
CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 18

Using the Job and Resource Manager

The Job and Resource Manager (JRM) provides a general-purpose interface that allows applications to:

• Schedule jobs—Jobs are general-purpose and application-defined.

• Lock resources by name—Resource locking is done by name and is advisory; that is, JRM is
intended to be a repository of the currently locked devices; it does not lock a device.

Note JRM locking is meant to aid cooperating applications so they can prevent simultaneously
updating the same device.

The following topics describe JRM and how to use it in your applications:

• Understanding JRM Services

• Understanding the JRM Architecture

• Enabling JRM

• Using JRM from a Java Application

• Using JRM from a Web Browser

• Customizing the Job Browser Button Behaviors

• Using JRM from the Command Line

• JRM Command Reference

For more information about the Job and Resource Manager, see the Job and Resource Management
Functional Specification (BG 1.0/Rigel), ENG 21104.

This document reflects the information found in Revision L of the JRM functional specification, Job and
Resource Management Functional Specification (BG 1.0/Rigel), ENG 21104. For the most recent
updates to the JRM, refer to the current release of this specification.
18-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding JRM Services
Understanding JRM Services
Applications that use Job and Resource Management services can schedule an activity, or job, to occur
based on several conditions, including:

• Launch readiness— Only one instance of a periodic job can be running at any given time. You need
to check whether the job been approved and enabled. Also whether there are any dependent jobs still
running. All dependent jobs must finish successfully or new jobs cannot start.

Using JRM, you can schedule a job to run pending approval. For example, device image update
operations are often scheduled by network administrators, but must be approved by a manager.

In this case, the network administrator can schedule an update, but it will be run by the time it is
scheduled to run only if it has been approved by a manager. Anyone on the list of authorized
approvers can review the jobs that require approval and either approve or reject them.

• Scheduling options—You can schedule jobs to run once or periodically.

Applications often provide users with the means to schedule a task for a given time. SWIM, for
example, lets the user specify when to update a device image. In this case, the application runs on a
server, downloads the image to the specified device, and reboots the device. Normally software
update tasks are run when the traffic on the device is minimal—for example, 2:00 a.m. Sunday
morning. Using JRM services, SWIM can let users schedule a job to run at a specific time.

Another application might need to periodically obtain and analyze device configuration information.
Using JRM services, the application can schedule a job to run once a day, once an hour, only on
Friday at 3:00 p.m., and so on. JRM also provides the functionality to browse the list of scheduled
jobs.

• Tracking job instances—JRM helps you track each instances of a recurring job separately. Each
instance of the execution of the job will have a unique entry in the job browser. Results of all
instances are retained and tracked through entries in the job browser. The instances and the results
can be individually purged. The purge policy applies to the instances rather than the entire job.

• Resource locks—A resource lock secures a device or device subnode, making it inaccessible for a
period of time while a job is performed. Resource locks provide a way to serialize access to a device.

Note JRM is intended to be a repository of the currently locked devices; it does not lock a device.
JRM locking is meant to aid cooperating applications so they can prevent simultaneously
updating the same device.

• Event notification—Job Management uses the Event Distribution System to post job state and
resource state events to other applications. Events can include when a job is started or when it ends;
when a job has been canceled, approved or rejected; when a resource has been locked or unlocked;
and so on.

JRM also provides job and resource lock attributes that allow applications to create their own customized
functionality.

The following topics describe how JRM schedules a job and locks resources:

• Managing JRM Services

• Scheduling Jobs

• Locking Resources

• Locking Resources from Another Application

• Locking Parts of a Device
18-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding JRM Services
Managing JRM Services
JRM services use the following logic to schedule and run a job:

1. A job is scheduled (for example, upgrade device image or change device configuration).

2. The job is created and scheduled to run, optionally after approval.

3. At the scheduled time, JRM:

a. Determines if the conditions for this job have been met (see the “Understanding JRM Services”
section on page 18-2)

b. Creates a task to run the job

c. Locks resources as it needs to work with them. Locking a resource prevents other jobs that also
use JRM's locking functionality from simultaneously updating the same device. When a job is
done with a device, it unlocks it explicitly.

Automatic lock release and time-based locking prevent a rogue job from locking the device
indefinitely.

d. Optionally, reports its progress and sets its completion status.

Scheduling Jobs
A job can be scheduled to run if it is enabled and approved (or does not require approval), and its start
time is in the future. Jobs can be scheduled to run once or periodically.

When the scheduled time arrives, the Job Manager checks for the following conditions before running
the job:

• The job has been approved and enabled.

• The job is not running. Only one instance of a periodic job can be running at any given time.

• Even if a periodic job does not begin because the start conditions were not satisfied, the job for the
next start time will be scheduled anyway.

Table 18-1 summarizes the job scheduling options.

Table 18-1 Job Scheduling Options

Schedule Type Frequency Description

Run-once Start time Time job is to start.

Periodic Calendar-based Specifies the day the job is to be run next. The units can be:

• Days: Run job every n days.

• Weeks: Run job on the given day of the week every n weeks.

• Month: Run job on the given day of the month every n months.

• Month-end: Run job on the last day of the month every n months.

• Month-weekday: Run job on the given day of the first/second/third/fourth/last week
every n months.

Time-based • Start time: Start the next job at a fixed time after the start of the previous invocation.

• End time: Start the next job at a fixed time after the finish of the previous invocation.
18-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding JRM Services
Locking Resources
Resource locks provide a way to ensure exclusive access to a device. A resource lock secures a device
or device subnode, making it inaccessible to other cooperating applications using JRM for a period of
time while a job is performed.

Note JRM serves as a repository of the currently locked devices—an application can ask whether a device it
is about to update is being used by another application. JRM does not lock a device, which means an
application can use a device by just ignoring the fact that it failed to lock the device first. Resource
locking is meant to be a means to aid cooperating applications so that they can prevent a situation where
two applications are simultaneously updating the same device.

When JRM receives a request to lock a resource, it checks the name of the resource against existing locks
and performs one of these actions:

• If a resource can be locked, it is added to the locks list.

• If a resource is leased (that is, locked for a certain duration), when the lease expires the resource is
unlocked.

• If a resource cannot be locked, the return code indicates this state.

Resources are locked for a certain period of time. When a job cannot estimate how long it will need a
resource, it can either:

• Periodically renew the lock.

or

• Lock the resource, specifying infinite time.

Locking a resource for infinite time is not recommended. A lock can be “stuck,” but that only
happens when

– A job that locked it is does not end (when a job ends, JRM automatically releases all its locks).

– A resource was locked by an application that is not a job. When a resource is stuck, the only
remedy is for you to force the lock using the JRM browser.

The resource is unlocked when:

• The job explicitly asks JRM to unlock the resource.

• The lock expires.

• The job that locked the resource has ended.

Locking Resources from Another Application
Although resources are typically locked by jobs run by the JRM server, they can be locked by any
application. An application that wants to lock a resource must establish a connection with the JRM
CORBA object and request a resource lock by providing the resource path and its ID string.

There are two differences between Job Manager and application resource locks:

• IDs used by the jobs are string representations of the job ID numbers. An ID supplied by an
application should start with alphabetic character to avoid ID conflicts.
18-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
• JRM automatically unlocks all locks owned by a job on job termination. For applications not locked
by JRM, the Job Manager cannot sense that the application ended. Therefore, all the resources
locked by an application without specifying a lock time (locked forever) must be explicitly unlocked
by that application.

Locking Parts of a Device
Applications that use JRM might need to serialize access to certain parts of the device without
necessarily locking the whole device. The device associated with the particular resource must also be
easily identified.

JRM’s resource naming scheme allows resources to form a hierarchy. The top-level nodes of the
hierarchy are fully qualified device names (for example, nm7501.cisco.com) and the subnodes
correspond to the parts of the device (for example, card0). Each lock is identified by its resource path,
starting from the top level (nm7501.cisco.com/card0).

Locking a particular node prevents other applications from locking any nodes below it and all the nodes
on the path to it. For example, if there is a lock for nm7501.cisco.com/card0:

• nm7501.cisco.com/card1 can be locked.

• nm7501.cisco.com cannot be locked.

• nm7501.cisco.com/card0/port0 cannot be locked.

Understanding the JRM Architecture
The following topics describe the JRM architecture:

• An Overview of the JRM Architecture

• Understanding the JRM Server

• Understanding the Job Browser

• How JRM Relates to Other CWCS Components

An Overview of the JRM Architecture
The following figure shows the relationship between JRM, its components, and its clients.
18-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
Figure 18-1 JRM Architecture

JRM consists of the following components:

• The JRM server provides job and locking services to the following clients:

– Applications that schedule jobs

– Jobs that JRM creates in response to a schedule request

– Applications that lock and unlock resources

– The JRM servlet

– The command reference interfaces, jobcli and lockcli, that expose JRM to non-Java applications
such as Perl and C++

To learn more about the JRM server, see the “Understanding the JRM Server” section on page 18-7.

• The JRM servlet—Provides a URL interface to the JRM server process. Since there is no easy way
to use CORBA calls directly from a web browser, this intermediary piece of code runs on the server
and communicates with the JRM server via CORBA to execute the commands it receives from the
web browser. All responses from the JRM servlet are XML-encoded.

The JRM servlet:

– Accepts HTTP requests from the Job Browser and other customized applets and translates them
into CORBA calls to the JRM server.

– Accepts JRM server responses, translates them into HTTP responses, and sends them back to
the Job Browser or applet.

For information about using the JRM servlet, see the “Using JRM from a Web Browser” section on
page 18-21.

• The Job Browser—A configurable applet that displays the current jobs and locked resources and
allows the users to stop, terminate, and remove jobs. The Job Browser applet runs on the web
browser and communicates (exchanges XML documents) with the JRM server via the JrmServlet.
The Job Browser can be embedded into HTML pages to provide a GUI for browsing and managing
JRM jobs and resources.

To learn more about the Job Browser, see the“Understanding the Job Browser” section on
page 18-10.

CORBA

HTTP
requests

Application A

Schedule
job

Lock
resource

JRM components

Application B Custom
applets

Job browser

JRM servlet

JRM serverJRM-generated
job jobcli

lockcli

31
95

1

18-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
• Applets and Java components—Used to design custom HTML pages. Since there is a wide variation
in GUI requirements for creating and editing different job types, individual applications must
provide screens for creating, editing, and displaying details of their job types. To assist in these
efforts, JRM provides applets to prompt for the date or time, display the JRM job panel, and display
various types of JRM schedules.

For information about designing custom HTML pages, see the “Customizing the Job Browser
Button Behaviors” section on page 18-22.

• jobcli and lockcli applications—Provide a command-line interface for scheduling jobs and locking
resources. These applications, which are primarily used for debugging purposes, also provide a JRM
interface for non-Java applications such as Perl or C++.

For information about using command line applications, see the “Using JRM from the Command
Line” section on page 18-24.

Understanding the JRM Server
The JRM server provides job and locking services to various clients, including applications that schedule
jobs or lock and unlock resources, jobs that JRM creates in response to a schedule request, the JRM
servlet, and the command reference interfaces.

The following topics describe the JRM server components:

• About Jobs and Resources

• About JRM Server Classes

• About the IDL Interface

• About the Helper API

• About JRM Events

About Jobs and Resources

The two fundamental JRM entities are jobs and resource locks:

• Using JRM, you can schedule a job to run, pending approval. Job information consists of:

– The command to be run

– The schedule (run immediately, once, or periodically)

– An approval flag (approval is required or not required before the job can run)

– A status string that can be set by the job

Job information is stored in a database table, where each row represents a single job. On startup,
JRM reads the table and creates job objects. While running, JRM automatically updates the
corresponding row to reflect every change in a job object. When a new job is created, a new row is
added to the table. When a job is deleted, the corresponding row in the table is deleted.

• JRM locks resources as it needs to work with them. Resource locks provide a way to ensure
exclusive access to a device. Resource lock information consists of:

– The resource path

– The owner (a job or any process)

– The expiration time
18-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
Note Resource information is not kept in a database. If JRM is stopped, all resource information is
lost.

About JRM Server Classes

The JRM server application class performs these functions:

• Reads configuration files, such as the XML column and action configuration files for the Job
Browser.

• Starts various threads. For example, when a job is about to run, it is added to the launch queue. The
LaunchQueue thread dequeues the job and invokes the Daemon Manager to run the job.

• Keeps pointers to these JRM implementation classes:

– JobManagerImpl—A facade to the Jobs class, a singleton containing everything related to jobs.
It contains the following inner classes:

Jobs.JobTable
Jobs.LaunchQueue
Jobs.Terminator

– LockManagerImpl—A facade to the Locks class, a singleton containing everything related to
locks. It contains the inner class, Locks.Lock.

– AlarmQueue—Maintains the timer queue, runs the timer thread, and invokes a handler when the
node timer expires.

– DBConnection—Provides an interface to database-related functions.

– DMConnection—Runs a thread that listens to Daemon Manager events and provides a listener
interface.

– EDSConnection—Runs a thread that sends events to EDS.

– Client—A simplified JRM communication interface for jobs running under JRM (see the
“About the Helper API” section on page 18-9).

• Provides utility functions.

About the IDL Interface

The JRM server implements two objects: JobManager and LockManager. Enumeration interfaces are
implemented by the iterator objects, JobIter and LockIter. The JRM IDL (Interface Definition Language)
file includes the interfaces of the objects supplied by the JRM server.

Related Topics

• For an example of the JRM IDL file, refer to the jrm.idl file in the CodeSamples directory on the
CWCS SDK CD.

• For more information about CORBA, refer to:

– Object Management Group website, http://www.omg.org

– OMG’s CORBA website, http://www.corba.org
18-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.omg.org
http://www.corba.org

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
About the Helper API

The Client class provides a collection of static methods that might be helpful for clients that manipulate
jobs and resources. The methods can be categorized by the main class and several inner classes:

• The top-level class, Client, implements Constants. Use this class to return printable representations
of the schedule string or the job’s run and schedule states. These methods can be used by any client.

The Client class contains these methods, which can be used by any client:

– Return a printable representation of the schedule string

– Return a printable representation of the job’s run and schedule states

– Initialize the ORB and locate servers

• The inner class, MyJob, is a collection of static methods that can be used only by a job running under
JRM control. This class provides methods to:

– Set a job's completion state (success, success with info, failed)

– Set a job's progress string

– Lock resources

– Unlock resources

– Unlock all a job's resources

– Get job information

Related Topics

See the “About the Helper API Methods” section on page 18-49.

About JRM Events

JRM can use Event Services Software (ESS) and the Event Distribution System (EDS) to publish events
of interest to applications. JRM sends events when:

• A job starts.

• A job ends.

• A job start fails.

• A job is canceled.

• A job is rejected or approved.

• A resource is locked or unlocked.

• A process has ended.

These events belong to the event category status (EventCategory_Status). The event and resource atoms
are listed in com.cisco.nm.cmf.jrm.JrmEdsAtomDev.java.

JRM publishes the following topics using ESS:

• cisco.mgmt.cw.cmf.jrm.EventJobReject

• cisco.mgmt.cw.cmf.jrm.EventJobEnd

• cisco.mgmt.cw.cmf.jrm.EventJobStart

• cisco.mgmt.cw.cmf.jrm.EventJobCancel

• cisco.mgmt.cw.cmf.jrm.EventLock
18-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
• cisco.mgmt.cw.cmf.jrm.EventJobApprove

• cisco.mgmt.cw.cmf.jrm.EventDaemonEnd

• cisco.mgmt.cw.cmf.jrm.EventJobLaunchFail

• cisco.mgmt.cw.cmf.jrm.EventUnlock

JRM publishes the following topics using EDS:

• EventJobStart

• EventJobEnd

• EventJobCancel

• EventJobApprove

• EventJobReject

• EventDaemonEnd

• EventLock

• EventUnlock

JRelated Topics

See:

• Chapter 19, “Using Event Services Software.”

• Chapter 20, “Using the Event Distribution System.” Note that EDS is deprecated.

Understanding the Job Browser
The Job Browser is a configurable Java applet that you can embed in HTML pages to provide a GUI for
browsing and managing JRM jobs and resources. The Job Browser uses XML files to specify:

• Job and resource table column names, sizes, and visibility.

• URLs to call that carry out the actions entered by the user.

Figure 18-2 shows the Job Browser interface, which provides the user actions shown in Table 18-2.

Figure 18-2 Sample Job Browser Dialog Box
18-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
Figure 18-3 Sample Job Resource Dialog Box

Table 18-3 Job Browser User Actions

Related Topics

• Customizing the Job Browser Button Behaviors, page 18-22

• About the Helper API Methods, page 18-49

How JRM Relates to Other CWCS Components
JRM relies on:

• The built-in CWCS database to maintain job states. JRM lists a database as a dependency. Therefore,
the Daemon Manager starts JRM only after the database is running. For more on the CWCS
database, see Chapter 11, “Using the Database APIs.”

• The built-in CWCS Daemon Manager to run and control jobs. JRM jobs run as processes under the
CWCS Daemon Manager. For more on the CWCS Daemon Manager, see Chapter 17, “Using the
Daemon Manager.”

Table 18-2 Job Browser User Actions

Action Description

Stop Calls the corresponding JRMserver method. Select a Job ID, then click Stop.

Delete Calls the corresponding JRMserver method. Select a Job ID, then click Delete.

Click a Job ID Uses the URL registered in the JrmButtonActions.xml file for the selected job type
to show job details for the application that owns the job.

Button Default Action

Free Resource... • Explicitly frees resources without waiting for the associated job to end.

• Frees orphaned resources that no longer have an associated job that is running.

Shown only when user has administrative privileges.

Note Using this button is not recommended unless resource is orphaned.
18-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Enabling JRM
Enabling JRM
JRM is part of CWCS System Services. Since CWCS release 3.0, JRM services are enabled by default.
If your application requires services from JRM, remember to register for this service at installation. For
instructions, refer to the “Registering for CWCS Services” section on page 5-4. If you prefer to request
services after installation, refer to the “Enabling New Service Bundles from the Command Line” section
on page 5-5.

Using JRM from a Java Application
To use JRM from a Java application, you must, for example, know how to establish a connection with
the Job Manager, create a job, and set the status of the job. The following topics describe some typical
job and lock management tasks:

• Establishing a Connection

• Creating a Job

• Setting the Job Status

• Getting Job Descriptions

• Handling an Unapproved Job

• Enabling a Disabled Job

• Handling a Crashed Job

• Locking and Unlocking a Device

• Handling an Unavailable Resource

• Accessing a Locked Device

For a description of the JRM APIs, see the “JRM Command Reference” section on page 18-26.

Establishing a Connection
Example 18-1 shows how to establish a connection with the Job Manager. The host where the JRM
server is running is passed as a parameter.

Note This example disables automatic rebinding. If automatic rebinding is enabled and the JRM server aborts
for any reason, the ORB will try to find another JRM server and reconnect to it. This is not a desirable
action.

Example 18-1 Connecting with Job Manager

import java.lang.*;
import java.net.*;
import com.cisco.nm.cmf.jrm.*;
import com.cisco.nm.cmf.util.CmfException;
import com.cisco.nm.cmf.util.Util;
18-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
import org.omg.CORBA.*;
import com.inprise.vbroker.CORBA.BindOptions;
import java.util.*;
public class testJpp {
public static void main (String[] args) {
 JrmServiceManager jrm=null;
 JobManager jm=null;
 String nmsroot;
 String host;

 try {
 Util.loadBGProperties("md.properties");
 nmsroot=System.getProperty("NMSROOT");
 System.out.println("NMSROOT is "+nmsroot);
 } catch(CmfException cmf) {
 System.out.println("unable to load md.properties");
 }

 try {

 host=(InetAddress.getLocalHost()).getHostName();
 System.out.println("host = " + host);

 Properties ORBProperties = Client.getOrbConnectionProperties();
 ORBProperties.put("org.omg.CORBA.ORBClass","com.inprise.vbroker.orb.ORB");
 org.omg.CORBA.ORB orb =
(com.inprise.vbroker.CORBA.ORB)com.cisco.nm.util.OrbUtils.initORB(null,ORBProperties);
 jrm = JrmServiceManagerHelper.bind(orb,Client.getJrmName(),host,null);

 System.out.println("Connected to JRM service Manager.");
 LoginInfo loginInfo = new LoginInfo("admin","admin","");
 jm = jrm.getJobHandle(loginfInfo);
 } catch (org.omg.CORBA.SystemException e){
 e.printStackTrace();
 System.err.println(e.toString());
 return;
 } catch (Exception e) {
 e.printStackTrace();
 System.err.println(e.toString());
 return ;
 }

 if (jm == null) {
 System.out.println("Job Manager not bound");
 return;
 }

 //Foll code to create a job

 long start=System.currentTimeMillis()+20000;
 int type=Constants.SCHTYPE_S_Minutes;
 int increment=3;
 Schedule sch=new Schedule(start,type,increment);

 int precedents[]={};

 JobInfo ji =new JobInfo(0,// id
 "TestJob",// type
 new String("Test job"),// description
 "D:\\progra~1\\mkstoo~1\\mksnt\\sleep.exe 30",
 sch,// schedule
 precedents,// dependencies
 Constants.RUNST_NeverRan,// state
 Constants.SCHST_Enabled,// enabled
18-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
 System.currentTimeMillis(),// Time created
 System.currentTimeMillis(),// Time modified
 0,// Start
 0,// Stop
 "Scheduling Job",// Progress
 host,// Host default=localhost)
 new String("system"),// Account (default=system)
 new String("Reference"),// Reference
 "admin",// Owner
 ""// Approver
);

 IntHolder jid=new IntHolder(0);

 if(ji == null) {
 System.out.println("Job info is null");
 System.exit(1);
 }

 int status=jm.job_create_hist(ji,jid);

 if(status != Constants.STATUS_Ok) {
 System.out.println("Failed to create Job");
 System.exit(-1); // job creation failed
 } else {
 System.out.println("Job "+jid.value+" created sfly.");
 }
}

Creating a Job
Example 18-2 shows how to create a job with these attributes:

• It will run the Java application whose main class is myJavaClass and use a standard Java classpath
(that is, the same one that was used to run the JRM server) to locate the classes.

• The job’s ID will be passed as a command-line option. A job uses this ID to communicate its
progress and completion status to JRM.

• The job’s type is ACLM.

• The job requires approval before it can be run.

• The job will run in one minute.

Example 18-2 Creating a Job

// Create a job
JRM.Schedule sch =

new Schedule(System.currentTimeMillis()+60*1000,// Start in a minute
SCHTYPE_Once,
SCHINC_Months,// Doesn’t matter
0);
int precedents[] = {};
JRM.JobInfo ti =
new JobInfo(0,// id
“ACLM”,// type
“Description”,// description
18-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
“$JP –cp $JC $JJ myJavaClass”,// command:
// run myJavaClass
sch,// schedule
precedents,// dependencies

 RUNST_NeverRan,// state
SCHST_RequiresApproval // Approval state:
| SCHST_AM_WAITING // requires approval,
| SCHST_ENABLED,// enabled

 0,// Time created
 0,// Time modified
 0,// Start
 0,// Stop
 “”,// Progress
 “”,// Host default=localhost)
 “”,// Account (default=system)
 “”,// Reference
 “”,// Owner
 “”// Approver
);

// Create holder for the returned value
IntHolder h_id = new IntHolder(0);

// Create a job, test its status
try {

int stat = job_manager.job_create(ti,h_id);
if (STATUS_Ok == stat) {

System.out.println(“Created job with id = “, h_id.value);
}
else {

…
}
catch (org.omg.CORBA.SystemException e) {
// Attempt to reconnect explicitly
}

}

Setting the Job Status
The following code fragment tells JRM that the job has ended successfully and sets its progress string
(which will become the completion string) to “Download successful”:

import com.cisco.nm.cmf.jrm.Client;
…

Client.MyJob.set_completion_state(Client.RUNST_Succeeded);
Client.MyJob.set_progress(“Download successful”);

You need to keep the following in mind:

• Execute this code from a job executing under JRM.

• Add $JJ to the command line that starts this job (see the “About the Job and Resource Lock
Attributes” section on page 18-26).

The displayed job status is a dynamic attribute of the job. JRM calculates the status based on the job’s
run state, scheduled state attributes, and the current time.

• For run-once jobs, the displayed job status reflects either:

– The job’s scheduling state (if the job’s scheduled time is in the future)

– The job’s run result (if the job’s scheduled time is in the past).
18-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
• For periodic jobs, the displayed job status displays the result of the last run and the scheduling state
of the next run.

The job status values for both run-once and periodic jobs are summarized in the tables in the “About
Displayed Job Status Values” section on page 18-28.

Getting Job Descriptions
Example 18-3 shows how to get the job descriptions for all scheduled jobs.

Example 18-3 Getting Job Descriptions

jrm.JobIterHolder iter = new JobIterHolder();
jrm.JobInfoHolder job_info = new JobInfoHolder();

try
{

//Get the job enumerator
int status = job_manager.job_enum(iter);
if (STATUS_Ok == status)
{

while (STATUS_EOF != iter.value.next(job_info))
{

System.out.println(job_info.value.szDescription);
}
iter.value.release();

}
}
catch (org.omg.CORBA.SystemException e)
{
//
}

Handling an Unapproved Job
Use the code fragment in Example 18-4 when a job that requires approval is scheduled and has not been
approved by the scheduled time. The job execution is abandoned, and the job deleted if it is not periodic.

Example 18-4 Handling Unapproved Jobs

jrm.JobInfoHolder job_info = new JobInfoHolder();
// Find out the job details corresponding to the job.
int status = job_manager.job_get_info(idJob,job_info);

// If the job is still waiting for approval, then execution of the
// job is abandoned.
if ((STATUS_Ok == status)&&(SCHST_AM_Waiting == (SCHST_AM_Masks &
job_info.value.sch_state)))
{

System.out.println (“Still waiting for approval, so can’t start now”);
jrm.ScheduleHolder schedule = new ScheduleHolder();
18-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
// Get the job schedule
int stat = job_manager.job_get_schedule(idJob,schedule);

// Check the schedule type.If the job is not periodic, delete the job
if (STATUS_Ok == stat)
{
if ((SCHTYPE_Immediate == schedule.value.type)||(SCHTYPE_Once == schedule.value.type))

{
System.out.println (“Now deleting the job”) ;
job_manager.job_delete(idJob);
}

}
}

Enabling a Disabled Job
Example 18-5 shows how to create a job in the disabled state, do some operations, and then enable the
job.

Example 18-5 Enabling a Disabled Job

// Create a job
jrm.Schedule sch = new Schedule(0,

SCHTYPE_Immediate,
SCHTYPE_Monthly //Ignored for SCHTYPE_Immediate
);

int precedents[] = {};

// Create the JobInfo structure with appropriate values
jrm.JobInfo job_info = new JobInfo(0,// id

“ACLM”,// type
“Description”, // description
“$JP -cp $JC $JJ myJavaClass”,// command:
// run myJavaClass
sch,// schedule
precedents, // dependencies
RUNST_NeverRan,// state
SCHST_AM_Approved,// Approval state:
0, // Time created
0, // Time modified
0, // Start
0, // Stop
“”, // Progress
“”, // Host default=localhost)
“”, // Account (default=system)
“”, // Reference
“”, // Owner
“” // Approver
);

// IntHolder for holding the JobId
org.omg.CORBA.IntHolder h_id = new org.omg.CORBA.IntHolder(0);
// Create a job, test its status
try
{

int stat = job_manager.job_create(job_info,h_id);
18-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
if (STATUS_Ok == stat)
{

System.out.println(“Job created with id = “+ h_id.value);
}
else
{

System.out.println(“Job creation failed “);
System.exit(0);

}
//Perform some operations involving the newly created job

//

// Now enable the job
int status = job_manager.job_set_resume(h_id.value,true);
if (STATUS_Ok != status)
{

System.out.println(“Job resumption failed”);
}

}
catch (org.omg.CORBA.SystemException e)
{

System.out.println(“Exception while job creation “);
System.exit(0);

}

Handling a Crashed Job
Example 18-6 shows how to get a job’s current running state and delete a crashed job.

Example 18-6 Handling a Crashed Job

org.omg.CORBA.IntHolder result = new org.omg.CORBA.IntHolder();

int status = job_manager.job_get_result(idJob, result);
if (STATUS_Ok == status)
{

if (result.value == RUNST_Crashed)
{

// Delete the job
status = job_manager.job_delete(idJob);
if (STATUS_Ok != status)
{
System.out.println(“No such job exists”);
}

}
}
else
{

System.out.println(“ Getting the run state failed!”);
}

18-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
Locking and Unlocking a Device
In Example 18-7, a job locks a device, does some processing, and releases the lock.

Example 18-7 Locking and Unlocking a Device

LockManagerImpl lock_manager = new LockManagerImpl(“TEST”);

int status = lock_manager.lock(“device1”, “my_app”, 1000);

/* If no job has locked device1 yet, then status = STATUS_Ok */
if (STATUS_Ok == status)
{

System.out.println(“No lock exists now for the device “);
//... do some processing....

lock_manager.unlock(“device1”,”my_app”);
}

Handling an Unavailable Resource
In Example 18-8, a job is enabled and approved and then, at the scheduled time, it tries to lock a resource
and fails.

Example 18-8 Handling an Unavailable Resource

int status = 0;
jrm.JobInfoHolder job_info = new JobInfoHolder();

try
{

 // Find out the job details corresponding to the job.
 status = job_manager.job_get_info(idJob,job_info);

}
catch (org.omg.CORBA.SystemException e)
{

System.exit(0);
}

//If the job is approved and is enabled then try to run the job
if ((STATUS_Ok == status)&& (SCHST_AM_Approved == (SCHST_AM_Masks &
job_info.value.sch_state))&&

 (SCHST_Enabled == (job_info.value.sch_state & SCHST_Enabled)))
{

try
{

//Lock the required devices
 status = lock_manager.lock(“device name”,”owner”,1000);

// If locking failed
if (STATUS_Ok != status)
{

jrm.ScheduleHolder schedule = new ScheduleHolder();
// Get the job schedule
int stat = job_manager.job_get_schedule(idJob,schedule);
18-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
if (STATUS_Ok == stat)
{
// If the job is not periodic, then delete the job

if ((SCHTYPE_Once == schedule.value.type) ||
(SCHTYPE_Immediate == schedule.value.type))
{
System.out.println (“Now deleting the job”);
job_manager.job_delete(idJob);
}

}
}
// Run the job
else
{

status = job_manager.job_run(idJob);
if (STATUS_Ok != status)
{
System.out.println (“job run failed”);
}

}
}
catch(org.omg.CORBA.SystemException e)
{
System.exit(0);
}

}

Accessing a Locked Device
In Example 18-9, a job is trying to lock a device that is already locked by another job. The code finds
the information about the other job and, if that job is not running, releases all resources locked by it.
Then it tries to lock the device. After the device is locked, the job does some processing and then releases
the lock.

Example 18-9 Accessing a Locked Device

/* Current job is trying to lock a device device1 */
int status = lock_manager.lock(“device1”, “my_app”, 2000);

/* If some job has already locked device1, then status = STATUS_Exists */
if (STATUS_Exists == status)
{

/* Find out the complete Lock_info for device1 */
jrm.LockInfoHolder lock_info = new LockInfoHolder();
status = lock_manager.get_lock(“device1”,lock_info);
/* If Lock_info found for device1, status = STATUS_Ok */
if (status==STATUS_Ok)
{

Integer int_id = new Integer(lock_info.value.szJob);
int job_id = int_id.intValue();
jrm.JobInfoHolder job_info = new JobInfoHolder();
// Find out the job details corresponding to the job id obtained.
status = job_manager.job_get_info(job_id,job_info);
if (status==STATUS_Ok)
{

if (job_info.value.run_state != RUNST_Running)
{

18-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Web Browser
// Release all resources locked by the job
lock_manager.unlock_job(lock_info.value.szJob);
status = lock_manager.lock(“device1”,”my_app”, 1000);
// ... do some processing....
lock_manager.unlock(“device1”,”my_app”);
}

}
else
System.out.println(“No job exists”);

}

Using JRM from a Web Browser
The JRM servlet provides the URL interface to the JRM server process. The servlet communicates with
the JRM server via CORBA to execute the commands it receives. All responses from the JRM servlet
are XML-encoded.

Table 18-4 summarizes the URL commands which the JRM servlet supports via HTTP POST and GET
requests.

Table 18-4 JRM Servlet URL Commands

URL Command Description

getJobAndResourceList Returns an XML-encoded list of currently scheduled jobs and locked resources.

Example:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?cmd=getJobAndResou
rceList

stop Requests that the specified job be stopped. Returns “true” if successful, “false: error message”
otherwise, where error message provides the message to display to the user.

For job history jobs, “instance id” and a boolean variable “stop instance” is used. The “stop
instance” should be true if the user selects “Stop this instance only” and false if the user selects
“Stop all instances”.

Example:

For jobs that maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=stop&jobid=
1001&instanceid=2&stopinstance=true

For jobs that do not maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=stop&jobid=
1001&instanceid=2&stopinstance=true
18-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Customizing the Job Browser Button Behaviors
Customizing the Job Browser Button Behaviors
To customize the behavior of the buttons in the Job Browser dialog box, modify the action configuration
file summarized in Table 18-5. The action configuration file contains the tags listed in Table 18-6.

kill Requests that the specified job be killed. Returns “true” if successful, “false: error message”
otherwise where error message provides the message to display to the user.

For job history jobs, “instance id” and a boolean variable “stop instance” is used. The “stop
instance” should be true if the user selects “Stop this instance only” and false if the user selects
“Stop all instances”.

Example:

jobs that maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=kill&jobid=
1001&instanceid=2&stopinstance=true

jobs that do not maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=kill&jobid=
1001&instanceid=2&stopinstance=true

remove Removes specified job from JRM scheduler. Returns “true” if successful, “false: error message”
otherwise where error message provides the message to display to the user.

Instance id is also passed with the jobid.

Example:

For jobs that maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=remove&jobi
d=1001&instanceid=2

For jobs that do not maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=remove&jobi
d=1001&instanceid=2

Table 18-4 JRM Servlet URL Commands (continued)

URL Command Description

Table 18-5 Job Browser Action Configuration File

Name JrmButtonActions.xml

Description When the user selects a job and clicks one of the buttons in the Job Browser dialog box,
JrmJobApplet uses this file to determine the URL to be called. All action URLs are
invoked via an HTTP GET request.

Runtime
Location

$NMSROOT/htdocs/jrm/JrmButtonActions.xml

where $NMSROOT is the directory in which the product was installed.

Guidelines/
Restrictions

Applications that do not want the default JRM actions must add the action URLs for their
job type to this file.
18-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Customizing the Job Browser Button Behaviors
Return values for the BUTTON and URL tags shown in Table 18-6 is as follows:

• details: Returns an application-specific HTML page that displays the job details. The application
must display any error messages.

• remove, stop, kill: Returns “true” if the operation initiated successfully (does not mean it
completed); “false:Error Message” if an error occurred. A dialog box displays the error message.

Example 18-10 shows the default Job Browser action configuration file.

Example 18-10 Default Job Browser Action Configuration File

<?xml version=”1.0"?>

<ACTIONS>
 <JOBTYPE ID="Test">
 <ACTION BUTTON="details" URL="/jrm/TestDetails.html" />
 <ACTION BUTTON="stop" URL="/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet" />
 <ACTION BUTTON="kill" URL="/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet" />
 <ACTION BUTTON="remove" URL="/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet" />
 </JOBTYPE>

Table 18-6 Job Browser Action Configuration File Contents

Tag Attributes Description

ACTIONS Container for all button actions.

JOBTYPE Container for a job type.

ID A string identifying the job type and subtypes (for example,
SWIM:update.)

ACTION Defines the URL that is called when the user requests an action.

BUTTON Allowed values:

• details—Invoked when the user clicks Job Details. The details
button URL is displayed in a separate browser instance.

• remove—Invoked when the user clicks Remove Job.

• stop or kill—When the user clicks Stop Job, the Job Browser
presents two options:

– Stop the job (finish gracefully).

– Kill the job unconditionally.

URL The URL to be called to perform an action.

• details—If there is no URL in the actions file for the selected job
type, an error dialog box is displayed.

• remove—Default action is to call the JRM servlet to remove the
job.

• stop or kill—Default action for both stop and kill is to ask the
Daemon Manager to kill the job.

Note A stop action can be specified for a particular job type
without specifying a kill action and vice versa.
18-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from the Command Line
 <JOBTYPE ID="NetConfigJob">
 <ACTION BUTTON="stop"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="kill"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="remove"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="details" URL="/netconfig/netconfig.jsp" />
 </JOBTYPE>

 <JOBTYPE ID="NetConfigPurge">
 <ACTION BUTTON="remove"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="kill"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="stop"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 </JOBTYPE>
</ACTIONS>

To customize the Job Details and Stop Job buttons but rely on the default JRM action for the Remove
Job button for the ACL Manager, add the following element to the action configuration file:

<JOBTYPE ID=”acl”>
<ACTION VERB=”details” URL=”/acl/editjob”/>
<ACTION Verbosity” URL=”/acl/stopjob”/>

</JOBTYPE>

Using this action configuration, if the user selects an ACL job with Id=42 and clicks “Job Details”, the
JRM browser will issue the following GET request and display the result in a new browser window:

http://server:1741/acl/editjob?jobid=42&button=details

If the user clicks “Stop Job” and selects “stop” (not “kill”) from the dialog box, the JRM browser will
issue the following GET request:

http://server:1741/acl/stopjob?jobid=42&button=stop

If the response is “true,” a dialog box is displayed indicating that the operation was initiated successfully.
If the response is “false: device not responding” (for example), a dialog box will be displayed with the
text, “device not responding.”

Using JRM from the Command Line
JRM includes two command line applications, jobcli and lockcli, that provide a command language
interface for scheduling jobs and locking resources. These applications are used for debugging purposes
and to provide a JRM interface for non-Java applications such as Perl or C++.

The following topics describe jobcli and lockcli:

• Job Command Line Interface

• Lock Command Line Interface

Related Topics

See the “Using the Job Command-Line Commands” section on page 18-59
18-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from the Command Line
Job Command Line Interface
The job command line application, jobcli (shown in Table 18-7), is a Java application that provides a
simple job manipulation command language.

Lock Command Line Interface
The lock command line application, lockcli (shown in Table 18-8), is a Java application that provides a
simple lock manipulation command language.

.

Table 18-7 Jobcli Interface

Name com.cisco.nm.cmf.jrm.jobcli

Description Provides a simple command language that allows you to:

• Create or create and run a job

• Approve or reject a job

• Cancel, delay, delete, suspend, or resume a job

• Change job schedule

You can provide inputs to jobcli using either:

• Standard input

• A file of commands

The jobcli commands are described in the “Using the Job Command-Line
Commands” section on page 18-59.

Syntax jre -cp classpath com.cisco.nm.cmf.jrm.jobcli [-f clifile]

Arguments Name Description

classpath Environment variable that tells the interpreter where to look for
user-defined classes.

-f clifile Reads commands from clifile. If –f option is missing, commands
are read from standard input.

Outputs Sent to stdout/stderr.

Table 18-8 Lockcli Interface

Name com.cisco.nm.cmf.jrm.lockcli

Description Provides a command language that allows you to lock and unlock a single or several
resources for the owner running outside JRM.

Note There is no automatic unlocking. If you lock a resource without specifying
the lock duration, be sure you unlock it.

Syntax jre –cp classpath com.cisco.nm.cmf.jrm.lockcli {-l | -u} owner
resource[@duration]…
18-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
JRM Command Reference
JRM provides interfaces from Java, IDL, and servlets, and via command line utilities. These topics
describe the reference information for these interfaces:

• About the Job and Resource Lock Attributes

• About Displayed Job Status Values

• About the Job Manager Methods

• About the Lock Manager Methods

• About the Helper API Methods

• About the JRM Java Constants

• Using the Job Command-Line Commands

About the Job and Resource Lock Attributes
Table 18-9 describes the available job attributes.

Arguments Name Description

-l or -u Lock or unlock resource(s).

owner Resource owner. Should contain at least one alphabetic character
to distinguish it from jobs run under Job Browser.

resource Specifies resource path. If followed by @duration:

• If duration is greater than zero, resource will be locked for
duration seconds.

• If duration is less than or equal to zero, an error message will
be displayed.

• If no duration is specified, resource will be locked until it is
explicitly unlocked by its owner.

Duration is ignored when unlocking.

Output Success = 0

Error = >0 and stderr contains a diagnostic message.

Examples The following example locks switch1.cisco.com for 30 seconds and
switch2.cisco.com until explicitly unlocked on behalf of swim1 job:

jre –cp … com.cisco.nm.cmf.jrm.lockcli -l swim1 switch1.cisco.com@30
switch2.cisco.com

The following example unlocks switch2.cisco.com:

jre –cp … com.cisco.nm.cmf.jrm.lockcli -u swim1 switch2.cisco.com

Table 18-8 Lockcli Interface
18-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Table 18-9 Job Attributes

Attribute Description

ID A unique number assigned to this job at creation time. This number is never reused.

InstanceID A unique number that is incremented for every instance of job history jobs. For jobs without multiple
instances, value is 0.

Type String identifying the job type and job subtypes (for example, SWIM:update.)

Description String that describes the job.

Command line The command line to start the job. JRM performs the following parameter substitutions on the command
line:

String/Result

$JC — Java classpath. Prefix with –cp.

$JI — Job ID.

$JJ — Sets nm.jrm.jobid Java property to the job ID; equivalent to -Dnm.jrm.jobid=$JI.

$II — Instance ID.

$IJ — Sets nm.jrm.instanceid Java property to the instance ID; equivalent to -Dnm.jrm.instanceid=$II.

$JP — Path to Java interpreter.

$JR — RME installation root directory.

$: — Path separator, the value of the path.separator system property (':' on UNIX, ';' on Windows).

$/ — File separator, the value of the file.separator system property ('/' on UNIX, '\' on Windows).

Host Machine name or IP address where the job will run. (For future extensions. Currently, the job is always
started on the local machine.)

Account Account under which the job is run. (For future extensions.)

Schedule How often this job will run. Options include: run immediately, run once, run on a calendar basis
(periodic), run on a time-start basis, or run on a time-stop basis.

Dependencies A list of the Job IDs that must complete successfully. (Not currently implemented.)

Completion state Describes the current state or last run result of the job. Job states include: running, never, suspended,
wait for approval, scheduled (pending), rescheduled, completed succeeded, failed, crashed, canceled,
rejected, or ERROR.

Schedule state Determines if the job can be scheduled to run based on whether it is enabled, requires approval, or has
already been approved.

Start and stop
times from last run

Time stamps from the last time the job was run or attempted to run.

Progress status Updates or diagnostic information.

Reference An application-specific string. May contain the URL of job results.

Owner Account of the person that created the job.

Creation time Time the job was created.

Last modification
time

Time the job was last modified.

Approver Account of the approver. Valid only if approval is required.
18-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Table 18-10 summarizes the available resource lock attributes.

About Displayed Job Status Values
Displayed job status value vary according to how often the job is run and whether approval is required.

Table 18-11 summarizes the displayed job status for run-once, approval-required jobs.

Table 18-12 summarizes the displayed job status for run-once, no-approval-required jobs.

Table 18-10 Resource Lock Attributes

Field Description

Resource path String defining the device name and any subnode.

Owner Job ID represented as a string.

Time stamp Time the lock was established.

Expiration time Time the lock expires.

Table 18-11 Run-Once Approval-Required Job Status Values

Schedule vs.
Current Time Run State Enabled

Approval
State

Displayed
Schedule Status

Displayed Completion
Status

Future Never N Suspended

Future Never Y Wait for
approval

Wait for
approval

Future Never Y Approved Scheduled
(pending)

Future Never Y Rejected Rejected

Future Canceled Canceled

Past Never N Suspended

Past Never Y Wait for
approval
—
rejected

Rejected

Past Never Y Approved ERROR

Past Canceled Canceled

Past All others Same as run state

Table 18-12 Run-Once No-Approval Job Status Values

Schedule vs. Current
Time Run State Enabled Displayed Schedule Status

Displayed
Completion Status

Future Never N Suspended

Future Never Y Scheduled (pending)

Future Canceled Canceled
18-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Table 18-13 summarizes the displayed job status for periodic, approval-required jobs.

Table 18-14 summarizes the displayed job status for periodic, no-approval-required jobs.

About the Job Manager Methods
Use the Job Manager methods summarized in Table 18-15 to add JRM scheduling functionality to your
application. These methods return Java constants described in the “About the JRM Java Constants”
section on page 18-56.

Past Never N Suspended

Past Never Y ERROR

Past Canceled Canceled

Past All others Same as run state

Table 18-12 Run-Once No-Approval Job Status Values (continued)

Table 18-13 Periodic Approval-Required Job Status Values

Run State Enabled Approval State
Displayed Schedule
Status

Displayed Completion
Status

* N Suspended Same as Run state

Canceled Y Canceled Canceled

All others Y Wait for approval Wait for approval Same as Run state

All others Y Approved Scheduled (pending) Same as Run state

All others Y Rejected Rejected Same as Run state

Table 18-14 Periodic No-Approval Job Status Values

Run State Enabled Displayed Schedule Status Displayed Completion Status

N Suspended Same as Run State

Canceled Y Canceled Canceled

All others Y Scheduled Same as Run State

Table 18-15 Job Manager Method Summary

Returns Syntax and Description
int job_cancel(int idJob);

Cancels a running job

int job_cancel_instance(int idJob, int instanceId, boolean cancelAllInstances);

Cancels a running job with instance ID.

int job_cancel_event(int idJob);

Cancels a running event
18-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
int job_cancel_instance_event(int idJob, int instanceId, boolean cancelAllInstances);

Cancels a running job with instance ID, and specified whether to cancel the instance alone or the entire job

int job_create(JobInfo job_info, org.omg.CORBA.IntHolder idJob);

Creates a job

int job_create_hist(JobInfo jiJob, org.omg.CORBA.IntHolder idJob);

Creates a job with job history

int job_delete(int idJob);

Deletes a job

int job_delete_instance(int idJob, int instanceId, boolean delFlag);
Deletes a job with the given id, instance id.

int job_enum(JobIterHolder job_iter);

Creates a job enumerator

int job_enum_hist(JobIterHist job_iter);
Creates a job enumerator

int job_get_info(int idJob, JobInfoHolder job_info);

Gets information about a job

int job_get_info_hist(int idJob, int instanceId, JobInfoHistHolder jiJobHist);

Adds job information history about a job

int job_get_result(int idJob, IntHolder status);

Gets job run state

int job_get_schedule(int idJob, ScheduleHolder schedule);

Fills schedule with job schedule

int job_get_schedule_string(int idJob, StringHolder schedule);

Gets job schedule information

int job_run(int idJob);

Runs a job immediately

int job_set_approved(int idJob, boolean bApproved, String szApprover)

Approves or rejects a job

int job_set_info(JobInfo job_info);

Updates job information

int job_set_info_hist(JobInfoHist jiJobHist);

Updates job information

int job_set_progress_string(int idJob, String szStatus);

Sets progress string

int job_set_reference(int idJob, String szReference);

Sets job reference attribute

int job_set_result(int idJob, int state);

Sets job run state

int job_set_resume(int idJob, boolean bResume);

Enables or disables a job

int job_set_schedule(int idJob, Schedule schedule);

Sets job schedule

int next(JobInfoHolder job_info);

Fills job_info with job information

Table 18-15 Job Manager Method Summary (continued)

Returns Syntax and Description
18-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
job_cancel

int job_cancel (int idJob);

Cancels a job if it is running. The job sends a request to stop.

Note JRM only issues the request. It does not wait until the process actually stops.

Input Arguments

Return Values

Usage Guidelines

To cancel a running job, send a request to the Daemon Manager to stop the process.

job_cancel_instance

int job_cancel_instance (int idJob, int instanceId, boolean cancelAllInstances);

Cancels an instance job if it is running.

Note JRM only issues the request. It does not wait until the process actually stops.

Input Arguments

int next_n(int max_jobs, JobInfoSequenceHolder job_seq);

Fills job_seq with job descriptions

int release();

Releases an iterator

Table 18-15 Job Manager Method Summary (continued)

Returns Syntax and Description

idJob [int] Unique number assigned to a job at creation time.

STATUS_Ok Job was canceled or is not running.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

idInstance [int] Unique number assigned to an instance at creation
time.

cancelAllInstances [boolean] Indicates whether you want to cancel all future
instances or just this instance
18-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Usage Guidelines

To cancel a running job, send a request to the Daemon Manager to stop the process.

job_cancel_event

int job_cancel_event (int idJob)

Cancels a job if it is running. Sends a cancel event to the running job. The job should process the event
and stop the event by itself.

Note JRM only issues the request. It does not wait until the process actually stops.

Input Arguments

Return Values

Usage Guidelines

To cancel a running job, send a request to the Daemon Manager to stop the process.

job_cancel_instance_event

int job_cancel (int idJob, int instanceId, boolean cancelAllInstances);

Cancels an instance of an event if it is running.

Note JRM only issues the request. It does not wait until the process actually stops.

STATUS_Ok Job instance was canceled or is not running.

STATUS_NotFound No such instance.

idEvent [int] Unique number assigned to an event at creation
time.

STATUS_Ok Event was canceled or is not running.

STATUS_NotFound No such Event.
18-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Return Values

Usage Guidelines

To cancel a running instance of the job, send a request to the Daemon Manager to stop the process.

job_create

int job_create (JobInfo job_info, org.omg.CORBA.IntHolder idJob);

Creates a job. The ID field and all fields related to the last job execution are ignored.

Input Arguments

Output Arguments

Return Values

job_create_hist

int job_create_hist (JobInfo jiJob, org.omg.CORBA.IntHolder idJob);

Creates a job. The ID field and all fields related to the last job execution are ignored.

idJob [int] Unique number assigned to a job at creation time.

instanceId [int] Unique number assigned to a job instance at creation
time.

cancelAllInstances [boolean] Indicates whether you want to cancel all future
instances or just this instance

STATUS_Ok Instance of the job was canceled or is not running.

STATUS_NotFound No such job instance.

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).

id_Job [org.omg.CORBA.IntHolder] Unique number assigned to a job at creation time.

STATUS_Ok Success. On return, idJob contains the unique job ID.

STATUS_NotFound Job not found.
18-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

Return Values

job_delete

int job_delete (int idJob);

Deletes the job with the given ID.

Input Arguments

Return Values

job_delete_instance

int job_delete_instance (int idJob, int instanceId, boolean delFlag);

Deletes the job with the given ID.

Input Arguments

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).

id_Job [org.omg.CORBA.IntHolder] Unique number assigned to a job at creation time.

STATUS_Ok Success. On return, idJob contains the unique job ID.

STATUS_NotFound Job not found.

idJob [int] Unique number assigned to a job at creation time.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

instanceId [int] Unique number assigned to an instance of a job at
creation time.

delFlag [boolean] Indicates whether you want to delete all
instances or just this instance.
18-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

job_enum

int job_enum (JobIterHolder job_iter);

Creates the job enumerator.

Output Arguments

Return Values

Example

Use this method with the next and release methods to retrieve the next job.

JobIterHolder jih = new JobIterHolder ();
JobInfoHolder jobinfo = new JobInfoHolder ();
/* Get the JobIter and browse through it */
if (STATUS_Ok == job_manager.job_enum(jih))
{

while (STATUS_Ok == jih.value.next(jobinfo))
{
// do the required operations on JobInfo
}

}
//Calling the release of JobIter
jih.value.release();

The functions next (), next_n() and release() are to be called on the JobIter reference, which can be
obtained by calling the job_enum API.

job_enum_hist

int job_enum_hist (JobIterHist job_iter);

Creates the job enumerator.

Output Arguments

STATUS_Ok Success.

STATUS_NotFound No such job.

job_iter [JobIterHolder] Object used to retrieve the next job.

STATUS_Ok Success.

job_iter [JobIterHolder] Object used to retrieve the next job.
18-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Example

Use this method with the next and release methods to retrieve the next job.

JobIterHolder jih = new JobIterHolder ();
JobInfoHolder jobinfo = new JobInfoHolder ();
/* Get the JobIter and browse through it */
if (STATUS_Ok == job_manager.job_enum(jih))
{

while (STATUS_Ok == jih.value.next(jobinfo))
{
// do the required operations on JobInfo
}

}
//Calling the release of JobIter
jih.value.release();

The functions next (), next_n() and release() are to be called on the JobIter reference, which can be
obtained by calling the job_enum API.

job_get_info

int job_get_info (int idJob, JobInfoHolder job_info);

Fills the job information data structure with information about a given job.

Input Arguments

Output Arguments

Return Values

job_get_info_hist

int job_get_info (int idJob, int instanceId, JobInfoHistHolder jiJobHist);

Fills the job information data structure with information about a given job.

STATUS_Ok Success.

idJob [int] Unique number assigned to a job at creation time.

job_info [JobInfoHolder] Job information. The JobInfo structure is defined in the IDL
file (see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such job.
18-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

Return Values

job_get_result

int job_get_result (int idJob, IntHolder status);

Retrieves the current run state of a job.

Input Arguments

Output Arguments

Return Values

job_get_schedule

int job_get_schedule (int idJob, ScheduleHolder schedule);

Fills the schedule data structure with the job’s scheduling information.

idJob [int] Unique number assigned to a job at creation time.

instanceId [int] Unique number assigned to an instance of a job at
creation time.

job_info [JobInfoHolder] Job information. The JobInfo structure is defined in the IDL
file (see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

status [IntHolder] Current run state.

STATUS_Ok Success.

STATUS_NotFound No such job.
18-37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

Return Values

job_get_schedule_string

int job_get_schedule_string (int idJob, StringHolder schedule);

Puts a displayable representation of the job schedule into the string contained in schedule.

Input Arguments

Output Arguments

Return Values

job_run

int job_run (int idJob);

Runs the job immediately.

Input Arguments

idJob [int] Unique number assigned to a job at creation time.

schedule [ScheduleHolder] Job scheduling information. The Schedule structure, which is
defined in the IDL file (see the “About the IDL Interface” section on page 18-8),
includes the next time to start, the type of schedule, and the time increment.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

schedule [StringHolder] Displayable representation of the job’s schedule.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.
18-38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

job_set_approved

int job_set_approved (int idJob,
boolean bApproved,
String szApprover)

Approves or rejects a job. This method approves or rejects a job and records the approver name.

Input Arguments

Return Values

Usage Guidelines

If a nonperiodic job that requires approval has not been approved by the time it is scheduled to run, it is
automatically rejected.

job_set_info

int job_set_info (JobInfo job_info);

Replaces all job information.

Input Arguments

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

bApproved [boolean] True = approve job. False = reject job.

szApprover [String] Account of the approver.

STATUS_Ok Success.

STATUS_NotFound No such job.

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).
18-39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

job_set_info_hist

int job_set_info_hist (JobInfoHist jiJobHist);

Replaces all job information.

Input Arguments

Return Values

job_set_progress_string

int job_set_progress_string (int idJob, String szStatus);

Sets the progress string with update or diagnostic information.

Input Arguments

Return Values

job_set_reference

int job_set_reference (int idJob, String szReference);

Sets the job’s reference attribute.

STATUS_Ok Success.

STATUS_NotFound No such job.

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see the “About
the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

szStatus [String] Updates or diagnostic information.

STATUS_Ok Success.

STATUS_NotFound No such job.
18-40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Return Values

job_set_result

int job_set_result (int idJob, int state);

Sets the job’s current run state. The only states the application is allowed to set are Succeeded,
SucceededWithInfo, or Failed.

Input Arguments

Return Values

job_set_resume

int job_set_resume (int idJob, boolean bResume);

Resumes or suspends a job. When a previously suspended job is resumed, it is scheduled to run according
to its schedule type (run once or periodic) provided that it is approved or does not require approval.

Input Arguments

idJob [int] Unique number assigned to a job at creation time.

szReference [String] An application-specific string. May contain the URL of the job results.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

state [int] Current run state.

STATUS_Ok Success.

STATUS_NotFound No such job.

STATUS_BadArgument State was not Succeeded, SucceededWithInfo, Never
Ran, Canceled, CanceledInstance, or Failed

idJob [int] Unique number assigned to a job at creation time.

bResume [boolean] True = resume job. False = suspend job.
18-41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Usage Guidelines

You can use the following technique when a job needs to be run immediately but only after certain
actions are performed by the job creator:

• Create a job with schedule specifying to run it immediately but in the suspended state. You now have
a job ID.

• Perform whatever actions are needed that reference job ID.

• Enable (resume) the job. If approved, the job will run immediately.

job_set_schedule

int job_set_schedule (int idJob, Schedule schedule);

Sets the job’s schedule to schedule.

Input Arguments

Return Values

next

int next (JobInfoHolder job_info);

Returns the JobInfo instance for the next task entry.

Output Arguments

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

schedule [Schedule] Job scheduling information. The Schedule structure, which is defined in the IDL
file (see the “About the IDL Interface” section on page 18-8), includes the next time to start,
the type of schedule, and the time increment.

STATUS_Ok Success.

STATUS_NotFound No such job.

job_info [JobInfoHolder] Job information. The JobInfo structure is defined in the IDL file (see the
“About the IDL Interface” section on page 18-8).
18-42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Example

See the“job_enum” section on page 18-35.

next_n

int next_n (int max_jobs, JobInfoSequenceHolder job_seq);

Fills the job holder array with the next group of jobs.

Input Arguments

Output Arguments

Return Values

Example

See the “job_enum” section on page 18-35.

release

int release();

Releases the iterator and makes it unavailable to the clients.

Arguments

None

Example

See the “job_enum” section on page 18-35.

STATUS_Ok Filled job_info.

STATUS_EOF No more entries.

max_jobs [int] Maximum number of jobs that can be returned in the job holder array.

job_seq [JobInfoSequenceHolder] An array of objects that allows you to retrieve the next max_jobs
jobs.

STATUS_Ok Put at least one element into job_seq.

STATUS_EOF No more jobs.
18-43
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
About the Lock Manager Methods
Use the Lock Manager methods summarized in Table to add JRM resource locking functionality to your
application. These methods return Java constants described in the “About the JRM Java Constants”
section on page 18-56.

enum_job_locks

Status enum_job_locks (String szJob, LockIterHolder lock_iter);

Creates an iterator for all the locks for this job or process.

Input Arguments

Output Arguments

Table 18-16 JRM Lock Manager Method Summary

Returns Syntax and Description
int enum_job_locks(String szJob, LockIterHolder lock_iter);

Creates an iterator

int find_lock(String szResource, LockInfoHolder lock_info);

Finds a lock entry

int get_lock(String szResource, LockInfoHolder lock_info);

Gets lock information

int lock(String szResource, String szOwner, int duration);

Locks a resource

int lock_n(LockRequest[] Locks, String szOwner);

Locks multiple resources

int next(LockInfoHolder lock_info);

Fills lock_info

int next_n(int max_locks, LockInfoSequenceHolder lock_seq);

Fills lock_seq

int release();

Releases an iterator

int unlock(String szResource, String szOwner);

Unlocks a resource

int unlock_job(String szJob);

Unlocks all locks for a job

int unlock_n(String[] szResource, String szOwner);

Unlocks multiple resources

szJob [String] For a job, the string representation of the job ID.
For a process, the name known to the Daemon Manager.

lock_iter [LockIterHolder] Object used to retrieve the next lock.
The LockIter structure is defined in the IDL file (see the
“About the IDL Interface” section on page 18-8).
18-44
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Example

Use this method with the next and release methods to retrieve the next lock.

LockIterHolder lih = new LockIterHolder ();
LockInfoHolder lockInfo = new LockInfoHolder ();
/* Get the LockIter and browse through it */
if (STATUS_Ok == lock_manager.enum_job_locks(lih))
{

while (STATUS_Ok == lih.value.next(lockInfo))
{
// do the required operations on LockInfo
}

}
//Calling the release of LockIter
lih.value.release();

find_lock

Status find_lock (String szResource, LockInfoHolder lock_info);

Finds the lock entry that prevents a device from being locked. Unlike get_lock, which returns the lock
information for a specific device, find_lock returns the lock information for the device that is preventing
another resource from being locked.

For more information about the locking hierarchy, see the “Locking Parts of a Device” section on
page 18-5.

Input Arguments

Output Arguments

Return Values

get_lock

Status get_lock(String szResource, LockInfoHolder lock_info);

STATUS_Ok Success. lock_iter is returned.

STATUS_NotFound No such owner.

szResource [String] Device name and any subnode.

lock_info [LockInfoHolder] Lock information. The LockInfo structure is defined in the IDL file
(see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such resource.
18-45
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Returns lock information for a device. This method differs from find_lock, which finds the lock entry
that is preventing a device from being locked.

Input Arguments

Output Arguments

Return Values

lock

Status lock (String szResource, String szOwner, int duration);

Locks the resource for duration seconds. If the job already owns this resource, this method will change
the lock expiration time.

Input Arguments

Return Values

lock_n

Status lock_n (LockRequest[] Locks, String szOwner);

Locks multiple resources.

szResource [String] Device name and any subnode.

lock_info [LockInfoHolder] Lock information. The LockInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such resource.

szResource [String] Device name and any subnode.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

duration [int] Time (seconds) for which the resource is to be locked.

STATUS_Ok Success (job was killed or is not running).

STATUS_Exists The lock for that resource already exists.
18-46
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Return Values

next

Status next (LockInfoHolder lock_info);

Fills the lock holder with the lock entry information and advances to the next lock entry in the locks list.

Output Arguments

Return Values

Example

See the “enum_job_locks” section on page 18-44.

next_n

Status next_n (int max_locks, LockInfoSequenceHolder lock_seq);

Fills the lock holder array with the next group of locks.

Input Arguments

Locks [LockRequest] An array of objects that allows you specify the resources to be locked.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

STATUS_Ok Success. (All resources have been successfully locked.)

STATUS_Exists At least one resource could not be locked.

lock_info [LockInfoHolder] Lock information. The LockInfo structure is defined in the IDL file
(see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success (job was killed or is not running).

STATUS_EOF End of iteration.

max_locks [int] Maximum number of locks that can be returned in LockInfoSequence.
18-47
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Output Arguments

Return Values

Example

See the “enum_job_locks” section on page 18-44.

release

Status release();

The release method releases an iterator and makes it unavailable to the clients.

Arguments

None

Example

See the “enum_job_locks” section on page 18-44.

unlock

Status unlock (String szResource, String szOwner);

Unlocks the specified resource.

Input Arguments

Return Values

lock_seq [LockInfoSequenceHolder] An array of objects that allows you to retrieve the next
max_locks locks. The LockInfo structure is defined in the IDL file (see the “About the IDL
Interface” section on page 18-8).

STATUS_Ok Success (at least one element put into lock_seq).

STATUS_EOF No more elements.

szResource [String] Name of the resource to be unlocked.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

STATUS_Ok Success.

STATUS_NotFound Resource was not locked.
18-48
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
unlock_job

Status unlock_job (String szJob);

Release all locks for the specified job.

Input Arguments

Return Values

unlock_n

Status unlock_n (String[] Resource, String szOwner);

Unlocks all the resources in the specified list.

Input Arguments

Return Values

About the Helper API Methods
The Helper API consists of the class Client and the inner class of Client, MyJob. Only jobs running under
JRM can use the helper methods in the MyJob class. These methods return Java constants described in
the “About the JRM Java Constants” section on page 18-56.

Related Topics

• About the Helper API

• About the JRM Java Constants

• Parsing ESS Messages

szJob [String] For a job, the string representation of the job ID. For a process, the name known to the
Daemon Manager.

STATUS_Ok Success. Resources released successfully or there were no resources locked by this job.

Resource [String] Array of device names and any subnodes.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

STATUS_Ok Success. Released resources.

STATUS_NotFound At least one resource was not locked.
18-49
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Location com.cisco.nm.cmf.jrm.Client

Client Class Constructor Summary

public class Client implements Constants

This class is a collection of helper functions that can be called by JRM clients. It contains two groups
of functions:

• Those usable by any client.

• Those usable only by jobs running under JRM.

Client Class Method Summary

Returns Syntax and Description

static String getScheduleString (Schedule sch)

Returns a printable representation of the schedule string. Defines SCHTYPE
constants.

static void getStateStrings (JobInfo ji, StringHolder h_szRunState, StringHolder
h_szSchState)

Returns a printable representation of a job’s run and schedule states.

Properties getOrbConnectionProperties()

Initializes the ORB and locates servers.

MyJob Class Constructor Summary

public static class MyJob

This inner class is a collection of the static methods that can be used only from jobs running under JRM.

The methods in MyJob automatically establish connection with ORB. They obtain the value of Job Id
(which they need to communicate to the JRM) from the nm.jrm.jobid property.

The easiest way to set this property is to add the $JJ parameter to the job's command line (see the
“About the Job and Resource Lock Attributes” section on page 18-26).

Table 18-17 MyJob Class Method Summary

Returns Syntax and Description

int get_job_id();

Gets the job ID

int get_job_instance_id();

Gets the job instance ID

int get_job_info(JobInfoHolder h_ji);

Fills h_ji with job information

int get_job_info_hist(JobInfoHistHolder h_ji);

Fills h_ji with job information with additional parameters for req_hist and instance_id
18-50
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
get_job_id

static int get_job_id();

MyJob method returns the job ID by retrieving the value of nm.jrm.jobid property. This property is set
by adding $JJ on the job’s command line.

Arguments

None

Return Values

get_job_instance_id

static int get_job_instance_id();

MyJob method returns the job instance ID by retrieving the value of nm.jrm.jobinstanceid property. This
property is set by adding $JJ on the job’s command line.

Arguments

None

int get_lock_info(string szLockPath, LockInfoHolder h_li);

Fills h_li with lock information

boolean is_server_running();

Checks server status

int lock(string szLockPath, int duration);

Locks the resource for the current job

int lock_n(LockRequestSequence Locks);

Locks multiple resources

int set_completion_state(int run_state);

Sets the running job’s status

int set_progress(string szProgress);

Sets the running job’s progress string

void unlock(string szLockPath);

Unlocks the resource

int unlock_all();

Unlocks all resources for the current job

Table 18-17 MyJob Class Method Summary (continued)

Returns Syntax and Description

0 Called outside the running job.

an integer Job ID.
18-51
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

get_job_info

static int get_job_info (JobInfoHolder h_ji);

MyJob method sets h_ji.value to JobInfo of self.

Output Arguments

Return Values

get_job_info_hist

static int get_job_info_hist (JobInfoHistHolder h_ji);

MyJob method sets h_ji.value to JobInfoHist of self.

Output Arguments

Return Values

get_lock_info

static int get_lock_info (string szLockPath, LockInfoHolder h_li);

MyJob method that returns lock information for this lock if the resource szLockPath is locked.

Input Arguments

0 Called outside the running job.

an integer Job Instance ID.

h_ji [JobInfoHolder] Contains job information.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

h_ji [JobInfoHistHolder] Contains job history information.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

szLockPath [string] Device name and any subnode.
18-52
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Output Arguments

Return Values

getOrbConnectionProperties

static public Properties getOrbConnectionProperties()

Initializes the ORB and locates servers.

Arguments

None

Returns

getScheduleString

static String getScheduleString (Schedule sch)

Returns a printable representation of the schedule string. Defines SCHTYPE constants.

Input Arguments

Returns

getStateStrings

static void getStateStrings (JobInfo ji, StringHolder h_szRunState, StringHolder
h_szSchState)

Returns a printable representation of a job’s run and schedule states.\

h_li [LockInfoHolder] Contains lock information.

STATUS_Ok Success.

STATUS_NotFound Lock not found.

Properties [Properties] Server properties (host, port number)

sch [Schedule] Schedule object, which includes:

• sch.start—Next time to start

• sch.increment—Increment amount

szFormat [String] Printable schedule string
18-53
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

is_server_running

static boolean is_server_running();

MyJob method that checks to see if the server is running.

Arguments

None

Return Values

lock

static int lock (string szLockPath, int duration);

MyJob method that locks the resource for the current job for duration seconds.

Input Arguments

Return Values

ji [JobInfo] JobInfo structure

h_szRunState [StringHolder] Run state

h_szSchState [StringHolder] Schedule state

True Server is running.

False Server is not running.

szLockPath [string] Device name and any subnode.

duration [int] Number of seconds to lock the resource.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

STATUS_Exists szLockPath cannot be locked.
18-54
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
lock_n

static int lock_n (LockRequestSequence Locks);

MyJob methods that locks multiple resources.

Input Arguments

Return Values

set_completion_state

static int set_completion_state (int run_state);

MyJob method that sets the running job’s status (completed successfully, failed, canceled).

Input Arguments

Return Values

set_progress

static int set_progress (string szProgress);

MyJob method that sets the running job’s progress string.

Input Arguments

Locks [LockRequestSequence] An array of objects that allows
you to specify the resources to be locked.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

STATUS_Exists At least one resource cannot be locked.

run_state [JobRunState] Current run state.

STATUS_Ok Success. If some of the resources were not locked, they
are ignored.

STATUS_NotFound Not called from job.

szProgress [string] Updates or diagnostic information.
18-55
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

unlock

static void unlock (string szLockPath);

MyJob method that unlocks a resource.

Input Arguments

Return Values

unlock_all

static int unlock_all();

MyJob method that releases all the resources for the current job.

Arguments

None

Return Values

About the JRM Java Constants
This section describes the symbolic constants for Java applications. These constants are initialized in the
IDL file (see the “About Displayed Job Status Values” section on page 18-28).

STATUS_Ok Success.

STATUS_NotFound Not called from job.

szLockPath [string] Device name and any subnode.

STATUS_Ok Success.

STATUS_NotFound No such job or no such lock.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

Table 18-18 JRM Java Method Return Codes

Constant Description

STATUS_Ok Success
18-56
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
.

STATUS_Exists Entry already exists

STATUS_NotFound Entry not found

STATUS_EOF End of iteration

Table 18-19 JRM Job Completion States

Constant Description

RUNST_NeverRan The task was never run

RUNST_Running The task is currently running

RUNST_Succeeded Task completed successfully

RUNST_SucceededWithInfo Task completed successfully, returning
information

RUNST_Failed Task ran and failed

RUNST_Crashed Crashed (“core dump”)

RUNST_LaunchFailed Job Manager could not start the task for this job

RUNST_Canceled Canceled by client

RUNST_CanceledInstance Canceled Instance by client

Table 18-20 JRM Schedule State Bits

Constant Description

SCHST_RequiresApproval Set if job requires approval.

SCHST_Enabled Job is enabled.

SCHST_AM_Mask Mask for the job approval state. Use (schedule_state &
SCHST_AM_Mask) to compare with values below.

SCHST_AM_Waiting Waiting for approval.

SCHST_AM_Approved Approved.

SCHST_AM_Rejected Rejected.

Table 18-21 JRM Schedule Types

Constant Description

SCHTYPE_Immediate Run job immediately

SCHTYPE_Once Run job once

SCHTYPE_Daily Run every n days

SCHTYPE_Weekly Run every n weeks1

SCHTYPE_Monthly Run every n months2

SCHTYPE_MonthLastDay Run on the last day of the month every n months

Table 18-18 JRM Java Method Return Codes
18-57
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Note Some calendar options can produce impossible values (for example, run on the 31st of every month or
on the 5th Friday of every month). Those impossible dates will be skipped. For example, the job
scheduled to run on the 31st of the month will run only for the months that have 31 days.

Parsing ESS Messages

Use the helper class EssMessageCreator to parse and read the variables in the ESS message. After
reading the message, your application can create an EssMessageCreator object using the constructor
EssMessageCreator(String message). This will parse the details in the message. Your application can
then get the values for variables using the member variable of the object. The member variables are
shown in Table 18-22.

SCHTYPE_MonthSameXday Run on the given day (Sunday/Monday/…) of the first/second/…
week of the month every n months3

SCHTYPE_MonthLastXday Run on the given day of the last week of the month every n months4

SCHTYPE_S_Seconds Run every n seconds

SCHTYPE_S_Minutes Run every n minutes

SCHTYPE_S_Hours Run every n hours

SCHTYPE_E_Seconds Run n seconds after the previous run ended

SCHTYPE_E_Minutes Run n minutes after the previous run ended

SCHTYPE_E_Hours Run n hours after the previous run ended

1. Start date day of the week.

2. Start date day of the month.

3. Start date week number and the week day.

4. Start date week day.

Table 18-21 JRM Schedule Types

Table 18-22 ESS Member Variables

Member Variable Description

Public String Action; Provides commands such as start, end, etc.

public String szProgress; Job progress status for all events,. For approve and reject events, this
contains approver comments.

public int idJob; Contains the Job ID.

public int rc; Return code for some jobs.

public int signalNo; Contains the signal number for daemon jobs,

public int runState; Contains the run state value.

public String resource; Identifies the locked resource.

public String owner; Identifies the owner who locked or unlocked the resource.

public int instanceid; Stores the instance ID for job-history jobs.
18-58
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Using the Job Command-Line Commands
Use jobcli, the job command-line application, to run JRM functions. Table 18-23 summarizes the jobcli
commands.

Related Topics

• Understanding the JRM Architecture, page 18-5

• Using JRM from the Command Line, page 18-24

approve

approve jobId approver

Approves the job jobId.

Input Arguments

Table 18-23 jobcli Command Summary

Syntax and Description

approve jobId approver

Approves a job

cancel jobId

Cancels a job

create cmd=command [,descr=description] [,owner=user] [,type=string] [, schedule]

Creates a job

delay cmd=command [,descr=description] [,owner=user] [,type=string]

Creates and suspends a job

delete jobId

Deletes a job

reject jobId rejecter

Rejects a job

resume jobId

Resumes a job

run cmd=command [,descr=description] [,owner=user] [,type=string]

Creates and runs a job

schedule jobId schedule

Reschedules a job

suspend jobId

Suspends a job

getnextschedule jobId

Prints the next shcheduled run time for the job details on clicking on the command link

jobId [integer] Unique number assigned to a job at creation time.

approver [string] Account of the person who approved the job. Valid only if approval is required.
18-59
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
cancel

cancel jobId

Cancels the job jobId.

Input Arguments

create

create cmd=command [,descr=description] [,owner=user] [,type=string] [, schedule]

Creates a job.

Input Arguments

delay

delay cmd=command [,descr=description] [,owner=user] [,type=string]

jobId [integer] Unique number assigned to a job at creation time.

cmd [string] Command required to identify the job.

descr [string] Describes the job.

owner [string] Account of the person who created the job.

type [string] Identifies the job type and subtypes (for example, SWIM:update.)

schedule [string] List of comma-separated fragments that specify when the job will be run
initially, how often it is repeated, and the initial schedule state:

• at {date | +minutes}

date specifies the start datetime as a string. Alternatively, +minutes can be used
to start the job in minutes minutes from the current time.

• repeat {weekly | monthly | daily | month Last Day | monthSameXday |
monthLastXday} [(n)]

Schedule the job to run periodically on a calendar basis.

• repeat every n {h | m | s}

• repeat after n {h | m | s}

Schedule a job to run periodically on a time basis. Using the “every” option, the
job will run every N hours/minutes/seconds. Using the “after” option, the job
will run N hours/minutes/seconds after the end of the previous execution.

• schst= {W | A | R}

Sets the state to Waiting for approval / Approved / Rejected.
18-60
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Creates a job for immediate execution but in the suspended state. The effect is that the job will be run
once it is enabled with the resume command.

Input Arguments

delete

delete jobId

Deletes the job jobId.

Input Arguments

getnextschedule

getnextschedule jobId

Prints the next shcheduled run time for the job when the Instance of Job is scheduled for the future.

Input Arguments

reject

reject jobId rejecter

Rejects the job jobId.

Input Arguments

resume

resume jobId

cmd [string] Command required to identify the job

descr [string] Describes the job

owner [string] Account of the person who created the job

type [string] Identifies the job type and subtypes (for example, SWIM:update)

jobId [integer] Unique number assigned to a job at creation time.

jobId [integer] Unique number assigned to a job at creation time.

jobId [integer] Unique number assigned to a job at creation time.

rejecter [string] Account of the person who rejected the job. Valid only if approval is required.
18-61
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Resumes the job jobId so it can be scheduled.

Input Arguments

run

run cmd=command [,descr=description] [,owner=user] [,type=string]

Creates a job and runs it immediately.

Input Arguments

schedule

schedule jobId schedule

Reschedules the job jobId.

Input Arguments

suspend

suspend jobId

Suspends the job jobId so it will not be scheduled until it is resumed.

Input Arguments

jobId [integer] Unique number assigned to a job at creation time.

cmd [string] Command required to identify the job

descr [string] Describes the job

owner [string] Account of the person who created the job

type [string] Identifies the job type and subtypes (for example, SWIM:update)

jobId [integer] Unique number assigned to a job at creation time.

schedule [string] See “cancel.”

jobId [integer] Unique number assigned to a job at creation time.
18-62
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

	Using the Job and Resource Manager
	Understanding JRM Services
	Managing JRM Services
	Scheduling Jobs
	Locking Resources
	Locking Resources from Another Application
	Locking Parts of a Device

	Understanding the JRM Architecture
	An Overview of the JRM Architecture
	Understanding the JRM Server
	About Jobs and Resources
	About JRM Server Classes
	About the IDL Interface
	About the Helper API
	About JRM Events

	Understanding the Job Browser
	How JRM Relates to Other CWCS Components

	Enabling JRM
	Using JRM from a Java Application
	Establishing a Connection
	Creating a Job
	Setting the Job Status
	Getting Job Descriptions
	Handling an Unapproved Job
	Enabling a Disabled Job
	Handling a Crashed Job
	Locking and Unlocking a Device
	Handling an Unavailable Resource
	Accessing a Locked Device

	Using JRM from a Web Browser
	Customizing the Job Browser Button Behaviors
	Using JRM from the Command Line
	Job Command Line Interface
	Lock Command Line Interface

	JRM Command Reference
	About the Job and Resource Lock Attributes
	About Displayed Job Status Values
	About the Job Manager Methods
	job_cancel
	job_cancel_instance
	job_cancel_event
	job_cancel_instance_event
	job_create
	job_create_hist
	job_delete
	job_delete_instance
	job_enum
	job_enum_hist
	job_get_info
	job_get_info_hist
	job_get_result
	job_get_schedule
	job_get_schedule_string
	job_run
	job_set_approved
	job_set_info
	job_set_info_hist
	job_set_progress_string
	job_set_reference
	job_set_result
	job_set_resume
	job_set_schedule
	next
	next_n
	release

	About the Lock Manager Methods
	enum_job_locks
	find_lock
	get_lock
	lock
	lock_n
	next
	next_n
	release
	unlock
	unlock_job
	unlock_n

	About the Helper API Methods
	get_job_id
	get_job_instance_id
	get_job_info
	get_job_info_hist
	get_lock_info
	getOrbConnectionProperties
	getScheduleString
	getStateStrings
	is_server_running
	lock
	lock_n
	set_completion_state
	set_progress
	unlock
	unlock_all

	About the JRM Java Constants
	Parsing ESS Messages

	Using the Job Command-Line Commands
	approve
	cancel
	create
	delay
	delete
	getnextschedule
	reject
	resume
	run
	schedule
	suspend

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

