
Using Expressions

Cisco Prime Network Registrar provides enhanced client-class support. You can now place a request into a
client-class based on the contents of the request, without having to register the client in the client database.
Also, you can now place requests in a client-class based on the number of the active leases of a subscriber,
allowing limitations on the level of service offered to various subscribers. This is possible through the special
DHCP options processing using expressions.

You can set the limitation on subscriber addresses based on values in the DHCP relay-agent-info option
(option 82, as described in RFC 3046). These values do not need to reveal any sensitive addresses. You can
create values that relate an individual to a subscriber by creating an expression that evaluates the incoming
DHCPDISCOVER request packets against option 82 suboptions (remote-id or circuit-id) or other DHCP
options. The expression is a series of if statements that return different values depending on what is evaluated
in the packet. This, in effect, calculates the client-class in which the subscriber belongs, and limits address
assignment to the scope of that client-class.

Expressions are not the same as DHCP extensions. Expressions are commonly used to create client
identities or look up clients. Extensions (see Using Extension Points) are used to modify request or
response packets. The expressions described here are also not the same as regex.

Note

• Using Expressions, on page 1
• Entering Expressions, on page 2
• Creating Expressions, on page 4
• Expression Functions, on page 8
• Using Expressions to Limit IP Addresses Leased to Subscribers, on page 33
• Debugging Expressions, on page 36

Using Expressions
Expression processing is used in several places:

• Calculating a client-class—client-class-lookup-id. This expression determines the client-class based
on the contents of the incoming packet.

• Creating the key to look up in the client-entry database—client-lookup-id. This accesses the client-entry
database with the key resulting from the expression evaluation.

Using Expressions
1

DHCP_Guide_chapter12.pdf#nameddest=unique_62

• Creating the ID to use to limit clients of the same subscriber—limitation-id. This is the ID to use to
check if any other clients are associated with this subscriber. This is supported only for DHCPv4 (not
DHCPv6).

This kind of processing results in this scenario:

1. The DHCP server tries to get a client-class based on a client-class-lookup-id expression. If it cannot
calculate the client-class, it uses the usual MAC address method to look up the client.

2. If the server can calculate the client-class, it determines if it needs to do a client-entry lookup, based on
evaluating a client-lookup-id expression that returns a client-lookup-id. If it has such an ID, it uses it to
look up the client. If it does not have such an ID, it uses the calculated client-class value to assign addresses.

3. If the server uses the client-lookup-id and finds a client-entry, it uses the data for the client. If it cannot
find a client-entry, it uses the calculated or default client-class data.

For DHCPv4, you can also set the upper limit on assigned addresses to clients on a network or LAN segment
having an identical limitation-id value on the policy level. Set this upper limit as a positive integer using the
limitation-count attribute for the policy. Similar processing is possible for DHCPv6 using the
v6-client-class-lookup-id and v6-client-lookup-id expressions.

The values to set for limiting IP addresses to subscribers are:

• For a policy, set the limitation-count attribute to a positive integer.

• For a client-class, set the limitation-id and client-lookup-id attributes to an expression, and set the
over-limit-client-class-name attribute to a client-class.

• For a client, set the over-limit-client-class-name attribute to a client-class.

The expressions to use are described in Creating Expressions, on page 4.

Entering Expressions
You can include simple expressions as such in the attribute definition, or include more complex ones in an
expression file and reference the file in the attribute definition. Either way, the maximum allowable characters
is 16 KB.

Most expressions that are configured with the CLI are stored in a text file which is then associated with the
desired configuration attribute. The default path of this file is the current working directory. You can configure
a simple expression directly in the CLI without storing it in a text file. Simple expressions must adhere to
these rules when you enter them in the CLI:

• They must be limited to a single command line.
• The entire expression must be enclosed in double quotes (" ").
• Embedded double quotes must be escaped with a backslash (\).

Here is an example of a simple expression to set the client-class-lookup-id:

\"limit\"

If you want to use a slightly more extensive example to set the client-class limitation-id:

(request option 82 "circuit-id")

Using Expressions
2

Using Expressions
Entering Expressions

Entering this expression directly in the CLI is not possible because of limitations in the CLI's command
parsing. You must enter more complex expressions by placing them in a text file and then reference that file
in the attribute definition prefixed by the "at" symbol (@). For example, if that expression is placed in the
cclookup.txt file, the CLI command is:

nrcmd> dhcp set client-class-lookup-id=@cclookup.txt

The syntax of the expression in the file does not have the extra requirements (as to spacing and escaping of
characters) of the simple expression. It can also include comment lines, prefixed by the pound sign (#),
double-slash (//), or a semicolon (;), and terminated at the end of line. For example,

// Expression to set client-class based on remote-id
(if (equal (request option "relay-agent-info" "remote-id") (request chaddr))
"no-limit"
"limit")

// Expression to calculate client-class based on remote-id
(try
(if (equal (request option "relay-agent-info" "remote-id") (request chaddr))
"cm-client-class"
"cpe-client-class")

"<none>")

The IPv6 version of the previous example (using option numbers) is:

// Expression to calculate client-class based on DOCSIS 3.0 cm-mac-address
(try
(if (equal (request option 17 enterprise-id 4491 36)

(or (request relay option 17 enterprise-id 4491 1026) "none"))
"v6-cm-client-class"
"v6-cpe-client-class")

"<none>")

You can also write the previous expression by substituting option names in place of numbers:

// Expression to calculate client-class based on DOCSIS 3.0 cm-mac-address
(try
(if
(equal
(or
(request option
"vendor-opts" enterprise-id "dhcp6-cablelabs-config" "device-id")
(substring (request option "client-linklayer-address") 3 8))

(or
(request relay option
"vendor-opts" enterprise-id "dhcp6-cablelabs-config" "cm-mac-address")

"none"))
"v6-cm-client-class"
"v6-cpe-client-class")

"<none>")

The or function in the examples ensures that if the packet was not relayed or if the relay agent did not add
the option, then the server assumes the client to be a CPE and not a cable modem (CM).

Using Expressions
3

Using Expressions
Entering Expressions

Creating Expressions
Using DHCP expressions, you can retrieve, process, and make decisions based on data in incoming DHCP
packets. You can use them for determining the client-class of an incoming packet, and create the equivalence
key for option 82 limitation support. They provide a way to get information out of a packet and individual
options, a variety of conditional functions to allow decisions based on information in the packet, and data
synthesis capabilities where you can create a client-class name or key.

The expression to include in an expression file that would describe the example in Typical Limitation Scenario
would be:
// Begins the try function
(try
(or
(if (equal

(request option "relay-agent-info" "remote-id")
(request chaddr))

"cm-client-class")
(if (equal

(substring (request option "dhcp-class-identifier") 0 6)
"docsis")

"docsis-cm-client-class")
(if (equal

(request option "user-class")
"alternative-class")

"alternative-cm-client-class"))
"<none>")

// Ends the try function

The expression uses the or function and evaluates three if functions. In a simpler form, you can calculate a
client-class and include this expression in the cclookup.txt file.
// Expression to calculate client-class based on remote-id
(try
(if (equal (request option "relay-agent-info" "remote-id") (request chaddr))
"cm-client-class"
"cpe-client-class")

"<none>")

Refer to this file to use the expression to set the client-class lookup ID for the server:
nrcmd> dhcp set client-class-lookup-id=@cclookup.txt

You can generate a limitation key by trying to get the remote-id suboption from option 82, and if unable, to
use a standard MAC blob key. Include an expression in a file and set the limitation ID to it in the cclimit.txt
file:
// Expression to use remote-id or standard MAC
(try (request option "relay-agent-info" "remote-id") 00:d0:ba:d3:bd:3b)

Expression Syntax
Expressions consist solely of functions and literals. Its syntax is similar to that of Lisp. It follows many of the
same rules and uses Lisp functions names where possible. The basic syntax is:

Using Expressions
4

Using Expressions
Creating Expressions

DHCP_Guide_chapter10.pdf#nameddest=unique_576

(function argument-0 ... argument-n)

A more useful example is:
(try
(if (equal (request option "relay-agent-info" "remote-id") (request chaddr))
"cm-client-class"
"cpe-client-class")

"<none>")

This example compares the remote-id suboption of the relay-agent-info option (option 82) with the MAC
address in the packet, and if they are the same, returns “cm-client-class,” and if they are different, returns
“cpe-client-class.” (If the expression cannot evaluate the data, the try function returns a “<none>” value—see
Expressions Can Fail, on page 6.) The intent is to determine if the device is a cable modem (where,
presumably, the remote-id equals the MAC address) and, if so, put it into a separate client-class than the
customer premise equipment or PC. Note that both functions and literals are expressions. The previous example
shows a function as an expression. For literals, see Literals in Expressions, on page 5.

Expression Datatypes
The datatypes that expressions support are:

• Blob—Counted series of bytes, with a recommended maximum length of 1 KB.
• String—Counted series of NVT ASCII characters, not terminated by a zero byte, with a recommended
maximum length of 1 KB.

• Signed integer—32-bit signed integer.
• Unsigned integer—32-bit unsigned integer.

Note that there is no IP address datatype; an IPv4 address is a 4-byte blob, while an IPv6 address is a 16 byte
blob. All numbers are in network byte order. See Datatype Conversions, on page 7.

Literals in Expressions
A variety of literals are included in the expression capability:

• Signed integers—Normal numbers that must fit in 32 bits.
• Unsigned integers—Normal unsigned numbers that must fit in 32 bits.
• Blobs—Hex bytes separated by colons. For example, 01:02:03:04:05:06 is a 6-byte blob with the bytes
1 through 6 in it. This is distinct from “01:02:03:04:05:06” (a 17-byte string). The string is related to the
blob by being the text representation of the blob. For example, the expression (to-blob "01:02:03")
returns the blob 01:02:03. Note that you cannot create a literal representation of a one-byte blob, as 01
will turn into an integer. To get a one-byte blob containing a 1, you can use (byte 1) as that will return
a blob of 01. Alternatively, you can use the expression (substring (to-blob 1) 3 1). The 3 indicates the
offset to extract the fourth byte of the 4-byte integer (00:00:00:01), with the 1 being the number of bytes
extracted, with a result of “01.”

• String—Characters enclosed in double quotes. For example, “example.com” is a string, as is
“01:02:03:04:05:06.” To place a quote in a literal string, escape it with a backslash (\), for example:

"this has one \"quote"

Integer literals (signed and unsigned) are assumed to be in base 10. If they start with a 0, they are considered
octal; if they start with 0x, they are considered hexadecimal. Some examples of literals:

Using Expressions
5

Using Expressions
Expression Datatypes

• “hello world” is a string literal (and a perfectly valid expression).
• 1 is an unsigned integer literal (also a perfectly valid expression). It contains 4 bytes, the first three of
which are zero, and the last of which contains a 1 in the least significant bit.

• 01:02:03 is a blob literal containing three bytes, 01, 02, and 03.
• –10 is a signed integer literal containing four bytes with the twos-complement representation of decimal
-10.

Expressions Return Typed Values
With few exceptions, the point of an expression is to return a value. The expression configured to determine
a client-class is configured in the DHCP server property client-class-lookup-id. When this expression is
evaluated, the DHCP server expects it to return a string containing the name of a client-class, or the string
"<none>".

Every function returns a value. The datatype of the value may depend on the datatype of the argument or
arguments. Some expressions only accept arguments of a certain datatype; for example:

(+ argument0 argument1)

In most cases, a function that requires a certain datatype for a particular argument tries to convert the argument
that it gets to the proper datatype. For example, (+ "1" 2) returns 3, because it successfully converts the string
literal “1” into a numeric 1. However, (+ "one" 2) causes an error, because “one” does not convert successfully
into a number. In general, the expression evaluator tries to do the right thing as much as possible when making
datatype conversion decisions.

Expressions Can Fail
While some of the functions that make up an expression operate correctly on any datatype or value, many do
not. In the previous section, the + function would not convert the string literal “one” into a valid number, so
the evaluation of that function failed. When a function fails to evaluate, its calling function also fails, and so
on, until the entire expression fails. A failed expression evaluation has different consequences depending on
the expression involved. In some cases, it can cause the packet to be dropped, while in others it only generates
a warning message.

You can prevent the evaluation from failing by using the (try expression failure-expression) function. The
try function evaluates the expression and, if successful, the value of the function is the value of the expression.
If the evaluation fails (for whatever reason), the value of the function is the value of the failure-expression.
The only situation where a try function itself fails is if the failure-expression evaluation fails. Thus, you
should be careful what expression you define as a failure-expression. A string literal is a safe bet. Thus,
protecting the evaluation of the client-class-lookup-id with a try function is a good idea. The previously cited
example shows how this can work:
(try
(if (equal (request option "relay-agent-info" "remote-id")

(request chaddr))
"cm-client-class"
"cpe-client-class")

"<none>")

If evaluating the if function fails in this case, the value of the client-class-lookup-id expression is "<none>".
It could have been a client-class name instead, of course.

Using Expressions
6

Using Expressions
Expressions Return Typed Values

Datatype Conversions
When a function needs an argument of a particular datatype, it tries to convert a value into that datatype.
Sometimes this can fail, often causing the entire function to fail. Datatype conversion is also performed by
the to-string, to-blob, to-sint, and to-uint functions. Whenever a function needs an argument in a specific
datatype, it calls the internal version of these externally available functions.

There are also as-string, as-blob, as-sint, and as-uint conversion functions, where the data in a value are
simply relabeled as the desired datatype, although some checking does go on. The conversion matrix for both
function sets appears in the table below.

Note the distinction between to-string and as-string. For example, let us say that you have data in blob format.
You could have this data because of the result of a function evaluation (request get option) which retrieves
data from a request packet, or as the result of processing blob data with substring. If this data, despite being
of blob type, actually represent ASCII string data, you might want to use it as a string. You have two choices
of conversions—as-string and to-string. Which one to choose? If the data consists of ASCII bytes and you
want to simply recognize that and essentially reset the type of the data as string, you want to use the as-string
function. This means that, you are going to use the bytes of the blob "as" a string. The blob 00:01 cannot be
converted into a string and it will throw an error if you try. The blob 68:65:6c:6c:6f will successfully convert
to a string with as-string and yield "hello". On the other hand, if you have a series of bytes that may or may
not be ASCII data and you want to represent the data in the blob in a string format, you should use to-string.
For example, to-string will turn a two byte blob consisting of first a 0 then a 1 into the string "00:01".

Table 1: Datatype Conversion Matrix

Unsigned IntegerSigned IntegerBlobStringFunction

Cannot fail; produces a
4-byte blob from the 4
bytes of the integer.

Cannot fail; produces a
4-byte blob from the 4
bytes of the integer.

—Cannot fail; relabels
ASCII characters as
blob bytes.

as-blob

Cannot fail; converts to a
signed integer, negative if
a larger unsigned integer
would fit into a positive
signed integer.

—Not usually useful;
converts only 1-, 2-,
3-, or 4-byte blobs.

Not usually useful;
converts a 1-, 2-, 3-, or
4-byte string to a blob
and then packs it up
into a signed integer.

as-sint

Converts to a 4-byte blob,
then processes as a blob
(which fails except for a
few special integers)

Converts to a 4-byte
blob, then processes it as
a blob (which fails
except for a few special
integers)

Relabels as string
bytes, if printable
characters

—as-string

—Cannot fail; converts to
an unsigned integer, and
a negative signed integer
becomes a large
unsigned integer.

Not usually useful;
converts only 1-, 2-,
3-, or 4-byte blobs.

Not usually useful;
converts a 1-, 2-, 3-, or
4-byte string to a blob
and then a signed
integer.

as-uint

Cannot fail; produces a
4-byte blob from the 4
bytes of the integer.

Cannot fail; produces a
4-byte blob from the 4
bytes of the integer.

—Must be in the form
“01:02:03”

to-blob

Using Expressions
7

Using Expressions
Datatype Conversions

Unsigned IntegerSigned IntegerBlobStringFunction

Converts only if it is not
too big to fit into a signed
integer.

—1-, 2-, 3-, or 4-byte
blobs only.

Must be in the form n
or –n.

to-sint

Cannot failCannot failCannot fail—to-string

—Nonnegative only.1-, 2-, 3-, or 4-byte
blobs only.

Must be in the form n.to-uint

Expression Functions
The sections below list the expression functions. Expressions must be enclosed in parentheses.

+, -, *, /, %
Syntax:

(+ arg1 ... argn)

(– arg1 ... argn)

(* arg1 ... argn)

(/ arg1 ... argn)

(% arg1 arg2)

Description:

Arithmetic operations on a signed integer or an expression is convertible to a signed integer. Any argument
that cannot convert to a signed integer (and is not null) returns an error. Any argument that evaluates to null
is ignored (except that the first argument for – and / must not evaluate to null). These functions always return
signed integers (note that overflow and underflow are currently not caught):

• + sums the arguments; if no arguments, the result is 0.
• – negates the value of a single argument or, if multiple arguments, successively subtracts the values of
the remaining ones from the first one; for example, (– 3 4 5) becomes –6.

• * takes the product of the argument values; if no arguments, the result is 1.
• / successively divides the first argument by all of the others; for example, (/ 100 4 5) becomes 5. If any
argument other than the first equals 0, an error is returned.

• % is the modulo arithmetic operator to determine the remainder of the result of the first argument divided
by the second one; for example, (% 12 7) becomes 5 (12 / 7 = 1 * 7 + 5).

Examples:

(+ 1 2 3 4) returns 10

(- 10 5 2) returns 3

(* 3 4 5) returns 60

(/ 20 2 5) returns 2

Using Expressions
8

Using Expressions
Expression Functions

(/ 20 0) returns an error

(% 12 7) returns 5 (12/7=1*7+5)

__

and
Syntax:

(and arg1 ... argn)

Description:

Evaluates its arguments in order from left to right. If any argument evaluates to null, it stops evaluating its
arguments and returns null. Otherwise, it returns the value of its last argument, argn.

Examples:

(and "hello" "world") returns "world"

(and (request option 82 1) (request option 82 2)) returns option-82 sub-option 2 if both option-82 sub-option
1 and sub-option 2 are present in the request, otherwise it returns null.

__

as-blob
Syntax:

(as-blob expr)

Description:

Treats expr as if it were a blob. If expr evaluates to a string, the bytes that make up the string become the bytes
of the blob that is returned. If expr evaluates to a blob, that blob is returned unmodified. If expr evaluates to
either kind of integer, a 4-byte blob containing the bytes of the integer is returned.

Examples:

(as-blob "hello world") returns the blob 68:65:6c:6c:6f:20:77:6f:72:6c:64

__

as-sint
Syntax:

(as-sint expr)

Description:

Treats expr as if it were a signed integer. If expr evaluates to a string or blob of 4 bytes or less, the function
returns a signed integer constructed out of those bytes (if longer than 4 bytes, it returns an error). If expr
evaluates to a signed integer, it returns the value unchanged; if an unsigned integer, it returns a signed integer
with the same bit value.

Examples:

Using Expressions
9

Using Expressions
and

(as-sint ff:ff:ff:ff) returns -1

(as-sint 2147483648) returns an error

__

as-string
Syntax:

(as-string expr)

Description:

Treats expr as if it were a string. If expr evaluates to a string, it returns that string. If expr evaluates to a blob,
it returns a string constructed from the bytes in the blob, unless they are nonprintable ASCII values, which
returns an error. If expr evaluates to an integer, it considers its value to be the ASCII value for a single character
and returns a string consisting of that one character, unless it is nonprintable, which returns an error.

Examples:

(as-string 97) returns "a"

(as-string 68:65:6c:6c:6f:20:77:6f:72:6c:64) returns "hello world"

(as-string 0) returns an error.

__

as-uint
Syntax:

(as-uint expr)

Description:

Treats expr as if it were an integer. If expr evaluates to a string or blob of 4 bytes or less, it returns an unsigned
integer constructed from those bytes; if longer than 4 bytes, it returns an error. If the result is an unsigned
integer, it returns the argument unchanged; if a signed integer, it returns an unsigned integer with the same
bit value.

Examples:

(as-uint -2147483648) returns the unsigned integer 2147483648

(as-uint -1) returns the unsigned integer 4294967295

(as-uint ff:ff:ff:ff) returns the unsigned integer 4294967295

__

ash
Syntax:

(ash expr shift)

(lshift expr shift)

Using Expressions
10

Using Expressions
as-string

Description:

Returns an integer or blob with the bits shifted by the shift amount. The expr can evaluate to an integer, blob
or string. If expr evaluates to a string, this function tries to convert it to a signed integer, and if that fails, to
a blob. If both fail, it returns an error. The shift must evaluate to something that is convertible to a signed
integer. If shift is positive, the shift is to the left; if negative, the shift is to the right. If expr results in a signed
integer, the right shift is with sign extension. If expr results in an unsigned integer or blob, a right shift shifts
zero bits in on the most significant bits.

Examples:

(ash 00:01:00 1) returns the blob 00:02:00

(lshift 00:01:00 -1) returns the blob 00:00:80

(ash 1 1) returns the unsigned integer 2

__

bit
Syntax:

(bit-and arg1 arg2)

(bit-andc1 arg1 arg2)

(bit-andc2 arg1 arg2)

(bit-eqv arg1 arg2)

(bit-or arg1 arg2)

(bit-orc1 arg1 arg2)

(bit-orc2 arg1 arg2)

(bit-xor arg1 arg2)

Description:

Return the result of a bit-wise boolean operation on the two arguments. The data type of the result is a signed
integer if both arguments result in either kind of integer, otherwise the result is a blob. The arg1 and arg2
arguments must evaluate to two integers, two blobs of equal length, or one integer and one blob of length 4.
If either argument evaluates to a string, the function tries to convert the string to a signed integer, and if that
fails, to a blob. After this conversion, the results must match the criteria mentioned above. If these conditions
are not met, it returns an error.

Operations with c1 and c2 indicate that the first and second arguments, respectively, are complemented before
the operation.

Examples:

(bit-and 00:20 00:ff) returns 00:20

(bit-or 00:20 00:ff) returns 00:ff

(bit-xor 00:20 00:ff) returns 00:df

(bit-andc1 00:20 00:ff) returns 00:df

__

Using Expressions
11

Using Expressions
bit

bit-not
Syntax:

(bit-not expr)

Description:

Returns a value that is the bit-by-bit complement of expr. The expression must evaluate to an integer of either
type, or a blob. If it evaluates to a string, the function tries to convert it to a signed integer; if that fails, to a
blob, and if that fails, returns an error. The datatype of the result is the same as the result of evaluating expr
and any subsequent conversions.

Examples:

(bit-not ff:ff) returns 00:00

(bit-not 1) returns 4294967295

(bit-not "hello world") returns an error

__

byte
Syntax:

(byte arg1)

Description:

Eases creation of one-byte blobs. It returns this blob depending on the data type:

• sint, uint—Returns the low order byte of the integer.
• blob—Returns the last byte in the blob.
• string—Returns the last byte in the string.

Examples:

(byte 150) returns a blob of 96

(byte 0x96) returns a blob of 96

__

comment
Syntax:

(comment comment expr1 ... exprn)

Description:

Does not evaluate its first argument and returns null if there is only one argument. If there is more than one
argument, evaluates arguments expr1 through exprn, and returns the value of exprn.

Examples:

(comment "this is a comment that won’t get lost" (request option 82 1))

__

Using Expressions
12

Using Expressions
bit-not

concat
Syntax:

(concat arg1 ... argn)

Description:

Concatenates the values of the arguments into a string or blob (ignoring null arguments). The first argument
(arg1) must evaluate to a string or a blob; if it evaluates to an integer, the function converts it to a blob. The
datatype of arg1 (after any conversion) determines the datatype of the result. The function converts all
subsequent arguments to the datatype of the result, and if this conversion fails, returns an error.

Examples:

(concat "hello" "world") returns "helloworld"

(concat -1 "world") returns an error

(concat -1 00:01:02) returns the blob ff:ff:ff:ff:00:01:02

__

datatype
Syntax:

(datatype expr)

Description:

Returns the datatype of the result of the expression (expr). If the expression evaluates without an error, returns
the datatype as a string, which can be:

• "unset" (internal, considered as null)
• "null"
• "uint"
• "sint"
• "string"
• "blob"

__

dotimes
Syntax:

(dotimes (var count-expr [result-expr]) exp1 ... expn)

Description:

Creates an environment with a single local integer variable, var, which is initially set to zero, and evaluates
exp1 through expn. It then increments var by one, and if it is less than count-expr, evaluates exp1 through
expn again. When var is equal to or greater than count-expr, the function evaluates result-expr and returns it
as the result of the entire dotimes. If there is no result-expr, the function returns null.

The var defines a local variable, and must be an alphabetic name. The count-expr must evaluate to an integer
or be convertible to one. The exp1 through expn are expressions that can evaluate to any data type. The

Using Expressions
13

Using Expressions
concat

result-expr is optional, and if it appears, it can evaluate to any data type.When the function evaluates count-expr,
var is not bound and cannot appear in count-expr. Alternatively, var is bound for the evaluation of result-expr
and has the value of count-expr. If result-expr is omitted, the function returns null.

Be careful changing the value of var in exp1 through expn, because you can easily create an infinite
loop (see the example).

Note

Examples:

(let (x y) (setq x 01:02:03) (dotimes (i (length x)) (setq y (concat (substring x i 1) y)))) returns 03:02:01

(dotimes (i 10) (setq i 1)) loops forever!

__

environmentdictionary
Syntax:

(environmentdictionary {get | put val | delete} attr)

Description:

Gets, puts, or deletes a DHCP extension environment dictionary attribute value. The val is the value of the
attribute and attr is the attribute name. Both are converted to a string regardless of their initial datatype. The
initial environment dictionary cannot be changed, but it can be shadowed (you can redefine something that
is in the initial dictionary, but if you remove it, then the original initial value is still there). Note that the get
keyword is not optional for a “get." Also, note that for these examples, the initial-environment-dictionary is
used, and while that can be used to "configure" expressions, this function can also be used to communicate
with extensions through the environment dictionary that is associated with every request and response pair.

Examples:

nrcmd> dhcp set initial-environment-dictionary=first=one, second=2

(environmentdictionary get "first") returns "one"

(environmentdictionary get "second") returns "2" (note string 2)

(environmentdictionary put "two" "second") returns "second"

(environmentdictionary delete "first") returns null

__

equal, equali
Syntax:

(equal expr1 expr2 expr3)

(equali expr1 expr2 expr3)

Description:

The equal function evaluates the equivalency of the result of evaluating expr1 and expr2. If they are equal,
it returns:

Using Expressions
14

Using Expressions
environmentdictionary

1. The value of expr3, if specified, else
2. The value (and datatype, after possible string conversion) of expr2, as long as expr2 is not null, else
3. The string “*T*” (since returning null would incorrectly indicate a failed comparison).

If expr1 and expr2 are not equal, the function returns null.

The arguments can be any datatype. If different, the function converts them to strings (which cannot fail)
before comparing them. Note that any string conversion is performed using the equivalent of (to-string ...).
Thus, the blob 61:62 is not equal to the “ab” string. Note also that a one-byte blob 01 is not equal to a literal
integer 1 (both are converted to strings, and the “01” and “1” strings are not equal).

The equali function is identical to the equal function, except that if the comparison is for strings (either
because string arguments were used or because the arguments were converted to strings), a case insensitive
comparison is used.

Examples:

(equal (request option "dhcp-class-identifier") "docsis") returns the string "docsis" if the value of the
option dhcp-class-identifier is a string identical to "docsis"

(equali "abc" "ABC") returns "ABC"

(equal "abc" "def") returns null

(equal "ab" (as-string 61:62)) "this is true") returns "this is true"

(equal "ab" 61:62 "this is not true") returns null

(equal 01:02:03 01:02:03) returns 01:02:03

(equal (as-blob "ab") 61:62) returns 61:62

(equal 1 (to-blob 1)) returns null

(equal (null) (request option 20)) returns "*T*" if there is no option 20 in the packet

__

error
Syntax:

(error)

Description:

Returns a “no recovery” error that causes the entire expression evaluation to fail unless there is a try function
above the error function evaluation.

__

if
Syntax:

(if cond [then else])

Description:

Using Expressions
15

Using Expressions
error

Evaluates the condition expression cond in an if-then-else sense. If cond evaluates to a value that is nonnull,
it returns the result of evaluating the then argument; otherwise it returns the result of evaluating the else
argument. Both then and else are optional arguments. If you omit the then and else arguments, the function
simply returns the results of evaluating the cond argument. If you omit the else argument and cond evaluates
to null, the function returns null. There are no restrictions on the data types of any of the three arguments.

Examples:

(if (equali
(substring (request option "dhcp-class-identifier") 0 6)
"docsis"

(request option 82 1))

returns sub-option 1 of option 82 if the first six characters of the dhcp-class-identifier are "docsis" in any case;
otherwise returns null.

__

ip-string
Syntax:

(ip-string blob)

Description:

Returns the string representation of the four-byte IP address blob in the form "a.b.c.d". The single argument
blob must evaluate to a blob or be convertible into one. If the blob exceeds four bytes, the function uses only
the first four to create the IP address string. If the blob has fewer bytes, the function considers the right-most
bytes as zero when it creates the IP address string.

Examples:

(ip-string 01:02:03:04) returns "1.2.3.4"

(ip-string -1) returns "255.255.255.255"

(ip-string (as-blob "hello world")) returns "104.101.108.108"

__

ip6-string
Syntax:

(ip6-string blob)

Description:

Returns the string representation of a 16-byte IPv6 address blob in the form “a:b:c:d:e:f:g:h". The single
argument blob must evaluate to a blob or be convertible into one. If the blob exceeds 16 bytes, the function
uses only the first 16 to create the IPv6 address string. If the blob has fewer bytes, the function considers the
right-most bytes as zero when it creates the IPv6 string.

Using Expressions
16

Using Expressions
ip-string

Since there is more than one acceptable way to represent an IPv6 address as a string, comparing the
string format of IPv6 addresses is likely to yield inconsistent results. It is best to compare IPv6 addresses
as blob values, where no ambiguity exists in the representation of the addresses. See to-ip6, if you
already have a string formatted IPv6 address.

Note

Examples:

(ip6-string (as-blob "hello world")) returns "6865:6c6c:6f20:776f:726c:6400::"

__

is-string
Syntax:

(is-string expr)

Description:

Returns the value of expr, if the result of evaluating expr is a string or can be used as a string, otherwise it
returns null. That is, if as-string does not return an error, then is-string returns the value of expr.

Examples:

(is-string 01:02:03:04) returns null

(is-string "hello world") returns "hello world"

(is-string 68:65:6c:6c:6f:20:77:6f:72:6c:64) returns the blob 68:65:6c:6c:6f:20:77:6f:72:6c:64

__

length
Syntax:

(length expr)

Description:

Returns an integer whose value is the length, in bytes, of the value of expr. The argument expr can evaluate
to any datatype. Integers always have length 4. The length of a string does not include any zero byte that may
terminate the string.

Examples:

(length 1) returns 4

(length 01:02:03) returns 3

(length "hello world") returns 11

__

Using Expressions
17

Using Expressions
is-string

let
Syntax:

(let (var1 ... varn) expr1 ... expn)

Description:

Creates an environment with local variables var1 through varn, which are initialized to a null value (you can
give them other values by using the setq function). Once the local variables are initialized to null, the function
evaluates expressions expr1 through exprn in order. It then returns the value of its last expression, exprn. The
benefit of this function is that you can use it to calculate a value once, assign it to a local variable, then reuse
that value in other expressions without having to recalculate it. Variables are case-sensitive.

Examples:

(let (x)
(setq x (substring (request option "dhcp-class-identifier") 0 6))
(or (if (equali x "docsis") "client-class-1")

(if (equali x "something else") "client-class-2")))

__

log
Syntax:

(log severity expr)

Description:

Logs the result of converting expr to a string. The severity and expr must be a string and are converted to one
if they do not evaluate to one. The severity can also be null; if a string, it must have one of these values:

• "debug"
• "activity" (the default if severity is null)
• "info"
• "warning"
• "error"

Logging consumes considerable server resources, so limit the number of log function evaluations you
put in an expression. Even if “error” severity is logged, the log function does not return an error. This
only tags the log message with an error indication. See the error function to return an error as part of a
function evaluation.

Note

__

mask-blob
Syntax:

(mask-blob mask-size length)

Using Expressions
18

Using Expressions
let

Description:

Returns a blob that contains the mask of length mask-size starting from the high-order bit of the blob, with a
blob length of length. The mask-size is an expression that evaluates to an integer or must be convertible to
one. Likewise the length, which cannot be smaller than the mask-size, but has no fixed limit except that it
must be zero or positive. If mask-size is less than zero, it denotes a mask length calculated from the right end
of the blob.

Examples:

(mask-blob 1 4) yields 80:00:00:00

(mask-blob 4 2) yields f0:00

(mask-blob 31 4) yields ff:ff:ff:fe

(mask-blob -1 4) yields 00:00:00:01

__

mask-int
Syntax:

(mask-int mask-size)

Description:

Returns an integer that contains a mask of mask-size, starting from the high-order bit of the integer. The
mask-size is an expression that evaluates to an integer or must be convertible to one. If mask-size is less than
zero, it denotes a mask length calculated from the right end of the integer.

Examples:

(mask-int 1) yields 0x80000000

(mask-int 4) yields 0xf0000000

(mask-int 31) yields 0xfffffffe

(mask-int -1) yields 0x00000001

__

not
Syntax:

(not expr)

Description:

expr is an expression that can evaluate to a string, a blob, or an integer. If the result of that evaluation is
non-null, then null is returned. If the result of that evaluation is null, then a nonnull value is returned. The
nonnull value returned when the value of expr is null is not guaranteed to remain the same over two calls.

Examples:

(not "hello world") returns null

__

Using Expressions
19

Using Expressions
mask-int

null
Syntax:

(null [expr1 ... exprn])

Description:

Returns null and does not evaluate any of its arguments.

__

or, pick-first-value
Syntax:

(or arg1... argn)

(pick-first-value arg1... argn)

Description:

Evaluates the arguments sequentially. When the evaluation of an argument returns a nonnull value, that value
is returned. No other arguments are evaluated after one argument returns a nonnull value. Otherwise, returns
the value of the last argument, argn. The datatypes need not be the same.

Examples:

(or
(request option 82 1)
(request option 82 2)
01:02:03:04)

returns the value of sub-option 1 in option 82, and if that does not exist, returns the value of sub-option 2, and
if that does not exist, returns 01:02:03:04.

__

progn, return-last
Syntax:

(progn arg ... argn)

(return-last arg ... argn)

Description:

Evaluates arguments sequentially and returns the value of the last argument, argn.

Examples:

(progn
(log (null) "I was here")
(request option 82 1))

(return-last
(log (null) "I was here")
(request option 82 1))

Using Expressions
20

Using Expressions
null

__

regex
Syntax:

(regex expr1 expr2 var1... varn)

(regex expr1 expr2)

Description:

Searches for sub-strings, matching with regular-expression pattern (expr1), in specified target-string (expr2)
and sets them to specified variables var1, var2, or varn. That means, first sub-string, matching with
regular-expression pattern (expr1), in specified target-string (expr2), will be set to var1, second sub-string
will be set to var2, and so on. You must precede it with the let function when specifying variables. This
function can also be used without variables, in this case, it returns first sub-string matching with
regular-expression pattern (expr1), in specified target-string (expr2).

As regular-expression pattern matching works only with strings, both patterns (expr1) and target-string (expr2)
must be strings. If they are not, you should use as-string function as used in example below.

Examples:

(regex "[H][a-z]+" "Hello World") returns "Hello".

(let (x y z)
(regex "[H][a-z]+" "Hello Hi World" x y z))

will set x="Hello", y="Hi", z=null, and return "Hello".

If you wished, you could put additional expressions after the regex inside the let to operate on x and y.

__

request
Syntax:

(request [get | get-blob] [relay [number]] packetfield)

Description:

Valid values for the DHCPv4 packetfield are:

op (blob 1)

htype (blob 1)

hlen (blob 1)

hops (blob 1)

xid (uint)

secs (uint)

flags (uint)

ciaddr (blob 4)

Using Expressions
21

Using Expressions
regex

yiaddr (blob 4)

siaddr (blob 4)

giaddr (blob 4)

chaddr (blob hlen)

sname (string)

file (string)

The request packetfield function returns the value of the named field from the request packet. DHCP request
packets contain named fields as well as options in an option area. This form of the request function is used
to retrieve specific named fields from the request packet. The relay keyword is described in the request
option function.

The packetfield values defined in RFC 2131 are listed above. There are several packetfield values that can be
requested which do not appear in exactly these ways in the raw DHCP packet. These take data that appears
in the packet and combine it in commonly used ways. In these explanations, the packet contents assumed are:

hlen = 1 htype = 6 chaddr = 01:02:03:04:05:06

macaddress-string (string)—Returns the MAC address in hlen, htype, chaddr format (for example,
“1,6,01:02:03:04:05:06”)

macaddress-blob (blob)—Returns the MAC address in hlen:htype:chaddr format (for example,
01:06:01:02:03:04:05:06)

macaddress-clientid (blob)—Returns a client-id created from theMAC address in theMicrosoft htype :chaddr
client-id format (for example, 01:01:02:03:04:05:06)

Valid values for the DHCPv6 packetfield are:

msg-type (uint)

msg-type-name (string)

xid (uint)

relay-count (uint)

hop-count (uint)

link-address (blob 16)

peer-address (blob 16)

Themsg-type packet field for DHCPv6 describes the current relay or client message type, and has the values:

1=SOLICIT, 2=ADVERTISE, 3=REQUEST, 4=CONFIRM, 5=RENEW, 6=REBIND, 8=RELEASE,
9=-DECLINE, 11=INFORMATION-REQUEST, 12=RELAY-FORWARD

The msg-type-name packet field returns a string of the message type name. The string value is always
uppercase; for example, SOLICIT.

The xid is the 24-bit client transaction ID, and the relay-count is the number of relay messages in the request.

If a DHCPv6 packet field is requested from a DHCPv4 packet, an error is returned. The inverse is also true.

Examples:

(request get ciaddr) returns the ciaddr if it exists, otherwise returns null

(request ciaddr) is the same as (request get ciaddr)

Using Expressions
22

Using Expressions
request

(request giaddr) returns the giaddr if it is non-zero, otherwise returns null.

__

request dump
Syntax:

(request dump)

Description:

Dumps the current request packet to the log file. Note that not all expression evaluations support the dump
keyword, and when unsupported, it is ignored.

__

request option
Syntax:

(request [get | get-blob] option-request)

where option-request is:

1. An optional relay message selector for IPv6 - relay [n]
2. One or more option clauses (more than one is only supported for IPv6) - option name | id [vendor name

| enterprise-id name | id] [instance n]
3. Followed by zero or more suboption clauses - name | id [vendor name | enterprise-id name | id] [instance

n]
4. Followed by an optional clause - [instance-count | count | index n]

Description:

Returns the value of the option from the packet. The keywords are:

• get—Optional and assumed if omitted.
• get-blob—Returns the data as a blob, providing direct access to the option bytes.
• relay—Applies to IPv6 packets only, otherwise returns an error. Requests a relay option instead of a
client option. The n indicates the n th closest relay agent to the client; if omitted, 0 (the relay agent nearest
to the client) is assumed.

• option—Options (and suboptions) are specified with an id or name argument, which must evaluate to
an integer or a string. If it does not evaluate to one of these, the function does not convert it and returns
an error. Valid string values for the name specifier are the same as those used for extensions.

• enterprise-id—After an option or suboption, selects the instance of the option or suboption with the
specified enterprise-id. The enterprise-id can be specified as an id or name argument, which must evaluate
to an integer or string.

• vendor—After an option or suboption, requests that the vendor custom option definition be used for
decoding the data in the option. Does not apply to DHCPv6 options. Note that if no definition exists for
the specified vendor string, no error is issued and the standard definition of an option is used (or, if none,
it is assumed to be a blob).

• instance—Selects the n th instance of the preceding option or suboption. Instances start at 0. (You cannot
use the instance and instance-count together in a single request function.)

Using Expressions
23

Using Expressions
request dump

• instance-count—Returns the number of instances of the preceding option or suboption, and is usually
used to loop through all instances of it. Returns 0 if the option or suboption does not exist.

• index—Selects the n th value in an option that contains multiple values (that is, array of addresses or
integer values). Indexes start at 0. For example, index 0 returns the first value and index 1 returns the
second value.

• count—Returns the number of relevant data items in the preceding option, and is usually used with the
index keyword to loop through all data values for an option or suboption.

The only string-valued suboption names defined for the subopt (suboption) specifier are for the relay-agent-info
option (82) and are listed in the DHCPv4 and BOOTP Options table of the Decoded DHCP Packet Data
Items section.

The request option function returns a value with a datatype depending on the option requested. This shows
how the datatypes in the table correspond to the datatypes returned by the request function:

Table 2: Datatypes Returned by the request Function

Returned Data TypeOption Data Type

blobblob

4-byte blobIP address

stringstring

uint8-bit unsigned integer

uint16-bit unsigned integer

uint32-bit unsigned integer

sintinteger

sint=1 if true, null if falsebyte-valued boolean

Examples:

(request option 82) returns the relay-agent-info option as a blob

(request option 82 1) returns just the circuit-id (1) suboption

(request option 82 "circuit-id") is the equivalent (request option 82 1)

(request option "domain-name- servers") returns the first IP address from the domain-name-servers option

(request option 6 index 0) is the equivalent (request option 6 count) returns the number of IP addresses

(request get-blob option "dhcp-class-identifier") returns the value as a blob, not a string

(request option "IA-NA" instance 2 option "IAADDR" instance 3) returns the third instance of the IA-NA
option, and the fourth instance of the IAADDR option encapsulated in the IA-NA option

(request get-blob option "vendor-opts" enterprise-id 1234) returns a blob of the option data for enterprise-id
1234

(request option "vendor-opts" enterprise-id 1234 3) returns suboption 3 from the requested vendor option
data

DHCPv6 Option 16 Vendor-Class (contains length delimited fields):

Using Expressions
24

Using Expressions
request option

Data in the DHCPv6 Message:

00:10:00:11:00:00:00:7b:00:04:01:02:03:04:00:05:68:65:6c:6c:6f
^ ^ ^ ^ ^ ^ ^ ^ ^ ^
| | | | | | +--- field 0 ---+ +-- field 1 -------+
| | | | | |
| | | | +---------+ enterprise-id 123(10)
| | +---+ length 17
+---+ Option 16 Vendor-Class

(request option 16 enterprise-id 123) -> Type: blob Value: '01:02:03:04'

(request option 16 enterprise-id 456) -> Type: unset Value: 'null'

(request get-blob option 16 enterprise-id 123) -> Type: blob Value:
'00:00:00:7b:00:04:01:02:03:04:00:05:68:65:6c:6c:6f'

(request option 16 enterprise-id 123 index 0) -> Type: blob Value: '01:02:03:04'

(request option 16 enterprise-id 123 index 1) -> Type: blob Value: '68:65:6c:6c:6f'

DHCPv6 Option 15, User-Class, operates identically.Note

DHCPv6 Option 17 Vendor Opts (contains sub-options):

Data in the DHCPv6 Message:

00:11:00:12:00:00:01:c8:00:01:00:04:0a:0b:0c:0d:00:05:00:02:01:02
^ ^ ^ ^ ^ ^ ^ ^ ^ ^
| | | | | | +---- suboption 1 ----+ +- suboption 5 -+
| | | | | |
| | | | +---------+ enterprise-id 456(10),1c8(16)
| | +---+ length 18
+---+ Option 17 Vendor-Opts

(request option 17 enterprise-id 456) -> Type: blob Value:
'00:00:01:c8:00:01:00:04:0a:0b:0c:0d:00:05:00:02:01:02'

(request option 17 enterprise-id 0x1c8) -> Type: blob Value:
'00:00:01:c8:00:01:00:04:0a:0b:0c:0d:00:05:00:02:01:02'

(request option 17 enterprise-id 123) -> Type: unset Value: 'null'

(request option 17 enterprise-id 456 index 0) -> Type: blob Value:
'00:00:01:c8:00:01:00:04:0a:0b:0c:0d:00:05:00:02:01:02'

(request option 17 enterprise-id 456 1) -> Type: blob Value: '0a:0b:0c:0d'

(request option 17 enterprise-id 456 2) -> Type: unset Value: 'null'

(request option 17 enterprise-id 456 5) -> Type: blob Value: '01:02'

__

requestdictionary
Syntax:

Using Expressions
25

Using Expressions
requestdictionary

(requestdictionary {get | put val | delete} attr)

Description:

Gets, puts, or deletes a DHCP extension request dictionary attribute value. val is the value of the attribute and
attr is the attribute name. Both are converted to a string regardless of their initial datatype. Note that the get
keyword is not optional for a “get.”

__

response
Syntax:

(response [get | get-blob] [relay [number]] packetfield)

Description:

Returns the value of the named packefield from the response packet. The description and valid values are
identical to those for the request packetfield function.

__

response dump
Syntax:

(response dump)

Description:

Dumps the current response packet to the log file. Note that not all expression evaluations support the dump
keyword, and when unsupported, it is ignored.

__

response option
Syntax:

(response [get | get-blob] option-request)

where option-request is:

1. An optional relay message selector for IPv6 - relay [n]
2. One or more option clauses (more than one is only supported for IPv6) - option name | id [vendor name

| enterprise-id name | id] [instance n]
3. Followed by zero or more suboption clauses - name | id [vendor name | enterprise-id name | id] [instance

n]
4. Followed by an optional clause - [instance-count | count | index n]

Description:

Returns the value of the option from the packet. The keywords are identical to those for the request function.

__

Using Expressions
26

Using Expressions
response

responsedictionary
Syntax:

(responsedictionary {get | put val | delete} attr)

Description:

Gets, puts, or deletes a DHCP extension response dictionary attribute value. The val is the value of the attribute
and attr is the attribute name. Both are converted to a string regardless of their initial datatype. Note that the
get keyword is not optional for a “get.”

__

search
Syntax:

(search arg1 arg2 fromend)

Description:

Searches the bytes which make up the value of arg2 for a subsequence of bytes that exactly matches the
sequence of bytes in arg1. If found, it returns the index of the element in arg2 where the subsequence begins
(unless you set the fromend argument to “true” or some other arbitrary nonnull value); otherwise it returns
null. (If arg1 is null, it returns 0; if arg2 is null, it returns null.) The function does an implicit as-blob conversion
on both arguments. Thus, it compares the actual byte sequences of strings and blobs, and sints and uints
become 4-byte blobs for the purpose of comparison.

A nonnull fromend argument returns the index of the leftmost element of the rightmost matching subsequence.

Examples:

(search "test" "this is a test") returns 10

(search "test" "this test test test" "true") returns 15

__

setq
Syntax:

(setq var expr)

Description:

Only valid within the let function. var must be one of the var1 through varn local variables defined in the
enclosing let function.

Examples:

See the let function for examples

__

Using Expressions
27

Using Expressions
responsedictionary

starts-with
Syntax:

(starts-with expr prefix-expr)

Description:

Returns the value of expr if the prefix-expr value matches the beginning of expr, otherwise null. If prefix-expr
is longer than expr, it returns null. The function returns an error if prefix-expr cannot be converted to the same
datatype as expr (string or blob), or if expr evaluates to an integer.

Examples:

(starts-with "abcdefghijklmnop" "abc") returns "abcdefghijklmnop"

(starts-with "abcdefgji" "bcd") returns null

(starts-with 01:02:03:04:05:06 01:02:03) returns 01:02:03:04:05:06

(starts-with "abcd" (as-string 61:62)) returns "abcd"

(starts-with "abcd" 61:62) returns null

(starts-with "abcd" (to-string 61:62)) returns null

__

substring
Syntax:

(substring expr offset len)

Description:

Returns len bytes of expression expr, starting at offset. The expr can be a string or blob; if an integer, converts
to a blob. The result is a string or a blob, or null if any argument evaluates to null. If:

• offset is greater than the length len, the result is null.
• offset plus len is data beyond the end of expr, the function returns the rest of the data in expr.
• offset is less than zero, the offset is from the end of the data (the last character is index –1, because –0=0,
which references the first character).

• This references data beyond the beginning of data, the offset is considered to be zero.

Examples:

(substring "abcdefg" 1 6) returns "bcdefg".

(substring 01:02:03:04:05:06 3 2) returns 04:05.

__

synthesize-host-name
Syntax:

(synthesize-host-name method namestem)

Description:

Using Expressions
28

Using Expressions
starts-with

Generates a hostname based on the configured method (if none is specified), or the specified method and
namestem.

The valid methods for the method argument depend on whether a DHCPv4 or DHCPv6 request is being
processed. For DHCPv4, the valid methods are: default or one of the v4-synthetic-name-generator enumeration
values of: address, client-id, or hashed-client-id. For DHCPv6, the valid methods are: default or one of the
v6-synthetic-name-generator enumeration values of: duid, hashed-duid, cablelabs-device-id, or
cablelabs-cm-mac-addr. For more information on these enumeration methods, see Generating Synthetic
Names in DHCPv4 and DHCPv6.

The namestem argument specifies the synthetic-name-stem value of the DNS update configuration (see Creating
DNS Update Configurations).

Examples:

(synthesize-host-name) returns "dhcp-rhfxxi5pkjp6o"

(synthesize-host-name "duid" "test") returns "test-00030001010203040506"

(synthesize-host-name "client-id" "test") returns "test-00030001010203040506"

__

to-blob
Syntax:

(to-blob expr)

Description:

Converts an expression to a blob. If:

• expr evaluates to a string it must be in “nn:nn:nn” format. This function returns a blob that is the result
of converting the string to a blob. If the function cannot convert the string to a blob, it returns an error.

• expr evaluates to a blob, it returns that blob.
• expr evaluates to an integer, it returns a four-byte blob representing the bytes of the integer in network
order. (See Datatype Conversions, on page 7.)

Examples:

(to-blob 1) returns 00:00:00:01

(to-blob "01:02") returns 01:02

(to-blob 02:03) returns 02:03

__

to-ip, to-ip6
Syntax:

(to-ip expr)

(to-ip6 expr)

Description:

Converts an expression as string, blob, or integer to an IP address. If:

Using Expressions
29

Using Expressions
to-blob

• A string, it must be in dotted decimal IP address format for IPv4 or colon-formatted format for IPv6.
Returns the blob IP address determined by parsing the string into an IP address.

• The result is a blob, it returns the first 4 bytes for (to-ip ...) and the first 16 bytes for (to-ip6 ...). If the
blob is less than the 4 bytes for to-ip or 16 bytes for to-ip6, it pads the argument blob with zero bytes in
the high order bytes.

• The result is an integer, it converts the integer (of either type) into a blob. Because the integers and blobs
are in network order, no order change is required.

__

to-lower
Syntax:

(to-lower expr)

Description:

Takes a string and produces a lowercase string from it. When using the client-lookup-id attribute to calculate
a client-specifier to look up a client-entry in the CNRDB local store (as opposed to LDAP), the resulting string
must be lowercase. Use this function to easily make the result of the client-lookup-id a lowercase string. You
may or may not want to use this function when accessing LDAP using the client-lookup-id.

__

to-sint
Syntax:

(to-sint expr)

Description:

Converts an expression to a signed integer.

If expr evaluates to a string, it must be in a format that can be converted into a signed integer, else the function
returns an error. If:

• expr evaluates to a blob of one to four bytes, the function returns it as a signed integer.
• expr evaluates to a blob of more than 4 bytes in length, it returns an error.
• expr evaluates to an unsigned integer, it returns a signed integer with the same value, unless the value
of the unsigned integer was greater than the largest positive signed integer, in which case it returns an
error.

• expr evaluates to a signed integer, it returns that value.

Examples:

(to-sint "1") returns 1

(to-sint -1) returns -1

(to-sint 00:02) returns 2

(to-sint "00:02") returns an error

(to-sint "4294967295") returns 2147483647

Using Expressions
30

Using Expressions
to-lower

__

to-string
Syntax:

(to-string expr)

Description:

Converts an expression to a string. If expr evaluates to a string, it returns it; if a blob or integer, it returns its
printable representation. It never returns an error if expr itself evaluates without error, because every value
has a printable representation.

Examples:

(to-string "hello world") returns "hello world"

(to-string -1) returns "-1"

(to-string 02:04:06) returns "02:04:06"

__

to-uint
Syntax:

(to-uint expr)

Description:

Converts an expression to an unsigned integer. If

• expr evaluates to a string, it must be in a format that can be converted into an unsigned integer, else the
function returns an error.

• expr evaluates to a blob of one to four bytes, it returns it as an unsigned integer.
• expr evaluates to a blob of more than 4 bytes in length, it returns an error.
• expr evaluates to a signed integer, it returns an unsigned integer with the same value, unless the value
of the signed integer less than zero, in which case it returns an error.

• expr evaluates to an unsigned integer, the function returns that value.

Examples:

(to-uint "1") returns 1

(to-uint 00:02) returns 2

(to-uint "4294967295") returns 4294967295

(to-uint "00:02") returns an error

(to-uint -1) returns an error

__

Using Expressions
31

Using Expressions
to-string

translate
Syntax:

(translate expr search replace)

Description:

Takes as an argument an expression that evalutes to a sequence of bytes (either a string or a blob), and replaces
various characters or bytes that appear in search with corresponding values (in the same position) in replace.
If:

• expr is a string or blob, the value is left as it is, otherwise it is forced to be a string. If, after processing,
expr is a string, search and replace must be strings.

• expr is a blob, both search and replace must also be blobs.
• replace is shorter than search, the bytes or characters in search that do not have corresponding bytes or
characters in replace are dropped from the output.

• replace does not appear, all the bytes or characters in search are removed from expr.

Examples:

(translate "Hello apple and eve" "abcdef" "123456") returns "H5llo 1ppl5 1n4 5v5"

(translate "a&b$c%d" "%$&") returns "abcd"

__

try
Syntax:

(try expr failure-expr)

Description:

Evaluates expr and returns the result of that evaluation if there were no errors encountered during the evaluation.
If an error occurs while evaluating expr then:

• If there is a failure-expr and it evaluates without error, it returns the result of that evaluation as the result
of the try function.

• If there is a failure-expr and the function encounters an error while evaluating failure-expr, it returns
that error.

• If there is no failure-expr, the try returns null.

Examples:

(try (try (expr) (complex-failure-expr)) "string-constant") ensures that the outer try never returns an error
(because evaluating "string-constant" cannot fail)

(try (error) 01:02:03) always returns 01:02:03

(try 1 01:02:03) always returns 1

(try (request option 82) "failure") never returns "failure" because (request option 82) turns null if there is
no option-82 in the packet and does not return an error

(try (request option "junk") "failure") returns "failure" because "junk" is not a valid option-name.

__

Using Expressions
32

Using Expressions
translate

validate-host-name
Syntax:

(validate-host-name hostname)

Description:

Takes the hostname string and returns a validated hostname, which can be the same as the input hostname or
modified as follows:

• Space and underscore characters mapped to a hyphen.
• Invalid hostname characters removed. Valid characters are A-Z, a-z, 0-9, and hyphen.
• Null labels removed (“..” changed to “.”).
• Each label in the hostname truncated to 63 characters.

Examples:

(validate-host-name "a b c d e f") returns "a-b-c-d-e-f"

(validate-host-name "_a_b_c_d_e_f_") returns "a-b-c-d-e-f"

(validate-host-name "abcdef") returns "abcdef"

(validate-host-name "a&b*c#d@!e()f") returns "abcdef"

__

Using Expressions to Limit IP Addresses Leased to Subscribers
These examples set up clients to limit, those not to limit, and those that exceed configuration limits and should
be assigned to an over-limit client-class. There are separate scopes and selection tags for each of the three
classes of clients. These examples assume the following Cisco Prime Network Registrar configuration
environment (which will certainly differ from any real environment and is used just for illustration).

• Client-classes—limit, no-limit, and over-limit.
• Scopes—10.0.1.0 (primary), 10.0.2.0 and 10.0.3.0 (secondaries), named for their subnets.
• Selection tags—limit-tag, no-limit-tag, and over-limit-tag. The scopes are named for the address pools
that they represent. The selection tags are allocated to the scopes with 10.0.1.0 getting limit-tag, 10.0.2.0
getting no-limit-tag, and 10.0.3.0 getting over-limit-tag.

Related Topics
Limitation Example 1: DOCSIS Cable Modem, on page 33

Limitation Example 2: Extended DOCSIS Cable Modem, on page 34

Limitation Example 3: DSL over Asynchronous Transfer Mode, on page 35

Limitation Example 1: DOCSIS Cable Modem
The test is to determine whether the device is considered a DOCSIS cable modem, and limit the number of
customer devices behind every cable modem. The limitation ID for the limit client-class is the cable modem
MAC address, included in the remote-id suboption of the relay-agent-info option.

Using Expressions
33

Using Expressions
validate-host-name

The expression for the client-class-lookup-id attribute on the server is:

// Expression to set client-class to no-limit or limit based on remote-id
(if (equal (request option "relay-agent-info" "remote-id")

(request chaddr))
"no-limit"
"limit")

The above expression indicates that if the contents of the remote-id suboption (2) of the relay-agent-info
option is the same as the chaddr of the packet, then the client-class is no-limit, otherwise limit.

The limitation-id expression for the limit client-class is:

(request option "relay-agent-info" "remote-id")

Use this expression in the following steps:

Step 1 Define the client-classes.
Step 2 Define the scopes, their ranges and tags, and if they are primary or secondary. Note the host range for each scope, which

is less likely to be misread than if they all have the same host number.
Step 3 Define the limitation count. It can go in the default policy; if the request does not show a limitation ID, the count is not

checked.
Step 4 Add an expression in an expression file, cclookup1.txt, for the purpose:

// Expression to set limitation count based on remote-id
(if (equal (request option "relay-agent-info" "remote-id")

(request chaddr))
"no-limit"
"limit")

Step 5 Refer to the expression file when setting the client-class lookup-id attribute on the server level.
Step 6 Add another expression for the limitation ID for the client in a cclimit1.txt file:

// Expression to set limitation ID based on remote-id
(request option "relay-agent-info" "remote-id")

Step 7 Refer to this expression file when setting the limitation-id attribute for the client-class.
Step 8 Reload the server.

The result of doing this for a previously unused configuration would be to put the first two DHCP clients with a common
remote-id option 82 suboption value in the limit client-class. The third client with the same value would go in the over-limit
client-class. There are no limits to the number of devices a subscriber can have in the no-limit client-class, because it has
no configured limitation ID. Any device with a MAC address equal to the value of the remote-id suboption is ignored
for the purposes of limitation, and goes in the no-limit client class, for which there is no limitation ID configured.

Limitation Example 2: Extended DOCSIS Cable Modem
This example is an extension to the example described in Limitation Example 1: DOCSIS Cable Modem, on
page 33. In the latter example, all of the cable modems allowed only two client devices beyond them, since
a limitation count of two was defined for the default policy. In this example, specific cable-modems are

Using Expressions
34

Using Expressions
Limitation Example 2: Extended DOCSIS Cable Modem

configured to allow a different number of devices to be granted IP addresses from the scopes that use the
limit-tag selection tag.

In this case, you need to explicitly configure any cable modem with more than two addresses behind it in the
client-class database. This requires enabling client-class processing server-wide, so that you can look up the
client entry for a cable modem in the Cisco Prime Network Registrar or LDAP database. Not finding the cable
modem limits the number of devices to two; finding it uses the limitation count from the policy configured
for the cable modem.

This example requires just one additional policy, five, which allows five devices.

Step 1 Enable client-class processing server-wide.
Step 2 Create the five policy with a limitation count of five devices.
Step 3 As in the previous example, use an expression to set a limitation ID for the limit client-class. Put the limitation ID in a

cclimit2.txt file, and the lookup ID in a cclookup2.txt file:

cclimit2.txt file:
// Expression to set limitation ID
(request option "relay-agent-info" "remote-id")

cclookup2.txt file:
// Expression to set client-class lookup ID
(concat "1,6," (to-string (request option "relay-agent-info" "remote-id")))

Step 4 Refer to these files when setting the appropriate attributes.
Step 5 Define some cable modem clients and apply the five policy to them.
Step 6 Reload the server.

Limitation Example 3: DSL over Asynchronous Transfer Mode
This example shows how to use expressions to configure Digital Subscriber Line (DSL) access for a subscriber
to a service provider using asynchronous transfer mode (ATM) routed bridge encapsulation (RBE). Service
providers are increasingly using ATM RBE to configure a DSL subscriber. The DHCP Option 82 support for
routed bridge encapsulation feature as of Cisco IOS Release 12.2(2)T enables those service providers to use
DHCP to assign IP addresses and option 82 to implement security and IP address assignment policies.

In this scenario, DSL subscribers are identified as individual ATM subinterfaces on a Cisco 7401ASR router.
Each customer has their own subinterface in the router and each subinterface has its own virtual channel
identifier (VCI) and virtual path identifier (VPI) to identify the next destination of an ATM cell as it passes
through ATM switches. The 7401ASR router routes up to a Cisco 7206 gateway router.

Step 1 Set up the DHCP server and interfaces for the router using IOS. This is a typical IOS configuration:
Router#ip dhcp-server 170.16.1.2
Router#interface Loopback0
Loopback0(config)#ip address 11.1.1.129 255.255.255.192
Loopback0(config)#exit
Router#interface ATM4/0
ATM4/0(config)#no ip address
ATM4/0(config)#exit
Router#interface ATM4/0.1 point-to-point

Using Expressions
35

Using Expressions
Limitation Example 3: DSL over Asynchronous Transfer Mode

ATM4/0.1(config)#ip unnumbered Loopback0
ATM4/0.1(config)#ip helper-address 170.16.1.2
ATM4/0.1(config)#atm route-bridged ip
ATM4/0.1(config)#pvc 88/800
ATM4/0.1(config)#encapsulation aal5snap
ATM4/0.1(config)#exit
Router#interface Ethernet5/1
Ethernet5/1(config)#ip address 170.16.1.1 255.255.0.0
Ethernet5/1(config)#exit
Router#router eigrp 100
eigrp(config)#network 11.0.0.0
eigrp(config)#network 170.16.0.0
eigrp(config)#exit

Step 2 In IOS, enable the system to insert the DHCP option 82 data in forwarded BOOTREQUEST messages to a Cisco IOS
DHCP server:
Router#ip dhcp relay information option

Step 3 In IOS, specify the IP address of the loopback interface on the DHCP relay agent that is sent to the DHCP server using
the option 82 remote-id suboption (2):
Router#rbe nasip Loopback0

Step 4 In Cisco Prime Network Registrar, enable client-class processing server-wide.
Step 5 Create the one policy with a limitation count of one device.
Step 6 Put the packets in the right client-class. All the packets should be in the limit client-class. Create a lookup file containing

just the value limit, then set the client-class lookup ID. In the cclookup3.txt file:
// Sets client-class to limit
"limit"

Step 7 Use an expression to ensure that those packets that are limited have the right limitation ID. Put the expression in a file
and refer to that file to set the limitation ID. The substring function gets the VPI/VCI by extracting bytes 10 through 12
of the option 82 suboption 2 (remote-id) data field. In the cclimit3.txt file:
// Sets limitation ID
(substring (request option 82 2) 9 3)

Step 8 Reload the server.

Debugging Expressions
If you are having trouble with expressions, examine the DHCP log file at server startup. All expressions are
printed in such a way as to clarify the nesting of functions, and can help in confirming your intentions. In
particular, you can copy the expression printed in the log file and paste it into an editor. Once you remove the
characters from the beginning of each line, the expression that results will input correctly (and will be much
easier to read and modify). Pay special attention to the equal function and any datatype conversions of

Using Expressions
36

Using Expressions
Debugging Expressions

arguments. If the arguments are not the same datatype, they are converted to strings using code similar to the
to-string function.

You can set various debug levels for expressions by using the expression-trace-level attribute for the DHCP
server. All executed expressions are traced to the degree set by the attribute. The highest trace level is 10. If
you set the level to at least 2, any failing expression is retried again at level 10.

The trace levels for expression-trace-level are (use the number value):

• 0—No tracing
• 1—Failures, including those protected by (try ...)
• 2—Total failure retries (with trace level = 6 for retry)
• 3—Function calls and returns
• 4—Function arguments evaluated
• 5—Print function arguments
• 6—Datatype conversions (everything)

To trace expressions you have trouble configuring, there is also an expression-configuration-trace-level
attribute that you can set to any level from 1 through 10. If you set the level to at least a 2, any expression
that does not configure is retried again with the level set to 6. Gaps in the numbering are to accommodate
future level additions. The trace levels for expression-configuration-trace-level are (use the number value):

• 0—No additional tracing
• 1—No additional tracing
• 2—Failure retry (the default)
• 3—Function definitions
• 4—Function arguments
• 5—Variable lookups and literal details
• 6—Everything

Using Expressions
37

Using Expressions
Debugging Expressions

Using Expressions
38

Using Expressions
Debugging Expressions

	Using Expressions
	Using Expressions
	Entering Expressions
	Creating Expressions
	Expression Syntax
	Expression Datatypes
	Literals in Expressions
	Expressions Return Typed Values
	Expressions Can Fail
	Datatype Conversions

	Expression Functions
	+, -, *, /, %
	and
	as-blob
	as-sint
	as-string
	as-uint
	ash
	bit
	bit-not
	byte
	comment
	concat
	datatype
	dotimes
	environmentdictionary
	equal, equali
	error
	if
	ip-string
	ip6-string
	is-string
	length
	let
	log
	mask-blob
	mask-int
	not
	null
	or, pick-first-value
	progn, return-last
	regex
	request
	request dump
	request option
	requestdictionary
	response
	response dump
	response option
	responsedictionary
	search
	setq
	starts-with
	substring
	synthesize-host-name
	to-blob
	to-ip, to-ip6
	to-lower
	to-sint
	to-string
	to-uint
	translate
	try
	validate-host-name

	Using Expressions to Limit IP Addresses Leased to Subscribers
	Related Topics
	Limitation Example 1: DOCSIS Cable Modem
	Limitation Example 2: Extended DOCSIS Cable Modem
	Limitation Example 3: DSL over Asynchronous Transfer Mode

	Debugging Expressions

