
Prime Cable Provisioning Support Tools

This section contains information on, and explains the use of tools that help you maintain Prime Cable
Provisioning as well as speed and improve the installation, deployment, and use of this product.

This section contains several examples of tool use. In many cases, the tool filenames include a path specified
as BPR_HOME. This indicates the default home directory location.

Note

This section discusses:

• Prime Cable Provisioning Tools, on page 1
• RDU Export Import Tool , on page 3
• Using PKCert.sh, on page 8
• Using KeyGen Tool, on page 15
• Using changeSNMPService.sh, on page 17
• Using changeNRProperties.sh, on page 18
• Using disk_monitor.sh, on page 20
• Using runEventMonitor.sh Tool, on page 21
• Using rdu.properties, on page 24
• Using adminui.properties, on page 25
• Using verifydb.sh Tool, on page 26
• Using passwordEncryption.sh, on page 28
• Using changeSSLProperties.sh, on page 28
• Using ws-cli.sh, on page 31
• Scripts to Manage and Troubleshoot RDU Redundancy, on page 32
• Using deviceReader Tool, on page 35
• Using Live DB Compaction Tool, on page 37
• DPE Event Publisher, on page 41

Prime Cable Provisioning Tools
Prime Cable Provisioning provides automated tools that you use to perform certain functions more efficiently.
The following table lists the various tools that this Prime Cable Provisioning release supports.

Prime Cable Provisioning Support Tools
1

Table 1: Prime Cable Provisioning Tools

Refer...DescriptionTool

Using Configuration File Utility for
Template

Used to test, validate, and view
Prime Cable Provisioning template
and configuration files.

Configuration File Utility

Using Prime Cable Provisioning
Process Watchdog from CLI

Interacts with the Prime Cable
Provisioning watchdog daemon to
observe the status of the Prime
Cable Provisioningsystem
components, and stop or start
servers.

Prime Cable Provisioning Process
Watchdog

Using the RDU Log Level ToolSets the log level of the RDU, and
enables or disables debugging
log output.

RDU Log Level Tool

Using PKCert.shInstalls, and manages, the KDC
certificates that are required by the
KDC for its operation.

PacketCable Certificates Tool

Using KeyGen ToolGenerates PacketCable service
keys.

KeyGen Tool

Using changeNRProperties.shUsed to change key configuration
and SSL related properties used by
Prime Cable Provisioning
extensions that are incorporated
into the Prime Network Registrar
DHCP server.

Changing Network Registrar
Properties Tool

Using PKCert.shManages the SNMP agent.SNMP Agent Configuration Tool

Troubleshooting Using Diagnostics
Tool

Collects server data related to
system performance and
troubleshooting.

Diagnostics Tool

Bundling Server State for SupportBundles diagnostics data related to
server state for support escalations.

BundleState.sh Tool

Using disk_monitor.shSets threshold values for one or
more file systems. When these
thresholds are surpassed, an alert is
generated until additional disk
space is available.

Disk Space Monitoring Tool

Using changeSSLProperties.sh, on
page 28

Used to change various SSL
properties like enable or disable
SSL connection, change secure key,
secure port number, secret key and
key password.

changeSSLProperties.sh Tool

Prime Cable Provisioning Support Tools
2

Prime Cable Provisioning Support Tools
Prime Cable Provisioning Tools

CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter19.pdf#nameddest=unique_200
CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter19.pdf#nameddest=unique_200
CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter23.pdf#nameddest=unique_166
CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter23.pdf#nameddest=unique_166
CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter25.pdf#nameddest=unique_147
CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter26.pdf#nameddest=unique_467
CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter26.pdf#nameddest=unique_467
CiscoPrimeCableProvisioning-6_1_3-UserGuide_chapter26.pdf#nameddest=unique_112

Refer...DescriptionTool

Using ws-cli.shUsed to change key PWS
configuration properties like adding
and deleting RDU accounts,
changing the log severity level.

ws-cli.sh Tool

RDU Export Import Tool , on page
3

The Export tool which is located at
$BPR_HOME/rdu/internal/db/bin
, can be used to export the group of
devices from a RDU to an
intermediate database.

RDU Export Tool

RDU Export Import Tool , on page
3

The Import tool is located in
$BPR_HOME/rdu/internal/db/bin.
This tool can be used to import all
the devices from the intermediate
database (generated by the export
tool) to target RDU database.

RDU Import Tool

RDU Export Import Tool , on page
3

The Delete tool which is located in
$BPR_HOME/rdu/internal/db/bin
, can be used to delete the devices
from the source RDU that are
exported to the intermediate
database.

Delete Tool

Using deviceReader Tool, on page
35

It reads the device objects along
with the associated resources, CoS,
DHCP criteria and extracts the
device details from a RDU
database.

deviceReader Tool

Using Live DB Compaction Tool,
on page 37

The Live DB Compaction tool is
used to compress the RDUdatabase
without stopping the RDU.

Live DB Compaction Tool

RDU Export Import Tool
The tool allows user to export and import device data from one RDU to another. The exported device data
includes DHCP discovered information, which allows the service provider to seamlessly migrate devices
between the RDUs. The Export Tool provides a filter based support which allows service provides to move
devices based on Provisioning Group(PG) or a "giaddr".

The RDU Export Import Tool is platform independent. For instance, the tool allows user to export data from
a RDU running on Solaris platform and import the data to a RDU running on a Linux platform.

While migrating the device data from one RDU to another RDU by using the Export Import Tool, the template
files used in another template file will not be exported or imported. So, it is recommended to migrate all the
resources from the source database to target database before migrating the device data.

Note

Prime Cable Provisioning Support Tools
3

Prime Cable Provisioning Support Tools
RDU Export Import Tool

Export Tool:

The export tool which is located at $BPR_HOME/rdu/internal/db/bin, can be used to export the group of
devices from a RDU to an intermediate database. The devices to export can be filtered by providing:

The devices which belong to the provisioning group
will be exported..

1. Provisioning Group

The devices under a provisioning group which has
the specified giaddr will be exported.

2. Provisioning Group and a giaddr

The help option (exportTools.sh -help) of the Export Tool will provide the different options available for the
tool.

Parameters:

The directory from which the devices are to be
exported is provided with the -dbdir parameter. The
default location will be the RDU's $BPR_DATA
directory.

-dbdir

This optional parameter mentions the dblog directory
of the source database.

-dblogdir

The directory where the intermediate database should
be created will be provided with the -targetdbdir

-targetdbdir

This optional parameter mentions the dblog directory
of the intermediate database.

-targetdblogdir

This is a required parameter to export the devices in
that provisioning group.

-pg

This is an optional parameter. Devices with the
specified giaddr will be exported.

-giaddr

This optional parameter creates a directory in a
specified location which consists of MAC file and
DUID file. MAC file contains the MAC addresses of
the exported devices. The DUID file contains the
DUID addresses of the exported devices which doesn't
have the MAC addresses.

-expaddrdir

This is a required parameter specifies the location of
the log file for the exportTool

-logfile

Help option to display the options the tool supports-help

SAMPLE USAGE:

There are 2 ways to filter devices that are to be exported from the source RDU.

1. Filtering using Provisioning Group (PG):

The following command can be used to export devices and its data by filtering based on provisioning
group

Prime Cable Provisioning Support Tools
4

Prime Cable Provisioning Support Tools
RDU Export Import Tool

./exportTool.sh -dbdir <source_dir_path> -targetdbdir <intermediate_db_path> -pg <PG_id>

-expaddrdir <location_where_MAC_and_DUID_file_to_be_generated> -logfile

<export_tool_logfile>

2. Filtering using giaddr:

The following command can be used to export devices and its data by filtering based on giaddr in a
provisioning group.

./exportTool.sh -dbdir <source_dir_path> -targetdbdir <intermediate_db_path> -pg <PG_id>

-giaddr <giaddr> -expaddrdir

<location_where_MAC_and_DUID_file_to_be_generated>-logfile<export_tool_logfile

Import Tool:

The import tool is located in $BPR_HOME/rdu/internal/db/bin. This tool can be used to import all the devices
from the intermediate database (generated by the export tool) to target RDU database. There are options to
resolve name conflicts in resources (File, CoS, DHCPCriteria or OwnerID) between source and target databases.

The help option (importTool.sh -help) of the Import Tool will display list of menu options available for the
tool.

Table 2: Basic Parameters:

The -dbdir is a required parameter for providing the path of the intermediate database
generated by the Export Tool.

-dbdir

This optional parameter mentions the dblog directory of the intermediate database.-dblogdir

This is the required parameter which mentions the target database to which the devices
should be imported. This should be a backup snapshot of the target RDU.

-targetdbdir

This optional parameter mentions the dblog directory of the target database.-targetdblogdir

The -logfile is a required parameter to log the Import Tool logs.-logfile

Help option to display the options the tool support-help

Conflict resolving Parameters:

If a resource (File,CoS, DHCPCriteria or OwnerID) with same name is already available in target database
then conflicts might arise. The following parameters can be used to handle the name conflict scenarios during
an import and to take appropriate actions for conflicting objects..

This parameter is to generate a report of name
conflicts between source and target database objects.

This option generates a configuration file which can
be used as an input for-prefixfileoption.

-reportconflicts

The value passed along with this parameter will be
used to create a new resource on target database with
the prefixed name for the conflicting objects.

-prefix

Prime Cable Provisioning Support Tools
5

Prime Cable Provisioning Support Tools
RDU Export Import Tool

This optional parameter controls the way in which
-prefix option should selectively prefix only specific
conflicting objects or prefix for all the conflicting
objects.

This parameter should be followed by the location of
the configuration file generated by the
-reportconflicts option.

If the -prefixfile option is provided then the prefix
functionality which is mentioned above will only be
applicable to the conflicting objects available in this
configuration file.

If this -prefixfile option is not provided along with
the prefix option then the prefix functionality will be
applicable to all the conflicting objects.

-prefixfile

This is an optional parameter to be used along with
the –prefix option.

If there is a name conflict with the prefixed name,
-forcecreate option creates unique name by adding
sequence number to the prefixed name.

-forcecreate

This parameter is used to check the file name conflicts
which will be imported.

This parameter should be followed by the location of
the report conflicts file generated by the
-reportconflicts option.

If there is a name conflict with the prefixed owner ID
relationship, then it will exit the import the database.

-fileconflicts

SAMPLE USAGE:

./importTool.sh -dbdir <intermediate_db_dir_path> -targetdbdir <backup_ dir_path> -logfile

<log_path>

The above command will import the devices and resources from the <intermediate_db_dir_path> to the
< backup_dir_path >.

Since prefix option is not provided here, the name conflicting resources will not be imported and the resources
from the target database will be mapped for the imported devices. This default behavior can be changed by
using conflict resolving parameters.

./importTool.sh -dbdir <intermediate_db_dir_path> -targetdbdir <backup_ dir_path> -logfile

<log_path> –reportconflicts

The above commandwill generate a configuration which can be used as an input for -prefixfile and -fileconflicts
options.

Prime Cable Provisioning Support Tools
6

Prime Cable Provisioning Support Tools
RDU Export Import Tool

Delete Tool:

The delete tool which is located in $BPR_HOME/rdu/internal/db/bin , can be used to delete the devices from
the source RDU that are exported to the intermediate database. The exported devices in the source RDU can
be deleted by using the following inputs:

1. Intermediate database

2. MAC File and DUID File

The help option (deleteTool.sh -help) of the Delete Tool will provide the different options available for the
tool.

Parameters:

A required parameter if -inputmacfile or
-inputduidfile is not specified. This is the input
database directory path. This will be the intermediate
database directory created by the export tool. If
specified, tool reads devices from this database for
deletion.

-inputdbdir

An optional parameter with input database log
directory path, if -inputdbdir is used. If not specified,
directory specified with -inputdbdir parameter is
used by default.

-inputdblogdir

A required parameter if -inputdbdir or -inputduidfile
is not specified.

If specified, tool reads MAC from this file for
deletion.

-inputmacfile

A required parameter if -inputdbdir or -inputmacfile
is not specified.

If specified, tool reads DUID from this file for
deletion.

-inputduidfile

An optional parameter which is the database directory
in which the devices will be deleted. This should be
the database from which the devices were exported
using the export tool. If not specified, RDU database
location is used by default.

-dbdir

An optional parameter with database log directory
path. If not specified, directory specified with -dbdir
or RDU database location is used by default.

-dblogdir

An optional parameter that specifies cache size inMB
for the db. If not specified, the default cache size is
100MB

-cachesize

Prime Cable Provisioning Support Tools
7

Prime Cable Provisioning Support Tools
RDU Export Import Tool

An optional parameter which specifies to delete
behind devices.

Applicable when -inputmacfile parameter is used.

The behind devices will not be deleted by default,
unless the behind device MAC is included in the
inputMACfile or option -includeCPEs is given as an
input.

-includeCPEs

Help option to display the options the tool support-help

SAMPLE USAGE:

1. To delete using intermediate database:

The following command shall be used to delete using intermediate database:

./deleteTool.sh -dbdir <source_dir_path> -inputdbdir <intermediate_db_dir_path>

2. To delete using MAC and DUID files:

The following command shall be used to delete devices from source RDU using MAC file:

./deleteTool.sh -dbdir <source_dir_path> -inputmacfile <mac_file>

By default the behind devices will be deleted automatically if theMAC file generated during export is provided
as an input to the deleteTool.

Note

The following command shall be used to delete devices from source RDU using DUID file:

./deleteTool.sh -dbdir <source_dir_path> -inputduidfile <duid_file>

Using PKCert.sh
The PKCert tool creates the KDC certificate and its corresponding private key. It also allows you to verify
certificate chains and copy and rename a certificate chain to the names required by the KDC.

This tool is available only when the KDC component is installed.Note

Running PKCert Tool
Run the PKCert tool by executing the PKCert.sh command, which resides by default in the BPR_HOME/kdc
directory.

Syntax Description

PKCert.sh function option

• function—Identifies the function to be performed. You can choose:

Prime Cable Provisioning Support Tools
8

Prime Cable Provisioning Support Tools
Using PKCert.sh

• -c—Creates a KDC certificate. See Creating a KDC Certificate.

• -v—Verifies and normalizes the PacketCable certificate set. See Validating KDC Certificates.

• -z—Sets the log level for debug output that is stored in the pkcert.log file. See Setting Log Level
for Debug Output.

If you have trouble using these options, specify -? to display available help
information.

Note

• option—Implements optional functions, depending on the function you selected.

Creating a KDC Certificate
To create the KDC certificate:

Step 1 Change directory to /opt/CSCObac/kdc.
Step 2 Run the PKCert.sh tool using this syntax:

PKCert.sh -s dir -d dir -c cert -e -r realm -a name -k keyFile [-n serial#] [-o]

• -s dir—Specifies the source directory

• -d dir—Specifies the destination directory

• -c cert—Uses the service provider certificate (DER encoded)

• -e—Identifies the certificate as a Euro-PacketCable certificate

• -r realm—Specifies the Kerberos realm for the KDC certificate

• -a name—Specifies the DNS name of the KDC

• -k keyFile—Uses the service provider private key (DER encoded)

• -n serial#—Sets the certificate serial number

• -o—Overwrites existing files

When a new certificate is created and installed, the new certificate identifies the realm in the subject alternate name
field. The new certificate is unique to its current environment in that it contains the:

• KDC realm.

• DNS name associated with this KDC that the Multimedia Terminal Adapter (MTA) will use.

Examples

./PKCert.sh -c "-s . -d /opt/CSCObac/kdc/<Operating System>/packetcable/certificates
-k CLCerts/Test_LSCA_privkey.der -c CLCerts/Test_LSCA.cer -r PCTEST.CISCO.COM -n 100
-a kdc.pctest.cisco.com -o"
Pkcert Version 1.0
Logging to pkcert.log
Source Directory: .

Prime Cable Provisioning Support Tools
9

Prime Cable Provisioning Support Tools
Creating a KDC Certificate

Destination Directory: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates
Private Key File: CLCerts/Test_LSCA_privkey.der
Certificate File: CLCerts/Test_LSCA.cer
Realm: PCTEST.CISCO.COM
Serial Number: 100
DNS Name of KDC: kdc.pctest.cisco.com
WARNING - Certificate File will be overwritten
SP Cert subject name: C=US,O=CableLabs\, Inc.,OU=ABC Cable Company,CN=Shared-01 CableLabs Local
System CA
File written: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/KDC_private_key.pkcs8
File written: /opt/CSCObac/kdc/<Operating
System>/packetcable/certificates/KDC_private_key_proprietary.
File written: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/KDC_PublicKey.der
File written: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/KDC.cer
KDC Certificate Successfully Created at /opt/CSCObac/kdc/<Operating
System>/packetcable/certificates/KDC.cer

This command creates the following files:

• /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/KDC.cer

• /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/KDC_private_key.pkcs8.

The KDC certificate will have a realm set to PCTEST.CISCO.COM, a serial number set to 100, and the fully
qualified domain name (FQDN) of the KDC server set to kdc.pctest.cisco.com.

Validating KDC Certificates
This command examines all files in the source directory specified and attempts to identify them as X.509
certificates. If legitimate X.509 certificates are found, the files are properly renamed and copied to the
destination directory. An error is generated when more than one legitimate chain of certificates for a particular
purpose (service provider or device) is identified. If this occurs, you must remove the extra certificate from
the source directory and run the command again.

When you enter the PKCert.sh -v -? command, usage instructions for validating KDC certificates by using
the PKCert tool appear.

Note

To validate the KDC certificate:

Step 1 Change directory to /opt/CSCObac/kdc.
Step 2 Run the PKCert.sh tool using this syntax:

PKCert.sh -v -s dir -d dir -r dir -e

• -s dir—Specifies the source directory

• -d dir—Specifies the destination directory

• -o—Overwrites any existing files

• -r dir—Specifies the reference certificate directory

Prime Cable Provisioning Support Tools
10

Prime Cable Provisioning Support Tools
Validating KDC Certificates

• -e—Identifies the certificate as a Euro-PacketCable certificate

Verification is performed against reference certificates built into this package. If you specify the -d option, the
certificates are installed in the target directory with name normalization.

Examples

./PKCert.sh -v "-s /opt/CSCObac/kdc/TestCerts -d /opt/CSCObac/kdc/<Operating
System>/packetcable/certificates -o"
Pkcert Version 1.0
Logging to pkcert.log
Output files will overwrite existing files in destination directory

Cert Chain(0) Chain Type: Service Provider
[Local File] [Certificate Label] [PacketCable Name]
CableLabs_Service_Provider_Root.cer CableLabs_Service_Provider_Root.cer
Service_Provider.cer Service_Provider.cer
Local_System.cer Local_System.cer
KDC.cer KDC.cer

Cert Chain(1) Chain Type: Device
[Local File] [Certificate Label] [PacketCable Name]
MTA_Root.cer MTA_Root.cer
File written: /opt/CSCObac/kdc/<Operating
System>/packetcable/certificates/CableLabs_Service_Provider_Root.cer
File written: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/Service_Provider.cer
File written: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/Local_System.cer
File written: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/KDC.cer

Service Provider Certificate Chain Written to Destination Directory /opt/CSCObac/kdc/<Operating
System>/packetcable/certificates

File written: /opt/CSCObac/kdc/<Operating System>/packetcable/certificates/MTA_Root.cer

Device Certificate Chain Written to Destination Directory /opt/CSCObac/kdc/<Operating
System>/packetcable/certificates

Setting Log Level for Debug Output
This command enables you to set the log level for debug output that is logged in pkcert.log, which resides in
BPR_HOME/kdc. You can use the data in the log file to troubleshoot any problems that may have occurred
while performing the requested tasks.

To set the log level for debug output:

Step 1 Change directory to /opt/CSCObac/kdc.
Step 2 Run the PKCert.sh tool using this syntax:

PKCert.sh -s dir -d dir -k keyFile -c cert -r realm -a name -n serial# -o {-z error | info | debug}

• -s dir—Specifies the source directory

• -d dir—Specifies the destination directory

• -k keyFile—Uses the service provider private key (DER encoded)

Prime Cable Provisioning Support Tools
11

Prime Cable Provisioning Support Tools
Setting Log Level for Debug Output

• -c cert—Uses the service provider certificate (DER encoded)

• -r realm—Specifies the Kerberos realm for the KDC certificate

• -a name—Specifies the DNS name of the KDC

• -n serial#—Sets the certificate serial number

• -o—Overwrites existing files

• -z—Sets the log level for debug output that is stored in the pkcert.log file. The values you can choose are:

• error—Specifies the logging of error messages.

• info—Specifies the logging of informational messages.

• debug—Specifies the logging of debug messages. This is the default setting.

Example

Example 1

In this example, the log level is set for collecting error messages.

./PKCert.sh -c "-s /var/certsInput -d /var/certsOutput -k /var/certsInput/Local_System.der
-c /var/certsInput/Local_System.cer -r PCTEST.CISCO.COM -n 100 -a kdc.pctest.cisco.com -o
-z error"
Pkcert Version 1.0
Logging to pkcert.log
Source Directory: /var/certsInput
Destination Directory: /var/certsOutput
Private Key File: /var/certsInput/Local_System.der
Certificate File: /var/certsInput/Local_System.cer
Realm: PCTEST.CISCO.COM
Serial Number: 100
DNS Name of KDC: kdc.pctest.cisco.com
Setting debug to error
WARNING - Certificate File will be overwritten
SP Cert subject name: C=US,O=CableLabs\, Inc.,OU=ABC Cable Company,CN=Shared-01 CableLabs
Local System CA
File written: /var/certsOutput/KDC_private_key.pkcs8
File written: /var/certsOutput/KDC_private_key_proprietary.
File written: /var/certsOutput/KDC_PublicKey.der
File written: /var/certsOutput/KDC.cer
KDC Certificate Successfully Created at /var/certsOutput/KDC.cer

Copy KDC.cer to the KDC certificate directory (i.e.
/opt/CSCObac/kdc/linux/packetcable/certificates)
Copy KDC_private_key.pkcs8 to the KDC platform directory (i.e. /opt/CSCObac/kdc/linux)
Copy KDC_private_key_proprietary. to the KDC platform directory (i.e. /opt/CSCObac/kdc/linux)

Example 2

In this example, the log level is set for collecting information messages.

./PKCert.sh -c "-s /var/certsInput
> -d /var/certsOutput

Prime Cable Provisioning Support Tools
12

Prime Cable Provisioning Support Tools
Setting Log Level for Debug Output

> -k /var/certsInput/Local_System.der
> -c /var/certsInput/Local_System.cer
> -r PCTEST.CISCO.COM
> -n 100
> -a kdc.pctest.cisco.com
> -o -z info"
INFO [main] 2007-05-02 06:32:26,280 (PKCert.java:97) - Pkcert Version 1.0
Pkcert Version 1.0
Logging to pkcert.log
Source Directory: /var/certsInput
Destination Directory: /var/certsOutput
Private Key File: /var/certsInput/Local_System.der
Certificate File: /var/certsInput/Local_System.cer
Realm: PCTEST.CISCO.COM
Serial Number: 100
DNS Name of KDC: kdc.pctest.cisco.com
Setting debug to info
INFO [main] 2007-05-02 06:32:26,289 (PKCCreate.java:69) - PKCCreate startup
WARNING - Certificate File will be overwritten
INFO [main] 2007-05-02 06:32:26,291 (PKCCreate.java:341) - WARNING - Certificate File will
be overwritten
SP Cert subject name: C=US,O=CableLabs\, Inc.,OU=ABC Cable Company,CN=Shared-01 CableLabs
Local System CA
File written: /var/certsOutput/KDC_private_key.pkcs8
File written: /var/certsOutput/KDC_private_key_proprietary.
File written: /var/certsOutput/KDC_PublicKey.der
File written: /var/certsOutput/KDC.cer
KDC Certificate Successfully Created at /var/certsOutput/KDC.cer

Copy KDC.cer to the KDC certificate directory (i.e.
/opt/CSCObac/kdc/linux/packetcable/certificates)
Copy KDC_private_key.pkcs8 to the KDC platform directory (i.e. /opt/CSCObac/kdc/linux)
Copy KDC_private_key_proprietary. to the KDC platform directory (i.e. /opt/CSCObac/kdc/linux)

Example 3

In this example, the log level is set for debugging.

The sample output has been trimmed for demonstration purposes.Note

./PKCert.sh -c "-s /var/certsInput -d /var/certsOutput -k /var/certsInput/Local_System.der
-c /var/certsInput/Local_System.cer -r PCTEST.CISCO.COM -n 100 -a kdc.pctest.cisco.com -o
-z debug"
INFO [main] 2007-05-02 06:32:06,029 (PKCert.java:97) - Pkcert Version 1.0
Pkcert Version 1.0
Logging to pkcert.log
Source Directory: /var/certsInput
Destination Directory: /var/certsOutput
Private Key File: /var/certsInput/Local_System.der
Certificate File: /var/certsInput/Local_System.cer
Realm: IPFONIX.COM
Serial Number: 100
DNS Name of KDC: bacdev3-dpe-4.cisco.com
Setting debug to debug
INFO [main] 2007-05-02 06:32:06,038 (PKCCreate.java:69) - PKCCreate startup
WARNING - Certificate File will be overwritten
INFO [main] 2007-05-02 06:32:06,039 (PKCCreate.java:341) - WARNING - Certificate File will
be overwritten
DEBUG [main] 2007-05-02 06:32:06,054 (PKCert.java:553) - Characters Read: 1218

Prime Cable Provisioning Support Tools
13

Prime Cable Provisioning Support Tools
Setting Log Level for Debug Output

DEBUG [main] 2007-05-02 06:32:06,056 (PKCert.java:583) - Binary File:
/var/certsInput/Local_System.der Read. Length: 1218
DEBUG [main] 2007-05-02 06:32:06,062 (PKCert.java:553) - Characters Read: 943
DEBUG [main] 2007-05-02 06:32:06,063 (PKCert.java:583) - Binary File:
/var/certsInput/Local_System.cer Read. Length: 943
DEBUG [main] 2007-05-02 06:32:06,064 (PKCert.java:455) - Jar File Path:
/opt/CSCObac/lib/pkcerts.jar
DEBUG [main] 2007-05-02 06:32:06,065 (PKCert.java:456) - Opened jar file:
/opt/CSCObac/lib/pkcerts.jar
DEBUG [main] 2007-05-02 06:32:06,067 (PKCert.java:460) - Jar entry unfiltered:
Tag_Packetcable_Tag/
DEBUG [main] 2007-05-02 06:32:06,068 (PKCert.java:460) - Jar entry unfiltered:
Tag_Packetcable_Tag/CableLabs_Service_Provider_Root.cer
...
DEBUG [main] 2007-05-02 06:32:06,115 (PKCert.java:472) - File: Tag_Packetcable_Tag/Manu.cer
DEBUG [main] 2007-05-02 06:32:06,116 (PKCert.java:472) - File:
Tag_Packetcable_Tag/Service_Provider.cer
DEBUG [main] 2007-05-02 06:32:06,121 (PKCCreate.java:91) - Found 7 files in jar.
DEBUG [main] 2007-05-02 06:32:06,827 (KDCCert.java:98) - SP Cert subject name:
C=US,O=CableLabs\, Inc.,OU=ABC Cable Company,CN=Shared-01 CableLabs Local System CA
SP Cert subject name: C=US,O=CableLabs\, Inc.,OU=ABC Cable Company,CN=Shared-01 CableLabs
Local System CA
DEBUG [main] 2007-05-02 06:32:07,687 (KDCCert.java:293) - Setting issuer to:
C=US,O=CableLabs\, Inc.,OU=ABC Cable Company,CN=Shared-01 CableLabs Local System CA
DEBUG [main] 2007-05-02 06:32:07,699 (KDCCert.java:231) - DERVisibleToGeneral
org.bouncycastle.asn1.DERGeneralString@bd0b4ea6

DEBUG [main] 2007-05-02 06:32:07,700 (KDCCert.java:231) - DERVisibleToGeneral
org.bouncycastle.asn1.DERGeneralString@5035bc0

DEBUG [main] 2007-05-02 06:32:07,701 (KDCCert.java:231) - DERVisibleToGeneral
org.bouncycastle.asn1.DERGeneralString@5035bc0

DEBUG [main] 2007-05-02 06:32:07,703 (KDCCert.java:210) - DERCombineTagged [0] IMPLICIT
DER ConstructedSequence

ObjectIdentifier(1.3.6.1.5.2.2)
Tagged [0]

DER ConstructedSequence
Tagged [0]

org.bouncycastle.asn1.DERGeneralString@5035bc0
Tagged [1]

DER ConstructedSequence
Tagged [0]

Integer(2)
Tagged [1]

DER ConstructedSequence
org.bouncycastle.asn1.DERGeneralString@bd0b4ea6
org.bouncycastle.asn1.DERGeneralString@5035bc0

File written: /var/certsOutput/KDC_private_key.pkcs8
File written: /var/certsOutput/KDC_private_key_proprietary.
File written: /var/certsOutput/KDC_PublicKey.der
File written: /var/certsOutput/KDC.cer
KDC Certificate Successfully Created at /var/certsOutput/KDC.cer

Copy KDC.cer to the KDC certificate directory (i.e.
/opt/CSCObac/kdc/linux/packetcable/certificates)
Copy KDC_private_key.pkcs8 to the KDC platform directory (i.e. /opt/CSCObac/kdc/linux)
Copy KDC_private_key_proprietary. to the KDC platform directory (i.e. /opt/CSCObac/kdc/linux)

Prime Cable Provisioning Support Tools
14

Prime Cable Provisioning Support Tools
Setting Log Level for Debug Output

Using KeyGen Tool
The KeyGen tool is used to generate PacketCable service keys. The service keys are symmetric triple data
encryption standard (triple DES or 3DES) keys (shared secret) required for KDC communication. The KDC
server requires service keys for each of the provisioning FQDNs of the DPE. Any changes made to the DPE
provisioning FQDN from the DPE command-line interface (CLI) requires a corresponding change to the KDC
service key filename. This change is necessary because the KDC service key uses the DPE provisioning FQDN
as part of its filename.

The KeyGen tool, which resides in the BPR_HOME/kdc directory, uses command-line arguments for the DPE
provisioning FQDN, realm name, and a password, and generates the service key files.

When running this tool, remember to enter the same password that you used to generate the service key on
the DPE (by using the service packetCable 1..1 registration kdc-service-key command from the DPE CLI).
For information on setting this password, see the Cisco Prime Cable Provisioning 6.1.3 DPE CLI Reference
Guide.

Note

The KDC server reads the service keys on startup. Any modification to the service keys requires that you
restart the KDC server.

Syntax Description

keygen options fqdn realm password

• options are:

• -?—Displays this usage message and exits the command.

• -v or -version—Displays the version of this tool and exits the command.

• -q or -quiet—Implements a quiet mode whereby no output is created.

• -c or -cms—Creates a service key for the CMS system.

• fqdn—Identifies the FQDN of the DPE and is a required entry.

• realm—Identifies the Kerberos realm and is a required entry.

• password—Specifies the password to be used. This is also a required field. The password must be from
6 to 20 characters.

Three service key files are written in the KDC keys directory using this filename syntax:

mtafqdnmap,fqdn@REALM

mtaprovsrvr,fqdn@REALM

krbtgt,REALM@REALM

• fqdn—Identifies the FQDN of the DPE.

• REALM—Identifies the Kerberos realm.

The service key file always contains a version field of 0x0000.

Prime Cable Provisioning Support Tools
15

Prime Cable Provisioning Support Tools
Using KeyGen Tool

http://www.cisco.com/en/US/products/ps12728/prod_command_reference_list.html
http://www.cisco.com/en/US/products/ps12728/prod_command_reference_list.html

Examples

keygen dpe.cisco.com CISCO.COM changeme

When this command is implemented, these KDC service keys are written to the BPR_HOME/kdc/<Operating
System>/keys directory:

mtafqdnmap,dpe.cisco.com@CISCO.COM
mtaprovsrvr,dpe.cisco.com@CISCO.COM
krbtgt,CISCO.COM@CISCO.COM

Restart the KDC, so that the new keys are recognized. Use this Prime Cable Provisioning process watchdog
command to restart the KDC:

/etc/init.d/bprAgent restart kdc

This example illustrates the generation of a CMS service key:

keygen -c cms-fqdn.com CMS-REALM-NAME changeme

When this command is implemented, this CMS service key is written to the BPR_HOME/kdc/<Operating
System>/keys directory.

cms,cms-fqdn.com@CMS-REALM-NAME

Verifying the KDC Service Keys

Once you generate the service keys on the KDC and the DPE, verify if the service keys match on both
components.

The KeyGen tool requires you to enter the same password that you used to generate the service key on the
DPE using the service packetCable 1..1 registration kdc-service-key command. Once you set this password
on the DPE, you can view the service key from the dpe.properties file, which resides in the
BPR_HOME/dpe/conf directory. Look for the value against the /pktcbl/regsvr/KDCServiceKey= property.

For example:

more dpe.properties
/pktcbl/regsvr/KDCServiceKey=2e:d5:ef:e9:5a:4e:d7:06:67:dc:65:ac:bb:89:e3:2c:bb:
71:5f:22:bf:94:cf:2c

The output of this example has been trimmed for demonstration purposes.Note

To view the service key generated on the KDC, run the following command from the
BPR_HOME/kdc/<Operating System>/keys directory:

od -Ax -tx1 mtaprovsrvr,fqdn@REALM

• fqdn—Identifies the FQDN of the DPE.

• REALM—Identifies the Kerberos realm.

The output that this command generates should match the value of the /pktcbl/regsvr/KDCServiceKey=
property in the dpe.properties file.

Prime Cable Provisioning Support Tools
16

Prime Cable Provisioning Support Tools
Using KeyGen Tool

For example:

od -Ax -tx1 mtaprovsrvr,dpe.cisco.com@CISCO.COM
0000000 00 00 2e d5 ef e9 5a 4e d7 06 67 dc 65 ac bb 89
0000010 e3 2c bb 71 5f 22 bf 94 cf 2c
000001a

In the examples shown here, note that the service key generated at the KDC matches the service key on the
DPE.

Using changeSNMPService.sh
The Prime Cable Provisioning installation program establishes values for configuration properties used by
Prime Cable Provisioning. You can use the changeSNMPService.sh command, which is found in the
BPR_HOME/rdu/bin directory, to enable or disable the SNMP agent.

Invoking the script without any parameters displays a help message listing the properties that can be set.

To run this command:

Step 1 Change directory to BPR_HOME/rdu/bin.
Step 2 Run the changeSNMPService.sh command using this syntax:

changeSNMPService.sh options

Where options are:

• -help—Displays this help message. The -help option must be used exclusively. Do not use this with any other option.

• enable | disable—Enables or disables the SNMP agent. Enter enable to enable, and disable to disable SNMP agent.

Step 3 Restart the Cisco Prime Cable Provisioning server.

Examples

/opt/CSCObac/rdu/bin/changeSNMPService.sh enable
Warning : This script requires restart of Cisco Prime Cable Provisioning server.
Running this script will enable/disable the SNMP agent service.
Press Enter to Continue or q to Quit:
Would you like to restart the Cisco Prime Cable Provisioning server now (y/n)? [y]
Restarting Cisco Prime Cable Provisioning server. Please wait....
Cisco Prime Cable Provisioning Process Watchdog has started.
The SNMP agent service feature has been enabled.

You must restart your Prime Cable Provisioning server for the changes to take effect.Note

/opt/CSCObac/rdu/bin/changeSNMPService.sh disable
Warning : This script requires restart of Cisco Prime Cable Provisioning server.
Running this script will enable/disable the SNMP agent service.
Press Enter to Continue or q to Quit:

Prime Cable Provisioning Support Tools
17

Prime Cable Provisioning Support Tools
Using changeSNMPService.sh

Would you like to restart the Cisco Prime Cable Provisioning server now (y/n)? [y]
Restarting Cisco Prime Cable Provisioning server. Please wait....
Cisco Prime Cable Provisioning Process Watchdog has started.
The SNMP agent service feature has been disabled.

Using changeNRProperties.sh
The Prime Cable Provisioning installation program establishes values for configuration properties used by
Prime Cable Provisioning extensions that are incorporated into the Network Registrar DHCP server. You use
the changeNRProperties.sh command, which is found in the BPR_HOME/cnr_ep/bin directory, to change
key configuration properties.

Invoking the script without any parameters displays a help message listing the properties that can be set.

To run this command:

Step 1 Change directory to BPR_HOME/cnr_ep/bin.
Step 2 Run the changeNRProperties.sh command using this syntax:

changeNRProperties.sh options

Where options are:

• -help—Displays this help message. The -help option must be used exclusively. Do not use this with any other option.

• -d—Displays the current properties. The -d option must be used exclusively. Do not use this with any other option.

• -ep enabled | disabled—Enables or disables the PacketCable property. Enter -ep enabled to enable the property,
and -ep disabled to disable it.

• -epv6 enabled | disabled—Enables or disables the PacketCable v6 property. Enter -epv6 enabled to enable the
property, and -epv6 disabled to disable it.

• -ee enabled | disabled - sets the eRouter enabled property

e.g. -ee enabled or -ee disabled

• -eev6 enabled | disabled - sets the eRouter v6 enabled property

e.g. -eev6 enabled or -eev6 disabled

• -ec enabled | disabled—Enables or disables the CableHome property. Enter -ec enabled to enable the property,
and -ec disabled to disable it.

• -s secret—Identifies the Prime Cable Provisioning shared secret. For example, if the shared secret is the word secret,
enter -s secret.

• -pdss <primary dss_id>—Sets the primary DHCPv6 Server Selector for the options CL_V4OPTION_CCCV6(123)
and CL_OPTION_CCCV6(2171), where <primary dss_id> is an opaque identifier and can have a maximum value
of 32 bytes.

For example: -pdss FF:FF:FF:FF

• -sdss <secodary dss_id>—Sets the secondaryDHCPv6 Server Selector for the options CL_V4OPTION_CCCV6(123)
and CL_OPTION_CCCV6(2171), where <secodary dss_id> is an opaque identifier and can have a maximum value
of 32 bytes.

Prime Cable Provisioning Support Tools
18

Prime Cable Provisioning Support Tools
Using changeNRProperties.sh

For example: -sdss 00:00:00:00

• -f fqdn—Identifies the RDU FQDN. For example, if you use rdu.example.com as the fully qualified domain name,
enter -f rdu.example.com.

• -p port—Identifies the RDU port you want to use. For example, if you want to use port number 49187, enter -p
49187.

• -r realm—Identifies the PacketCable realm. For example, if your PacketCable realm is EXAMPLE.COM, enter -r
EXAMPLE.COM.

You must enter the realm in uppercase letters.Note

• -g prov_group—Identifies the provisioning group. For example, if you are using provisioning group called group1,
enter -g group1.

• -t 00 | 01—Identifies whether or not the PacketCable TGT is set to off or on. For example, to set the TGT to off,
enter -t 00; to set this to on, enter -t 01.

• -a ip—Identifies the PacketCable primary DHCP server address. For example, if the IP address of your primary
DHCP server is 10.10.10.2, enter -a 10.10.10.2.

• -b ip—Identifies the PacketCable secondary DHCP server address. For example, if the IP address of your secondary
DHCP server is 10.10.10.4, enter -b 10.10.10.4. You can also enter -b null to set a null value, if appropriate.

• -y ip—Identifies the PacketCable primary DNS server address. For example, if the IP address of the PacketCable
primary DNS server is 10.10.10.6, enter -y 10.10.10.6.

• -z ip—Identifies the PacketCable secondary DNS server address. For example, if the IP address of your secondary
DNS server is 10.10.10.8, enter -z 10.10.10.8. You can also enter -z null to set a null value, if appropriate.

• -edns <ip> - sets the eRouter DNS server address. It can be a single IP Address or a list of IP addresses (in CSV
format). For example: -edns 192.168.4.3,192.168.5.1

• -o prov_ip man_ip—Sets the management address to use for communication with the DPE identified by the given
provisioning address. For example, if the IP address of your provisioning group is 10.10.10.7, enter -o 10.10.10.7
10.14.0.4. You can also enter a null value, if appropriate; for example, -o 10.10.10.7 null.

• -ssl—Enables or disables CNR-EP secure mode of communication with the RDU.

• -ckl—Sets the rootCA.pem certificate location. By default, the certificate is stored in the BPR_HOME/lib/security
directory.

• -ckp—Changes the keystore password.

• -sk secretkey—Updates the secret key which is configured during installation and is used with shared secret for
communication.

Step 3 Restart the DHCP server.

Examples

This is an example of changing the Network Registrar extensions by using the NR Extensions Properties tool:

/opt/CSCObac/cnr_ep_bin/changeNRProperties.sh -g primary1
RDU Port: 49187

Prime Cable Provisioning Support Tools
19

Prime Cable Provisioning Support Tools
Using changeNRProperties.sh

RDU FQDN: bactst-lnx-4
RDU Secure Communication: false
Provisioning Group: primary1
Shared Secret: fgL7egT9zcYHs
Keystore Location: /opt/CSCObac/lib/security/.keystore
PacketCable V4 Enable: enabled
PacketCable V6 Enable: enabled
DSS_ID Primary: aa:aa:aa:aa
DSS_ID Secondary: dd:dd:dd:dd:dd
CableHome V4 Enable: NOT SET
CableLabs client TGT: 01
CableLabs client Realm: CISCO.COM
CableLabs client Primary DHCP Server: 10.81.90.90
CableLabs client Secondary DHCP Server: NOT SET
CableLabs client Primary DNS Server: 10.81.90.90
CableLabs client Secondary DNS Server: NOT SET

You must restart your Prime Network Registrar DHCP server for the changes to take effect.Note

This is an example of viewing the current properties:

opt/CSCObac/cnr_ep/bin/changeNRProperties.sh -d
Current NR Properties:
RDU Port: 49187
RDU FQDN: bactst-lnx-4
RDU Secure Communication: false
Provisioning Group: default
Shared Secret: fgL7egT9zcYHs
Keystore Location: /opt/CSCObac/lib/security/.keystore
PacketCable V4 Enable: enabled
PacketCable V6 Enable: enabled
DSS_ID Primary: aa:aa:aa:aa
DSS_ID Secondary: dd:dd:dd:dd:dd
CableHome V4 Enable: NOT SET
CableLabs client TGT: 01
CableLabs client Realm: CISCO.COM
CableLabs client Primary DHCP Server: 10.81.90.90
CableLabs client Secondary DHCP Server: NOT SET
CableLabs client Primary DNS Server: 10.81.90.90
CableLabs client Secondary DNS Server: NOT SET

Using disk_monitor.sh
Monitoring available disk space is an important system administration task. You can use a number of custom
written scripts or commercially available tools to do so.

The disk_monitor.sh command, which resides in the BPR_HOME/rdu/samples/tools directory, sets threshold
values for one or more file systems. When these thresholds are surpassed, an alert is generated through the
Solaris syslog facility, at 60-second intervals, until additional disk space is available.

We recommend that, at a minimum, you use the disk_monitor.sh script to monitor the BPR_DATA and
BPR_DBLOG directories.

Note

Prime Cable Provisioning Support Tools
20

Prime Cable Provisioning Support Tools
Using disk_monitor.sh

Syntax Description

disk_monitor.sh filesystem-directory x [filesystem-directory* x*]

• filesystem-directory—Identifies any directory in a file system to monitor.

• x—Identifies the percentage threshold applied to the specified file system.

• filesystem-directory*—Identifies multiple file systems.

• x*—Specifies percentage thresholds to be applied to multiple file systems.

Example 1

This example specifies that a notification be sent out when the /var/CSCObac file system reaches 80 percent
of its capacity.

./disk_monitor.sh /var/CSCObac 80

When the database logs disk space reaches 80-percent capacity, an alert similar to the following one is sent
to the syslog file:

Dec 7 8:16:06 perf-u80-1 BPR: [ID 702911 local6.warning] File system /var/bpr usage is 81%
(threshold is 80%)

Example 2

This example describes how you can run the disk_monitor.sh tool as a background process. Specifying an
ampersand (&) at the end of the command immediately returns output while running the process in the
background.

./disk_monitor.sh /var/CSCObac 80 &
1020

Using runEventMonitor.sh Tool
You can run the runEventMonitor.sh tool to view the events that are being fired in Prime Cable Provisioning.
You can run this tool from the BPR_HOME/rdu/internal/bin directory.

The following table describes the types of events that you can view from the event monitor:

DescriptionSub-EventEvent

Displays when a batch submitted by a client application
ends. Contains the batch status.

CompletionBatch

Indicates when a class of service is added to the system.NewClass of service

Indicates when a class of service is deleted from the
system.

DeletedClass of service

Indicates when a configuration is generated.GeneratedConfiguration

Indicates when a configuration that is temporarily
stored at the DPE is generated.

Uncommitted GeneratedConfiguration

Prime Cable Provisioning Support Tools
21

Prime Cable Provisioning Support Tools
Using runEventMonitor.sh Tool

DescriptionSub-EventEvent

Indicates that the uncommitted configuration should
be discarded from the DPE.

Rollback UncommittedConfiguration

Indicates when configuration regeneration service is
enabled.

EnabledCRS

Indicates when configuration regeneration service is
disabled.

DisabledCRS

Indicates when configuration regeneration service is
paused.

PausedCRS

Indicates when configuration regeneration service is
resumed.

ResumedCRS

Indicates when a CRS request is updated.UpdateCRS

Indicates when a CRS request is deleted.DeleteCRS

Indicates when a CRS request has completed execution.CompleteCRS

Indicates when a device changes its Class of Service.Changed Class Of ServiceDevice

Indicates when a device changes its Domain Name.Changed Domain NameDevice

Indicates when a device changes its Host Name.Changed Host NameDevice

Indicates when a device changes its Device Properties.Changed Device PropertiesDevice

Indicates when a device's IP address changes.Changed IP AddressDevice

Indicates when a device is deleted.DeletedDevice

Indicates when a voice service is deleted from a device.Deleted Voice ServiceDevice

Indicates when a device is added through the
provisioning API.

New Provisioned DeviceDevice

Indicates when a device is added when booting on the
network.

NewUnprovisionedDeviceDevice

Indicates when a voice service is added to a deviceNew Voice ServiceDevice

Indicates when a device roams provisioning groups.RoamingDevice

Indicates when a DHCP criteria is added to the system.NewDHCP Criteria

Indicates when a DHCP criteria is deleted from the
system.

DeletedDHCP Criteria

Indicates when a file is added to the system.AddedExternal File

Indicates when a file is deleted from the system.DeletedExternal File

Indicates when a file is replaced in the system.ReplacedExternal File

Prime Cable Provisioning Support Tools
22

Prime Cable Provisioning Support Tools
Using runEventMonitor.sh Tool

DescriptionSub-EventEvent

Indicates when a connection on the local instance of
the messaging system starts

Connection UpMessaging

Indicates when a connection on the local instance of
the messaging system stops.

Connection DownMessaging

Indicates when the queue on the local instance of the
messaging system is full and starts dropping messages.

Queue FullMessaging

Indicates when the provisioning group is changed.ChangedProvisioning Group

Indicates when common properties that effect the RDU
or DPE change.

Common PropertiesServer Properties

Indicates when properties are changed on an user, RDU,
or DPE.

Server Defaults ChangedSystem Configuration

Indicates when the system configuration is changed.System Configuration
Changed

System Configuration

Indicates when defaults are changed.System Defaults ChangedSystem Configuration

Syntax Description

To run the event monitor, enter:

/opt/CSCObac/rdu/internal/bin/runEventMonitor.sh [options]

Options are used to specify the RDU connection parameters and amount of output. You have the following
options:

• -noverbose—Forces the event monitor to display only the types of events being fired, not their contents.
• -host host—Specifies the host where the RDU is located. Default is the localhost.
• -username username—Specifies username for RDU host.
• -password password— Specifies password of the RDU host.
• -port port—Specifies the port on which the RDU is listening. Default is 49187.
• -secure—Sets secure mode of communication with RDU.
• -stopOnDisconnect—Stops event monitoring process on disconnecting from the RDU.
• -help—Displays help for the tool.

Sample Event Monitor Output
If need help, please restart command with '?' parameter.
Verbose mode: true
RDU host: localhost
RDU port: 49187
Connecting to RDU...ok
Listening for events...
ExternalFileEvent added filename=gold.cm
rev=1014671115124(Sun Jul 14 23:35:39 IST 2019)
source=BPR Provisioning API:BPR Regional Distribution Unit:AddExternalFile command

DeviceEvent newProvDevice ID=1,6,01:02:03:04:05:06
rev=1014671179380(Sun Jul 14 23:35:39 IST 2019)
source=BPR Provisioning API:BPR Regional Distribution Unit:AddIPDevice command IP=null

Prime Cable Provisioning Support Tools
23

Prime Cable Provisioning Support Tools
Using runEventMonitor.sh Tool

FQDN=null group=null
timestamp=2019-07-14 23:35:40,566 IST

Using rdu.properties

Do not modify the rdu.properties without consulting the Cisco support. Changes to this file might have an
adverse impact on the RDU.

Caution

The rdu.properties file contains a variety of controls that specify the behavior of the RDU. You can open this
file using any text editor, and change its content to perform the functions that you want.

You can configure the RDU by using the options available in the rdu.properties file. These options are
controlled by Prime Cable Provisioning settings or defined in the rdu.properties file in the
BPR_HOME/rdu/conf/ directory. The default configuration parameters are:

• /server/port—Specifies the listening port of the RDU in nonsecured mode. The default port number is
49187.

• /server/secure/port—Specifies the listening port of the RDU in secure mode using SSL. The default port
number is 49188.

• /server/rdu/secure/enabled—Specifies that the communication between RDU and other Prime Cable
Provisioning components is secure.

• /server/rdu/unsecure/enabled—Specifies that the communication between RDU and other Prime Cable
Provisioning components is unsecure.

• /secure/keystore/password—Specifies the keystore password for the keystore file. This password must
be between 6 and 30 characters.

• /secure/keystore/file—Specifies the location of the keystore file.

• /secure/rdu/certificateKeyPassword—Specifies the password used to encrypt the certificate keys added
in the keystore.

• /rdu/sharedSecret—Specifies the password used to encrypt the communication between Prime Cable
Provisioning components and the RDU.

• /auth/user/session/limit/enabled=true - Specifies that the User session is Enabled. User session limit is
disabled by default and same has to be enabled.

When you manually change properties in the rdu.properties file, remember to restart the RDU. RDU restart
required for property changes to take effect. Use the /etc/init.d/bprAgent restart rdu (for RHEL/CentOS
6.x) or BPR_HOME/agent/bin/bprAgent restart rdu (for RHEL/CentOS 7.x) command.

Note

Sample rdu.properties File

cat /opt/CSCObac/rdu/conf/rdu.properties
/server/port=49187
/server/secure/port=49188

Prime Cable Provisioning Support Tools
24

Prime Cable Provisioning Support Tools
Using rdu.properties

/server/rdu/secure/enabled=true
/server/rdu/unsecure/enabled=true
/secure/keystore/password=f2c2060fdbca0e60ae1864adb73155b9
/secure/keystore/file=/opt/CSCObac/lib/security/.keystore
/secure/rdu/certificateKeyPassword=b46411a3f24f08cd090bddd6e55d8de3
/rdu/sharedSecret=fgL7egT9zcYHs

Using adminui.properties
Before you use the Admin UI, examine the adminui.properties file. This file contains a variety of controls
that specify the behavior of the interface.

You can open this file using any text editor, and change its content to perform the functions that you want.
After you save the changes, restart the Admin UI so that the changes take effect.

To start the Admin UI, enter:

RHEL/CentOS 6.x — /etc/init.d/bprAgent start adminui
RHEL/CentOS 7.x — BPR_HOME/agent/bin/bprAgent start adminui

To stop the Admin UI, enter:

RHEL/CentOS 6.x — /etc/init.d/bprAgent stop adminui
RHEL/CentOS 7.x — BPR_HOME/agent/bin/bprAgent stop adminui

To restart the Admin UI, enter:

RHEL/CentOS 6.x — /etc/init.d/bprAgent restart adminui
RHEL/CentOS 7.x — BPR_HOME/agent/bin/bprAgent restart adminui

You can configure the Admin UI by using the options available in the adminui.properties file. These options
are controlled by Prime Cable Provisioning settings or defined in the adminui.properties file in the
BPR_HOME/rdu/conf directory. The configuration parameters are:

• /adminui/port—Specifies the listening port of the RDU. The default port number is 49187.

• /adminui/fqdn—Specifies the fully qualified domain name of the host on which the RDU is running. The
default value is the FQDN of the host; for example, bac_test.EXAMPLE.COM.

• /adminui/maxReturned—Specifies the maximum number of search results. You can set this value to a
maximum of 5000. The default value is 1000.

• /adminui/maxDetailsReturned —Specifies the maximum number of search results when search for
detailed information is requested. You can set this value to a maximum of 1000 which is also the default
value.

If the memory of the deployed server is having a smaller heap size, then the
maxReturned andmaxDetailsReturnedwill become half of its values. For example,
if the value of maxReturned is set to 5000, it will retrieve only 2500.

Note

• /adminui/pageSize—Specifies the number of search results displayed per page. You can set this number
at 25, 50, or 75. The default value is 25.

Prime Cable Provisioning Support Tools
25

Prime Cable Provisioning Support Tools
Using adminui.properties

• /adminui/refresh—Specifies if the refresh function is enabled or disabled. This option is, by default,
disabled.

• /adminui/extensions—Specifies if the use of extensions in Prime Cable Provisioning is enabled or disabled.
You use extensions to augment Prime Cable Provisioning behavior or add support for new device
technologies. The use of extensions is, by default, enabled.

• /adminui/maxFileSize—Specifies the maximum size of a file uploaded to Prime Cable Provisioning. The
default file size is 20 MB.

• /adminui/refreshRate—Specifies the duration (in seconds) after which a screen is refreshed. The default
value is 90 seconds. Before setting a value for this option, ensure that the /adminui/refresh option is
enabled.

• /adminui/file/extensions—Specifies the extensions of the files that the Admin UI supports. The supported
extensions are by default .bin, .cm, and .jar.

• /adminui/timeout—Specifies the length of time after which an idle session times out. The default period
is set as 10 minutes. In case of any value lesser than 10 minutes, the idle session time out still happens
after 10 minutes.

• /adminui/noOfLines—Specifies the last number of lines from rdu.log or dpe.log that appear on the Admin
UI. The default number of lines that appear is 250.

• /adminui/redirectToHttps—Specifies whether the Admin UI should be in HTTPS mode or not. The
default is true.

• /adminui/enableDomainAdministration—Specifies whether Security Domain(RBAC) can be assigned
to various entities. If set to true, the Instance Level Authorization check box is shown in the RDUDefaults
page. The default value is false.

Sample adminui.properties File

/adminui/port=49187
/adminui/fqdn=doc.example.com
/adminui/maxReturned=5000
/adminui/pageSize=25
/adminui/refresh=disabled
/adminui/extensions=enabled
/adminui/maxFileSize=20000000
/adminui/refreshRate=90
/adminui/file/extensions=.bin,.cm,.jar
/adminui/timeout=10
/adminui/noOfLines=250
/adminui/redirectToHttps=false

By default, Prime Cable Provisioning redirects all HTTP communications over HTTPS. If you want to bypass
the HTTPS redirection, set the property adminui/redirectToHttps to false in the admin.properties file.

Note

Using verifydb.sh Tool
This tool verifies the integrity of the database. It is a resource-intensive operation and should be performed
on the RDU database when RDU server is down or on the backup snapshot. Verification of large database

Prime Cable Provisioning Support Tools
26

Prime Cable Provisioning Support Tools
Using verifydb.sh Tool

can take an extended length of time, to decrease the amount of time use a RAM disk or set the heap size to a
higher value, for example, -Xms1024M -Xmx2048M.

The verifyDb.sh tool resides in the $BPR_HOME/rdu/internal/db/bin/ directory. Invoking the script without
any parameters verifies the active RDU database. In this case, the RDU server must be down for verifyDb.sh
tool to operate.

To run this command:

Step 1 Change directory to BPR_HOME/rdu/internal/db/bin/.
Step 2 Run the verifyDb.sh command using this syntax:

verifyDb.sh options

where options are:

• -dbdir—Specifies the location of the database backup that is to be verified.

• -dblogdir—Specifies the location of the database logs that are to be verified.

• -logdir—Specifies the location of the logs that are to be verified.

• -help—Displays this help message. The -help option must be used exclusively.

• -cachesize—Specifies the size of the memory cache in MB.

• -physical—Verifies consistency of low level DB structures.

• -logical—Verifies logical consistency of data.

The following are the suboptions of –logical option. These options can be used alone or in combination to narrow
down the scope of the -logical consistency checks.

• -attrindexes—Verifies attribute indexes.

• -objects—Verifies objects and relationships.

• -relindexes—Verifies relationship indexes.

• -relayagent—Verify relay agent relationship.

• -properties—Verifies object properties map.

• -cosFileProperty—Verifies COS -File relationship issues.

Example:

$BPR_HOME/rdu/internal/db/bin/verifydb.sh -dbdir /disk1/backup

where /disk1/backup is the path of the backup snapshot of the RDU database.

In case of any error while verifying the database, contact Cisco support.Note

Prime Cable Provisioning Support Tools
27

Prime Cable Provisioning Support Tools
Using verifydb.sh Tool

Using passwordEncryption.sh
The password encryption tool, passwordEncryption.sh allows you to enable password encryption using SHA1.
This tool is available under BPR_HOME/rdu/bin. By default, SHA1 encryption is enabled for fresh installation
of Prime Cable Provisioning but disabled if you are upgrading from an earlier version. If you wish to enable
encryption post upgrade, execute the command:

./passwordEncryption.sh -enable

Once you enable encryption, Prime Cable Provisioning will not be able to support the 4.0 and 4.0.x API
clients.

To check if the SHA1 encryption is enabled or not, execute the command:
./passwordEncryption.sh -status

Using changeSSLProperties.sh
You can use the changeSSLProperties.sh tool, which is found in the BPR_HOME/bin directory, to change
key SSL configuration properties.

The following table lists the various options that you can use to change the SSL configuration.

Table 3: changeSSLProperties.sh Options

Option ParametersDescriptionOption

[rdu|api|adminui|pws]
[enable/disable]

For example:

./changeSSLProperties.sh
-ssl rdu enable

Use -ssl to enable or disable SSL
or secure connection on RDU, API
client, Admin UI or PWS. In case
of AdminUI and PWS, this enables
or disables the HTTPS mode of
communication.

./changeSSLProperties.sh -ssl

[rdu|api| adminui|pws]
[enable/disable]

For example:

./changeSSLProperties.sh
-nssl rdu disable

Use -nssl to enable or disable
non-secure connection with RDU,
API client, Admin UI or PWS. In
case of Admin UI and PWS, this
enables or disables the HTTPmode
of communication.

./changeSSLProperties.sh -nssl

[secret]

For example:

./changeSSLProperties.sh
-secret changeme

Use -secret to change the secret key
for RDU, DPE and PWS,

./changeSSLProperties.sh -secret

Prime Cable Provisioning Support Tools
28

Prime Cable Provisioning Support Tools
Using passwordEncryption.sh

Option ParametersDescriptionOption

[rdu|api|adminui|pws]

For example:

./changeSSLProperties.sh
-csp rdu

Use -csp to change the default
non-secure port number that RDU,
AdminUI, API client or PWS listen
on. By default, RDU listens on
49188.

In case of an API client, the
command lists all the secure RDU
hosts and you can change the port
number of any of those RDU hosts
using the tool.

./changeSSLProperties.sh -csp

[rdu|api|adminui|pws]

For example:

./changeSSLProperties.sh
-cnsp rdu

Use -cnsp to change the default
non-secure port number that RDU,
AdminUI, API client or PWS listen
on. By default, RDU listens on
49187.

In case of an API client, the
command lists all the secure RDU
hosts and you can change the port
number of any of those RDU hosts
using the tool.

./changeSSLProperties.sh -cnsp

[s|ns]

For example:

./changeSSLProperties.sh
-list n

Use -list to list the secure or
non-secure hosts. Use argument s
to list the secure hosts and ns for
non-secure hosts.

./changeSSLProperties.sh -list

[new location]

For example:

./changeSSLProperties.sh
-ckl /opt/CSCObac/lib/
security/.keystore

Use -ckl to changes the default
keystore location. Respective
property files get updated with this
new keystore location.

By default, the keystore is stored
in BPR_HOME/lib/security folder.

./changeSSLProperties.sh -ckl

[new location]

For example:

./changeSSLProperties.sh
-ckp

Use -ckp to change the keystore
password. You will be prompted to
enter the old and new passwords.
For security reasons all passwords
will be prompted.

./changeSSLProperties.sh -ckp

Prime Cable Provisioning Support Tools
29

Prime Cable Provisioning Support Tools
Using changeSSLProperties.sh

Option ParametersDescriptionOption

For example:

./changeSSLProperties.sh
-utp

Use -utp to update the truststore
password in case you have changed
the default truststore (cacerts)
password. This option updates only
the related property files and does
not change cacerts password. Since
cacerts can contain other trusted
entries/certificate chains, there is
no option to change the trust store
passwords. However you can
change the truststore (cacerts)
password using java keytool
command, if you wish so.

./changeSSLProperties.sh -utp

[rdu|adminui|pws]

For example:

./changeSSLProperties.sh
-cpkp

Use -cpkp to change the password
used to store the RDU, Admin UI
and PWS keys. You will be
prompted for old and new
passwords. For security reasons all
passwords will be prompted.

./changeSSLProperties.sh -cpkp

For example:

./changeSSLProperties.sh
-gk

Use -gk to generates a key pair, a
public key and an associated private
key.

The new created RDU key pair is
stored in the .keystore file under
BPR_HOME/lib/security. The
following values would be set by
default (keylength 1024, validity 2
years, keyalg RSA, alias rducert,
storetype JCEKS).

You will be prompted for both
keystore and key passwords.

./changeSSLProperties.sh -gk

For example:

./changeSSLProperties.sh
-exp

Use -exp to self-sign and export the
certificate.

This option locates you keystore
file, self-signs the RDU certificate
and exports rootCA.crt and
rootCA.pem files to the
BPR_HOME/lib/security folder.

./changeSSLProperties.sh -exp

Prime Cable Provisioning Support Tools
30

Prime Cable Provisioning Support Tools
Using changeSSLProperties.sh

Option ParametersDescriptionOption

[location form where to import]
[alias]

For example:

./changeSSLProperties.sh
-imp

Use -imp to import a certificate to
the cacerts trust store so that a chain
of trust can be established between
the certificate and RDU. If a chain
of trust cannot be established, an
error message appears.

In case of CNR-EP you should
copy the rootCA.pem file to the
machine where CNR-EP is
installed. The files must be copied
under theBPR_HOME/bin/security
folder.

./changeSSLProperties.sh -imp

For example:

./changeSSLProperties.sh
-help

Use -help to view the help tips../changeSSLProperties.sh -help

Using ws-cli.sh
You can use the ws-cli.sh tool, which is found in the BPR_HOME/pws/bin for SOAP and
BPR_HOME/restpws/bin for RESTful directory, to carry out some of the PWS configuration functions.

The following table lists the various options that are part of the ws-cli tool.

Table 4: WS CLI Tools

Option ParametersDescriptionOption

For example:

#./ws-cli.sh -ardu test1-host 49187
admin changeme

Use this option to add a new RDU account.
You could either use -ardu or --addrdu.

Repeat the same command to add multiple
RDUs.

./ws-cli.sh -ardu,--addrdu <host> <port>
<username> <password>

For example:

./ws-cli.sh -rrdu bac-test-lnx

Use this option to delete an existing RDU
account.

You could either use -rrdu, or --removerdu.

./ws-cli.sh -rrdu,--removerdu <host>

For example:

#./ws-cli.sh -srductest1 -host 49187
admin changeme

Use this option to update RDU username
and password by providing host and port
number.

You could either use -srduc, or
--setrducredentials.

./ws-cli.sh -srduc <host> <port>
<username> <password>

For example:

#./ws-cli.sh -lrdu test1-host

Use this option to list the RDU commands.

You could either use -lrdu, or --listrdu.

#./ws-cli.sh -lrdu <host>

Prime Cable Provisioning Support Tools
31

Prime Cable Provisioning Support Tools
Using ws-cli.sh

Option ParametersDescriptionOption

For example:

./ws-cli.sh -ll

Use this option to list all the loggers and
their current severity levels.

You could either use -ll, or --listlog.

./ws-cli.sh -ll,--listlog <logger>

For example:
./ws-cli.sh -lp

Use this option to list all properties and
their values.

You could either use -lp, or --listproperty.

./ws-cli.sh -lp,--listproperty <property>

For example:
./ws-cli.sh -removeproperty
/cache/timeout

Use this option to remove the specified
property -rm,--removeroperty. Triggers
running app to reload the properties.

./ws-cli.sh -rm,--removeproperty
<property>

For example:
./ws-cli.sh -removeproperty
/cache/timeout

Use this option to remove the specified
property -rp,--reloadproperty. Triggers
running app to reload the properties.

./ws-cli.sh -rp,--reloadproperty <property>

For example:
./ws-cli.sh -rpd

Clears and reloads all the RDU property
def caches.

./ws-cli.sh -rpd,--reloadpropertydef

For example:
./ws-cli.sh -sap

Saves the modifications../ws-cli.sh -sap,--saveproperty

For example:
./ws-cli.sh -sl general=DEBUG

Updates the logger level to either error,
warn, info, or debug.

./ws-cli.sh -sl,--setlog <logger=value>

For example:
./ws-cli.sh -sp /cache/timeout=100

Adds a new property or updates an existing
property.

./ws-cli.sh -sp,--setproperty
<property=value>

Scripts to Manage and Troubleshoot RDU Redundancy
Following are scripts that you can run to configure properties of HA resources as well as troubleshoot RDU
redundancy. These scripts are available only when RDU is installed in redundancy mode. All these scripts
are located under BPR_HOME/agent/HA/bin.

The following table lists the scripts that you can use to configure, monitor, and troubleshoot RDU redundancy.

Prime Cable Provisioning Support Tools
32

Prime Cable Provisioning Support Tools
Scripts to Manage and Troubleshoot RDU Redundancy

Table 5: RDU Redundancy Scripts - Configuration

Option ParametersDescriptionOption

For example:
BPR_HOME/agent/HA/bin/
manage_ha_resources.sh stop
res_IPaddr2_1

This script is used to stop, start, and restart
failed CRM resources. Where,

• res_IPaddr2_1: Virtual IP resource
• res_Filesystem_1: This file system
refers to BPR_HOME

• res_Filesystem_2: This file system
refers to BPR_DATA

• res_Filesystem_3: This file system
refers to BPR_DBLOG

• res_bprAgent_1: This is the resource
of bprAgent which the watch dog
process of RDU

BPR_HOME/agent/HA/bin/
manage_ha_resources.sh <stop|start|restart>
<(res_IPaddr2_1/res_VIPArip)|res_Filesystem_1|res_Filesystem_2|res_Filesystem_3|res_bprAgent_1|all>

For example:
BPR_HOME/agent/HA/bin/
configure_vip.sh ipaddress
10.105.202.46

This script configures the VIP address of
redundancy setup. It takes two inputs, first
the new VIP address and the second is
CIDR value which should be in the range
>0 and <=30.

Local HA: BPR_HOME/agent/HA/bin/
configure_vip.sh <ipaddress> <ipaddress
value> <CIDR> <CIDR value>

GEO HA:
BPR_HOME/agent/HA/bin/configure_vip.sh
<ipaddress> <ipaddress value>

For example:
BPR_HOME/agent/HA/bin/
configure_failover_threshold
.sh timeout 60

BPR_HOME/agent/HA/bin/
configure_failover_threshold
.sh threshold 6

This script configures failover timeout
value and the migration threshold value of
redundancy setup. You must specify the
time in minutes.

BPR_HOME/agent/HA/bin/
configure_failover_threshold.sh
<timeout|threshold> <value in mins>

For example:
BPR_HOME/agent/HA/
bin/set_prefered_ha_location
.sh primary

BPR_HOME/agent/HA/
bin/set_prefered_ha_location
.sh none

This script is used to configure the preferred
location either as Primary node or
secondary node for automatic failback. To
disable automatic failback, set this to none.

BPR_HOME/agent/HA/bin/
set_prefered_ha_location.sh
<primary|secondary|none>

For example:
BPR_HOME/agent/HA/
bin/ping_resource_ha.sh
create

BPR_HOME/agent/HA/
bin/ping_resource_ha.sh
update

BPR_HOME/agent/HA/
bin/ping_resource_ha.sh
delete

The script configures the cluster to create,
update and delete ping resources to move
resources when external connectivity is lost.
It prompts for list of IP addresses separated
by space to monitor ping resources.

BPR_HOME/agent/HA/bin/ping_resource_ha.sh
<create|update|delete>

Prime Cable Provisioning Support Tools
33

Prime Cable Provisioning Support Tools
Scripts to Manage and Troubleshoot RDU Redundancy

Table 6: RDU Redundancy Scripts - Monitoring

Option ParametersDescriptionOption

For example:
BPR_HOME/agent/HA/bin/
monitor_ha_cluster.sh
timing-details

Displays the summary of the CRM resource
status. timing-details is an optional
parameter, if it is provided, it displays
complete summary about the CRM
resources with timing details.

BPR_HOME/agent/HA/bin/
monitor_ha_cluster.sh [timing-details]

For example:
BPR_HOME/agent/HA/bin/
monitor_fs_sync_status.sh

This script prints the current status of file
system syncup between primary and
secondary node.

BPR_HOME/agent/HA/bin/
monitor_fs_sync_status.sh

Table 7: RDU Redundancy Scripts - Troubleshooting

Option ParametersDescriptionOption

For example:
BPR_HOME/agent/HA/bin/
manage_ha_resources.sh
res_Filesystem_1

This script cleans up the CRM resources.
Specify the resource name that you want
to clean up as the parameter. To clean up
all resources in one go, use the option all.
Where the CRM resources are,

• res_IPaddr2_1: Virtual IP resource
• res_Filesystem_1: This file system
refers to BPR_HOME

• res_Filesystem_2: This file system
refers to BPR_DATA

• res_Filesystem_3: This file system
refers to BPR_DBLOG

• res_bprAgent_1: This is the resource
of bprAgent which the watch dog
process of RDU

BPR_HOME/agent/HA/bin/
cleanup_ha_resources.sh
<(res_IPaddr2_1/res_VIPArip)|res_Filesystem_1|res_Filesystem_2|res_Filesystem_3|res_bprAgent_1|all>

For example:
BPR_HOME/agent/HA/bin/
standby_ha_switch.sh
secondary off

This script troubleshoots or tests the setup
manually. You can make primary or
secondary node as standby using this script.
Use the option on to make a node standby
and off to get it online.

BPR_HOME/agent/HA/bin/
standby_ha_switch.sh <primary|secondary>
<on|off>

For example:
BPR_HOME/agent/HA/bin/
resolve_sb_victim.sh
bprData

Run this script if you want to discard the
updates being made to a server during a
split-brain scenario. Youmust run the script
from the server where you want to discard
the updates. You need to mention which
data should be discarded and give the
option as either bprHome, bprData, or
bprLog. To discard all the updates, use the
option all.

BPR_HOME/agent/HA/bin/
resolve_sb_victim.sh
<bprHome|bprData|bprLog|all>

Prime Cable Provisioning Support Tools
34

Prime Cable Provisioning Support Tools
Scripts to Manage and Troubleshoot RDU Redundancy

Option ParametersDescriptionOption

For example:
BPR_HOME/agent/HA/bin/
resolve_sb_survivor.sh
bprLog

This script should be run from the other
server from where user wants to get update
from, when there is a split-brain scenario.
User has to mention option as either
bprHome, bprData, or bprLog.

BPR_HOME/agent/HA/bin/
resolve_sb_survivor.sh
<bprHome|bprData|bprLog|all>

Using deviceReader Tool
The deviceReader tool (deviceReader.sh) is used to extract the device details from a RDU database. It reads
the device objects along with the associated resources like, CoS, DHCP criteria and presents the device
information in a default file. This tool can be used against the RDU database when the RDU server is down
or against a backup snapshot of the database by specifying the location with -dbdir and -dblogdir options.

This deviceReader tool provides options to save the device details in a file and it provides customization
options to process the device details.

The deviceReader.sh tool is present in the $BPR_HOME/rdu/internal/db/bin/ directory.

Syntax Description

deviceReader.sh [-file outputfile] [-dbdir dir] [-dblogdir dir]

• -file— Specifies the output file name and the path to save the device information. By default, the output
file (deviceinfo.txt) is generated on the current working directory.

• -dbdir— Specifies the database directory path. By default, the RDU database location is used.

• -dblogdir— Specifies the database log directory path. By default, the directory specified with dbdir
option or RDU database location is used.

• -help—Displays help for the tool.

Example

./deviceReader.sh -dbdir /opt/backup/rdu-backup-20170410-150614/ -file
/opt/result/devicedump.txt

Where,

— /opt/backup/rdu-backup-20170410-150614/ is the database directory

— /opt/result/devicedump.txt is the output file and the path to save the file

Output Device File Format

In the output device file, the device properties are stored seperated by '|':

MAC/DUID | OwnerID| Hostname | Domain| ProvGroupName | CoS | DHCPCriteria | docsis_version|
device_serial_number| custom_properties

For example:

cat /opt/result/devicedump.txt

Prime Cable Provisioning Support Tools
35

Prime Cable Provisioning Support Tools
Using deviceReader Tool

000000000211|testowner1|testhost1|testdomain1|chennai|null|null|1.0|000000000211|
/snmp/writeCommunityString|write123|test2|22|test1|11|/snmp/readCommunityString|read123
000000000212|testowner2|testhost2|testdomain2|chennai|null|null|1.0|000000000212|
/snmp/writeCommunityString|write1234|test2|2234|test1|1123|/snmp/readCommunityString|read1234
000000000290|null|null|null|chennai|null|null|null|null
000000000291|null|null|null|chennai|null|null|null|null

Customizing Device Data Usage

By default, the deviceReader tool provides the device data in a file. This tool also allows you to customize
the device data output as per your requirement, i.e., the data handling is customized to send the device properties
to a remote server / another file in a required format.

Data Handler Customization

1. Write a custom DataPrinter implementaion in Java.

Implement the interface, com.cisco.csrc.db.util.devicereader.DataPrinter.

// Source code of the interface
package com.cisco.csrc.db.util.devicereader;

import java.util.Map;

/**
* The interface to mandate the methods to be implemented by the custom printer
* implementations
*/
public interface DataPrinter
{

/**
* This method will be invoked while reading each device object from the
* database.
* @param properties the device properties
*/
public void print(Map<String, Object> properties);

/**
* This method will be called the the tool has completed reading all the
* devices. This can be used to close any resources used by the custom
* printer implementations
*/
public void closeConnections();

}

The print method
public void print(Map<String, Object> properties)
This method exposes the device properties in a Map.
This method will be invoked when each IP device object is read from database by the

tool
The keys for accessing the device device properties are available in

com.cisco.provisioning.cpe.constants.DeviceDetailsKeys.
The keys are same as that of a getDetails() API result

Connection handling
public void closeConnections();
This method will be invoked when the tool has completed.
This can be used to close any resources opened by the custom data printer

implementation

// A sample data printer implementation

Prime Cable Provisioning Support Tools
36

Prime Cable Provisioning Support Tools
Using deviceReader Tool

package com.test;

import java.util.Map;

/**
* No op printer used for testing
*/
public class MyCusomDataPrinter implements DataPrinter
{

public void print(Map<String, Object> properties)
{

// process the device properties here.
// Eg Write to console
//System.out.println(" CoS "+properties);

}

public void closeConnections()
{

// Optional - handle (if any) connection house keeping here
}

}

2. Implement the interface, com.cisco.csrc.db.util.devicereader.DataPrinter, and attach it to the tool’s classpath.
3. The custom data reader can be configured in <BPR_HOME>/rdu/internal/db/bin/devicereader.conf.

Configure the name of class file in this file, for example: device=com.test.MyCusomDataPrinter

Using Live DB Compaction Tool
The Live DBCompaction tool (configureDbCompaction .sh) is used to compress the RDU database without
stopping the RDU.

Prior to Prime Cable Provisioning 6.1, offline DB compaction was supported as explained in the following
link:
https://supportforums.cisco.com/t5/network-infrastructure-documents/db-compression-tech-note-pdf/ta-p/3149689
.

For the offline compaction procedure to work, RDU server has to be shut down. Since this offline compaction
necessitates a long downtime for the RDU server, the live compaction of RDU Berkeley DB which will avoid
the downtime of the RDU server is supported in Prime Cable Provisioning 6.1.

The live DB compaction is disabled by default when the RDU server is started. The live DB compaction
triggered using configureDbCompaction.sh results in increase in the fill factor of Berkeley DB (default fill
factor for live compaction is 80%). $BPR_HOME/rdu/internal/db/native/runTool.sh can be used to check the
fill factor of the database after the live compaction is run.

It is recommended to invoke the runTool.sh against a backup snapshot of the Database or when the RDU
server is down.

Note

Running of live compaction on a regular basis will free up pages in the database which will be reused by
Berkeley DB to write new data. It does not reclaim any disk space but significantly lessens any further increase
in disk space. Thus it avoids steep increase of database disk size. When live compaction is carried out on a

Prime Cable Provisioning Support Tools
37

Prime Cable Provisioning Support Tools
Using Live DB Compaction Tool

regular basis (for example, once a week) the total time taken will be less than a minute. Database checkpoint
will be triggered soon after compaction to sync any uncommitted changes to the DB which may take a couple
of minutes.

In order to reclaim disk space, another tool runCompactDB.sh under $BPR_HOME/rdu/bin/internal/db/bin
is provided which can be used in offline mode. This tool is similar to the online DB compaction tool with the
only difference that it supports an additional option -reclaimspace. When this tool is run with -reclaimspace
option, it will recover disk space. The disk space reclaimed by this tool will vary depending upon the way the
nonempty pages are allocated. Only pages at the end of a file can be returned to the file system in this tool.
The compact algorithm makes a one-pass over the pages of the database, so nonempty pages at the end of the
file will prevent free pages (that are placed on the free list) from being returned to the file system. That is the
reason we recommend regular live DB compaction to avoid growing of DB disk size and this offline DB
compaction can be used occasionally along with online DB compaction tool.

Even though the online DB compaction tool supports scheduling of live DB compaction at regular intervals,
we recommend triggering one time execution of online DB Compaction after taking a Database Backup at
periodic intervals (achievable using a cron job). Since data is paramount and database manipulation requires
utmost care, this approach will allow the user to have a control over the DB and a valid backup to restore in
case of any unforeseen failure during DB compaction.

The online or offline DB compaction tool is not a direct replacement to DBdump/dbload utility. If the user
doesn't run online or offline DB compaction tool periodically then DBdump/dbload utility is best tool to
reclaim disk space. In general, most of the data access should be serviced by the cache, so the file fragmentation
or low fill factor should not have a noticeable performance impact.

TheconfigureDbCompaction .sh tool is present in the $BPR_HOME/rdu/bin/ directory. Once the compaction
is run, the status of the compaction and the time taken will be available in $BPR_DATA/rdu/db/history.log.

1. We recommend you to use the offline compaction once at the very beginning using (db_dump and db_load
BDB utility) as mentioned in the above support forum link. This will reduce the DB disk size, so that the
live compaction will make sure to stop the increase in disk space.

2. It is recommended to take a backup of the database each time before running the live compaction.

Note

Error Handling:

If compaction is run when database backup or DB log deletion is in progress, it will throw an error and exit.

Since the compaction process will lock portions of the DB tables when it performs commit, you may see write
batches to the DB failing at that time. If write batches higher than10/seconds is sent when compaction is in
progress, you are likely to see RDU_BUSY.

Syntax Description of Online Compaction Tool

configureDbCompaction.sh [-show] [-run option] [-interval value] [-fillfactor ff]

• -show—Displays the current values of the compaction parameters.

• -run—This parameter specifies whether the compaction process has to run once or scheduled or disabled.
Valid values are 1, 2, and 3. The default value is 3.

1 (Once) - Trigger compaction once.

2 (Schedule) - Schedule compaction at regular intervals.

3 (Disable) - Disable compaction.

Prime Cable Provisioning Support Tools
38

Prime Cable Provisioning Support Tools
Using Live DB Compaction Tool

• -interval— Specifies the interval at which the compaction process has to be scheduled. The interval is
'day of week:hour of day' where day of week is any day from monday-sunday and hour of day is any
value from 00-23. The default value is ‘sunday:00’.

• - fillfactor— This parameter is to specify the page fill factor. Valid values 1-100. The default value is
80%.

• -help—Displays help for the tool.

Examples:

1. Run Compaction Once

$BPR_HOME/rdu/bin/configureDbCompaction.sh -run 1
Please enter RDU username: admin
Please enter RDU password:

Live DB Compaction is enabled to run once.

Note: For status on the DBCompaction, check the history.log present in the $BPR_DATA/rdu/db directory.

2. Schedule compaction

$BPR_HOME/rdu/bin/configureDbCompaction.sh -run 2
Please enter RDU username: admin
Please enter RDU password:

Enter the compaction interval (sunday:0):
monday:02
Live DB Compaction is scheduled to run at regular intervals MONDAY at 02 hrs.

Note: For status on the DBCompaction, check the history.log present in the $BPR_DATA/rdu/db directory.

3. Change compaction interval

$BPR_HOME/rdu/bin/configureDbCompaction.sh -interval Tuesday:20
Please enter RDU username: admin
Please enter RDU password:

Live Compaction interval set to TUESDAY at 20 hrs.

4. Disable compaction

$BPR_HOME/rdu/bin/configureDbCompaction.sh -run 3
Please enter RDU username: admin
Please enter RDU password:

Live DB Compaction is disabled.

5. Set page fill factor

Prime Cable Provisioning Support Tools
39

Prime Cable Provisioning Support Tools
Using Live DB Compaction Tool

$BPR_HOME/rdu/bin/configureDbCompaction.sh -fillfactor 70
Please enter RDU username: admin
Please enter RDU password:

Fill Factor for Live Compaction set to 70

6. Using the -help option

$BPR_HOME/rdu/bin/configureDbCompaction.sh -help
This tool can be used to configure the DB Compaction parameters. The command line syntax
for this tool is as follows:
configureDbCompaction.sh [-show] [-run option] [-interval value] [-fillfactor ff]
-show Displays the current values of the compaction parameters
-run An optional parameter to specify whether the Compaction process is to
be run once or scheduled or disabled. Valid values 1,2 and 3.
1 Once Enter 1 to trigger compaction once.
2 Schedule Enter 2 to schedule compaction at regular intervals.
3 Disable Enter 3 to disable compaction.
-interval An optional parameter to provide the interval in which the compaction
process is to be scheduled.

The interval is value is'day of week:hour of day' where day of week is
any day from monday-sunday and hour of day is any value from 00-23.

For example, to schedule compaction every sunday at 1am, it can be set
to 'sunday:01'.
-fillfactor An optional parameter to provide the page fill factor. Valid values
1-100.

Syntax Description of Offline Compaction Tool

runCompactDB.sh [-cachesize mb] [-dbdir dir] [-dblogdir dir] [-fillfactor ff] [-reclaimspace]

• -cachesize—An optional parameter that specifies cache size in MB. The default cache size is 10MB.

• -dbdir—An optional parameter with database directory path. RDU database location is used by default.

• -dblogdir—An optional parameter with database directory path. Directory specified with -dbdir option
or RDU database location is used by default.

• - fillfactor—An optional parameter to provide the page fill factor.

• -reclaimspace—An optional parameter to enable disk space reclaimation when compaction is run.

Example to Reclaim Disk Space:

$BPR_HOME//runCompactDB.sh -reclaimspace

Starting DB Compaction

Reclaim Disk Space option value: true

Running DB Compaction with a fill factor of 100%

Time Taken for DB Compaction: 286584

Prime Cable Provisioning Support Tools
40

Prime Cable Provisioning Support Tools
Using Live DB Compaction Tool

Running DB Compaction with a fill factor of 90%
Time Taken for DB Compaction: 164891

Disk Space Reclaimed after compaction in bytes: 24576

DPE Event Publisher
DPE event publisher allows the user to view the events that are being fired in the Prime Cable Provisioning
DPE. The publisher framework allows to customize the DPE events publishing as per your requirement. To
publish the DPE events, it provides options to plug-in your own producer implementation and, the DPE events
can be,

- published to any messaging system based on the producer implementation (By default, the DPE offers Kafka
based producer implementation).

- published to any remote server.

- logged in to a file in a required format.

For information on custom producer implementation, see the below Custom DPE Event Implementation
section.

The sample implementation file SampleEventPublisherImpl.java is present in $BPR_HOME/dpe/samples/event/
directory.

DPE Event Schema

The publisher sends the events as per the below defined Avro schema:
{
"namespace": "com.cisco.csrc.dpe.events.specific",
"type": "record",
"name": "DpeEvent",
"fields": [

{"name": "dpe_event_id", "type": "int"},
{"name": "event_source", "type": "string"},
{"name": "host_name", "type": "string"},
{"name": "received_time", "type": "string"},
{"name": "display_message_tag", "type": "string"},
{"name": "display_message", "type": "string"},
{"name": "event_data", "type": {"type": "map", "values": "string"}}

]
}

The dpe_event_schema.avsc schema file is present in the $BPR_HOME/dpe/samples/event/ directory.

Custom DPE Event Implementation

For custom DPE event implementation:

1. Write a custom producer event implementation in java to publish event to any custom messaging system
by implementing the interface com.cisco.csrc.dpe.events.ProduceEvent.
// Source code of the interface
package com.cisco.csrc.dpe.events;
import org.apache.commons.io.output.ByteArrayOutputStream;
/**

Prime Cable Provisioning Support Tools
41

Prime Cable Provisioning Support Tools
DPE Event Publisher

* The interface to mandate the methods to be implemented by the custom produce event
* implementations
*/
public interface ProduceEvent extends DpeEventConstants
{
/**
* This method will be invoked if DPE event enable to send event.
* @param topic event type represents in DpeEventConstants
* @param event event data represents as avro standard ByteArrayOutputStream
*/

public void eventPublisher(int topic, ByteArrayOutputStream event);
}

The eventPublisher method exposes the DPE object data in Avro Standard ByteArrayOutputStream for
event publishing. This method will be invoked when DPE operations like File Operation,
Configuration/Cache Operation, Log Operation, TFTP Operation, Device level request Operation, ToD
request and SNMP reset Operation.

The keys for accessing the events are available in dpe_event_schema.avsc schema file which is present
in the $BPR_HOME/dpe/samples/event/ directory.

The topic is used to differentiate the event type
/** DPERequestEvent */
final public static int DPE_REQUEST_EVENT = 1;
/** FileEvent */
final public static int FILE_EVENT = 2;
/** ConfigurationEvent */
final public static int CONFIGURATION_EVENT = 3;
/** TftpEvent */
final public static int TFTP_EVENT = 4;
/** LogEvent */
final public static int LOG_EVENT = 5;

// A sample produce event implementation
package com.cisco.test.dpeevent;

import org.apache.commons.io.output.ByteArrayOutputStream;
import com.cisco.csrc.dpe.events.ProduceEvent;

public class MyCustomProducerEventImpl implements ProduceEvent
{

@Override
public void eventPublisher(int topic, ByteArrayOutputStream event)
{

// process the event data here.
// Eg Write to console
//System.out.println(" Event Type “ + topic “ : "+ event);
// Or Implement your custom code for any messaging system

}
}

To compile the custom implementation class, we need to include bpr.jar, bac-common.jar, bacbase.jar and
commons-io.jar which are present in the $BPR_HOME/lib/ directory.

Note

2. Compile theMyCustomProducerEventImpl.java and bundle as a jar file (for eg: dpeevent.jar). Add the
bundled jar and its dependencies jar (i.e., any messaging system dependency jars) to the publisher`s
classpath $BPR_HOME/lib/.

Prime Cable Provisioning Support Tools
42

Prime Cable Provisioning Support Tools
DPE Event Publisher

3. The custom event can be configured in $BPR_HOME/dpe/internal/bin/dpeeventmonitor.conf. You can
also configure the name of the class file in this file, for example, /dpe/producer/class=
com.cisco.test.dpeevent.MyCustomProducerEventImpl.

4. Add the path for custom jar and its dependent jar to BPR_CP variable in $BPR_HOME/bpr_definitions.sh
before exporting BPR_CP

BPR_JAVA=$BPR_HOME/jre/bin/java

BPR_CP=$BPR_CP:$BPR_HOME/lib/dpeevent.jar:$BPR_HOME/lib/dependentJar1.jar:$BPR_HOME/lib/dependentJar2.jar:.

5. Restart the DPE.

6. Enable the DPE event monitor using CLI, see,Event SystemManagement Commands chapter of Cisco
Prime Cable Provisioning 6.1.3 DPE CLI Reference Guide.

7. Based on the enabled event types, DPE events are published to custom implementationmessaging system.

DPE Event Monitor CLI Commands

Prime Cable Provisioning generates the event messages from DPE server and publishes it using the custom
messaging system. The event messages fired by the DPE server are based on the event types that are enabled
in the settings. Using the CLI commands, the event monitor and the event type can be enabled/disabled.

Event type and Description

The following table describes the types of events that you can view from the DPE event monitor:

DescriptionEvent TypeEvent ID

Device request

• Sending no cached configuration for
device in provisioning group to device.

• Sending configuration for device in
provisioning group to device.

ToD request

• Received UDP time of day request
from device.

• ToD Success/Failure.

SNMP reset

• Processing SNMP reset for device.
• Successfully send SNMP reset for
device.

Request Event1

• Received file from RDU.
• Received updated file from RDU.
• Removed file from cache.

File Event2

Prime Cable Provisioning Support Tools
43

Prime Cable Provisioning Support Tools
DPE Event Publisher

http://www.cisco.com/en/US/products/ps12728/prod_command_reference_list.html
http://www.cisco.com/en/US/products/ps12728/prod_command_reference_list.html

DescriptionEvent TypeEvent ID

• Received configuration for device
from RDU.

• Received updated configuration for
device from RDU.

• Removed configuration for device
from cache.

• Completed device attributes dumping
process

Configuration Event3

• Received a TFTP [read] request from
device for file.

• Finished handling [read] request from
device for file.

• TFTP exception.

TFTP Event4

• Send the DPE log as events.
• Depend on the DPE log level it send
the logs as events.

Log Event5

1. Login the Telnet using the credentials.

2. Enable the DPE event monitor using CLI command: dpe event monitor.

3. To enable/disable the different event level, see,Event SystemManagement Commands chapter of Cisco
Prime Cable Provisioning 6.1.3 DPE CLI Reference Guide.

It is not necessary to restart the DPE service after the event enabling/disabling.Note

Sample DPE Events

To use the sample DPE events (Softwares required are, kafka and scala):

1. Start the kafka and zookeeper servers with default configurations as shown below:
nohup ./zookeeper-server-start.sh ../config/zookeeper.properties > zoo.out &

nohup ./kafka-server-start.sh ../config/server.properties > kafka.out &

2. To verify the status of the servers:
ps -ef | grep zookeeper

ps -ef | grep kafka

3. Enable the DPE event properties (monitor, file, log, config, request, tftp) by using the telnet commands.

4. The sample DPE event will send the events to localhost:2181 port with the topic dpeevent. To consume
the published events:
./kafka-console-consumer.sh --zookeeper localhost:2181 --topic dpeevent --from-beginning

Prime Cable Provisioning Support Tools
44

Prime Cable Provisioning Support Tools
DPE Event Publisher

http://www.cisco.com/en/US/products/ps12728/prod_command_reference_list.html
http://www.cisco.com/en/US/products/ps12728/prod_command_reference_list.html

5. If the consumer is in a different server, to consume the published events:
./kafka-console-consumer.sh --zookeeper pcp-lnx-xx:2181 --topic dpeevent --from-beginning

Sample Output

Once the integration is done. You can view the published event on your custom messaging system.

Example sample output
{
"dpe_event_id" : 1,
"event_source" : "DPE_REQUEST_EVENT",
"host_name" : "pcp-lnx-90",
"received_time" : "2018-10-15 04:49:55,955 IST",
"mnemonic_tag" : "0112",
"display_message" : "Sending configuration for device [1,6,11:00:00:00:00:10] in

provisioning group [default] to [10.78.109.52:55946]. Time since request received [2 ms].
Rate [0.017/s over 1 min].",
"event_data" : {
"device_id" : "1,6,11:00:00:00:00:10",
"provisioning_group" : "default",
"event_message" : "Protocol Version=13, Type=CONFIGURATION_REQUEST, Transaction

ID=1533394698, Device ID=1,6,11:00:00:00:00:10, Prov Group=default",
"inet_address" : "10.78.109.52:55946"

}
}

Prime Cable Provisioning Support Tools
45

Prime Cable Provisioning Support Tools
DPE Event Publisher

Prime Cable Provisioning Support Tools
46

Prime Cable Provisioning Support Tools
DPE Event Publisher

	Prime Cable Provisioning Support Tools
	Prime Cable Provisioning Tools
	RDU Export Import Tool
	Using PKCert.sh
	Running PKCert Tool
	Creating a KDC Certificate
	Validating KDC Certificates
	Setting Log Level for Debug Output

	Using KeyGen Tool
	Using changeSNMPService.sh
	Using changeNRProperties.sh
	Using disk_monitor.sh
	Using runEventMonitor.sh Tool
	Using rdu.properties
	Using adminui.properties
	Using verifydb.sh Tool
	Using passwordEncryption.sh
	Using changeSSLProperties.sh
	Using ws-cli.sh
	Scripts to Manage and Troubleshoot RDU Redundancy
	Using deviceReader Tool
	Using Live DB Compaction Tool
	DPE Event Publisher

