

Implementing IS-IS

Integrated Intermediate System-to-Intermediate System (IS-IS), Internet Protocol Version 4 (IPv4), is a standards-based Interior Gateway Protocol (IGP). The Cisco software implements the IP routing capabilities described in International Organization for Standardization (ISO)/International Engineering Consortium (IEC) 10589 and RFC 1195, and adds the standard extensions for single topology and multitopology IS-IS for IP Version 6 (IPv6).

This module describes how to implement IS-IS (IPv4 and IPv6) on your Cisco IOS XR network.

- Prerequisites for Implementing IS-IS, on page 2
- Restrictions for Implementing IS-IS, on page 2
- Information About Implementing IS-IS, on page 2
- Multitopology Configuration, on page 4
- Limit LSP Flooding, on page 4
- IPv6 Routing and Configuring IPv6 Addressing, on page 9
- Flood Blocking on Specific Interfaces, on page 9
- Multitopology IPv6 for IS-IS, on page 10
- IS-IS Authentication, on page 11
- Multi-Instance IS-IS, on page 14
- Enable IS-IS and Configure Level 1 or Level 2 Routing, on page 15
- Single-Topology IPv6, on page 16
- Customize Routes for IS-IS, on page 23
- Set Priority for Adding Prefixes to RIB, on page 27
- IS-IS Interfaces, on page 28
- Nonstop Forwarding, on page 31
- ISIS NSR, on page 34
- Multiprotocol Label Switching Traffic Engineering, on page 36
- Overload Bit on Router, on page 44
- IS-IS Overload Bit Avoidance, on page 44
- Default Routes, on page 46
- Attached Bit on an IS-IS Instance, on page 46
- IS-IS Support for Route Tags, on page 46
- Multicast-Intact Feature, on page 46
- Multicast Topology Support Using IS-IS, on page 47
- MPLS TE Interarea Tunnels, on page 47
- IP Fast Reroute, on page 47

- Unequal Cost Multipath Load-balancing for IS-IS, on page 48
- Configuring Multitopology Routing, on page 48
- Restrictions for Configuring Multitopology Routing, on page 49
- Information About Multitopology Routing, on page 49
- Configuring a Global Topology and Associating It with an Interface, on page 49
- Enabling an IS-IS Topology, on page 51
- Placing an Interface in a Topology in IS-IS, on page 52
- Configuring a Routing Policy, on page 53
- Configuring Multitopology for IS-IS, on page 54
- Enabling Multicast-Intact, on page 54
- Configuring IP/LDP Fast Reroute, on page 55
- ISIS Link Group, on page 58
- Configure Link Group Profile, on page 58
- Configure Link Group Interface, on page 61
- Configuration Examples for Implementing IS-IS, on page 62
- Configuring Global Weighted SRLG Protection, on page 70
- Label Distribution Protocol IGP Auto-configuration, on page 72

Prerequisites for Implementing IS-IS

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing IS-IS

When multiple instances of IS-IS are being run, an interface can be associated with only one instance (process). Instances may not share an interface.

Information About Implementing IS-IS

To implement IS-IS you need to understand the following concepts:

IS-IS Functional Overview

Small IS-IS networks are typically built as a single area that includes all routers in the network. As the network grows larger, it may be reorganized into a backbone area made up of the connected set of all Level 2 routers from all areas, which is in turn connected to local areas. Within a local area, routers know how to reach all system IDs. Between areas, routers know how to reach the backbone, and the backbone routers know how to reach other areas.

The IS-IS routing protocol supports the configuration of backbone Level 2 and Level 1 areas and the necessary support for moving routing information between the areas. Routers establish Level 1 adjacencies to perform routing within a local area (intra-area routing). Routers establish Level 2 adjacencies to perform routing between Level 1 areas (interarea routing).

Each IS-IS instance can support either a single Level 1 or Level 2 area, or one of each. By default, all IS-IS instances automatically support Level 1 and Level 2 routing. You can change the level of routing to be performed by a particular routing instance using the **is-type** command.

Restrictions

When multiple instances of IS-IS are being run, an interface can be associated with only one instance (process). Instances may not share an interface.

Key Features Supported in the Cisco IOS XR IS-IS Implementation

The Cisco IOS XR implementation of IS-IS conforms to the IS-IS Version 2 specifications detailed in RFC 1195 and the IPv6 IS-IS functionality based on the Internet Engineering Task Force (IETF) IS-IS Working Group draft-ietf-isis-ipv6.txt document.

The following list outlines key features supported in the Cisco IOS XR implementation:

- Single topology IPv6
- Multitopology
- Nonstop forwarding (NSF), both Cisco proprietary and IETF
- · Three-way handshake
- Mesh groups
- Multiple IS-IS instances
- Configuration of a broadcast medium connecting two networking devices as a point-to-point link
- Fast-flooding with different threads handling flooding and shortest path first (SPF).

Note

For information on IS-IS support for Bidirectional Forwarding Detection (BFD), see and .

IS-IS Configuration Grouping

Cisco IOS XR groups all of the IS-IS configuration in router IS-IS configuration mode, including the portion of the interface configurations associated with IS-IS. To display the IS-IS configuration in its entirety, use the **show running router isis** command. The command output displays the running configuration for all configured IS-IS instances, including the interface assignments and interface attributes.

Router Configuration Mode

The following example shows how to enter router configuration mode:

```
RP/0/# configuration
RP/0/(config)# router isis isp
RP/0/(config-isis)#
```

Router Address Family Configuration Mode

The following example shows how to enter router address family configuration mode:

```
RP/0/(config) # router isis isp
RP/0/(config-isis) # address-family
ipv4 u
nicast
RP/0/(config-isis-af) #
```

Interface Configuration Mode

The following example shows how to enter interface configuration mode:

```
RP/0/(config)# router isis isp
RP/0/(config-isis)# interface GigabitEthernet 0
/3/0/0
RP/0/(config-isis-if)#
```

Interface Address Family Configuration Mode

The following example shows how to enter interface address family configuration mode:

```
RP/0/(config) # router isis isp
RP/0/(config-isis) # interface
GigabitEthernet 0 /3/0/0
RP/0/(config-isis-if) # address-family ipv4 unicast
RP/0/(config-isis-if-af) #
```

Multitopology Configuration

The software supports multitopology for IPv6 IS-IS unless single topology is explicitly configured in IPv6 address-family configuration mode.

Note

IS-IS supports IP routing and not Open Systems Interconnection (OSI) Connectionless Network Service (CLNS) routing.

Limit LSP Flooding

Limiting link-state packets (LSP) may be desirable in certain "meshy" network topologies. An example of such a network might be a highly redundant one such as a fully meshed set of point-to-point links over a nonbroadcast multiaccess (NBMA) transport. In such networks, full LSP flooding can limit network scalability. One way to restrict the size of the flooding domain is to introduce hierarchy by using multiple Level 1 areas

and a Level 2 area. However, two other techniques can be used instead of or with hierarchy: Block flooding on specific interfaces and configure mesh groups.

Both techniques operate by restricting the flooding of LSPs in some fashion. A direct consequence is that although scalability of the network is improved, the reliability of the network (in the face of failures) is reduced because a series of failures may prevent LSPs from being flooded throughout the network, even though links exist that would allow flooding if blocking or mesh groups had not restricted their use. In such a case, the link-state databases of different routers in the network may no longer be synchronized. Consequences such as persistent forwarding loops can ensue. For this reason, we recommend that blocking or mesh groups be used only if specifically required, and then only after careful network design.

Control LSP Flooding for IS-IS

Flooding of LSPs can limit network scalability. You can control LSP flooding by tuning your LSP database parameters on the router globally or on the interface. This task is optional.

Many of the commands to control LSP flooding contain an option to specify the level to which they apply. Without the option, the command applies to both levels. If an option is configured for one level, the other level continues to use the default value. To configure options for both levels, use the command twice. For example:

```
RP/0/RP0/CPU0:router(config-isis)# lsp-refresh-interval 1200 level 2
RP/0/RP0/CPU0:router(config-isis)# lsp-refresh-interval 1100 level 1
```

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. **Isp-refresh-interval** seconds [level $\{1 \mid 2\}$]
- 4. **lsp-check-interval** seconds [level $\{1 \mid 2\}$]
- 5. **lsp-gen-interval** { [initial-wait initial | secondary-wait secondary | maximum-wait maximum] ... } [level { 1 | 2 }]
- **6. Isp-mtu** bytes [level $\{1 \mid 2\}$]
- 7. max-lsp-lifetime seconds [level $\{1 \mid 2\}$]
- 8. ignore-lsp-errors disable
- **9. interface** type interface-path-id
- **10.** Isp-interval milliseconds [level $\{1 \mid 2\}$]
- 11. csnp-interval seconds [level $\{1 \mid 2\}$]
- 12. retransmit-interval seconds [level $\{1 \mid 2\}$]
- 13. retransmit-throttle-interval milliseconds [level $\{1 \mid 2\}$]
- **14.** mesh-group { number | blocked }
- **15.** Use the **commit** or **end** command.
- **16.** show isis interface [type interface-path-id | level { 1 | 2 }] [brief]
- 17. show isis [instance instance-id] database [level {1 | 2}] [detail | summary | verbose][* | lsp-id]
- **18.** show isis [instance instance-id] lsp-log [level $\{1 \mid 2\}$]
- 19. show isis database-log [level $\{1 \mid 2\}]$

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

```
RP/0/RP0/CPU0:router(config)# router isis isp
```

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

 You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.

Step 3 | $seconds [level {1 | 2}]$

Example:

```
RP/0/RP0/CPU0:router(config-isis)# lsp-refresh-interval 10800
```

(Optional) Sets the time between regeneration of LSPs that contain different sequence numbers

• The refresh interval should always be set lower than the **max-lsp-lifetime** command.

Step 4 | lsp-check-interval seconds [level { 1 | 2 }]

Example:

```
RP/0/RP0/CPU0:router(config-isis)# lsp-check-interval 240
```

(Optional) Configures the time between periodic checks of the entire database to validate the checksums of the LSPs in the database.

• This operation is costly in terms of CPU and so should be configured to occur infrequently.

Step 5 | lsp-gen-interval $\{ [initial-wait initial \mid secondary-wait secondary \mid maximum-wait maximum] ... \} [level <math>\{ 1 \mid 2 \}]$

Example:

```
RP/0/RP0/CPU0:router(config-isis)# lsp-gen-interval maximum-wait 15 initial-wait 5
```

(Optional) Reduces the rate of LSP generation during periods of instability in the network. Helps reduce the CPU load on the router and number of LSP transmissions to its IS-IS neighbors.

• During prolonged periods of network instability, repeated recalculation of LSPs can cause an increased CPU load on the local router. Further, the flooding of these recalculated LSPs to the other Intermediate Systems in the network causes increased traffic and can result in other routers having to spend more time running route calculations.

Example:

```
RP/0/RP0/CPU0:router(config-isis) # lsp-mtu 1300
```

(Optional) Sets the maximum transmission unit (MTU) size of LSPs.

Step 7 max-lsp-lifetime seconds [level $\{1 \mid 2\}$]

Example:

```
RP/0/RP0/CPU0:router(config-isis) # max-lsp-lifetime 11000
```

(Optional) Sets the initial lifetime given to an LSP originated by the router.

 This is the amount of time that the LSP persists in the database of a neighbor unless the LSP is regenerated or refreshed.

Step 8 ignore-lsp-errors disable

Example:

```
RP/0/RP0/CPU0:router(config-isis)# ignore-lsp-errors disable
```

(Optional) Sets the router to purge LSPs received with checksum errors.

Step 9 interface type interface-path-id

Example:

```
RP/0/RP0/CPU0:router(config-isis) # interface HundredGigE 0/1/0/3
```

Enters interface configuration mode.

Step 10 Isp-interval *milliseconds* [**level** $\{1 \mid 2\}$]

Example:

```
RP/0/RP0/CPU0:router(config-isis-if) # lsp-interval 100
```

(Optional) Configures the amount of time between each LSP sent on an interface.

Step 11 csnp-interval seconds [level $\{1 \mid 2\}$]

Example:

```
RP/0/RP0/CPU0:router(config-isis-if) # csnp-interval 30 level 1
```

(Optional) Configures the interval at which periodic CSNP packets are sent on broadcast interfaces.

- Sending more frequent CSNPs means that adjacent routers must work harder to receive them.
- Sending less frequent CSNP means that differences in the adjacent routers may persist longer.

Step 12 retransmit-interval seconds [level { 1 | 2 }]

Example:

RP/0/RP0/CPU0:router(config-isis-if)# retransmit-interval 60

(Optional) Configures the amount of time that the sending router waits for an acknowledgment before it considers that the LSP was not received and subsequently resends.

```
RP/0/RP0/CPU0:router(config-isis-if) # retransmit-interval 60
```

Step 13 retransmit-throttle-interval milliseconds [level { 1 | 2 }]

Example:

```
RP/0/RP0/CPU0:router(config-isis-if)# retransmit-throttle-interval 1000
```

(Optional) Configures the amount of time between retransmissions on each LSP on a point-to-point interface.

• This time is usually greater than or equal to the **lsp-interval** command time because the reason for lost LSPs may be that a neighboring router is busy. A longer interval gives the neighbor more time to receive transmissions.

Step 14 mesh-group { number | blocked }

Example:

```
RP/0/RP0/CPU0:router(config-isis-if) # mesh-group blocked
```

(Optional) Optimizes LSP flooding in NBMA networks with highly meshed, point-to-point topologies.

• This command is appropriate only for an NBMA network with highly meshed, point-to-point topologies.

Step 15 Use the **commit** or **end** command.

commit—Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 16 show isis interface [type interface-path-id | **level** { 1 | 2 }] [**brief**]

Example:

```
RP/0/RP0/CPU0:router# show isis interface HundredGigE 0/1/0/1 brief
```

(Optional) Displays information about the IS-IS interface.

Step 17 show isis [instance instance-id] database [level $\{1 \mid 2\}$] [detail | summary | verbose] [* | lsp-id]

Example:

```
RP/0/RP0/CPU0:router# show isis database level 1
```

(Optional) Displays the IS-IS LSP database.

Step 18 show isis [instance instance-id] lsp-log [level $\{1 \mid 2\}$]

Example:

RP/0/RP0/CPU0:router# show isis lsp-log

(Optional) Displays LSP log information.

Step 19 show isis database-log [level $\{1 \mid 2\}$]

Example:

RP/0/RP0/CPU0:router# show isis database-log level 1

(Optional) Display IS-IS database log information.

IPv6 Routing and Configuring IPv6 Addressing

By default, IPv6 routing is disabled in the software. To enable IPv6 routing, you must assign IPv6 addresses to individual interfaces in the router using the **ipv6 enable** or **ipv6 address** command. See the Network Stack IPv4 and IPv6 Commands on module of .

Flood Blocking on Specific Interfaces

With this technique, certain interfaces are blocked from being used for flooding LSPs, but the remaining interfaces operate normally for flooding. This technique is simple to understand and configure, but may be more difficult to maintain and more error prone than mesh groups in the long run. The flooding topology that IS-IS uses is fine-tuned rather than restricted. Restricting the topology too much (blocking too many interfaces) makes the network unreliable in the face of failures. Restricting the topology too little (blocking too few interfaces) may fail to achieve the desired scalability.

To improve the robustness of the network in the event that all nonblocked interfaces drop, use the **csnp-interval** command in interface configuration mode to force periodic complete sequence number PDUs (CSNPs) packets to be used on blocked point-to-point links. The use of periodic CSNPs enables the network to become synchronized.

Maximum LSP Lifetime and Refresh Interval

By default, the router sends a periodic LSP refresh every 15 minutes. LSPs remain in a database for 20 minutes by default. If they are not refreshed by that time, they are deleted. You can change the LSP refresh interval or maximum LSP lifetime. The LSP interval should be less than the LSP lifetime or else LSPs time out before they are refreshed. In the absence of a configured refresh interval, the software adjusts the LSP refresh interval, if necessary, to prevent the LSPs from timing out.

Minimum Remaining Lifetime

The Minimum Remaining Lifetime feature prevents premature purging and unnecessary flooding of LSPs. If the Remaining Lifetime field gets corrupted during flooding, this corruption is undetectable. The consequences of such corruption depend on how the Remaining Lifetime value is altered. This feature resolves this problem by enabling IS-IS to reset the Remaining Lifetime value of the received LSP, to the maximum LSP lifetime. By default, the maximum LSP lifetime is configured as 1200 seconds and you can configure it to a different value using the **max-lsp-lifetime** *seconds* command. This action ensures that whatever be the value of

Remaining Lifetime that is received, a system other than the originator of an LSP will never purge the LSP, until the LSP has existed in the database at least for maximum LSP lifetime.

If the remaining lifetime for the LSP reaches 0, the LSP is kept in the link state database for an additional 60 seconds. This additional lifetime is known as Zero Age Lifetime. If the corresponding router does not update the LSP even after the Zero Age Lifetime, the LSP is deleted from the link state database.

The Remaining Lifetime field is also useful in identifying a problem in the network. If the received LSP lifetime value is less than the Zero Age Lifetime, which is 60 seconds, IS-IS generates an error message indicating that it's a corrupted lifetime event. The sample error message is as follows:

```
Dec 14 15:36:45.663 : isis[1011]: RECV L2 LSP 1111.1111.1112.03-00 from 1111.1111.1112.03: possible corrupted lifetime 59 secs for L2 lsp 1111.1111.1112.03-00 from SNPA 02e9.4522.5326 detected.
```

IS-IS saves the received remaining lifetime value in LSP database. The value is shown in the **show isis database** command output under the **Rcvd** field.

For more information about the **show isis database** command, see *IS-IS Commands* Chapter of the *Routing Command Reference for Cisco NCS 5500 Series Routers*.

Mesh Group Configuration

Configuring mesh groups (a set of interfaces on a router) can help to limit flooding. All routers reachable over the interfaces in a particular mesh group are assumed to be densely connected with each router having at least one link to every other router. Many links can fail without isolating one or more routers from the network.

In normal flooding, a new LSP is received on an interface and is flooded out over all other interfaces on the router. With mesh groups, when a new LSP is received over an interface that is part of a mesh group, the new LSP is not flooded over the other interfaces that are part of that mesh group.

Multitopology IPv6 for IS-IS

Multitopology IPv6 for IS-IS assumes that multitopology support is required as soon as it detects interfaces configured for both IPv6 and IPv4 within the IS-IS stanza.

Because multitopology is the default behavior in the software, you must explicitly configure IPv6 to use the same topology as IPv4 to enable single-topology IPv6. Configure the **single-topology** command in IPv6 router address family configuration submode of the IS-IS router stanza.

The following example shows multitopology IS-IS being configured in IPv6.

```
router isis isp
net 49.0000.0000.0001.00
interface POSO/3/0/0
  address-family ipv6 unicast
  metric-style wide level 1
  exit
!
interface POSO/3/0/0
ipv6 address 2001::1/64
```

IS-IS Authentication

Authentication is available to limit the establishment of adjacencies by using the **hello-password** command, and to limit the exchange of LSPs by using the **lsp-password** command.

IS-IS supports plain-text authentication, which does not provide security against unauthorized users. Plain-text authentication allows you to configure a password to prevent unauthorized networking devices from forming adjacencies with the router. The password is exchanged as plain text and is potentially visible to an agent able to view the IS-IS packets.

When an HMAC-MD5 password is configured, the password is never sent over the network and is instead used to calculate a cryptographic checksum to ensure the integrity of the exchanged data.

IS-IS stores a configured password using simple encryption. However, the plain-text form of the password is used in LSPs, sequence number protocols (SNPs), and hello packets, which would be visible to a process that can view IS-IS packets. The passwords can be entered in plain text (clear) or encrypted form.

To set the domain password, configure the **lsp-password** command for Level 2; to set the area password, configure the **lsp-password** command for Level 1.

The keychain feature allows IS-IS to reference configured keychains. IS-IS key chains enable hello and LSP keychain authentication. Keychains can be configured at the router level (in the case of the **lsp-password** command) and at the interface level (in the case of the **hello-password** command) within IS-IS. These commands reference the global keychain configuration and instruct the IS-IS protocol to obtain security parameters from the global set of configured keychains.

IS-IS is able to use the keychain to implement hitless key rollover for authentication. ey rollover specification is time based, and in the event of clock skew between the peers, the rollover process is impacted. The configurable tolerance specification allows for the accept window to be extended (before and after) by that margin. This accept window facilitates a hitless key rollover for applications (for example, routing and management protocols).

Configure Authentication for IS-IS

This task explains how to configure authentication for IS-IS. This task is optional.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. lsp-password { hmac-md5 | text } { clear | encrypted } password [level { 1 | 2 }] [send-only] [snp send-only]
- **4. interface** *type interface-path-id*
- 5. hello-password { hmac-md5 | text } { clear | encrypted } password [level $\{1 \mid 2\}$] [send-only]
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

RP/0/RP0/CPU0:router(config) # router isis isp

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

• You can change the level of routing to be performed by a particular routing instance by using the **is-type** command.

Step 3 | lsp-password $\{ \text{hmac-md5} \mid \text{text} \} \{ \text{clear} \mid \text{encrypted} \} \text{ password} [\text{level} \{ 1 \mid 2 \}] [\text{send-only}] [\text{snp send-only}]$

Example:

RP/0/RP0/CPU0:router(config-isis) # lsp-password hmac-md5 clear password1 level 1

Configures the LSP authentication password.

- The **hmac-md5** keyword specifies that the password is used in HMAC-MD5 authentication.
- The **text** keyword specifies that the password uses cleartext password authentication.
- The **clear** keyword specifies that the password is unencrypted when entered.
- The **encrypted** keyword specifies that the password is encrypted using a two-way algorithm when entered.
- The level 1 keyword sets a password for authentication in the area (in Level 1 LSPs and Level SNPs).
- The level 2 keywords set a password for authentication in the backbone (the Level 2 area).
- The **send-only** keyword adds authentication to LSP and sequence number protocol data units (SNPs) when they are sent. It does not authenticate received LSPs or SNPs.
- The **snp send-only** keyword adds authentication to SNPs when they are sent. It does not authenticate received SNPs.

Note To disable SNP password checking, the **snp send-only** keywords must be specified in the **lsp-password** command.

Step 4 interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-isis) # interface GigabitEthernet 0/1/0/3

Enters interface configuration mode.

Step 5 hello-password { hmac-md5 | text } { clear | encrypted } password [level { 1 | 2 }] [send-only]

Example:

RP/0/RP0/CPU0:router(config-isis-if)#hello-password text clear mypassword

Configures the authentication password for an IS-IS interface.

Step 6 Use the **commit** or **end** command.

commit—Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Keychains for IS-IS

This task explains how to configure keychains for IS-IS. This task is optional.

Keychains can be configured at the router level (lsp-password command) and at the interface level (hello-password command) within IS-IS. These commands reference the global keychain configuration and instruct the IS-IS protocol to obtain security parameters from the global set of configured keychains. The router-level configuration (lsp-password command) sets the keychain to be used for all IS-IS LSPs generated by this router, as well as for all Sequence Number Protocol Data Units (SN PDUs). The keychain used for HELLO PDUs is set at the interface level, and may be set differently for each interface configured for IS-IS.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. I sp-password keychain keychain-name [level $\{1 \mid 2\}$] [send-only] [snp send-only]
- **4. interface** *type interface-path-id*
- **5.** hello-password keychain keychain-name [level { 1 | 2 }] [send-only]
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

```
RP/0/RP0/CPU0:router(config) # router isis isp
```

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

• You can change the level of routing to be performed by a particular routing instance by using the **is-type** command.

Step 3 | I sp-password keychain keychain-name [level $\{1 \mid 2\}$] [send-only] [snp send-only]

Example:

RP/0/RP0/CPU0:router(config-isis)# lsp-password keychain isis a level 1

Configures the keychain.

Step 4 interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-isis)# interface HundredGigE 0/1/0/3

Enters interface configuration mode.

Step 5 hello-password keychain keychain-name [level { 1 | 2 }] [send-only]

Example:

RP/0/RP0/CPU0:router(config-isis-if) #hello-password keychain isis b

Configures the authentication password for an IS-IS interface.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Multi-Instance IS-IS

You can configure up to 16 IS-IS instances. MPLS can run on multiple IS-IS processes as long as the processes run on different sets of interfaces. Each interface may be associated with only a single IS-IS instance. The software prevents the double-booking of an interface by two instances at configuration time—two instances of MPLS configuration causes an error.

Because the Routing Information Base (RIB) treats each of the IS-IS instances as equal routing clients, you must be careful when redistributing routes between IS-IS instances. The RIB does not know to prefer Level 1 routes over Level 2 routes. For this reason, if you are running Level 1 and Level 2 instances, you must enforce the preference by configuring different administrative distances for the two instances.

Enable IS-IS and Configure Level 1 or Level 2 Routing

This task explains how to enable IS-IS and configure the routing level for an area.

Note

Configuring the routing level in Step 4 is optional, but is highly recommended to establish the proper level of adjacencies.

Before you begin

Although you can configure IS-IS before you configure an IP address, no IS-IS routing occurs until at least one IP address is configured.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3. net** *network-entity-title*
- **4.** is-type { level-1 | level-1-2 | level-2-only }
- **5.** Use the **commit** or **end** command.
- **6. show isis** [instance instance-id] **protocol**

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

RP/0/RP0/CPU0:router(config)# router isis isp

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

• By default, all IS-IS instances are automatically Level 1 and Level 2. You can change the level of routing to be performed by a particular routing instance by using the **is-type** router configuration command.

Step 3 net *network-entity-title*

Example:

RP/0/RP0/CPU0:router(config-isis)# net 47.0004.004d.0001.0001.0c11.1110.00

Configures network entity titles (NETs) for the routing instance.

- Specify a NET for each routing instance if you are configuring multi-instance IS-IS.
- This example configures a router with area ID 47.0004.004d.0001 and system ID 0001.0c11.1110.00.
- To specify more than one area address, specify additional NETs. Although the area address portion of the NET differs, the systemID portion of the NET must match exactly for all of the configured items.

Step 4 is-type { level-1 | level-1-2 | level-2-only }

Example:

RP/0/RP0/CPU0:router(config-isis) # is-type level-2-only

(Optional) Configures the system type (area or backbone router).

- By default, every IS-IS instance acts as a level-1-2 router.
- The **level-1** keyword configures the software to perform Level 1 (intra-area) routing only. Only Level 1 adjacencies are established. The software learns about destinations inside its area only. Any packets containing destinations outside the area are sent to the nearest **level-1-2** router in the area.
- The **level-2-only** keyword configures the software to perform Level 2 (backbone) routing only, and the router establishes only Level 2 adjacencies, either with other Level 2-only routers or with **level-1-2** routers.
- The **level-1-2** keyword configures the software to perform both Level 1 and Level 2 routing. Both Level 1 and Level 2 adjacencies are established. The router acts as a border router between the Level 2 backbone and its Level 1 area.

Step 5 Use the **commit** or **end** command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 6 show isis [instance instance-id] protocol

Example:

```
RP/0/RP0/CPU0:router# show isis protocol
```

(Optional) Displays summary information about the IS-IS instance.

Single-Topology IPv6

Single-topology IPv6 allows IS-IS for IPv6 to be configured on interfaces along with an IPv4 network protocol. All interfaces must be configured with the identical set of network protocols, and all routers in the IS-IS area (for Level 1 routing) or the domain (for Level 2 routing) must support the identical set of network layer protocols on all interfaces.

In single-topology mode, IPv6 topologies work with both narrow and wide metric styles in IPv4 unicast topology. During single-topology operation, one shortest path first (SPF) computation for each level is used to compute both IPv4 and IPv6 routes. Using a single SPF is possible because both IPv4 IS-IS and IPv6 IS-IS routing protocols share a common link topology.

Configure Single Topology for IS-IS

After an IS-IS instance is enabled, it must be configured to compute routes for a specific network topology.

This task explains how to configure the operation of the IS-IS protocol on an interface for an IPv4 or IPv6 topology.

Before you begin

Note

To enable the router to run in single-topology mode, configure each of the IS-IS interfaces with all of the address families enabled and "single-topology" in the address-family IPv6 unicast in the IS-IS router stanza. You can use either the IPv6 address family or both IPv4 and IPv6 address families, but your configuration must represent the set of all active address families on the router. Additionally, explicitly enable single-topology operation by configuring it in the IPv6 router address family submode.

Two exceptions to these instructions exist:

- 1. If the address-family stanza in the IS-IS process contains the **adjacency-check disable** command, then an interface is not required to have the address family enabled.
- 2. The **single-topology** command is not valid in the ipv4 address-family submode.

The default metric style for single topology is narrow metrics. However, you can use either wide metrics or narrow metrics. How to configure them depends on how single topology is configured. If both IPv4 and IPv6 are enabled and single topology is configured, the metric style is configured in the **address-family ipv4** stanza. You may configure the metric style in the **address-family ipv6** stanza, but it is ignored in this case. If only IPv6 is enabled and single topology is configured, then the metric style is configured in the **address-family ipv6** stanza.

SUMMARY STEPS

- 1. configure
- 2. interface type interface-path-id
- **3.** Do one of the following:
 - ipv4 address address mask
 - ipv6 address ipv6-prefix | prefix-length [eui-64]
 - ipv6 address ipv6-address { | prefix-length | link-local }
 - ipv6 enable
- 4. exit
- **5. router isis** *instance-id*
- **6. net** *network-entity-title*
- 7. address-family ipv6 [unicast]
- 8. single-topology

- 9. exit
- **10. interface** type interface-path-id
- 11. circuit-type { level-1 | level-1-2 | level-2-only }
- 12. address-family { ipv4 | ipv6 } [unicast]
- **13.** Use the **commit** or **end** command.
- **14. show isis** [**instance** instance-id] **interface** [type interface-path-id] [**detail**] [**level** { 1 | 2 }]
- **15.** show isis [instance instance-id] topology [systemid system-id][level $\{1 \mid 2\}$] [summary]

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config) # interface HundredGigE 0/1/0/3

Enters interface configuration mode.

Step 3 Do one of the following:

- ipv4 address address mask
- ipv6 address ipv6-prefix | prefix-length [eui-64]
- **ipv6 address** *ipv6-address* { / *prefix-length* | *link-local* }
- ipv6 enable

Example:

```
RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.0.1.3 255.255.255.0

or

RP/0/RP0/CPU0:router(config-if)# ipv6 address 3ffe:1234:c18:1::/64 eui-64
RP/0/RP0/CPU0:router(config-if)# ipv6 address FE80::260:3EFF:FE11:6770 link-local
RP/0/RP0/CPU0:router(config-if)# ipv6 enable
```

or

Defines the IPv4 address for the interface. An IP address is required on all interfaces in an area enabled for IS-IS if any one interface is configured for IS-IS routing.

or

Specifies an IPv6 network assigned to the interface and enables IPv6 processing on the interface with the **eui-64** keyword.

or

Specifies an IPv6 address assigned to the interface and enables IPv6 processing on the interface with the **link-local** keyword.

or

Automatically configures an IPv6 link-local address on the interface while also enabling the interface for IPv6 processing.

- The link-local address can be used only to communicate with nodes on the same link.
- Specifying the **ipv6 address** *ipv6-prefix | prefix-length* interface configuration command without the **eui-64** keyword configures site-local and global IPv6 addresses.
- Specifying the **ipv6 address** *ipv6-prefix | prefix-length* command with the **eui-64** keyword configures site-local and global IPv6 addresses with an interface ID in the low-order 64 bits of the IPv6 address. Only the 64-bit network prefix for the address needs to be specified; the last 64 bits are automatically computed from the interface ID.
- Specifying the **ipv6 address** command with the **link-local** keyword configures a link-local address on the interface that is used instead of the link-local address that is automatically configured when IPv6 is enabled on the interface.

Step 4 exit

Example:

```
RP/0/RP0/CPU0:router(config-if)# exit
```

Exits interface configuration mode, and returns the router to mode.

Step 5 router isis instance-id

Example:

```
RP/0/RP0/CPU0:router(config) # router isis isp
```

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

• By default, all IS-IS instances are Level 1 and Level 2. You can change the level of routing to be performed by a particular routing instance by using the **is-type** command.

Step 6 net *network-entity-title*

Example:

```
RP/0/RP0/CPU0:router(config-isis)# net 47.0004.004d.0001.0001.0c11.1110.00
```

Configures NETs for the routing instance.

- Specify a NET for each routing instance if you are configuring multi-instance IS-IS. You can specify a name for a NET and for an address.
- This example configures a router with area ID 47.0004.004d.0001 and system ID 0001.0c11.1110.00.
- To specify more than one area address, specify additional NETs. Although the area address portion of the NET differs, the system ID portion of the NET must match exactly for all of the configured items.

Step 7 address-family ipv6 [unicast]

Example:

RP/0/RP0/CPU0:router(config-isis)# address-family ipv6 unicast

Specifies the IPv6 address family and enters router address family configuration mode.

• This example specifies the unicast IPv6 address family.

Step 8 single-topology

Example:

RP/0/RP0/CPU0:router(config-isis-af) # single-topology

(Optional) Configures the link topology for IPv4 when IPv6 is configured.

• The **single-topology** command is valid only in IPv6 submode. The command instructs IPv6 to use the single topology rather than the default configuration of a separate topology in the multitopology mode.

Step 9 exit

Example:

RP/0/RP0/CPU0:router(config-isis-af)# exit

Exits router address family configuration mode, and returns the router to router configuration mode.

Step 10 interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-isis)# interface HundredGigE 0/1/0/3HundredGigE 0/1/0/3

Enters interface configuration mode.

Step 11 circuit-type { level-1 | level-1-2 | level-2-only }

Example:

RP/0/RP0/CPU0:router(config-isis-if)# circuit-type level-1-2

(Optional) Configures the type of adjacency.

- The default circuit type is the configured system type (configured through the **is-type** command).
- Typically, the circuit type must be configured when the router is configured as only **level-1-2** and you want to constrain an interface to form only **level-1** or **level-2-only** adjacencies.

Step 12 address-family { ipv4 | ipv6 } [unicast]

Example:

RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast

Specifies the IPv4 or IPv6 address family, and enters interface address family configuration mode.

• This example specifies the unicast IPv4 address family on the interface.

Step 13 Use the **commit** or **end** command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 14 show isis [instance instance-id] interface [type interface-path-id] [detail] [level $\{1 \mid 2\}$] Example:

```
RP/0/RP0/CPU0:router# show isis interface HundredGigE 0/1/0/1
```

(Optional) Displays information about the IS-IS interface.

Step 15 show isis [instance instance-id] topology [systemid system-id][level $\{1 \mid 2\}$] [summary] Example:

```
RP/0/RP0/CPU0:router# show isis topology
```

(Optional) Displays a list of connected routers in all areas.

Configuring Single-Topology IS-IS for IPv6: Example

The following example shows single-topology mode being enabled. An IS-IS instance is created, the NET is defined, IPv6 is configured along with IPv4 on an interface, and IPv4 link topology is used for IPv6. This configuration allows POS interface 0/3/0/0 to form adjacencies for both IPv4 and IPv6 addresses.

```
router isis isp
net 49.0000.0000.0001.00
address-family ipv6 unicast
single-topology
interface POSO/3/0/0
address-family ipv4 unicast
!
address-family ipv6 unicast
!
exit
!
interface POSO/3/0/0
ipv4 address 10.0.1.3 255.255.255.0
ipv6 address 2001::1/64
```

Set SPF Interval for a Single-Topology Configuration

This task explains how to make adjustments to the SPF calculation to tune router performance. This task is optional.

Because the SPF calculation computes routes for a particular topology, the tuning attributes are located in the router address family configuration submode. SPF calculation computes routes for Level 1 and Level 2 separately.

When IPv4 and IPv6 address families are used in a single-topology mode, only a single SPF for the IPv4 topology exists. The IPv6 topology "borrows" the IPv4 topology; therefore, no SPF calculation is required for IPv6. To tune the SPF calculation parameters for single-topology mode, configure the **address-family ipv4 unicast** command.

The incremental SPF algorithm can be enabled separately. When enabled, the incremental shortest path first (ISPF) is not employed immediately. Instead, the full SPF algorithm is used to "seed" the state information required for the ISPF to run. The startup delay prevents the ISPF from running for a specified interval after an IS-IS restart (to permit the database to stabilize). After the startup delay elapses, the ISPF is principally responsible for performing all of the SPF calculations. The reseed interval enables a periodic running of the full SPF to ensure that the iSFP state remains synchronized.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [unicast]
- **4. spf-interval** {[**initial-wait** *initial* | **secondary-wait** *secondary* | **maximum-wait** *maximum*] ...} [**level** { 1 | 2 }]
- **5.** ispf [level { 1 | 2 }]
- **6.** Use the **commit** or **end** command.
- 7. show isis [instance instance-id] [[ipv4 | ipv6 | afi-all] [unicast | safi-all]] spf-log [level {1 | 2}] [ispf | fspf | prc | nhc] [detail | verbose] [last number | first number]

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

RP/0/RP0/CPU0:router(config) # router isis isp

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

• You can change the level of routing to be performed by a particular routing instance by using the **is-type** router configuration command.

Step 3 address-family { ipv4 | ipv6 } [unicast]

Example:

RP/0/RP0/CPU0:router(config-isis) #address-family ipv4 unicast

Specifies the IPv4or IPv6 address family, and enters router address family configuration mode.

Step 4 spf-interval $\{[initial-wait\ initial\ |\ secondary-wait\ secondary\ |\ maximum-wait\ maximum\]...\}$ [level $\{1\ |\ 2\ \}$]

Example:

RP/0/RP0/CPU0:router(config-isis-af) # spf-interval initial-wait 10 maximum-wait 30

(Optional) Controls the minimum time between successive SPF calculations.

- This value imposes a delay in the SPF computation after an event trigger and enforces a minimum elapsed time between SPF runs.
- If this value is configured too low, the router can lose too many CPU resources when the network is unstable.
- Configuring the value too high delays changes in the network topology that result in lost packets.
- The SPF interval does not apply to the running of the ISPF because that algorithm runs immediately on receiving a changed LSP.

Step 5 ispf [level { 1 | 2 }]

Example:

RP/0/RP0/CPU0:router(config-isis-af) # ispf

(Optional) Configures incremental IS-IS ISPF to calculate network topology.

Step 6 Use the **commit** or **end** command.

commit—Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 7 show isis [instance instance-id] [[ipv4 | ipv6 | afi-all] [unicast | safi-all]] spf-log [level $\{1 \mid 2\}$] [ispf | fspf | prc | nhc] [detail | verbose] [last number | first number]

Example:

```
RP/0/RP0/CPU0:router# show isis instance 1 spf-log ipv4
```

(Optional) Displays how often and why the router has run a full SPF calculation.

Customize Routes for IS-IS

This task explains how to perform route functions that include injecting default routes into your IS-IS routing domain and redistributing routes learned in another IS-IS instance. This task is optional.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. set-overload-bit [on-startup { $delay \mid wait-for-bgp \}$] [level { $1 \mid 2$ }]
- 4. address-family { ipv4 | ipv6 } [unicast]
- **5. default-information originate** [**route-policy** *route-policy-name*]
- **6.** redistribute isis instance [level-1 | level-2 | level-1-2][metric metric][metric-type { internal | external }] [policy policy-name]
- **7.** Do one of the following:
 - summary-prefix address | prefix-length [level { 1 | 2 }]
 - summary-prefix ipv6-prefix | prefix-length [level { 1 | 2 }]
- 8. maximum-paths route-number
- **9. distance** weight [address/prefix-length [route-list-name]]
- 10. set-attached-bit
- **11.** Use the **commit** or **end** command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

```
RP/0/RP0/CPU0:router(config)# router isis isp
```

Enables IS-IS routing for the specified routing process, and places the router in router configuration mode.

• By default, all IS-IS instances are automatically Level 1 and Level 2. You can change the level of routing to be performed by a particular routing instance by using the **is-type** command.

Step 3 set-overload-bit [on-startup { $delay \mid$ wait-for-bgp }] [level { 1 | 2 }]

Example:

```
RP/0/RP0/CPU0:router(config-isis)# set-overload-bit
```

(Optional) Sets the overload bit.

Note The configured overload bit behavior does not apply to NSF restarts because the NSF restart does not set the overload bit during restart.

Step 4 address-family { ipv4 | ipv6 } [unicast]

Example:

```
RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast
```

Specifies the IPv4 or IPv6 address family, and enters router address family configuration mode.

Step 5 default-information originate [**route-policy** *route-policy-name*]

Example:

```
RP/0/RP0/CPU0:router(config-isis-af)# default-information originate
```

(Optional) Injects a default IPv4 or IPv6 route into an IS-IS routing domain.

- The **route-policy** keyword and *route-policy-name* argument specify the conditions under which the IPv4 or IPv6 default route is advertised.
- If the **route-policy** keyword is omitted, then the IPv4 or IPv6 default route is unconditionally advertised at Level 2.

Step 6 redistribute isis instance [level-1 | level-2 | level-1-2] [metric metric] [metric-type { internal | external }] [policy policy-name]

Example:

```
RP/0/RP0/CPU0:router(config-isis-af) # redistribute isis 2 level-1
```

(Optional) Redistributes routes from one IS-IS instance into another instance.

• In this example, an IS-IS instance redistributes Level 1 routes from another IS-IS instance.

Step 7 Do one of the following:

- summary-prefix address | prefix-length [level { 1 | 2 }]
- summary-prefix ipv6-prefix | prefix-length [level { 1 | 2 }]

Example:

```
RP/0/RP0/CPU0:router(config-isis-af)# summary-prefix 10.1.0.0/16 level 1
or
RP/0/RP0/CPU0:router(config-isis-af)# summary-prefix 3003:xxxx::/24 level 1
```

(Optional) Allows a Level 1-2 router to summarize Level 1 IPv4 and IPv6 prefixes at Level 2, instead of advertising the Level 1 prefixes directly when the router advertises the summary.

This example specifies an IPv4 address and mask.

or

- This example specifies an IPv6 prefix, and the command must be in the form documented in RFC 2373 in which the address is specified in hexadecimal using 16-bit values between colons.
- Note that IPv6 prefixes must be configured only in the IPv6 router address family configuration submode, and IPv4 prefixes in the IPv4 router address family configuration submode.

Step 8 maximum-paths route-number

Example:

```
RP/0/RP0/CPU0:router(config-isis-af) # maximum-paths 16
```

(Optional) Configures the maximum number of parallel paths allowed in a routing table.

Step 9 distance weight [address/prefix-length [route-list-name]]

Example:

```
RP/0/RP0/CPU0:router(config-isis-af)# distance 90
```

(Optional) Defines the administrative distance assigned to routes discovered by the IS-IS protocol.

• A different administrative distance may be applied for IPv4 and IPv6.

Step 10 set-attached-bit

Example:

```
RP/0/RP0/CPU0:router(config-isis-af) # set-attached-bit
```

(Optional) Configures an IS-IS instance with an attached bit in the Level 1 LSP.

Step 11 Use the **commit** or **end** command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Redistributing IS-IS Routes Between Multiple Instances: Example

The following example shows usage of the **set- attached-bit** and **redistribute** commands. Two instances, instance "1" restricted to Level 1 and instance "2" restricted to Level 2, are configured.

The Level 1 instance is propagating routes to the Level 2 instance using redistribution. Note that the administrative distance is explicitly configured higher on the Level 2 instance to ensure that Level 1 routes are preferred.

Attached bit is being set for the Level 1 instance since it is redistributing routes into the Level 2 instance. Therefore, instance "1" is a suitable candidate to get from the area to the backbone.

```
router isis 1
  is-type level-2-only
net 49.0001.0001.0001.0001.00
address-family ipv4 unicast
distance 116
redistribute isis 2 level 2
!
interface HundredGigE 0/3/0/0
address-family ipv4 unicast
!
```

```
!
router isis 2
is-type level-1
net 49.0002.0001.0001.0002.00
address-family ipv4 unicast
set
-attached-bit
!
interface HundredGigE 0/1/0/0
address-family ipv4 unicast
```

Set Priority for Adding Prefixes to RIB

This optional task describes how to set the priority (order) for which specified prefixes are added to the RIB. The prefixes can be chosen using an access list (ACL), prefix list, or by matching a tag value.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [unicast]
- 4. metric-style wide [transition][level {1 | 2}]
- **5.** spf prefix-priority [level {1 | 2}] { critical | high | medium } { access-list-name | tag tag }
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

```
RP/0/RP0/CPU0:router(config)# router isis isp
```

Enables IS-IS routing for the specified routing process, and places the router in router configuration mode. In this example, the IS-IS instance is called isp.

Step 3 address-family { ipv4 | ipv6 } [unicast]

Example:

```
RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast
```

Specifies the IPv4 or IPv6 address family, and enters router address family configuration mode.

Step 4 metric-style wide $[\text{transition}][\text{level } \{1 \mid 2\}]$

Example:

RP/0/RP0/CPU0:router(config-isis-af) # metric-style wide level 1

Configures a router to generate and accept only wide-link metrics in the Level 1 area.

Example:

RP/0/RP0/CPU0:router(config-isis-af)# spf prefix-priority high tag 3

Installs all routes tagged with the value 3 first.

Step 6 Use the **commit** or **end** command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

IS-IS Interfaces

IS-IS interfaces can be configured as one of the following types:

- Active—advertises connected prefixes and forms adjacencies. This is the default for interfaces.
- Passive—advertises connected prefixes but does not form adjacencies. The passive command is used to
 configure interfaces as passive. Passive interfaces should be used sparingly for important prefixes such
 as loopback addresses that need to be injected into the IS-IS domain. If many connected prefixes need
 to be advertised then the redistribution of connected routes with the appropriate policy should be used
 instead.
- Suppressed—does not advertise connected prefixes but forms adjacencies. The **suppress** command is used to configure interfaces as suppressed.
- Shutdown—does not advertise connected prefixes and does not form adjacencies. The **shutdown** command is used to disable interfaces without removing the IS-IS configuration.

Tag IS-IS Interface Routes

This optional task describes how to associate a tag with a connected route of an IS-IS interface.

SUMMARY STEPS

1. configure

- 2. router isis instance-id
- 3. address-family $\{ ipv4 \mid ipv6 \} [unicast]$
- 4. metric-style wide [transition] [level {1 | 2}]
- 5. exit
- **6. interface** *type number*
- 7. address-family { ipv4 | ipv6 } [unicast]
- 8. tag tag
- **9.** Use the **commit** or **end** command.
- 10. show isis [ipv4 | ipv6 | afi-all] [unicast | safi-all] route [detail]

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

RP/0/RP0/CPU0:router(config) # router isis isp

Enables IS-IS routing for the specified routing process, and places the router in router configuration mode. In this example, the IS-IS instance is called isp.

Step 3 address-family { ipv4 | ipv6 } [unicast]

Example:

RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast

Specifies the IPv4 or IPv6 address family, and enters router address family configuration mode.

Step 4 metric-style wide [transition] [level {1 | 2 }]

Example:

RP/0/RP0/CPU0:router(config-isis-af) # metric-style wide level 1

Configures a router to generate and accept only wide link metrics in the Level 1 area.

Step 5 exit

Example:

RP/0/RP0/CPU0:router(config-isis-af)# exit

Exits router address family configuration mode, and returns the router to router configuration mode.

Step 6 interface type number

Example:

```
RP/0/RP0/CPU0:router(config-isis) # interface HundredGigE 0/1/0/3
```

Enters interface configuration mode.

Step 7 address-family { ipv4 | ipv6 } [unicast]

Example:

```
RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast
```

Specifies the IPv4 or IPv6 address family, and enters address family configuration mode.

Step 8 tag tag

Example:

```
RP/0/RP0/CPU0:router(config-isis-if-af) # tag 3
```

Sets the value of the tag to associate with the advertised connected route.

Step 9 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 10 show isis [ipv4 | ipv6 | afi-all] [unicast | safi-all] route [detail]

Example:

RP/0/RP0/CPU0:router(config-isis-if-af)# show isis ipv4 route detail

Displays tag information. Verify that all tags are present in the RIB.

Tagging Routes: Example

The following example shows how to tag routes.

```
route-policy isis-tag-55
end-policy !
route-policy isis-tag-555
  if destination in (5.5.5.0/24 eq 24) then
    set tag 555
    pass
    else
        drop
    endif
end-policy !
router static
```

```
address-family ipv4 unicast
0.0.0.0/0 2.6.0.1
5.5.5.0/24 Null0
!
!
router isis uut
net 00.0000.0000.12a5.00
address-family ipv4 unicast
metric-style wide
redistribute static level-1 route-policy isis-tag-555
spf prefix-priority critical tag 13
spf prefix-priority high tag 444
spf prefix-priority medium tag 777
```

Nonstop Forwarding

On Cisco IOS XR software, IS-IS NSF minimizes the amount of time a network is unavailable to its users following the restart of the IS-IS process.

When the IS-IS process restarts, all routing peers of that device usually detect that the device went down and then came back up. This transition results in what is called a *routing flap*, which could spread across multiple routing domains. Routing flaps caused by routing restarts create routing instabilities, which are detrimental to the overall network performance. NSF helps to suppress routing flaps, thus reducing network instability.

NSF allows for the forwarding of data packets to continue along known routes while the routing protocol information is being restored following the process restarts. When the NSF feature is configured, peer networking devices do not experience routing flaps. To preserve routing across RP failover events, NSR must be configured in addition to NSF.

When the Cisco IOS XR router running IS-IS routing performs the process restarts, the router must perform two tasks to resynchronize its link-state database with that of its IS-IS neighbors. First, it must relearn the available IS-IS neighbors on the network without causing a reset of the neighbor relationship. Second, it must reacquire the contents of the link-state database for the network.

The IS-IS NSF feature offers two options when configuring NSF:

- IETF NSF
- · Cisco NSF

If neighbor routers on a network segment are NSF-aware, meaning that they are running a software version that supports RFC5306, they assist a router configured with **nsf ietf** command that is restarting. IETF NSF enables the neighbor routers provide adjacency and link-state information to help rebuild the routing information following a failover.

In Cisco IOS XR software, Cisco NSF checkpoints (stores persistently) all the state necessary to recover from a restart without requiring any special cooperation from neighboring routers. The state is recovered from the neighboring routers, but only using the standard features of the IS-IS routing protocol. This capability makes Cisco NSF suitable for use in networks in which other routers have not used the IETF standard implementation of NSF.

Note

If you configure IETF NSF on the Cisco IOS XR router and a neighbor router does not support IETF NSF, the affected adjacencies flap, but nonstop forwarding is maintained to all neighbors that do support IETF NSF. A restart reverts to a cold start if no neighbors support IETF NSF.

Configure Nonstop Forwarding for IS-IS

This task explains how to configure your router with NSF that allows the software to resynchronize the IS-IS link-state database with its IS-IS neighbors after a process restart. The process restart could be due to an:

- RP failover (for a warm restart)
- Simple process restart (due to an IS-IS reload or other administrative request to restart the process)
- IS-IS software upgrade

In all cases, NSF mitigates link flaps and loss of user sessions. This task is optional.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3.** nsf { cisco | ietf }
- 4. nsf interface-expires number
- **5. nsf interface-timer** *seconds*
- 6. nsf lifetime seconds
- 7. Use the **commit** or **end** command.
- **8. show running-config** [*command*]

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

RP/0/RP0/CPU0:router(config)# router isis isp

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

• You can change the level of routing to be performed by a particular routing instance by using the **is-type** router configuration command.

Step 3 nsf { cisco | ietf }

Example:

RP/0/RP0/CPU0:router(config-isis) # nsf ietf

Enables NSF on the next restart.

- Enter the **cisco** keyword to run IS-IS in heterogeneous networks that might not have adjacent NSF-aware networking devices.
- Enter the **ietf** keyword to enable IS-IS in homogeneous networks where *all* adjacent networking devices support IETF draft-based restartability.

Step 4 nsf interface-expires number

Example:

```
RP/0/RP0/CPU0:router(config-isis)# nsf interface-expires 1
```

Configures the number of resends of an acknowledged NSF-restart acknowledgment.

• If the resend limit is reached during the NSF restart, the restart falls back to a cold restart.

Step 5 nsf interface-timer seconds

Example:

```
RP/0/RP0/CPU0:router(config-isis) nsf interface-timer 15
```

Configures the number of seconds to wait for each restart acknowledgment.

Step 6 nsf lifetime seconds

Example:

```
RP/0/RP0/CPU0:router(config-isis)# nsf lifetime 20
```

Configures the maximum route lifetime following an NSF restart.

- This command should be configured to the length of time required to perform a full NSF restart because it is the amount of time that the Routing Information Base (RIB) retains the routes during the restart.
- Setting this value too high results in stale routes.
- Setting this value too low could result in routes purged too soon.

Step 7 Use the commit or end command.

commit—Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 8 show running-config [command]

Example:

RP/0/RP0/CPU0:router# show running-config router isis isp

(Optional) Displays the entire contents of the currently running configuration file or a subset of that file.

- Verify that "nsf" appears in the IS-IS configuration of the NSF-aware device.
- This example shows the contents of the configuration file for the "isp" instance only.

ISIS NSR

Non Stop Routing (NSR) suppresses IS-IS routing changes for devices with redundant route processors during processor switchover events (RP failover or ISSU), reducing network instability and downtime. When Non Stop Routing is used, switching from the active to standby RP have no impact on the other IS-IS routers in the network. All information needed to continue the routing protocol peering state is transferred to the standby processor prior to the switchover, so it can continue immediately upon a switchover.

To preserve routing across process restarts, NSF must be configured in addition to NSR.

Configuring ISIS-NSR

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

RP/0/RP0/CPU0:router(config) # router isis 1

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

Step 3 nsr

Example:

RP/0/RP0/CPU0:router(config-isis)# nsr

Configures the NSR feature.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 5 show isis nsr adjacency

Example:

```
RP/0/RP0/CPU0:router# show isis nsr adjacency
System Id Interface SNPA State Hold Changed NSF IPv4 BFD IPv6 BFD
R1-v1S Nii0 *PtoP* Up 83 00:00:33 Yes None None
```

Displays adjacency information.

Step 6 show isis nsr status

Example:

Displays the NSR status information.

Step 7 show isis nsr statistics

Example:

router#show isis nsr statistics IS-IS test NSR(v1a) MANDATORY STATS :	
V1 Active V1 Standby V2 Active	
Standby vi Heerve vi Scandby vi Heerve	
L1 ADJ: 0 0 0	
0	
L2 ADJ: 2 0	
0	
LIVE INTERFACE: 4 4 0	
0	
PTP INTERFACE: 1 1 0	
0	
LAN INTERFACE: 2 2 0	
0	
LOOPBACK INTERFACE: 1 1 0	
TE Tunnel: 1 1 0	
o o	
TE LINK: 2 2 0	
0	
NSR OPTIONAL STATS :	
L1 LSP: 0 0 0	
0	
L2 LSP: 4 4 0	
0	
IPV4 ROUTES: 3 3 0	
0	
IPV6 ROUTES: 4 4 0	
0	

V2

Shows number of ISIS adjacencies, lsps, routes, tunnels, Te links on active and standby routers.

Configuring IS-IS Adjacency Stagger

Certain events like process restart or reload can involve a significant processing overhead. Updating routing tables with all adjacencies, maintaining them, and synchronizing the database with each adjacent router requires a lot of bandwidth. These processes may require large number of packets being sent and/or received, depending on the state of the database on the routers. If packets are dropped in any direction, it can lead to an unstable state.

We cannot prevent events like process restart or reload, but we can handle such events better by limiting the number of adjacencies that area being established simultaneously. To limit the number of adjacencies from getting established simultaneously, you can configure adjacency stagger. By configuring IS-IS adjacency stagger, you can specify the initial number neighbourhood routers from which adjacencies can fully form after a process restart or reload. If you configure IS-IS adjacency stagger, you can also specify the subsequent number of simultaneous neighbors that are allowed to form adjacency.

Restrictions

- IS-IS adjacency stagger is only supported on point-to-point interfaces and not on LAN interfaces.
- IS-IS adjacency stagger is not supported with NSF (non-stop forwarding) mechanisms.

Configuration Example

To configure IS-IS adjacency stagger on a point-to-point interface, you must use the following configuration steps:

- 1. Configure IS-IS.
- 2. Configure adjacency stagger.

Configuration

```
/* Enter the global configuration mode and configure IS-IS */
Router# config
Router(config)# router isis 1
/* Configure IS-IS adjacency stagger */
Router(config-isis)# adjacency stagger 2 3
Router(config-isis)# commit
```

Multiprotocol Label Switching Traffic Engineering

The MPLS TE feature enables an MPLS backbone to replicate and expand the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks. MPLS is an integration of Layer 2 and Layer 3 technologies.

For IS-IS, MPLS TE automatically establishes and maintains MPLS TE label-switched paths across the backbone by using Resource Reservation Protocol (RSVP). The route that a label-switched path uses is determined by the label-switched paths resource requirements and network resources, such as bandwidth.

Available resources are flooded by using special IS-IS TLV extensions in the IS-IS. The label-switched paths are explicit routes and are referred to as traffic engineering (TE) tunnels.

Configure MPLS Traffic Engineering for IS-IS

This task explains how to configure IS-IS for MPLS TE. This task is optional.

Before you begin

Your network must support the MPLS software feature before you enable MPLS TE for IS-IS on your router.

Note

You must enter the commands in the following task list on every IS-IS router in the traffic-engineered portion of your network.

Note

MPLS traffic engineering currently does not support routing and signaling of LSPs over unnumbered IP links. Therefore, do not configure the feature over those links.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [unicast]
- 4. mpls traffic-eng level $\{1 \mid 2\}$
- **5. mpls traffic-eng router-id** { *ip-address* | *interface-name interface-instance* }
- **6.** metric-style wide [level $\{1 \mid 2\}]$
- 7. Use the **commit** or **end** command.
- 8. show isis [instance instance-id] mpls traffic-eng tunnel
- 9. show isis [instance instance-id] mpls traffic-eng adjacency-log
- 10. show isis [instance instance-id] mpls traffic-eng advertisements

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

RP/0/RP0/CPU0:router(config) # router isis isp

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

 You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.

Step 3 address-family { ipv4 | ipv6 } [unicast]

Example:

RP/0/RP0/CPU0:router(config-isis) #address-family ipv4 unicast

Specifies the IPv4 or IPv6 address family, and enters router address family configuration mode.

Step 4 mpls traffic-eng level $\{1 \mid 2\}$

Example:

```
RP/0/RP0/CPU0:router(config-isis-af) # mpls traffic-eng level 1
```

Configures a router running IS-IS to flood MPLS TE link information into the indicated IS-IS level.

Step 5 mpls traffic-eng router-id { ip-address | interface-name interface-instance }

Example:

```
RP/0/RP0/CPU0:router(config-isis-af)# mpls traffic-eng router-id loopback0
```

Specifies that the MPLS TE router identifier for the node is the given IP address or an IP address associated with the given interface.

Step 6 metric-style wide $[level \{ 1 \mid 2 \}]$

Example:

```
RP/0/RP0/CPU0:router(config-isis-af) # metric-style wide level 1
```

Configures a router to generate and accept only wide link metrics in the Level 1 area.

Step 7 Use the commit or end command.

commit — Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 8 show isis [instance instance-id] mpls traffic-eng tunnel

Example:

```
RP/0/RP0/CPU0:router# show isis instance isp mpls traffic-eng tunnel
```

(Optional) Displays MPLS TE tunnel information.

Step 9 show isis [instance instance-id] mpls traffic-eng adjacency-log

RP/0/RP0/CPU0:router# show isis instance isp mpls traffic-eng adjacency-log (Optional) Displays a log of MPLS TE IS-IS adjacency changes.

Step 10 show isis [instance instance-id] mpls traffic-eng advertisements

Example:

RP/0/RP0/CPU0:router# show isis instance isp mpls traffic-eng advertisements (Optional) Displays the latest flooded record from MPLS TE.

MPLS TE Forwarding Adjacency

MPLS TE forwarding adjacency allows a network administrator to handle a traffic engineering, label switch path (LSP) tunnel as a link in an Interior Gateway Protocol (IGP) network, based on the Shortest Path First (SPF) algorithm. A forwarding adjacency can be created between routers in the same IS-IS level. The routers can be located multiple hops from each other. As a result, a TE tunnel is advertised as a link in an IGP network, with the cost of the link associated with it. Routers outside of the TE domain see the TE tunnel and use it to compute the shortest path for routing traffic throughout the network.

MPLS TE forwarding adjacency is considered in IS-IS SPF only if a two-way connectivity check is achieved. This is possible if the forwarding adjacency is bidirectional or the head end and tail end routers of the MPLS TE tunnel are adjacent.

The MPLS TE forwarding adjacency feature is supported by IS-IS. For details on configuring MPLS TE forwarding adjacency, see the MPLS Configuration Guide.

Tune Adjacencies for IS-IS

This task explains how to enable logging of adjacency state changes, alter the timers for IS-IS adjacency packets, and display various aspects of adjacency state. Tuning your IS-IS adjacencies increases network stability when links are congested. This task is optional.

For point-to-point links, IS-IS sends only a single hello for Level 1 and Level 2, which means that the level modifiers are meaningless on point-to-point links. To modify hello parameters for a point-to-point interface, omit the specification of the level options.

The options configurable in the interface submode apply only to that interface. By default, the values are applied to both Level 1 and Level 2.

The **hello-password** command can be used to prevent adjacency formation with unauthorized or undesired routers. This ability is particularly useful on a LAN, where connections to routers with which you have no desire to establish adjacencies are commonly found.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. log adjacency changes
- **4. interface** type interface-path-id
- 5. hello-padding $\{ \text{ disable } | \text{ sometimes } \} [\text{ level } \{ 1 | 2 \}]$

- 6. hello-interval seconds [level $\{1 \mid 2\}$]
- 7. hello-multiplier multiplier [level $\{1 \mid 2\}$]
- 8. h ello-password { hmac-md5 | text } { clear | encrypted } password [level $\{1 \mid 2\}$] [send-only]
- **9.** Use the **commit** or **end** command.
- **10. show isis** [**instance** *instance-id*] **adjacency** *t ype interface- path-id*] [**detail**] [**systemid** *system-id*]
- **11.** show isis adjacency-log
- **12.** show isis [instance instance-id] interface [type interface-path-id][brief | detail][level { 1 | 2 }]
- **13. show isis** [**instance** *instance-id*] **neighbors** [*interface-type interface-instance*] [**summary**] [**detail**] [**systemid** *system-id*]

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

```
RP/0/RP0/CPU0:router(config) # router isis isp
```

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

• You can change the level of routing to be performed by a particular routing instance by using the **is-type** command.

Step 3 log adjacency changes

Example:

RP/0/RP0/CPU0:router(config-isis)# log adjacency changes

Generates a log message when an IS-IS adjacency changes state (up or down).

Step 4 interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-isis)# interface HundredGigE 0/1/0/3

Enters interface configuration mode.

Step 5 hello-padding $\{ disable \mid sometimes \} [level \{ 1 \mid 2 \}]$

Example:

RP/0/RP0/CPU0:router(config-isis-if) # hello-padding sometimes

Configures padding on IS-IS hello PDUs for an IS-IS interface on the router.

• Hello padding applies to only this interface and not to all interfaces.

Step 6 hello-interval seconds [level $\{1 \mid 2\}$]

Example:

RP/0/RP0/CPU0:router(config-isis-if) #hello-interval 6

Specifies the length of time between hello packets that the software sends.

Step 7 hello-multiplier multiplier [level $\{1 \mid 2\}$]

Example:

RP/0/RP0/CPU0:router(config-isis-if) # hello-multiplier 10

Specifies the number of IS-IS hello packets a neighbor must miss before the router should declare the adjacency as down.

- A higher value increases the networks tolerance for dropped packets, but also may increase the amount of time required to detect the failure of an adjacent router.
- Conversely, not detecting the failure of an adjacent router can result in greater packet loss.

Step 8 h ello-password $\{ \text{ hmac-md5} \mid \text{ text} \} \{ \text{ clear} \mid \text{ encrypted} \} \text{ password} [\text{ level } \{ 1 \mid 2 \}] [\text{ send-only}]$ Example:

RP/0/RP0/CPU0:router(config-isis-if)# hello-password text clear mypassword

Specifies that this system include authentication in the hello packets and requires successful authentication of the hello packet from the neighbor to establish an adjacency.

Step 9 Use the **commit** or **end** command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Step 10 show isis [instance instance-id] adjacency type interface-path-id] [detail] [systemid system-id] **Example:**

RP/0/RP0/CPU0:router# show isis instance isp adjacency

(Optional) Displays IS-IS adjacencies.

Step 11 show isis adjacency-log

Example:

RP/0/RP0/CPU0:router# show isis adjacency-log

(Optional) Displays a log of the most recent adjacency state transitions.

Step 12 show isis [instance instance-id] interface [type interface-path-id] [brief | detail] [level { 1 | 2 }]

Example:

RP/0/RP0/CPU0:router# show isis interface HundredGigE 0/1/0/1 brief

(Optional) Displays information about the IS-IS interface.

Step 13 show isis [instance instance-id] neighbors [interface-type interface-instance] [summary] [detail] [systemid system-id]

Example:

RP/0/RP0/CPU0:router# show isis neighbors summary

(Optional) Displays information about IS-IS neighbors.

MPLS Label Distribution Protocol IGP Synchronization

Multiprotocol Label Switching (MPLS) Label Distribution Protocol (LDP) Interior Gateway Protocol (IGP) Synchronization ensures that LDP has completed label exchange before the IGP path is used for switching. MPLS traffic loss can occur in the following two situations:

- When an IGP adjacency is established, the router begins forwarding packets using the new adjacency before LDP has exchanged labels with peers on that link.
- When an LDP session closes, the router continues to forward traffic using the link associated with the LDP peer rather than using an alternate path with an established LDP session.

This feature provides a mechanism to synchronize LDP and IS-IS to minimize MPLS packet loss. The synchronization is accomplished by changing the link metric for a neighbor IS-IS link-state packet (LSP), based on the state of the LDP session.

When an IS-IS adjacency is established on a link but the LDP session is lost or LDP has not yet completed exchanging labels, IS-IS advertises the maximum metric on that link. In this instance, LDP IS-IS synchronization is not yet achieved.

Note

In IS-IS, a link with a maximum wide metric (0xFFFFFF) is not considered for shortest path first (SPF). Therefore, the maximum wide metric of -1 (0XFFFFFE) is used with MPLS LDP IGP synchronization.

When LDP IS-IS synchronization is achieved, IS-IS advertises a regular (configured or default) metric on that link.

Configuring MPLS LDP IS-IS Synchronization

This task explains how to enable Multiprotocol Label Switching (MPLS) Label Distribution Protocol (LDP) IS-IS synchronization. MPLS LDP synchronization can be enabled for an address family under interface configuration mode. Only IPv4 unicast address family is supported. This task is optional.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3. interface** *type interface-path-id*
- 4. address-family ipv4 unicast
- **5.** mpls ldp sync [level { 1 | 2 }]
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

```
RP/0/RP0/CPU0:router(config)# router isis isp
```

Enables IS-IS routing for the specified routing process, and places the router in router configuration mode.

• By default, all IS-IS instances are automatically Level 1 and Level 2. You can change the level of routing to be performed by a particular routing instance by using the **is-type** command.

Step 3 interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-isis) # interface HundredGigE 0/1/0/3

Enters interface configuration mode.

Step 4 address-family ipv4 unicast

Example:

```
RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast
```

Specifies the IPv4 address family and enters router address family configuration mode.

Step 5 mpls ldp sync [level $\{1 \mid 2\}$]

Example:

```
RP/0/RP0/CPU0:router(config-isis-if-af) # mpls ldp sync level 1
```

Enables MPLS LDP synchronization for the IPv4 address family under interface HundredGigE 0/1/0/3.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Overload Bit on Router

The overload bit is a special bit of state information that is included in an LSP of the router. If the bit is set on the router, it notifies routers in the area that the router is not available for transit traffic. This capability is useful in four situations:

- 1. During a serious but nonfatal error, such as limited memory.
- 2. During the startup and restart of the process. The overload bit can be set until the routing protocol has converged. However, it is not employed during a normal NSF restart or failover because doing so causes a routing flap.
- **3.** During a trial deployment of a new router. The overload bit can be set until deployment is verified, then cleared.
- **4.** During the shutdown of a router. The overload bit can be set to remove the router from the topology before the router is removed from service.

Overload Bit Configuration During Multitopology Operation

Because the overload bit applies to forwarding for a single topology, it may be configured and cleared independently for IPv4 and IPv6 during multitopology operation. For this reason, the overload is set from the router address family configuration mode. If the IPv4 overload bit is set, all routers in the area do not use the router for IPv4 transit traffic. However, they can still use the router for IPv6 transit traffic.

IS-IS Overload Bit Avoidance

The IS-IS overload bit avoidance feature allows network administrators to prevent label switched paths (LSPs) from being disabled when a router in that path has its Intermediate System-to-Intermediate System (IS-IS) overload bit set.

When the IS-IS overload bit avoidance feature is activated, all nodes with the overload bit set, including head nodes, mid nodes, and tail nodes, are ignored, which means that they are still available for use with label switched paths (LSPs).

Note

The IS-IS overload bit avoidance feature does *not* change the default behavior on nodes that have their overload bit set if those nodes are not included in the path calculation (PCALC).

The IS-IS overload bit avoidance feature is activated using the following command:

mpls traffic-eng path-selection ignore overload

The IS-IS overload bit avoidance feature is deactivated using the **no** form of this command:

no mpls traffic-eng path-selection ignore overload

When the IS-IS overload bit avoidance feature is deactivated, nodes with the overload bit set cannot be used as nodes of last resort.

Configure IS-IS Overload Bit Avoidance

This task describes how to activate IS-IS overload bit avoidance.

Before you begin

The IS-IS overload bit avoidance feature is valid only on networks that support the following features:

- MPLS
- IS-IS

SUMMARY STEPS

- 1. configure
- 2. mpls traffic-eng path-selection ignore overload

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 mpls traffic-eng path-selection ignore overload

Example:

RP/0/RP0/CPU0:router(config) # mpls traffic-eng path-selection ignore overload

Activates IS-IS overload bit avoidance.

Configuring IS-IS Overload Bit Avoidance: Example

The following example shows how to activate IS-IS overload bit avoidance:

config

```
mpls traffic-eng path-selection ignore overload
```

The following example shows how to deactivate IS-IS overload bit avoidance:

```
config
  no mpls traffic-eng path-selection ignore overload
```

Default Routes

You can force a default route into an IS-IS routing domain. Whenever you specifically configure redistribution of routes into an IS-IS routing domain, the software does not, by default, redistribute the default route into the IS-IS routing domain. The **default-information originate** command generates a *default route* into IS-IS, which can be controlled by a route policy. You can use the route policy to identify the level into which the default route is to be announced, and you can specify other filtering options configurable under a route policy. You can use a route policy to conditionally advertise the default route, depending on the existence of another route in the routing table of the router.

Attached Bit on an IS-IS Instance

The attached bit is set in a router that is configured with the **is-type** command and **level-1-2** keyword. The attached bit indicates that the router is connected to other areas (typically through the backbone). This functionality means that the router can be used by Level 1 routers in the area as the default route to the backbone. The attached bit is usually set automatically as the router discovers other areas while computing its Level 2 SPF route. The bit is automatically cleared when the router becomes detached from the backbone.

Note

If the connectivity for the Level 2 instance is lost, the attached bit in the Level 1 instance LSP would continue sending traffic to the Level 2 instance and cause the traffic to be dropped.

To simulate this behavior when using multiple processes to represent the **level-1-2** keyword functionality, you would manually configure the attached bit on the Level 1 process.

IS-IS Support for Route Tags

The IS-IS Support for route tags feature provides the capability to associate and advertise a tag with an IS-IS route prefix. Additionally, the feature allows you to prioritize the order of installation of route prefixes in the RIB based on a tag of a route. Route tags may also be used in route policy to match route prefixes (for example, to select certain route prefixes for redistribution).

Multicast-Intact Feature

The multicast-intact feature provides the ability to run multicast routing (PIM) when IGP shortcuts are configured and active on the router. Both OSPFv2 and IS-IS support the multicast-intact feature. MPLS TE

and IP multicast coexistence is supported in Cisco IOS XR software by using the **mpls traffic-eng multicast-intact** IS-IS or OSPF router command.

You can enable multicast-intact in the IGP when multicast routing protocols (PIM) are configured and IGP shortcuts are configured on the router. IGP shortcuts are MPLS tunnels that are exposed to IGP. The IGPs route the IP traffic over these tunnels to destinations that are downstream from the egress router of the tunnel (from an SPF perspective). PIM cannot use IGP shortcuts for propagating PIM joins because reverse path forwarding (RPF) cannot work across a unidirectional tunnel.

When you enable multicast-intact on an IGP, the IGP publishes a parallel or alternate set of equal-cost next-hops for use by PIM. These next-hops are called meast-intact next-hops. The meast-intact next-hops have the following attributes:

- They are guaranteed not to contain any IGP shortcuts.
- They are not used for unicast routing but are used only by PIM to look up an IPv4 next-hop to a PIM source.
- They are not published to the FIB.
- When multicast-intact is enabled on an IGP, all IPv4 destinations that were learned through link-state advertisements are published with a set equal-cost meast-intact next-hops to the RIB. This attribute applies even when the native next-hops have no IGP shortcuts.
- In IS-IS, the max-paths limit is applied by counting both the native and meast-intact next-hops together. (In OSPFv2, the behavior is slightly different.)

Multicast Topology Support Using IS-IS

Multicast topology support allows for the configuration of IS-IS multicast topologies for IPv4 or IPv6 routing. IS-IS maintains a separate topology for multicast and runs a separate Shortest Path First (SPF) over the multicast topology. IS-IS multicast inserts routes from the IS-IS multicast topology into the multicast-unicast Routing Information Base (muRIB) table in the RIB for the corresponding address family. Since PIM uses the muRIB, PIM uses routes from the multicast topology instead of routes from the unicast topology.

MPLS TE Interarea Tunnels

MPLS TE interarea tunnels allow you to establish MPLS TE tunnels that span multiple IGP areas (Open Shorted Path First [OSPF]) and levels (IS-IS), removing the restriction that required that both the tunnel headend and tailend routers be in the same area. The IGP can be either IS-IS or OSPF.

For details on configuring MPLS TE interarea tunnels, see the MPLS Configuration Guide.

IP Fast Reroute

The IP Fast Reroute (IPFRR) loop-free alternate (LFA) computation provides protection against link failure. Locally computed repair paths are used to prevent packet loss caused by loops that occur during network reconvergence after a failure. See IETF draft-ietf-rtgwg-ipfrr-framework-06.txt and draft-ietf-rtgwg-lf-conv-frmwk-00.txt for detailed information on IPFRR LFA.

IPFRR LFA is different from Multiprotocol Label Switching (MPLS) as it is applicable to networks using conventional IP routing and forwarding. See for information on configuring MPLS IPFRR.

Unequal Cost Multipath Load-balancing for IS-IS

The unequal cost multipath (UCMP) load-balancing adds the capability with intermediate system-to-intermediate system (IS-IS) to load-balance traffic proportionally across multiple paths, with different cost.

Generally, higher bandwidth links have lower IGP metrics configured, so that they form the shortest IGP paths. With the UCMP load-balancing enabled, IGP can use even lower bandwidth links or higher cost links for traffic, and can install these paths to the forwarding information base (FIB). IS-IS IGP still installs multiple paths to the same destination in FIB, but each path will have a 'load metric/weight' associated with it. FIB uses this load metric/weight to decide the amount of traffic that needs to be sent on a higher bandwidth path and the amount of traffic that needs to be sent on a lower bandwidth path.

The UCMP computation is provided under IS-IS per address family, enabling UCMP computation for a particular address family. The UCMP configuration is also provided with a prefix-list option, which would limit the UCMP computation only for the prefixes present in the prefix-list. If prefix-list option is not provided, UCMP computation is done for the reachable prefixes in IS-IS. The number of UCMP nexthops to be considered and installed is controlled using the **variance** configuration. Variance value identifies the range for the UCMP path metric to be considered for installation into routing information base (RIB) and is defined in terms of a percentage of the primary path metric. Total number of paths, including ECMP and UCMP paths together is limited by the max-path configuration or by the max-path capability of the platform.

Enabling the UCMP configuration indicates that IS-IS should perform UCMP computation for the all the reachable ISIS prefixes or all the prefixes in the prefix-list, if the prefix-list option is used. The UCMP computation happens only after the primary SPF and route calculation is completed. There would be a delay of ISIS_UCMP_INITIAL_DELAY (default delay is 100 ms) milliseconds from the time route calculation is completed and UCMP computation is started. UCMP computation will be done before fast re-route computation. Fast re-route backup paths will be calculated for both the primary equal cost multipath (ECMP) paths and the UCMP paths. Use the **ucmp delay-interval** command to configure the delay between primary SPF completion and start of UCMP computation.

UCMP ratio can be adjusted by any of the following ways:

- By using the **bandwidth** command in interface configuration mode.
- By adjusting ISIS metric on the links.

There is an option to exclude an interface from being used for UCMP computation. If it is desired that a particular interface should not be considered as a UCMP nexthop, for any prefix, then use the **ucmp exclude interface** command to configure the interface to be excluded from UCMP computation.

Configuring Multitopology Routing

This set of procedures configures multitopology routing, which is used by PIM for reverse-path forwarding (RPF) path selection.

Restrictions for Configuring Multitopology Routing

- Only protocol-independent multicast (PIM) and intermediate system-intermediate system (IS-IS) routing protocols are currently supported.
- Topology selection is restricted solely to (S, G) route sources for both SM and SSM. Static and IS-IS are the only interior gateway protocols (IGPs) that support multitopology deployment.

For non-(S, G) route sources like a rendezvous point or bootstrap router (BSR), or when a route policy is not configured, the current policy default remains in effect. In other words, either a unicast-default or multicast-default table is selected for all sources, based on OSFP/IS-IS/Multiprotocol Border Gateway Protocol (MBGP) configuration.

Information About Multitopology Routing

Configuring multitopology networks requires the following tasks:

Configuring a Global Topology and Associating It with an Interface

Follow these steps to enable a global topology in the default VRF and to enable its use with a specific interface.

SUMMARY STEPS

- 1. configure
- 2. address-family { ipv4 | ipv6 } multicast topology topo-name
- 3. maximum prefix limit
- **4. interface** *type interface-path-id*
- 5. address-family { ipv4 | ipv6 } multicast topology topo-name
- **6.** Repeat Step 4 and Step 5 until you have specified all the interface instances you want to associate with your topologies.
- **7.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/# configure	
Step 2	address-family { ipv4 ipv6 } multicast topology topo-name	Configures a topology in the default VRF table that will be associated with a an interface.
	Example:	

	Command or Action	Purpose
	Router(config) # address-family ipv4 multicast topology green	
Step 3	maximum prefix limit	(Optional) Limits the number of prefixes allowed in a
	Example:	topology routing table. Range is 32 to 2000000.
	Router(config-af)# maximum prefix 100	
Step 4	interface type interface-path-id	Specifies the interface to be associated with the previously
	Example:	specified VRF table that will add the connected and local routes to the appropriate routing table.
	Router(config-af)# interface GigabitEthernet 0/3/0/0	
Step 5	address-family { ipv4 ipv6 } multicast topology topo-name	Enables the topology for the interface specified in Step 4, adding the connected and local routes to the appropriate
	Example:	routing table.
	Router(config-if)# address-family ipv4 multicast topology green	
Step 6	Repeat Step 4 and Step 5 until you have specified all the interface instances you want to associate with your topologies.	_
	Example:	
	Router(config-if-af)# interface gigabitethernet	
	0/3/2/0 Router(config-if)# address-family ipv4 multicast	
	<pre>topology purple Router(config-if-af)#</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Enabling an IS-IS Topology

To enable a topology in IS-IS, you must associate an IS-IS topology ID with the named topology. IS-IS uses the topology ID to differentiate topologies in the domain.

Note

This command must be configured prior to other topology commands.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } multicast topology topo-name
- 4. topology-id multitoplogy-id
- **5.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/# configure	
Step 2	router isis instance-id	Enters IS-IS configuration submode.
	Example:	
	RP/0/(config)# router isis purple	
Step 3	address-family { ipv4 ipv6 } multicast topology topo-name	Associates an IS-IS topology ID with the named topology.
	Example:	
	<pre>RP/0/(config-isis)# address-family ipv4 multicast topology green</pre>	
Step 4	topology-id multitoplogy-id	Configures the numeric multitopologyID in IS-IS that identifies the topology. Range is 6 to 4095.
	Example:	
	RP/0/(config-isis-af)# toplogy-id 122	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.

Command or Action	Purpose
	 No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Placing an Interface in a Topology in IS-IS

To associate an interface with a topology in IS-IS, follow these steps.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router isis instance-id

Example:

Routing(config) # router isis purple

Enters IS-IS configuration submode.

Step 3 net *network-entity-title*

Example:

Routing(config-isis) # net netname

Creates a network entity title for the configured isis interface.

Step 4 interface type interface-path-id

Example:

Routing(config-isis) # interface gigabitethernet 0/3/0/0

Enters isis interface configuration submode and creates an interface instance.

Step 5 address-family { ipv4 | ipv6 } multicast topology topo-name

Example:

Routing(config-isis-if) # address-family ipv4 multicast topology green

- Enters isis address-family interface configuration submode.
- Places the interface instance into a topology.

Step 6 Repeat Step 4 and Step 5 until you have specified all the interface instances and associated topologies you want to configure in your network.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring a Routing Policy

For more information about creating a routing policy and about the set rpf-topology command, see .

SUMMARY STEPS

- 1. configure
- **2. route-policy** *policy-name*
- 3. end-policy
- **4.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/# configure	
Step 2	route-policy policy-name	Defines a routing policy and enters routing policy
	Example:	configuration submode.
	<pre>RP/0/(config)# route-policy mt1 RP/0/(config-rpl)# if destination in 225.0.0.1, 225.0.0.11 then RP/0/(config-rpl-if)# if source in (10.10.10.10) then RP/0/(config-rpl-if-2)# set rpf-topology ipv4 multicast topology greentable RP/0/(config-rpl-if-2)# else RP/0/(config-rpl-if-else-2)# set rpf-topology ipv4 multicast topology bluetable RP/0/(config-rpl-if-else-2)# endif RP/0/(config-rpl-if)# endif</pre>	For detailed information about the use of the set-rpf-topology and other routing configuration commands, see .

	Command or Action	Purpose
Step 3	end-policy	Signifies the end of route policy definition and exits routing
	Example:	policy configuration submode.
	<pre>RP/0/(config-rpl)# end-policy RP/0/(config)#</pre>	
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Multitopology for IS-IS

Multitopology is configured in the same way as the single topology. However, the **single - topology** command is omitted, invoking the default multitopology behavior. This task is optional.

Enabling Multicast-Intact

This optional task describes how to enable multicast-intact for IS-IS routes that use IPv4 and IPv6 addresses.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [unicast | multicast]
- 4. mpls traffic-eng multicast-intact
- **5.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/# configure	

	Command or Action	Purpose
Step 2	router isis instance-id Example:	Enables IS-IS routing for the specified routing process, and places the router in router configuration mode. In this example, the IS-IS instance is called isp.
	RP/0/(config)# router isis isp	
Step 3	<pre>address-family { ipv4 ipv6 } [unicast multicast] Example: RP/0/(config-isis) # address-family ipv4 unicast</pre>	Specifies the IPv4 or IPv6 address family, and enters router address family configuration mode.
Step 4	mpls traffic-eng multicast-intact Example:	Enables multicast-intact.
	RP/0/(config-isis-af)# mpls traffic-eng multicast-intact	
Step 5	Use the commit or end command.	 commit — Saves the configuration changes and remains within the configuration session. end — Prompts user to take one of these actions: Yes — Saves configuration changes and exits the configuration session. No — Exits the configuration session without
		 committing the configuration changes. Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring IP/LDP Fast Reroute

This optional task describes how to enable the IP/LDP fast reroute computation to converge traffic flows around link failures.

Note

To enable node protection on broadcast links, fast reroute and bidirectional forwarding detection (BFD) must be enabled on the interface under IS-IS.

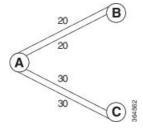
SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3. interface** type interface-path-id
- 4. circuit-type { level-1 | level-1-2 | level-2-only }
- 5. address-family $\{ ipv4 \mid ipv6 \} [unicast]$

- **6.** fast-reroute {per-link | per-prefix}
- **7.** Do one of the following:
 - fast-reroute per-link $\{ level \{ 1 \mid 2 \} \}$
 - fast-reroute per-prefix { level { 1 | 2 }}
- **8.** Do one of the following:
 - fast-reroute per-link exclude interface type interface-path-id { level { 1 | 2 }}
 - fast-reroute per-prefix exclude interface type interface-path-id { level $\{1 \mid 2\}$ }
- **9.** Do one of the following:
 - $\bullet \ fast\text{-reroute per-link lfa-candidate interface} \ \ \textit{type interface-path-id} \ \ \{ \ level \ \ \{ \ 1 \ | \ 2 \ \} \}$
 - fast-reroute per-prefix lfa-candidate interface type interface-path-id { level { 1 | 2 }}
- **10.** Use the **commit** or **end** command.

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/# configure	
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing process,
	Example:	and places the router in router configuration mode. In the example, the IS-IS instance is called isp.
	RP/0/(config)# router isis isp	
Step 3	interface type interface-path-id	Enters interface configuration mode.
	Example:	
	RP/0/(config-isis)# interface GigabitEthernet 0/1/0/3	
Step 4	circuit-type { level-1 level-1-2 level-2-only }	(Optional) Configures the type of adjacency.
	Example:	
	RP/0/(config-isis-if)# circuit-type level-1	
Step 5	address-family { ipv4 ipv6 } [unicast]	Specifies the address family, and enters router address
	Example:	family configuration mode.
	RP/0/(config-isis-if)# address-family ipv4 unicast	This example specifies the unicast IPv4 address family.

	Command or Action	Purpose
Step 6	fast-reroute {per-link per-prefix}	Specifies fast-reroute computation on per-link or per-prefix
	Example:	basis.
	<pre>RP/0/8(config-isis-if-af)# fast-reroute per-link</pre>	• per-link—Used for prefix independent per-link computation.
		• per-prefix—Used for prefix dependent computation
Step 7	Do one of the following:	Configures fast-reroute per-link or per-prefix computation
	• fast-reroute per-link $\{ \text{ level } \{ 1 \mid 2 \} \}$	for one level; use either level 1 or level 2.
	• fast-reroute per-prefix $\{ level \ \{ 1 \mid 2 \} \}$	
	Example:	
	<pre>RP/0/(config-isis-if-af)#fast-reroute per-link level 1</pre>	
	Or	
	<pre>RP/0/(config-isis-if-af)#fast-reroute per-prefix level 2</pre>	
Step 8	Do one of the following:	Excludes an interface from fast-reroute computation.
	• fast-reroute per-link exclude interface type interface-path-id { level { 1 2 }}	
	• fast-reroute per-prefix exclude interface type interface-path-id { level { 1 2 }}	
	Example:	
	<pre>RP/0/(config-isis-if-af)#fast-reroute per-link exclude interface Loopback0 level 1</pre>	
	Or	
	<pre>RP/0/(config-isis-if-af)#fast-reroute per-prefix exclude interface POSO/6/0/0 level 2</pre>	
Step 9	Do one of the following:	Configures to include an interface to LFA candidate
	 fast-reroute per-link lfa-candidate interface type interface-path-id { level { 1 2 }} fast-reroute per-prefix lfa-candidate interface type interface-path-id { level { 1 2 }} 	fast-reroute computation.
	Example:	
	<pre>RP/0/(config-isis-if-af)#fast-reroute per-link lfa-candidate interface MgmtEth0/RP0/CPU0/0 level 1</pre>	
	Or	
	<pre>RP/0/(config-isis-if-af)#fast-reroute per-prefix lfa-candidate interface MgmtEth0/RP1/CPU0/0 level 2</pre>	
Step 10	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.


Purpose
end —Prompts user to take one of these actions:
• Yes — Saves configuration changes and exits the configuration session.
• No —Exits the configuration session without committing the configuration changes.
• Cancel —Remains in the configuration session, without committing the configuration changes.

ISIS Link Group

The ISIS Link-Group feature allows you to define a group or set of links, and raise or lower their ISIS metric according to a predefined number of active links.

When the total number of active links (in terms of ISIS adjacency) in a group falls below the configured number or members, a predefined offset is applied on the remaining active links. When the total number of active links in a group is reverted, ISIS restores the configured metric by removing the offset.

In the example below, Router A has to exit through router B and C. In between A and B there are two layer 3 links with the same ISIS metric (20). There is a similar setup between A and C (30). In normal operations, the traffic from A goes through B. If the ISIS Link-Group is not configured, even when the link between A and B fails, traffic is still routed through B. However, with ISIS Link-Group, you can set an offset of 20 with minimum-members of 2. Thus, if a link between A and B fails, the metric is raised to 40 (configured (20) + offset (20)), and so the traffic is routed to C. Further, you can define another ISIS Link-Group, this time between A and C. If a link between B and C fails, you can raise the offset to 20, and thus traffic is routed back to B.

Configure Link Group Profile

Perform this task to configure Intermediate System-to-Intermediate System (IS-IS) link group profiles:

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3.** link-group link-group-name { [metric-offset count | maximum] | [minimum-members count | revert-members count] }

- **4.** Use the **commit** or **end** command.
- 5. show isis interface
- 6. show isis lsp

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/# configure	
Step 2	router isis instance-id	Enters IS-IS configuration submode.
	Example:	
	RP/0/(config)# router isis purple	
Step 3	link-group link-group-name { [metric-offset count	Specifies link-group values. Following are the valid values:
	maximum	• metric-offset : Configures the metric offset for link group. The range is 1-16777214. The default metric offset range is between 1-63 for narrow metric; and 1-16777214 for wide metric.
		The maximum option here sets the maximum wide metric offset. All routers exclude this link from their SPF.
		• minimum-members: Configures the minimum number of members in the link group. The range is 2-64.
		• revert-members : Configures the number of members after which to revert in the link group. The range is 2-64.
		Note A link-group is only active after the minimum-members and offset-metric are configured in the profile. The revert-members is default to minimum-members if it is not configured.
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.

	Command or Action	Purpose
		Cancel —Remains in the configuration session, without committing the configuration changes.
Step 5	show isis interface Example:	(Optional) If link-group is configured on the interface, when showing the IS-IS interface-related topology, this command displays the link-group and current offset-metric value.
	RP/0/# show isis interface	
Step 6	show isis lsp	(Optional) Displays the updated metric value.
	Example:	
	RP/0/# show isis lsp	

Configure Link Group Profile: Example

The following is an example configuration, along with the show isis interface output:

```
router isis 1
is-type level-2-only
net 49.1111.0000.0000.0006.00
link-group foo
 metric-offset 100
 revert-members 4
 minimum-members 2
 address-family ipv4 unicast
 metric-style wide
interface GigabitEthernet0/0/0/1
 point-to-point
 address-family ipv4 unicast
  link-group foo
RP/0/RSP0/CPU0:Iguazu#sh isis interface gig 0/0/0/1
Thu Jun 11 14:55:32.565 CEST
GigabitEthernet0/0/0/1
                          Enabled
 Adjacency Formation:
                         Enabled
 Prefix Advertisement: Enabled
 IPv4 BFD:
                          Disabled
 IPv6 BFD:
                           Disabled
 BFD Min Interval:
                          150
 BFD Multiplier:
                          3
 Circuit Type:
                          level-2-only (Interface circuit type is level-1-2)
 Media Type:
 Circuit Number:
 Extended Circuit Number: 36
 Next P2P IIH in:
                           8 s
 LSP Rexmit Queue Size:
                           0
 Level-2
   Adjacency Count:
                          1
   LSP Pacing Interval: 33 ms
   PSNP Entry Queue Size: 0
```

```
CLNS I/O
 Protocol State:
                         1497
 MTU:
 SNPA:
                         0026.9829.af19
 Layer-2 MCast Groups Membership:
   All ISs:
IPv4 Unicast Topology:
                         Enabled
 Adjacency Formation:
                         Running
 Prefix Advertisement: Running
 Metric (L1/L2):
                         110/110
 Weight (L1/L2):
                         0/0
 MPLS Max Label Stack: 1
 MPLS LDP Sync (L1/L2): Disabled/Disabled
 Link-Group (L1/L2): Configured/Configured
   Metric-Offset (L1/L2):100/100
IPv4 Address Family:
                         Enabled
 Protocol State:
                         Up
 Forwarding Address(es): 100.5.6.6
 Global Prefix(es):
                       100.5.6.0/24
LSP transmit timer expires in 0 ms
LSP transmission is idle
Can send up to 9 back-to-back LSPs in the next 0 ms
```

Configure Link Group Interface

Perform this task to configure link group under Intermediate System-to-Intermediate System (IS-IS) interface and address-family sub-mode:

Note

One IS-IS interface and address-family can specify only one link-group association. The default is for both levels regardless of the current circuit-type. The link-group association can be specified for one level only if configured.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3. interface** *type interface-path-id*
- 4. address-family ipv4 | ipv6 [unicast]
- **5.** link-group link-group-name [level {1 | 2 }]
- **6.** Use the **commit** or **end** command.
- 7. show isis interface

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	

	Command or Action	Purpose
	RP/0/# configure	
Step 2	router isis instance-id	Enters IS-IS configuration submode.
	Example:	
	RP/0/(config)# router isis purple	
Step 3	interface type interface-path-id	Enters interface configuration mode.
	Example:	
	RP/0/(config-isis)# interface GigabitEthernet 0/1/0/3	
Step 4	address-family ipv4 ipv6 [unicast]	Specifies the IPv6 address family and enters router address
	Example:	family configuration mode. • This example specifies the unicast IPv4 address family.
	RP/0/(config-isis)# address-family ipv4 unicast	
Step 5	link-group link-group-name [level {1 2 }]	Specifies the link-group name and sets the tag at the level
	Example:	specified.
	RP/0/(config-isis-if)#)#address-family ipv4 unicast link-group access level 1	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.
Step 7	show isis interface	(Optional) If link-group is configured on the interface, when
	Example:	showing the IS-IS interface-related topology, this command displays the link-group value.
	RP/0/# show isis interface	

Configuration Examples for Implementing IS-IS

This section provides the following configuration examples:

Configuring Single-Topology IS-IS for IPv6: Example

The following example shows single-topology mode being enabled. An IS-IS instance is created, the NET is defined, IPv6 is configured along with IPv4 on an interface, and IPv4 link topology is used for IPv6.

This configuration allows POS interface 0/3/0/0 to form adjacencies for both IPv4 and IPv6 addresses.

```
router isis isp
net 49.0000.0000.0001.00
address-family ipv6 unicast
single-topology
interface POSO/3/0/0
address-family ipv4 unicast
!
address-family ipv6 unicast
!
exit
!
interface POSO/3/0/0
ipv4 address 10.0.1.3 255.255.255.0
ipv6 address 2001::1/64
```

Configuring Multitopology IS-IS for IPv6: Example

The following example shows multitopology IS-IS being configured in IPv6.

```
router isis isp

net 49.0000.0000.0001.00

interface POSO/3/0/0

address-family ipv6 unicast

metric-style wide level 1

exit

!

interface POSO/3/0/0

ipv6 address 2001::1/64
```

Redistributing IS-IS Routes Between Multiple Instances: Example

The following example shows usage of the **attached-bit** and **redistribute** commands. Two instances, instance "1" restricted to Level 1 and instance "2" restricted to Level 2, are configured.

The Level 1 instance is propagating routes to the Level 2 instance using redistribution. Note that the administrative distance is explicitly configured higher on the Level 2 instance to ensure that Level 1 routes are preferred.

Attached bit is being set for the Level 1 instance since it is redistributing routes into the Level 2 instance. Therefore, instance "1" is a suitable candidate to get from the area to the backbone.

```
router isis 1
  is-type level-2-only
net 49.0001.0001.0001.0001.00
address-family ipv4 unicast
  distance 116
  redistribute isis 2 level 2
!
```

```
interface GigabitEthernet 0/3/0/0
  address-family ipv4 unicast
!
!
router isis 2
  is-type level-1
  net 49.0002.0001.0001.0002.00
  address-family ipv4 unicast
!
interface GigabitEthernet 0/1/0/0
  address-family ipv4 unicast
```

Tagging Routes: Example

The following example shows how to tag routes.

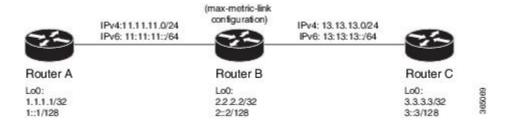
```
route-policy isis-tag-55
end-policy
route-policy isis-tag-555
 if destination in (5.5.5.0/24 \text{ eq } 24) then
   set tag 555
   pass
 else
   drop
  endif
end-policy
router static
address-family ipv4 unicast
 0.0.0.0/0 2.6.0.1
 5.5.5.0/24 Null0
router isis uut
net 00.0000.0000.12a5.00
address-family ipv4 unicast
 metric-style wide
 redistribute static level-1 route-policy isis-tag-555
 spf prefix-priority critical tag 13
 spf prefix-priority high tag 444
  spf prefix-priority medium tag 777
```

Configuring IS-IS Overload Bit Avoidance: Example

The following example shows how to activate IS-IS overload bit avoidance:

```
config $\operatorname{\textsc{mpls}}$ traffic-eng path-selection ignore overload
```

The following example shows how to deactivate IS-IS overload bit avoidance:


```
config
  no mpls traffic-eng path-selection ignore overload
```

Example: Configuring IS-IS To Handle Router Overload

This section describes an example for configuring IS-IS to handle overloading of routers, without setting the overload bit.

When a router is configured with the IS-IS overload bit, it participates in the routing process when the overload bit is set, but does not forward traffic (except for traffic to directly connected interfaces). To configure the overload behavior for IS-IS, without setting the overload bit, configure the **max-metric** statement. By configuring this statement, the router participates in the routing process and is used as a transit node of last resort.

Figure 1:

Before you begin

Ensure that you are familiar with configuring router interfaces for a given topology.

SUMMARY STEPS

- 1. Configure Routers A, B, and C as shown in the topology.
- **2.** Configure IS-IS and the corresponding net addresses on Routers A, B and C.
- **3.** Configure IPv4 and IPv6 address families on the loopback interfaces of Routers A, B, and C.
- **4.** Configure the link metrics on the router interfaces.
- **5.** Confirm your configuration by viewing the route prefixes on Routers A, B, and C.
- **6.** Confirm the link metrics on Router B, prior to configuring the **max-metric** statement.
- 7. Configure the **max-metric** statement on Router B.
- **8.** Commit your configuration.
- **9.** Confirm the change in link metrics on Router B.
- **10.** (Optional) Verify the change in route prefixes on Routers A and C.

DETAILED STEPS

Step 1 Configure Routers A, B, and C as shown in the topology.

Use the following IP Addresses:

- Router A Loopback0: 1.1.1.1/32 and 1::1/128
- Router A -> Router B: 11.11.11.2/24 and 11:11:11::2/64

- Router B Loopback0: 2.2.2.2/32 and 2::2/128
- **Router B -> Router A**: 11.11.11.1/24 and 11:11:11:1/64
- Router B-> Router C: 13.13.13.1/24 and 13:13:13::1/64
- Router C Loopback0: 3.3.3.3/32 and 3::3/128
- Router C-> Router B: 13.13.13.2/24 and 13:13:13::2/64

Step 2 Configure IS-IS and the corresponding net addresses on Routers A, B and C.

Example:

```
!Router A
RP/0/0/CPU0:RouterA(config) # router isis ring
RP/0/0/CPU0:RouterA(config-isis)# net 00.0000.0000.0001.00
RP/0/0/CPU0:RouterA(config-isis)# address-family ipv4 unicast
RP/0/0/CPU0:RouterA(config-isis)# metric-style wide
RP/0/0/CPU0:RouterA(config-isis-af)# exit
!Router B
RP/0/0/CPU0:RouterB(config)# router isis ring
RP/0/0/CPU0:RouterB(config-isis) # net 00.0000.0000.0002.00
RP/0/0/CPU0:RouterB(config-isis)# address-family ipv4 unicast
RP/0/0/CPU0:RouterB(config-isis-af)# exit
!Router C
RP/0/0/CPU0:RouterC(config)# router isis ring
RP/0/0/CPU0:RouterC(config-isis) # net 00.0000.0000.0003.00
RP/0/0/CPU0:RouterC(config-isis)# address-family ipv4 unicast
RP/0/0/CPU0:RouterA(config-isis)# metric-style wide
RP/0/0/CPU0:RouterC(config-isis-af)# exit
```

Step 3 Configure IPv4 and IPv6 address families on the loopback interfaces of Routers A, B, and C.

Example:

```
RP/0/0/CPU0:Router(config-isis)# interface loopback0
RP/0/0/CPU0:Router(config-isis-if)# address-family ipv4 unicast
RP/0/0/CPU0:Router(config-isis-if-af)# exit
RP/0/0/CPU0:Router(config-isis-if)# address-family ipv6 unicast
RP/0/0/CPU0:Router(config-isis-if-af)# exit
RP/0/0/CPU0:Router(config-isis-if)# exit
RP/0/0/CPU0:Router(config-isis-if)# exit
```

Step 4 Configure the link metrics on the router interfaces.

Example:

```
! Configuration for Router A Interface GigabitEthernet 0/0/0/0 with Router B is shown here. Similarly, configure other router interfaces.

RP/0/0/CPU0:RouterA(config-isis)# interface GigabitEthernet 0/0/0/0

RP/0/0/CPU0:RouterA(config-isis-if)# address-family ipv4 unicast

RP/0/0/CPU0:RouterA(config-isis-if-af)# metric 10

RP/0/0/CPU0:RouterA(config-isis-if-af)# exit

RP/0/0/CPU0:RouterA(config-isis-if)# address-family ipv6 unicast

RP/0/0/CPU0:RouterA(config-isis-if-af)# exit

RP/0/0/CPU0:RouterA(config-isis-if)# exit

RP/0/0/CPU0:RouterA(config-isis-if)# exit

RP/0/0/CPU0:RouterA(config-isis-if)# exit
```

Step 5 Confirm your configuration by viewing the route prefixes on Routers A, B, and C.

```
! The outputs for Router A are shown here. Similarly, view the outputs for Routers B and C.
RP/0/0/CPU0:RouterA# show route
Tue Oct 13 13:55:18.342 PST
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       {\tt E1} - OSPF external type 1, {\tt E2} - OSPF external type 2, {\tt E} - {\tt EGP}
       i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
       U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
       A - access/subscriber, a - Application route
       M - mobile route, (!) - FRR Backup path
Gateway of last resort is not set
    1.1.1.1/32 is directly connected, 00:03:40, Loopback0
i L1 2.2.2.2/32 [115/20] via 11.11.11.2, 00:01:27, GigabitEthernet0/0/0/0
i L1 3.3.3.3/32 [115/30] via 11.11.11.2, 00:01:27, GigabitEthernet0/0/0/0
    11.11.10.0/24 is directly connected, 00:03:39, GigabitEthernet0/0/0/0
    11.11.11.1/32 is directly connected, 00:03:39, GigabitEthernet0/0/0/0
i L1 13.13.13.0/24 [115/20] via 11.11.11.2, 00:01:27, GigabitEthernet0/0/0/0
i L1 15.15.15.0/24 [115/30] via 11.11.11.2, 00:01:27, GigabitEthernet0/0/0/0
RP/0/0/CPU0:RouterA# show route ipv6
Tue Oct 13 14:00:55.758 PST
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
       U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
       A - access/subscriber, a - Application route
       M - mobile route, (!) - FRR Backup path
Gateway of last resort is not set
     1::1/128 is directly connected,
      00:09:17, Loopback0
i L1 2::2/128
      [115/20] via fe80::e9:45ff:fe22:5326, 00:00:05, GigabitEthernet0/0/0/0
i L1 3::3/128
      [115/30] via fe80::e9:45ff:fe22:5326, 00:00:05, GigabitEthernet0/0/0/0
     11:11:11::/64 is directly connected,
      00:09:16, GigabitEthernet0/0/0/0
     11:11:11::1/128 is directly connected,
      00:09:16, GigabitEthernet0/0/0/0
i L1 13:13:13::/64
      [115/20] via fe80::e9:45ff:fe22:5326, 00:00:05, GigabitEthernet0/0/0/0
i L1 15:15:15::/64
      [115/30] via fe80::e9:45ff:fe22:5326, 00:00:05, GigabitEthernet0/0/0/0
```

Step 6 Confirm the link metrics on Router B, prior to configuring the **max-metric** statement.

```
RP/0/0/CPU0:RouterB# show isis database
Tue Oct 13 13:56:44.077 PST
No IS-IS RING levels found
```

```
IS-IS ring (Level-1) Link State Database
                 LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
 LSPID
 RouterB.00-00
                  * 0x00000005 0x160d 1026
                                                         0/0/0
  Area Address: 00
  NLPID: 0xcc
  NLPID:
             0x8e
       Ux8e
Standard (IPv4 Unicast)
  MT:
  MT:
            IPv6 Unicast
                                                     0/0/0
            RouterB
  Hostname:
  IP Address: 2.2.2.2
  IPv6 Address: 2::2
  Metric: 10
                 IS RouterB.01
Metric: 10
                IS RouterA.00
                                                         0/0/0
  Metric: 0
                 IS-Extended RouterB.00
  Metric: 0
                 IS-Extended RouterC.00
 Total Level-1 LSP count: 2
                           Local Level-1 LSP count: 1
```

The output verifies that IS-IS protocol is operational and the displayed link metrics (**Metric: 10**) are as configured.

Step 7 Configure the **max-metric** statement on Router B.

Example:

```
RP/0/0/CPU0:RouterB(config) # router isis ring
RP/0/0/CPU0:RouterB(config-isis) # max-metric
RP/0/0/CPU0:RouterB(config-isis) # exit
RP/0/0/CPU0:RouterB(config) #
```

Step 8 Commit your configuration.

Example:

RP/0/0/CPU0:RouterB(config)# commit

Step 9 Confirm the change in link metrics on Router B.

```
RP/0/0/CPU0:RouterB# show isis database
Tue Oct 13 13:58:36.790 PST
No IS-IS RING levels found
IS-IS ring (Level-1) Link State Database
             LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
LSPID
RouterB.00-00
                   * 0x00000006 0x0847 1171
                                                              0/0/0
 Area Address: 00
 NLPID: 0xcc
 NLPID:
            0x8e
 MT:
            Standard (IPv4 Unicast)
 MT: IPv6 Unicast
Hostname: RouterB
                                                          0/0/0
 IP Address: 2.2.2.2
 IPv6 Address: 2::2
```

```
IS RouterB.01
 Metric: 63
 Metric: 63
                     IS RouterA.00
 Metric: 63
                     IP 2.2.2.2/32
 Metric: 63
                    IP 11.11.11.0/24
 Metric: 63
                    IP 13.13.13.0/24
 Metric: 16777214 MT (IPv6 Unicast) IS-Extended RouterB.01
 Metric: 16777214 MT (IPv6 Unicast) IS-Extended RouterA.00
 Metric: 16777214 MT (IPv6 Unicast) IPv6 2::2/128
Metric: 16777214 MT (IPv6 Unicast) IPv6 11:11:11::/64
 Metric: 16777214 MT (IPv6 Unicast) IPv6 13:13:13::/64
                                                                         0/0/0
RouterB.01-00
                          0x00000001 0xc8df
                                                       800
 Metric: 0
                     IS RouterB.00
 Metric: 0
                     IS RouterC.00
                      IS-Extended RouterB.00
 Metric: 0
 Metric: 0
                     IS-Extended RouterC.00
Total Level-1 LSP count: 2
                                 Local Level-1 LSP count: 1
```

The output verifies that maximum link metrics (63 for IPv4 and 16777214 for IPv6) have been allocated for the designated links.

Step 10 (Optional) Verify the change in route prefixes on Routers A and C.

```
! The outputs for Router A are shown here. Similarly, view the outputs on Router C.
RP/0/0/CPU0:RouterA# show route
Tue Oct 13 13:58:59.289 PST
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
       U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
       A - access/subscriber, a - Application route
       \mbox{M} - mobile route, (!) - FRR Backup path
Gateway of last resort is not set
     1.1.1.1/32 is directly connected, 00:07:21, Loopback0
i L1 2.2.2.2/32 [115/73] via 11.11.11.2, 00:00:50, GigabitEthernet0/0/0/0
i L1 3.3.3.3/32 [115/83] via 11.11.11.2, 00:00:50, GigabitEthernet0/0/0/0
    11.11.10/24 is directly connected, 00:07:20, GigabitEthernet0/0/0/0
    11.11.11.1/32 is directly connected, 00:07:20, GigabitEthernet0/0/0/0
i L1 13.13.13.0/24 [115/73] via 11.11.11.2, 00:00:50, GigabitEthernet0/0/0/0
i L1 15.15.15.0/24 [115/83] via 11.11.11.2, 00:00:50, GigabitEthernet0/0/0/0
RP/0/0/CPU0:RouterA# show route ipv6
Tue Oct 13 14:00:06.616 PST
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
       U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
       A - access/subscriber, a - Application route
       M - mobile route, (!) - FRR Backup path
Gateway of last resort is not set
```

The output verifies the impact of maximum metric configuration in the routing table: [115/73] and [115/83]

IS-IS has been successfully configured to handle router overload without setting the overload bit.

Configuring Global Weighted SRLG Protection

A shared risk link group (SRLG) is a set of links sharing a common resource and thus shares the same risk of failure. The existing loop-free alternate (LFA) implementations in interior gateway protocols (IGPs) support SRLG protection. However, the existing implementation considers only the directly connected links while computing the backup path. Hence, SRLG protection may fail if a link that is not directly connected but shares the same SRLG is included while computing the backup path. Global weighted SRLG protection feature provides better path selection for the SRLG by associating a weight with the SRLG value and using the weights of the SRLG values while computing the backup path.

To support global weighted SRLG protection, you need information about SRLGs on all links in the area topology. You can flood SRLGs for remote links using ISIS or manually configuring SRLGS on remote links.

Configuration Examples: Global Weighted SRLG Protection

There are three types of configurations that are supported for the global weighted SRLG protection feature.

- local SRLG with global weighted SRLG protection
- remote SRLG flooding
- remote SRLG static provisioning

This example shows how to configure the local SRLG with global weighted SRLG protection feature.

```
RP/0/RP0/CPU0:router(config) # srlg
RP/0/RP0/CPU0:router(config-srlg) # interface TenGigE0/0/0/0
RP/0/RP0/CPU0:router(config-srlg-if) # name group1
RP/0/RP0/CPU0:router(config-srlg-if) # exit
RP/0/RP0/CPU0:router(config-srlg) # interface TenGigE0/0/0/1
RP/0/RP0/CPU0:router(config-srlg) # name group1
RP/0/RP0/CPU0:router(config-srlg) # name group1
RP/0/RP0/CPU0:router(config-srlg) # name group value 100
RP/0/RP0/CPU0:router(config-isis) # address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af) # fast-reroute per-prefix srlg-protection weighted-global
RP/0/RP0/CPU0:router(config-isis-if-af) # fast-reroute per-prefix tiebreaker srlg-disjoint
```

```
index 1
RP/0/RP0/CPU0:router(config-isis) # interface TenGigE0/0/0/0
RP/0/RP0/CPU0:router(config-isis-if) # point-to-point
RP/0/RP0/CPU0:router(config-isis-if) # address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af) # fast-reroute per-prefix
RP/0/RP0/CPU0:router(config-isis-if-af) # fast-reroute per-prefix ti-lfa
RP/0/RP0/CPU0:router(config-isis) # srlg
RP/0/RP0/CPU0:router(config-isis-srlg) # name group1
RP/0/RP0/CPU0:router(config-isis-srlg-name) # admin-weight 5000
```

This example shows how to configure the global weighted SRLG protection feature with remote SRLG flooding. The configuration includes local and remote router configuration. On the local router, the global weighted SRLG protection is enabled by using the **fast-reroute per-prefix srlg-protection weighted-global** command. In the remote router configuration, you can control the SRLG value flooding by using the **advertise application lfa link-attributes srlg** command. You should also globally configure SRLG on the remote router.

The local router configuration for global weighted SRLG protection with remote SRLG flooding is as follows:

```
RP/0/RP0/CPU0:router(config) # router isis 1
RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af)# fast-reroute per-prefix srlg-protection
weighted-global
RP/0/RP0/CPU0:router(config-isis-if-af) # fast-reroute per-prefix tiebreaker srlg-disjoint
index 1
RP/0/RP0/CPU0:router(config-isis-if-af)# exit
RP/0/RP0/CPU0:router(config-isis)# interface TenGigE0/0/0/0
RP/0/RP0/CPU0:router(config-isis-if)# point-to-point
RP/0/RP0/CPU0:router(config-isis-if) # address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af)# fast-reroute per-prefix
\label{eq:rpnorm} \mbox{RP/O/RPO/CPUO:} router(\mbox{config-isis-if-af}) \mbox{\# fast-reroute per-prefix ti-lfa}
RP/0/RP0/CPU0:router(config-isis-if-af)# exit
RP/0/RP0/CPU0:router(config-isis)# srlg
RP/0/RP0/CPU0:router(config-isis-srlg) # name group1
RP/0/RP0/CPU0:router(config-isis-srlg-name) # admin-weight 5000
```

The remote router configuration for global weighted SRLG protection with remote SRLG flooding is as follows:

```
RP/0/RP0/CPU0:router(config) # srlg
RP/0/RP0/CPU0:router(config-srlg) # interface TenGigE0/0/0/0
RP/0/RP0/CPU0:router(config-srlg-if) # name group1
RP/0/RP0/CPU0:router(config-srlg-if) # exit
RP/0/RP0/CPU0:router(config-srlg) # interface TenGigE0/0/0/1
RP/0/RP0/CPU0:router(config-srlg) # name group1
RP/0/RP0/CPU0:router(config-srlg) # name group value 100
RP/0/RP0/CPU0:router(config-srlg) # exit
RP/0/RP0/CPU0:router(config) # router isis 1
RP/0/RP0/CPU0:(config-isis) # address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-af) # advertise application lfa link-attributes srlg
```

This example shows configuring the global weighted SRLG protection feature with static provisioning of SRLG values for remote links. You should perform these configurations on the local router.

```
RP/0/RP0/CPU0:router(config) # srlg
RP/0/RP0/CPU0:router(config-srlg) # interface TenGigE0/0/0/0
RP/0/RP0/CPU0:router(config-srlg-if) # name group1
RP/0/RP0/CPU0:router(config-srlg-if) # exit
RP/0/RP0/CPU0:router(config-srlg) # interface TenGigE0/0/0/1
RP/0/RP0/CPU0:router(config-srlg-if) # name group1
RP/0/RP0/CPU0:router(config-srlg) # name group value 100
```

```
RP/0/RP0/CPU0:router(config-srlg)# exit
RP/0/RP0/CPU0:router(config) # router isis 1
RP/0/RP0/CPU0:router(config-isis) # address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af)# fast-reroute per-prefix srlg-protection
weighted-global
RP/0/RP0/CPU0:router(config-isis-if-af)# fast-reroute per-prefix tiebreaker srlg-disjoint
index 1
RP/0/RP0/CPU0:router(config-isis) # interface TenGigE0/0/0/0
RP/0/RP0/CPU0:router(config-isis-if) # point-to-point
RP/0/RP0/CPU0:router(config-isis-if) # address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af)# fast-reroute per-prefix
RP/0/RP0/CPU0:router(config-isis-if-af) # fast-reroute per-prefix ti-lfa
RP/0/RP0/CPU0:router(config-isis)# srlg
RP/0/RP0/CPU0:router(config-isis-srlg) # name group1
RP/0/RP0/CPU0:router(config-isis-srlg-name) # admin-weight 5000
RP/0/RP0/CPU0:router(config-isis-srlg-name) # static ipv4 address 10.0.4.1 next-hop ipv4
address 10.0.4.2
RP/0/RP0/CPU0:router(config-isis-srlg-name) # static ipv4 address 10.0.4.2 next-hop ipv4
address 10.0.4.1
```

Label Distribution Protocol IGP Auto-configuration

Label Distribution Protocol (LDP) Interior Gateway Protocol (IGP) auto-configuration simplifies the procedure to enable LDP on a set of interfaces used by an IGP instance. LDP IGP auto-configuration can be used on a large number interfaces (for example, when LDP is used for transport in the core) and on multiple IGP instances simultaneously.

This feature supports the IPv4 address family for the default VPN routing and forwarding (VRF) instance.

LDP IGP auto-configuration can also be explicitly disabled on individual interfaces under LDP using the **igp auto-config disable** command. This allows LDP to receive all IGP interfaces except the ones explicitly disabled.

See the MPLS configuration guide for information on configuring LDP IGP auto-configuration.

MPLS LDP-IGP Synchronization Compatibility with LDP Graceful Restart

LDP graceful restart protects traffic when an LDP session is lost. If a graceful restart-enabled LDP session fails, MPLS LDP IS-IS synchronization is still achieved on the interface while it is protected by graceful restart. MPLS LDP IGP synchronization is eventually lost under the following circumstances:

- LDP fails to restart before the LDP graceful restart reconnect timer expires.
- The LDP session on the protected interface fails to recover before the LDP graceful restart recovery timer expires.

MPLS LDP-IGP Synchronization Compatibility with IGP Nonstop Forwarding

IS-IS nonstop forwarding (NSF) protects traffic during IS-IS process restarts and route processor (RP) failovers. LDP IS-IS synchronization is supported with IS-IS NSF only if LDP graceful restart is also enabled over the interface. If IS-IS NSF is not enabled, the LDP synchronization state is not retained across restarts and failovers.