
Managing VNF Lifecycle Operations

• Managing the VNF Lifecycle, on page 1
• VNF Lifecycle Operations, on page 2

Managing the VNF Lifecycle
The NFVO communicates with ESC using the ETSI MANO API for lifecycle management of a VNF. A
configuration template, the Virtual Network Function Descriptor (VNFD) file describes the deployment
parameters and operational behaviors of a VNF type. The VNFD is used in the process of deploying a VNF
and managing the lifecycle of a VNF instance.

The lifecycle operations of a VNF instance is as follows:

1. Create a VNF Identifier—ESC generates a new VNF Instance Id (a universally unique identifier) that
is subsequently used as a handle to reference the instance upon which to execute further operations.

2. Instantiate / Deploy VNF—As part of VNF instantiation, ESC instantiates a new VNF instance in the
VIM. ESC receives a request to instantiate a VNF instance from NFVO. The instantiate request contains
resource requirements, networking and other service operational behaviors. All these requirements along
with the VNFD and the grant information provides all the necessary information to instantiate the VNF.

3. Operate VNF—ESC allows you to start and stop a VNF instance. The resources are not released or
changed, but the VNF instance in the VIM is toggled between these two states.

4. Query VNF—To query one or more VNF instances known to ESC. This is a specific REST end point
that can be filtered to find specific instances. The instances can be filtered using the VNF Instance Id.

Also, a separate REST end point allows the NFVO to query the status of one or more lifecycle operation
occurrences associated with a VNF. The lifecycle operations can be filtered using a specific occurrence
identifier.

5. Modify VNF—ESC allows you to modify the properties of a single VNF instance. The instantiated VNF
is updated, and the lifecycle management operation occurrence sends notification to the NFVO about the
status of the VNF.

6. Scale and Scale to Level VNF—ESC allows you to scale VNFs in two ways. You can scale a VNF
incrementally, or to a specific level.

7. Heal VNF—ESC heals the VNF when there is a failure.

Managing VNF Lifecycle Operations
1

8. Terminate / Undeploy VNF—To terminate the VNF instance in the VIM. The resources themselves
remain reserved for the VNF instance, however the VNF itself is undeployed.

9. Delete VNF Identifier—The resources are fully released in the VIM and in ESC and the associated VNF
instance identifer is also released.

For VNF lifecycle operations using REST and NETCONF APIs, see Configuring Deployment Parameters in
the Cisco Elastic Services Controller User Guide.

The ESC health monitor API can determine the connectivity of ESC to the NFVO and send appropriate status
notifications. For more details, see Monitoring ESC Health in the Cisco Elastic Services Controller
Administration Guide.

VNF Lifecycle Operations
VNFM Prerequisites

The following prerequisites must be met for VNF lifecycle operations:

• The resource definitions must be created out of band and must be available before VNF instantiation.

• There are a few options with respect to specifying connections to the VIM. The VIMConnector specifies
how ESC connects to the VIM and may be created and validated in advance of deploying a VNF (and
identified by name), created as part of the request if new vimConnectionInfo is supplied or as part of the
Grant response (all have a common source - the NFVO). See VIM Connectors Overview.

NFVO Prerequisites

• The VNF to be instantiated has to be onboarded to the NFVO within an ETSI compliant VNF package.

• The NFVO must provide ETSI compliant VNF Packages to ESC.

• The VNF package must contain a VNF Descriptor (VNFD) file.

The NFVO must support the /vnf_packages API to allow access to the package artifacts.See chapter 10
in the ETSI GS NFV-SOL 003 specification on the ETSI website for details.

• Update the properties file, etsi-production.properties under: /opt/cisco/esc/esc_database/. The
properties file provides details about the NFVO to ESC.

The single property nfvo.apiRoot allows specification of the NFVO host and port. For example,
nfvo.apiRoot=localhost:8280.

For notes on ESC in HA mode, enabled with ETSI service, see the Cisco Elastic Services Controller Install
and Upgrade Guide.

Note

Deployment Request

The deployment request includes the following tasks:

The VNFD provides a description of the following constructs (see ETSI GS NFV-SOL 001 specification on
the ETSI website for details)

Managing VNF Lifecycle Operations
2

Managing VNF Lifecycle Operations
VNF Lifecycle Operations

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-maintenance-guides-list.html
Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-7_chapter3.pdf#nameddest=unique_11
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-installation-guides-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-installation-guides-list.html

• The deployment level configuration such as deployment flavours and external connections

• The VDU configuration, including any applicable images (Compute)

• The internal connection points (VduCp)

• Any volumes to be created, including any applicable images (VirtualBlockStorage)

• The internal virtual links (VnfVirtualLink)

• Policies and groups for placement, scaling and security

The InstantiateVnfRequest:

• The chosen deployment flavour

• The VIM connection details (vimConnectionInfo - Or-Vnfm only)

• Any external networks to which to connect the external connection points (extVirtualLinks)

• Any external networks that may be bound to for internal virtual links (extManagedVirtualLinks)

• A list of key-value pairs to provide deployment specific variables for the deployment (additionalParams)

The Grant from the NFVO (see ETSI GS NFV-SOL 003 specification on the ETSI website for details):

• Approved and/or updated resources to be added, updated or removed (UUIDs)

• Confirmed placement information

Each lifecycle management request is submitted to the VNFM through the Ve-Vnfm or Or-Vnfm reference
points, SOL002 or SOL003 respectively. In order to invoke the correct API, the {apiRoot} is constructed of
the following elements:
[http_protocol]://[esc_ip]:[esc_port]/[ve_vnfm|or_vnfm]

and is followed by the apiName and operations, as per the following sections.

Creating the VNF Identifier
Creating the VNF Identifier is the first request for any VNF instance. This identifier is used for all further
LCM operations executed by the ETSI API. Resources are neither created nor reserved at this stage.

ESC sends a POST request to create VNF instances:

Method Type:
POST

VNFM Endpoint:
/vnf_instances/

HTTP Request Headers:
Content-Type:application/json

Request Payload (ETSI data structure: CreateVnfRequest):
{

"vnfInstanceName": "Test-VNf-Instance",

Managing VNF Lifecycle Operations
3

Managing VNF Lifecycle Operations
Creating the VNF Identifier

"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74"
}

Response Headers:

HTTP/1.1 201
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Thu, 04 Jan 2018 12:18:13 GMT

Response Body (ETSI Data structure:VnfInstance)
{

"id": "14924fca-fb10-45da-bcf5-59c581d675d8",
"instantiationState": "NOT_INSTANTIATED",
"onboardedVnfPkgInfoId": "vnfpkg-bb5601ef-cae8-4141-ba4f-e96b6cad0f74",
"vnfInstanceName": "Test-VNf-Instance",
"vnfProductName": "vnfd-1VDU",
"vnfProvider": "Cisco",
"vnfSoftwareVersion": "1.1",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74",
"vnfdVersion": "1.3",
"_links": {

"instantiate": {
"href":

"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8/instantiate"

},
"self": {

"href":
"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"

}
}

}

For instantiating VNFs, see Instantiating Virtual Network Functions, on page 4.

Instantiating Virtual Network Functions
The instantiation request triggers several message exchanges, which allow the call flow to deploy a VNF
instance. The resources for the VNF are only allocated when the VNF instance is instantiated. The request
requires the VNF instance identifier, returned by the Create VNF request to be encoded into the URL to which
the request is posted.

The instantiation sub-tasks within the flow include:

1. Retrieving the VNF Descriptor (VNFD) template from the NFVO.

2. Requesting permission from the NFVO (bi-directional Grant flow). For more information see, Requesting
Permission via Grant.

Managing VNF Lifecycle Operations
4

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

Example for SOL003:

Method type:
POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/instantiate

HTTP Request Header:
Content-Type:application/json

Request Payload (ETSI data structure: InstantiateVnfRequest)

{
"flavourId": "default",
"extVirtualLinks": [

{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": {
"cp1": {
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"numDynamicAddresses": "1",
"subnetId": "23bb3-742aa-8213eb-dded2"
"type": "IPV4"

}
]

}
}

]
}

}
}

],
"extManagedVirtualLinks": [

{
"id": "my-network",
"resourceId": "93fb90ae-0ec1-4a6e-8700-bf109a0f4fba",
"virtualLinkDescId": "VLD1"

}
],
"vimConnectionInfo": {
"default_openstack_vim": {

"accessInfo": {
"password": "*******,
"username": "admin",
"vim_project": "tenantName"

},
"extra": {

"name": "esc"
},

"interfaceInfo": {
"baseUrl": "http://localhost:8080"

},

Managing VNF Lifecycle Operations
5

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

"vimId": "default_openstack_vim",
"vimType": "OPENSTACK"

}
}
"additionalParams": {

"CPUS": 2,
"MEM_SIZE": "512 MB",
"VIM_FLAVOR": "Automation-Cirros-Flavor",
"BOOTUP_TIME": "1800"

}
}

The flavourId value must be the same as a single flavour_id specified in the VNFD.

The previous example also includes an external connection point with a subnet defined. The IP addresses are
allocated from that subnet. For information on fixed IP or MAC addresses, see Scaling Virtual Network
Functions Using ETSI API.

The Grant response from the NFVO provides the vimConnectionInfo. It is not provided in the SOL002 payload.
This is required in some cases since the SOL002 payloads do not include the vimConnectionInfo information.

Note

You can customize the VNF before instantiation by adding variables to the VNFD template. The values that
map to those variables are supplied in the additionalParams field of the LCM request. The variables are
key-value pairs, where the value can be either a list, string, numeric or boolean.

When the VNFD is retrieved by the VNFM, the additionalParams variables are merged into the VNF instance
data from the original request received to form instance-specific data.

The list of parameters supplied is driven by the contents of the VNFD; the additionalParams specified in the
request are used by the VNFD using the get_input TOSCA method within the VNFD. For example, the cpus,
and mem_size variables are merged with the placeholders within the VNFD. For example:
tosca_definitions_version: tosca_simple_yaml_1_3

imports:
- cisco_nfv_sol001_types.yaml
- etsi_nfv_sol001_vnfd_3_3_1_types.yaml

metadata:
template_name: Example
template_author: Cisco Systems
template_version: '1.0'

topology_template:
inputs:

CPUS:
description: Number of CPUs
type: string
default: "2"

MEM_SIZE:
description: Memory size
type: string
default: "512 MB"

VIM_FLAVOR:
description: VIM Flavor
type: string
default: "Automation-Cirros-Flavour"

BOOTUP_TIME:
description: Time taken to boot the VNF

Managing VNF Lifecycle Operations
6

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-7_chapter10.pdf#nameddest=unique_28
Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-7_chapter10.pdf#nameddest=unique_28

type: string
default: "1800"

substitution_mappings:
node_type: cisco.1VDU.1_0.1_0
requirements:
- virtual_link: [node_1_nic0, virtual_link]

node_templates:

vdu1:
type: tosca.nodes.nfv.Vdu.Compute
properties:
name: vdu1
description: Example
configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: { get_input: VIM_FLAVOR }
bootup_time: { get_input: BOOTUP_TIME }
...

vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 1

capabilities:
virtual_compute:
properties:
virtual_cpu:
num_virtual_cpu: { get_input: CPUS }

virtual_memory:
virtual_mem_size: { get_input: MEM_SIZE }

node_1_nic0:
type: tosca.nodes.nfv.VduCp
properties:
order: 0
layer_protocols: [ipv4]
protocol:
- associated_layer_protocol: ipv4

trunk_mode: false
virtual_network_interface_requirements:
- support_mandatory: true
network_interface_requirements:
management: "false"
name_override: { get_input: SRIOV_A_INT_NAME }
iface_type: "direct"

requirements:
- virtual_binding: vdu_1

If a modification request with new additionalParams variables is submitted for the same VNF instance, then
the new variables overwrites the existing values for those keys. The VNFM uses the new variables for
deployment.

Although internal links are designed to be ephemeral, in some deployment scenarios they can be bound to
external links that outlive the VNF. Consider the following example VNFD fragment:

automation_net:
type: tosca.nodes.nfv.VnfVirtualLink
properties:
connectivity_type:
layer_protocols: [ipv4]

description: Internal Network VL
vl_profile:
max_bitrate_requirements:
root: 10000

Managing VNF Lifecycle Operations
7

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

min_bitrate_requirements:
root: 0

virtual_link_protocol_data:
- associated_layer_protocol: ipv4
l3_protocol_data:
ip_version: ipv4
cidr: 1.180.10.0/29
dhcp_enabled: true

To specify an external virtual link to be used in place of automation_net in the VNF deployment, the following
data structure is used as part of the instantiation request:

...
"extManagedVirtualLinks": [

{
"id": "net-5ddc8435-9d85-4560-8b95-bfcd3369c5c2",
"resourceId": "esc-net2",
"vimConnectionId":"default_openstack_vim",
"virtualLinkDescId": "automation_net"

}
],
...

Although the ETSI specifications only support the concept of ephemeral volumes, many vendors require the
specification of a persistent volume and so Cisco has implemented an extension to support this. The VIM
resource Id of the persistent volume can be supplied as an additionalParams key (that matches the get_input
in the VNFD) and replace a volume in the VNFD using an optional property, as per the following example:

example-volume:
type: tosca.nodes.nfv.Vdu.VirtualBlockStorage
properties:
virtual_block_storage_data:
size_of_storage: 200 GB
vdu_storage_requirements:
resource_id: { get_input: EX_VOL_UUID }
vol_id: "0"
bus: ide
type: LUKS

Requesting Permission via Grant

The ETSI API requests permission from the NFVO to complete lifecycle management operations for the VNF
instance resources and gets resource Ids for any resources pre-provisioned. Following is an example of
GrantRequest:
{
"flavourId": "default",
"instantiationLevelId": "default",
"isAutomaticInvocation": false,
"operation": "INSTANTIATE",
"vnfInstanceId": "e426a94e-7963-430c-96ee-778dde5bd021",
"vnfLc mOpOccId": "06fe989b-7b0b-40dc-afb3-de26c18651ae",
"vnfdId": "6940B47B-B0D0-48CB-8920-86BC23F91B16",
"addResources":
[
{
"id": "res-1abb1609-a1f3-418a- a7a0-2692a5e53311",
"resourceTemplateId": "vdu1",
"type": "COMPUTE",
"vduId": "vdu1"

},

Managing VNF Lifecycle Operations
8

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

{
"id": "res-c5ece35c-89e3-4d29-b594-ee9f6591f061",
"resourceTemplateI d": "node_1_nic0",
"type": "LINKPORT",
"vduId": "vdu1"

},
{
"id": "res-e88d8461-5f5a-4dba-af14-def82ce894e5",
"resourceTemplateId": "automation_net",
"type": "VL"

}
],
"_links":
{
"vnfInstance":
{
"href": "https://172.16

.255.8:8251/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"
},
"vnfLcmOpOcc":
{
"href":

"https://172.16.255.8:8251/vnflcm/v2/vnf_lcm_op_occs/457736f0-c877-4e07-8055-39dd406c616b"
}

}
}

The corresponding grant returned may look like the following:
{

"id": "grant-0b7d3420-e6ee-4037-b116-18808dea4e2a",
"vnfInstanceId": "14924fca-fb10-45da-bcf5-59c581d675d8",
"vnfLcmOpOccId": "457736f0-c877-4e07-8055-39dd406c616b",
"addResources": [

{
"resourceDefinitionId": "res-1abb1609-a1f3-418a-a7a0-2692a5e53311",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

},
{

"resourceDefinitionId": "res-c5ece35c-89e3-4d29-b594-ee9f6591f061",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

},
{

"resourceDefinitionId": "res-e88d8461-5f5a-4dba-af14-def82ce894e5",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

}
],
"vimAssets": {

"computeResourceFlavours": [
{

"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c",
"vimFlavourId": "Automation-Cirros-Flavor",
"vnfdVirtualComputeDescId": "vdu1"

}
],
"softwareImages": [

{
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c",
"vimSoftwareImageId": "Automation-Cirros-DHCP-2-IF",
"vnfdSoftwareImageId": "vdu1"

}
]

},
"vimConnections": {
"default_openstack_vim": {

Managing VNF Lifecycle Operations
9

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

"vimId": "default_openstack_vim",
"vimType": "OPENSTACK",
"accessInfo": {

"vim_project": "admin"
}

}
},
"zones": [

{
"id": "zone-c9f79460-7a23-43e4-bb6d-0683e2cdb3d4",
"vimConnectionId": "default_openstack_vim",
"zoneId": "default"

},
{

"id": "zone-4039855e-a2cb-48f8-996d-b328cdf9889a",
"vimConnectionId": "default_openstack_vim",
"zoneId": "nova"

}
],
"_links": {

"self": {
"href":

"http://localhost:8280/grant/v1/grants/grant-0b7d3420-e6ee-4037-b116-18808dea4e2a"
},
"vnfInstance": {

"href": "https://172.16
.255.8:8251/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"

},
"vnfLcmOpOcc": {

"href":
"https://172.16.255.8:8251/vnflcm/v1/vnf_lcm_op_occs/457736f0-c877-4e07-8055-39dd406c616b"

}
}

}

The grant request is accepted only if all the requested resources have been granted, else the grant is rejected.

Querying Virtual Network Functions
Querying VNFs does not affect the state of any VNF instance. This operation simply queries ESC for all the
VNF instances it knows about, or a specific VNF instance.

Method Type:
GET

VNFM Endpoint:
/vnf_instances/vnf_instances/{vnfInstanceId}

HTTP Request Header:
Content-Type: application/json

Request Payload:
not applicable.

Response Headers:

< HTTP/1.1 200
HTTP/1.1 200
< X-Content-Type-Options: nosniff
X-Content-Type-Options: nosniff

Managing VNF Lifecycle Operations
10

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

< X-XSS-Protection: 1; mode=block
X-XSS-Protection: 1; mode=block
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Pragma: no-cache
Pragma: no-cache
< Expires: 0
Expires: 0
< X-Frame-Options: DENY
X-Frame-Options: DENY
< Strict-Transport-Security: max-age=31536000 ; includeSubDomains
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
< X-Application-Context: application:8250
X-Application-Context: application:8250
< Accept-Ranges: none
Accept-Ranges: none
< ETag: "2"
ETag: "2"
< Content-Type: application/json;charset=UTF-8
Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
Transfer-Encoding: chunked
< Date: Thu, 04 Jan 2018 12:25:32 GMT
Date: Thu, 04 Jan 2018 12:25:32 GMT

Response Body for a single VNF Instance (ETSI Data structure:VnfInstance)

The ETag response header is only returned for a single VNF query (that is, one with the VNF Instance ID
specified). The ETag value is conditionally used during any subsequent VNF modify operations.

Note

{
"_links": {
"instantiate": {
"href":

"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8/instantiate"

},
"self": {
"href":

"http://localhost:8250/vnflcm/v2/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"
}

},
"id": "14924fca-fb10-45da-bcf5-59c581d675d8",
"instantiationState": "NOT_INSTANTIATED",
"onboardedVnfPkgInfoId": "vnfpkg-bb5601ef-cae8-4141-ba4f-e96b6cad0f74",
"vnfInstanceName": "Test-VNf-Instance",
"vnfProductName": "vnfd-1VDU",
"vnfProvider": "Cisco",
"vnfSoftwareVersion": "1.1",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74",
"vnfdVersion": "2.1"

}

The query VNF operation output shows the instantiated state of the VNF. The InstantiatedVnfInfo element
shows the VIM resource information for all the VNFs.

For example:
{
"instantiatedVnfInfo": {

Managing VNF Lifecycle Operations
11

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

"extCpInfo": [
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.19"

],
"isDynamic": false,
"type": "IPV4"

}
],
"macAddress": "fa:16:3e:4b:f8:03"

},
"layerProtocol": "IP_OVER_ETHERNET"

}
],
"cpdId": "anECP",
"id": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f"

}
],
"extManagedVirtualLinkInfo": [
{
"id": "net-d39bc4de-285c-4056-8113-24eccf821ebc",
"networkResource": {
"resourceId": "my-network",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"

},
"vnfLinkPorts": [
{
"cpInstanceId": "vnfcCp-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed",
"cpInstanceType": "EXT_CP"
"id": "vnfLP-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed",
"resourceHandle": {
"resourceId": "926b7748-61d9-4295-b9ff-77fceb05589a",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"

}
}

],
"vnfVirtualLinkDescId": "my-network"

}
],
"extVirtualLinkInfo": {

"id": "extLP-4143f7d4-f581-45fc-a730-568435dfdb4f",
"resourceHandle": {

"resourceId": "d6a4c231-e77c-4d1f-a6e2-d3f463c4ff72"
},
"extLinkPorts": {

"id": "extLP-4143f7d4-f581-45fc-a730-568435dfdb4f",
"resourceHandle": {

"resourceId": "d6a4c231-e77c-4d1f-a6e2-d3f463c4ff72 "
}

},
"currentVnfExtCpData": [

{
"cpdId": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f",
"cpConfig": {

"vm1_nic0": {
"linkPortId": "extLP-4143f7d4-f581-45fc-a730-568435dfdb4f"
}

}
}

Managing VNF Lifecycle Operations
12

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

]
}

"id": "extVL-b9bd55a9-4bd9-4ad8-bf67-ba1e7b82aca6",
"resourceHandle": {
"resourceId": "anECP",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"

}
}

],
"flavourId": "bronze",
"scaleStatus": [
{
"aspectId": "default_scaling_aspect",
"scaleLevel": 1

}
],
"vnfState": "STARTED",
"vnfcResourceInfo": [
{
"computeResource": {
"resourceId": "a21f0b15-ec4b-4968-adce-1ccfad118caa",
"vimConnectionId": "default_openstack_vim"

},
"id": "res-89a669bb-fef4-4099-b9fe-c8d2e465541b",
"vduId": "vdu_node_1",
"vnfcCpInfo": [
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.19"

],
"isDynamic": false,
"type": "IPV4"

}
],
"macAddress": "fa:16:3e:4b:f8:03"

},
"layerProtocol": "IP_OVER_ETHERNET"

}
],
"cpdId": "node_1_nic0",
"id": "vnfcCp-c09d5cf2-8727-400e-8845-c4d5cb479db8",
"vnfExtCpId": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f"

},
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.16"

],
"isDynamic": false,
"type": "IPV4"

}
],
"macAddress": "fa:16:3e:94:b3:91"

},

Managing VNF Lifecycle Operations
13

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

"layerProtocol": "IP_OVER_ETHERNET"
}

],
"cpdId": "node_1_nic1",
"id": "vnfcCp-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed"

}
]

}
]

}
}

Selecting Attributes for VNF Query

You can select the attributes to appear in the VNF Query response using the attribute selector. You can mark
the attributes for including or excluding from a query. You can exclude some of the attributes that are not
required, for example attributes with a lower bound of zero on their cardinality (e.g. 0..1, 0..N) and that are
not mandatory (subject to certain conditions).

By selecting only the necessary attributes in the query reduces the amount of data exchanged over the interface
and processed by the API consumer application.

The table lists the URI query parameters for selecting attributes for the GET Request.

Table 1: Selecting Attributes for GET Request

DefinitionParameter

Requests all complex attributes included in the response, including those
suppressed by exclude_default. It is opposite to the exclude_default parameter.
The API producer supports the all_fields parameter for certain resources.

The complex attributes are structured attributes or arrays.Note

all_fields

Requests to include only the listed complex attributes in the response.

The parameter is formatted as a list of attribute names. An attribute name can
either be the name of an attribute, or a path consisting of the names of multiple
attributes with parent-child relationship, separated by "/". The attribute names
in the list can be separated by comma (","). The valid attribute names for a
particular GET request are the names of all complex attributes in the expected
response that have a lower cardinality bound of 0 and that are not conditionally
mandatory.

The API producer supports the fields parameter for certain resources. The details
are defined in the clauses specifying the actual resources.

The "/" and "~" characters in attribute names in an attribute selector will be
escaped according to the IETF standards.

The "," character in attribute names in an attribute selector will be escaped by
replacing it with "~a".

Further, percent-encoding applies to the characters that are not allowed in a
URI query part according to the IETF standards.

fields

Managing VNF Lifecycle Operations
14

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

DefinitionParameter

Requests to exclude the listed complex attributes from the response. For the
format, eligible attributes and support by the API producer, the provisions
defined for the "fields" parameter will apply.

exclude_fields

Requests to exclude a default set of complex attributes from the response. Not
every resource has a default set. Only complex attributes with a lower cardinality
bound of zero that are not conditionally mandatory can be included in the set.

The API producer supports this parameter for certain resources.

The exclude_default parameter is a flag and has no value.

If a resource supports attribute selector, and none of the attribute selector
parameters is specified in a GET request, then the exclude_default parameter
becomes the default. To emulate the original behaviour of GET Request, you
can either supply the all_fields flag or set the ETSI property
attribute.selector.default.all_fields to true which changes the behaviour, when
no attribute selectors are provided, to all_fields.

exclude_default

The GET Response validates the parameter combinations in the GET Request.The table defines the valid
parameter combinations.

Table 2: Parameter combinations for Get Response

GET ResponseParameter Combination

Includes same as exclude_default.(none)

Includes all the attributes.all_fields

Includes all the attributes except all complex attributes
with minimum cardinality of zero that are not
conditionally mandatory, and that are not provided
in <list>.

fields=<list>

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory, and that are provided in
<list>.

exclude_fields=<list>

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory, and that are part of the
default exclude set defined in the present document
for the particular resource.

exclude_default

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory and that are part of the
default exclude set defined in the present document
for the particular resource, but that are not part of
<list>.

exclude_default and fields=<list>

Managing VNF Lifecycle Operations
15

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

The GET Request for resources such as VNF Instances, VNF LCM Operation Occurrences, and PM Jobs
supports the selection of attributes.

Table 3: Resources supporting the selection of attributes

DescriptionCardinalityName

VNF Instances

Indicates to exclude the following
complex attributes from the
response.

The following attributes are
excluded from the VnfInstance
structure in the response body if
this parameter is provided, or none
of the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• vnfConfigurableProperties

• vimConnectionInfo

• instantiatedVnfInfo

• metadata

• extension

0..1exclude_default

VNF LCM operation occurrences

The following attributes are
excluded from the VnfLcmOpOcc
structure in the response body if
this parameter is provided, or none
of the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• operationParams

• error

• resourceChanges

• changedInfo

• changedExtConnectivity

0..1exclude_default

PM Jobs

Managing VNF Lifecycle Operations
16

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

DescriptionCardinalityName

The following attributes are
excluded from the PmJob structure
in the response body if this
parameter is provided, or none of
the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• Reports

0..1exclude_default

For information on VNF lifecycle operations, see VNF Lifecycle Operations, on page 2.

Modifying Virtual Network Functions
You can modify or update the properties of a VNF instance, which is in the NOT_INSTANTIATED state,
using the modify VNF lifecycle operation. ESC receives a PATCH request from NFVO to modify a single
VNF instance.

A JSONmerge algorithm is applied from the input payload against the stored data to modify the VNF instance.

Modifying VNF operation updates only the properties, but not the functionality of the VNF. The modify
operation is only valid on a VNF instance resource that is NOT_INSTANTIATED.

Note

The following properties of an existing VNF instance can be modified:

• vnfInstanceName

• vnfInstanceDescription

• onboardedVnfPkgInfoId (null value is not allowed)

• vnfConfigurableProperties

• metadata

• extensions

• vimConnectionInfo

Method Type
PATCH

VNFM Endpoint
/vnf_instances/{vnfInstanceId}

HTTP Request Header
Content-Type: application/merge-patch+json
If-Match: ETag value

Managing VNF Lifecycle Operations
17

Managing VNF Lifecycle Operations
Modifying Virtual Network Functions

The ETag, if specified, is validated against the ETag value stored against the VNF instance resource. If the
values do not match, the modify request will be rejected.

Note

Request Payload (ETSI data structure: VnfInfoModifications)
{

"vnfInstanceName": "My NEW VNF Instance Name",
"vnfInstanceDescription": "My NEW VNF Instance Description",

"vnfConfigurableProperties": {
"isAutoscaleEnabled": "true"

},
"metadata": {

"serialRange": "ab123-cc331",
"manufacturer": "Cisco"

},
"extensions": {

"testAccess": "false",
"ipv6Interface": "false"

},
"vimConnectionInfo": {
"default_openstack_vim": {

"vimType": "openstack",
"interfaceInfo": {

"uri": "http://172.16.14.27:35357/v3"
},
"accessInfo": {

"domainName": "default",
"projectName": "admin",
"userName": "default"

}
}

}
}

The Grant response from the NFVO provides the vimConnectionInfo instead of the SOL002 payload. The
SOL002 request contains some attributes that affect the VNF resource at a finer VNFC-level such as
vnfcInfoModifications. See SOL002 on the ETSI website for more details.

Note

Response Header:
not applicable.

Response Body:
not applicable.

When the PATCH operation is complete, the VNF instance is modified, and the details are sent to the NFVO
through the notification.

Operating Virtual Network Functions
You can start or stop a VNF instance using the operate lifecycle management operation. The VNF instance
can be stopped gracefully or forcefully.

Managing VNF Lifecycle Operations
18

Managing VNF Lifecycle Operations
Operating Virtual Network Functions

The OpenStack API supports only forceful stop.Note

The changeStateTo field must have the value STARTED or STOPPED in the request payload, to start or stop
a VNF instance.

Permission is also required from the NFVO (bi-directional Grant flow) for this operation. See Requesting
Grant Permission for more informaiton.

Method Type:
POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/operate

HTTP Request Headers:

Content-Type:application/json

Response Headers:

HTTP/1.1 202
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v2/vnf_lcm_op_occs/e775aad5-8683-4450-b260-43656b6b13e9
Content-Length: 0
Date: Thu, 04 Jan 2018 12:40:27 GMT

Response Body:
not applicable.

Terminating Virtual Network Functions
The terminating VNF request terminates a VNF instance. The resources are deallocated but remain reserved
for this instance until it is deleted. Permission is required from the NFVO (bi-directional Grant flow) for this
operation. The VNF instance can be decommissioned gracefully or forcefully.

The OpenStack API supports only forceful termination.Note

As per the Instantiate VNF Request, the terminate VNF request requires the VNF instance identifier encoded
into the URL to which the request is posted.

Method Type:
POST

VNFM Endpoint:

Managing VNF Lifecycle Operations
19

Managing VNF Lifecycle Operations
Terminating Virtual Network Functions

/vnf_instances/{vnfInstanceId}/terminate

HTTP Request Headers:
Content-Type:application/json

Request Payload (ETSI data structure: TerminateVnfRequest)

{
"terminationType":"FORCEFUL",
}

Response Headers:

HTTP/1.1 202
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v2/vnf_lcm_op_occs/dae25dbc-fcde-4ff9-8fd6-31797d19dbc1
Content-Length: 0
Date: Thu, 04 Jan 2018 12:45:59 GMT

Response Body:
not applicable.

Deleting Virtual Network Function Resource Identifier
Deleting VNF operation releases the VIM resources reserved for the VNF instance as well as deletes the VNF
instance identifier. Upon deletion, the VNF instance identifier is no longer available. So, no further lifecycle
management operations are possible using this identifier.

Method Type:
DELETE

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}

HTTP Request Headers:
Content-Type:application/json

Request Payload:
not applicable.

Response Headers:

HTTP/1.1 204
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST

Managing VNF Lifecycle Operations
20

Managing VNF Lifecycle Operations
Deleting Virtual Network Function Resource Identifier

Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Date: Thu, 04 Jan 2018 12:48:59 GMT

Response Body:
not applicable.

Managing VNF Lifecycle Operations
21

Managing VNF Lifecycle Operations
Deleting Virtual Network Function Resource Identifier

Managing VNF Lifecycle Operations
22

Managing VNF Lifecycle Operations
Deleting Virtual Network Function Resource Identifier

	Managing VNF Lifecycle Operations
	Managing the VNF Lifecycle
	VNF Lifecycle Operations
	Creating the VNF Identifier
	Instantiating Virtual Network Functions
	Querying Virtual Network Functions
	Modifying Virtual Network Functions
	Operating Virtual Network Functions
	Terminating Virtual Network Functions
	Deleting Virtual Network Function Resource Identifier

