
Deploying Virtual Network Functions on
OpenStack

• Deploying Virtual Network Functions on OpenStack, on page 1
• Deploying VNFs on Multiple OpenStack VIMs, on page 5

Deploying Virtual Network Functions on OpenStack
This section describes several deployment scenarios for Elastic Services Controller (ESC) and the procedure
to deploy VNFs. The following table lists the different deployment scenarios:

AdvantagesResourcesDescriptionScenarios

• The images and
flavors can be used
in multiple VNF
deployments.

• You can delete
resources (images,
flavors, and
volumes) created by
ESC.

Images and Flavors are
created through ESC
using NETCONF/REST
APIs.

The deployment data
model refers to the images
and flavors created and
then deploys VNFs.

Deploying VNFs on a
single VIM by creating
images and flavors
through ESC

• The images, flavors,
volumes, ports can
be used in multiple
VNF deployments.

• You cannot delete
resources that are not
created by through
ESC.

Images, Flavors,
Volumes, and Ports are
not created through ESC.

The deployment data
model refers to the
out-of-band images,
flavors, volumes, and
ports in OpenStack and
then deploys VNFs.

Deploying VNFs on a
single VIM using
out-of-band images,
flavors, volumes, and
ports

Deploying Virtual Network Functions on OpenStack
1



AdvantagesResourcesDescriptionScenarios

You can specify the VIM
(to deploy VMs) that
needs to be configured in
ESCwithin a deployment.

Images, Flavors, VIM
projects (specified in the
locators) and Networks
are not created through
ESC. They must exist
out-of-band in the VIM.

The deployment data
model refers to
out-of-band images,
flavors, networks and
VIM projects and then
deploys VNFs.

Deploying VNFs on
multiple VIMs using
out-of-band resources

To deploy VNFs on multiple OpenStack VIMs, see Deploying VNFs on Multiple OpenStack VIMs.

Deploying VNFs on a Single OpenStack VIM
The VNF deployment is initiated as a service request either originating from the ESC portal or the northbound
interfaces. The service request comprises of XML payloads. ESC supports the following deployment scenarios:

• Deploying the VNFs by creating images, and flavors through ESC

• Deploying the VNFs using out-of-band images, flavors, volumes, and ports

Before you deploy the VNFs, you must ensure that the images, flavors, volumes, and ports are available on
OpenStack, or you must create these resources. For more details on creating images, flavors, and volumes
see Managing Resources Overview.

In a deployment, the out-of-band port must be created by the same tenant as the deployment. For more details
on configuring ports, see Interface Configurations in the Cisco Elastic Services Controller Administration
Guide.

To deploy VMs on multiple VIMs, see Deploying VNFs on Multiple OpenStack VIMs.

During a deployment, ESC looks for the deployment details in the deployment datamodel. Formore information
on the deployment data model, see Cisco Elastic Services Controller Deployment Attributes. If ESC is unable
to find the deployment details for a particular service, it uses the existing flavors and images under the vm_group
to continue the deployment. If ESC is unable to find the image and flavor details, the deployment fails.

You can also specify the subnet that is used for a network. The deployment data model introduces a new
subnet attribute to specify the subnet. See the Cisco Elastic Services Controller Deployment Attributes for
more details.

Important

When a SERVICE_UPDATE configuration fails, the minimum andmaximum number of VMs change causing
a scale in or scale out. ESC cannot rollback the minimum or maximum number of VMs in the configuration
because of errors caused on OpenStack. The CDB (an ESC DB) would be out of synchronization. In this case,
another SERVICE_UPDATE configuration must be performed to do a manual rollback.

Note

For deployments on OpenStack, the UUID or name can be used to refer to the image and flavor. The name
has to be unique on the VIM. If there are multiple images with the same name, the deployment cannot identify
the right image and the deployment fails.

All deployment and ESC event notifications show tenant UUID. For example:

Deploying Virtual Network Functions on OpenStack
2

Deploying Virtual Network Functions on OpenStack
Deploying VNFs on a Single OpenStack VIM

http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html


<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2016-01-22T15:14:52.484+00:00</eventTime>
<escEvent xmlns="http://www.cisco.com/esc/esc">
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>VIM Driver: VM successfully created,
VM Name:

[SystemAdminxyz_abc_NwDepMod1_0_5e6b7957-20e7-4df9-9113-e5fc8c047e91]</status_message>
<depname>test_NwDepModVmGrp1</depname>
<tenant>admin</tenant>
<tenant_id>62cd11f560b44bf5815eaad41fc94c80</tenant_id>

</event>

Reboot Time Parameter
A reboot time parameter is introduced in the deployment request. This provides more granular control to the
reboot wait time of recovery in a deployment. In a deployment, when the VM reboots, the monitor is set with
the reboot time. If the reboot time expires before receiving the VM ALIVE event, the next action such as
VM_RECOVERY_COMPLETE, or undeploy is performed.

The bootup time is used, if the reboot time is not provided.Note

The data model change is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">

<tenants>
<tenant>

<name>tenant</name>
<deployments>

<deployment>
<name>depz</name>
<vm_group>

<name>g1</name>

<flavor>Automation-Cirros-Flavor</flavor>
<reboot_time>30</reboot_time>
<recovery_wait_time>10</recovery_wait_time>
<interfaces>

<interface>
<nicid>0</nicid>
<port>pre-assigned_IPV4_1</port>
<network>my-network</network>

</interface>
</interfaces>
<kpi_data>

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<nicid>0</nicid>
<type>ICMPPing</type>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

Deploying Virtual Network Functions on OpenStack
3

Deploying Virtual Network Functions on OpenStack
Reboot Time Parameter



</metric_collector>
</kpi>

</kpi_data>
<rules>

<admin_rules>
<rule>

<event_name>VM_ALIVE</event_name>
<action>ALWAYS log</action>
<action>TRUE servicebooted.sh</action>
<action>FALSE recover autohealing</action>

</rule>
</admin_rules>

</rules>
<config_data />
<scaling>

<min_active>1</min_active>
<max_active>2</max_active>
<elastic>true</elastic>

</scaling>
<recovery_policy>

<recovery_type>AUTO</recovery_type>
<action_on_recovery>REBOOT_ONLY</action_on_recovery>
<max_retries>1</max_retries>

</recovery_policy>
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

</esc_datamodel>

Sample notification is as follows:
20:43:48,133 11-Oct-2016 WARN ===== SEND NOTIFICATION STARTS =====
20:43:48,133 11-Oct-2016 WARN Type: VM_RECOVERY_INIT
20:43:48,134 11-Oct-2016 WARN Status: SUCCESS
20:43:48,134 11-Oct-2016 WARN Status Code: 200
20:43:48,134 11-Oct-2016 WARN Status Msg: Recovery event for
VM [dep-12_CSR1_c_0_37827511-be08-4702-b0bd-1918cb995118] triggered.
20:43:48,134 11-Oct-2016 WARN Tenant: gilan-test-5
20:43:48,134 11-Oct-2016 WARN Service ID: NULL
20:43:48,134 11-Oct-2016 WARN Deployment ID: f6ff8164-fe6d-4589-84fa-f39d676e9231
20:43:48,134 11-Oct-2016 WARN Deployment name: dep-12
20:43:48,134 11-Oct-2016 WARN VM group name: CSR1_cirros
20:43:48,134 11-Oct-2016 WARN VM Source:
20:43:48,134 11-Oct-2016 WARN VM ID: 90d2066c-9a07-485b-8f72-b51026a62922
20:43:48,134 11-Oct-2016 WARN Host ID:
69c3fba0a5b5ffff211bd05b9da7e2130d98d005a9bef71ace7d09ff
20:43:48,134 11-Oct-2016 WARN Host Name: my-server
20:43:48,134 11-Oct-2016 WARN [DEBUG-ONLY] VM IP: 192.168.0.75;
20:43:48,135 11-Oct-2016 WARN ===== SEND NOTIFICATION ENDS =====
20:43:56,149 11-Oct-2016 WARN
20:43:56,149 11-Oct-2016 WARN ===== SEND NOTIFICATION STARTS =====
20:43:56,149 11-Oct-2016 WARN Type: VM_RECOVERY_REBOOT
20:43:56,149 11-Oct-2016 WARN Status: SUCCESS
20:43:56,149 11-Oct-2016 WARN Status Code: 200
20:43:56,150 11-Oct-2016 WARN Status Msg: VM
[dep-12_CSR1_c_0_37827511-be08-4702-b0bd-1918cb995118] is rebooted.
20:43:56,150 11-Oct-2016 WARN Tenant: gilan-test-5
20:43:56,150 11-Oct-2016 WARN Service ID: NULL
20:43:56,150 11-Oct-2016 WARN Deployment ID: f6ff8164-fe6d-4589-84fa-f39d676e9231
20:43:56,150 11-Oct-2016 WARN Deployment name: dep-12
20:43:56,150 11-Oct-2016 WARN VM group name: CSR1_cirros
20:43:56,150 11-Oct-2016 WARN VM Source:
20:43:56,151 11-Oct-2016 WARN VM ID: 90d2066c-9a07-485b-8f72-b51026a62922

Deploying Virtual Network Functions on OpenStack
4

Deploying Virtual Network Functions on OpenStack
Reboot Time Parameter



20:43:56,151 11-Oct-2016 WARN Host ID:
69c3fba0a5b5ffff211bd05b9da7e2130d98d005a9bef71ace7d09ff
20:43:56,151 11-Oct-2016 WARN Host Name: my-server
20:43:56,152 11-Oct-2016 WARN [DEBUG-ONLY] VM IP: 192.168.0.75;
20:43:56,152 11-Oct-2016 WARN ===== SEND NOTIFICATION ENDS =====
20:44:26,481 11-Oct-2016 WARN
20:44:26,481 11-Oct-2016 WARN ===== SEND NOTIFICATION STARTS =====
20:44:26,481 11-Oct-2016 WARN Type: VM_RECOVERY_COMPLETE
20:44:26,481 11-Oct-2016 WARN Status: FAILURE
20:44:26,481 11-Oct-2016 WARN Status Code: 500
20:44:26,481 11-Oct-2016 WARN Status Msg: Recovery: Recovery completed with errors

Deploying VNFs on Multiple OpenStack VIMs
You can deploy VNFs on multiple VIMs of the same type using ESC. ESC supports deploying VNFs on
multiple OpenStack VIMs. To deploy VMs on a single instance of OpenStack, seeDeploying Virtual Network
Functions on OpenStack, on page 1.

To deploy VNFs on multiple VIMs, you must:

• Configure the VIM connector and its credentials

• Create a tenant within ESC

AVIM connector registers the VIM to ESC. To deploy VNFs on multiple VIMs, you must configure the VIM
connector and its credentials for each instance of the VIM. You can configure a VIM connector either at the
time of installation using the bootvm.py parameters, or using the VIM connector APIs. A default VIM connector
is used for a single VIM deployment. For multi VIM deployment, the locator attribute is used to specify the
VIM connector.

Typically an ESC, which supports multi VIM deployment has,

• a default VIM on which ESC creates and manages resources,

• and a non-default VIM on which only deployments are supported.

For more details, see Managing VIM Connectors.

A root tenant in the data model hierarchy, which is a tenant within ESC (with the vim_mapping attribute set
to false), and an out-of-band VIM tenant placed within the locator attribute must be available for deploying
VNFs on multiple VIMs. If the root tenant does not exist, ESC can create a tenant during the multiple VIM
deployment itself. You can create more than one ESC tenant. A user can use more than one tenant for multiple
VIMs. For more information, see Managing Tenants.

In a multiple VIM deployment, you can specify the target VIM for each VM group. You can deploy each VM
group on a different VIM, but the VMs within the VM group are deployed on the same VIM.

You must add a locator attribute to the VM group in the data model to enable multiple VIM deployment. The
locator node consists of the following attributes:

If the locator attribute is present in the deployment, then the VMs are deployed on the VIM specified in the
locator. If the locator attribute is not present in the deployment, then the VMs are deployed on the default
VIM. If the default VIM is also not present, then the request is rejected.

Note

Deploying Virtual Network Functions on OpenStack
5

Deploying Virtual Network Functions on OpenStack
Deploying VNFs on Multiple OpenStack VIMs

Cisco-Elastic-Services-Controller-User-Guide-5-6_chapter6.pdf#nameddest=unique_44
Cisco-Elastic-Services-Controller-User-Guide-5-6_chapter3.pdf#nameddest=unique_29


• vim_id—the vim id of the target VIM. ESC defines the vim_id and maps it to the vim_connector id. The
vim connector must exist before deploying to the VIM specified by the vim_id.

• vim_project—the tenant name created in target VIM. This is an out-of-band tenant or project existing
in OpenStack.

ESC supports only out-of-band resources (pre-existing resources) such as ports, images, flavors and volumes
in a multi VIM deployment. The out of band port must be created by the same tenant as the deployment.

However, multi VIM deployment supports creating only ephemeral volumes using the locator attribute on a
non-default VIM. Other resources cannot be created on a non-default VIM.

Recovery of VMs, scale in and scale out of VMs are supported within the same VIM on which the VMs are
deployed. The VMs cannot scale or recover on different VIMs.

Note

In the example below, the esc-tenant is a tenant within ESC. There is no mapping to the VIM tenant, and the
VMs are not deployed on this esc-tenant. The vim_project, project-test-tenant (within the locator attribute),
which is created out-of-band is the tenant on which the VMs are deployed.

<tenants>
<tenant>

<name>esc-tenant</name>
<deployments>

<deployment>
<name>dep-1</name>
<vm_group>

<name>group-1</name>
<locator>

<vim_id>vim-1</vim_id>
<vim_project>project-test-tenant</vim_project>

</locator>
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

You can deploy VNFs on a single VIM as well with the locator attribute. That is, the datamodel with the
locator attribute can also be used for deploying VMs on a single OpenStack VIM. To deploy without the
locator attribute (ESC Release 2.x data model), see Deploying VNFs on a Single OpenStack VIM, on page
2.

The deployment data model is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc" xmlns:ns0="http://www.cisco.com/esc/esc"
xmlns:ns1="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:ns2="urn:ietf:params:xml:ns:netconf:notification:1.0"
xmlns:ns3="http://www.cisco.com/esc/esc_notifications">

<tenants>
<tenant>

<name>test-esc-tenant1</name>
<deployments>

<deployment>
<name>dep-1</name>
<vm_group>

<name>g1</name>
<locator>

Deploying Virtual Network Functions on OpenStack
6

Deploying Virtual Network Functions on OpenStack
Deploying VNFs on Multiple OpenStack VIMs



<vim_id>vim1</vim_id>
<vim_project>project-test</vim_project>

</locator>
<bootup_time>150</bootup_time>
<recovery_wait_time>30</recovery_wait_time>
<flavor>Automation-Cirros-Flavor</flavor>

<interfaces>

<interface>
<nicid>0</nicid>
<network>my-network</network>

</interface>
</interfaces>
<scaling>

<min_active>1</min_active>
<max_active>1</max_active>
<elastic>true</elastic>

</scaling>
<kpi_data>

<kpi>
<event_name>VM_ALIVE</event_name>
<metric_value>1</metric_value>
<metric_cond>GT</metric_cond>
<metric_type>UINT32</metric_type>
<metric_collector>

<type>ICMPPing</type>
<nicid>0</nicid>
<poll_frequency>3</poll_frequency>
<polling_unit>seconds</polling_unit>
<continuous_alarm>false</continuous_alarm>

</metric_collector>
</kpi>

</kpi_data>
<rules>

<admin_rules>
<rule>

<event_name>VM_ALIVE</event_name>
<action>ALWAYS log</action>
<action>TRUE servicebooted.sh</action>
<action>FALSE recover autohealing</action>

</rule>
</admin_rules>

</rules>
<config_data />

</vm_group>
</deployment>

</deployments>
</tenant>

</tenants>
</esc_datamodel>

A sample multiple VIM deployment data model using out-of-band resources, and creating a root tenant as
part of the deployment:
<esc_datamodel>

<tenants>
<tenant>

<!-- This root level tenant is an ESC tenant either previously created or created
here marked by vim_mapping atrribute. -->

<name>esc-tenant-A</name>
<vim_mapping>false</vim_mapping>
<deployments>

<deployment>
<name>dep-1</name>
<vm_group>

Deploying Virtual Network Functions on OpenStack
7

Deploying Virtual Network Functions on OpenStack
Deploying VNFs on Multiple OpenStack VIMs



<name>Grp-1</name>
<locator>

<vim_id>SiteA</vim_id>
<!-- vim_project: OOB project/tenant that should already exist

in the target VIM -->
<vim_project>Project-X</vim_project>

</locator>
<!-- All other details in vm group remain the same. -->
<flavor>Flavor-1</flavor>


...

...
</vm_group>

</deployment>
</deployments>

</tenant>
</tenants>

</esc_datamodel>

All the VIMs specified in amulti VIM deployment must be configured and in CONNECTION_SUCCESSFUL
status for the request to be accepted by ESC. If a VIM specified in the deployment is unreachable or in any
other status, the request is rejected.

You can apply the affinity and anti-affinity rules for VMs in a multiple VIM deployment. For more information,
see Affinity and Anti-Affinity Rules on OpenStack.

Multi VIM deployment supports recovery using the Lifecycle Stages (LCS). For more information on supported
LCS, see Recovery Policy (Using the Policy Framework). You can update an existing multi VIM deployment.
However, the locator attribute within the VM group cannot be updated. For more information on updating an
existing deployment, see Updating an Existing Deployment.

Deploying Virtual Network Functions on OpenStack
8

Deploying Virtual Network Functions on OpenStack
Deploying VNFs on Multiple OpenStack VIMs

Cisco-Elastic-Services-Controller-User-Guide-5-6_chapter26.pdf#nameddest=unique_86
Cisco-Elastic-Services-Controller-User-Guide-5-6_chapter39.pdf#nameddest=unique_87
Cisco-Elastic-Services-Controller-User-Guide-5-6_chapter30.pdf#nameddest=unique_88

	Deploying Virtual Network Functions on OpenStack
	Deploying Virtual Network Functions on OpenStack
	Deploying VNFs on a Single OpenStack VIM
	Reboot Time Parameter


	Deploying VNFs on Multiple OpenStack VIMs


