
Form Rule and ISF JavaScripts UseCase Analysis

This appendix contains the following topics:

• Form Rule and ISF JavaScripts Use Case Analysis, page 1

Form Rule and ISF JavaScripts Use Case Analysis
In a complex service catalog you can easily have hundreds of instances where active form rules or ISF functions
are used to enhance the service form’s usability and interactivity.

1 Perform a use case analysis in order to determine what rules are required and when they will fire.
2 Perform a detailed design analysis to determine what dictionaries and fields are needed to support the

specified use cases; how the dictionaries should be combined into forms; and what tools you will need to
implement the requirements.

3 Define the dictionaries and forms. Specify the display and access control properties of the forms.
4 Write active form rules and sequence these to meet the detail design criteria. If required, write JavaScript

functions and libraries; attach the functions to the appropriate HTML event or events.
5 Define the services which use the reusable form components previously defined.
6 Test and make fixes as required.

This section includes some examples of both rules and ISF code integrated into a service form, and the sorts
of implementation decisions made to meet the requirements. These examples illustrate some common design
patterns, such as:

• Adjust the appearance or behavior of dictionaries based on a specific task

• Show/hide dictionaries or fields when a service form is loaded or when the user changes the value in
another field

• Manager lookup on change for Person fields

• Drill-Downs

• Ensure that Select Lists are populated during the delivery moment

• Hide dictionaries and clear fields if their value is not relevant to the current context

Cisco Prime Service Catalog 12.0 Designer Guide
1

Use Case Analysis
Review user requirements to determine when a service form’s default behavior and appearance need to be
supplemented by rules or ISF. While you may document these requirements discursively, a better format
might be a table which explicitly defines the behavior and its triggering events. An example is shown below.

Table 1: Example

MomentUse Case DescriptionService Name

OrderingIf a person is high profile, display
his status as read-only; if not, hide
the status

All

Where:

Service Name is either “all” or a list of the services which are affected by the requirement.

Use Case Description specifies, in language accessible to business users, the desired behavior of the service
form.

Moment is either “all” or one or more of the moments that occur during the fulfillment of a requisition.

Try to collect all the use cases for the current project, so you can estimate the scope of the work involved.

Detailed Design
In the detailed design phase the programmer must review the use cases previously defined and specify, at a
high level, the rules or JavaScript components that need to be written, and the triggering events for these
rules/functions. The design incorporates a detailed specification of the forms, dictionaries and fields involved.
In particular, the analysis should cover:

• Will you need to use ISF to supplement the form rules? If so, ensure that your development environment
is set up to support ISF (JavaScript) development, testing and debugging, and that personnel are available
with the requisite skill set.

• Will you need to use data retrieval rules or SQL option lists? If so, ensure that the development
environment includes a means to test and debug SQL queries; that datasources are defined to allow you
to access the desired data; and that personnel are available with knowledge of the structure of the source
data and the requisite skill set.

Scenario #1: Dynamically Adjusting Form Appearance and Behavior

Functional Requirements
In requesting a database to be created, the user must choose whether the database server type is Oracle,
SQLServer, or some “Other” database. If some other, nonenterprise standard database is chosen, additional
information must be gathered from the user; otherwise, the additional fields are hidden.

 Cisco Prime Service Catalog 12.0 Designer Guide
2

Form Rule and ISF JavaScripts UseCase Analysis
Use Case Analysis

Scenario:

Table 2: Dynamically Adjusting Form Appearance and Behavior

If so, display the Description field in the same
dictionary, and require the user to enter additional
information.

Is the current value of the DatabaseType field in the
Database dictionary equal to “Other”?

Dictionary/Form Design
Define a dictionary called, for example, NewDatabase.

• The dictionary includes a field named DatabaseType, rendered as a radio button which allows the user
to designate whether the database is Oracle, SQLServer, or Other.

• If the user selects “Other”, the type of database must be provided and is mandatory. Otherwise, this field
is hidden.

Detailed Rules Design
This use case can be implemented entirely through the use of conditional rules.

The AIT_DATABASE.DatabaseServer field needs rules which fires when the field's value is changed.

• If the value which the user selects is 'Other', a rule must display the “Other”-dependent dictionary fields
and ensure that all such fields are mandatory.

• If the value which the user selects is not 'Other', a rule must ensure that the “Other”-dependent fields are
not visible.

Unfortunately, this release of Service Catalog does not include if/then/else logic in the rules, so you will need
two rules to implement this design.

Conditional Rule Implementation
Define two conditional rules as follows:

Figure 1: Conditional Rule Implementation

Cisco Prime Service Catalog 12.0 Designer Guide
3

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #1: Dynamically Adjusting Form Appearance and Behavior

The Triggering Events
When should this rule be applied? In more technical terms, what is the “triggering event”, during the course
of a user entering data in the service form, when this rule should “fire”?
It seems obvious that the rule needs to be executed when the user selects a value from the DatabaseServer
radio button. So, use the Active Form Behavior tab for this form to associate these two rules with the “When
the field changes” event. In this case, it really doesn't matter what order the rules are applied in—either one
or the other will fire, but not both.

Build the Service Definition
To test this scenario, you need to complete the definition of the service which contains the active form you
have just defined. You could initially create a service containing just that form, for a quick-and-dirty test, but
this is clearly just a first step. Forms and their rules can interactive with other forms and their rules, so the
best test is the most realistic.

Test
It's easiest to test this scenario by using several browser windows. Keep Service Designer open in one, with
the Active Form Components option displayed. Then, start a new session, log in as a My Services user who
has permission to order the service. See what happens.

Testing Follow up and Results
The rule as previously defined should work correctly. However, the implementation is incomplete, as the
behavior is only triggered when the customer changes (or initially selects) the operating system. If the form
is saved and reviewed, or submitted and displayed in a subsequent system moment when the dictionary is
editable, the saved value of the DatabaseServer field must be used to adjust the appearance of the form.
Therefore, an additional triggering event is required, to fire when the form is loaded.

Scenario #2: Manipulating Customer and Initiator Information

Functional Requirements
Usage needs to take into account two different scenarios that affect the one Customer dictionary and the one
Customer-Initiator Form:

Scenario:

 Cisco Prime Service Catalog 12.0 Designer Guide
4

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #2: Manipulating Customer and Initiator Information

Table 3: Manipulating Customer and Initiator Information

Display the standard set of fields required for
collecting Customer information.

If the service is delivered electronically ...

In addition to the standard fields, display fields
pertaining to the Customer's location, as stored in the
Customer profile, but allow him/her to specify an
alternate service location, for example, if the location
on file is out of date or the customer is temporarily
at a different location.

If the service needs to be delivered to a specific
physical location ...

Dictionary Design
The design can be implemented using three dictionaries:

• Design the Customer dictionary so that it includes all of the fields that must be available in both types
of services—those fields that are always required and those that are required only when the requestor
must specify or confirm the location where the service must be delivered.

• Design a Perform Work dictionary that will only be displayed for services to be delivered in person.
The form has one field, which asks if the work is to be performed at the customer's location or a different
(service) location.

• Design a Service Location dictionary, to be filled in, by default, with the location information from the
Customer's profile, but which can be overridden if the requestor indicates that this is different than the
location in the profile.

Form Design
The Customer and Initiator dictionaries are typically read-only in all moments. That is, data is displayed from
the person's profile and cannot be changed by either the customer or any task performer.

There are at least three ways to make all fields in a dictionary read-only:

• Use the Access Control tab for the form to specify that the dictionary is viewable (not editable) for
appropriate moments and participants. This control cannot be overridden by either rules or ISF—a
viewable dictionary can be hidden, by it can't be made editable. And field values display as boilerplate,
rather than enclosed in input fields. (Q: Would lightweight namespaces work?)

• Make the dictionary editable in the Access Control tab, but define the default fields as having an HTML
input type of read-only and the location-related fields as having an input type of hidden. Both hidden
and read-only fields are supplied values from an associated lightweight namespace.

• Make the dictionary editable in the Access Control tab, assign appropriate input types to the standard
fields, but create a rule, applied when the form is loaded, to make All Fields in the dictionary read-only.
This rule would not affect any hidden fields.

Option #2 makes the most sense in this case. Fields could potentially be made writeable, for example, if users
are allowed to update out-of-date data from their person profile. And there is no extra rule to keep track off.
That takes care of the Customer-Initiator form.

Cisco Prime Service Catalog 12.0 Designer Guide
5

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #2: Manipulating Customer and Initiator Information

You also need a form in which the PerformWork and ServiceLocation dictionaries are used. Call this form
ServiceLocation. (Q: Naming conventions?) The field in the PerformWork dictionary can be implemented as
a check box? (Is work performed at the Customer Site?) The ServiceLocation dictionary would have fields
corresponding to the person fields included in the Customer dictionary.

Detailed Rules Design
Now you need a rule for the services where a service location is required. The rule is needed to:

• Copy the default location values from the Customer dictionary to the ServiceLocation dictionary. This
can be done in an onLoad event.

• If the user says that a different service location is needed, make the ServiceLocation fields writeable.
This needs to be done in an onChange event for the PerformWork field. (Q: Nomenclature, again).

The rules are included in the ServiceLocation form.

Conditional Rule Implementation
Does anybody else out there remember COBOL?Most of the time, coding in COBOL was painfully verbose,
but it had one really neat command: COPYCORR(esponding). The COPYCORR command copied all values,
by name, from one structure to values with corresponding names in a second structure. It would be great to
COPYCORRDictionary1 TODictionary2, but that is not possible. So, the first rule (ServiceLocation_onLoad)
should be applied in the ordering moment, and Copy Value for all location fields.

The second rule (PerformWork_onChange) is straightforward, reminiscent of the rule written in the initial
scenario.

Build the Service Definitions and Test
You'll need two services to test this scenario—one that doesn't include the ServiceLocation form, and one
that does.

Scenario #3: Securing Sensitive Data

Functional Requirements
The service requires the user to specify a Social Security Number, credit card information, or other sensitive
data that should be available only to people who “need to know”, not to every authorizer or task performer
involved in fulfilling the service. The data needs to be protected from attempted hacks as well.

Approach 1 – Hide the Dictionary and Fields
By default, when a dictionary's display property is set to “none” in Service Designer, the dictionary and the
values for any fields previously entered are not part of the generated service form seen by users. (This setting
may be overridden for backward compatibility with behavior of Service Catalog versions prior to 2007. Be
sure to check with your Service Catalog Administrator to verify the setting for dictionary.permission.none.show

 Cisco Prime Service Catalog 12.0 Designer Guide
6

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #3: Securing Sensitive Data

newScale property.) Therefore, the data in the field would not be visible, even to users savvy enough to view
the page source from the browser.

To allow the field value to be initially provided by the user, the field must (obviously) be visible on the form,
and the dictionary display setting set to Read/Write. The field's HTML representation can be set to “password”.
The field value will then be displayed as a series of asterisks.

Figure 2: Hide the Dictionary and Fields

So, the value is protected from people doing shoulder-surfing. If you view the source of the page, however,
the value of the field is visible. The value of the field is not accessible to ISF’s getValue() function—“undefined”
is returned. The value of the field is available to the DOM, that is, via JavaScript methods such as:

document.getElementById('Dictionary.PasswordField').value.
The value of the field is also accessible to Service Link.

Password field values are hidden from user when sent back to the browser, as in the case of reviewing an
existing request or performing a task with a password field value in the service form.

Approach 2 – Use Encryption
Encryption can be used in conjunction with some of the practices above to better secure sensitive data. Instead
of (or in addition to) using a password field, use JavaScript functions to encrypt the sensitive data before you
save it and decrypt it before displaying it on the form. An open-source algorithm on the web called “tiny
encryption algorithm” could be used.

// Algorithm: David Wheeler & Roger Needham, Cambridge University Computer Lab
// http://www.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html (1994)
// http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps (1997)
//
// JavaScript implementation: Chris Veness, Movable Type Ltd
If you define the function to encrypt/decrypt code in a Script, it would be visible in the form if the user did a
View Source. However, if you include the function in a library, it would not be visible to users who attempt
to view the source, and not subject to reverse engineering.

Approach 3 – Use Secure String

Approach 4– Use Server-side Rules
Data elements that are governed by entitlement or RBAC permissions should have values re-validated on the
server-side to prevent the breach of permissions by malicious attempts to manipulate form data before they

Cisco Prime Service Catalog 12.0 Designer Guide
7

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #3: Securing Sensitive Data

are sent to the server. Always enable the implicit validation for data retrieval rules unless the rules are executed
post-submission. See the Service Form Performance and Security Considerations section for more information.

Scenario #4: Computing a Value in a Form

Functional Requirements
The service requires the user to specify a “Quantity” and “Price” for an item to be ordered. The service should
compute the “Extended Price”, and show this value on the service form.

Dictionary/Form Design Requirements
A dictionary, call it SVC_PRICE, needs to be created, containing three Number fields. The fields may have
decimal precision or not, according to detailed requirements. The dictionary is included in the service form
and is writeable for the customer in the ordering moment. All fields are rendered as text fields.

ISF Detailed Design
The Total field needs to be read-only, since users are not allowed to enter a value—it must be computed. The
computation needs to take place when the user changes either the Price or the Quantity.

This task requires three custom events:

• The SVC_PRICE_onLoad event sets the ExtendedPrice field to be read-only.

• The SVC_PRICE_Quantity_onChange event computes the ExtendedPrice.

• The SVC_PRICE_Price_onChange event also computes the ExtendedPrice.

JavaScript Code and Events
The first task is better accomplished when the form loads the first time. To do this, create a function in Script
Manager called SVC_PRICE_onLoad:

SVC_PRICE_onLoad ()
{
serviceForm.SVC_PRICE.ExtendedPrice.setReadOnly(true);

}
This code is associated to the “When the form is loaded (browser-side)” event in the Behavior tab.
The second task is to compute the ExtendedPrice based on the Quantity and Price. Use the “When the item is
changed” event for both Quantity and Price. The code needs to verify that both fields have valid values, and
then compute the ExtendedPrice. The function is called SVCPRICE_Price_onChange.

SVC_PRICE_Price_onChange ()
{
serviceForm.SVC_PRICE.Total.setReadOnly(true);
var Price = serviceForm.SVC_PRICE.Price.getValue()[0];
var Quantity = serviceForm.SVC_PRICE.Quantity.getValue()[0];

/* Blank out current value (if any) of ExtendedPrice */
serviceForm.SVC_PRICE.Total.setValue(['']);

/* Check is required, since check for Numeric data happens only on Submit. */
if (isNaN (Price))

 Cisco Prime Service Catalog 12.0 Designer Guide
8

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #4: Computing a Value in a Form

CiscoPrimeServiceCatalog-12-0-DesignerGuide_chapter_0100.pdf#unique_71

{
alert ('Price is not a number');
serviceForm.SVC_PRICE.Price.setFocus(true);
return;

}
if (isNaN (Quantity))
{
alert ('Quantity is not a number');
serviceForm.SVC_PRICE.Quantity.setFocus(true);
return;

}
var Total = Price * Quantity;
serviceForm.SVC_PRICE.Total.setValue([Total]);

}

Refactored JavaScript Code
The code above, defined as a Script in Service Designer, could be attached to the onChange event for two
different fields: the Price and the Quantity. In fact, this may be an efficient way to initially test the code.
However, this approach, with a function name that doesn't reflect this usage and that doesn't use a library, is
harder to maintain in the long run. Therefore, the following refactoring is recommended:

• Edit the function code, renaming the function something generic, like “ComputeExtendedPrice”, and
extract the code from Scripts, placing it into a custom library for your application.

• Be sure the custom library is defined in Scripts > Libraries and that it is included in the service form
when this function is required.

• Create two Scripts, which look like the following:

SVC_PRICE_Price_onChange ()
{
ComputeExtendedPrice();

}
SVC_PRICE_Quantity_onChange ()
{
ComputeExtendedPrice();

}

• Attach these functions to the onChange events of the Price and Quantity fields, respectively.

• Remember to upload the revised library to the application server.

Scenario #5: Formatting Two Fields in a Form

Requirements
Create a JavaScript function to format two fields in a form: A social security number and a phone number.
The SSN must verify that there are 9 digits, and is formatted like “999-99-9999” Any formatting done by the
user is ignored. The phone number must have 10 digits and it is formatted like (999) 999-9999.

JavaScript
Create two functions, one called formatSSN and the other called formatPhoneNo. Put both functions in a
file called “isfprimerlib.js”. As documented in the ISF Coding and Best Practices, this file may reside on any

Cisco Prime Service Catalog 12.0 Designer Guide
9

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #5: Formatting Two Fields in a Form

CiscoPrimeServiceCatalog-12-0-DesignerGuide_chapter_0100.pdf#unique_124

directory on the application server beneath the RequestCenter.war directory; by convention, ISF libraries are
placed on a directory named “isfcode”.
Create a library reference to your JavaScript file in Script Manager. Be sure to specify the library in the
Libraries tab for a JavaScript function that are attached to your service.

The resulting code is:

function getOnlyDigits (inValue)
{
var outValue = '';
var aChar;
for (i=0; i < inValue.length; i++)
{
aChar = inValue.charAt (i);
if ('0' <= aChar && aChar <= '9')
{
outValue = outValue + aChar;

}
}
return outValue;

}
function testValueLength (inValue, inLen, obField, fieldName)
{
if ((inValue.length > inLen) || (inValue.length < inLen))
{
alert (fieldName + ' must have ' + inLen + ' digits and it has ' + inValue.length);
eval('serviceForm.'+obField).setFocus(true);
return false;

}
return true;

}
function formatSSN (obField)
{
var SSNString = getOnlyDigits (eval('serviceForm.'+obField).getValue()[0]);
if (testValueLength (SSNString, 9, obField, 'SSN'))
{

eval('serviceForm.'+obField).setValue([SSNString.slice (0,3) +
'-' + SSNString.slice (3,5) + '-' + SSNString.slice (5)]);

}
}
function formatPhoneNo (obField)
{
var phoneString = getOnlyDigits (eval('serviceForm.'+obField).getValue()[0]);
if (testValueLength (phoneString, 10, obField, 'Phone Number'))
{
eval('serviceForm.'+obField).setValue(['(' + phoneString.slice (0,3) + ') '
+ phoneString.slice (3,6) + '-' + phoneString.slice (6)]);

}
For the field SSN create a function called Customer_SSN_onChange
that calls formatSSN
:
Customer_SSN_onChange ()
{
formatSSN('Customer.SSN');

}
For the PhoneNo field, create another function called Customer_PhoneNo_onChange, that calls
formatPhoneNowhen the value in the field changes. Just to show an alternative implementation, these functions
pass the name of the field and acts “by-reference” rather than “by-value”.

Customer_PhoneNo_onChange ()
{
formatPhoneNo ('Customer.PhoneNo');

}
Both functions are called when the value in its respective field changes.

 Cisco Prime Service Catalog 12.0 Designer Guide
10

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #5: Formatting Two Fields in a Form

Server-Side Associated Controls
This section explains how to transfer service form data to and from an outside server through an HTTP request.
The purpose of this functionality is to allow the Service Designer to use Web widgets that reside on Web
servers separate from the application server. This section only deals with the actual transfer and handling of
the service form data.

The service form data is sent to the outside Web widget via an HTTP form post. The data is passed in the
wddxdataform form in the WDDXData variable as a WDDX packet. WDDX is an XML schema for storing
data structures in a serialized packet. This allows the data to be passed into or out of Service Catalog independent
of the programming language used. You can use an HTTP request to a Service Catalog page to place the
resulting data set back into the service form

Cisco Prime Service Catalog 12.0 Designer Guide
11

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #5: Formatting Two Fields in a Form

 Cisco Prime Service Catalog 12.0 Designer Guide
12

Form Rule and ISF JavaScripts UseCase Analysis
Scenario #5: Formatting Two Fields in a Form

	Form Rule and ISF JavaScripts UseCase Analysis
	Form Rule and ISF JavaScripts Use Case Analysis
	Use Case Analysis
	Detailed Design
	Scenario #1: Dynamically Adjusting Form Appearance and Behavior
	Functional Requirements
	Dictionary/Form Design
	Detailed Rules Design
	Conditional Rule Implementation
	The Triggering Events
	Build the Service Definition
	Test
	Testing Follow up and Results

	Scenario #2: Manipulating Customer and Initiator Information
	Functional Requirements
	Dictionary Design
	Form Design
	Detailed Rules Design
	Conditional Rule Implementation
	Build the Service Definitions and Test

	Scenario #3: Securing Sensitive Data
	Functional Requirements
	Approach 1 – Hide the Dictionary and Fields
	Approach 2 – Use Encryption
	Approach 3 – Use Secure String
	Approach 4– Use Server-side Rules

	Scenario #4: Computing a Value in a Form
	Functional Requirements
	Dictionary/Form Design Requirements
	ISF Detailed Design
	JavaScript Code and Events
	Refactored JavaScript Code

	Scenario #5: Formatting Two Fields in a Form
	Requirements
	JavaScript
	Server-Side Associated Controls

