 100. The server with the highest priority (lowest priority number) is tried first.

To configure general e-mail options, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- 2. call-home
- **3.** mail-server [{*ipv4-address* | *ipv6-address*} | *name*] priority *number*
- 4. sender from email-address
- 5. sender reply-to email-address
- **6.** source-interface interface-name
- 7. vrf vrf-name

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	call-home	Enters Call Home configuration submode.
	Example:	
	Router(config)# call-home	
Step 3	mail-server[{ipv4-address ipv6-address} name]prioritynumber	Assigns an e-mail server address and its relative priority among configured e-mail servers.
	Example:	Provide either of these:
	Router(cfg-call-home) # mail-server stmp.example.com	• The e-mail server's IP address.
		• The e-mail server's fully qualified domain name (FQDN) of 64 characters or less.
		Assign a priority number between 1 (highest priority) and 100 (lowest priority).
Step 4	sender from email-address	(Optional) Assigns the e-mail address that appears in the
	Example:	from field in Call Home e-mail messages. If no address is specified, the contact e-mail address is used
	Router(cfg-call-home)# sender from username@example.com	specifica, the contact c main address is used.
Step 5	sender reply-to email-address	(Optional) Assigns the e-mail address that appears in the
	Example:	reply-to field in Call Home e-mail messages.
	Router(cfg-call-home)# sender reply-to username@example.com	
Step 6	source-interface interface-name	Assigns the source interface name to send call-home
	Example:	messages.
	Router(cfg-call-home)# source-interface loopback1	• <i>interface-name</i> —Source interface name. Maximum length is 64.

L

	Command or Action	Purpose	
		Note	For HTTP messages, use the ip http client source-interface <i>interface-name</i> command in global configuration mode to configure the source interface name. This allows all HTTP clients on the device to use the same source interface.
Step 7	<pre>vrf vrf-name Example: Router(cfg-call-home)# vrf vpn1</pre>	(Optional) Specifies the VRF instance to send call-home e-mail messages. If no vrf is specified, the global routing table is used.	
		Note	For HTTP messages, if the source interface is associated with a VRF, use the ip http client source-interface <i>interface-name</i> command in global configuration mode to specify the VRF instance that will be used for all HTTP clients on the device.

Example

The following example shows the configuration of general e-mail parameters, including a primary and secondary e-mail server:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# call-home
Router(cfg-call-home)# mail-server smtp.example.com priority 1
Router(cfg-call-home)# mail-server 192.168.0.1 priority 2
Router(cfg-call-home)# sender from username@example.com
Router(cfg-call-home)# sender reply-to username@example.com
Router(cfg-call-home)# source-interface loopback1
Router(cfg-call-home)# vrf vpn1
Router(cfg-call-home)# exit
Router(cfg-call-home)# exit
Router(config)#
```

Specifying Rate Limit for Sending Call Home Messages

To specify the rate limit for sending Call Home messages, perform the following steps:

SUMMARY STEPS

- **1.** configure terminal
- 2. call-home
- 3. rate-limit number

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	call-home	Enters Call Home configuration submode.
	Example:	
	Router(config)# call-home	
Step 3	rate-limit number	Specifies a limit on the number of messages sent per minute.
	Example:	• number—Range is 1 to 60. The default is 20.
	Router(cfg-call-home)# rate-limit 40	

Specifying HTTP Proxy Server

To specify an HTTP proxy server for sending Call Home HTTP(S) messages to a destination, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- **2**. call-home
- **3.** http-proxy {*ipv4-address* | *ipv6-address* | *name*} port *port-number*

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	call-home	Enters Call Home configuration submode.
	Example:	
	Router(config)# call-home	
Step 3	http-proxy { <i>ipv4-address</i> <i>ipv6-address</i> <i>name</i> } port <i>port-number</i>	Specifies the proxy server for the HTTP request.
	Example:	
	Router(cfg-call-home)# http-proxy 192.0.2.1 port 1	

Enabling AAA Authorization to Run IOS Commands for Call Home Messages

To specify an HTTP proxy server for sending Call Home HTTP(S) messages to a destination, perform the following steps:

SUMMARY STEPS

- 1. configure terminal
- 2. call-home
- 3. aaa-authorization
- 4. aaa-authorization [username username]

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure terminal	Enters co	onfiguration mode.
	Example:		
	Router# configure terminal		
Step 2	call-home	Enters Ca	all Home configuration submode.
	Example:		
	Router(config)# call-home		
Step 3	aaa-authorization	Enables .	AAA authorization.
	Example:	Note	By default, AAA authorization is disabled for
	Router(cfg-call-home)# aaa-authorization		Call Home.
Step 4	aaa-authorization [username username]	Specifies	the username for authorization.
	Example:	• use	rname <i>username</i> —Default username is callhome.
	Router(cfg-call-home)# aaa-authorization username user	May	kimum length is 64.

Configuring Syslog Throttling

To specify an HTTP proxy server for sending Call Home HTTP(S) messages to a destination, perform the following steps:

SUMMARY STEPS

- **1**. configure terminal
- **2**. call-home
- **3**. [no] syslog-throttling

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	Router# configure terminal	
Step 2	call-home	Enters Call Home configuration submode.
	Example:	
	Router(config)# call-home	
Step 3	[no] syslog-throttling	Enables or disables call-home syslog message throttling
	Example:	and avoids sending repetitive call-home syslog messages.
	Router(cfg-call-home)# syslog-throttling	Note By default, syslog message throttling is enabled.

Configuring Call Home Data Privacy

The data-privacy command scrubs data, such as IP addresses, from running configuration files to protect the privacy of customers. Enabling the data-privacy command can affect CPU utilization when scrubbing a large amount of data. Currently, the **show** command output is not being scrubbed except for configuration messages in the outputs for the **show running-config all** and the**show startup-config data** commands.

SUMMARY STEPS

- 1. configure terminal
- 2. call-home
- **3.** data-privacy {level {normal | high} | hostname}

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example: Router# configure terminal	
Step 2	call-home Example:	Enters Call Home configuration submode.
	Router(config)# call-home	
Step 3	Step 3 data-privacy {level {normal high} hostname} Step 3 Example: I Router(cfg-call-home)# data-privacy level high I	Scrubs data from running configuration file to protect the privacy of the user. The default data-privacy level is normal.
		Note Enabling the data-privacy command can affect CPU utilization when scrubbing a large amount of data.
		• normal—Scrubs all normal-level commands.

Command or Action	Purpose	
	• higl dom	h—Scrubs all normal-level commands plus the IP nain name and IP address commands.
	• hostname—Scrubs all high-level commands pl hostname command.	
	Note	Scrubbing the hostname from configuration messages can cause Smart Call Home processing failure on some platforms.

Sending Call Home Communications Manually

You can manually send several types of Call Home communications. To send Call Home communications, perform the tasks in this section. This section contains the following subsections:

- Sending a Call Home Test Message Manually, on page 210
- Sending Call Home Alert Group Messages Manually, on page 210
- Submitting Call Home Analysis and Report Requests, on page 211
- Manually Sending Command Output Message for One Command or a Command List, on page 213

Sending a Call Home Test Message Manually

You can use the call-home test command to send a user-defined Call Home test message.

To manually send a Call Home test message, perform the following step:

SUMMARY STEPS

1. call-home test ["test-message"] profile name

DETAILED STEPS

	Command or Action	Purpose	
Step 1	call-home test ["test-message"] profile name	Sends a test message to the specified destination profile. The user-defined test message text is optional but must be enclosed in quotes ("") if it contains spaces. If no	
	Example:		
	Router# call-home test profile profile1	user-defined message is configured, a default message is sent.	

Sending Call Home Alert Group Messages Manually

You can use the call-home send command to manually send a specific alert group message.

Note the following guidelines when manually sending a Call Home alert group message:

• Only the crash, snapshot, configuration, and inventory alert groups can be sent manually.

- When you manually trigger a crash, snapshot, configuration, or inventory alert group message and you specify a destination profile name, a message is sent to the destination profile regardless of the profile's active status, subscription status, or severity setting.
- When you manually trigger a crash, snapshot, configuration, or inventory alert group message and do not specify a destination profile name, a message is sent to all active profiles that have either a normal or periodic subscription to the specified alert group.

To manually trigger Call Home alert group messages, perform the following steps:

SUMMARY STEPS

- 1. call-home send alert-group snapshot [profile name]
- 2. call-home send alert-group crash [profile name]
- 3. call-home send alert-group configuration [profile name]
- 4. call-home send alert-group inventory [profile name]

DETAILED STEPS

	Command or Action	Purpose		
Step 1	call-home send alert-group snapshot [profile name]	Sends a snapshot alert group message to one destination		
	Example:	profile if specified, or to all subscribed destination profiles.		
	Router# call-home send alert-group snapshot profile profile1			
Step 2	call-home send alert-group crash [profile name]	Sends a crash alert group message to one destination profile		
	Example:	if specified, or to all subscribed destination profiles.		
	Router# call-home send alert-group crash profile profile1			
Step 3	call-home send alert-group configuration [profile <i>name</i>]	Sends a configuration alert group message to one destination profile if specified, or to all subscribed destination profiles.		
	Example:			
	Router# call-home send alert-group configuration profile profile1			
Step 4	call-home send alert-group inventory [profile name]	Sends an inventory alert group message to one destination		
	Example:	profile if specified, or to all subscribed destination profiles.		
	Router# call-home send alert-group inventory profile profile1			

Submitting Call Home Analysis and Report Requests

You can use the **call-home request** command to submit information about your system to Cisco to receive helpful analysis and report information specific to your system. You can request a variety of reports, including security alerts, known bugs, best practices, and command references.

Note the following guidelines when manually sending Call Home analysis and report requests:

- If a **profile** *name* is specified, the request is sent to the profile. If no profile is specified, the request is sent to the Cisco TAC profile. The recipient profile does not need to be enabled for the call-home request. The profile should specify the e-mail address where the transport gateway is configured so that the request message can be forwarded to the Cisco TAC and the user can receive the reply from the Smart Call Home service.
- The **ccoid** *user-id* is the registered identifier of the Smart Call Home user. If the *user-id* is specified, the response is sent to the e-mail address of the registered user. If no *user-id* is specified, the response is sent to the contact e-mail address of the device.
- Based on the keyword specifying the type of report requested, the following information is returned:
 - config-sanity—Information on best practices as related to the current running configuration.
 - bugs-list—Known bugs in the running version and in the currently applied features.
 - command-reference—Reference links to all commands in the running configuration.
 - **product-advisory**—Product Security Incident Response Team (PSIRT) notices, End of Life (EOL) or End of Sales (EOS) notices, or field notices (FN) that may affect the devices in your network.

To submit a request for analysis and report information from the Cisco Output Interpreter tool, perform the following steps:

SUMMARY STEPS

- **1. call-home request output-analysis** "show-command" [profile name] [ccoid user-id]
- **2.** call-home request {config-sanity | bugs-list | command-reference | product-advisory} [profile *name*] [ccoid *user-id*]

DETAILED STEPS

	Command or Action	Purpose	
Step 1	call-home request output-analysis "show-command" [profile name] [ccoid user-id]	Sends the output of the specified show command for analysis. The show command must be contained in quote	
	Example:	((**)).	
	Router# call-home request output-analysis "show diag" profile TG		
Step 2	<pre>call-home request {config-sanity bugs-list command-reference product-advisory} [profile name] [ccoid user-id] Example: Router# call-home request config-sanity profile TG</pre>	Sends the output of a predetermined set of commands such as the show running-config all , show version or show module commands, for analysis. In addition, the call home request product-advisory sub-command includes all inventory alert group commands. The keyword specified after request specifies the type of report requested.	

Example

The following example shows a request for analysis of a user-specified **show** command:

Router# call-home request output-analysis "show diag" profile TG

Manually Sending Command Output Message for One Command or a Command List

You can use the **call-home send** command to execute an IOS command or a list of IOS commands and send the command output through HTTP or e-mail protocol.

Note the following guidelines when sending the output of a command:

- The specified IOS command or list of IOS commands can be any run command, including commands for all modules. The command must be contained in quotes ("").
- If the e-mail option is selected using the "email" keyword and an e-mail address is specified, the command output is sent to that address. If neither the e-mail nor the HTTP option is specified, the output is sent in long-text format with the specified service request number to the Cisco TAC (attach@cisco.com).
- If neither the "email" nor the "http" keyword is specified, the service request number is required for both long-text and XML message formats and is provided in the subject line of the e-mail.
- If the HTTP option is specified, the CiscoTac-1 profile destination HTTP or HTTPS URL is used as the destination. The destination e-mail address can be specified so that Smart Call Home can forward the message to the e-mail address. The user must specify either the destination e-mail address or an SR number but they can also specify both.

To execute a command and send the command output, perform the following step:

SUMMARY STEPS

1. call-home send {*cli command* | *cli list*} [email *email* msg-format {long-text | xml} | http {destination-email-address *email*}] [tac-service-request *SR*#]

	Command or Action	Purpose
Step 1	<pre>Command or Action call-home send {cli command cli list} [email email msg-format {long-text xml} http {destination-email-address email}] [tac-service-request SR#] Example: Router# call-home send "show version; show running-config; show inventory" email support@example.com msg-format xml</pre>	 Purpose Executes the CLI or CLI list and sends output via e-mail or HTTP. {<i>cli command</i> <i>cli list</i>}—Specifies the IOS command or list of IOS commands (separated by ';'). It can be any run command, including commands for all modules. The commands must be contained in quotes (""). email <i>email</i> msg-format {long-text xml}—If the email option is selected, the command output will be sent to the specified e-mail address in long-text or
		 XML format with the service request number in the subject. The e-mail address, the service request number, or both must be specified. The service request number is required if the e-mail address is not specified (default is attach@cisco.com for long-text format and callhome@cisco.com for XML format). http {destination-email-address email}—If the http option is selected, the command output will be sent to

Command or Action	Purpose
	Smart Call Home backend server (URL specified in TAC profile) in XML format.
	destination-email-address <i>email</i> can be specified so that the backend server can forward the message to the e-mail address. The e-mail address, the service request number, or both must be specified.
	• tac-service-request <i>SR#</i> —Specifies the service request number. The service request number is required if the e-mail address is not specified.

Example

The following example shows how to send the output of a command to a user-specified e-mail address:

Router# call-home send "show diag" email support@example.com

The following example shows the command output sent in long-text format to attach@cisco.com, with the SR number specified:

```
Router# call-home send "show version; show run" tac-service-request 123456
```

The following example shows the command output sent in XML message format to callhome@cisco.com:

Router# call-home send "show version; show run" email callhome@cisco.com msg-format xml

The following example shows the command output sent in XML message format to the Cisco TAC backend server, with the SR number specified:

Router# call-home send "show version; show run" http tac-service-request 123456

The following example shows the command output sent to the Cisco TAC backend server through the HTTP protocol and forwarded to a user-specified email address:

Router# call-home send "show version; show run" http destination-email-address user@company.com

Configuring Diagnostic Signatures

The Diagnostic Signatures feature downloads digitally signed signatures to devices. Diagnostic Signatures (DS) files are formatted files that collate knowledge of diagnostic events and provide methods to troubleshoot them without a need to upgrade the Cisco software. The aim of DS is to deliver flexible intelligence that can detect and collect troubleshooting information that can be used to resolve known problems in customers networks.

Information About Diagnostic Signatures

- Diagnostic Signatures Overview, on page 215
- Prerequisites for Diagnostic Signatures, on page 216
- Downloading Diagnostic Signatures, on page 216
- Diagnostic Signature Workflow, on page 216
- Diagnostic Signature Events and Actions, on page 217
- Diagnostic Signature Event Detection, on page 217
- Diagnostic Signature Actions , on page 217
- Diagnostic Signature Variables, on page 218

Diagnostic Signatures Overview

Diagnostic signatures (DS) for the Call Home system provides a flexible framework that allows the defining of new events and corresponding CLIs that can analyze these events without upgrading the Cisco software.

DSs provide the ability to define more types of events and trigger types than the standard Call Home feature supports. The DS subsystem downloads and processes files on a device as well as handles callbacks for diagnostic signature events.

The Diagnostic Signature feature downloads digitally signed signatures that are in the form of files to devices. DS files are formatted files that collate the knowledge of diagnostic events and provide methods to troubleshoot these events.

DS files contain XML data to specify the event description, and these files include CLI commands or scripts to perform required actions. These files are digitally signed by Cisco or a third party to certify their integrity, reliability, and security.

The structure of a DS file can be one of the following formats:

- Metadata-based simple signature that specifies the event type and contains other information that can be used to match the event and perform actions such as collecting information by using the CLI. The signature can also change configurations on the device as a workaround for certain bugs.
- Embedded Event Manager (EEM) Tool Command Language (Tcl) script-based signature that specifies new events in the event register line and additional action in the Tcl script.
- Combination of both the formats above.

The following basic information is contained in a DS file:

- **ID** (unique number)—Unique key that represents a DS file that can be used to search a DS.
- Name (ShortDescription)-Unique description of the DS file that can be used in lists for selection.
- Description—Long description about the signature.
- Revision—Version number, which increments when the DS content is updated.
- Event & Action—Defines the event to be detected and the action to be performed after the event happens.

Prerequisites for Diagnostic Signatures

Before you download and configure diagnostic signatures (DSs) on a device, you must ensure that the following conditions are met:

- You must assign one or more DSs to the device. For more information on how to assign DSs to devices, see Downloading Diagnostic Signatures, on page 216.
- HTTP/Secure HTTP (HTTPS) transport is required for downloading DS files. You must install the certification authority (CA) certificate to enable the authentication of the destination HTTPS server.

Note If you configure the trustpool feature, the CA certificate is not required.

Downloading Diagnostic Signatures

To download the diagnostic signature (DS) file, you require the secure HTTP (HTTPS) protocol. If you have already configured an email transport method to download files on your device, you must change your assigned profile transport method to HTTPS to download and use DS.

Cisco software uses a PKI Trustpool Management feature, which is enabled by default on devices, to create a scheme to provision, store, and manage a pool of certificates from known certification authorities (CAs). The trustpool feature installs the CA certificate automatically. The CA certificate is required for the authentication of the destination HTTPS servers.

There are two types of DS update requests to download DS files: regular and forced-download. Regular download requests DS files that were recently updated. You can trigger a regular download request either by using a periodic configuration or by initiating an on-demand CLI. The regular download update happens only when the version of the requested DS is different from the version of the DS on the device. Periodic download is only started after there is any DS assigned to the device from DS web portal. After the assignment happens, the response to the periodic inventory message from the same device will include a field to notify device to start its periodic DS download/update. In a DS update request message, the status and revision number of the DS is included such that only a DS with the latest revision number is downloaded.

Forced-download downloads a specific DS or a set of DSes. You can trigger the forced-download update request only by initiating an on-demand CLI. In a force-download update request, the latest version of the DS file is downloaded irrespective of the current DS file version on the device.

The DS file is digitally signed, and signature verification is performed on every downloaded DS file to make sure it is from a trusted source.

Diagnostic Signature Workflow

The diagnostic signature feature is enabled by default in Cisco software. The following is the workflow for using diagnostic signatures:

- Find the DS(es) you want to download and assign them to the device. This step is mandatory for regular periodic download, but not required for forced download.
- The device downloads all assigned DS(es) or a specific DS by regular periodic download or by on-demand forced download.

- The device verifies the digital signature of every single DS. If verification passes, the device stores the DS file into a non-removable disk, such as bootflash or hard disk, so that DS files can be read after the device is reloaded. On the router, the DS file is stored in the bootflash:/call home directory.
- The device continues sending periodic regular DS download requests to get the latest revision of DS and replace the older one in device.
- The device monitors the event and executes the actions defined in the DS when the event happens.

Diagnostic Signature Events and Actions

The events and actions sections are the key areas used in diagnostic signatures. The event section defines all event attributes that are used for event detection. The action section lists all actions which should be performed after the event happens, such as collecting show command outputs and sending them to Smart Call Home to parse.

Diagnostic Signature Event Detection

Event detection in a DS is defined in two ways: single event detection and multiple event detection.

Single Event Detection

In single event detection, only one event detector is defined within a DS. The event specification format is one of the following two types:

- DS event specification type: syslog, periodic, configuration, Online Insertion Removal (OIR) immediate, and call home are the supported event types, where "immediate" indicates that this type of DS does not detect any events, its actions are performed once it is downloaded, and the call-home type modifies the current CLI commands defined for existing alert-group.
- The Embedded Event Manager (EEM) specification type: supports any new EEM event detector without having to modify the Cisco software.

Other than using EEM to detect events, a DS is triggered when a Tool Command Language (Tcl) script is used to specify event detection types.

Multiple Event Detection

Multiple event detection involves defining two or more event detectors, two ore more corresponding tracked object states, and a time period for the events to occur. The specification format for multiple event detection can include complex event correlation for tracked event detectors. For example, three event detectors (syslog, OIR, and IPSLA) are defined during the creation of a DS file. The correlation that is specified for these event detectors is that the DS will execute its action if both syslog and OIR events are triggered simultaneously, or if IPSLA is triggered alone.

Diagnostic Signature Actions

The diagnostic signature (DS) file consists of various actions that must be initiated when an event occurs. The action type indicates the kind of action that will be initiated in response to a certain event.

Variables are elements within a DS that are used to customize the files.

DS actions are categorized into the following four types:

• call-home

- command
- emailto
- script

DS action types call-home and emailto collect event data and send a message to call-home servers or to the defined email addresses. The message uses "diagnostic-signature" as its message type and DS ID as the message sub-type.

The commands defined for the DS action type initiate CLI commands that can change configuration of the device, collect show command outputs, or run any EXEC command on the device. The DS action type script executes Tcl scripts.

Diagnostic Signature Variables

Variables are referenced within a DS and are used to customize the DS file. All DS variable names have the prefix ds to separate them from other variables. The following are the supported DS variable types:

- System variable: variables assigned automatically by the device without any configuration changes. The Diagnostic Signatures feature supports two system variables: ds_hostname and ds_signature_id.
- Environment variable: values assigned manually by using the **environment** *variable-name variable-value* command in call-home diagnostic-signature configuration mode. Use the **show call-home diagnostic-signature** command to display the name and value of all DS environment variables. If the DS file contains unresolved environment variables, this DS will stay in pending status until the variable gets resolved.
- Prompt variable: values assigned manually by using the call-home diagnostic-signature install ds-id command in privileged EXEC mode. If you do not set this value, the status of the DS indicates pending.
- Regular expression variable: values assigned from a regular expression pattern match with predefined CLI command outputs. The value is assigned during the DS run.
- Syslog event variable: values assigned during a syslog event detection in the DS file. This variable is valid only for syslog event detection.

How to Configure Diagnostic Signatures

- Configuring the Call Home Service for Diagnostic Signatures, on page 218
- Configuring Diagnostic Signatures, on page 220

Configuring the Call Home Service for Diagnostic Signatures

Configure the Call Home Service feature to set attributes such as the contact email address where notifications related with diagnostic signatures (DS) are sent and destination HTTP/secure HTTP (HTTPS) URL to download the DS files from.

You can also create a new user profile, configure correct attributes and assign it as the DS profile. For periodic downloads, the request is sent out just following full inventory message. By changing the inventory periodic configuration, the DS periodic download also gets rescheduled.

The predefined CiscoTAC-1 profile is enabled as a DS profile by default and we recommend that you use it. If used, you only need to change the destination transport-method to the **http** setting.

SUMMARY STEPS

- 1. configure terminal
- 2. service call-home
- 3. call-home
- 4. contact-email-addr email-address
- 5. mail-server {*ipv4-addr* | *name*} priority *number*
- 6. profile profile-name
- 7. destination transport-method {email | http}
- 8. destination address {email address | http url}
- **9. subscribe-to-alert-group inventory** [**periodic** {**daily** *hh:mm* | **monthly** *day hh:mm* | **weekly** *day hh:mm*}]
- 10. exit

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 2	service call-home	Enables Call Home service on a device.	
	Example:		
	Router(config)# service call-home		
Step 3	call-home	Enters call-home configuration mode for the configuration	
	Example:	of Call Home settings.	
	Router(config)# call-home		
Step 4	contact-email-addr email-address	(Optional) Assigns an email address to be used for Call	
	Example:	Home customer contact.	
	Router(cfg-call-home)# contact-email-addr userid@example.com		
Step 5	mail-server {ipv4-addr name} priority number	(Optional) Configures a Simple Mail Transfer Protocol	
	Example:	(SMTP) email server address for Call Home. This command is only used when sending email is part of the	
	<pre>Router(cfg-call-home)# mail-server 10.1.1.1 priority 4</pre>	actions defined in any DS.	
Step 6	profile profile-name	Configures a destination profile for Call Home and enters	
	Example:	call-home profile configuration mode.	

	Command or Action	Purpose		
	Router(cfg-call-home) # profile user1			
Step 7	<pre>destination transport-method {email http} Example: Router(cfg-call-home-profile)# destination transport-method http</pre>	Specifies a transport method for a destination profile in the Call Home.NoteTo configure diagnostic signatures, you must use the http option.		
Step 8	destination address {email address http url} Example: Router(cfg-call-home-profile)# destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService	Configures the address type and location to which call-home messages are sent. Note To configure diagnostic signatures, you must use the http option.		
Step 9	<pre>subscribe-to-alert-group inventory [periodic {daily hh:mm monthly day hh:mm weekly day hh:mm}] Example: Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic daily 14:30</pre>	 Configures a destination profile to send messages for the Inventory alert group for Call Home. This command is used only for the periodic downloading of DS files. 		
Step 10	<pre>exit Example: Router(cfg-call-home-profile)# exit</pre>	Exits call-home profile configuration mode and returns to call-home configuration mode.		

What to do next

Set the profile configured in the previous procedure as the DS profile and configure other DS parameters.

Configuring Diagnostic Signatures

Before you begin

Configure the Call Home feature to set attributes for the Call Home profile. You can either use the default CiscoTAC-1 profile or use the newly-created user profile.

SUMMARY STEPS

- 1. call-home
- 2. diagnostic-signature
- **3.** profile *ds*-profile-name
- **4. environment** *ds_env-var-name ds-env-var-value*
- 5. end
- **6.** call-home diagnostic-signature [{deinstall | download} {ds-id | all} | install ds-id]
- 7. show call-home diagnostic-signature [*ds-id* {actions | events | prerequisite | prompt | variables | failure | statistics | download}]

DETAILED STEPS

	Command or Action	Purpose		
Step 1	<pre>call-home Example: Router(config)# call-home</pre>	Enters call-home configuration mode for the configuration of Call Home settings. Enters call-home diagnostic signature mode. Specifies the destination profile on a device that DS uses.		
Step 2	<pre>diagnostic-signature Example: Router(cfg-call-home)# diagnostic-signature</pre>			
Step 3	<pre>profile ds-profile-name Example: Router(cfg-call-home-diag-sign)# profile user1</pre>			
Step 4	<pre>environment ds_env-var-name ds-env-var-value Example: Router(cfg-call-home-diag-sign)# environment ds_env1 envarval</pre>	Sets the environment variable value for DS on a device.		
Step 5	<pre>end Example: Router(cfg-call-home-diag-sign)# end</pre>	Exits call-home diagnostic signature mode and returns to privileged EXEC mode.		
Step 6	call-home diagnostic-signature [{deinstall download} {ds-id all} install ds-id] Example: Router# call-home diagnostic-signature download 6030	Downloads, installs, and uninstalls diagnostic signature files on a device.		
Step 7	show call-home diagnostic-signature [ds-id {actions events prerequisite prompt variables failure statistics download}]	Displays the call-home diagnostic signature information.		
	Example: Router# show call-home diagnostic-signature actions	5		

Configuration Examples for Diagnostic Signatures

The following example shows how to enable the periodic downloading request for diagnostic signature (DS) files. This configuration will send download requests to the service call-home server daily at 2:30 p.m. to check for updated DS files. The transport method is set to HTTP.

```
Router> enable
Router# configure terminal
Router(config)# service call-home
Router(config)# call-home
Router(cfg-call-home)# contact-email-addr userid@example.com
Router(cfg-call-home)# mail-server 10.1.1.1 priority 4
Router(cfg-call-home)# profile user-1
```

```
Router(cfg-call-home-profile)# destination transport-method http
Router(cfg-call-home-profile)# destination address http
https://tools.cisco.com/its/service/oddce/services/DDCEService
Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic daily 14:30
Router(cfg-call-home-profile)# exit
Router(cfg-call-home)# diagnostic-signature
Router(cfg-call-home-diag-sign)# profile user1
Router(cfg-call-home-diag-sign)# environment ds_env1 envarval
Router(cfg-call-home-diag-sign)# end
```

The following is sample output from the **show call-home diagnostic-signature** command for the configuration displayed above:

```
outer# show call-home diagnostic-signature
```

Current o Diagnosti Profile: Environme ds env1:	diagnostic-signature settings: ic-signature: enabled user1 (status: ACTIVE) ent variable: abc				
Downloade DS ID	DS Name	Revision	Status	Last Update	e (GMT+00:00)
6015 6030 6032 6033	CronInterval ActCH MultiEvents PureTCL	1.0 1.0 1.0 1.0	registered registered registered registered	2013-01-16 2013-01-16 2013-01-16 2013-01-16	04:49:52 06:10:22 06:10:37 06:11:48

Displaying Call Home Configuration Information

You can use variations of the **show call-home** command to display Call Home configuration information.

To display the configured Call Home information, perform the following:

SUMMARY STEPS

- 1. show call-home
- **2**. show call-home detail
- 3. show call-home alert-group
- 4. show call-home mail-server status
- **5.** show call-home profile {all | name}
- 6. show call-home statistics [detail | profile profile_name]

	Command or Action	Purpose	
Step 1	show call-home	Displays the Call Home configuration in summary.	
	Example:		
	Router# show call-home		
Step 2	show call-home detail	Displays the Call Home configuration in detail.	
	Example:		

	Command or Action	Purpose		
	Router# show call-home detail			
Step 3	show call-home alert-group	Displays the available alert groups and their status.		
	Example:			
	Router# show call-home alert-group			
Step 4	show call-home mail-server status	Checks and displays the availability of the configured e-mail		
	Example:	server(s).		
	Router# show call-home mail-server status			
Step 5	show call-home profile {all name}	Displays the configuration of the specified destination		
	Example:	profile. Use the all keyword to display the configuration of		
	Router# show call-home profile all	an destination promes.		
Step 6	<pre>show call-home statistics [detail profile profile_name]</pre>	Displays the statistics of Call Home events.		
	Example:			
	Router# show call-home statistics			

Examples

Call Home Information in Summary

Call Home Information in Detail

Available Call Home Alert Groups

E-Mail Server Status Information

Information for All Destination Profiles

Information for a User-Defined Destination Profile

Call Home Statistics

The following examples show the sample output when using different options of the **show call-home** command.

```
Router# show call-home
Current call home settings:
   call home feature : enable
   call home message's from address: router@example.com
   call home message's reply-to address: support@example.com
   vrf for call-home messages: Not yet set up
   contact person's email address: technical@example.com
```

```
contact person's phone number: +1-408-555-1234
   street address: 1234 Picaboo Street, Any city, Any state, 12345
   customer ID: ExampleCorp
   contract ID: X123456789
   site ID: SantaClara
    source ip address: Not yet set up
   source interface: GigabitEthernet0/0
   Mail-server[1]: Address: 192.0.2.2 Priority: 1
   Mail-server[2]: Address: 203.0.113.1 Priority: 2
   http proxy: 192.0.2.1:80
   aaa-authorization: disable
   aaa-authorization username: callhome (default)
    data-privacy: normal
   syslog throttling: enable
   Rate-limit: 20 message(s) per minute
    Snapshot command[0]: show version
   Snapshot command[1]: show clock
Available alert groups:
   Keyword
                           State Description
    _____
   configuration
                          Enable configuration info
   crash
                           Enable crash and traceback info
   environment
                           Enable environmental info
   inventory
                           Enable inventory info
                           Enable snapshot info
   snapshot
   syslog
                          Enable syslog info
Profiles:
   Profile Name: campus-noc
   Profile Name: CiscoTAC-1
Router#
Router# show call-home detail
Current call home settings:
   call home feature : enable
   call home message's from address: router@example.com
   call home message's reply-to address: support@example.com
   vrf for call-home messages: Not yet set up
   contact person's email address: technical@example.com
   contact person's phone number: +1-408-555-1234
   street address: 1234 Picaboo Street, Any city, Any state, 12345
   customer ID: ExampleCorp
   contract ID: X123456789
   site ID: SantaClara
   source ip address: Not yet set up
   source interface: GigabitEthernet0/0
   Mail-server[1]: Address: 192.0.2.2 Priority: 1
   Mail-server[2]: Address: 203.0.113.1 Priority: 2
   http proxy: 192.0.2.1:80
   aaa-authorization: disable
   aaa-authorization username: callhome (default)
    data-privacy: normal
   syslog throttling: enable
   Rate-limit: 20 message(s) per minute
```

```
Snapshot command[0]: show version
   Snapshot command[1]: show clock
Available alert groups:
   Keyword
                       State Description
   _____
   configuration
                      Enable configuration info
                     Enable crash and traceback info
   crash
   environment
                     Enable environmental info
   inventory
                      Enable inventory info
                      Enable snapshot info
Enable syslog info
   snapshot
   syslog
Profiles:
Profile Name: campus-noc
   Profile status: ACTIVE
   Preferred Message Format: xml
   Message Size Limit: 3145728 Bytes
   Transport Method: email
   Email address(es): noc@example.com
   HTTP address(es): Not yet set up
   Alert-group
                       Severitv
   _____
   configuration
                      normal
                      normal
   crash
   environment
                        debug
   inventory
                       normal
   Syslog-Pattern
                      Severity
   ----- -----
 .*CALL LOOP.* debug
Profile Name: CiscoTAC-1
   Profile status: INACTIVE
   Profile mode: Full Reporting
   Preferred Message Format: xml
   Message Size Limit: 3145728 Bytes
   Transport Method: email
   Email address(es): callhome@cisco.com
   HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService
   Periodic configuration info message is scheduled every 14 day of the month at 11:12
   Periodic inventory info message is scheduled every 14 day of the month at 10:57
   Alert-group
                        Severitv
    ----- -----
   crash
                        normal
   environment
                        minor
   Syslog-Pattern
                      Severity
   ----- -----
 .*CALL LOOP.* debug
Router#
Router# show call-home alert-group
Available alert groups:
   Keyword
                      State Description
   _____
   configuration Enable configuration info
   crash
                       Enable crash and traceback info
   environment Enable environmental info
```

```
Enable inventory info
   inventory
                          Enable snapshot info
   snapshot
                          Enable syslog info
   syslog
Router#
Router# show call-home mail-server status
Please wait. Checking for mail server status ...
   Mail-server[1]: Address: 192.0.2.2 Priority: 1 [Not Available]
   Mail-server[2]: Address: 203.0.113.1 Priority: 2 [Available]
Router#
Router# show call-home profile all
Profile Name: campus-noc
   Profile status: ACTIVE
   Preferred Message Format: xml
   Message Size Limit: 3145728 Bytes
   Transport Method: email
   Email address(es): noc@example.com
   HTTP address(es): Not yet set up
   Alert-group
                          Severitv
   ----- -----
   configuration
                          normal
   crash
                           normal
   environment
                           debug
   inventory
                          normal
   Syslog-Pattern
                       Severity
   ----- -----
 .*CALL LOOP.*
                        debuq
Profile Name: CiscoTAC-1
   Profile status: INACTIVE
   Profile mode: Full Reporting
   Preferred Message Format: xml
   Message Size Limit: 3145728 Bytes
   Transport Method: email
   Email address(es): callhome@cisco.com
   HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService
   Periodic configuration info message is scheduled every 14 day of the month at 11:12
   Periodic inventory info message is scheduled every 14 day of the month at 10:57
   Alert-group
                          Severity
   _____
   crash
                           normal
   environment
                           minor
   Syslog-Pattern
                       Severity
   ----- -----
 .*CALL LOOP.*
                      debuq
Router#
Router# show call-home profile campus-noc
Profile Name: campus-noc
   Profile status: ACTIVE
   Preferred Message Format: xml
   Message Size Limit: 3145728 Bytes
   Transport Method: email
   Email address(es): noc@example.com
   HTTP address(es): Not yet set up
```

Alert-group		Severity		
configuratio	on	normal		
crasn		normal		
environment		aebug		
inventory		normal		
Syslog-Patte	ern	Severity		
.*CALL_LOOP.*	del	oug		
Router#				
Router# show cal	ll-home statis	tics		
Message Types	Total	Email	HTTP	
Total Success	3	3	0	
Config	3	3	0	
Crash	0	0	0	
Environment	0	0	0	
Inventory	0	0	0	
Snapshot	0	0	0	
SysLog	0	0	0	
Test	0	0	0	
Request	0	0	0	
Send-CLI	0	0	0	
Total In-Queue	0	0	0	
Config	0	0	0	
Crash	0	0	0	
Environment	0	0	0	
Inventory	0	0	0	
Snapshot	0	0	0	
SysLog	0	0	0	
Test	0	0	0	
Request	0	0	0	
Send-CLI	0	0	0	
Total Failed	0	0	0	
Config	0	0	0	
Crash	0	0	0	
Environment	0	0	0	
Inventory	0	0	0	
Snapshot	0	0	0	
SysLog	0	0	0	
Test	0	0	0	
Request	0	0	0	
Send-CLI	0	0	0	
Total Ratelimit				
-dropped	0	0	0	
Config	0	0	0	
Crash	0	0	0	
Environment	0	0	0	
Inventory	0	0	0	
Snapshot	0	0	0	
SysLog	0	0	0	
Test	0	0	0	
Request	0	0	0	
Send-CLI	0	0	0	
Last call-home r	message sent t	ime: 2011-09-26	23:26:50 GMT-08:00	
1.0 U C C L				

Default Call Home Settings

The following table lists the default Call Home settings.

Table 21: Default Call Home Settings

Parameters	Default
Call Home feature status	Disabled
User-defined profile status	Active
Predefined Cisco TAC profile status	Inactive
Transport method	E-mail
Message format type	XML
Destination message size for a message sent in long text, short text, or XML format	3,145,728
Alert group status	Enabled
Call Home message severity threshold	Debug
Message rate limit for messages per minute	20
AAA Authorization	Disabled
Call Home syslog message throttling	Enabled
Data privacy level	Normal

Alert Group Trigger Events and Commands

Call Home trigger events are grouped into alert groups, with each alert group assigned commands to execute when an event occurs. The command output is included in the transmitted message. The following table lists the trigger events included in each alert group, including the severity level of each event and the executed commands for the alert group.

Alert Group	Call Home Trigger Event	Syslog Event	Severity	Description and Commands Executed
Crash	SYSTEM_CRASH	_	-	Events related to software crash.
				The following commands are executed:
				show version
				show logging
				show region
				show inventory
				show stack
				crashinfo file (this command shows the contents of the crashinfo file)
-	TRACEBACK	_	-	Detects software traceback events.
				The following commands are executed:
				show version
				show logging
				show region
				show stack

Table 22: Call Home Alert Groups, Events, and Actions

Alert Group	Call Home Trigger Event	Syslog Event	Severity	Description and Commands Executed
Configuration	_	-	-	User-generated request for configuration or configuration change event.
				The following commands are executed:
				show platform
				show inventory
				show running-config all
				show startup-config
				show version
Environmental	-	-	-	Events related to power, fan, and environment sensing elements such as temperature alarms.
				The following commands are executed:
				show environment
				show inventory
				show platform
				show logging
_	-	SHUT	0	Environmental Monitor initiated shutdown.
_	-	ENVCRIT	2	Temperature or voltage measurement exceeded critical threshold.
_	-	BLOWER	3	Required number of fan trays is not present.

Alert Group	Call Home Trigger Event	Syslog Event	Severity	Description and Commands Executed
-	_	ENVWARN	4	Temperature or voltage measurement exceeded warning threshold.
_	-	RPSFAIL	4	Power supply may have a failed channel.
_	ENVM	PSCHANGE	6	Power supply name change.
_	-	PSLEV	6	Power supply state change.
_	-	PSOK	6	Power supply now appears to be working correctly.

Alert Group	Call Home Trigger Event	Syslog Event	Severity	Description and Commands Executed
Inventory	-	-	_	

Alert Group	Call Home Trigger Event	Syslog Event	Severity	Description and Commands Executed
				Inventory status should be provided whenever a unit is cold-booted or when FRUs are inserted or removed. This is considered a noncritical event, and the information is used for status and entitlement.
				Commands executed for all Inventory messages sent in anonymous mode and for Delta Inventory message sent in full registration mode:
				show diag all eeprom detail
				show version
				show inventory oid
				show platform
				Commands executed for Full Inventory message sent in full registration mode:
				show platform
				show diag all eeprom detail
				show version
				show inventory oid
				show bootflash: all
				show data-corruption
				show interfaces
				show file systems
				show memory statistics

Alert Group	Call Home Trigger Event	Syslog Event	Severity	Description and Commands Executed
				show process memory
				show process cpu
				show process cpu history
				show license udi
				show license detail
				show buffers
-	HARDWARE_ REMOVAL	REMCARD	6	Card removed from slot %d, interfaces disabled.
-	HARDWARE_ INSERTION	INSCARD	6	Card inserted in slot %d, interfaces administratively shut down.
Syslog	_	-	-	Event logged to syslog.
				The following commands are executed:
				show inventory
				show logging
-	SYSLOG	LOG_EMERG	0	System is unusable.
_	SYSLOG	LOG_ALERT	1	Action must be taken immediately.
_	SYSLOG	LOG_CRIT	2	Critical conditions.
_	SYSLOG	LOG_ERR	3	Error conditions.
_	SYSLOG	LOG_WARNING	4	Warning conditions.
	SYSLOG	LOG_NOTICE	5	Normal but signification condition.
_	SYSLOG	LOG_INFO	6	Informational.
-	SYSLOG	LOG_DEBUG	7	Debug-level messages.

L

Alert Group	Call Home Trigger Event	Syslog Event	Severity	Description and Commands Executed
Test	-	TEST	-	User-generated test message.
				The following commands are executed:
				show platform
				show inventory
				show version

Note

Cisco ISR 4321 does not display the serial numbers of power supply and fan tray with the **show inventory** command.

Message Contents

This section consists of tables which list the content formats of alert group messages.

This section also includes the following subsections that provide sample messages:

- Sample Syslog Alert Notification in Long-Text Format, on page 240
- Sample Syslog Alert Notification in XML Format, on page 242

The following table lists the content fields of a short text message.

Table 23: Format for a Short Text Message

Data Item	Description
Device identification	Configured device name
Date/time stamp	Time stamp of the triggering event
Error isolation message	Plain English description of triggering event
Alarm urgency level	Error level such as that applied to a system message

The following table shows the content fields that are common to all long text and XML messages. The fields specific to a particular alert group message are inserted at a point between the common fields. The insertion point is identified in the table.

Data Item (Plain Text and XML)	Description (Plain Text and XML)	Call-Home Message Tag (XML Only)
Time stamp	Date and time stamp of event in ISO time notation: YYYY-MM-DD HH:MM:SS GMT+HH:MM.	CallHome/EventTime
Message name	Name of message. Specific event names are listed in the Alert Group Trigger Events and Commands, on page 228.	For short text message only
Message type	Specifically "Call Home".	CallHome/Event/Type
Message subtype	Specific type of message: full, delta, test	CallHome/Event/SubType
Message group	Specifically "reactive". Optional because default is "reactive".	For long-text message only
Severity level	Severity level of message (see Message Severity Threshold, on page 203).	Body/Block/Severity
Source ID	Product type for routing through the workflow engine. This is typically the product family name.	For long-text message only

Table 24: Common Fields for All Long Text and XML Messages
Data Item (Plain Text and XML)	Description (Plain Text and XML)	Call-Home Message Tag (XML Only)	
Device ID	Unique device identifier (UDI) for end device generating message. This field should be empty if the message is nonspecific to a fabric switch. The format is <i>type@Sid@serial</i> .	CallHome/CustomerData/ ContractData/DeviceId	
	• <i>type</i> is the product model number from backplane IDPROM.		
	• @ is a separator character.		
	• <i>Sid</i> is C, identifying the serial ID as a chassis serial number.		
	• <i>serial</i> is the number identified by the Sid field.		
	Example: CISCO3845@C@12345678		
	Note For the following platforms, the UDI is the Printed Circuit Board number (PCB), and not the chassis Serial Number (SN):		
	• ISR 4221		
	• ISR 4321		
	• ISR 4331		
	• ISR 4351		
	• ISR 4431		
	• ISR 4451		
Customer ID	Optional user-configurable field used for contract information or other ID by any support service.	CallHome/CustomerData/ ContractData/CustomerId	
Contract ID	Optional user-configurable field used for contract information or other ID by any support service.	CallHome/CustomerData/ ContractData/CustomerId	
Site ID	Optional user-configurable field used for Cisco-supplied site ID or other data meaningful to alternate support service.	CallHome/CustomerData/ ContractData/CustomerId	

Data Item (Plain Text and XML)	Description (Plain Text and XML)	Call-Home Message Tag (XML Only)	
Server ID	If the message is generated from the fabric switch, this is the unique device identifier (UDI) of the switch.	For long text message only.	
	• <i>type</i> is the product model number from backplane IDPROM.		
	• @ is a separator character.		
	• <i>Sid</i> is C, identifying the serial ID as a chassis serial number.		
	• <i>serial</i> is the number identified by the Sid field.		
	Example: CISCO3845@C@12345678		
Message description	Short text describing the error.	CallHome/MessageDescription	
Device name	Node that experienced the event. This is the host name of the device.	CallHome/CustomerData/ SystemInfo/NameName	
Contact name	Name of person to contact for issues associated with the node experiencing the event.	CallHome/CustomerData/ SystemInfo/Contact	
Contact e-mail	E-mail address of person identified as contact for this unit.	CallHome/CustomerData/ SystemInfo/ContactEmail	
Contact phone number	Phone number of the person identified as the contact for this unit.	CallHome/CustomerData/ SystemInfo/ContactPhoneNumber	
Street address	Optional field containing street address for RMA part shipments associated with this unit.	CallHome/CustomerData/ SystemInfo/StreetAddress	
Model name	Model name of the router. This is the "specific model as part of a product family name.	CallHome/Device/Cisco_Chassis/Model	
Serial number	Chassis serial number of the unit.	CallHome/Device/Cisco_Chassis/ SerialNumber	
Chassis part number	Top assembly number of the chassis.	CallHome/Device/ Cisco_Chassis/AdditionalInformation/ AD@name="PartNumber"	

Data Item (Plain Text and XML)	Description (Plain Text and XML)	Call-Home Message Tag (XML Only)
System object ID	System Object ID that uniquely identifies the system.	CallHome/Device/ Cisco_Chassis/AdditionalInformation/ AD@name="sysObjectID"
System description	System description for the managed element.	CallHome/Device/ Cisco_Chassis/AdditionalInformation/ AD@name="sysDescr"

The following table shows the inserted fields specific to a particular alert group message.

Note The following fields may be repeated if multiple commands are executed for this alert group.

Table 25: Inserted Fields Specific to a Particular Alert Group Message

Command output name	Exact name of the issued command.	/aml/Attachments/Attachment/Name
Attachment type	Attachment type. Usually "inline".	/aml/Attachments/Attachment@type
MIME type	Normally "text" or "plain" or encoding type.	/aml/Attachments/Attachment/ Data@encoding
Command output text	Output of command automatically executed (see Alert Group Trigger Events and Commands, on page 228).	/mml/attachments/attachment/atdata

The following table shows the inserted content fields for reactive messages (system failures that require a TAC case) and proactive messages (issues that might result in degraded system performance).

Table 26: Inserted Fields for a Reactive or Proactive Event Message

Data Item (Plain Text and XML)	Description (Plain Text and XML)	Call-Home Message Tag (XML Only)
Chassis hardware version	Hardware version of chassis	CallHome/Device/Cisco_Chassis/ HardwareVersion
Supervisor module software version	Top-level software version	CallHome/Device/Cisco_Chassis/ AdditionalInformation/AD@name= "SoftwareVersion"
Affected FRU name	Name of the affected FRU generating the event message	CallHome/Device/Cisco_Chassis/ Cisco_Card/Model
Affected FRU serial number	Serial number of affected FRU	CallHome/Device/Cisco_Chassis/ Cisco_Card/SerialNumber
Affected FRU part number	Part number of affected FRU	CallHome/Device/Cisco_Chassis/ Cisco_Card/PartNumber

Data Item (Plain Text and XML)	Description (Plain Text and XML)	Call-Home Message Tag (XML Only)
FRU slot	Slot number of FRU generating the event message	CallHome/Device/Cisco_Chassis/ Cisco_Card/LocationWithinContainer
FRU hardware version	Hardware version of affected FRU	CallHome/Device/Cisco_Chassis/ Cisco_Card/HardwareVersion
FRU software version	Software version(s) running on affected FRU	CallHome/Device/Cisco_Chassis/ Cisco_Card/SoftwareIdentity/ VersionString

The following table shows the inserted content fields for an inventory message.

Table 27: Inserted Fields for an Inventory Event Message

Data Item (Plain Text and XML)	Description (Plain Text and XML)	Call-Home Message Tag (XML Only)
Chassis hardware version	Hardware version of chassis	CallHome/Device/Cisco_Chassis/ HardwareVersion
Supervisor module software version	Top-level software version	CallHome/Device/Cisco_Chassis/ AdditionalInformation/AD@name= "SoftwareVersion"
FRU name	Name of the affected FRU generating the event message	CallHome/Device/Cisco_Chassis/ Cisco_Card/Model
FRU s/n	Serial number of FRU	CallHome/Device/Cisco_Chassis/ Cisco_Card/SerialNumber
FRU part number	Part number of FRU	CallHome/Device/Cisco_Chassis/ Cisco_Card/PartNumber
FRU slot	Slot number of FRU	CallHome/Device/Cisco_Chassis/ Cisco_Card/LocationWithinContainer
FRU hardware version	Hardware version of FRU	CallHome/Device/Cisco_Chassis/ CiscoCard/HardwareVersion
FRU software version	Software version(s) running on FRU	CallHome/Device/Cisco_Chassis /Cisco_Card/SoftwareIdentity/ VersionString

Sample Syslog Alert Notification in Long-Text Format

The following example shows a Syslog alert notification in long-text format:

```
TimeStamp : 2014-08-13 21:41 GMT+00:00
Message Name : syslog
Message Type : Call Home
Message Group : reactive
Severity Level : 2
Source ID : ISR 4400
Device ID : ISR4451-X/K9@C@FTX1830AKF9
Customer ID :
Contract ID :
```

```
Site ID :
Server ID : ISR4451-X/K9@C@FTX1830AKF9
Event Description : *Aug 13 21:41:35.835: %CLEAR-5-COUNTERS: Clear counter on all interfaces
by console
System Name : Router
Contact Email : admin@yourdomain.com
Contact Phone :
Street Address :
Affected Chassis : ISR4451-X/K9
Affected Chassis Serial Number : FTX1830AKF9
Affected Chassis Part No : 800-36894-03
Affected Chassis Hardware Version : 1.0
Supervisor Software Version : 15.4 (20140812:034256)
Command Output Name : show logging
Attachment Type : command output
MIME Type : text/plain
Command Output Text : show logging
Syslog logging: enabled (0 messages dropped, 4 messages rate-limited, 0 flushes, 0 overruns,
xml disabled, filtering disabled)
No Active Message Discriminator.
No Inactive Message Discriminator.
    Console logging: level debugging, 71 messages logged, xml disabled,
                     filtering disabled
    Monitor logging: level debugging, 0 messages logged, xml disabled,
                     filtering disabled
    Buffer logging: level debugging, 73 messages logged, xml disabled,
                    filtering disabled
    Exception Logging: size (4096 bytes)
    Count and timestamp logging messages: disabled
    Persistent logging: disabled
No active filter modules.
    Trap logging: level informational, 70 message lines logged
                                       VRF Name:
        Logging Source-Interface:
Log Buffer (4096 bytes):
*Aug 13 21:38:04.994: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console
*Aug 13 21:40:55.706: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console
*Aug 13 21:41:27.042: %SYS-5-CONFIG I: Configured from console by console
Router#
Command Output Name : show inventory
Attachment Type : command output
MIME Type : text/plain
Command Output Text : show inventory
NAME: "Chassis", DESCR: "Cisco ISR4451 Chassis"
PID: ISR4451-X/K9
                     , VID: V03, SN: FTX1830AKF9
NAME: "Power Supply Module 0", DESCR: "450W AC Power Supply for Cisco ISR4450, ISR4350"
                      , VID: V01, SN: DCA1822X0G4
PID: PWR-4450-AC
NAME: "Fan Tray", DESCR: "Cisco ISR4450, ISR4350 Fan Assembly"
PID: ACS-4450-FANASSY , VID:
                               , SN:
NAME: "module 0", DESCR: "Cisco ISR4451 Built-In NIM controller"
PID: ISR4451-X/K9
                      , VID:
                                , SN:
```

NAME: "NIM subslot 0/0", DESCR: "Front Panel 4 ports Gigabitethernet Module" PID: ISR4451-X-4x1GE , VID: V01, SN: JAB092709EL NAME: "module 1", DESCR: "Cisco ISR4451 Built-In SM controller" PID: ISR4451-X/K9 , VID: , SN: NAME: "module 2", DESCR: "Cisco ISR4451 Built-In SM controller" , VID: PID: ISR4451-X/K9 , SN: NAME: "module R0", DESCR: "Cisco ISR4451 Route Processor" , VID: V03, SN: FOC18271QLX PID: ISR4451-X/K9 NAME: "module F0", DESCR: "Cisco ISR4451 Forwarding Processor" PID: ISR4451-X/K9 , VID: , SN:

```
Router#
```

Sample Syslog Alert Notification in XML Format

The following example shows a Syslog alert notification in XML format:

```
<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope">
<soap-env:Header>
<aml-session:Session xmlns:aml-session="http://www.cisco.com/2004/01/aml-session"
soap-env:mustUnderstand="true"
soap-env:role="http://www.w3.org/2003/05/soap-envelope/role/next">
<aml-session:To>http://tools.cisco.com/neddce/services/DDCEService</aml-session:To>
<aml-session:Path>
<aml-session:Via>http://www.cisco.com/appliance/uri</aml-session:Via>
</aml-session:Path>
<aml-session:From>http://www.cisco.com/appliance/uri</aml-session:From>
<aml-session:MessageId>M4:FTX1830AKF9:53EBDBDA</aml-session:MessageId>
</aml-session:Session>
</soap-env:Header>
<soap-env:Body>
<aml-block:Block xmlns:aml-block="http://www.cisco.com/2004/01/aml-block">
<aml-block:Header>
<aml-block:Type>http://www.cisco.com/2005/05/callhome/syslog</aml-block:Type>
<aml-block:CreationDate>2014-08-13 21:42:50 GMT+00:00</aml-block:CreationDate>
<aml-block:Builder>
<aml-block:Name>ISR 4400</aml-block:Name>
<aml-block:Version>2.0</aml-block:Version>
</aml-block:Builder>
<aml-block:BlockGroup>
<aml-block:GroupId>G5:FTX1830AKF9:53EBDBDA</aml-block:GroupId>
<aml-block:Number>0</aml-block:Number>
<aml-block:IsLast>true</aml-block:IsLast>
<aml-block:IsPrimary>true</aml-block:IsPrimary>
<aml-block:WaitForPrimary>false</aml-block:WaitForPrimary>
</aml-block:BlockGroup>
<aml-block:Severity>2</aml-block:Severity>
</aml-block:Header>
<aml-block:Content>
<ch:CallHome xmlns:ch="http://www.cisco.com/2005/05/callhome" version="1.0">
<ch:EventTime>2014-08-13 21:42:49 GMT+00:00</ch:EventTime>
<ch:MessageDescription>*Aug 13 21:42:49.406: %CLEAR-5-COUNTERS: Clear counter on all
interfaces by console</ch:MessageDescription>
<ch:Event>
<ch:Type>syslog</ch:Type>
<ch:SubType></ch:SubType>
<ch:Brand>Cisco Systems</ch:Brand>
```

<ch:Series>ISR XE Series Routers</ch:Series> </ch:Event> <ch:CustomerData> <ch:UserData> <ch:Email>admin@yourdomain.com</ch:Email> </ch:UserData> <ch:ContractData> <ch:CustomerId></ch:CustomerId> <ch:SiteId></ch:SiteId> <ch:ContractId></ch:ContractId> <ch:DeviceId>ISR4451-X/K9@C@FTX1830AKF9</ch:DeviceId> </ch:ContractData> <ch:SystemInfo> <ch:Name>Router</ch:Name> <ch:Contact></ch:Contact> <ch:ContactEmail>admin@yourdomain.com</ch:ContactEmail> <ch:ContactPhoneNumber></ch:ContactPhoneNumber> <ch:StreetAddress></ch:StreetAddress> </ch:SystemInfo> <ch:CCOID></ch:CCOID> </ch:CustomerData> <ch:Device> <rme:Chassis xmlns:rme="http://www.cisco.com/rme/4.0"> <rme:Model>ISR4451-X/K9</rme:Model> <rme:HardwareVersion>1.0</rme:HardwareVersion> <rme:SerialNumber>FTX1830AKF9</rme:SerialNumber> <rme:AdditionalInformation> <rme:AD name="PartNumber" value="800-36894-03" /> <rme:AD name="SoftwareVersion" value="15.4(20140812:034256)" /> <rme:AD name="SystemObjectId" value="1.3.6.1.4.1.9.1.1707" /> <rme:AD name="SystemDescription" value="Cisco IOS Software, ISR Software (X86 64 LINUX IOSD-UNIVERSALK9-M), Experimental Version 15.4(20140812:034256) [v154_3_s_xe313_throttle_BLD_BLD_V154_3_S_XE313_THROTTLE_LATEST_20140812_020034-ios 150] Copyright (c) 1986-2014 by Cisco Systems, Inc. Compiled Tue 12-Aug-14 00:13 by mcpre" /> <rme:AD name="ServiceNumber" value="" /> <rme:AD name="ForwardAddress" value="" /> </rme:AdditionalInformation> </rme:Chassis> </ch:Device> </ch:CallHome> </aml-block:Content> <aml-block:Attachments> <aml-block:Attachment type="inline"> <aml-block:Name>show logging</aml-block:Name> <aml-block:Data encoding="plain"> <! [CDATA[show logging Syslog logging: enabled (0 messages dropped, 4 messages rate-limited, 0 flushes, 0 overruns, xml disabled, filtering disabled) No Active Message Discriminator. No Inactive Message Discriminator. Console logging: level debugging, 75 messages logged, xml disabled, filtering disabled

Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled Buffer logging: level debugging, 77 messages logged, xml disabled, filtering disabled Exception Logging: size (4096 bytes) Count and timestamp logging messages: disabled

Persistent logging: disabled

No active filter modules. Trap logging: level informational, 74 message lines logged Logging Source-Interface: VRF Name: Log Buffer (4096 bytes): *Aug 13 21:42:20.187: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console *Aug 13 21:42:23.364: %SYS-5-CONFIG I: Configured from console by console Router#]]></aml-block:Data> </aml-block:Attachment> <aml-block:Attachment type="inline"> <aml-block:Name>show inventory</aml-block:Name> <aml-block:Data encoding="plain"> <! [CDATA[show inventory NAME: "Chassis", DESCR: "Cisco ISR4451 Chassis" PID: ISR4451-X/K9 , VID: V03, SN: FTX1830AKF9 NAME: "Power Supply Module 0", DESCR: "450W AC Power Supply for Cisco ISR4450, ISR4350" PID: PWR-4450-AC , VID: V01, SN: DCA1822X0G4 NAME: "Fan Tray", DESCR: "Cisco ISR4450, ISR4350 Fan Assembly" PID: ACS-4450-FANASSY , VID: , SN: NAME: "module 0", DESCR: "Cisco ISR4451 Built-In NIM controller" PID: ISR4451-X/K9 , VID: , SN: NAME: "NIM subslot 0/0", DESCR: "Front Panel 4 ports Gigabitethernet Module" PID: ISR4451-X-4x1GE , VID: V01, SN: JAB092709EL NAME: "module 1", DESCR: "Cisco ISR4451 Built-In SM controller" PID: ISR4451-X/K9 , VID: , SN: NAME: "module 2", DESCR: "Cisco ISR4451 Built-In SM controller" , VID: PID: ISR4451-X/K9 , SN: NAME: "module R0", DESCR: "Cisco ISR4451 Route Processor" PID: ISR4451-X/K9 , VID: V03, SN: FOC18271QLX NAME: "module F0", DESCR: "Cisco ISR4451 Forwarding Processor" , VID: , SN: PID: ISR4451-X/K9 Router#]]></aml-block:Data> </aml-block:Attachment> </aml-block:Attachments> </aml-block:Block> </soap-env:Body> </soap-env:Envelope>

Additional References

The following sections provide references related to the Call Home feature.

Related Documents

Document Title	Description
Smart Call Home User Guide	Explains how the Smart Call Home service offers web-based access to important information on select Cisco devices and offers higher network availability, and increased operational efficiency by providing proactive diagnostics and real-time alerts.

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Managing Cisco Enhanced Services and Network Interface Modules

The router supports Cisco Enhanced Services Modules (SMs) and Cisco Network Interface Modules (NIMs). The modules are inserted into the router using an adapter, or carrier card, into various slots. For more information, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

The following sections are included in this chapter:

- Information About Cisco Enhanced Services and Network Interface Modules, on page 247
- Modules Supported, on page 248
- Network Interface Modules, on page 248
- Enhanced Service Modules, on page 250
- Implementing SMs and NIMs on Your Router, on page 252
- Managing Modules and Interfaces, on page 260
- Monitoring and Troubleshooting Modules and Interfaces, on page 263
- Configuration Examples, on page 271

Information About Cisco Enhanced Services and Network Interface Modules

The router configures, manages, and controls the supported Cisco Enhanced Services Modules (SMs) and Network Interface Modules (NIMs) using the module management facility built in its architecture. This new centralized module management facility provides a common way to control and monitor all the modules in the system regardless of their type and application. All Cisco Enhanced Service and Network Interface Modules supported on your router use standard IP protocols to interact with the host router. Cisco IOS software uses alien data path integration to switch between the modules.

- Modules Supported, on page 248
- Network Interface Modules, on page 248
- Enhanced Service Modules, on page 250

Modules Supported

For information about the interfaces and modules supported by the Cisco ISR 4400 series and Cisco ISR 4300 series routers, see http://www.cisco.com/c/en/us/products/routers/4000-series-integrated-services-routers-isr/ relevant-interfaces-and-modules.html.

Network Interface Modules

The following Network Interface Modules are supported:

- Cisco Fourth-Generation LTE Network Interface Module, on page 248
- Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module, on page 248
- Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module, on page 248
- Cisco SSD/HDD Carrier Card NIM, on page 249
- Upgrading the SSD or HDD Firmware, on page 249
- Error Monitoring, on page 250

Cisco Fourth-Generation LTE Network Interface Module

Cisco 4G LTE NIM addresses the modular 4G LTE cellular connectivity on the Cisco 4000 Series ISRs. This is the first wireless NIM, though it is not the first wireless module in the ISR product line. The closest modular card to Cisco 4G LTE NIM is the Cisco EHWIC 4G LTE, which accepts a single LTE modem. Cisco 4G LTE NIM is feature-compatible with Cisco EHWIC 4G LTE. For more information, see the Cisco Fourth-Generation LTE Network Interface Module Software Configuration Guide.

Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module

The Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module (NIM) integrates the Layer 2 features and provides a 1-Gbps connection to the multigigabit fabric (MGF) for intermodule communication. For more information on configuring the Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch NIM, see http://www.cisco.com/c/en/us/td/docs/routers/access/interfaces/NIM/software/configuration/guide/ 4 8PortGENIM.html.

Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module

The Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module (NIM) is inserted into the NIM slot of the router and provides data and voice support on T1/E1 trunks. To support voice-related and other DSP features, the Cisco PVDM4 (Cisco Packet Voice Digital Signal Processor Module) is also required. See the following documents for more information:

- Installing the Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module
- Configuring the Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module

• Installing the Cisco PVDM4

Cisco SSD/HDD Carrier Card NIM

The router supports a single Cisco SSD and HDD Carrier Card NIM, which must be placed in slot 0 and subslot 1, 2, or 3.

A Cisco SSD/HDD Carrier Card NIM can be one of the following:

- Cisco SSD Carrier Card NIM—Supports one or two Solid-State Drives (SSDs).
- Cisco HDD Carrier Card NIM-Supports one Hard Disk Drive (HDD).

Note When ISR-WAAS is operational, do not perform online insertion or replacement (OIR) of NIM-SSD and NIM-HDD.

For more information on the hardware characteristics of the SSD/HDD Carrier Card NIM, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

For more information on deactivating or reactivating a SSD/HDD Carrier Card NIM, see Deactivating and Reactivating an SSD/HDD Carrier Card NIM, on page 255.

Cisco 1-, 2-, and 4-Port Serial NIM

The Cisco 1-, 2-, and 4-port Serial NIMs are multi-protocol synchronous serial network interface modules (NIMs) supported on the Cisco 4400 Series ISRs. The Cisco 1-, 2-, and 4-port Serial NIMs expand the capabilities of the router to provide connectivity for synchronous interfaces in a wide range of applications including up to 8Mbps data rate for high speed high-level data link control (HDLC). These capabilities can be utilized as Point-to-Point Cisco HDLC WAN interface or frame relay interface. The Cisco 1-, 2-, and 4-port Serial NIMs have their own serial communication controllers (SCC) and they do not rely on the host router for SCCs. For further information on configuring this NIM, see the Configuring the Cisco 1-, 2-, and 4-port Serial Network Interface Modules for the Cisco 4400 Series ISRs document.

Upgrading the SSD or HDD Firmware

You can upgrade the firmware for the SSD or HDD using the **upgrade hw-programmable module filename bootflash**:*filename slot/sub-slot* command.

A typical *filename* has the form: *nim_ssd_manufacturer_firmware-version-number.bin*

The firmware file can also be available in other locations other than bootflash:

For example, you can provide any one of the following locations in place of **bootflash**: *filename*:

- flash:filename
- harddisk:filename
- usb1:filename

Note

For a Cisco SSD carrier card NIM or Cisco HDD carrier card NIM, only slot 0 and one of the subslots 1, 2, or 3 must be used.

The following example shows how to upgrade a Micron P400m disk to firmware revision 200 using the **upgrade hw-programmable module filename bootflash**:*filename slot/sub-slot* command:

```
Router# upgrade hw-programmable module filename bootflash:nim ssd Micr nP400m E200.bin
Info: Trying to upgrade Module in 0/3 with nim_ssd_MicronP400m_E200.bin
Info: Current NIM-SSD disk config.
Info: Disk1: rev: 0200 model: MicronP400m-MTFDDAK200MAN
Info: Disk2: rev: 0200 model: MicronP400m-MTFDDAK200MAN
/dev/sde:
fwdownload: xfer_mode=3 min=1 max=255 size=512
Done.
/dev/sdf:
fwdownload: xfer mode=3 min=1 max=255 size=512
Done.
Info: Performing post upgrade check .....
Info: Upgrade to Firmware version E200 on disk1 successful.
Info: Upgrade to Firmware version E200 on disk2 successful.
Info: Current NIM-SSD disk config.
Info: Disk1: rev: E200 model: MicronP400m
```

Error Monitoring

The drives in the Cisco SDD/HDD Carrier Card NIM are monitored for SMART errors. If a SMART error occurs, a Cisco IOS error message is displayed, as shown in the following example:

```
%IOSXE-5-PLATFORM:logger: INF0:/dev/sde:SMART error present:please do
'more bootflash:/tracelogs/smart_errors.log'.
```

You can find additional information in the error log at: bootflash:/tracelogs/smart_errors.log

Enhanced Service Modules

The following service modules are supported on the router:

- Cisco SM-1 T3/E3 Service Module, on page 250
- Cisco UCS E-Series Server, on page 251
- Cisco SM-X Layer 2/3 EtherSwitch Service Module, on page 251
- Cisco 6-Port GE SFP Service Module, on page 251

Cisco SM-1 T3/E3 Service Module

For more information, see the Cisco SM-1T3/E3 Enhanced Service Module Configuration Guide.

Cisco UCS E-Series Server

For more information, see the documentation listed in the Cisco UCS E-Series Server Roadmap.

Cisco SM-X Layer 2/3 EtherSwitch Service Module

This module provides the following features:

- Integration of Layer 2 and Layer 3 switching features and the ability of the router to use the Cisco SM-X Layer 2/3 ESM (16-port and 24-port) as an independent Layer 3 switch.
- 1 Gbps connection to the multigigabit fabric (MGF) for intermodule communication without burdening the CPU of the router.
- Up to 30 watts of power per port with the robust Power over Ethernet Plus (PoE+) feature along with IEEE 802.3AE Media Access Control Security (MACSec) port-based, hop-to-hop, encryption, and Cisco TrustSec.

For more information, see the following documents:

- Cisco SM-X Layer 2/3 EtherSwitch Service Module Configuration Guide for Cisco 4451-X ISR
- Connecting Cisco SM-X Layer 2/3 EtherSwitch Service Module to the Network

Cisco 6-Port GE SFP Service Module

The Cisco 6-port GE SFP service module is a Gigabit Ethernet module that can be inserted into the router's SM slot to provide Gigabit Ethernet features on routable external interfaces. For more information about configuring this service module, see the Software Configuration Guide for the Cisco 6-port GE SFP Service Module.

Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module

The Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module (SM-X-4x1GE-1x10GE) is software-configurable high-speed connectivity routing port service module for the Cisco ISR 4400 Series routers. This service module provides increased density of Ethernet interfaces on the Cisco ISR 4400 Series routers. For further information on configuring this service module, see: the Software Configuration Guide for the Cisco 6-port GE SFP Service Module and Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module

Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules

The Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules (NIMs) are software-configurable high-speed connectivity routing port network interface modules for the Cisco 4000 and Cisco ISR 4300 Series Integrated Services Routers (ISR). These network interface modules provide increased density of Ethernet interfaces on the Cisco 4000 ISR. For further information on configuring this NIM, see the Configuring the Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules in Cisco 4000 Series Integrated Services Routers.

Note Cisco 4221 ISR does not support 2GE-CU-SFP Network Interface Module.

Implementing SMs and NIMs on Your Router

- Downloading the Module Firmware, on page 252
- Installing SMs and NIMs, on page 252
- Accessing Your Module Through a Console Connection or Telnet, on page 252
- Online Insertion and Removal, on page 253

Downloading the Module Firmware

Module firmware must be loaded to the router to be able to use a service module. For more information, see Installing a Firmware Subpackage, on page 86.

The modules connect to the RP via the internal eth0 interface to download the firmware. Initially, the module gets an IP address for itself via BOOTP. The BOOTP also provides the address of the TFTP server used to download the image. After the image is loaded and the module is booted, the module provides an IP address for the running image via DHCP.

Installing SMs and NIMs

For more information, see "Installing and Removing NIMs and SMs" in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

Accessing Your Module Through a Console Connection or Telnet

Before you can access the modules, you must connect to the host router through the router console or through Telnet. After you are connected to the router, you must configure an IP address on the Gigabit Ethernet interface connected to your module. Open a session to your module using the **hw-module session** command in privileged EXEC mode on the router.

To establish a connection to the module, connect to the router console using Telnet or Secure Shell (SSH) and open a session to the switch using the **hw-module** session *slot/subslot* command in privileged EXEC mode on the router.

Use the following configuration examples to establish a connection:

• The following example shows how to open a session from the router using the **hw-module session** command:

```
Router# hw-module session slot/card
Router# hw-module session 0/1 endpoint 0
Establishing session connect to subslot 0/1
```

• The following example shows how to exit a session from the router, by pressing **Ctrl-A** followed by **Ctrl-Q** on your keyboard:

```
type ^a^q
picocom v1.4
              : /dev/ttyDASH2
port is
flowcontrol
              : none
            : 9600
baudrate is
parity is
              : none
databits are
             : 8
             : C-a
escape is
noinit is
              : no
noreset is
              : no
nolock is
             : yes
send cmd is : ascii xfr -s -v -110
receive cmd is : rz -vv
```

Online Insertion and Removal

The router supports online insertion and removal (OIR) of Cisco Enhanced Services Modules and Cisco Network Interface Modules. You can perform the following tasks using the OIR function:

Note

When ISR-WAAS is operational, do not perform online insertion or replacement (OIR).

- Preparing for Online Removal of a Module, on page 253
- Deactivating a Module, on page 253
- Deactivating Modules and Interfaces in Different Command Modes, on page 254
- Deactivating and Reactivating an SSD/HDD Carrier Card NIM, on page 255
- Reactivating a Module, on page 256
- Verifying the Deactivation and Activation of a Module, on page 256

Preparing for Online Removal of a Module

The router supports the OIR of a module, independent of removing another module installed in your router. This means that an active module can remain installed in your router, while you remove another module from one of the subslots. If you are not planning to immediately replace a module, ensure that you install a blank filler plate in the subslot.

Deactivating a Module

A module can be removed from the router without first being deactivated. However, we recommend that you perform a graceful deactivation (or graceful power down) of the module before removing it. To perform a graceful deactivation, use the **hw-module subslot** *slot/subslot* **stop** command in EXEC mode.

Note

When you are preparing for an OIR of a module, it is not necessary to independently shut down each of the interfaces before deactivating the module. The **hw-module subslot** *slot/subslot* **stop** command in EXEC mode automatically stops traffic on the interfaces and deactivates them along with the module in preparation for OIR. Similarly, you do not have to independently restart any of the interfaces on a module after OIR.

The following example shows how to use the **show facility-alarm status** command to verify if any critical alarm is generated when a module is removed from the system:

```
Router# show facility-alarm status
System Totals Critical: 5 Major: 1 Minor: 0
Source
                        Severity
                                      Description [Index]
Power Supply Bay 1
                       CRITICAL
                                      Power Supply/FAN Module Missing [0]
GigabitEthernet0/0/0
                       CRITICAL
                                      Physical Port Link Down [1]
GigabitEthernet0/0/1
                        CRITICAL
                                      Physical Port Link Down [1]
GigabitEthernet0/0/2
                        CRITICAL
                                      Physical Port Link Down [1]
GigabitEthernet0/0/3
                        CRITICAL
                                      Physical Port Link Down [1]
xcvr container 0/0/0
                        INFO
                                      Transceiver Missing [0]
xcvr container 0/0/1
                        INFO
                                      Transceiver Missing [0]
                                      Transceiver Missing [0]
xcvr container 0/0/2
                        INFO
xcvr container 0/0/3
                        INFO
                                      Transceiver Missing [0]
V: 1.0v PCH R0/18
                        MAJOR
                                      Volt Above Normal [3]
```

Note

A critical alarm (Active Card Removed OIR Alarm) is generated even if a module is removed after performing graceful deactivation.

Deactivating Modules and Interfaces in Different Command Modes

You can deactivate a module and its interfaces using the **hw-module subslot** command in one of the following modes:

- If you choose to deactivate your module and its interfaces by executing the **hw-module subslot** *slot/subslot shutdown* **unpowered** command in global configuration mode, you are able to change the configuration in such a way that no matter how many times the router is rebooted, the module does not boot. This command is useful when you need to shut down a module located in a remote location and ensure that it does not boot automatically when the router is rebooted.
- If you choose to use the **hw-module subslot** *slot/subslot* **stop** command in EXEC mode, you cause the module to gracefully shut down. The module is rebooted when the **hw-module subslot** *slot/subslot* **start** command is executed.

To deactivate a module and all of its interfaces before removing the module, use one of the following commands in global configuration mode.

Ρ	ro	ce	d	u	r	e
-		~~	-	-	-	•

	Command or Action	Purpose
Step 1	hw-module subslot slot/subslot shutdown unpowered	Deactivates the module located in the specified slot and
	Example:	subslot of the router, where:

	Command or Action	Purpose
	Router# hw-module subslot 0/2 shutdown unpowered	• <i>slot</i> —Specifies the chassis slot number where the module is installed.
		• <i>subslot</i> —Specifies the subslot number of the chassis where the module is installed.
		• shutdown—Shuts down the specified module.
		• unpowered —Removes all interfaces on the module from the running configuration and the module is powered off.
Step 2	hw-module subslot <i>slot/subslot</i> [reload stop start] Example:	Deactivates the module in the specified slot and subslot, where:
	Router# hw-module subslot 0/2 stop	• <i>slot</i> —Specifies the chassis slot number where the module is installed.
		• <i>subslot</i> —Specifies the subslot number of the chassis where the module is installed.
		• reload—Stops and restarts the specified module.
		• stop —Removes all interfaces from the module and the module is powered off.
		• start —Powers on the module similar to a physically inserted module in the specified slot. The module firmware reboots and the entire module initialization sequence is executed in the IOSd and Input/Output Module daemon (IOMd) processes.

Deactivating and Reactivating an SSD/HDD Carrier Card NIM

The following restrictions apply:

- Deactivating or reactivating an SSD/HDD Carrier Card NIM without an SSD or HDD disk is not supported.
- Only a single (SSD or HDD) Carrier Card NIM can be plugged into a bay. If you plug an additional (SSD or HDD) Carrier Card NIM into another bay, the module powers down and kernel, log, or error messages are displayed on the Cisco IOS console. In rare cases, the file system may get corrupted on the additional drive.

Caution Deactivation of an SSD/HDD Carrier Card NIM may cause loss of data.

To deactivate an SSD/HDD Carrier Card NIM, perform the following steps:

	Command or Action	Purpose		
Step 1	<pre>virtual-service name Example: Router(config)# virtual-service my-kwaas-instance</pre>	Identifies the kWAAS service (by name), supported on yo router, in preparation for the router to be shut down by the no activate command. We recommend that you use this command before reseating or replacing an SSD or HDD		
Step 2	<pre>no activate Example: Router(config-virt-serv)# no activate</pre>	Shuts down the kWAAS instance on your router. kWAAS services remain installed. The service will have to be reactivated after the HDD/SSD NIM (module) is restarted.		
Step 3	<pre>hw-module subslot slot/subslot [reload stop start] Example: Router# hw-module subslot 0/2 stop Proceed with stop of module? [confirm] Router# *Mar 6 15:13:23.997: %SPA_OIR-6-OFFLINECARD: SPA (NIM-SSD) offline in subslot 0/2</pre>	 Deactivates or reactivates the module in the specified slot and subslot. <i>slot</i>—The chassis slot number where the module is installed. <i>subslot</i>—The subslot number of the chassis where the module is installed. reload—Deactivates and reactivates (stops and restarts) the specified module. stop—Removes all interfaces from the module and the module is powered off. start—Powers on the module similar to a physically inserted module in the specified slot. The module firmware reboots and the entire module initialization sequence is executed in the IOSd and IOMd processes. 		
Step 4	Wait for the EN (Enable) LED to turn off, and then remove the SSD/HDD Carrier Card NIM.			

Procedure

Reactivating a Module

If, after deactivating a module using the **hw-module subslot** *slot/subslot* **stop** command, you want to reactivate it without performing an OIR, use one of the following commands (in privileged EXEC mode):

- hw-module subslot slot/subslot start
- hw-module subslot slot/subslot reload

Verifying the Deactivation and Activation of a Module

When you deactivate a module, the corresponding interfaces are also deactivated. This means that these interfaces will no longer appear in the output of the **show interface** command.

1. To verify the deactivation of a module, enter the **show hw-module subslot all oir** command in privileged EXEC configuration mode.

Observe the "Operational Status" field associated with the module that you want to verify. In the following example, the module located in subslot 1 of the router is administratively down.

Router# show hw-module subslot all oir

Module		Model	Operational	Status	
subslot	0/0	ISR4451-4X1GE	ok		
SUDSIOL	1/0	SM-X-TI/EI	0 K		

2. To verify activation and proper operation of a module, enter the **show hw-module subslot all oir** command and observe "ok" in the **Operational Status** field as shown in the following example:

Router# show hw-module subslot all oir

Module	Model	Operational Status
subslot 0/1 subslot 1/0	NIM-8MFT-T1/E1 SM-X T1/E1	ok ok

Router# show platform hardware backplaneswitch-manager R0 status

slot bay port enable link status speed(Mbps) duplex autoneg pause_tx
pause_rx mtu

0	0	CP	True	Up		1000		Full	ENABLED	ENABLED
ENABL	ED	10240								
1	0	GE1	True	Up		1000		Full	DISABLED	ENABLED
ENABI	ED	10240								
1	0	GE0	True	Up		1000		Full	DISABLED	ENABLED
ENABI	ED	10240								
2	0	GE1	True	Up		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
2	0	GE0	True	Up		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
0	1	GE1	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
0	1	GE0	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
0	2	GE1	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
0	2	GE0	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
0	3	GE1	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
0	3	GE0	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ED	10240								
0	4	GE1	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ΕD	10240								
0	4	GE0	True	Down		1000		Full	DISABLED	ENABLED
ENABI	ED	10240								
0	0	FFP	True	Up		10000		Full	ENABLED	DISABLED
DISAE	BLED	10240								
slot	bay	port		mac	vid	modid	flags	- Laye	er 2	
0	0	FFP	2c54.2dd2.	661b	2351	1		0x2	20	
0	0	FFP	2c54.2dd2.	661b	2352	1		0x2	20	
0	0	CP	2c54.2dd2.	661e	2351	0		0x0	260	
0	0	CP	2c54.2dd2.	661e	2352	0		0x2	20	
1	0	GE0	58bf.ea3a.	00f6	2350	0		0x4	160	
0	0	FFP	2c54.2dd2.	661b	2350	1		0x2	20	
1	0	GEO	58bf.ea3a.	00f6	2352	0		0x2	20	
0	0	CP	2c54.2dd2.	661e	2350	0		0x2	20	
1	0	GE0	58bf.ea3a.	00f6	2351	0		0x0	260	

Port block masks	: rows=from port,	columns=to port,	u=unknown	unicast,	m=unknown	multicast,
b=broadcast, A=	=all					

	CP	FFP	1/0/1	1/0/0	2/0/1	2/0/0	0/1/1	0/1/0	0/2/1	0/2/0	0/3/1
0/3/0	0/4/1 0/4	1/0 dr	ops								

CP		_	A	um									
um	um		um	1									
FFP		Α	-	-	-	-	-	-	-	-	-	-	
-	-		-	0									
1/0/1		um	umb	-	umb								
umb	umb		umb	0									
1/0/0		um	umb	umb	-	umb							
umb	umb		umb	6									
2/0/1		um	umb	umb	umb	-	umb	umb	umb	umb	umb	umb	
umb	umb		umb	0									
2/0/0		um	umb	umb	umb	umb	-	umb	umb	umb	umb	umb	
umb	umb		umb	6									
0/1/1		um	umb	umb	umb	umb	umb	-	umb	umb	umb	umb	
umb	umb		umb	0									
0/1/0		um	umb	umb	umb	umb	umb	umb	-	umb	umb	umb	
umb	umb		umb	0									
0/2/1		um	umb	-	umb	umb							
umb	umb		umb	0									
0/2/0		um	umb	-	umb								
umb	umb		umb	0									
0/3/1		um	umb	-									
umb	umb		umb	0									
0/3/0		um	umb										
-	umb	ι	ımb	0									
0/4/1		um	umb										
umb	-		umb	0									
0/4/0		um	umb										
umb	umb		-	0									

Port VLAN membership: [untagged vlan] U=untagged T=tagged <VLAN range begin>-<VLAN range end>

```
CP [2352] U:0001-0001 T:0002-2351 U:2352-2352 T:2353-4095

FFP [2352] T:0001-4095

1/0/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

2/0/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

2/0/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/1/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/1/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/1/0 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/2/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/2/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/2/0 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/3/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/3/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/4/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095

0/4/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095
```

show platform hardware backplaneswitch-manager rp active ffp statistics: Example

Router# show platform hardware backplaneswitch-manager rp active ffp statistics

Broadcom 10G port(e.g:	FFP) status: Rx pkts	Rx Bytes	Tx Pkts	Tx Bytes
All	0	0	0	0
=64	0		0	
65~127	0		0	

128~255	0		0	
256~511	0		0	
512~1023	0		0	
1024~1518	0		0	
1519~2047	0		0	
2048~4095	0		0	
4096~9216	0		0	
9217~16383	0		0	
Max	0		0	
Good	0		0	
CoS 0			0	0
CoS 1			0	0
CoS 2			0	0
CoS 3			0	0
CoS 4			0	0
CoS 5			0	0
CoS 6			0	0
Cos 7			0	0
Unicast	0		0	Ũ
Multicast	0		0	
Broadcast	0		0	
Control	0		0	
Frrored	0			
FCS	0		0	
Indereize	0		0	
Ether ler	0			
Ether ten	0		0	
Fragment	0		0	
Jabber	0			
MTU ck, good	0			
MTU ck, bad	0			0
Tx underflow	0			0
err symbol	0			
frame err	0			
junk	0			
Drops				
CoS 0			0	0
CoS 1			0	0
CoS 2			0	0
CoS 3			0	0
CoS 4			0	0
CoS 5			0	0
CoS 6			0	0
CoS 7			0	0
STP	0			
backpress	0			
congest	0	0		
purge/cell	0			
no destination	0			
Pause PFC	0		0	
CoS 0	0			
CoS 1	0			
CoS 2	0			
CoS 3	0			
CoS 4	0			
CoS 5	0			
CoS 6	0			
CoS 7	0			

Managing Modules and Interfaces

The router supports various modules. For a list of supported modules, see Modules Supported, on page 248. The module management process involves bringing up the modules so that their resources can be utilized. This process consists of tasks such as module detection, authentication, configuration by clients, status reporting, and recovery. For detailed information about module configuration, see the module documentation referred to in the Documentation Roadmap for the Cisco 4000 Series Integrated Services Routers.

For a list of small-form-factor pluggable (SFP) modules supported on your router, see the "Installing and Upgrading Internal Modules and FRUs" section in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

The following sections provide additional information on managing the modules and interfaces:

- Managing Module Interfaces, on page 260
- Managing Modules and Interfaces Using Backplane Switch, on page 260

Managing Module Interfaces

After a module is in service, you can control and monitor its module interface. Interface management includes configuring clients with **shut** or **no shut** commands and reporting on the state of the interface and the interface-level statistics.

Monitor the module status and other statistical information using the **show** commands listed in Monitoring and Troubleshooting Modules and Interfaces, on page 263.

Managing Modules and Interfaces Using Backplane Switch

- Backplane Ethernet Switch, on page 260
- Viewing Module and Interface Card Status on a Router, on page 261
- Viewing Backplane Switch Statistics, on page 261
- Viewing Backplane Switch Port Statistics, on page 262
- Viewing Slot Assignments, on page 263

Backplane Ethernet Switch

The backplane Ethernet switch on your router provides connectivity to Enhanced Service Modules and Network Interface Modules (NIMs). The backplane Ethernet switch facilitates all packet transfers between the host router and its pluggable modules.

The backplane Ethernet switch act as a manager for the host router and controls the module and exchanges logical flow-control information with the module to ensure accurate feedback to the router features. See Managing Modules and Interfaces, on page 260 for more information. The backplane Ethernet switch also facilitates control plane traffic flow from the host router to the modules. The backplane switch manages modules and interface cards and is used to communicate with the modules. Module drivers integrate with the backplane switch to configure packet flow and control traffic buffering.

You are not required to perform any configuration tasks on the backplane switch; all the configurations are performed from the module, which may or may not lead to changes on the backplane switch. For more information on installing an adapter, see the Hardware Installation Guide for the Cisco ISR 4000 Series Integrated Services Routers.

Note

Layer 2 protocols, such as the IEEE 802.1D Spanning Tree Protocol (STP), are not supported in the backplane Ethernet switch.

Viewing Module and Interface Card Status on a Router

You can view the module and interface card details using the show platform command in privileged EXEC mode.

The following example shows the sample output for the show platform command:

Chassis t	how platform ype: ISR4451/K9		
Slot	Туре	State	Insert time (ago)
0 0/0 0/3 1 1/0 2 2/0 R0 F0 P0 P1 P2	ISR4451/K9 ISR4451-4X1GE NIM-SSD ISR4451/K9 SM-1T3/E3 ISR4451/K9 ISR4451/K9 ISR4451-FP Unknown XXX-XXXX-XX ACS-4450-ASSY	ok ok ok ok ok ok, active ok, active ps, fail ok ok	15:57:33 15:55:24 15:55:24 15:55:24 15:55:24 15:57:33 15:55:24 15:57:33 15:55:24 15:57:33 15:57:33 never 15:56:58 15:56:58
Slot	CPLD Version	Firmware Version	
0 1 2 R0 F0	12090323 12090323 12090323 12090323 12090323 12090323	15.3(01r)S 15.3(01r)S 15.3(01r)S 15.3(01r)S 15.3(01r)S	[ciscouser-ISRRO [ciscouser-ISRRO [ciscouser-ISRRO [ciscouser-ISRRO [ciscouser-ISRRO

Viewing Backplane Switch Statistics

Statistics reports for each slot show incoming and outgoing packets or bytes. You can use the information to check traffic flow on the various ports of the backplane switch. The following example shows a sample output for the show platform hardware backplaneswitch-manager rp active summary command:

	active summary	ccn-manager rp a	backpianeswit	platiorm nardware	snow	Router#
OutPkts	OutBytes	InPkts	InBytes	port	bay	slot
403209	6241	9361008	6242	CP	0	0
0	0	0	0	GE1	0	1
9360934	6241	407477	6306	GE0	0	1
0	0	0	0	GE1	0	2
0	0	0	0	GE0	0	2
0	0	0	0	GE1	1	0
0	0	0	0	GE0	1	0
0	0	0	0	GE1	2	0

. . . . 1---.

0	2	GE0	0	0	0	0
0	3	GE1	0	0	0	0
0	3	GE0	0	0	0	0
0	4	GE1	0	0	0	0
0	4	GE0	0	0	0	0
0	0	FFP	0	0	0	0
0	0	FFP	0	0	0	0

Viewing Backplane Switch Port Statistics

You can view statistical information related to the port connected to the backplane switch using the **show platform hardware backplaneswitch-manager rp active subslot GEO statistics** command. The following example displays statistical information related to the backplane switch and ports connected to it:

Router# show platform hardware backplaneswitch-manager rp active subslot 1/0 GEO statistics Broadcom 1G port(e.g: NIM, ESM, CP) status:

1 . 5	Rx pkts	Rx Bytes	Tx Pkts	Tx Bytes
All	6306	407477	6241	9360934
=64	6237		72	
65~127	66		3	
128~255	0		0	
256~511	1		3	
512~1023	2		0	
1024~1518	0		6163	
1519~2047	0		0	
2048~4095	0		0	
4096~9216	0		0	
Good	6306		6241	
CoS 0			6171	9356426
CoS 1			0	0
CoS 2			0	0
CoS 3			0	0
CoS 4			0	0
CoS 5			0	0
CoS 6			70	4508
CoS 7			0	0
Unicast	6294		6241	Ũ
Multicast	6		0	
Broadcast	6		0	
Control	0		0	
VLAN	0		0	
Errored	0		Ũ	
FCS	0		0	
Runts	0	0	-	
Undersize	0	-		
Ether len	0			
Fragment	0		0	
Jabber	0		0	
MTU	0			
Drops	-			
CoS 0			0	0
CoS 1			0	0
CoS 2			0	0
CoS 3			0	0
CoS 4			0	0
CoS 5			0	0
CoS 6			0	0
CoS 7			0	Ũ
STP	0		-	-
backpress	0			

0

congest	0	0	
purge/cell	0		
no destination	65		
Pause	0		

Viewing Slot Assignments

Use the **show inventory** command in privileged EXEC mode to view the slot assignments, as shown in the following example:

```
Router# show inventory
NAME: "Chassis", DESCR: "Cisco ISR4451 Chassis"
PID: ISR4451/K9
                    , VID: V01, SN: FGL163910CM
NAME: "Power Supply Module 1", DESCR: "Cisco 4451-X ISR 450W AC Power Supply"
                    , VID: XXX, SN: DCA1623X05N
PID: XXX-XXXX-XX
NAME: "Fan Tray", DESCR: "Cisco 4451-X ISR Fan tray"
PID: ACS-4450-FANASSY , VID:
                              , SN:
NAME: "module 0", DESCR: "Cisco ISR4451 Built-In NIM controller"
PID: ISR4451/K9
                    , VID:
                             , SN:
NAME: "NIM subslot 0/1", DESCR: " NIM-1MFT-T1/E1 - T1/E1 Serial Module"
PID: NIM-1MFT-T1/E1 , VID: V01, SN: FOC16254E71
NAME: "subslot 0/1 db module 0", DESCR: "PVDM4-TDM-280 Voice DSP Module"
PID: PVDM4-TDM-280 , VID: V01, SN: FOC16290GRT
NAME: "NIM subslot 0/0", DESCR: "Front Panel 4 ports Gigabitethernet Module"
PID: ISR4451-X-4x1GE , VID: V01, SN: JAB092709EL
NAME: "module 1", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451/K9
                    , VID:
                              , SN:
NAME: "module 2", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451/K9
                     , VID:
                              , SN:
NAME: "SM subslot 2/0", DESCR: "SM-X-1T3/E3 - Clear T3/E3 Serial Module"
                  , VID: V01, SN: FOC15495HSE
PID: SM-1T3/E3
NAME: "module R0", DESCR: "Cisco ISR 4451-X Route Processor"
PID: ISR4451/K9
                      , VID: V01, SN: FOC163679GH
NAME: "module F0", DESCR: "Cisco ISR4451-X Forwarding Processor"
PID: ISR4451/K9
                      , VID:
                               , SN:
```

Note

Cisco ISR 4321 does not display the serial numbers of power supply and fan tray with the **show inventory** command.

Monitoring and Troubleshooting Modules and Interfaces

Use the following commands in global configuration mode to monitor and troubleshoot the modules and interfaces:

- show platform
- show platform software backplaneswitch-manager RP [active [detail]]
- · show platform hardware backplaneswitch-manager RPactive CP statistics
- · show platform hardware backplaneswitch-manager RP active summary
- show platform hardware backplaneswitch-manager [R0 [status] | RP]
- · show diag all eeprom details

show platform

Router#	show p	platform
Chassis	type:	ISR4451/K9

Slot	Туре	State	Insert time (ago)
0 0/0 1 1/0 2 2/0 R0 F0 P0 P1 P2	ISR4451/K9 ISR4451-4X1GE ISR4451/K9 SM-1T3/E3 ISR4451/K9 SM-1T3/E3 ISR4451/K9 ISR4451-FP Unknown XXX-XXXX-XX ACS-4450-FANASSY	ok ok ok ok ok ok, active ok, active ps, fail ok ok	15:57:33 15:55:24 15:57:33 15:55:24 15:57:33 15:55:24 15:57:33 15:55:24 15:57:33 15:57:33 never 15:56:58 15:56:58
Slot	CPLD Version	Firmware Version	
0 1 2 R0 F0	12090323 12090323 12090323 12090323 12090323 12090323	15.3(01r)S 15.3(01r)S 15.3(01r)S 15.3(01r)S 15.3(01r)S 15.3(01r)S	[ciscouser-ISRRO [ciscouser-ISRRO [ciscouser-ISRRO [ciscouser-ISRRO [ciscouser-ISRRO

Table 28: show platform Field Descriptions

Field	Description
Slot	Slot number
Туре	Type of module
State	Status of module
Insert Time	Time since the module has been up and running

show platform software backplaneswitch-manager RP [active [detail]]

Router# **show platform software backplaneswitch-manager RP active detail** BSM Software Display

module port	port type	alien type	traf type
0/1/0	NGIO	TRUNK	NGIO
0/1/1	NGIO	TRUNK	NGIO

0/2/0	NGIO	TRUNK	NGIO
0/2/1	NGIO	TRUNK	NGIO
0/3/0	NGIO	TRUNK	NGIO
0/3/1	ALIEN	TRUNK	NGIO
0/4/0	NGIO	TRUNK	NGIO
0/4/1	NGIO	TRUNK	NGIO
1/0/0	NGIO	TRUNK	NGIO
1/0/1	NGIO	TRUNK	NGIO
2/0/0	NGIO	TRUNK	NGIO
2/0/1	NGIO	TRUNK	NGIO

show platform hardware backplaneswitch-manager RPactive CP statistics

Router# show platform hardware backplaneswitch-manager RP active CP statistics Broadcom 1G port(e.g: NIM, NGSM, CP) status:

	Rx pkts	Rx Bytes	Tx Pkts	Tx Bytes
All	6242	9361008	6241	403209
=64	72		6178	
65~127	4		60	
128~255	0		0	
256~511	3		1	
512~1023	0		2	
1024~1518	6163		0	
1519~2047	0		0	
2048~4095	0		0	
4096~9216	0		0	
Good	6242		6241	
CoS 0			0	0
CoS 1			0	0
CoS 2			0	0
CoS 3			6241	403209
CoS 4			0	0
CoS 5			0	0
CoS 6			0	0
CoS 7			0	0
Unicast	6241		6235	
Multicast	1		0	
Broadcast	0		6	
Control	0		0	
VLAN	0		0	
Errored				
FCS	0		0	
Runts	0	0		
Undersize	0			
Ether len	0			
Fragment	0		0	
Jabber	0		0	
MTU	0			
Drops				
CoS 0			0	0
CoS 1			0	0
CoS 2			0	0
CoS 3			0	0
CoS 4			0	0
CoS 5			0	0
CoS 6			0	0
CoS 7			0	0
STP	0			
backpress	0	<u>,</u>		
congest	0	0		
purge/cell	0			
no destination	Ţ		0	
Pause	()		()	

Router# slot	<pre>show platform bay</pre>	hardware port	backplaneswitch-manager RE InBytes	active InPkts	summary	OutBytes	OutPkts
0	0	CP	242	0		0	0
1	0	GE1	0	0		0	0
1	0	GE0	0	0		0	0
2	0	GE1	0	0		0	0
2	0	GE0	0	0		0	0
0	1	GE1	0	0		0	0
0	1	GE0	0	0		0	0
0	2	GE1	0	0		0	0
0	2	GE0	0	0		0	0
0	3	GE1	0	0		0	0
0	3	GE0	0	0		0	0
0	4	GE1	0	0		0	0
0	4	GE0	0	0		0	0
0	0	덕국국	0	0		0	0

show platform hardware backplaneswitch-manager RP active summary

show platform hardware backplaneswitch-manager [R0 [status] | RP]

Router# show platform hardware backplaneswitch-manager R0 status									
slot pause	bay _rx	port mtu	enable	link	status	speed (Mbp	os) duplex	autoneg	pause_tx
0	0	CP	True	Up		1000	Full	ENABLED	ENABLED
ENABL	ED	10240 CE1	True	Un		1000	E., 11		באזסג בח
ENARL	ED	10240	IIUe	op		1000	ruii	DISADUDD	ENADUED
1	0	GEO	True	αU		1000	Full	DISABLED	ENABLED
ENABL	ED	10240		-					
2	0	GE1	True	Up		1000	Full	DISABLED	ENABLED
ENABL	ЕD	10240							
2	0	GE0	True	Up		1000	Full	DISABLED	ENABLED
ENABL	ΕD	10240							
0	1	GE1	True	Down		1000	Full	DISABLED	ENABLED
ENABL	ED	10240							
0	1	GE0	True	Down		1000	Full	DISABLED	ENABLED
ENABL	ED	10240							
0	2	GE1	True	Down		1000	Full	DISABLED	ENABLED
ENABL	ED	10240	_	_		1000			
0	2	GEU	True	Down		1000	F'ull	DISABLED	ENABLED
ENABL	ED	10240		D		1000		DIGIDIED	
U	ک ۳۵	GEI 10240	True	Down		1000	FULL	DISABLED	ENABLED
ENABL	5 2	10240 CEO		Derm		1000	E.11	DIGADIED	מת זמגואה
	C D	10240	IIue	DOWII		1000	rull	DISABLED	ENABLED
		10240 CF1	True	Down		1000	F 111	DISABIED	FNARIED
ENARL	т RD	10240	IIUe	DOWII		1000	ruii	DISABIED	ENADLED
0	4	GEO	True	Down		1000	Full	DISABLED	ENABLED
ENABL	F.D	10240	1240	2000		2000	1 411	0101102000	
0	0	FFP	True	σŪ		10000	Full	ENABLED	DISABLED
DISAB	LED	10240	1240	910		10000	1 411	21112222	51010200
slot	bay	port		mac	vid	modid	flags - Layer	2	
0	0	FFP	2c54.2dd2	.661b	2351	1	0x20		
0	0	FFP	2c54.2dd2	.661b	2352	1	0x20		
0	0	CP	2c54.2dd2	.661e	2351	0	0xC6	0	
0	0	CP	2c54.2dd2	.661e	2352	0	0x20		
1	0	GE0	58bf.ea3a	.00f6	2350	0	0x46	0	
0	0	FFP	2c54.2dd2	.661b	2350	1	0x20		
1	0	GE0	58bf.ea3a	.00f6	2352	0	0x20		

L

0	0 0	CP 2c54	.2dd2.6	561e 2	2350	0		0x2	20			
1	0 G1	E0 58bf	.ea3a.0)0f6 2	2351	0		0x0	:60			
Port bl	ock ma	sks: row	/s=from	port, c	columns=	to port	∶, u=un∦	known ur	icast,	m=unknc	wn mult	icast,
b=broa	dcast,	A=all										
0/4/1	CP 0/4/0	FFP drops	1/0/1	1/0/0	2/0/1	2/0/0	0/1/1	0/1/0	0/2/1	0/2/0	0/3/1	0/3/0
CP	-	A	um	um	um	um	um	um	um	um	um	um
um	um	1										
FFP	A	-	-	-	-	-	-	-	-	-	-	-
-	-	0										
1/0/1	um	umb	-	umb	umb	umb	umb	umb	umb	umb	umb	umb
umb	umb	0										
1/0/0	um	umb	umb	-	umb	umb	umb	umb	umb	umb	umb	umb
umb	umb	6										
2/0/1	um	umb	umb	umb	-	umb	umb	umb	umb	umb	umb	umb
umb	umb	0										
2/0/0	um	umb	umb	umb	umb	-	umb	umb	umb	umb	umb	umb
umb	umb	6				_		_				
0/1/1	um	umb	umb	umb	umb	umb	-	umb	umb	umb	umb	umb
umb	umb	0	,	,	,	,	,		,	,	,	,
0/1/0	um	umb	umb	umb	umb	umb	umb	-	umb	umb	umb	umb
umb	umb	0	1.	. 1.			1.	1.			1.	1.
0/2/1	um	umb	umb	umb	umb	ump	ump	umb	-	umb	ump	ump
	umb	U	la	la	la	la	la	la	le		la	la
0/2/0	um	amu	unio	umo	unio	unip	unip	unio	unio	-	unip	umb
0/3/1	unio	umb	umb	umb	umb	umb	umb	umb	umb	umb	_	umb
0/J/I	umb		unio	unio	unio	unito	unito	unuo	unio	unii	_	unio
0/3/0	1100	umb	umb	umb	umb	umb	umb	umb	umb	umb	umb	_
11mb	umb	0	unito	unio	unio	unito	unio	unuo	unio	unio	unio	
0/4/1	11m	umb	umb	umb	umb	umb	umb	umb	umb	umb	umb	umb
-	umb	0	and	and	and	unito	unito	and	unito	unito	unito	anno
0/4/0	11m	umb	umb	umb	umb	umb	umb	umb	umb	umb	umb	umb
umb	-	0										

Port VLAN membership: [untagged vlan] U=untagged T=tagged <VLAN range begin>-<VLAN range end>

CP [2352] U:0001-0001 T:0002-2351 U:2352-2352 T:2353-4095 FFP [2352] T:0001-4095 1/0/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 2/0/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 2/0/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/1/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/1/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/2/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/2/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/2/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/2/0 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/3/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/3/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/3/0 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/4/1 [2352] T:0002-2351 U:2352-2352 T:2353-4095 0/2/1 [2352]

show diag all eeprom details

Router# show diag all eeprom details MIDPLANE EEPROM data:

EEPROM version	:	4
Compatible Type	:	OxFF
PCB Serial Number	:	FOC15520B7L
Controller Type	:	1902

: 1.0 Hardware Revision : 73-13854-02 PCB Part Number Top Assy. Part Number : 800-36894-01 Board Revision : 05 Deviation Number : 123968 Fab Version : 02 Product Identifier (PID) : ISR4451/K9 Version Identifier (VID) : V01 CLEI Code : TDBTDBTDBT Processor type : D0 Chassis Serial Number : FGL1601129D Chassis MAC Address : 30f7.0d53.c7e0 MAC Address block size : 144 Manufacturing Test Data : 00 00 00 00 00 00 00 00 Asset ID : P1B-R2C Power/Fan Module P0 EEPROM data: EEPROM version : 4 Compatible Type : 0xFF Compatible Type : 0xFF Controller Type : 1509 Unknown Field (type 00DF): 1.85.1.236.1 Deviation Number : 0 PCB Serial Number : DCA1547X037 RMA Test History : 00 : 0-0-0-0 RMA Number RMA History : 00 Version Identifier (VID) : XXX Product Identifier (PID) : XXX-XXXX-XX CLEI Code : 000000000 Environment Monitor Data : 41 01 C2 42 00 05 F8 00 50 01 F4 1B 58 03 E8 1F 4A 05 DC 21 34 07 D0 21 FC 09 C4 22 60 0B B8 22 92 OD AC 22 D8 OF AO 22 F8 11 94 22 F6 13 88 23 3C 15 7C 23 28 17 70 23 00 19 64 22 D8 1B 58 22 C4 1D 4C 22 BA 1F 40 22 A6 21 34 22 9C 23 28 22 92 25 1C 22 88 27 10 22 60 Board Revision : P0 Power/Fan Module P1 EEPROM data is not initialized Power/Fan Module P2 EEPROM data is not initialized Slot R0 EEPROM data: : 4 EEPROM version Compatible Type : 0xFF : FOC15520B7L PCB Serial Number Controller Type : 1902 Hardware Revision : 1.0 : 73-13854-02 PCB Part Number : 800-36894-01 Top Assy. Part Number Board Revision : 05 : 123968 Deviation Number Fab Version : 02 Product Identifier (PID) : ISR4451/K9 Version Identifier (VID) : V01 CLEI Code : TDBTDBTDBT Processor type : D0 Chassis Serial Number : FGL1601129D

MAC Address blo Manufacturing T Asset ID Asset ID Slot F0 EEPROM data:	ck size : est Data : :	144 00 00 00 00 00 00 P1B-R2C	00 00 00
EEPROM version Compatible Type Controller Type Hardware Revisi PCB Part Number MAC Address blo Chassis MAC Add Product Identif Version Identif PCB Serial Numb Asset ID Slot 0 EEPROM data:	on : ck size : ress : ier (PID) : ier (VID) : er :	4 0xFF 3567 4.1 73-12387-01 15 aabb.ccdd.eeff ISR4451-FP V00 FP123456789	
EEPROM version Compatible Type Controller Type Hardware Revisi PCB Part Number MAC Address blo Chassis MAC Add Product Identif Version Identif PCB Serial Numb Asset ID Slot 1 EEPROM data:	on : ck size : ress : ier (PID) : ier (VID) : er :	4 0xFF 1612 4.1 73-12387-01 15 aabb.ccdd.eeff ISR4451-NGSM V00 NGSM1234567	
EEPROM version Compatible Type Controller Type Hardware Revisi PCB Part Number MAC Address blo Chassis MAC Add Product Identif Version Identif PCB Serial Numb Asset ID Slot 2 EEPROM data:	on : ck size : ier (PID) : ier (VID) : er :	4 0xFF 1612 4.1 73-12387-01 15 aabb.ccdd.eeff ISR4451-NGSM V00 NGSM1234567	
EEPROM version Compatible Type Controller Type Hardware Revisi PCB Part Number MAC Address blo Chassis MAC Add Product Identif Version Identif PCB Serial Numb Asset ID SPA EEPROM data for sub	on : ck size : ier (PID) : ier (VID) : er : slot 0/0:	4 0xFF 1612 4.1 73-12387-01 15 aabb.ccdd.eeff ISR4451-NGSM V00 NGSM1234567	
EEPROM version Compatible Type Controller Type Hardware Revisi Boot Timeout PCB Serial Numb	on :	5 0xFF 1902 2.2 400 msecs JAB092709EL	

PCB Part Number : 73-8700-01 PCB Revision : A0 Fab Version : 01 RMA Test History : 00 : 0-0-0-0 RMA Number RMA History : 00 : 78409 Deviation Number Product Identifier (PID) : ISR4451-4X1GE Version Identifier (VID) : V01 : 68-2236-01 Top Assy. Part Number Top Assy. Revision : A0 IDPROM Format Revision : 36 : 00 00 00 00 00 00 00 00 System Clock Frequency 00 00 00 00 00 00 00 00 00 00 00 00 00 00 CLEI Code : CNUIAHSAAA Base MAC Address : 00 00 00 00 00 00 MAC Address block size : 0 Manufacturing Test Data : 00 00 00 00 00 00 00 00 Field Diagnostics Data : 00 00 00 00 00 00 00 00 Calibration Data : Minimum: 0 dBmV, Maximum: 0 dBmV Calibration values : Power Consumption : 13100 mWatts (Maximum) Environment Monitor Data : 03 30 0C E4 46 32 09 C4 46 32 05 DC 46 32 05 DC 46 32 00 FE 02 F9 6E Processor Label : 00 00 00 00 00 00 00 : 00 00 00 00 00 00 00 00 Platform features 00 Asset ID : Asset Alias SPA EEPROM data for subslot 0/1 is not available SPA EEPROM data for subslot 0/2 is not available SPA EEPROM data for subslot 0/3 is not available SPA EEPROM data for subslot 0/4 is not available SPA EEPROM data for subslot 1/0 is not available SPA EEPROM data for subslot 1/1 is not available SPA EEPROM data for subslot 1/2 is not available SPA EEPROM data for subslot 1/3 is not available SPA EEPROM data for subslot 1/4 is not available SPA EEPROM data for subslot 2/0 is not available SPA EEPROM data for subslot 2/1 is not available SPA EEPROM data for subslot 2/2 is not available SPA EEPROM data for subslot 2/3 is not available SPA EEPROM data for subslot 2/4 is not available

Configuration Examples

L

This section provides examples of deactivating and activating modules.

Deactivating a Module Configuration: Example

You can deactivate a module to perform OIR of that module. The following example shows how to deactivate a module (and its interfaces) and remove power to the module. In this example, the module is installed in subslot 0 of the router.

Router(config) # hw-module slot 1 subslot 1/0 shutdown unpowered

Activating a Module Configuration: Example

You can activate a module if you have previously deactivated it. If you have not deactivated a module and its interfaces during OIR, then the module is automatically reactivated upon reactivation of the router.

The following example shows how to activate a module. In this example, the module is installed in subslot 0, located in slot 1 of the router:

Router(config) # hw-module slot 1 subslot 1/0 start

SFP Auto-Detect and Auto-Failover

Cisco 4000 Series Integrated Services Routers (ISRs) provide a Front Panel Gigabit Ethernet (FPGE) port that supports copper and fiber concurrent connections. Media can be configured for failover redundancy when the network goes down. This feature is supported only on Cisco ISR platforms.

This chapter includes this section:

• Enabling Auto-Detect, on page 273

Enabling Auto-Detect

When the media-type is not configured, the Auto-Detect feature is enabled by default. The Auto-Detect feature automatically detects the media that is connected and links up. If both the media are connected, whichever media comes up first is linked. By default, the media-type on FPGE ports is set to auto-select. User can overwrite the media-type configuration to either RJ-45 or SFP using the **media-type rj45/sfp** command under the FPGE interface. The media type configuration also falls back to "Auto-select" mode when the **no media-type** command is configured. You can use the **no media-type** command in interface configuration mode to enable the Auto-Detect feature.

Configuring Auto-Detect

The Auto-Detect feature is enabled by default on the Front Panel Gige Ports. It is enabled by either configuring "media-type auto-select" or "no media-type". To configure the Auto-Detect, perform these steps:

SUMMARY STEPS

- 1. configure terminal
- **2.** interface gigabitethernet {slot | bay | port}
- **3**. media-type auto-select
- 4. End

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose	
	Router# configure terminal		
Step 2	interface gigabitethernet {slot bay port}	Enters interface configuration mode.	
	Example:		
	Router(config)# interface gigabitethernet slot/port		
Step 3	media-type auto-select	Auto-select mode uses whichever connector is attached.	
	Example:	The options are:	
	Router(config-if)# media-type auto-select	• rj45—Uses RJ45 connector.	
		• sfp —Uses SFP connector.	
Step 4	End	Exits to global configuration mode.	
	Example:		
	Router(config-if)#end		

Examples

The following example shows the default configuration and the show running configuration does not show any media type when the no media-type is selected.

```
Router(config)# show running interface gigabitethernet 0/0/0
Building configuration...
Current configuration : 71 bytes
!
interface GigabitEthernet0/0/0
no ip address
negotiation auto
end
```

Configuring the Primary and Secondary Media

When the router receives an indication that the primary media is down, the secondary failover media is enabled. After the switchover, the media does not switch back to primary media when the primary media is restored. You need to use either **shut** or **no shut** command or reload the module to switch the media-type back to primary(preferred) media.

To assign the primary or secondary failover media on the GE-SFP port, perform these steps:

SUMMARY STEPS

- 1. configure terminal
- **2.** interface gigabitethernet {slot | port}
- 3. media-type rj45 autofailover
- 4. End

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface gigabitethernet {slot port}	Enters interface configuration mode.
	Example:	
	Router(config)# interface gigabitethernet slot/port	
Step 3	media-type rj45 autofailover	Configures the port with rj45 as the primary media for
	Example:	automatic failover.
	Router(config-if)# media-type rj45 autofailover	
Step 4	End	Exits to global configuration mode.
	Example:	
	Router(config-if)#end	

Examples

The following example shows the primary configuration.

Router(config) # show running interface gigabitethernet 0/0/0 Building configuration...

```
Current configuration : 102 bytes !
interface GigabitEthernet0/0/0
no ip address
media-type rj45 auto-failover
negotiation auto
end
```


Cellular IPv6 Address

This chapter provides an overview of the IPv6 addresses and describes how to configure Cellular IPv6 address on Cisco 4000 series ISRs.

This chapter includes this section:

Cellular IPv6 Address, on page 277

Cellular IPv6 Address

- 2001:CDBA:0000:0000:0000:3257:9652
- 2001:CDBA::3257:9652 (zeros can be omitted)

IPv6 addresses commonly contain successive hexadecimal fields of zeros. Two colons (::) may be used to compress successive hexadecimal fields of zeros at the beginning, middle, or end of an IPv6 address (the colons represent successive hexadecimal fields of zeros). The table below lists compressed IPv6 address formats.

An IPv6 address prefix, in the format ipv6-prefix/prefix-length, can be used to represent bit-wise contiguous blocks of the entire address space. The ipv6-prefix must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). For example, 2001:cdba::3257:9652 /64 is a valid IPv6 prefix.

IPv6 Unicast Routing

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address.

Cisco 4000 Series ISR supports the following address types:

- Link-Lock Address, on page 278
- Global Address, on page 278

Link-Lock Address

A link-local address is an IPv6 unicast address that can be automatically configured on any interface using the link-local prefix FE80::/10 (1111 1110 10) and the interface identifier in the modified EUI-64 format. An link-local address is automatically configured on the cellular interface when an IPv6 address is enabled.

After the data call is established, the link-local address on the celluar interface is updated with the host generated link-local address that consists of the link-local prefix FF80::/10 (1111 1110 10) and the auto-generated interface identifier from the USB hardware address. The figure below shows the structure of a link-local address.

Global Address

A global IPv6 unicast address is defined by a global routing prefix, a subnet ID, and an interface ID. The routing prefix is obtained from the PGW. The Interface Identifier is automatically generated from the USB hardware address using the interface identifier in the modified EUI-64 format. The USB hardware address changes after the router reloads.

Configuring Cellular IPv6 Address

To configure the cellular IPv6 address, perform these steps:

SUMMARY STEPS

- 1. configure terminal
- 2. interface Cellular {type | number}
- **3.** ip address negotiated
- **4.** encapsulation slip
- 5. load-interval*seonds*
- 6. dialer in-band
- 7. dialer idle-timeout *seonds*
- **8.** dialer string **string**
- 9. dialer-groupgroup-number
- **10.** no peer default ip address
- **11.** ipv6 address autoconfig
- **12.** async mode interactive
- **13.** routing dynamic
- **15.** ipv6 route ipv6-prefix/prefix-length 128
- 16. End

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 2	interface Cellular {type number}	Specifies the cellular interface.
	Example:	
	Router(config)# interface cellular 0/1/0	
Step 3	ip address negotiated	Specifies that the IP address for a particular interface is
	Example:	dynamically obtained.
	Router(config-if)# ipv6 address negotiated	
Step 4	encapsulation slip	Specifies Serial Line Internet Protocol (SLIP)
	Example:	dial-on-demand routing (DDR).
	Router(config-if)# encapsulation slip	
Step 5	load-interval <i>seonds</i>	Specifies the length of time for which data is used to
	Example:	compute load statistics.
	Router(config-if)# load-interval 30	
Step 6	dialer in-band	Enables DDR and configures the specified serial interface
	Example:	to use in-band dialing.
	Router(config-if)# dialer in-band	
Step 7	dialer idle-timeout <i>seonds</i>	Specifies the dialer idle timeout period.
	Example:	
	Router(config-if)# dialer idle-timeout 0	
Step 8	dialer string string	Specifies the number or string to dial.
	Example:	
	Router(config-if)# dialer string lte	
Step 9	dialer-groupgroup-number	Specifies the number of the dialer access group to which
	Example:	the specific interface belongs.
	Router(config-if)# dialer-group 1	
Step 10	no peer default ip address	Removes the default address from your configuration.
	Example:	
	Router(config-if)# no peer default ip address	
Step 11	ipv6 address autoconfig	Enables automatic configuration of IPv6 addresses using
	Example:	stateless autoconfiguration on an interface and enables IPv6 processing on the interface
	Router(config-if)# ipv6 address autoconfig	
Step 12	async mode interactive	Please provide the inputs?
	Example:	
	Router(config-if)# async mode interactive	

	Command or Action	Purpose	
Step 13	routing dynamic	Enables the router to pass routing updates to other routers	
	Example:	through an interface.	
	Router(config-if)#routing dynamic		
Step 14	<pre>dialer-listdialer-groupprotocolprotocol-name {permit deny list access-list-number access-group }</pre>	Defines a dial-on-demand routing (DDR) dialer list for dialing by protocol or by a combination of a protocol and a previously defined access list.	
	Example:		
	Router(config)# dialer-list 1 protocol ipv6 permit		
Step 15	ipv6 route <i>ipv6-prefix/prefix-length 128</i>		
	Example:		
	Router(config)#ipv6 route 2001:1234:1234::3/128 Cellular0/1/0		
Step 16	End	Exits to global configuration mode.	
	Example:		
	Router(config-if)#end		
Step 15 Step 16	Example: Router(config)# dialer-list 1 protocol ipv6 permit ipv6 route ipv6-prefix/prefix-length 128 Example: Router(config)#ipv6 route 2001:1234:1234::3/128 Cellular0/1/0 End Example: Router(config-if)#end	Exits to global configuration mode.	

Examples

The following example shows the Cellular IPv6 configuration.

```
Router(config) # interface Cellular0/0/0
ip address negotiated
encapsulation slip
load-interval 30
dialer in-band
dialer idle-timeout 0
dialer string lte
dialer-group 1
no peer default ip address
ipv6 address autoconfig
async mode interactive
routing dynamic
interface Cellular0/1/0
ip address negotiated
encapsulation slip
load-interval 30
dialer in-band
dialer idle-timeout 0
dialer string lte
dialer-group 1
no peer default ip address
ipv6 address autoconfig
async mode interactive
routing dynamic
dialer-list 1 protocol ipv6 permit
ipv6 route 2001:1234:1234::/64 Cellular0/1/0
```


Configuring Voice Functionality

This chapter provides information about configuring voice functionality on the Cisco 4000 Series Integrated Services Routers (ISRs).

This chapter includes these sections:

- Call Waiting, on page 283
- E1 R2 Signaling Configuration, on page 283
- Feature Group D Configuration, on page 289
- Media and Signaling Authentication and Encryption, on page 291
- Multicast Music-on-Hold, on page 291
- TLS 1.2 support on SCCP Gateways, on page 292

Call Waiting

With the Call Waiting feature, you can receive a second call while you are on the phone attending to another call. When you receive a second call, you hear a call-waiting tone (a tone with a 300 ms duration). Caller ID appears on phones that support caller ID. You can use hookflash to answer a waiting call and place the previously active call on hold. By using hookflash, you can toggle between the active and a call that is on hold. If the Call Waiting feature is disabled, and you hang up the current call, the second call will hear a busy tone. For more information on Call Waiting, see http://www.cisco.com/c/en/us/td/docs/ios/voice/sip/configuration/guide/15_0/sip_15_0_book/sip_cg-hookflash.html#wp999028

Call Transfers

Call transfers are when active calls are put on hold while a second call is established between two users. After you establish the second call and terminate the active call, the call on hold will hear a ringback. The Call Transfer feature supports all three types of call transfers—blind, semi-attended, and attended. For more information on Call Transfers, see the http://www.cisco.com/c/en/us/td/docs/ios/voice/sip/configuration/guide/ 15 0/sip 15 0 book/sip cg-hookflash.html#wp999084

E1 R2 Signaling Configuration

To configure the E1 R2, perform these steps:

Before you begin

Before you attempt this configuration, ensure that you meet these prerequisites:

- R2 signaling applies only to E1 controllers.
- In order to run R2 signaling on Cisco 4000 Series ISRs, this hardware is required:
- NIM-MFT-1T1/E1 or NIM-2MFT-T1/E1 or NIM-4MFT-T1/E1or NIM-8MFT-T1/E1 or NIM-1CE1T1-PRI or NIM-2CE1T1-PRI or NIM-8CE1T1-PRI
- Define the command ds0-group on the E1 controllers of Cisco 4000 Series ISRs.
- Cisco IOS XE software release 15.5 (2)

SUMMARY STEPS

- 1. Set up the controller E1 that connects to the private automatic branch exchange (PBX) or switch.
- 2. For E1 framing, choose either CRC or non-CRC
- **3.** For E1 linecoding, choose either **HDB3** or **AMI**.
- For the E1 clock source, choose either internal or line. Note that different PBXs have different requirements on the clock source.
- **5.** Configure line signaling.
- **6.** Configure interregister signaling.
- 7. Customize the configuration with the cas-custom command.

DETAILED STEPS

Step 1 Set up the controller E1 that connects to the private automatic branch exchange (PBX) or switch.

Ensure that the framing and linecoding of the E1 are properly set.

- **Step 2** For E1 framing, choose either **CRC** or **non-CRC**
- **Step 3** For E1 linecoding, choose either **HDB3** or **AMI**.
- **Step 4** For the E1 clock source, choose either internal or line. Note that different PBXs have different requirements on the clock source.
- **Step 5** Configure line signaling.

(config) # controller E1 0/2/0

(config-controller)#ds0-group 1 timeslots 1 type ?
...
r2-analog R2 ITU Q411
r2-digital R2 ITU Q421
r2-pulse R2 ITU Supplement 7

r2-pulse

Step 6 Configure interregister signaling.

(config) # controller E1 0/2/0

eefje(config)# controller E1 0/2/0
eefje(config-controller)#ds0-group 1 timeslots 1 type r2-digital ?
dtmf DTMF tone signaling
r2-compelled Register Signaling

r2-non-compelled R2 Non Compelled Register Signaling r2-semi-compelled R2 Semi Compelled Register Signaling

. . .

The Cisco implementation of R2 signaling has Dialed Number Identification Service (DNIS) support enabled by default. If you enable the Automatic Number Identification (ANI) option, the collection of DNIS information is still performed. Specification of the ANI option does not disable DNIS collection. DNIS is the number that is called and ANI is the number of the caller. For example, if you configure a router called A to call a router called B, then the DNIS number is assigned to router B and the ANI number is assigned to router A. ANI is similar to caller ID.

Step 7 Customize the configuration with the cas-custom command.

```
(config) # controller E1 0/2/0
```

```
(config-controller)#ds0-group 1 timeslots 1 type r2-digital r2-compelled ani
cas-custom 1
    country brazil
    metering
    answer-signal group-b 1
voice-port 0/2/0:1
!
dial-peer voice 200 pots
destination-pattern 43200
direct-inward-dial
port 0/2/0:1
dial-peer voice 3925 voip
destination-pattern 39...
session target ipv4:10.5.25.41
...
```

R2 Configurations

The configurations have been modified in order to show only the information that this document discusses.

```
Configured for R2 Digital Non-Compelled
hostname eefje
1
controller E1 0
clock source line primary
dso-group 1 timeslots 1-15 type r2-digital r2-non-compelled
cas-custom 1
!--- For more information on these commands
!--- refer to
ds0-group
and
cas-custom.
1
voice-port 0:1
cptone BE
!--- The cptone command is country specific. For more
!--- information on this command, refer to
```

```
cptone
•
T.
dial-peer voice 123 pots
destination-pattern 123
direct-inward-dial
port 0:1
prefix 123
T.
dial-peer voice 567 voip
destination-pattern 567
session target ipv4:10.0.0.2
Configured for R2 Digital Semi-Compelled
hostname eefje
controller E1 0
clock source line primary
ds0-group 1 timeslots 1-15 type r2-digital r2-semi-compelled
cas-custom 1
!--- For more information on these commands
!--- refer to
ds0-group
and
cas-custom
.
T.
voice-port 0:1
cptone BE
!--- The cptone command is country specific. For more
!--- information on this command, refer to
cptone
dial-peer voice 123 pots
destination-pattern 123
direct-inward-dial
port 0:1
prefix 123
1
dial-peer voice 567 voip
destination-pattern 567
session target ipv4:10.0.0.2
Configured for R2 Digital Compelled ANI
hostname eefje
! controller E1 0 clock source line primary ds0-group
1 timeslots 1-15 type r2-digital r2-compelled ani cas-custom 1
!--- For more information on these commands
!--- refer to
ds0-group
and
cas-custom
voice-port 0:1 cptone BE
!--- The cptone command is country specific. For more
!--- information on this command, refer to
```

cptone

```
dial-peer voice 123 pots destination-pattern 123 direct-inward-dial port
0:1 prefix 123
!
dial-peer voice 567 voip destination-pattern 567 session
target ipv4:10.0.0.2
```

Sample Debug Command Output

This example shows the output for the **debug vpm sig** command.

```
(config-controller) #debug vpm sig
Syslog logging: enabled
(0 messages dropped, 9 messages rate-limited, 1 flushes, 0 overruns,
xml disabled, filtering disabled)No Active Message Discriminator.
No Inactive Message Discriminator.
Console logging: disabled
Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled
Buffer logging: level debugging, 163274 messages logged, xml disabled, filtering disabled
Exception Logging: size (4096 bytes)
                                       Count and timestamp logging messages: disabled
Persistent logging: disabledNo active filter modules.
Trap logging: level informational, 172 message lines logged
Logging Source-Interface:
VRF Name:Log Buffer (4096 bytes):0): DSX (E1 0/2/0:0): STATE: R2 IN COLLECT DNIS R2 Got
Event 1
*Jan 29 21:32:22.258:r2_reg_generate_digits(0/2/0:1(1)): Tx digit '1'
*Jan 29 21:32:22.369: htsp_digit_ready(0/2/0:1(1)): Rx digit='#'
*Jan 29 21:32:22.369: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0):STATE: R2_IN_COLLECT_DNIS
R2 Got Event R2 TONE OFF
*Jan 29 21:32:22.369: r2 reg generate digits(0/2/0:1(1)): Tx digit '#'
*Jan 29 21:32:22.569: htsp dialing done(0/2/0:1(1))
*Jan 29 21:32:25.258: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0):STATE: R2 IN COLLECT DNIS
R2 Got Event R2 TONE TIMER
*Jan 29 21:32:25.258: r2_reg_generate_digits(0/2/0:1(1)): Tx digit '3#'
*Jan 29 21:32:25.520: htsp digit ready up(0/2/0:1(1)): Rx digit='1'
*Jan 29 21:32:25.520: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0): STATE: R2_IN_CATEGORY R2
Got Event 1
*Jan 29 21:32:25.520: Enter r2_comp_category
*Jan 29 21:32:25.520: R2 Event : 1
*Jan 29 21:32:25.520: ######## collect call enable = 0
*Jan 29 21:32:25.520: r2_reg_event_proc(0/2/0:1(1)) ADDR_INFO_COLLECTED (DNIS=39001,
ANI=39700)
*Jan 29 21:32:25.520: r2_reg_process_event: [0/2/0:1(1), R2_REG_COLLECTING,
E R2 REG ADDR COLLECTED(89)]
*Jan 29 21:32:25.520: r2 reg ic addr collected(0/2/0:1(1))htsp switch ind
*Jan 29 21:32:25.521: htsp_process_event: [0/2/0:1(1), R2_Q421_IC_WAIT_ANSWER,
E HTSP SETUP ACK]
*Jan 29 21:32:25.521: r2 q421 ic setup ack(0/2/0:1(1)) E HTSP SETUP ACK
*Jan 29 21:32:25.521: r2 reg switch(0/2/0:1(1))
*Jan 29 21:32:25.521: r2_reg_process_event: [0/2/0:1(1), R2_REG_WAIT_FOR_SWITCH,
E R2 REG SWITCH(96)]
*Jan 29 21:32:25.521: r2_reg_ic_switched(0/2/0:1(1))
*Jan 29 21:32:25.522: htsp process event: [0/2/0:1(1), R2 Q421 IC WAIT ANSWER,
E HTSP PROCEEDING]
*Jan 29 21:32:25.530:htsp_call_bridged invoked
*Jan 29 21:32:25.530: r2 reg event proc(0/2/0:1(1)) ALERTING RECEIVED
*Jan 29 21:32:25.530: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0): STATE: R2 IN WAIT REMOTE ALERT
R2 Got Event R2 ALERTING
*Jan 29 21:32:25.530:rx R2 ALERTING in r2 comp wait remote alert
*Jan 29 21:32:25.530: r2 reg generate digits(0/2/0:1(1)): Tx digit '1'htsp alert notify
```

*Jan 29 21:32:25.531:r2 reg event proc(0/2/0:1(1)) ALERTING RECEIVED *Jan 29 21:32:25.531: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0): STATE: R2 IN COMPLETE R2 Got Event R2 ALERTING *Jan 29 21:32:25.540: htsp dsp message: RESP SIG STATUS: state=0x0 timestamp=0 systime=80352360 *Jan 29 21:32:25.540:htsp process event: [0/2/0:1(1), R2 Q421 IC WAIT ANSWER, E DSP SIG 0000] *Jan 29 21:32:25.651: htsp dialing done(0/2/0:1(1)) *Jan 29 21:32:25.751: htsp digit ready(0/2/0:1(1)): Rx digit='#' *Jan 29 21:32:25.751: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0): STATE: R2 IN COMPLETE R2 Got Event R2 TONE OFF *Jan 29 21:32:25.751: r2_reg_generate_digits(0/2/0:1(1)): Tx digit '#' *Jan 29 21:32:25.961: htsp dialing done(0/2/0:1(1)) *Jan 29 21:32:26.752: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0): STATE: R2 IN WAIT GUARD R2 Got Event R2 TONE TIMER *Jan 29 21:32:26.752: R2 IN CONNECT: call end dial *Jan 29 21:32:26.752: r2 reg end dial(0/2/0:1(1))htsp call service msghtsp call service msg not EFXS (11)htsp_call_service_msghtsp_call_service_msg not EFXS (11) *Jan 29 21:32:26.754: htsp process event: [0/2/0:1(1), R2 Q421 IC WAIT ANSWER, E HTSP VOICE CUT THROUGH] *Jan 29 21:32:26.754: htsp process event: [0/2/0:1(1), R2 Q421 IC WAIT ANSWER, E HTSP VOICE CUT THROUGH] *Jan 29 21:32:26.754: htsp_process_event: [0/2/0:1(1), R2_Q421_IC_WAIT_ANSWER, E HTSP VOICE CUT THROUGH] *Jan 29 21:32:51.909: htsp process event: [0/2/0:1(1), R2 Q421 IC WAIT ANSWER, E HTSP CONNECT] *Jan 29 21:32:51.909: r2 q421 ic answer(0/2/0:1(1)) E HTSP CONNECT *Jan 29 21:32:51.909: r2 q421 ic answer(0/2/0:1(1)) Tx ANSWER seizure: delay 0 ms,elapsed 32419 msvnm dsp set sig state: [R2 Q.421 0/2/0:1(1)] set signal state = 0x4 *Jan 29 21:32:51.910: r2_reg_channel_connected(0/2/0:1(1)) *Jan 29 21:32:51.910: r2_reg_process_event: [0/2/0:1(1), R2_REG_WAIT_FOR_CONNECT, E R2 REG CONNECT(90)] *Jan 29 21:32:51.910: r2 reg connect(0/2/0:1(1))htsp call service msghtsp call service msg not EFXS (11) This example shows the output for the debug vtsp all command. (config-controller) #debug vtsp all Log Buffer (4096 bytes)::S R2 DIALING COMP, event:E VTSP DIGIT END] *Jan 29 21:56:33.690: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/dc_digit: *Jan 29 21:56:33.690: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp process event: [state:S R2 DIALING COMP, event:E TSP R2 DIAL] *Jan 29 21:56:33.690: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/dc dial: *Jan 29 21:56:33.690: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dial nopush: *Jan 29 21:56:33.690: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/ds do dial: Digits To Dial=# *Jan 29 21:56:33.901: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm dial done cb: *Jan 29 21:56:33.901: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp process event: [state:S R2 DIALING COMP, event:E VTSP DSM DIALING COMPLETE] *Jan 29 21:56:33.901: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/dc dialing done: *Jan 29 21:56:34.690: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp process event: [state:S_R2_DIALING_COMP, event:E_TSP_R2_END_DIAL] *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/ds end dial: *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp digit pop: *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_digit_pop: Digit Reporting=FALSE *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/act alert dial complete: *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/act_service_msg_down: *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp timer stop: Timer Stop Time=80497275 *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm peer event cb: Event=E DSM CC CAPS ACK *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/act service msg down: *Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp timer stop: Timer Stop Time=80497275

```
*Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_dsm_peer_event_cb:
```

```
Event=E DSM CC CAPS ACK
*Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm peer event cb:
Event=E DSM CC CAPS ACK
*Jan 29 21:56:34.692: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm feature notify cb:
   Feature ID=0, Feature Status=1
*Jan 29 21:56:34.692: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm reactivate ringback:
*Jan 29 21:56:34.692:
//213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm reactivate ringback:exit@1299
*Jan 29 21:56:34.693: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm feature notify cb:
   Feature ID=0, Feature Status=1
*Jan 29 21:56:34.693: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm reactivate ringback:
*Jan 29 21:56:34.693:
//213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm reactivate ringback:exit@1299
*Jan 29 21:56:34.693: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm feature notify cb:
   Feature ID=0, Feature Status=1
*Jan 29 21:56:34.693: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm reactivate ringback:
*Jan 29 21:56:34.693:
//213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm reactivate ringback:exit@1299
*Jan 29 21:56:58.140: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_call_connect: Connected
Name
*Jan 29 21:56:58.140: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp call connect: Connected
Number 39701
*Jan 29 21:56:58.140: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp call connect: Connected
oct3a 30
*Jan 29 21:56:58.140: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp process event:
[state:S ALERTING, event:E CC CONNECT]
*Jan 29 21:56:58.140: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/act_alert_connect:
                                                                                   Progress
Indication=2
*Jan 29 21:56:58.140: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp ring noan timer stop:
   Timer Stop Time=80499620
*Jan 29 21:56:58.142: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp process event:
[state:S CONNECT, event:E CC SERVICE MSG]
*Jan 29 21:56:58.142: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/act service msg down:
*Jan 29 21:56:58.142: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp timer stop:
                                                                                    Timer
Stop Time=80499620
*Jan 29 21:56:58.144: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp dsm fpi event cb:
Event=E DSMP FPI ENABLE TDM RTCP
```

Feature Group D Configuration

To configure the Feature Group D signaling, perform these steps:

Before you begin

The Feature Group D signaling is supported on Cisco 4000 Series Integrated Services Routers from IOS XE release 15.5 (2). Feature Group D service is a trunk side connection that enables telephone customers to choose their long distance network and use the same number of digits irrespective of carrier they use. Routers interface with interexchange carriers using Feature Group D to support voice traffic in the carrier environment.

Before you attempt this configuration, ensure that you meet these prerequisites:

• The platform must be using Digital T1/E1 Packet Voice Trunk Network Modules.

- The Digital T1/E1 Packet Voice Trunk Network Module can have one or two slots for voice/WAN Interface Network Modules (NIMs); NIM supports one to eight ports. Only the dual-mode (voice/WAN) multiple trunk cards are supported in the digital E1 packet voice trunk network module, not older VICs.
- Drop-and-Insert capability is supported only between two ports on the same multiple card.

SUMMARY STEPS

- **1. configure terminal** {*ip-address* | *interface-type interface-number* [*ip-address*]}
- 2. voice-card slot/subslot
- 3. controller T1/E1 slot/subslot/port
- **4.** framing $\{sf \mid esf \}$
- **5. linecode** $\{b8zs \mid ami\}$
- 6. ds0-group ds0-group-notimeslots timeslot-list type{e&m-fgd | fgd-eana}
- 7. no shutdown
- **8**. exit

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure terminal { <i>ip-address</i> <i>interface-type</i> <i>interface-number</i> [<i>ip-address</i>]}	Enters global configuration mode.	
	Example:		
	Router(config)# configure terminal		
Step 2	voice-card slot/subslot	Enters voice card interface configuration mode and specify	
	Example:	the slot location by using a value from 0 to 5, depending upon your router.	
	Router(config)# voice-card slot/subslot		
Step 3	controller T1/E1 slot/subslot/port	Enters controller configuration mode for the T1 controller	
	Example:	at the specified slot/port location. Valid values for slot as port are 0 and 1.	
	Router(config)# controller T1 slot/subslot/port		
Step 4	framing $\{sf \mid esf \}$	Sets the framing according to your service provider's	
	Example:	instructions. Choose Extended Superframe (ESF) format or Superframe (SF) format.	
	<pre>Router(config)# framing {sf esf}</pre>		
Step 5	linecode {b8zs ami}	Sets the line encoding according to your service provider's instructions. Bipolar-8 zero substitution (B8ZS) encodes a sequence of eight zeros in a unique binary sequence to detect line coding violations. Alternate mark inversion (AMI) represents zeros using a 01 during each bit cell, and ones are represented by 11 or 00, alternately, during each bit cell. AMI requires that the sending device maintain ones density.	

	Command or Action		Purpose
			Ones density is not maintained independent of the data stream.
Step 6	ds0-group ds0-group-notimeslots type{e&m-fgd fgd-eana}	timeslot-list	Defines the T1 channels for use by compressed voice calls as well as the signaling method the router uses to connect to the PBX or CO. ds0-group-no is a value from 0 to 23 that identifies the DS0 group. Note The ds0-group command automatically creates a logical voice port that is numbered as follows: slot/port:ds0-group-no. Although only one voice port is created, applicable calls are routed to any channel in the group. timeslot-list is a single number, numbers separated by commas, or a pair of numbers separated by a hyphen to indicate a range of timeslots. For T1, allowable values are from 1 to 24. To map individual DS0 timeslots, define additional groups. The system maps additional voice ports for each defined group. The signaling method selection for type depends on the connection that you are making. The e&m-fgd setting allows E&M interface connections for PBX trunk lines (tie lines) and telephone equipment to use feature group D switched-access service. The fgd-eana setting supports the exchange access North American (EANA) signaling.
Step 7	no shutdown		Activates the controller.
Step 8	exit		Exits controller configuration mode. Skip the next step if you are not setting up Drop and Insert.

Media and Signaling Authentication and Encryption

The Media and Signaling Authentication and Encryption Feature for Cisco IOS MGCP Gateways feature implements voice security features that include signaling authentication along with media and signaling encryption on MGCP gateways. For more information on Media and Signaling Authentication and Encryption Feature, see the http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/mgcp/configuration/15-mt/vm-15-mt-book/vm-gw-med-sig.html

Multicast Music-on-Hold

The Music-on-Hold (MOH) feature enables you to subscribe to a music streaming service when you are using a Cisco IOS MGCP voice gateway. Music streams from an MOH server to the voice interfaces of on-net and off-net callers that have been placed on hold. Cisco Communications Manager supports the capability to place callers on hold with music supplied from a streaming multicast MOH server.

By means of a preconfigured multicast address on the Cisco Unified Communications Manager or gateway, the gateway can "listen" for Real-Time Transport Protocol (RTP) packets that are broadcast from a default router in the network and can relay the packets to designated voice interfaces in the network. You can initiate the call on hold. However, you cannot initiate music on hold on a MGCP controlled analog phone. Whenever

a called party places a calling party on hold, Cisco Communications Manager requests the MOH server to stream RTP packets to the "on-hold" interface through the preconfigured multicast address. In this way, RTP packets are relayed to appropriately configured voice interfaces that have been placed on hold. When you configure a multicast address on a gateway, the gateway sends an Internet Gateway Management Protocol (IGMP) "join" message to the default router, indicating to the default router that the gateway is ready to receive RTP multicast packets.

Multiple MOH servers can be present in the same network, but each server must have a different Class D IP address, and the address must be configured in Cisco Communications Manager and the MGCP voice gateways. For more information on configuring MOH, see the http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cminterop/configuration/15-0m/vc-15-0m-book/vc-ucm-mgcp-gw.html#GUID-A3461142-2F05-4420-AEE6-032FCA3B7952

TLS 1.2 support on SCCP Gateways

The TLS 1.2 support on SCCP Gateways feature details the configuration of TLS 1.2 on SCCP protocol for digital signal processor (DSP) farm including Unicast conference bridge

(CFB), Media Termination Point (MTP), and SCCP telephony control (STC) application (STCAPP).

DSP on gateways can be used as media resources for transrating or transcoding. Each media resource uses Secure Skinny Client Control Protocol (SCCP) to communicate with Cisco Unified Communications Manager. Currently SSL 3.1, which is equivalent to TLS1.0, is used for sending secure signals. This feature enhances the support to TLS 1.2. From Cisco IOS XE Cupertino 17.7.1a, TLS 1.2 is enhanced to support the Next-Generation Encryption (NGE) cipher suites.

Note Cisco Unified Communications Manager (CUCM) Version 14SU2 has been enhanced to support Secured SCCP gateways with the Subject Name field (CN Name) with or without colons, for example, AA:22:BB:44:55 or AA22BB4455.

CUCM checks the CN field of the incoming certificate from the SCCP Gateway and verifies it against the DeviceName configured in CUCM for this gateway. DeviceName contains MAC address of the gateway. CUCM converts the MAC address in the DeviceName to MAC address with colons (for example: AA:22:BB:44:55) and validates with the CN name in the Gateway's certificate. Therefore, CUCM mandates Gateway to use MAC address with colons for the CN field in the certificate, that is, subject name.

Due to new guidelines from Defense Information Systems Agency (DISA), it is a requirement not to use colons for the subject name field CN. For example, AA22BB4455.

SCCP TLS connection

CiscoSSL is based on OpenSSL. SCCP uses CiscoSSL to secure the communication signals.

If a resource is configured in the secure mode, the SCCP application initiates a process to complete Transport Layer Security (TLS) handshaking. During the handshake, the server sends information to CiscoSSL about the TLS version and cipher suites supported. Previously, only SSL3.1 was supported for SCCP secure signalling. SSL3.1 is equivalent to TLS 1.0. The TLS 1.2 Support feature introduces TLS1.2 support to SCCP secure signalling.

After TLS handshaking is complete, SCCP is notified and SCCP kills the process.

If the handshaking is completed successfully, a REGISTER message is sent to Cisco Unified Communications Manager through the secure tunnel. If handshaking fails and a retry is needed, a new process is initiated.

Note

For SCCP-based signalling, only TLS_RSA_WITH_AES_128_CBC_SHA cipher suite is supported.

Cipher Suites

For SCCP-based signaling, TLS RSA WITH AES 128 CBC SHA cipher suite is supported.

From Cisco IOS XE Cupertino 17.7.1a, the following NGE cipher suites are also supported:

- ECDHE-RSA-AES128-GCM-SHA256
- ECDHE-RSA-AES256-GCM-SHA384

These cipher suites enable secure voice signaling for both the STCAPP analog phone and the SCCP DSPFarm conferencing service. The cipher suite selection is negotiated between gateway and CUCM.

The following prerequisites are applicable for using NGE cipher suites:

- Configure TLS 1.2. For more information, see Configuring TLS version for STC application, on page 294.
- Use CUCM Release 14.1 SU1 or later, and Voice Gateways or platforms that support TLS 1.2.
- From the CUCM Web UI, navigate to **Cipher Management** and set the **CIPHER switch** as **NGE**. For more information, see Cipher Management.

For more information about verifying cipher suites, see Verifying TLS Version and Cipher Suites, on page 294.

For the SRTP-encrypted media, you can use higher-grade cipher suites - AEAD-AES-128-GCM or AEAD-AES-256-GCM. The selection of these cipher suites is automatically negotiated between GW and CUCM for both secure analog voice and hardware conference bridge voice media. Authenticated Encryption with Associated Data (AEAD) ciphers simultaneously provide confidentiality, integrity, and authenticity, without built-in SHA algorithms to validate message integrity.

Supported Platforms

The TLS 1.2 support on the SCCP Gateways feature is supported on the following platforms:

- Cisco 4321 Integrated Services Router
- Cisco 4331 Integrated Services Router
- Cisco 4351 Integrated Services Router
- Cisco 4431 Integrated Services Router
- Cisco 4451-X Integrated Services Router
- Cisco 4461 Integrated Services Router
- Cisco Catalyst 8200 and 8300 Series Edge Platforms
- Cisco VG400, VG420, and VG450 Analog Voice Gateways

Configuring TLS version for STC application

Perform the following task to configure a TLS version for the STC application:

```
enable
configure terminal
stcapp security tls-version v1.2
exit
```

Note

The stcapp security tls command sets the TLS version to v.1.0, v1.1, or v1.2 only. If not configured explicitly, TLS v1.0 is selected by default.

Configuring TLS version in Secure Mode for DSP Farm Profile

Perform the following task to configure the TLS version in secure mode for DSP farm profile:

```
enable
configure terminal
dspfarm profile 7 conference security
  tls-version v1.2
  exit
```

Note

Note: The tls command can be configured only in security mode.

Verifying TLS Version and Cipher Suites

Perform the following task to verify the TLS version and cipher suite:

```
# show dspfarm profile 100
Dspfarm Profile Configuration
Profile ID = 100, Service = CONFERENCING, Resource ID = 2
Profile Service Mode : secure
Trustpoint : Overlord DSPFarm GW
TLS Version : v1.2
TLS Cipher : ECDHE-RSA-AES256-GCM-SHA384
Profile Admin State : UP
Profile Operation State : ACTIVE
Application : SCCP
                    Status : ASSOCIATED
Resource Provider : FLEX DSPRM Status : UP
Total Number of Resources Configured : 10
Total Number of Resources Available : 10
Total Number of Resources Out of Service : 0
Total Number of Resources Active : 0
Maximum conference participants : 8
Codec Configuration: num of codecs:6
Codec : g711ulaw, Maximum Packetization Period : 30 , Transcoder: Not Required
Codec : g711alaw, Maximum Packetization Period : 30 , Transcoder: Not Required
Codec : g729ar8, Maximum Packetization Period : 60 , Transcoder: Not Required
 Codec : g729abr8, Maximum Packetization Period : 60 , Transcoder: Not Required
Codec : g729r8, Maximum Packetization Period : 60 , Transcoder: Not Required
Codec : g729br8, Maximum Packetization Period : 60 , Transcoder: Not Required
```

Verifying STCAPP Application TLS Version

Perform the following tasks to verify the TLS version of the STCAPP application:

```
Device# show call application voice stcapp
App Status: Active
CCM Status: UP
CCM Group: 120
Registration Mode: CCM
Total Devices: 0
Total Calls in Progress: 0
Total Call Legs in Use: 0
ROH Timeout: 45
TLS Version: v1.2
# show stcapp dev voice 0/1/0
Port Identifier: 0/1/0
Device Type:
                ALG
Device Id:
                585
                ANB3176C85F0080
Device Name:
Device Security Mode : Encrypted
 TLS version : TLS version 1.2
 TLS cipher : ECDHE-RSA-AES256-GCM-SHA384
Modem Capability: None
Device State:
                IS
Diagnostic:
                None
Directory Number: 80010
Dial Peer(s): 100
Dialtone after remote onhook feature: activated
Busytone after remote onhook feature: not activated
Last Event: STCAPP_CC_EV_CALL_MODIFY_DONE
Line State:
               ACTIVE
               CALL CONF
Line Mode:
                OFFHOOK
Hook State:
mwi:
                DISABLE
vmwi:
                OFF
mwi config:
               Both
               Not configured
Privacy:
               Unknown
HG Status:
PLAR:
                DISABLE
Callback State: DISABLED
CWT Repetition Interval: 0 second(s) (no repetition)
Number of CCBs: 1
Global call info:
   Total CCB count
                       = 3
   Total call leg count = 6
Call State for Connection 2 (ACTIVE): TsConnected
Connected Call Info:
  Call Reference: 33535871
  Call ID (DSP): 187
  Local IP Addr: 172.19.155.8
  Local IP Port: 8234
  Remote IP Addr: 172.19.155.61
  Remote IP Port: 8154
  Calling Number: 80010
  Called Number:
                  g711ulaw
  Codec:
             on
  SRTP:
  RX Cipher: AEAD_AES_256_GCM
  TX Cipher: AEAD_AES_256_GCM
```

Perform the following task to verify the sRTP cipher suite for the DSPfarm connection:

show sccp connection detail

bridge-info(bid, cid) - Normal bridge information(Bridge id, Calleg id)
mmbridge-info(bid, cid) - Mixed mode bridge information(Bridge id, Calleg id)

sess_id bridge-info	conn_id (bid, cid)	call-id mmbridge- call_ref	codec j -info(bid spid	pkt-period , cid) srtp conn_id_	dtmf_method _cryptosuite _tx	type dscp	
16778224 Callegs	- All MM-N	125 ISP Callegs	N/A I N/A	N/A	rfc2833_pthru N/A	confmsp	All RTPSPI
16778224	16777232 N/A	- 126	- g711u : AEi	- 20 AD_AES_256_	rfc2833_pthru GCM 18	s- rtpspi 34	(101,125)
16778224	16777231 N/A	30751576 124 30751576	g711u 2 AE2 16777219	- 20 AD_AES_256_ -	rfc2833_pthru GCM 18	s- rtpspi 34	(100,125)

Total number of active session(s) 1, connection(s) 2, and callegs 3

Verifying Call Information

To display call information for TDM and IVR calls stored in the Forwarding Plane Interface (FPI), use the **showvoipfpi calls** command. You can select a call ID and verify the cipher suite using the **show voip fpi calls** confID *call_id_number* command. In this example, cipher suite 6 is AES_256_GCM.

#show voip fpi calls

Number of (Calls : 2				
confID	correlator	AcallID	BcallID	state	event
1 21	1 21	87 89	88 90	ALLOCATED I ALLOCATED I	DETAIL_STAT_RSP DETAIL_STAT_RSP

#show voip fpi calls confID 1

VoIP-FPI call entry	details:		
Call Type : correlator : last_event : modify_start_time:	TDM_IP 1 DETAIL_STAT_RSP 0 0	<pre>confID : call_state : alloc_start_time : delete_start_time:</pre>	1 ALLOCATED 1796860810 0
FPI State Machine S create_req_call_ent	stats: 	: 1	

Additional References

Related Topic	Document Title
Cisco IOS Voice Gateways Configuration Guide	Supplementary Services Features for FXS Ports on Cisco IOS Voice Gateways Configuration Guide

Feature Information for TLS 1.2 support on SCCP Gateways

Table 29: Feature Information for TLS 1.2 support on SCCP Gateways

Feature Name	Releases	Feature Information
TLS 1.2 support on SCCP Gateways	Cisco IOS XE Fuji 16.7.1	The TLS 1.2 support on SCCP Gateways feature details the configuration of TLS 1.2 on SCCP protocol for DSP farm including CFB, MTP, and STCAPP. The following commands were introduced: stcapp security tls-version , tls-version .
Support for NGE Cipher Suites	Cisco IOS XE Cupertino 17.7.1a	This feature supports NGE cipher suites for secure voice signaling and secure media. These cipher suites are applicable for both the STCAPP analog phone and the SCCP DSPFarm conferencing service.

Configuration Examples

This chapter provides examples of configuring common networking tasks on the router. The examples in this chapter are provided for illustrative purposes only; little or no context is given with these examples. For more information, see Installing the Software, on page 55.

When reading this section, also be aware that networking configurations are complex and can be configured in many ways. The examples in this section show one method of accomplishing a configuration.

This chapter contains the following examples:

- Copying the Consolidated Package from the TFTP Server to the Router, on page 299
- Configuring the Router to Boot Using the Consolidated Package Stored on the Router, on page 300
- Extracting the Subpackages from a Consolidated Package into the Same File System, on page 302
- Extracting the Subpackages from a Consolidated Package into a Different File System, on page 304
- Configuring the Router to Boot Using Subpackages, on page 305
- Backing Up Configuration Files, on page 311
- Displaying Digitally Signed Cisco Software Signature Information, on page 312
- Obtaining the Description of a Module or Consolidated Package, on page 316

Copying the Consolidated Package from the TFTP Server to the Router

The following example shows how to copy the consolidated package from the TFTP server to the router:

```
Router# dir bootflash:
Directory of bootflash:/
```

11	drwx	16384	Jul 2 2012 15:25:23 +00:00 lost+found	
16225	drwx	4096	Jul 31 2012 19:30:48 +00:00 core	
178465	drwx	4096	Sep 13 2012 17:48:41 +00:00 .prst sync	
324481	drwx	4096	Jul 2 2012 15:26:54 +00:00 .rollback time:	
12	-rw-	0	Jul 2 2012 15:27:06 +00:00 tracelogs.696	
373153	drwx	114688	Sep 13 2012 17:49:14 +00:00 tracelogs	
32449	drwx	4096	Jul 2 2012 15:27:08 +00:00 .installer	
681409	drwx	4096	Jul 31 2012 19:15:39 +00:00 .ssh	
697633	drwx	4096	Jul 2 2012 15:27:08 +00:00 vman_fdb	
7451738	3112 bytes	total (7	015186432 bytes free)	
Router	# copy tftp	bootfla	ish:	
Address or name of remote host []? 10.81.116.4				
Source filename []? rtp-isr4400-54/isr4400.bin				

Destination filename [isr4400.bin]? Accessing tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin... Loading rtp-isr4400-54/isr4400.bin from 10.81.116.4 (via GigabitEthernet0): !!!!!! [OK - 424317088 bytes] 424317088 bytes copied in 371.118 secs (1143348 bytes/sec) Router# dir bootflash: Directory of bootflash:/ 16384 Jul 2 2012 15:25:23 +00:00 lost+found 4096 Jul 31 2012 19:30:48 +00:00 core 4096 Sep 13 2012 17:48:41 +00:00 .prst_sync 11 drwx 16225 drwx 178465 drwx 324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback timer 12 -rw-0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 373153 drwx 114688 Sep 13 2012 18:05:07 +00:00 tracelogs Jul 2 2012 15:27:08 +00:00 .installer 4096 32449 drwx 4096 Jul 31 2012 19:15:39 +00:00 681409 drwx .ssh 697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman fdb 13 -rw- 424317088 Sep 13 2012 18:01:41 +00:00 isr4400.bin 7451738112 bytes total (6590910464 bytes free)

Configuring the Router to Boot Using the Consolidated Package Stored on the Router

The following example shows how to configure the router to boot using the consolidated package stored on the router:

```
Router# dir bootflash:
Directory of bootflash:/
```

11	drwx	16384	Jul 2 2012 15:25:23 +00:00	lost+found
16225	drwx	4096	Jul 31 2012 19:30:48 +00:00	core
178465	drwx	4096	Sep 13 2012 17:48:41 +00:00	.prst_sync
324481	drwx	4096	Jul 2 2012 15:26:54 +00:00	.rollback_timer
12	-rw-	0	Jul 2 2012 15:27:06 +00:00	tracelogs.696
373153	drwx	114688	Sep 13 2012 18:05:07 +00:00	tracelogs
32449	drwx	4096	Jul 2 2012 15:27:08 +00:00	.installer
681409	drwx	4096	Jul 31 2012 19:15:39 +00:00	.ssh
697633	drwx	4096	Jul 2 2012 15:27:08 +00:00	vman_fdb
13	-rw-	424317088	Sep 13 2012 18:01:41 +00:00	isr4400.bin

7451738112 bytes total (6590910464 bytes free)

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# boot system bootflash:isr4400.bin
Router(config)# config-register 0x2102
Router(config)# exit
Router# show run | include boot
boot-start-marker
boot system bootflash:isr4400.bin
boot-end-marker
license boot level adventerprise
Router# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
```

```
Router# reload
Proceed with reload? [confirm]
Sep 13 18:08:36.311 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit
with reload chassis code
Initializing Hardware ...
System integrity status: c0000600
Failures detected:
Boot FPGA corrupt
Key Sectors: (Primary, GOOD), (Backup, GOOD), (Revocation, GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300
ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec
System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM 20120618 GAMMA 101],
DEVELOPMENT SOFTWARE
Copyright (c) 1994-2012 by cisco Systems, Inc.
Compiled Mon 06/18/2012 12:39:32.05 by username
Current image running: Boot ROMO
Last reset cause: LocalSoft
Cisco ISR 4400 platform with 4194304 Kbytes of main memory
File size is 0x194a90a0
Located isr4400.bin
Image size 424317088 inode num 13, bks cnt 103594 blk size 8*512
Boot image size = 424317088 (0x194a90a0) bytes
ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec
Package header rev 1 structure detected
Calculating SHA-1 hash...done
validate package: SHA-1 hash:
 calculated 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
 expected 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
Signed Header Version Based Image Detected
Using FLASH based Keys of type = PRIMARY KEY STORAGE
Using FLASH based Keys of type = ROLLOVER KEY STORAGE
RSA Signed DEVELOPMENT Image Signature Verification Successful.
Package Load Test Latency : 5133 msec
Image validated
%IOSXEBOOT-4-BOOT ACTIVITY LONG TIME: (local/local): load modules took: 2 seconds, expected
max time 2 seconds
             Restricted Rights Legend
Use, duplication, or disclosure by the Government is
```

subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

Cisco IOS Software, IOS-XE Software (X86 64 LINUX IOSD-UNIVERSALK9-M), Experimental Version

15.3(20120910:013018) [mcp_dev-BLD-BLD_MCP_DEV_LATEST_20120910_000023-ios 153] Copyright (c) 1986-2012 by Cisco Systems, Inc. Compiled Sun 09-Sep-12 21:28 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2012 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Warning: the compile-time code checksum does not appear to be present. cisco ISR4451/K9 (2RU) processor with 1133589K/6147K bytes of memory. Processor board ID FGL1619100P 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of Compact flash at bootflash:. 7816688K bytes of USB flash at usb0:.

Press RETURN to get started!

Extracting the Subpackages from a Consolidated Package into the Same File System

The following example shows how to extract the subpackages from a consolidated package into the same file system.

After entering the **request platform software package expand file bootflash:isr4400.bin** command (note that the **to** option is not used) the subpackages are extracted from the consolidated package into **bootflash:**

Router> enable Router# dir bootflash: Directory of bootflash:/ 11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found 16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core 178465 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst sync 324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback timer 12 -rw-0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 373153 drwx 114688 Sep 13 2012 18:13:31 +00:00 tracelogs 32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer 681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh 697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman fdb 13 -rw- 424317088 Sep 13 2012 18:01:41 +00:00 isr4400.bin 7451738112 bytes total (6590029824 bytes free) Router# request platform software package expand file bootflash:isr4400.bin Verifying parameters Validating package type Copying package files SUCCESS: Finished expanding all-in-one software package. Router# dir bootflash: Directory of bootflash:/ 11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found 16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync 178465 drwx 4096 324481 drwx Jul 2 2012 15:26:54 +00:00 .rollback timer 12 -rw-0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 373153 drwx 114688 Sep 13 2012 18:16:49 +00:00 tracelogs 4096 Jul 2 2012 15:27:08 +00:00 .installer 32449 drwx 681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh 697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman fdb 13 -rw- 424317088 Sep 13 2012 18:01:41 +00:00 isr4400.bin 778756 -rw- 112911096 Sep 13 2012 18:15:49 +00:00 isr4400-espbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 778757 -rw-2220784 Sep 13 2012 18:15:49 +00:00 isr4400-firmware_dsp_sp2700.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 371440 Sep 13 2012 18:15:49 +00:00 778758 -rwisr4400-firmware fpge.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 8080112 Sep 13 2012 18:15:49 +00:00 778759 -rwisr4400-firmware_nim_tle1.BLD_MCP_DEV_LATEST 20120910 000023.SSA.pkg 778760 -rw-9331440 Sep 13 2012 18:15:49 +00:00 isr4400-firmware_sm_1t3e3.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 379632 Sep 13 2012 18:15:49 +00:00 778761 -rwisr4400-firmware_ucse.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 778754 -rw-10540 Sep 13 2012 18:15:48 +00:00 --More-isr4400-packages-universalk9.BLD MCP DEV LATEST 20120910 000023.conf 778762 -rw- 27218680 Sep 13 2012 18:15:50 +00:00 isr4400-rpaccess.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 778763 -rw- 78938264 Sep 13 2012 18:15:50 +00:00 isr4400-rpbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 778764 -rw- 45177592 Sep 13 2012 18:15:50 +00:00 isr4400-rpcontrol.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 778765 -rw- 114662144 Sep 13 2012 18:16:01 +00:00 isr4400-rpios-universalk9.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 778766 -rw- 26360568 Sep 13 2012 18:16:03 +00:00 isr4400-sipbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 778767 -rw- 13091576 Sep 13 2012 18:16:06 +00:00 isr4400-sipspa.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 778755 -rw-11349 Sep 13 2012 18:16:06 +00:00 packages.conf

7451738112 bytes total (6150725632 bytes free)

Extracting the Subpackages from a Consolidated Package into a Different File System

The following example shows how to extract the subpackages from a consolidated package into a different file system.

The initial **dir usb0**: command shows that there are no subpackages in the **bootflash**: directory.

After the **request platform software package expand file usb0:isr4400.bin to bootflash:** command is entered, the subpackages are displayed in the **bootflash:** directory. The isr4400.bin consolidated package file is in the **usb0:** directory.

Router# dir usb0: Directory of usb0:/ 121 -rwx 424317088 Sep 13 2012 18:27:50 +00:00 isr4400.bin 7988666368 bytes total (7564341248 bytes free) Router# dir bootflash: Directory of bootflash:/ 16384 Jul 2 2012 15:25:23 +00:00 lost+found 11 drwx 4096 Jul 31 2012 19:30:48 +00:00 core 16225 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst sync 178465 drwx 324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback timer 12 -rw-0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 373153 drwx 114688 Sep 13 2012 18:41:51 +00:00 tracelogs 32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer 681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh 697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman fdb 7451738112 bytes total (6590418944 bytes free) Router# request platform software package expand file usb0:isr4400.bin to bootflash: Verifying parameters Validating package type Copying package files SUCCESS: Finished expanding all-in-one software package. Router# dir bootflash: Directory of bootflash:/ 11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
 16225 drwx
 4096 Jul 31 2012 19:30:48 +00:00 core

 178465 drwx
 4096 Sep 13 2010 10 10
 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync 324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback timer 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 12 -rw-4096 Jul 2 2012 15:27:08 +00:00 .installer 4096 Jul 31 2012 19:15:39 +00:00 .ssh 681409 drwx 4096 697633 drwx Jul 2 2012 15:27:08 +00:00 vman_fdb 454276 -rw- 112911096 Sep 13 2012 18:46:05 +00:00 isr4400-espbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454277 -rw- 2220784 Sep 13 2012 18:46:05 +00:00 isr4400-firmware dsp sp2700.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 371440 Sep 13 2012 18:46:05 +00:00 454278 -rwisr4400-firmware_fpge.BLD_MCP_DEV_LATEST_20120910 000023.SSA.pkg 454279 -rw-8080112 Sep 13 2012 18:46:05 +00:00 isr4400-firmware_nim_tle1.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 454280 -rw-9331440 Sep 13 2012 18:46:06 +00:00 isr4400-firmware sm 1t3e3.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454281 -rw-379632 Sep 13 2012 18:46:06 +00:00

isr4400-firmware ucse.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454274 -rw-10540 Sep 13 2012 18:46:05 +00:00 --More-isr4400-packages-universalk9.BLD MCP DEV LATEST 20120910 000023.conf 454282 -rw- 27218680 Sep 13 2012 18:46:06 +00:00 isr4400-rpaccess.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 454283 -rw- 78938264 Sep 13 2012 18:46:06 +00:00 isr4400-rpbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454284 -rw- 45177592 Sep 13 2012 18:46:06 +00:00 isr4400-rpcontrol.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454285 -rw- 114662144 Sep 13 2012 18:46:16 +00:00 isr4400-rpios-universalk9.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454286 -rw- 26360568 Sep 13 2012 18:46:19 +00:00 isr4400-sipbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454287 -rw- 13091576 Sep 13 2012 18:46:21 +00:00 isr4400-sipspa.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454275 -rw-11349 Sep 13 2012 18:46:21 +00:00 packages.conf

```
7451738112 bytes total (6575869952 bytes free)
```

Configuring the Router to Boot Using Subpackages

After placing the provisioning file and subpackage files in a directory and booting the router, we recommend that you do not rename, delete, or alter any of these files. Renaming, deleting, or altering the files can lead to unpredictable router problems and behaviors. Each version of a consolidated package contains subpackages that are similar to those shown in the following table. However, each version of a consolidated package may contain different versions of each subpackage.

Subpackage	Description	
RPBase	Provides the operating system software for the Route Processor. This is the only bootable package.	
RPControl	Controls the control plane processes that act as the interface between the Cisco IOS process and the rest of the platform.	
RPAccess	Exports processing of restricted components, such as Secure Socket Layer (SSL), Secure Shell (SSH), and other security features.	
RPIOS	Provides the Cisco IOS kernel, where Cisco IOS XE features are stored and run. Each consolidated package has a different version of RPIOS.	
ESPBase	Provides the Embedded Services Processor (ESP) operating system and control processes, and ESP software.	
SIPBase	Provides control processes.	
SIPSPA	Provides Input/Output (I/O) drivers.	
Firmware	Firmware subpackage. The name of the subpackage includes the module type, which either refers to a Network Information Module (NIM) or Cisco Enhanced Service Module.	

Table 30: Subpackages

The following example shows how to configure the router to boot using subpackages:

The **dir bootflash:** command confirms that all subpackages and the provisioning file are in the same file system, as shown in the following example:

Router# **dir bootflash:** Directory of bootflash:/

16384 Jul 2 2012 15:25:23 +00:00 lost+found 11 drwx 4096 Jul 31 2012 19:30:48 +00:00 core 16225 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync 178465 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback timer 324481 drwx 12 -rw-0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 373153 drwx 114688 Sep 13 2012 18:46:52 +00:00 tracelogs 4096 Jul 2 2012 15:27:08 +00:00 .installer 4096 Jul 31 2012 19:15:39 +00:00 .ssh 32449 drwx 681409 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb 697633 drwx 454276 -rw- 112911096 Sep 13 2012 18:46:05 +00:00 isr4400-espbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454277 -rw- 2220784 Sep 13 2012 18:46:05 +00:00 isr4400-firmware dsp sp2700.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454278 -rw-371440 Sep 13 2012 18:46:05 +00:00 isr4400-firmware fpge.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454279 -rw- 8080112 Sep 13 2012 18:46:05 +00:00 isr4400-firmware_nim_tle1.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 454280 -rw-9331440 Sep 13 2012 18:46:06 +00:00 isr4400-firmware_sm_1t3e3.BLD_MCP_DEV_LATEST 20120910 000023.SSA.pkg 454281 -rw- 379632 Sep 13 2012 18:46:06 +00:00 isr4400-firmware ucse.BLD MCP DEV LATEST 20120910 000023.SSA.pkg --More-- 454274 -rw-10540 Sep 13 2012 18:46:05 +00:00 isr4400-packages-universalk9.BLD MCP DEV LATEST 20120910 000023.conf 454282 -rw- 27218680 Sep 13 2012 18:46:06 +00:00 isr4400-rpaccess.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 454283 -rw- 78938264 Sep 13 2012 18:46:06 +00:00 isr4400-rpbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454284 -rw- 45177592 Sep 13 2012 18:46:06 +00:00 isr4400-rpcontrol.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 454285 -rw- 114662144 Sep 13 2012 18:46:16 +00:00 isr4400-rpios-universalk9.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 26360568 Sep 13 2012 18:46:19 +00:00 454286 -rwisr4400-sipbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454287 -rw- 13091576 Sep 13 2012 18:46:21 +00:00 isr4400-sipspa.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 11349 Sep 13 2012 18:46:21 +00:00 packages.conf 454275 -rw-

7451738112 bytes total (6575869952 bytes free)

Router# show running | include boot boot-start-marker boot-end-marker license boot level adventerprise Router# configure terminal Enter configuration commands, one per line. End with $\ensuremath{\texttt{CNTL}/\texttt{Z}}$. Router(config) # boot system bootflash:packages.conf Router(config) # config-register 0x2102 Router(config) # exit Router# show running | include boot boot-start-marker boot system bootflash:packages.conf boot-end-marker license boot level adventerprise Router# copy run start Destination filename [startup-config]? Building configuration ... [OK] Router# reload

```
Proceed with reload? [confirm]
Sep 13 18:49:39.720 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit with
reload chassis code
Initializing Hardware ...
System integrity status: c0000600
Failures detected:
Boot FPGA corrupt
Key Sectors: (Primary, GOOD), (Backup, GOOD), (Revocation, GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300
ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec
System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM 20120618 GAMMA 101],
DEVELOPMENT SOFTWARE
Copyright (c) 1994-2012 by cisco Systems, Inc.
Compiled Mon 06/18/2012 12:39:32.05 by username
Current image running: Boot ROMO
Last reset cause: LocalSoft
Cisco ISR 4400 platform with 4194304 Kbytes of main memory
File size is 0x00002c55
Located packages.conf
Image size 11349 inode num 454275, bks cnt 3 blk size 8*512
File size is 0x04b48098
Located isr4400-rpbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
Image size 78938264 inode num 454283, bks cnt 19273 blk size 8*512
Boot image size = 78938264 (0x4b48098) bytes
ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec
Package header rev 1 structure detected
Calculating SHA-1 hash...done
validate package: SHA-1 hash:
calculated dbe960a6:d239245c:76d93622:d6c31a41:40e9e420
          dbe960a6:d239245c:76d93622:d6c31a41:40e9e420
 expected
Signed Header Version Based Image Detected
Using FLASH based Keys of type = PRIMARY KEY STORAGE
Using FLASH based Keys of type = ROLLOVER KEY STORAGE
RSA Signed DEVELOPMENT Image Signature Verification Successful.
Package Load Test Latency : 1159 msec
Image validated
             Restricted Rights Legend
Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph
(c) of the Commercial Computer Software - Restricted
Rights clause at FAR sec. 52.227-19 and subparagraph
```

(c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.3(20120910:013018) [mcp_dev-BLD_BLD_MCP_DEV_LATEST_20120910_000023-ios 153] Copyright (c) 1986-2012 by Cisco Systems, Inc. Compiled Sun 09-Sep-12 21:28 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2012 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Warning: the compile-time code checksum does not appear to be present. cisco ISR4451/K9 (2RU) processor with 1133589K/6147K bytes of memory. Processor board ID FGL1619100P 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of Compact flash at bootflash:. 7816688K bytes of USB flash at usb0:.

Press RETURN to get started!

Router>
Router> en
Router# show version
Cisco IOS XE Software, Version BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ext
Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version
15.4(20140527:095327)
[v154_3_s_xe313_throttle-BLD_BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ios 156]

IOS XE Version: BLD V154 3 S XE313 THROTTLE LATEST
Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 1 minute Uptime for this control processor is 4 minutes --More-- System returned to ROM by reload System image file is "bootflash:packages.conf" Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

License Level: adventerprise License Type: EvalRightToUse --More-- Next reload license Level: adventerprise

cisco ISR4451/K9 (2RU) processor with 1133589K/6147K bytes of memory. Processor board ID FGL1619100P 4 Gigabit Ethernet interfaces 32768K bytes of non-volatile configuration memory. 4194304K bytes of physical memory. 7393215K bytes of Compact flash at bootflash:. 7816688K bytes of USB flash at usb0:.

Configuration register is 0x2102

Router# **dir bootflash:** Directory of bootflash:/

16384 Jul 2 2012 15:25:23 +00:00 lost+found 11 drwx 16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core 4096 Sep 13 2012 18:53:29 +00:00 .prst_sync 178465 drwx 324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback timer 12 -rw-0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 373153 drwx 114688 Sep 13 2012 18:54:03 +00:00 tracelogs Jul 2 2012 15:27:08 +00:00 .installer 32449 drwx 4096 681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh 697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman fdb 112911096 Sep 13 2012 18:46:05 +00:00 454276 -rwisr4400-espbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 2220784 Sep 13 2012 18:46:05 +00:00 454277 -rwisr4400-firmware dsp sp2700.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 371440 Sep 13 2012 18:46:05 +00:00 454278 -rwisr4400-firmware fpge.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454279 -rw- 8080112 Sep 13 2012 18:46:05 +00:00 isr4400-firmware_nim_tle1.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 9331440 Sep 13 2012 18:46:06 +00:00 454280 -rwisr4400-firmware sm 1t3e3.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 379632 Sep 13 2012 18:46:06 +00:00 454281 -rwisr4400-firmware_ucse.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg --More-- 454274 -rw- 10540 Sep 13 2012 18:46:05 +00:00 isr4400-packages-universalk9.BLD MCP DEV LATEST 20120910 000023.conf 454282 -rw- 27218680 Sep 13 2012 18:46:06 +00:00 isr4400-rpaccess.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454283 -rw- 78938264 Sep 13 2012 18:46:06 +00:00 isr4400-rpbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454284 -rw- 45177592 Sep 13 2012 18:46:06 +00:00 isr4400-rpcontrol.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 454285 -rw- 114662144 Sep 13 2012 18:46:16 +00:00 isr4400-rpios-universalk9.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 454286 -rw- 26360568 Sep 13 2012 18:46:19 +00:00 isr4400-sipbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg 454287 -rw- 13091576 Sep 13 2012 18:46:21 +00:00 isr4400-sipspa.BLD MCP DEV LATEST 20120910 000023.SSA.pkg 11349 Sep 13 2012 18:46:21 +00:00 packages.conf 454275 -rw-7451738112 bytes total (6574940160 bytes free) Router# del isr4400* Delete filename [isr4400*]? Delete bootflash:/isr4400-espbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-firmware dsp sp2700.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-firmware fpge.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-firmware nim t1e1.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-firmware sm 1t3e3.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-firmware_ucse.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-packages-universalk9.BLD MCP DEV LATEST 20120910 000023.conf? [confirm] Delete bootflash:/isr4400-rpaccess.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-rpbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-rpcontrol.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-rpios-universalk9.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-sipbase.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Delete bootflash:/isr4400-sipspa.BLD MCP DEV LATEST 20120910 000023.SSA.pkg? [confirm] Router# dir bootflash: Directory of bootflash:/ 11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found 16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core 178465 drwx 4096 Sep 13 2012 18:53:29 +00:00 .prst sync 324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback timer 12 -rw-0 Jul 2 2012 15:27:06 +00:00 tracelogs.696 373153 drwx 114688 Sep 13 2012 18:54:03 +00:00 tracelogs 4096 Jul 2 2012 15:27:08 +00:00 .installer 32449 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh 681409 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman fdb 697633 drwx 454275 -rw-11349 Sep 13 2012 18:46:21 +00:00 packages.conf 7451738112 bytes total (6574952448 bytes free) Router# del packages.conf Delete filename [packages.conf]?

424317088 bytes copied in 351.758 secs (1206276 bytes/sec)

Backing Up Configuration Files

This section provides the following examples:

- Copying a Startup Configuration File to BootFlash, on page 311
- Copying a Startup Configuration File to a USB Flash Drive, on page 312
- Copying a Startup Configuration File to a TFTP Server, on page 312

Copying a Startup Configuration File to BootFlash

Router# dir bootflash: Directory of bootflash:/

11	drwx	16384	Jul 2 2012 15:25:23 +00:00	lost+found
16225	drwx	4096	Jul 31 2012 19:30:48 +00:00	core
178465	drwx	4096	Sep 13 2012 18:53:29 +00:00	.prst_sync
324481	drwx	4096	Jul 2 2012 15:26:54 +00:00	.rollback_time:
12	-rw-	0	Jul 2 2012 15:27:06 +00:00	tracelogs.696
373153	drwx	114688	Sep 13 2012 19:03:19 +00:00	tracelogs
32449	drwx	4096	Jul 2 2012 15:27:08 +00:00	.installer
681409	drwx	4096	Jul 31 2012 19:15:39 +00:00	.ssh
697633	drwx	4096	Jul 2 2012 15:27:08 +00:00	vman_fdb
13	-rw-	424317088	Sep 13 2012 19:02:50 +00:00	isr4400.bin

7451738112 bytes total (6150721536 bytes free) Router# copy nvram:startup-config bootflash: Destination filename [startup-config]? 1367 bytes copied in 0.116 secs (11784 bytes/sec) Router# **dir bootflash:** Directory of bootflash:/

11	drwx	16384	Jul 2 2012 15:25:23 +00:00	lost+found
L6225	drwx	4096	Jul 31 2012 19:30:48 +00:00	core
L78465	drwx	4096	Sep 13 2012 18:53:29 +00:00	.prst sync
324481	drwx	4096	Jul 2 2012 15:26:54 +00:00	.rollback timer
12	-rw-	0	Jul 2 2012 15:27:06 +00:00	tracelogs.696
373153	drwx	114688	Sep 13 2012 19:03:19 +00:00	tracelogs
32449	drwx	4096	Jul 2 2012 15:27:08 +00:00	.installer
581409	drwx	4096	Jul 31 2012 19:15:39 +00:00	.ssh
597633	drwx	4096	Jul 2 2012 15:27:08 +00:00	vman fdb
13	-rw-	424317088	Sep 13 2012 19:02:50 +00:00	isr4400.bin
14	-rw-	1367	Sep 13 2012 19:03:57 +00:00	startup-config

```
7451738112 bytes total (6150717440 bytes free)
Router# copy bootflash:startup-config tftp:
Address or name of remote host []? 172.18.40.33
Destination filename [router-confg]? startup-config
!!
1367 bytes copied in 0.040 secs (34175 bytes/sec)
Router# exit
Router con0 is now available
Press RETURN to get started.
```

Copying a Startup Configuration File to a USB Flash Drive

```
Router# dir usb0:
Directory of usb0:/
No files in directory
4094840832 bytes total (4094836736 bytes free)
Router# copy nvram:startup-config usb0:
Destination filename [startup-config]?
1644 bytes copied in 0.248 secs (6629 bytes/sec)
Router# dir usb0:
Directory of usb0:/
3097__-rwx____1644__ Oct 3 2012 14:53:50 +00:00__startup-config
4094840832 bytes total (4094832640 bytes free)
Router#
```

Copying a Startup Configuration File to a TFTP Server

```
Router# copy nvram:startup-config tftp:
Address or name of remote host []? 172.18.40.4
Destination filename [router-confg]?
!!
3274 bytes copied in 0.039 secs (83949 bytes/sec)
Router#
```

Displaying Digitally Signed Cisco Software Signature Information

In this example, authenticity details for a consolidated package are displayed on the screen:

Hash Algorithm : SHA512 Signature Algorithm : 2048-bit RSA Key Version : A Verifier Information Verifier Name : rp base Verifier Version : BLD MCP DEV LATEST 20130114 162711 PACKAGE isr4400-rpcontrol.BLD MCP DEV LATEST 20130114 162711.SSA.pkg _____ Image type : Special Signer Information Common Name : CiscoSystems Organization Unit : IOS-XE Organization Name : CiscoSystems Certificate Serial Number : 50F48DA3 Hash Algorithm : SHA512 Signature Algorithm : 2048-b: Key Version : A : 2048-bit RSA : A Key Version Verifier Information Verifier Name : rp_base Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711 PACKAGE isr4400-rpios-universalk9.BLD MCP DEV LATEST 20130114 162711.SSA.pkg _____ Image type : Special Signer Information : CiscoSystems Common Name Organization Unit : IOS-XE Organization Name : CiscoSystems Certificate Serial Number : 50F48E98 Hash Algorithm : SHA512 Signature Algorithm : 2048-bit RSA : A Key Version Verifier Information Verifier Name : rp_base Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711 PACKAGE isr4400-rpaccess.BLD MCP DEV LATEST 20130114 162711.SSA.pkg _____ Image type : Special Signer Information Common Name : CiscoSystems Organization Unit : IOS-XE Organization Name : CiscoSystems Certificate Serial Number : 50F48DB4 Hash Algorithm : SHA512 Signature Algorithm : 2048-bit RSA Key Version : A Verifier Information Verifier Name : rp_base Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711 PACKAGE isr4400-firmware_dsp_sp2700.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg _____ Image type : Special Signer Information : CiscoSystems Common Name Organization Unit : IOS-XE Organization Name : CiscoSystems

Certificate Serial Number : 50F48DBE

```
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
   Key Version
                             : A
   Verifier Information
       Verifier Version : RID MOT
                            : BLD_MCP_DEV_LATEST_20130114_162711
PACKAGE isr4400-firmware sm 1t3e3.BLD MCP DEV LATEST 20130114 162711.SSA.pkg
_____
Image type
                           : Special
   Signer Information
       Common Name
                           : CiscoSystems
       Organization Unit : IOS-XE
Organization Name : CiscoSystems
   Certificate Serial Number : 50F48DC7
   Hash Algorithm : SHA512
Signature Algorithm : 2048-b
Key Version : A
                             : 2048-bit RSA
   Verifier Information
       Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711
PACKAGE isr4400-firmware nim tle1.BLD MCP DEV LATEST 20130114 162711.SSA.pkg
_____
Image type
                            : Special
   Signer Information
                           : CiscoSystems
       Common Name
      Organization Unit : IOS-XE
Organization Name : CiscoSystems
   Certificate Serial Number : 50F48D74
   Hash Algorithm : SHA512
Signature Algorithm : 2048-b:
                           : 2048-bit RSA
: A
   Key Version
   Verifier Information
       Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711
PACKAGE isr4400-espbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
_____
Image type
                           : Special
   Signer Information
                           : CiscoSystems
       Common Name
      Organization Unit : IOS-XE
Organization Name : CiscoSystems
   Certificate Serial Number : 50F48D64
   Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
   Key Version
                             : A
   Verifier Information
       Verifier Name: rp_baseVerifier Version: BLD_MCP_DEV_LATEST_20130114_162711
       Verifier Name
PACKAGE isr4400-sipbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
_____
Image type
                           : Special
   Signer Information
                           : CiscoSystems
       Common Name
      Organization Unit : IOS-XE
Organization Name : CiscoSystems
```

Certificate Serial Number : 50F48D94

```
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
    Key Version
                             : A
    Verifier Information
        Verifier Name
                              : rp base
        Verifier Version
                              : BLD_MCP_DEV_LATEST_20130114_162711
PACKAGE isr4400-sipspa.BLD MCP DEV LATEST 20130114 162711.SSA.pkg
_____
Image type
                             : Special
   Signer Information
       Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
    Certificate Serial Number : 50F48D7F
    Hash Algorithm
                    : SHA512
   Hash Algorithm
Signature Algorithm
                              : 2048-bit RSA
   Key Version
                             : A
   Verifier Information
        Verifier Name
                              : rp base
                          : rp_base
: BLD_MCP_DEV_LATEST_20130114_162711
        Verifier Version
SYSTEM IMAGE
_____
Image type
                             : Special
   Signer Information
       Common Name
                              : CiscoSystems
       Organization Unit : IOS-XE
Organization Name : CiscoSystems
    Certificate Serial Number : 50F48F33
   Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
    Signature Algorithm
                             : A
   Key Version
   Verifier Information
        Verifier Version : System
       Verifier Name
                             : System Bootstrap, Version 12.2(20121015:145923
ROMMON
Image type
                             : Special
   Signer Information
       Common Name: CiscoSystemsOrganization Unit: IOS-XEOrganization Name: CiscoSystems
   Certificate Serial Number : 50801108
   Hash Algorithm : SHA512
   Signature Algorithm : 2048-bit RSA
   Key Version
                              : A
    Verifier Information
       Verifier Version : System
                             : System Bootstrap, Version 12.2(20121015:145923
Microloader
_____
Image type
                             : Release
   Signer Information
       Common Name : CiscoSystems
Organization Name : CiscoSystems
       Common Name
    Certificate Serial Number : bace997bdd9882f8569e5b599328a448
   Hash Algorithm
                              : HMAC-SHA256
   Verifier Information
        Verifier Name
                             : Hardware Anchor
```

```
Verifier Version : F01001R06.02c4c06f82012-09-17
```

Obtaining the Description of a Module or Consolidated Package

In this example, internal details of the consolidated package are displayed on the screen:

```
router# request platform software package describe file
bootflash:isr4400-rpbase.BLD MCP DEV LATEST 20130114 162711.SSA.pkg
Package: isr4400-rpbase.BLD MCP DEV LATEST 20130114 162711.SSA.pkg
  Size: 79755832
  Timestamp: 2013-01-15 15:46:59 UTC
  Canonical path: /bootflash/isr4400-rpbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
  Raw disk-file SHA1sum:
   5cd5916a216b147e3d9e33c0dc5afb18d86bda94
  Digital Signature Verified
  Computed SHA1sum:
   de80d5920819d224113b81a1d64b17449859952e
  Contained SHA1sum:
   de80d5920819d224113b81a1d64b17449859952e
  Hashes match. Package is valid.
                760 bytes
 Header size:
                  30001
  Package type:
  Package flags: 0
  Header version: 1
  Internal package information:
   Name: rp base
   BuildTime: 2013-01-14 14.55
   ReleaseDate: Mon-14-Jan-13-16:27
   BootArchitecture: i686
   RouteProcessor: overlord
   Platform: TSR
   User: mcpre
   PackageName: rpbase
   Build: BLD MCP DEV LATEST 20130114 162711
   CardTypes:
  Package is bootable on RP when specified
  by packages provisioning file.
```


Unsupported Commands

The Cisco 4000 Series routers contain a series of commands with the **logging** or **platform** keywords that either produce no output or produce output that is not useful for customer purposes. Such commands that are not useful for customer purposes are considered as unsupported commands. You will not find any further Cisco documentation for the unsupported commands.

The following is a list of unsupported commands for the Cisco 4000 Series routers:

- clear logging onboard slot f0 dram
- clear logging onboard slot f0 voltage
- clear logging onboard slot f0 temperature
- show logging onboard slot f0 dram
- show logging onboard slot f0 serdes
- show logging onboard slot f0 status
- show logging onboard slot f0 temperature
- show logging onboard slot f0 uptime
- show logging onboard slot f0 uptime latest
- show logging onboard slot f0 voltage
- show logging onboard slot 0 dram
- show logging onboard slot 0 serdes
- show logging onboard slot 0 status
- show logging onboard slot 0 temperature
- show logging onboard slot 0 uptime
- show logging onboard slot 0 uptime latest
- show logging onboard slot 0 voltage
- show platform software adjacency r0 special
- show platform software adjacency rp active special

- show platform software ethernet rp active l2cp
- show platform software ethernet rp active l2cp interface GigabitEthernet0
- show platform software ethernet rp active loopback
- show platform software ethernet rp active vfi
- show platform software ethernet r0 vfi
- show platform software ethernet r0 vfi id 0
- show platform software ethernet r0 vfi name GigabitEthernet0
- show platform software ethernet r0 l2cp
- show platform software ethernet r0 l2cp interface GigabitEthernet0
- show platform software ethernet r0 bridge-domain statistics
- show platform software flow r0 exporter name GigabitEthernet0
- show platform software flow r0 exporter statistics
- · show platform software flow r0 global
- show platform software flow r0 flow-def
- show platform software flow r0 interface
- show platform software flow r0 ios
- show platform software flow r0 monitor
- show platform software flow r0 sampler
- show platform hardware qfp active classification feature-manager label GigabitEthernet 0 0
- show platform software interface f0 del-track
- show platform software interface fp active del-track
- show platform software rg r0 services
- show platform software rg r0 services rg-id 0
- show platform software rg r0 services rg-id 0 verbose
- show platform software rg r0 services verbose
- show platform software rg r0 statistics
- show platform software rg rp active services
- show platform software rg rp active services rg-id 0
- show platform software rg rp active services rg-id 0 verbose
- · show platform software rg rp active statistics
- show platform hardware slot 0 dram statistics
- · show platform hardware slot f0 dram statistics

- show platform hardware slot 0 eobc interface primary rmon
- show platform hardware slot 0 eobc interface primary status
- show platform hardware slot 0 eobc interface standby rmon
- show platform hardware slot 0 eobc interface standby status
- show platform hardware slot f0 eobc interface primary rmon
- show platform hardware slot f0 eobc interface primary status
- show platform hardware slot f0 eobc interface standby rmon
- show platform hardware slot f0 eobc interface standby status
- show platform hardware slot f0 sensor consumer
- show platform hardware slot f0 sensor producer