

OL-26358-01
C H A P T E R 30

Using Extension Points

You can write extensions to affect how Cisco Prime Network Registrar handles and responds to DHCP
requests, and to change the behavior of a DHCP server that you cannot normally do using the user
interfaces. This chapter describes the extension points to which you can attach extensions for DHCPv4
and DHCPv6.

Related Topics

Using Extensions, page 30-1
Language-Independent API, page 30-4
Tcl Extensions, page 30-7
C/C++ Extensions, page 30-9
DHCP Request Processing Using Extensions, page 30-12
Extension Dictionaries, page 30-23
Extension Point Descriptions, page 30-28

Using Extensions
You can alter and customize the operation of the Cisco Prime Network Registrar DHCP server by using
extensions, functions that you can write in Tcl or C/C++.

Follow this process to create an extension for use in the DHCP server:

1. Determine the task to perform. What DHCP packet process do I want to modify?

2. Determine the approach to use. How do I want to modify the packet process?

3. Determine the extension point to which to attach the extension.

4. Choose the language (Tcl or C/C++).

5. Write (and possibly compile and link) the extension.

6. Add the extension to the DHCP server configuration.

7. Attach the extension to the extension point.

8. Reload the DHCP server so that it recognizes the extension.

9. Test and debug the results.
30-1
Cisco Prime Network Registrar 8.1 User Guide

Chapter 30 Using Extension Points
Using Extensions
Related Topics

Creating, Editing, and Attaching Extensions, page 30-2
Determining Tasks, page 30-3
Deciding on Approaches, page 30-3
Choosing Extension Languages, page 30-4

Creating, Editing, and Attaching Extensions

You can create, edit, and attach extensions.

You can associate multiple extensions per extension point. Each extension executes in the order
specified by the sequence number used when the attachment was created. In the web UI, the sequence is
the order in which the extensions appear per extension point on the List DHCP Extension Points page.
In the CLI, you use the sequence-number value with the dhcp attachExtension command.

For more on multiple extensions per extension point, see the “Multiple Extension Considerations”
section on page 30-7.

Local Advanced Web UI

Creating and Attaching Extensions:

Step 1 From the DHCP menu, choose Extensions to open the List/Add DHCP Extensions page. To show the
extension points where you can attach extensions, on the List/Add DHCP Extensions page, click Show
Extension Points at the top of the page to open the List DHCP Extension Points page.

Step 2 Click Add DHCP Extension to open the Add DHCP Extension page.

Step 3 After you create an extension, you can attach it to one or more of the extension points on this page.
Choose the extension from the Available Extensions drop-down list. The extension appears in the
Attached Extensions column.

Step 4 If you attach more than one extension for each extension point, you can change the sequence in which
they are processed by clicking the arrow keys to rearrange the entries. To remove the extension, click
the Delete icon.

CLI Commands

Use the extension command, which requires this syntax:

nrcmd> extension name create language extension-file entry-point

The entry-point is the name of the entry point in the extension-file. You can also set an optional init-entry
attribute value for the initial entry point each time the DHCP server loads the file (see the “init-entry”
section on page 30-29). You can call this function from any extension point bound to this module. You
can also list the extensions using extension list.

To attach and detach an extension, use dhcp attachExtension and dhcp detachExtension for the DHCP
server, which require this syntax:

nrcmd> dhcp attachExtension extension-point extension-name [sequence-number]
nrcmd> dhcp detachExtension extension-point [sequence-number]
30-2
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Using Extensions
The sequence-number applies if you attach multiple extensions per extension point, in increasing
sequence order ranging from 1 through 32. If omitted, it defaults to 1.

Related Topics

Using Extensions, page 30-1

Determining Tasks

The task to which to apply an extension is usually some modification of the DHCP server processing so
that it better meets the needs of your environment. You can apply an extension at each of these DHCP
server processing points, from receiving a request to responding to the client:

1. Receive and decode the packet.

2. Look up, modify, and process any client-class.

3. Build a response type.

4. Determine the subnet (or link, in the case of DHCPv6).

5. Find any existing leases.

6. Serialize the lease requests.

7. Determine the lease acceptability for the client.

8. Gather and encode the response packet.

9. Update stable storage of the packet.

10. Return the packet.

A more complete list of these steps (along with the extension points to use at each step) appears in the
“DHCP Request Processing Using Extensions” section on page 30-12.

For example, you might have an unusual routing hub that uses BOOTP configuration. This device issues
a BOOTP request with an Ethernet hardware type (1) and MAC address in the chaddr field. It then sends
out another BOOTP request with the same MAC address, but with a hardware type of Token Ring (6).
Specifying two different hardware types causes the DHCP server to allocate two IP addresses to the
device. The DHCP server normally distinguishes between a MAC address with hardware type 1 and one
with type 6, and considers them different devices. In this case, you might want to write an extension that
prevents the DHCP server from handing out two different addresses to the same device.

Deciding on Approaches

Many solutions are often available to a single problem. When choosing the type of extension to write,
you should first consider rewriting the input DHCP packet. This is a good approach, because it avoids
having to know the internal processing of the DHCP server.

For the problem described in the “Determining Tasks” section on page 30-3, you can write an extension
to solve it in either of these ways:

• Drop the Token Ring (6) hardware type packet.

• Change the packet to an Ethernet packet and then switch it back again on exit.
30-3
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Language-Independent API
Although the second way involves a more complex extension, the DHCP client could thereby use either
reply from the DHCP server. The second approach involves rewriting the packet, in this case using the
post-packet-encode extension point (see the “post-packet-encode” section on page 30-38). Other
approaches require other extensions and extension points.

Choosing Extension Languages

You can write extensions in Tcl or C/C++. The capabilities of each language, so far as the DHCP server
is concerned, are similar, although the application programming interface (API) is slightly different to
support the two very different approaches to language design:

• Tcl—Although scripting in Tcl might be somewhat easier than scripting in C/C++, it is interpreted
and single-threaded, and might require more resources. However, you might be less likely than in
C/C++ to introduce a serious bug, and there are fewer chances of a server failure. Cisco Prime
Network Registrar currently supports Tcl version 8.4.

• C/C++—This language provides the maximum possible performance and flexibility, including
communicating with external processes. However, the C/C++ API is more complex than the Tcl
API. Also, the possibility of a bug in the extension causing a server failure is also more likely in
C/C++.

Language-Independent API
The following concepts are independent of whether you write your extensions in Tcl or C/C++.

Related Topics

Routine Signature, page 30-4
Dictionaries, page 30-5
Utility Methods in Dictionaries, page 30-5
Configuration Errors, page 30-5
Communicating with External Servers, page 30-6
Recognizing Extensions, page 30-6
Multiple Extension Considerations, page 30-7

Routine Signature

You need to define the extension as a routine in a file, which can contain multiple extension functions.
You then attach the extension to one or more of the DHCP server extension points. When the DHCP
server reaches that extension point, it calls the routine that the extension defines. The routine returns
with a success or failure. You can configure the DHCP server to drop a packet on an extension failure.

You can configure one file—Tcl source file or C/C++ .dll or .so file—as multiple extensions to the
DHCP server by specifying a different entry point for each configured extension.

The server calls every routine entry point with at least three arguments, the three dictionaries—request,
response, and environment. Each dictionary contains many data items, each being a key-value pair:

• The extension can retrieve data items from the DHCP server by performing a get method on a
dictionary for a particular data item.
30-4
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Language-Independent API
• The extension can alter data items by performing a put or remove operation on many of the same
named data items.

Although you cannot use all dictionaries at every extension point, the calling sequence for all routines
is the same for every extension point. The extension encounters an error if it tries to reference a
dictionary that is not present at a particular extension point. (See the “Extension Dictionaries” section
on page 30-23.)

Dictionaries

You access data in the request, response, and server through a dictionary interface. Extension points
include three types of dictionaries—request, response, and environment:

• Request dictionary—Information associated with the DHCP request, along with all that came in
the request itself. Data is string-, integer-, IP address-, and blob-valued.

• Response dictionary—Information associated with generating a DHCP response packet to return
to the DHCP client. Data is string-, integer-, IP address-, and blob-valued.

• Environment dictionary—Information passed between the DHCP server and extension.

For a description of the dictionaries, see the “Extension Dictionaries” section on page 30-23.

You can also use the environment dictionary to communicate between an extension attached at different
extension points. When encountering the first extension point at which some extension is configured,
the DHCP server creates an environment dictionary. The environment dictionary is the only one in which
the DHCP server does not fix the names of the allowable data items. You can use the environment
dictionary to insert any string-valued data item.

Every extension point in the flow of control between the request and response for the DHCP client (all
extension points except lease-state-change, depending on the cause of the change) share the same
environment dictionary. Thus, an extension can determine that some condition exists, and place a
sentinel in the environment dictionary so that a subsequent extension can avoid determining the same
condition.

In the previous example, the extension at the post-packet-decode extension point determines that the
packet was the interesting one—from a particular manufacturer device, BOOTP, and Token Ring—and
then rewrites the hardware type from Token Ring to Ethernet. It also places a sentinel in the environment
dictionary and then, at a very simple extension at the post-packet-encode extension point, rewrites the
hardware type back to Token Ring.

Utility Methods in Dictionaries

Each dictionary has associated utility methods with which you can reset the trace level for an extension
and log values to an output file.

Configuration Errors

Extensions can fail for many reasons. For example:

• The server cannot find the file.

• The entry point or init-entry point does not appear in the file.

• The extension itself can return a failure from an init-entry call.
30-5
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Language-Independent API
By itself, an extension failure is not fatal and does not prevent the DHCP server from starting. However,
if you configure that failed extension at any extension point, the server will not start. Therefore, to debug
the configuration process, you can configure the extension at the init-entry point (see the “init-entry”
section on page 30-29) without attaching it to an extension point. When you complete that process
successfully, you can attach your extension to an extension point.

Communicating with External Servers

You can write extensions that communicate with external servers or databases to affect the client class
or validate incoming DHCP client requests. Writing such extensions is a complex task, requiring
considerable skill and debugging expertise. Such extensions must be multithreaded, and need to
communicate very swiftly with the external server if the DHCP server performance is to remain at an
acceptable level.

Performance degradations can result from extensions stalling the threads that are processing requests. A
thread stalls while an extension communicates with an external server. If this interaction takes more than
50 to 100 milliseconds, this severely affects server performance. This might or might not impact you in
the particular environment in which you deploy this extension.

One way to avoid having to communicate with an external server synchronously (that is, stalling the
incoming DHCP client request processing to communicate with the external server) is to avoid
performing this communication while processing the DHCP client request. This sounds obvious, and it
also sounds, on the face of it, impossible. However, due to the nature of the DHCP client-server protocol,
there is a way to decouple the access to the external server from the DHCP client request processing.

To avoid this bottleneck, use a caching mechanism as part of the extension. When the server calls the
extension for a request, have it check a cache (with proper locking to avoid multithreading problems)
for the client data. If the client is:

• In the cache (and did not expire), have the extension accept or reject the request depending on the
data in the cache.

• Not in the cache, have the extension queue a request to the external server (preferably over UDP),
and then drop the DHCP client request. By the time the client retransmits the request, the data should
be in the cache.

This caching mechanism requires the extension to have a receiver thread (started and stopped in the
init-entry extension point). This thread reads the socket and updates the cache with the response. This
thread (or a separate one) would also need to time out and remove old items from the cache. Using a
single thread, however, might require setting a larger receive socket buffer size.

These techniques are only necessary if the load on the DHCP server is high and the speed of the external
server is not high enough to support the required performance of the DHCP server load. However, this
situation turns out to be all too common in practice. And, consider what can happen if the external server
is unreachable (when connection timeouts are likely to be for minutes and not seconds).

Recognizing Extensions

The DHCP server only recognizes extensions when it initially configures itself at start or reload time.
You can change an extension or the configuration for extensions in general. However, until you reload
or restart the server, the changes have no effect. Forgetting to reload the DHCP server can be a frequent
source of errors while debugging extensions.
30-6
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Tcl Extensions
The reason Cisco Prime Network Registrar requires a reload is to ensure minimum processing impact by
preloading extensions and getting them ready at server configuration time. While this approach is useful
in production mode, it might cause some frustration when you debug extensions.

Multiple Extension Considerations

You can register multiple extensions at any extension point. The DHCP server runs all the extensions
attached to an extension point before resuming processing, the conditions being:

• An extension should not explicitly set a data item unless the extension explicitly requires that
behavior. For example (as described for the drop environment dictionary data item in Table 30-5 on
page 30-25), extensions can request dropping the client packet at most extension points.

The server calls the first extension registered at an extension point with drop set to False. One or
more extensions can set this to True or False. If all extensions were to explicitly set drop to either
True or False, then the server would take whatever action the last extension to run requested.

This might not be the desired behavior. Thus, for this data item, it is better for an extension to set
drop to True only if it wants the packet to be dropped. That way, if all extensions play by this rule,
the packet would be dropped if any of the extensions request it.

• An extension might want to return immediately if drop is True, as there may not be a need for the
extension to do its processing if another one desires the packet to be discarded.

• If the environment dictionary is used to store items for use in later extension points, those data item
names might want to use a prefix or suffix that is unique to that extension. This reduces the chance
for data item name conflicts.

• At least one environment dictionary data item, the user-defined-data (see Table 30-5 on page 30-25)
that you can use to store data with a lease (for DHCPv4) or client (DHCPv6), requires special
attention.

This data item can be difficult for more than one extension to use, unless those extensions take
special care to preserve and recognize each other’s values. Thus, it might not be possible for more
than one extension to assume it can use this data item.

• You must specify whether the extensions should be run first, or last, if such a need exists. For
example, you should run extensions that cause the server to drop certain packets first, because this
reduces the processing burden on the server (assuming the remaining extensions return immediately
if drop is true).

Tcl Extensions
If you choose to write your extensions in Tcl, you should understand the Tcl API, how to handle errors
and Boolean variables, and how to initialize Tcl extensions. Cisco Prime Network Registrar uses Tcl
version 8.4.

Related Topics

Tcl Application Program Interface, page 30-8
Dealing with Tcl errors, page 30-8
Handling Boolean Variables in Tcl, page 30-8
Configuring Tcl Extensions, page 30-8
Init-Entry Extension Point in Tcl, page 30-9
30-7
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Tcl Extensions
Tcl Application Program Interface

Every Tcl extension has the same routine signature:

proc yourentry { request response environ } { # your-code }

To operate on the data items in any dictionary, you must treat these arguments as commands. Thus, to
get the giaddr of the input packet, you would write:

set my_giaddr [$request get giaddr]

This sets the Tcl variable my_giaddr to the string value of the giaddr in the packet; for example,
10.10.1.5 or 0.0.0.0.

You could rewrite the giaddr in the input packet by using this Tcl statement:

$request put giaddr "1.2.3.4"

To configure one routine entry for multiple extension points and to alter its behavior depending on the
extension point from which the server calls it, the DHCP server passes the ASCII name of the extension
point in the environment dictionary under the key extension-point.

For some sample Tcl extensions, see the Cisco Prime Network Registrar directory; by default:

• Solaris and Linux—/opt/nwreg2/examples/dhcp/tcl

• Windows—\Program Files\Cisco Prime Network Registrar\examples\dhcp\tcl

Dealing with Tcl errors

You generate a Tcl error if you:

• Reference a dictionary that is not available.

• Reference a dictionary data item that is not available.

• Request a put operation on an invalid data item, for example, an invalid IP address.

In these cases, the extension immediately fails unless you surround the statement with a catch error
statement:

catch { $request put giaddr "1.2.3.a" } error

Handling Boolean Variables in Tcl

In the environment dictionary, the Boolean variables are string-valued and have a value of true or false.
The DHCP server expects an extension to set the value to true or false. However, in the request or
response dictionaries, Boolean values are single-byte numeric format, and true is 1 and false is 0. While
more efficient for the C/C++ extensions, this approach does make the Tcl API a bit more complex.

Configuring Tcl Extensions

To configure a Tcl extension, write it and place it in the extensions directory. For UNIX and Linux, this
is the /opt/nwreg2/extensions/dhcp/tcl directory. For Windows, this is the \Program Files\Cisco Prime
Network Registrar\extensions\dhcp\tcl directory.
30-8
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
C/C++ Extensions
When the DHCP server configures an extension during startup, it reads the Tcl source file into an
interpreter. Any syntax errors in the source file that would render Tcl interpreter unable to load the file
would also fail the extension. Typically, the DHCP server generates an error traceback in the log file
from Tcl to help you to find the error.

Init-Entry Extension Point in Tcl

Tcl extensions support the init-entry extension point (see the “init-entry” section on page 30-29), and
the arguments supplied in the init-args parameter to the command line appear in the environment
dictionary associated with the key arguments.

Multiple Tcl interpreters can run in the DHCP server, for performance purposes, each in its own Tcl
context. The server calls the Tcl extension once at the init-entry point for every Tcl context (interpreter)
it runs. Ensure that your Tcl extension init-entry is robust, given multiple calls.

Information cannot flow between the Tcl contexts, but the init-entry can initialize global Tcl variables
in each Tcl interpreter that any Tcl extension can access, regardless of the interpreter.

Note that all Tcl extensions share the Tcl interpreters. If your Tcl extension initializes global variables
or defines procedures, ensure that these do not conflict with some other Tcl extension global variables
or procedure names.

C/C++ Extensions
All DHCP C/C++ extensions are dex extensions, short for DHCP Extension.

Related Topics

C/C++ API, page 30-9
Using Types in C/C++, page 30-10
Building C/C++ Extensions, page 30-10
Using Thread-Safe Extensions in C/C++, page 30-10
Configuring C/C++ Extensions, page 30-11
Debugging C/C++ Extensions, page 30-11

C/C++ API

The routine signature for both the entry and init-entry routines for the C/C++ API is:

typedef int (DEXAPI * DexEntryPointFunction)(
int iExtensionPoint,
dex_AttributeDictionary_t* pRequest,
dex_AttributeDictionary_t* pResponse,
dex_EnvironmentDictionary_t* pEnviron);

Along with pointers to three structures, the integer value of the extension point is one of the parameters
of each routine.

The C/C++ API is specifically constructed so that you do not have to link your shared library with any
Cisco Prime Network Registrar DHCP server files. You configure the entry to your routine when you
configure the extension. The necessary call-back information for the operations to perform on the
request, response, and environment dictionaries is in the structures that comprise the three dictionary
parameters passed to your extension routine.
30-9
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
C/C++ Extensions
The DHCP server returns all binary information in network order, which is not necessarily properly
aligned for the executing architecture.

Using Types in C/C++

Many C/C++ routines are available that use types, for example, getByType(). These routines are
designed for use in performance-sensitive environments. The reasoning behind these routines is that the
extension can acquire pointers to types once, for example, in the init-entry point, and thereafter use the
pointers instead of string-valued names when calling the routines of the C/C++ API. Using types in this
manner removes one hash table lookup from the extension processing flow of execution, which should
improve (at least fractionally) the performance of any extension.

Building C/C++ Extensions

The directories /opt/nwreg2/examples/dhcp/dex (UNIX and Linux) and \Program Files\Cisco Prime
Network Registrar\examples\dhcp\dex (Windows) contain sample C/C++ extension code, as well as a
short makefile designed to build the sample extensions. To build your own extensions, you need to
modify this file. It has sections for Microsoft Visual C++, GNU C++, and SunPro C++. Simply move
the comment lines to configure the file for your environment.

Your extension needs to reference the include file dex.h. This file contains the information your program
needs to use the C/C++ API. When building C/C++ extensions on Windows, remember to add your entry
points to the .def file.

After you build the .dll (Windows) or .so (UNIX) file (all dex extensions are shared libraries), you need
to move them into the /opt/nwreg2/extensions/dhcp/dex directory (UNIX), or the \Program Files\Cisco
Prime Network Registrar\extensions\dhcp\dex directory (Windows). You can then configure them.

Using Thread-Safe Extensions in C/C++

The DHCP server is multithreaded, so any C/C++ extensions written for it must be thread-safe. Multiple
threads, and possibly multiple processors, must be capable of calling these extensions simultaneously at
the same entry point. You should have considerable experience writing code for a multithreaded
environment before designing C/C++ extensions for Cisco Prime Network Registrar.

Caution All C/C++ extensions must be thread-safe. If not, the DHCP server will not operate correctly and will
fail in ways that are extremely difficult to diagnose. All libraries and library routines that these
extensions use must also be thread-safe.

On several operating systems, you must ensure that the runtime functions used are really thread-safe.
Check the documentation for each function. Special thread-safe versions are provided (often
functionname_r) on several operating systems. Because Windows provides different versions of libraries
for multithreaded applications that are thread-safe, this problem usually does not apply.

Be aware that if any thread makes a non-thread-safe call, it affects any of the threads that make up the
safe or locked version of the call. This can cause memory corruptions, server failures, and so on.
30-10
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
C/C++ Extensions
Diagnosing these problems is extremely difficult, because the cause of these failures are rarely apparent.
To cause a server failure, you need very high server loads or multiprocessor machines with many
processes. You might need running times of several days. Often, problems in extension implementation
might not appear until after sustained periods of heavy load.

Because some runtime or third-party libraries might make non-thread-safe calls that you cannot detect,
check your executables as to what externals are being linked (nm on UNIX).

If the routines of a library call the routines without the _r suffixes, displayed in the following table, the
library is not thread-safe, and you cannot use it. The interfaces to the thread-safe versions of these library
routines can vary based on operating system.

Configuring C/C++ Extensions

Because the .dll and .so files are active when the server is running, it is not a good idea to overwrite
them. After you stop the server, you can overwrite the .dll and .so files with newer versions.

Debugging C/C++ Extensions

Because your C/C++ shared library runs in the same address space as the DHCP server, and receives
pointers to information in the DHCP server, any bugs in your C/C++ extension can very easily corrupt
the DHCP server memory, leading to a server failure. For this reason, use extreme care when writing and
testing a C/C++ extension. Frequently, you should try the approach to an extension with a Tcl extension
and then code the extension in C/C++ for increased performance.

Related Topics

Pointers into DHCP Server Memory in C/C++, page 30-12
Init-Entry Entry Point in C/C++, page 30-12

asctime_r getgrid_r getnetent_r getrpcbynumber_r lgamma_r

ctermid_r getgrnam_r getprotobyname_r getrpcent_r localtime_r

ctime_r gethostbyaddr_r getprotobynumber_r getservbyname_r nis_sperror_r

fgetgrent_r gethostbyname_r getprotoent_r getservbyport_r rand_r

fgetpwent_r gethostent_r getpwnam_r getservent_r readdir_r

fgetspent_r getlogin_r getpwent_r getspent_r strtok_r

gamma_r getnetbyaddr_r getpwuid_r getspnam_r tmpnam_r

getgrent_r getnetbyname_r getrpcbyname_r gmtime_r ttyname_r
30-11
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
Pointers into DHCP Server Memory in C/C++

The C/C++ extension interface routines return pointers into DHCP server memory in two formats:

• char* pointer to a series of bytes.

• Pointer to a structure called an abytes_t, which provides a pointer to a series of bytes with an
associated length (defined in dex.h).

In both cases, the pointers into DHCP server memory are valid while the extension runs at that extension
point. They are also valid for the rest of the extension points in the series processing this request. Thus,
an abytes_t pointer returned in the post-packet-decode extension point is still valid in the
post-send-packet extension point.

The pointers are valid for as long as the information placed in the environment dictionary is valid.
However, there is one exception. One C/C++ routine, getType, returns a pointer to an abytes_t that
references a type. These pointers are valid through the entire life of the extension. Typically, the server
would call this routine in the init-entry extension point and save the pointers to the abytes_t structures
that define the types in the static data of the shared library. Pointers to abytes_t structures returned by
getType are valid from the init-entry call for initialization until the call for uninitialization.

Init-Entry Entry Point in C/C++

The DHCP server calls the init-entry extension point (see the “init-entry” section on page 30-29) once
when configuring each extension and once when unconfiguring it. The dex.h file defines two extension
point values passed as the extension points for the configure and unconfigure calls: DEX_INITIALIZE
for configure and DEX_UNINITIALIZE for unconfigure. The environment dictionary value of the
extension-point data item is initialize or uninitialize in each call.

When calling the init-entry extension point for initialize, if the environment dictionary data item
persistent contains the value true, you can save and use the environment dictionary pointer any time
before the return from the uninitialize call. In this way, background threads can use the environment
dictionary pointer to log messages in the server log file. Note that you must interlock all access to the
dictionary to ensure that at most one thread processes a call to the dictionary at a time. You can use the
saved dictionary pointer up to when the extension returns from the uninitialize call. This way, the
background threads can log messages during termination.

DHCP Request Processing Using Extensions
The Cisco Prime Network Registrar DHCP server has extension points to which you can attach your own
extensions. They have descriptive names that indicate where in the processing flow of control to use
them.

Because the extension points are tied to the processing of input requests from DHCP clients, it is helpful
to understand how the DHCP server handles requests. Request processing comes in three general stages:

1. Initial request processing (see Table 30-1)

2. DHCPv4 or DHCPv6 processing (see Table 30-2 on page 30-13)

3. Final response processing (see Table 30-3 on page 30-13)
30-12
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
These steps and additional opportunities for using extensions are explained in the following sections.
The extension points are indicated in bold.

Table 30-1 Initial Request Processing Using Extensions

Client Request Processing Stage Extension Point Used

1. Receive a packet from a DHCP client. pre-packet-decode

2. Decode the packet. post-packet-decode

3. Determines the client-classes.

4. Modifies the client-class. post-class-lookup

5. Processes the client-classes, looking up
clients.

pre-client-lookup
post-client-lookup

6. Build a response container from the request.

Table 30-2 DHCPv4 or DHCPv6 Request Processing Using Extensions

Client Request Processing Stage Extension Point Used

1. In DHCPv4, find a lease already associated with this client, if any, or
locate a new lease for the client.

2. Serialize all requests associated with this client (processing continues
when the request reaches the head of the serialization queue).

3. In DHCPv6, process the client request, generating leases if necessary.
The server tries to provide the client with at least one preferred lease for
each usable prefix per binding.

You can generate leases and change lease states multiple times for a
client request, but not for reserved leases.

generate-lease and
lease-state-change
(multiple calls are possible
for both in DHCPv6)

4. Determine if the lease is (still) acceptable for this client (can occur
multiple times in DHCPv6).

check-lease-acceptable

5. Initiate DNS Update operations as necessary (can occur multiple
times in DHCPv6).

Table 30-3 Final Response Processing Using Extensions

Client Response Processing Stage Extension Point Used

1. Gather all the data to include in the response packet.

2. Write to the lease database.

3. Prepare the response packet for encoding. pre-packet-encode

4. Encode the response packet for transmission to the client. post-packet-encode

5. Send the packet to the client. post-send-packet

6. Release all context for the client and request. environment-destructor
30-13
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
Related Topics

Enabling DHCPv6 Extensions, page 30-14
Receiving Packets, page 30-14
Decoding Packets, page 30-15
Determining Client-Classes, page 30-15
Modifying Client-Classes, page 30-15
Processing Client-Classes, page 30-15
Building Response Containers, page 30-16
Determining Networks and Links, page 30-16
Finding Leases, page 30-16
Serializing Lease Requests, page 30-17
Determining Lease Acceptability, page 30-17
DHCPv6 Leasing, page 30-19
Gathering Response Packet Data, page 30-20
Encoding Response Packets, page 30-21
Updating Stable Storage, page 30-21
Sending Packets, page 30-21
Processing DNS Requests, page 30-21
Tracing Lease State Changes, page 30-22
Controlling Active Leasequery Notifications, page 30-22

Enabling DHCPv6 Extensions

By default, extensions are assumed to support only DHCPv4. To write DHCPv6 extensions, you must
implement an init-entry extension point that must:

1. Set the dhcp-support environment data item to v4 (for DHCPv4 only, the preset value), v6 (for
DHCPv6 only), or v4,v6 (for DHCPv4 and DHCPv6). This data item indicates to the server what
the extension is willing to support.

2. Set the extension-extensionapi-version environment data item to 2. (The dhcp-support data item is
ignored unless the extension-extension-api-version is set to 2.)

You might need to write separate extensions for DHCPv4 and DHCPv6, because of the differences in
packet formats, DHCP protocol, and internal server data. However, the fundamentals of both kinds of
extensions are very much the same.

The server calls these extension points at essentially the same places during processing, although it can
call some DHCPv6 extension points multiple times due to the possibility of multiple lease requests per
client.

Receiving Packets

The DHCP server receives DHCPv4 packets on port 67 and DHCPv6 packets on port 547 (the DHCP
input ports) and queues them for processing. It attempts to empty the UDP input queue as quickly as
possible and keeps all of the requests that it receives on an internal list for processing as soon as a free
thread is available to process them. You can configure the length of this queue, and it will not grow
beyond its maximum configured length.
30-14
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
Decoding Packets

When a free thread is available, the DHCP server allocates to it the task of processing an input request.
The first action it takes is to decode the input packet to determine if it is a valid DHCP client packet. As
part of this decoding process, the DHCP server checks all options to see if they are valid—if the lengths
of the options make sense in the overall context of the request packet. It also checks all data in the DHCP
request packet, but takes no action on any data in the packet at this stage.

Use the pre-packet-decode extension point to rewrite the input packet. After the DHCP server passes
this extension point, it stores all information from the packet in several internal data structures to make
subsequent processing more efficient.

Determining Client-Classes

If you configure an expression in the client-class-lookup-id, it is at this stage that the DHCP server
evaluates the expression (see the Chapter 26, “Using Expressions,” for a description of expressions).
The result of the expression is either <null>, or something converted to a string. The value of the string
must be either a client-class name or <none>. In the case of <none>, the server continues to process the
packet in the same way as if there were no client-class-lookup-id configured. In the case of a <null>
response or an error evaluating the client-class-lookup-id, the server logs an error message and drops the
packet (unless an extension configured at the post-class-lookup extension point specifically instructs
the server not to drop the packet). As part of the process of setting the client-class, the DHCP server
evaluates any limitation-id configured for that client-class and stores it with the request.

Modifying Client-Classes

After the DHCP server evaluates the client-class-lookup-id and sets the client-class, it calls any
extension attached to the post-class-lookup extension point. You can use that extension to change any
data that the client-class caused to become associated with the request, including the limitation-id. The
extension also learns if the evaluation of the client-class-lookup-id dropped the packet. The extension
not only finds out if it needs to drop the packet, it instructs the server not to drop the packet if it wants
the server not to do so.

Also, an extension running at the post-class-lookup extension point can set a new client-class for the
request, and uses the data from that client-class instead of the current one. This is the only extension
point where setting the client-class actually uses that client-class for the request.

Processing Client-Classes

If you enabled client-class processing, the DHCP server performs it at this stage.

Use the pre-client-lookup extension point to affect the client to look up, possibly by preventing the
lookup or supplying data that overrides the existing data. After the DHCP server passes the
pre-client-lookup extension point, it looks up the client (unless the extension specifically prevents it)
in the local database or in an LDAP database, if one was configured.

After the server looks up the client, it uses the data in the client entry to fill in additional internal data
structures. The DHCP server uses data in the specified client-class entry to complete any data that the
client entry does not specify. When the DHCP server retrieves all the data stored in the various places
in the internal data structures for additional processing, it runs the next extension point.
30-15
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
Use the post-client-lookup extension point to review the operation of the client-class lookup process,
such as examining the internal server data structures filled in from the client-class processing. You can
also use the extension point to change any data before the DHCP server does additional processing.

Building Response Containers

At this stage, the DHCP server determines the request type and builds an appropriate response container
based on the input. For example, if the request is a DHCPDISCOVER, the server creates a DHCPOFFER
response to perform the processing. If the input request is a BOOTP request, the server creates a BOOTP
response to perform the response processing.

For DHCPv6, a server creates an ADVERTISE or REPLY packet, depending on the request.

Determining Networks and Links

The DHCP server must determine the subnet from which every request originated and map that into a
set of address pools, scopes, prefixes, or links that contain IP addresses.

For DHCPv4, internal to the DHCP server is the concept of a network, which, in this context, refers to
a LAN segment or physical network. In the DHCP server, every scope or prefix belongs to a single
network.

Some scopes or prefixes are grouped together on the same network because their network numbers and
subnet masks are identical. Others are grouped because they are related through the primary-scope or
prefix pointer.

The Cisco Prime Network Registrar DHCP server determines the network to use to process a DHCP
client request in the following sequence:

1. Determining the source address, either the giaddr or, if the giaddr is zero, the address of the
interface on which the request arrived.

2. Using this address to search for any scope or prefix that was configured in the server that is on
the same subnet as this address. If the server does not find a scope or prefix, it drops the request.

3. After finding the scope or prefix, using its network in subsequent processing.

For DHCPv6 processing, see the “Determining Links and Prefixes” section on page 27-3.

Finding Leases

For DHCPv4, now that when the DHCP server establishes the network, it searches the hash table held
at the network level to see if the network already knows the client-id. “Already knows,” in this context,
means that this client previously received an offer or a lease on this network, and the lease was not
offered to or leased by a different client since that time. Thus, a current lease or an available expired
lease appears in the network level hash table. If the DHCP server finds a lease, it proceeds to the next
step, which is to serialize all requests for the same IP address.

If the DHCP server does not find a lease, and if this is a BOOTP or DHCPDISCOVER request, the server
looks for a reserved lease from a scope or prefix in the network.

If it finds a reserved lease, the server checks whether the scope or prefix and lease are both acceptable.
The following must be true regarding the reserved lease and the scope or prefix that contains it:

• The lease must be available (not leased to another DHCP client).
30-16
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
• The scope or prefix must support the request type (BOOTP or DHCP).

• The scope or prefix must not be in a deactivated state.

• The lease must not be in a deactivated state.

• The selection tags must contain all of the client selection-criteria and none of the client
selection-criteria-excluded.

• The scope or prefix must not be in a renew-only state.

If the reserved lease is acceptable, the server proceeds to the next step, which is to serialize all requests
for the IP address. Having failed to find an existing or reserved lease for this client, the server now
attempts to find any available IP addresses for this client.

The general process the DHCP server uses is to scan all of the scopes or prefixes associated with this
network in round-robin order, looking for one that is acceptable for the client and also has available
addresses. An acceptable scope or prefix has the following characteristics:

• If the client has selection-criteria associated with it, the selection tags must contain all of the client
inclusion criteria.

• If the client has selection-criteria-excluded associated with it, the selection tags must contain none
of the client exclusion criteria.

• The scope or prefix must support the client request type—If the client request is a DHCPREQUEST,
you must enable the scope or prefix for DHCP. Likewise, if the request is a BOOTP request, you
must enable the scope or prefix for BOOTP and dynamic BOOTP.

• It must not be in a renew-only state.

• It must not be in deactivated state.

• It must have an available address.

If the server does not find an acceptable scope or prefix, it logs a message and drops the packet.

For DHCPv6 processing, see the “Determining Links and Prefixes” section on page 27-3.

Serializing Lease Requests

Because multiple DHCP requests can be in process simultaneously for one client and lease, you must
serialize DHCPv4 requests at the lease level. The server queues them on the lease and processes them
in the order of queueing.

For DHCPv6, the server serializes on the client (per link) and not on the lease.

Determining Lease Acceptability

For DHCPv4, the DHCP server now determines if the lease is (still) acceptable for the client. In the case
where this is a newly acquired lease for a first-time client, it will be acceptable. However, in the case
where the server processes a renewal for an existing lease, the acceptability criteria might have changed
since the server granted the lease, and you need to check its acceptability again.

If the client has a reservation that is different from the current lease, the server first determines if the
reserved lease is acceptable. The criteria for release acceptability are:

• The reserved lease must be available.

• The reserved lease must not be in a deactivated state.

• The scope or prefix must not be in a deactivated state.
30-17
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
• If the request is BOOTP, the scope or prefix must support BOOTP.

• If the request is DHCP, the scope or prefix must support DHCP.

• If the client has any selection-criteria, the selection tags must contain all of the client inclusion
criteria.

• If the client has any selection-criteria-excluded, the selection tags must contain none of the client
exclusion criteria.

• If the client previously associated with this lease is not the current client, the scope or prefix must
not be in a renew-only state.

If the reserved lease meets all of these criteria, the DHCP server considers the current lease
unacceptable. If there is no reserved lease for this client, or the reserved lease did not meet the criteria
for acceptability, the DHCP server examines the current lease for acceptability.

The criteria for acceptability are:

• The lease must not be in a deactivated state.

• The scope or prefix must not be in a deactivated state.

• If the request is BOOTP, the scope or prefix must support BOOTP. If the request is DHCP, the scope
or prefix must support DHCP.

• If the client does not have a reservation for this lease, and the request is BOOTP, the scope or prefix
must support dynamic BOOTP.

• If the client does not have a reservation for this lease, no other client can either.

• If the client has any selection-criteria, the selection tags must contain all of the client inclusion
criteria.

• If the client has any selection-criteria-excluded, the selection tags must contain none of the client
exclusion criteria.

• If the client previously associated with this lease is not the current client, the scope or prefix must
not be in a renew-only state.

Tip At this point in the DHCP server processing, you can use the check-lease-acceptable extension point.
You can use it to change the results of the acceptability test. Do this only with extreme care.

Upon determining that a lease is unacceptable, the DHCP server takes different actions, depending on
the particular DHCP request currently being processed.

• DHCPDISCOVER—The DHCP server releases the current lease and attempts to acquire a
different, acceptable lease for this client.

• DHCPREQUEST SELECTING—The DHCP server sends a NACK to the DHCP client because
the lease is invalid. The client should then immediately issue a DISCOVER request to acquire a new
DHCPOFFER.

• DHCPRENEW, DHCPREBIND—The DHCP server sends a NACK to the DHCP client to attempt
to force the DHCP client into the INIT phase (attempt to force the DHCP client into issuing a
DHCPDISCOVER request). The lease is still valid until the client actually issues the request.

• BOOTP—The DHCP server releases the current lease and attempts to acquire a different,
acceptable lease for this client.
30-18
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
Caution Take extreme care with the check-lease-acceptable extension point. If the answer the extension point
returns does not match the acceptability checks in the search for an available lease performed in a
DHCPDISCOVER or dynamic BOOTP request, an infinite server loop can result (either immediately or
on the next DHCPDISCOVER or BOOTP request). In this case, the server would acquire a newly
available lease, determine that it was not acceptable, try to acquire a newly available lease, and
determine that it was not acceptable, in a continuous loop.

DHCPv6 Leasing

The DHCP server processes IPv6 lease requests by scanning the client request for IA_NA, IA_TA, and
IA_PD options (see the “DHCPv6 Bindings” section on page 27-7). For each of these options, the server
considers any leases that the client explicitly requests. If the lease already exists for the client and
binding (IA option and IAID), the server determines if the lease is still acceptable. For leases that the
client requests that do not already exist for the client, the server tries to give that lease to the client if:

• Another client or binding is not already using the lease.

• The prefix for the lease has the client-request flag set in its allocation-algorithms attribute.

• The lease is usable and on a usable prefix (see the “DHCPv6 Prefix Usability” section on
page 30-19).

Next, the server tries to assure that clients are using reservations and that a client has a usable lease with
a nonzero preferred lifetime on each usable prefix on the link. Thus, the server processes each of these
bindings as follows:

1. Adds any client reservations (not already in use) to the binding, provided the reservation flag is set
in the prefix allocation-algorithms attribute. The server uses the first binding of the appropriate type
for the reservation; that is, it uses address leases for IA_NA bindings and prefix leases for IA_PD
bindings.

2. If the client has no lease with a nonzero preferred lifetime on each prefix that the client can use, the
server tries to allocate a lease to the client. The prefix allocation-algorithms flags control how the
server allocates the lease.

Related Topics

DHCPv6 Prefix Usability, page 30-19
DHCPv6 Lease Usability, page 30-20
DHCPv6 Lease Allocation, page 30-20

DHCPv6 Prefix Usability

A usable prefix:

• Is not deactivated.

• Did not expire.

• Allows leases of the binding type.

• Matches the client selection criteria, if any.

• Does not match the client selection exclusion criteria, if any.
30-19
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
DHCPv6 Lease Usability

A usable lease is:

• Not unavailable.

• Not revoked.

• Not deactivated.

• Not reserved for a different client.

• Not subject to inhibit-all-renews or inhibit-renews-at-reboot.

• Renewable if being renewed (IA_TA leases are not renewable).

• Leasable with a nonzero valid lifetime.

DHCPv6 Lease Allocation

When the server needs to allocate a new lease on a prefix, it calls any extensions registered at the
generate-lease extension point if the prefix extension flag is set in the allocation-algorithms attribute.
(See the “generate-lease” section on page 30-35.) The extensions can supply the address (IA_NA or
IA_TA binding) or prefix (IA_PD binding) to be assigned, request that the server use its normal
allocation algorithm (if enabled in allocation-algorithms), or request the server to skip assigning a lease
on this prefix. The server might call the extension again if it supplied an address or prefix that is not
valid or is already in use.

If extensions are not allowed, there are no extensions registered, or the extension requests the normal
allocation algorithm of the server, the server allocates a randomly generated address or finds the first
best-fit available prefix (as controlled by the prefix allocation-algorithms attribute) and creates the
lease.

Once the server has a lease and does an acceptability check on it (see the “DHCPv6 Lease Usability”
section on page 30-20), the server calls any extensions registered at the check-lease-acceptable
extension point to allow the extension to alter the acceptability of the lease. (See the
“check-lease-acceptable” section on page 30-37.) You would typically only use this extension point to
change an acceptable result into a unacceptable one; however, the server allows a unacceptable result to
be changed to an acceptable one, although this is strongly discouraged because of possibly adverse
consequences. If the lease is not acceptable, the server likely tries to allocate another lease; thus, use
care to avoid an infinite loop. In some cases, you might need the check-lease-acceptable and
generate-lease extension points for full control of the leases a client gets: generate-lease can request
the server to skip allocation of the lease.

The server calls the check-lease-acceptable extension point for each client request for each lease.

Gathering Response Packet Data

In this stage of processing, the DHCP server collects all the data to send back in the DHCP response and
determines the address and port to which to send the response. You can use the pre-packet-encode
extension point to change the data sent back to the DHCP client in the response, or to change the address
to which to send the DHCP response. (See the “pre-packet-encode” section on page 30-38.)

Caution Any packets dropped at the pre-packet-encode extension point, whether they be DHCP or BOOTP
packets, still show the address to be leased in the Cisco Prime Network Registrar lease state database,
for as long as the remaining lease time. Because of this, it is advisable to drop packets at an earlier point.
30-20
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
Encoding Response Packets

In this stage, the DHCP encodes the information in the response data structure into a network packet. If
this DHCP client requires DNS activity, the DHCP server queues a DNS work request to the DNS
processing subsystem in the DHCP server. That request runs whenever it can, but generally not before
sending the packet to the client. (See the “Processing DNS Requests” section on page 30-21.)

Updating Stable Storage

At this stage, the DHCP server ensures that the on-disk copy of the information is up to date with respect
to the IP address before proceeding. For DHCPv6, this can involve multiple leases.

Sending Packets

Use the post-send-packet extension point (see the “post-send-packet” section on page 30-39) for any
processing that you want to perform outside of the serious time constraints of the DHCP
request-response cycle. After the server sends the packet to the client, it calls this extension point.

Processing DNS Requests

Here is a simplified view of what the DHCP server does to add names to DNS:

1. Builds up a name to use for the A record—The DHCP server creates the name that it will use in
the forward (A record) DNS request. For DHCPv6, these are AAAA records. The DNS name comes
from a variety of sources including the client-requested-host-name and client-domain-name data
items, which are usually populated from options in the DHCP request, and the DNS update
configuration (including the host-name-generator/v6-host-name-generator expressions).

2. Tries to add the name, asserting that none exists yet—At this stage, the prerequisites for the DNS
name update request indicate that the name should not exist. If it succeeds, the DHCP server
proceeds to update the reverse record.

3. Tries to add the name, asserting that the server should supply it—The server tries to add the
hostname, asserting that the host exists and has the same TXT record (or DHCID record for
DHCPv6) as the one that was sent.

– If this succeeds, the server proceeds to the next step.

– If it fails, the server checks if it exhausted its naming retries, in which case it exits and logs an
error.

– If it did not exhaust its naming entries, it returns to the first step, which is to build up a name
for the A record.

For DHCPv6, the server uses DHCID records instead of TXT records. Also, DHCPv6 clients can
have multiple leases and the forward zones can be the same or potentially different.

4. Updates the reverse record—Now that the DHCP server knows which name to associate with the
reverse (PTR) record, it can update the reverse record with no prerequisites, because it can assume
it is the owner of the record. If the update fails, the DHCP server logs an error.
30-21
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
DHCP Request Processing Using Extensions
Tracing Lease State Changes

The server calls the lease-state-change extension point whenever (and only when) a lease changes state.
The existing state is in the response dictionary lease-state data item. The new state is in the environment
dictionary under new-state. The new-state never equals the existing state (if it did, the server would not
call the extension). You should consider this extension to be read-only and not make modifications to
any dictionary items, because the server calls it in many different places. Use this extension point only
for tracking changes to a lease state.

Controlling Active Leasequery Notifications

The server determines whether a lease is queued for active leasequery notifications based on the
leasequery-send-all attribute of dhcp-listener. If this attribute is enabled, the DHCP server always sends
a notification to an active leasequery client. If disabled or unset, the DHCP server only sends
notifications which are necessary to maintain accurate state in the active leasequery client.

To allow customer written extensions to control the sending of a lease (such as only on specific state
changes), a new data item, active-leasequery-control, has been added to both the request and response
dictionaries. These data items have three values:

• 0—unspecified (the server determines whether to send the notification)

• 1—send (the server will send the notification)

• 2—do not send (the server will not send the notification)

The active-leasequery-control data item is initialized as 0, unspecified.

Note These data items may be written and read, but the value that is read is only the value that might
have been previously written.

These data items can force the DHCP server to take specific actions after being written, but reading them
without previously writing them will always return 0, unspecified. These data items will not let you
determine the choices that the DHCP server makes when it comes to deciding whether or not to send a
message to an active leasequery client concerning the changes (if any) made to a lease that is being
processed. Thus, these data items are technically read/write, but reading them will only allow you to
determine what you may have previously written into them.

These data items are examined (the response dictionary is examined first, then the request) when the
lease is written to the internal lease state database as that is when the lease is also queued for active
leasequery notification. This occurs after the check-lease-acceptable and lease-state-change extensions
points, but prior to the pre-packet-encode extension point. Therefore, any changes made to these
attributes at or after the pre-packet-encode extension point will be ignored.

Whether a lease is queued for active leasequery notification is determined as follows:

Response's
active-leasequery-contro
l

Request's
active-leasequery-control Leasequery-send-all Action

0—unspecified 0—unspecified False or unset Conditional (see
leasequery-send-all
attribute description)

0—unspecified 0—unspecified True Sent
30-22
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Dictionaries
Note The active-leasequery-control of response and request is examined prior to any examination of the
leasequery-send-all attribute.

If either of these dictionary data items has a value other than unspecified, that value will override any
value configured in the leasequery-send-all attribute of the dhcp listener.

Note You cannot control the sending of active leasequery information by writing a single extension that runs
only at the lease-state-change extension point, because that extension point is only called when there is
a change in state of a lease.

Lease state changes may not occur when you might expect them to. For example, if a lease is leased, and
that same client goes through a DISCOVER/OFFER/REQUEST/ACK cycle, the lease-state-change
extension point is not called since the lease does not actually go through a state change internally and it
remains leased throughout the cycle. Thus, to gain absolute control over the transmission of information
to active leasequery clients, you have to initialize the active-leasequery-control attribute in request
processing, and then possibly alter it or override it by operating on the response dictionary value at the
lease-state-change extension point.

Extension Dictionaries
Every extension is a routine with three arguments. These arguments represent the request dictionary,
response dictionary, and environment dictionary. Not every dictionary is available to every extension.
Table 30-4 shows the extensions points and the dictionaries that are available to them.

0—unspecified 1— send Ignored Sent

0—unspecified 2—don't send Ignored Not Sent

1— send Ignored Ignored Sent

2—don't send Ignored Ignored Not Sent

Response's
active-leasequery-contro
l

Request's
active-leasequery-control Leasequery-send-all Action

Table 30-4 Extension Points and Relevant Dictionaries

Extension Point Dictionary

init-entry Environment

pre-packet-decode Request, Environment

post-packet-decode Request, Environment

pre-client-lookup Request, Environment

pre-dns-add-forward Environment (Deprecated extension point)

post-client-lookup Request, Environment

post-class-lookup Request, Environment

generate-lease Request, Response, Environment
30-23
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Dictionaries
Note When the server sends DHCPv6 Reconfigure messages, it can call the pre-packet-encode,
post-packet-encode, and post-send-packet extension points without a request.

For the request and response dictionaries, you can use the isValid method to probe if the dictionary is
available for an extension point.

Each of the three dictionaries consists of name-value pairs. The environment dictionary, which is
available to every extension point, is the simplest dictionary. The request and response dictionaries are
more complex and their data is typed. Thus, when you set a value in one of these dictionaries, you need
to match the data type to the value. You can use the dictionaries for getting, putting, and removing
values.

Related Topics

Environment Dictionary, page 30-24
Request and Response Dictionaries, page 30-26

Environment Dictionary

The environment dictionary is available at all extension points. It is strictly a set of name-value pairs in
which both the name and the value are strings.

The DHCP server uses the environment dictionary to communicate with extensions in different ways at
different extension points. At some extension points, the server places information in the environment
dictionary for the extension to modify. In others, the extension can place values in the environment
dictionary to control the flow or data after the extension finishes its processing.

The environment dictionary is unique in that an extension can put any name-value pair in it. Although
you do not get an error for using undocumented name-value pairs, the server does not recognize them.
These name-value pairs can be useful for your extension points to communicate data among them.

The DHCP server creates the environment dictionary when a DHCP request arrives and the dictionary
remains with that request through the processing. Thus, an extension that runs at the
post-packet-decode extension point can put data into the environment dictionary, and then an extension
run at the pre-packet-encode extension point might read that data from the dictionary.

Note The init-entry extension point has a unique environment dictionary.

lease-state-change Response, Environment

check-lease-acceptable Request, Response, Environment

pre-packet-encode Request, Response, Environment

post-packet-encode Request, Response, Environment

post-send-packet Request, Response, Environment

environment-destructor Environment

Table 30-4 Extension Points and Relevant Dictionaries (continued)

Extension Point Dictionary
30-24
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Dictionaries
Related Topics

General Environment Dictionary Data Items, page 30-25
Initial Environment Dictionary, page 30-26

General Environment Dictionary Data Items

The data items in Table 30-5 are valid in the environment dictionary at all extension points. (See the
individual extension point sections for environment dictionary data items specific to each one.)

The data items are input, output, or both:

• Input—The DHCP server sets the value and inputs it to the extension.

• Output—The value is output to the DHCP server, which reads it, and acts upon it.

Table 30-5 General Environment Dictionary Data Items

Environment Data Item Description

drop
(input/output)

If the drop value is equal to the string true when the extension exits, the
DHCP server drops the input packet and logs a message in the log file.
Initally set to false. Available at most extension points, but not all (such as
generate-lease).

Note For recommendations on how to use drop for multiple extensions
per extension point, see the “Multiple Extension Considerations”
section on page 30-7.

extension-name
(input)

Name with which the extension was configured. You can configure the
same piece of code as several different extensions and at several different
extension points.

This allows one piece of code to do different things, depending on how you
configure it. The code can also use this string to find itself in the
extension-name-sequence string, for which it needs to know its own name.

extension-name-sequence
(input)

Provides a comma-separated string representing the configured extensions
for this extension point. It allows an extension to determine which
extensions can run before and after it. The extension-name data item
provides the currently running extension.

For example, if you configure tclfirst as the first extension and dexscript
as the fifth, the extension-name-sequence would contain
"tclfirst,,,,dexscript".

extension-point
(input)

Name of the extension point. For example, post-packet-decode.

extension-sequence
(input)

String that is the sequence number of the extension at the extension point.

log-drop-message
(input/output)

If the drop value is equal to the string true, and the log-drop-message value
is equal to the string false when the extension exits, then the DHCP server
drops the input packet, but does not log a message in the log file.

Does not apply to init-entry.

trace-level
(output)

Setting this to a number makes that number the current setting of the
extension-trace-level server attribute for all extensions processing this
request.
30-25
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Dictionaries
Initial Environment Dictionary

You can configure an extension with init-args and init-entry. Alternatively, you can specify
configuration information for an extension to read out of the environment dictionary. You can set the
DHCP property initial-environment-dictionary with a series of attribute-value pairs, and each pair is
available in every environment dictionary. Using this capability, you can specify a variety of
configuration and customizing information. Any extension can simply read this data directly out of the
environment dictionary, without having to store it in some static data area, as is required with the
init-args or init-entry approach.

You can read the values defined using the initial-environment-dictionary approach from any
environment dictionary. You can also define new values for any attributes that appear in the
initial-environment-dictionary. These new values are then available for the life of that environment
dictionary (usually the life of the request packet being processed). However, this does not change the
contents of any other environment dictionary. Any new environment dictionary (associated with a
different request) sees the attribute-value pairs defined by the initial-environment-dictionary property of
the DHCP server.

In addition, these initial-environment-dictionary attribute-value pairs do not appear in an enumeration
of the values of the environment dictionary. They are only available if you request an attribute value not
currently defined in the environment dictionary. The attribute-value pairs do not actually appear in the
environment dictionary. Thus, if you define a new value for one of the attributes, that new value does
appear in the environment dictionary. If you later delete the value, the original one is again available if
you should request it.

Request and Response Dictionaries

The request and response dictionaries have a fixed set of accessible names. However, you cannot access
all names from every extension point. These dictionaries make internal server data structures available
to the extension for read-write or, in some cases, read-only access. Each data item has a particular data
type. If you omit the correct data type (for C/C++ extensions) on a put operation, or if the DHCP server
cannot convert it to the correct data type (for Tcl extensions), the extension will fail.

The request dictionary is available at the beginning of the processing of a request. After the server
creates a response, both the request and response dictionaries are available. It is an error to access a
response dictionary before it is available.

user-defined-data
(input/output)

Set with the user-defined-data attribute of a lease stored with the lease
before request processing. You can have it written to disk before (but not
with) a pre-packet-encode.

If set to null, the server ignores the user-defined-data from the lease. You
cannot remove a previous value by using a null string value. Appropriate
for responses only.

When the server writes the user-defined-data to a lease, the read-only
client-user-defined-data response dictionary data item assumes its value.

Note Be careful in using this data item in multiple extensions for an
extension point. See the “Multiple Extension Considerations”
section on page 30-7.

Table 30-5 General Environment Dictionary Data Items (continued)

Environment Data Item Description
30-26
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Dictionaries
In general, you cannot use an extension to change information data in the server. In some cases, however,
you can use an extension to change configured data, but only for the duration of the processing for just
that single request.

Appendix C contains details on the options and data items available for the received client request (the
Request Dictionary) and for the response sent (the Response dictionary).

Related Topics

Decoded DHCP Packet Data Items, page 30-27
Using Parameter List Option, page 30-28

Decoded DHCP Packet Data Items

The DHCP protocol is a request-response UDP-based protocol and, thus, the stimulation for a DHCP
server operation is usually a DHCP request from a client. The result is usually a DHCP response sent
back to that client.

The DHCP extension facility makes the information input in the DHCP request available to extensions
at most of the extension points, and the information to be sent as a response to a DHCP request available
at the pre-packet-encode extension point (see the “pre-packet-encode” section on page 30-38).

In addition to this DHCP packet-based information, there is additional data that the DHCP server uses
when processing DHCP requests. This data becomes associated with either the DHCP request or the
DHCP response as part of the architecture of the server. Much of this data is also made available to
extensions, and much of it can be both read and written—in many cases altering the processing
algorithms of the DHCP server.

The request and response dictionaries, therefore, contain two classes of data in each dictionary. They
contain decoded packet data items as well as other request or response associated data items. The
decoded packet data items are those data items directly contained in or derived from the DHCP request
or DHCP response. Access to the decoded packet data items allows you to read and, in some cases,
rewrite the DHCP request and DHCP response packet. Figure 30-1 on page 30-27 shows the relationship
between the request and the response dictionaries.

Figure 30-1 Extensions Request and Response Dictionaries

You can access information from the DHCP request packet, such as the giaddr, ciaddr, and all the
incoming DHCP options by using the decoded packet data items in the request dictionary. Similarly, you
can set the giaddr and ciaddr, and add and remove DHCP options in the outgoing DHCP response by
accessing the decoded packet data items in the response dictionary.

Request directory Response directory

Request packet
Decoded
packet

data items

Additional
request-associated
information

Response packet

Additional
response-associated
information

12
42

9

30-27
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
It is important to realize that access to the packet information provided by the decoded packet data items
is not all available to you. The specific data items available to that extension point are listed in the
description of each extension point. Because the decoded packet data items are always accessible as a
group, they are listed as a group.

You access DHCP options by name. If the option is not present, the server returns no data for that option.
If you place an option into the decoded request or decoded response, it replaces any option with the same
name already in the decoded request or decoded response, unless, in the put operation, you want the data
specifically appended to existing data.

Some DHCP options can have multiple values. For example, the routers option can have one or more IP
addresses associated with it. Access to these multiple values is by indexed operations on the option
name.

Tip A clear operation on the request or response dictionary removes all the options in the decoded packet.

Using Parameter List Option

There is one option, dhcp-parameter-request-list, that the DHCP server specially handles in two ways,
available as either a:

• Multiple-valued option of bytes under the name dhcp-parameter-request-list.

• Blob (sequence of bytes) option under the name dhcp-parameter-request-list-blob.

You can get or put the option using either name. The DHCP server handles the
dhcp-parameter-request-list (and its -blob variant as well) differently in the response dictionary than in
the request dictionary. When you access this option in the request dictionary, it is just another DHCP
option in the request dictionary. In the response dictionary, however, special processing takes place.

You can use the dhcp-parameter-request-list option in the response dictionary to control the order of the
options returned to the DHCP or BOOTP client. When you put the option in the response dictionary, the
DHCP server reorders the existing options so that the ones listed in the option are first and in the order
that they appear in the list. Then, the remaining options appear in their current order after the last ones
that were in the list. The DHCP server retains the list, and uses it to order any future options that it puts
into the response, until it replaces the list with a new one.

When an extension does a get operation for the dhcp-parameter-request-list in the response dictionary,
it does not look in the decoded response packet to find an option. Instead, the DHCP server synthesizes
one that contains the list of all options currently in the decoded response packet.

Extension Point Descriptions
The following sections describe each extension point, their actions, and data items. For all the extension
points, you can read the extension-point and set the trace-level data item values in the environment
dictionary. For most extension points, you can also tell the server to drop the packet.

Related Topics

init-entry, page 30-29
pre-packet-decode, page 30-30
post-packet-decode, page 30-31
post-class-lookup, page 30-32
pre-client-lookup, page 30-32
30-28
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
post-client-lookup, page 30-34
generate-lease, page 30-35
check-lease-acceptable, page 30-37
lease-state-change, page 30-37
pre-packet-encode, page 30-38
post-packet-encode, page 30-38
pre-dns-add-forward, page 30-39
post-send-packet, page 30-39
environment-destructor, page 30-39

init-entry

The init-entry extension point is an additional one that the DHCP server calls when it configures or
unconfigures the extension, which occurs when starting, stopping, or reloading the server. This entry
point has the same signature as the others for the extension, but you can use only the environment
dictionary. You do not configure the init-entry extension with dhcp attachExtension in the CLI, but
you do so implicitly by defining an init-entry on an already configured extension. See Table 30-6 for
the environment dictionary data items specific to init-entry.

Table 30-6 init-entry Environment Dictionary Data Items

Environment Data Item Description

dhcp-support
(input/output)

Version or versions of DHCP for which the server should call the
registered extension points for the extension. Can be v4, v6, or v4,v6.

extension-extensionapi-version
(output)

Minimum version of the extension API required by the extension. Set
it to 2 if the extension uses API features introduced in Cisco Prime
Network Registrar Release 7.0. Set it to 1 for earlier releases.

init-args
(input)

Configure arguments by setting init-args on an existing extension
point. These arguments are present for both the configure and
unconfigure calls of the init-entry entry point.

The extension point name for the configure call is initialize, and for
the unconfigure call is uninitialize.

server-dhcp-support
(input)

The server sets this data item to indicate what the server is configured
to support. Can be v4, v6, or v4,v6, depending on the DHCP server
dhcp-support attribute setting (which requires setting expert attribute
visibility=3) and whether any prefixes are configured:

• If dhcp-support=both and prefixes are not configured, then
server-dhcp-support is set to v4.

• If dhcp-support=both and one or more prefixes are configured,
then server-dhcp-support is set to v4,v6.

• If dhcp-support=v4, then server-dhcp-support is set to v4.

• If dhcp-support=v6 and one or more prefixes are configured,
then server-dhcp-support is set to v6.

server-extensionapi-version
(input)

Version of the server extension API. The value is 2 for Cisco Prime
Network Registrar 7.0 and later, and 1 for earlier releases.
30-29
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
Note You must supply an init-entry extension point to enable extension points for DHCPv6 (or disable them
for DHCPv4).

In addition to configuring an init-entry with the name of the entry point, you can also configure a string
of arguments that the DHCP server loads in the environment dictionary under the string arguments
before calling the init-entry point. Using arguments, you can create a customized extension by giving
it different initialization arguments and thus not require a change to the code to elicit different behavior.

Note The order in which the server calls extensions at the init-entry extension point can be different from
reload to reload, or release to release.

Caution An extension, when called to uninitialize, must terminate any threads it creates and clean up after itself
before returning. Once the extension returns, the DHCP server unloads the extension from memory,
which could result in a server failure if a thread an extension created is left running.

pre-packet-decode

The dictionaries available for pre-packet-decode are request and environment.

This extension point is the first one the DHCP server encounters when a request arrives. The server calls
it after receiving a packet but before it decodes the packet (at the post-packet-decode extension point).
An extension can use this extension point to examine a packet and alter it before the server decodes it,
or cause the server to drop it.

Two key data items in the request dictionary are for use with pre-packet-decode are client-packet and
packet. These can be used to examine the received packet, modify the packet, and write it back.

Caution The request dictionary client-packet and packet data items used for pre-packet-decode are available at
any extension point that has a request dictionary. However, you should not directly alter or replace the
packet at any extension point other than pre-packet-decode, because doing so can have unexpected side
effects. For example, the server might never pick up the changes to the packet, or options data can
change unexpectedly during processing.

An extension that uses getBytes with client-packet or packet directly alters the bytes of packet by writing
into the returned buffer. However, an extension must use put or putBytes to adjust the length of the
packet (and the operation can fail if the packet is too big). For DHCPv6, adjusting the length of the client
portion of the packet, if relayed, requires updating the lengths in the Relay Message options in the
packet.

It is up to an extension to handle parsing the packet to locate what it needs and properly alter the packet,
if that is the intent.

Because the server has not yet decoded the received packet, most request dictionary data items are not
available (as the server normally fills them in from the received packet). Thus, this extension point must
extract data directly from the packet. The extension must also properly handle incorrectly formatted
packets.
30-30
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
If you enable incoming-packet-detail logging, the server logs the received packet after calling the
extensions registered at this extension point. If DHCP server debug tracing is configured with V is 3 or
more, the server also logs the packet before calling the extensions registered for this extension point, if
at least one extension is registered.

post-packet-decode

The dictionaries available for post-packet-decode are request and environment.

Related Topics

Extension Description, page 30-31
Overriding Client Identifiers, page 30-31

Extension Description

This extension point immediately follows the decoding of the input packet and precedes any processing
on the data in the packet. The primary activity for an extension at this point is to read information from
an input packet and do something with it. For example, you might use it to rewrite the input packet.

The post-packet-decode extension point is one of the easiest extension points to use. If you can express
the change in server behavior as a rewrite of the input DHCP or BOOTP packet, you should use this
extension point. Because the packet was decoded, but not processed in any way, the number of side
effects are very limited.

The post-packet-decode extension point is the only one at which you can modify the decoded input
packet and ensure that the server recognizes all the modifications. You can have the extension drop the
packet and terminate further processing by using the drop data item in the environment dictionary.

Overriding Client Identifiers

To override client identifiers (IDs), you can set an expression value for the override-client-id attribute
for a client-class or use the override-client-id data item at the post-packet-decode extension point. The
extension method maps the client to a different identifier than the server.

There is a variant of the extension data item where you can get or put the override client ID as a string:
override-client-id-string. You can also request the data type of the override client ID through the
read-only override-client-id-data-type data item.

Different values are returned based on how you put and get the override-client-id or its
override-client-id-string variant (see Table 30-7 for some examples).

Table 30-7 Puts and Gets of Client ID Overrides

Action Data Item Used Put Value Get Value

put override-client-id 01:02:03:04

putBytes override-client-id 01 02 03 04

get override-client-id 01:02:03:04 (blob)

getBytes override-client-id 01 02 03 04 (raw bytes)

get[Bytes] override-client-id-string 01:02:03:04 (blob-as-string)

get[Bytes] override-client-id-data-type blob
30-31
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
The equivalent client-override-client-id data items (that you can use in later extension points where the
response dictionary is valid) function the same way, although they are read-only.

Note When using [v6-]override-client-id expressions, leasequery by client-id requests may need to specify
the override-client-id attribute to correctly retrieve the information on the lease(s) for the client.

post-class-lookup

The dictionaries available for post-class-lookup are request and environment.

The server calls this extension point only if there is a client-class-lookup-id; otherwise, it is similar to a
post-packet-decode. The server calls the post-class-lookup extension point after evaluating the
client-class-lookup-id and setting the client-class data for this client.

On input to this extension point, the environment dictionary has the drop data item set to true or false.
You can change this setting by extension to drop the packet (or not drop it), and the server recognizes
the change. The server also looks at the log-drop-message to decide whether to log the drop.

The extension point can also set the client-class-name in the environment dictionary, which sets the
named client-class for this packet, regardless of the previous client-class. This setting has an effect only
if the drop environment dictionary data item value is false on exiting the extension point.

pre-client-lookup

The dictionaries available for pre-client-lookup are request and environment.

You can use this extension point only if you enabled client-class processing for your DHCP server. This
extension point allows an extension to perform any or all of these actions:

• Modify the client that the server looks up during client-class processing.

• Specify individual data items to override those found from the client entry or client-class it specifies.

• Instruct the server to skip the client lookup altogether. In this case, the only client data used is data
that the extension supplied in the environment dictionary.

Although the request dictionary is available to make decisions about the operation of an extension
running at this extension point, the environment dictionary controls all the operations.

put[Bytes] override-client-id-string 01:02:03:04
test

get[Bytes] override-client-id-string 01:02:03:04 (string)
test (string)

get[Bytes] override-client-id 30:31:3a:30:32:3a:30:33:3a:30:34 (blob)
74:65:73:74 (blob of “test”)

get[Bytes] override-client-id-data-type nstr

Table 30-7 Puts and Gets of Client ID Overrides (continued)

Action Data Item Used Put Value Get Value
30-32
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
Related Topics

Environment Dictionary for pre-client-lookup, page 30-33
post-client-lookup, page 30-34
Overriding Client Identifiers, page 30-31

Environment Dictionary for pre-client-lookup

The environment dictionary data items in Table 30-8 are the control data items available at
pre-client-lookup for clients and client-classes.

If you set the environment dictionary data items in Table 30-9 on page 30-33, their values override those
determined from the client lookup (either in the internal database or from LDAP). If you do not add
anything to the dictionary, the server uses what is available in the client lookup.

Table 30-8 pre-client-lookup Environment Dictionary Control Data Items

Environment Data Item Description

client-specifier
(input/output)

Name of the client the client-class processing code looks up, in CNRDB or
LDAP. If you change the name at this extension point, the DHCP server
looks up the client you specify.

default-client-class-name
(output)

Instructs the server to use the value associated with the
default-client-class-name option as the class-name if:

• The client-specifier data item was not specified in the
pre-client-lookup script.

• The server could not locate the specific client entry.

The default-client-class-name data item then assumes precedence over the
class-name associated with the default client.

release-by-ip
(output)

Applies to DHCPRELEASE requests only. If set to true, instructs the
server to release the lease by the IP address if it cannot retrieve the lease by
the client-id as derived from the DHCPRELEASE request.

skip-client-lookup
(input/output)

The value is determined by the server configuration. If set to true, the
DHCP server skips the normal client lookup that it would have performed
immediately upon exit from this extension.

The only data items used to describe this client are those placed in the
environment dictionary (see Table 30-9).

Table 30-9 pre-client-lookup Environment Dictionary Override Data Items

Environment Data
Item Description

action
(input/output)

Convert this string to a number and use the result as the action. The numbers
you can use are 0 (for none) and 1 (for exclude).

authenticate-until
(input/output)

Absolute time, measured in seconds, from January 1, 1970. Use to indicate
the time at which the client authentication expires.

When the client authentication expires, the DHCP server uses the values in
the client unauthenticated-client-class option instead of its client-class to fill
in missing data items in the client entry.
30-33
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
post-client-lookup

The dictionaries available for post-client-lookup are request and environment.

client-class-name
(input/output)

Use the client-class specified by this data item to fill in the missing
information in the client entry. If there is no client-class corresponding to the
name specified, the DHCP server logs a warning and continues processing.

If you specify none, the DHCP server acts as if the client entry did not
include the client-class name.

domain-name
(output)

Use this domain name for the client DNS operations in preference to the one
specified in the DNS update configuration. The DNS server shown as the
primary server for the domain in the scope or prefix must also be the primary
server for the domain you specified.

If the domain name is not overridden in the client or client-class entry, the
DHCP server uses the domain name from the scope or prefix.

If the client entry or the extension contains the word none, the DHCP server
uses the domain name from the scope or prefix.

host-name
(output)

Use this for the client in preference to the host-name options specified in the
input packet, or any data from the client or client-class entry.

If you set this to none, the DHCP server does not use any information from
the client or client-class entry, but uses the name from the client request.

policy-name
(input/output)

Use this policy as the policy specified for the client entry, overriding any
policy specified by that client entry.

selection-criteria
(input/output)

List of comma-separated strings, each specifying (for this input packet) the
selection criteria for the client. Any scope or prefix the client uses must have
all of these selection tags.

Use this data item to override any criteria specified in the client or
client-class entry. If you do, the DHCP server does not use the client entry
selection criteria, independent of whether they were stored in the local or
LDAP database.

If you set this data item to none, the DHCP server does not use selection tags
for the packet.

If you set this to a null string, the DHCP server treats it as if it were not set
and uses the selection criteria from the client or client-class entry.

unauthenticated-client-
class-name
(input/output)

Name of the client-class to use if the server does not authenticate the client.
If you want to indicate without specifying the
unauthenticated-client-class-name, use an invalid client-class name as the
value of this data item.

You can use the value none or any name that is not a client-class name. The
DHCP server logs an error that the client-class is not present.

Table 30-9 pre-client-lookup Environment Dictionary Override Data Items (continued)

Environment Data
Item Description
30-34
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
You can use this extension point to examine the results of the entire client-class processing operation,
and take an action based on those results. You might want to use it to rewrite some of the results, or to
drop the packet. If you want to override the hostname in the packet returned from the client-class
processing from an extension running at the post-client-lookup extension point, set the hostname to the
client-requested-host-name data item in the request dictionary. This causes Cisco Prime Network
Registrar to look to the server as though the packet came in with whatever string you specified in that
data item.

You also can use this extension point to place some data items in the environment dictionary to affect
the processing of an extension running at the pre-packet-encode extension point (see the
“pre-packet-encode” section on page 30-38), where it might load different options into the response
packet or take other actions.

Environment Dictionary for post-client-lookup

The environment dictionary data items included in Table 30-10 are available at post-client-lookup.

generate-lease

The dictionaries available for generate-lease are request, response, and environment. This extension
point is available for DHCPv6 only. See Table 30-11 for the environment dictionary data items that apply
to this extension point.

Table 30-10 post-client-lookup Environment Dictionary Data Items

Environment Data
Item Description

client-specifier
(input)

Name of the client that the client-class processing looked up.

cnr-ldap-query-failed
(input)

The DHCP server sets this attribute to ease recovery from LDAP server
failures so that a post-client-lookup script can respond to an LDAP server
failure.

The DHCP server, after a client lookup, sets this flag to true if the LDAP
query failed because of an LDAP server error. If the server received a response
from the LDAP server, one of two conditions occurs:

• It sets the flag to false.

• The cnr-ldap-query-failed attribute does not appear in the environment
dictionary.

Table 30-11 generate-lease Environment Dictionary Data Items

Environment Data
Item Description

attempts
(input)

Number of times that the server calls this extension for a single lease.

default-prefix-length
(input)

Set to the default prefix length (from policies). The Expert mode
longest-prefix-length and shortest-prefix-length data items, if not set, default
to the default-prefix-length.
30-35
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
You can use this extension point to generate a DHCPv6 address or prefix and allow the extension to
control the address or prefix.

The server calls generate-lease only if the prefix is configured to allow extensions to be called during
address allocation or prefix delegation—the extension flag must be set in the allocation-algorithms
attribute for the prefix. When the server calls the generate-lease extension:

• The server sets the prefix context for the response dictionary to the prefix on which the lease is to
be created. (Calling setObject with DEX_PREFIX and DEX_INITIAL will return to this context.)

• No lease context exists, because the server has not yet created a lease. However, lease-binding data
items, in particular lease-binding-type and lease-binding-iaid are available. (Calling setObject with
DEX_LEASE and DEX_INITIAL returns to this context and also sets the prefix, because a lease
context sets three contexts: lease, binding, and prefix.)

• The server sets the skip-lease environment dictionary data item to false.

• The server sets the (read-only) attempts environment dictionary data item with the number of times
(starting with 1) it called the extension to create this lease.

• For prefix delegation, the following environment dictionary data items are available:

– prefix-length—Prefix length (requested or default prefix length).

– default-prefix-length—Default prefix length (from policies).

– longest-prefix-length—Longest allowable prefix (from policies).

– shortest-prefix-length—Shortest allowable prefix (from policies).

When the extension returns, it can:

• Request an explicit address (for stateful address assignment) by setting the address on the
generated-address environment dictionary data item. If the address is not available for the client
(that is, if the address is already in use) or is not contained by the prefix, the server might call this
extension again.

• Request an explicit prefix (for prefix delegation assignment) by setting the prefix on the
generated-prefix environment dictionary data item. If the prefix is not available for the client or is
not contained by the prefix, the server might call this extension again. The prefix is not available for
the client under the following conditions:

extension-point
(input)

Name of the extension point. For example, post-packet-decode.

extension-sequence
(input)

String that is the sequence number of this extension at this extension point.

generated-address
(output)

Address the extension wants the server to use for the lease.

generated-prefix
(output)

Delegated DHCPv6 prefix the extension wants the server to use for the lease.

prefix-length
(input)

Set to the requested or default prefix length.

skip-lease
(output)

Set to TRUE if the extension does not want the server to generate the lease.

Table 30-11 generate-lease Environment Dictionary Data Items (continued)

Environment Data
Item Description
30-36
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
– if the prefix is already in use

– if it is contained in a shorter prefix that has already been delegated

– if a longer prefix contained in it has already been delegated by the server

The server will not reject the prefix if it is shorter or longer than allowed by the policy.

• Cause the server not to assign a lease by setting the skip-lease environment dictionary data item to
true.

• Allow normal address assignment or prefix delegation to occur by not setting any of the above.

The server calls the extension point at most 500 times for each lease (this limit is the same one that
currently applies when the server randomly generates leases). The server calls an extension multiple
times only if the extension supplies an unusable address or delegated prefix (that is not in range for the
prefix or already exists).

Note You cannot request the server to drop the packet at this extension point.

check-lease-acceptable

The dictionaries available for check-lease-acceptable are request, response, and environment.

This extension point comes immediately after the server determines whether the current lease is
acceptable for this client. You can use this extension to examine the results of that operation, and to cause
the routine to return different results. See the “Determining Lease Acceptability” section on page 30-17.

The acceptable data item is available in the environment dictionary at this extension point. This is a
read/write data item that the DHCP server initializes depending on if the lease is acceptable for this
client. You can read and change this result in an extension. Setting the acceptable data item to true
indicates that it is acceptable; setting it to false indicates that it is unacceptable.

lease-state-change

The dictionaries available for lease-state-change are response and environment.

The server calls this extension point when a lease state changes for either all state changes or when
exiting the state specified in the exiting-state environment data item (see Table 30-12 on page 30-38).
The existing state is in the lease-state response dictionary data item. The new state is in the environment
dictionary data item new-state. The server never calls the extension point if the new state matches the
existing one.

Use this extension point mainly for read-only purposes, although you can place data in the environment
dictionary so that other extension points can get it later.

The lease-state-change can also have a different environment dictionary, such as for lease expirations.
30-37
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
Related Topics

Environment Dictionary for lease-state-change, page 30-38

Environment Dictionary for lease-state-change

The current state is in the lease-state lease information data item in the response dictionary, and the state
being changed to is in the environment dictionary under the new-state data item. The response lease-state
and environment new-state data items are read-only.

pre-packet-encode

The dictionaries available for pre-packet-encode are request, response, and environment.

Note For DHCPv6 Reconfigure messages, there is no request dictionary (because Reconfigure is a
server-initiated message). Thus, enabled extensions should check the response msg-type for
ADVERTISE or REPLY or use isValid on the request to ensure that the Reconfigure message exists.

post-packet-encode

The dictionaries available for post-packet-encode are request, response, and environment.

Note For DHCPv6 Reconfigure messages, there is no request dictionary (because Reconfigure is a
server-initiated message). Thus, enabled extensions should check the response msg-type for
ADVERTISE or REPLY or use isValid on the request to ensure that the request dictionary exists.

The server calls this extension point after encoding a packet, but before sending it to the client. The
server can thereby examine and alter the packet before it sends the packet to the client, or the extension
can cause the server to drop the packet (although the server might have made changes to its internal and
on-disk data that will not be backed out if the packet is dropped).

Table 30-12 lease-state-change Environment Dictionary Data Items

Environment Data
Item Description

exiting-state (output) For an extension attached to the lease-state-change extension point, if
specified, the lease-state-change extension point is called only if the current
state of the lease is the state specified by exiting-state.The extension is only
called when the specified state is exited. If not specified, and the extension is
attached to the lease-state-change extension point, the extension will be
called for all state changes. If specified, the exiting-state must specify a valid
lease state: available, offered, leased, expired, unavailable, released,
other-available, pending-available, revoked.

 There is no strict state transition table. In a failover environment, the server
that receives a binding update message sets the state to whatever its partner
informs it to be, without requiring specific state transitions.
30-38
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
The client-packet and packet data items were added to the response dictionary with similar behavior as
described for the request dictionary in the “pre-packet-decode” section on page 30-30. Note that this
extension point is the only one that can request the response client-packet or packet data items, because
no packet exists at any other extension point. Also, the server does not process the changes made to the
packet; the server simply sends the altered packet to the client.

If you enable outgoing-packet-detail logging, the server logs the packet after calling the extensions
registered at this extension point. If DHCP server debug tracing is configured with X>=3, the server also
logs the packet before calling the extensions registered for this extension point, but only if at least one
extension is registered.

pre-dns-add-forward

Instead of using the pre-dns-add-forward extension point, you can use the host-name-generator (for
DHCPv4) and v6-host-name-generator (for DHCPv6) expressions configurable on the DNS update
configurations.

Note The pre-dns-add-forward extension point is deprecated and documentation for it removed. A future
Cisco Prime Network Registrar release may remove the extension point completely. Instead, use an
earlier request extension point (such as post-client-lookup) to set the required options, such as the
client-fqdn option.

post-send-packet

Use the post-send-packet extension point for any processing that you want to perform outside of the
serious time constraints of the DHCP request-response cycle. After the server sends the packet to the
client, it calls this extension point.

Note For DHCPv6 Reconfigure messages, there is no request dictionary (because Reconfigure is a
server-initiated message). Thus, enabled extensions should check the response msg-type for
ADVERTISE or REPLY or use isValid on the request to ensure that the request dictionary exists.

environment-destructor

The environment-destructor extension point allows an extension to clean up any context that it might
be holding. The only dictionary available for this extension point is environment.

The environment dictionary is available for all extension points called for a single client request.
Because some extensions may need to maintain context information between the multiple extension
points called for a single client request, and because the server might drop requests at several places
during processing, an extension cannot reliably release context that it might have created for that request.
The environment-destructor extension point now makes it possible to reliably remove this context
when processing of a request has completed, for whatever reason.

Note The server calls all extensions attached to the environment-destructor extension point, even if the
server did not call each extension at any other attachment point.
30-39
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

Chapter 30 Using Extension Points
Extension Point Descriptions
30-40
Cisco Prime Network Registrar 8.1 User Guide

OL-26358-01

	Using Extension Points
	Using Extensions
	Creating, Editing, and Attaching Extensions
	Determining Tasks
	Deciding on Approaches
	Choosing Extension Languages

	Language-Independent API
	Routine Signature
	Dictionaries
	Utility Methods in Dictionaries
	Configuration Errors
	Communicating with External Servers
	Recognizing Extensions
	Multiple Extension Considerations

	Tcl Extensions
	Tcl Application Program Interface
	Dealing with Tcl errors
	Handling Boolean Variables in Tcl
	Configuring Tcl Extensions
	Init-Entry Extension Point in Tcl

	C/C++ Extensions
	C/C++ API
	Using Types in C/C++
	Building C/C++ Extensions
	Using Thread-Safe Extensions in C/C++
	Configuring C/C++ Extensions
	Debugging C/C++ Extensions
	Pointers into DHCP Server Memory in C/C++
	Init-Entry Entry Point in C/C++

	DHCP Request Processing Using Extensions
	Enabling DHCPv6 Extensions
	Receiving Packets
	Decoding Packets
	Determining Client-Classes
	Modifying Client-Classes
	Processing Client-Classes
	Building Response Containers
	Determining Networks and Links
	Finding Leases
	Serializing Lease Requests
	Determining Lease Acceptability
	DHCPv6 Leasing
	DHCPv6 Prefix Usability
	DHCPv6 Lease Usability
	DHCPv6 Lease Allocation

	Gathering Response Packet Data
	Encoding Response Packets
	Updating Stable Storage
	Sending Packets
	Processing DNS Requests
	Tracing Lease State Changes
	Controlling Active Leasequery Notifications

	Extension Dictionaries
	Environment Dictionary
	General Environment Dictionary Data Items
	Initial Environment Dictionary

	Request and Response Dictionaries
	Decoded DHCP Packet Data Items
	Using Parameter List Option

	Extension Point Descriptions
	init-entry
	pre-packet-decode
	post-packet-decode
	Extension Description
	Overriding Client Identifiers

	post-class-lookup
	pre-client-lookup
	Environment Dictionary for pre-client-lookup

	post-client-lookup
	Environment Dictionary for post-client-lookup

	generate-lease
	check-lease-acceptable
	lease-state-change
	Environment Dictionary for lease-state-change

	pre-packet-encode
	post-packet-encode
	pre-dns-add-forward
	post-send-packet
	environment-destructor

