Layer 2 Local Switching
ErrorMessage : Error while constructing the Hinav

null
Downloads: This chapterpdf (PDF - 484.0KB) | Feedback

Layer 2 Local Switching

Table Of Contents

Layer 2 Local Switching

Finding Feature Information

Contents

Prerequisites for Layer 2 Local Switching

Restrictions for Layer 2 Local Switching

Cisco 7200 and 7500 Series Router Restrictions

Cisco 7600 and 6500 Series Router Restrictions

Cisco 10000 Series Router Restrictions

Gigabit Switch Router Restrictions

Unsupported Hardware

Information About Layer 2 Local Switching

Layer 2 Local Switching Overview

NSF SSO - Local Switching Overview

Layer 2 Local Switching Applications

Access Circuit Redundancy Local Switching

ACR for ATM-to-ATM Local Switching

ACR for CEM-to-CEM Local Switching

How to Configure Layer 2 Local Switching

Configuring ATM-to-ATM PVC Local Switching and Same-Port Switching

Configuring ATM-to-ATM PVP Local Switching

Configuring ATM PVP Same-Port Switching

Configuring ATM-to-Ethernet Port Mode Local Switching

Configuring ATM-to-Ethernet VLAN Mode Local Switching

Configuring Ethernet VLAN Same-Port Switching

Configuring Ethernet Port Mode to Ethernet VLAN Local Switching

Configuring ATM-to-Frame Relay Local Switching

Configuring Frame Relay-to-Frame Relay Local Switching

Configuring Frame Relay Same-Port Switching

Configuring HDLC Local Switching

Prerequisites

Restrictions

Configuring ACR for ATM-to-ATM Local Switching

Configuring CEM-to-CEM ACR Local Switching

Verifying Layer 2 Local Switching

Verifying Layer 2 Local Switching Configuration

Verifying the NSF SSO Local Switching Configuration

Troubleshooting Tips

Configuration Examples for Layer 2 Local Switching

Example: ATM-to-ATM Local Switching

Example: ATM PVC Same-Port Switching

Example: ATM PVP Same-Port Switching

Example: ATM-to-Ethernet Local Switching

Example: ATM to Ethernet VLAN

Example: ATM to Ethernet Port Mode

Example: Ethernet VLAN Same-Port Switching

Example: ATM-to-Frame Relay Local Switching

Example: Frame Relay-to-Frame Relay Local Switching

Example: Frame Relay DLCI Same-Port Switching

Example: HDLC Local Switching

Example: NSF SSO: Ethernet Port Mode to Ethernet VLAN Local Switching

Additional References

Related Documents

Standards

MIBs

RFCs

Technical Assistance

Feature Information for Layer 2 Local Switching


Layer 2 Local Switching


First Published: December 17, 2003
Last Updated: November 24, 2010

The Layer 2 Local Switching feature allows you to switch Layer 2 data in two ways:

Between two interfaces on the same router

Between two circuits on the same interface port, which is called same-port switching

The interface-to-interface switching combinations supported by this feature are:

ATM to ATM

ATM to Ethernet

ATM to Frame Relay

Ethernet to Ethernet VLAN

Frame Relay to Frame Relay (and Multilink Frame Relay in Cisco IOS Release 12.0(28)S and later)

High-Level Data Link Control (HDLC)

The following same-port switching features are supported:

ATM Permanent Virtual Circuit (PVC) and Permanent Virtual Path (PVP)

Ethernet VLAN

Frame Relay

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the "Feature Information for Layer 2 Local Switching" section.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

Prerequisites for Layer 2 Local Switching

Restrictions for Layer 2 Local Switching

Information About Layer 2 Local Switching

How to Configure Layer 2 Local Switching

Configuration Examples for Layer 2 Local Switching

Additional References

Feature Information for Layer 2 Local Switching

Prerequisites for Layer 2 Local Switching

You must enable Cisco Express Forwarding for the Cisco 7200 series router. You must use Cisco Express Forwarding or Distributed Cisco Express Forwarding for the Cisco 7500 series router. (Distributed Cisco Express Forwarding is enabled already by default on the Gigabit Switch Router [GSR]).

For Frame Relay local switching, you must globally issue the frame-relay switching command.

Restrictions for Layer 2 Local Switching

Cisco 7200 and 7500 Series Router Restrictions

Cisco 7600 and 6500 Series Router Restrictions

Cisco 7600 and 6500 Series Router Restrictions

Cisco 10000 Series Router Restrictions

Gigabit Switch Router Restrictions

Unsupported Hardware

Cisco 7200 and 7500 Series Router Restrictions

In ATM single cell relay AAL0, the ATM virtual path identifier/virtual channel identifier (VPI/VCI) values must match between the ingress and egress ATM interfaces on the Cisco 7200 series and 7500 series routers. If Layer 2 local switching is desired between two ATM VPIs and VCIs whose values do not match and are on two different interfaces, choose ATM AAL5. However, if the ATM AAL5 is using Operation, Administration, and Maintenance (OAM) transparent mode, the VPI and VCI values must match.

NSF/SSO: Layer 2 local switching is supported on Cisco 7500 series routers.

Layer 2 local switching is supported on the following interface processors in the Cisco 7200 series routers:

C7200-I/O-2FE

C7200-I/O-GE+E (Only the Gigabit Ethernet port of this port adapter is supported.)

C7200-I/O-FE

Layer 2 local switching is supported on the following interface processors in the Cisco 7500 series routers:

GEIP (Gigabit Ethernet interface processor)

GEIP+ (enhanced Gigabit Ethernet interface processor)

Layer 2 local switching is supported on the following port adapters in the Cisco 7200 and 7500 series routers:

PA-FE-TX (single-port Fast Ethernet 100BASE-TX)

PA-FE-FX (single-port Fast Ethernet 100BASE-FX)

PA-2FE-TX (dual-port Fast Ethernet 100BASE-TX)

PA-2FE-FX (dual-port Fast Ethernet 100BASE-FX)

PA-4E (4-port Ethernet adapter)

PA-8E (8-port Ethernet adapter)

PA-4T (4-port synchronous serial port adapter)

PA-4T+ (enhanced 4-port synchronous serial port adapter)

PA-8T (8-port synchronous serial port adapter)

PA-12E/2FE (12-port Ethernet/2-port Fast Ethernet (FE) adapter) [Cisco 7200 only]

PA-GE (Gigabit Ethernet port adapter) [Cisco 7200 only]

PA-H (single-port High-Speed Serial Interface (HSSI) adapter)

PA-2H (dual-port HSSI adapter)

PA-MC-8E1 (8-port multichannel E1 G.703/G.704 120-ohm interfaces)

PA-MC-2EI (2-port multichannel E1 G.703/G.704 120-ohm interfaces)

PA-MC-8T1 (8-port multichannel T1 with integrated data service units (DSUs) and channel service units CSUs))

PA-MC-4T1 (4-port multichannel T1 with integrated CSUs and DSUs)

PA-MC-2T1 (2-port multichannel T1 with integrated CSUs and DSUs)

PA-MC-8TE1+ (8-port multichannel T1/E1)

PA-MC-T3 (1-port multichannel T3 interface)

PA-MC-E3 (1-port multichannel E3 interface)

PA-MC-2T3+ (2-port enhanced multichannel T3 port adapter)

PA-MC-STM1 (1-port multichannel STM-1 port adapter) [Cisco 7500 only]

PA-T3 (single-port T3 port adapter)

PA-E3 (single-port E3 port adapter)

PA-2E3 (2-port E3 port adapter)

PA-2T3 (2-port T3 port adapter)

PA-POS-OC-3SML (single-port Packet over SONET (POS), single-mode, long reach)

PA-POS-OC-3SMI (single-port PoS, single-mode, intermediate reach)

PA-POS-OC-3MM (single-port PoS, multimode)

PA-A3-OC-3 (1-port ATM OC-3/STM1 port adapter, enhanced)

PA-A3-OC-12 (1-port ATM OC-12/STM-4 port adapter, enhanced) [Cisco 7500 only]

PA-A3-T3 (DS3 high-speed interface)

PA-A3-E3 (E3 medium-speed interface)

PA-A3-8T1IMA (ATM inverse multiplexer over ATM port adapter with 8 T1 ports)

PA-A3-8E1IMA (ATM inverse multiplexer over ATM port adapter with 8 E1 ports)

PA-A6 (Cisco ATM Port Adapter)

Cisco 7600 and 6500 Series Router Restrictions

Layer 2 local switching supports the following port adapters and interface processors on the Cisco 7600-SUP720/MSFC3 router:

All port adapters on the Enhanced FlexWAN module

All shared prot adaptors (SPAs) on the SIP-200 line cards

On the Cisco 6500 series and 7600 series routers, only like-to-like local switching is supported (ATM to ATM and Frame Relay to Frame Relay).

Same-port switching is not supported on the Cisco 6500 series and 7600 series routers.

Cisco 10000 Series Router Restrictions

For information about Layer 2 local switching on the Cisco 10000 series routers, see Configuring Layer 2 Local Switching.

Gigabit Switch Router Restrictions

VPI/VCI rewrite is supported.

All GSR line cards support Frame Relay-to-Frame Relay local switching.

8-port OC-3 ATM Engine 2 line cards support only like-to-like Layer 2 local switching.

IP Service Engine (ISE) (Engine 3) line cards support like-to-like and any-to-any local switching. Non-ISE line cards support only like-to-like local switching.

Starting in Cisco IOS Release 12.0(31)S2, ISE customer edge-facing interfaces support the following types of like-to-like and any-to-any local switching:

ATM to ATM

ATM to Ethernet

ATM to Frame Relay

Ethernet to Ethernet VLAN

Frame Relay to Frame Relay (including Multilink Frame Relay)

Same-port switching for ATM (PVC and PVP)

Same-port switching for Ethernet VLAN

Same-port switching for Frame Relay


Note Native Layer 2 Tunnel Protocol Version 3 (L2TPv3) tunnel sessions on customer edge-facing line cards can coexist with tunnel sessions that use a tunnel-server card.


Starting in Cisco IOS Release 12.0(32)SY, customer edge-facing interfaces on Engine 5 SPAs and SPA Interface Processors (SIPs) support the following types of like-to-like local switching:

Ethernet to Ethernet VLAN

Frame Relay to Frame Relay (including Multilink Frame Relay)

Same-port switching for Ethernet VLAN

Same-port switching for Frame Relay

For ATM-to-ATM local switching, the following ATM types are supported for the Layer 2 Local Switching feature:

ATM adaptation layer 5 (AAL5)

ATM single cell relay adaptation layer 0 (AAL0), VC mode

ATM single cell relay VP mode on the GSR

ATM single cell relay VC and VP modes on ISE line cards on the GSR

Starting with Cisco IOS Release 12.0(30)S, you can use local switching and cell packing with ATM VP or VC mode on the GSR on IP Services Engine (ISE/Engine 3) line cards. For information about how to configure cell packing, refer to Any Transport over MPLS.

Unsupported Hardware

The following hardware is not supported:

Cisco 7200—non-VXR chassis

Cisco 7500—Route Switch Processor (RSP)1 and 2

Cisco 7500—Versatile Interface Processor (VIP) 2-40 and below

GSR—4-port OC-3 ATM Engine-0 line card

GSR—4-port OC-12 ATM Engine-2 line card

GSR—1-port OC-12 ATM Engine-0 line card

GSR—Ethernet Engine-1, Engine-2, and Engine-4 line cards

Information About Layer 2 Local Switching

Layer 2 Local Switching Overview

NSF SSO - Local Switching Overview

Layer 2 Local Switching Applications

Access Circuit Redundancy Local Switching

Layer 2 Local Switching Overview

Local switching allows you to switch Layer 2 data between two interfaces of the same type (for example, ATM to ATM, or Frame Relay to Frame Relay) or between interfaces of different types (for example, Frame Relay to ATM) on the same router. The interfaces can be on the same line card or on two different cards. During these kinds of switching, the Layer 2 address is used, not any Layer 3 address.

Additionally, same-port local switching allows you to switch Layer 2 data between two circuits on the same interface.

NSF SSO - Local Switching Overview

Nonstop forwarding (NSF) and stateful switchover (SSO) improve the availability of the network by providing redundant Route Processors (RPs) and checkpointing of data to ensure minimal packet loss when the primary RP goes down. NSF/SSO support is available for the following locally switched attachment circuits:

Ethernet to Ethernet VLAN

Frame Relay to Frame Relay

Layer 2 Local Switching Applications

Incumbent local exchange carriers (ILECs) who use an interexchange carrier (IXC) to carry traffic between two local exchange carriers can use the Layer 2 Local Switching feature. Telecom regulations require the ILECs to pay the IXCs to carry that traffic. At times, the ILECs cannot terminate customer connections that are in different local access and transport areas (LATAs). In other cases, customer connections terminate in the same LATA, which may also be on the same router.

For example, company A has more than 50 LATAs across the country and uses three routers for each LATA. Company A uses companies B and C to carry traffic between local exchange carriers. Local switching of Layer 2 frames on the same router might be required.

Similarly, if a router is using, for example, a channelized interface, it might need to switch incoming and outgoing traffic across two logical interfaces that reside on a single physical port. The same-port local switching feature addresses that implementation.

Figure 1 shows a network that uses local switching for both Frame Relay to Frame Relay and ATM to Frame Relay local switching.

Figure 1 Local Switching Example

Access Circuit Redundancy Local Switching

The Automatic Protection Switching (APS) mechanism provides a switchover time of less than 50 milliseconds. However, the switchover time is longer in a pseudowire configuration due to the time the pseudowire takes to enter the UP state on switchover. The switchover time of the pseudowire can be eliminated if there is a single pseudowire on the working and protect interfaces instead of separate pseudowire configurations. A single pseudowire also eliminates the need to have Label Distribution Protocols (LDP) negotiations on a switchover. The virtual interface or controller model provides a method to configure a single pseudowire between the provider edge (PE) routers.

Access Circuit Redundancy (ACR) ensures low data traffic downtime by reducing the switchover time. ACR works on the APS 1+1, nonrevertive model where each redundant line pair consists of a working line and a protect line. If a signal fail condition or a signal degrade condition is detected, the hardware switches from the working line to the protect line.

The working and protect interfaces can be on the following:

Same SPA

Different SPA but on the same line card

SPAs on different line cards

When the working or protection interface is configured with ACR, a virtual interface is created and a connection is established between the virtual interfaces to facilitate the switching of data between the interfaces.

This section describes the following:

ACR for ATM-to-ATM Local Switching

ACR for CEM-to-CEM Local Switching

ACR for ATM-to-ATM Local Switching

ACR for ATM-to-ATM local switching supports the ATM AAL5 and ATM AAL0 encapsulation types and switches Layer 2 data between L2 transport virtual circuits (VCs).


Note The L2 transport VCs must be configured with the same encapsulation type.


Figure 2 shows the ACR for ATM-to-ATM local switching model.

Figure 2 ATM-to-ATM ACR Local Switching Model

In the figure:

ATM 1/0/0 and ATM 9/0/0 are configured as working and protection interfaces of ACR 1 group.

ATM 7/1/0 and ATM 9/1/0 are configured as working and protection interfaces of ACR 2 group.

A connection is established between the ACRs.

The Add/Drop Multiplexer (ADM) sends data to both the interfaces, which are part of the ACR group ACR 1.

The cells or packets received on the APS active interface VC (0/32) of ACR group 1 are switched to the ACR 2 interface VC (1/32) and the cells or packets from the APS inactive interface are dropped.

The packets received on the ACR 2 VC (1/32) interface are replicated on both the physical interfaces, which are part of the ACR group ACR 2.

ACR for CEM-to-CEM Local Switching

Circuit Emulation (CEM) transports Time Division Multiplexing (TDM) data over TDM pseudowires, allowing mobile operators to carry TDM traffic over an IP or Multiprotocol Label Switching (MPLS) network. ACR for CEM-to-CEM involves creating a virtual controller and associating the virtual controller with the physical controllers. The virtual controller is created when APS and ACR are configured on the physical controller. All commands executed on the virtual controller apply to the working and protect controller. The virtual controller simplifies the single point of configuration and provides the flexibility of not running a backup pseudowire for the protect controller in the event of a failure. This way there is no switchover between the pseudowires, which in turn reduces the recovery time when the physical link fails.

When the CEM group is configured on the virtual controller, a virtual CEM-ACR interface is created and associated with the CEM circuit. ACR creates CEM interfaces and CEM circuits on the physical interfaces that correspond to the physical controllers belonging to the same ACR group.

Figure 3 shows the ACR for CEM-to-CEM local switching model:

Figure 3 CEM-to-CEM ACR Local Switching Model

In the figure:

Packets are received from the ADM. The packets from the APS inactive interface are dropped and the packets received on the APS active interface are switched.

The packets received on the CEM circuit ID 1 of the APS active interface, which is part of ACR group 1, are switched to the CEM circuit ID 2 of the APS active interface, which is part of ACR group 2.

The packets are duplicated and sent on both the APS active and inactive physical CEM interfaces that are part of ACR group 2.

How to Configure Layer 2 Local Switching

Configuring ATM-to-ATM PVC Local Switching and Same-Port Switching (optional)

Configuring ATM-to-ATM PVP Local Switching (optional)

Configuring ATM PVP Same-Port Switching (optional)

Configuring ATM-to-Ethernet Port Mode Local Switching (optional)

Configuring ATM-to-Ethernet VLAN Mode Local Switching (optional)

Configuring Ethernet VLAN Same-Port Switching (optional)

Configuring Ethernet Port Mode to Ethernet VLAN Local Switching (optional)

Configuring ATM-to-Frame Relay Local Switching (optional)

Configuring Frame Relay-to-Frame Relay Local Switching (optional)

Configuring Frame Relay Same-Port Switching (optional)

Configuring HDLC Local Switching (optional)

Configuring ACR for ATM-to-ATM Local Switching (optional)

Configuring CEM-to-CEM ACR Local Switching (optional)

Verifying Layer 2 Local Switching (optional)

For information about Layer 2 local switching on the Cisco 10000 series routers, see Configuring Layer 2 Local Switching.

Configuring ATM-to-ATM PVC Local Switching and Same-Port Switching

You can configure local switching for both ATM AAL5 and ATM AAL0 encapsulation types.

Creating the ATM PVC is not required. If you do not create a PVC, one is created for you. For ATM-to-ATM local switching, the autoprovisioned PVC is given the default encapsulation type AAL0 cell relay.


Note Starting with Cisco IOS Release 12.0(30)S, you can configure same-port switching following the steps in this section.


Perform this task to configure ATM-to-ATM PVC local switching and same-port switching.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface atmslot/port

4. pvc vpi/vci l2transport

5. encapsulation layer-type

6. exit

7. exit

8. connect connection-name interface pvc interface pvc

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface atmslot/port

Example:

Router(config)# interface atm1/0

Specifies an ATM line card, subslot (if available), and port, and enters interface configuration mode.

Step 4 

pvc vpi/vci l2transport

Example:

Router(config-if)# pvc 1/200 l2transport

Assigns a VPI and VCI and enters ATM PVC l2transport configuration mode.

The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Step 5 

encapsulation layer-type

Example:

Router(cfg-if-atm-l2trans-pvc)# encapsulation aal5

Specifies the encapsulation type for the ATM PVC. Both AAL0 and AAL5 are supported.

Repeat Steps 3 through 5 for another ATM PVC on the same router.

Step 6 

exit

Example:

Router(cfg-if-atm-l2trans-pvc)# exit

Exits PVC l2transport configuration mode and returns to interface configuration mode.

Step 7 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 8 

connect connection-name interface pvc interface pvc

Example:

Router(config)# connect atm-con atm1/0/0 0/100 atm2/0/0 0/100

Creates a local connection between the two specified permanent virtual circuits.

Configuring ATM-to-ATM PVP Local Switching

Perform this task to configure ATM-to-ATM PVP local switching.

Starting with Cisco IOS Release 12.0(30)S, you can configure same-port switching, as detailed in the "Configuring ATM PVP Same-Port Switching" section.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface atmslot/port

4. atm pvp vpi l2transport

5. exit

6. exit

7. connect connection-name interface pvp interface pvp

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface atmslot/port

Example:

Router(config)# interface atm1/0

Specifies an ATM line card, subslot (if available), and port, and enters interface configuration mode.

Step 4 

atm pvp vpi l2transport

Example:

Router(config-if)# atm pvp 100 l2transport

Identifies the virtual path and enters PVP l2transport configuration mode. The l2transport keyword indicates that the PVP is a switched PVP instead of a terminated PVP.

Repeat Steps 3 and 4 for another ATM permanent virtual path on the same router.

Step 5 

exit

Example:

Router(config-if-atm-l2trans-pvp)# exit

Exits PVP l2transport configuration mode and returns to interface configuration mode.

Step 6 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 7 

connect connection-name interface pvp interface pvp

Example:

Router(config)# connect atm-con

atm1/0 100 atm2/0 200

In global configuration mode, creates a local connection between the two specified permanent virtual paths.

Configuring ATM PVP Same-Port Switching

Perform this task to configure ATM PVP switching on an ATM interface.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface atmslot/subslot/port

4. atm pvp vpi l2transport

5. exit

6. exit

7. connect connection-name interface pvp interface pvp

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface atmslot/subslot/port

Example:

Router(config)# interface atm1/0/0

Specifies an ATM line card, subslot (if available), and port, and enters interface configuration mode.

Step 4 

atm pvp vpi l2transport

Example:

Router(config-if)# atm pvp 100 l2transport

Specifies one VPI and enters PVP l2transport configuration mode. Repeat this step for the other ATM permanent virtual path on this same port.

The l2transport keyword indicates that the indicated PVP is a switched PVP instead of a terminated PVP.

Step 5 

exit

Example:

Router(config-if-atm-l2trans-pvp)# exit

Exits PVP l2transport configuration mode and returns to interface configuration mode.

Step 6 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 7 

connect connection-name interface pvp interface pvp

Example:

Router(config)# connect atm-con atm1/0/0 100 atm1/0/0 200

In global configuration mode, creates the local connection between the two specified permanent virtual paths.

Configuring ATM-to-Ethernet Port Mode Local Switching

For ATM to Ethernet port mode local switching, creating the ATM PVC is not required. If you do not create a PVC, one is created for you. For ATM-to-Ethernet local switching, the autoprovisioned PVC is given the default encapsulation type AAL5SNAP.

ATM-to-Ethernet local switching supports both the IP and Ethernet interworking types. When the Ethernet interworking type is used, the interworking device (router) expects a bridged packet. Therefore, configure the ATM CPE for either IRB or RBE.


Note Enabling ICMP Router Discovery Protocol on the Ethernet side is recommended.


ATM-to-Ethernet local switching supports the following encapsulation types:

ATM-to-Ethernet with IP interworking: AAL5SNAP, AAL5MUX

ATM-to-Ethernet with Ethernet interworking: AAL5SNAP

Perform this task to configure local switching between ATM and Ethernet port mode.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface atmslot/port

4. pvc vpi/vci l2transport

5. encapsulation layer-type

6. exit

7. exit

8. interface fastethernetslot/subslot/port

9. exit

10. connect connection-name interface pvc interface [interworking ip | ethernet]

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface atmslot/port

Example:

Router(config)# interface atm1/0

Specifies an ATM line card, subslot (if available), and port, and enters interface configuration mode.

Step 4 

pvc vpi/vci l2transport

Example:

Router(config-if)# pvc 1/200 l2transport

Assigns a VPI and VCI and enters PVC l2transport configuration mode.

The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Step 5 

encapsulation layer-type

Example:

Router(cfg-if-atm-l2trans-pvc)# encapsulation aal5snap

Specifies the encapsulation type for the PVC.

Step 6 

exit

Example:

Router(config-if-atm-l2trans-pvc)# exit

Exits PVC l2transport configuration mode and returns to interface configuration mode.

Step 7 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 8 

interface fastethernetslot/subslot/port

Example:

Router(config)# interface fastethernet6/0/0

Specifies a Fast Ethernet line card, subslot (if available), and port, and enters interface configuration mode.

Step 9 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 10 

connect connection-name interface pvc interface 
[interworking ip | ethernet]
Example:

Router(config)# connect atm-eth-con atm1/0 0/100 fastethernet6/0/0 interworking ethernet

In global configuration mode, creates a local connection between the two interfaces and specifies the interworking type.

Both the IP and Ethernet interworking types are supported.

Configuring ATM-to-Ethernet VLAN Mode Local Switching

For ATM-to-Ethernet VLAN mode local switching, creating the ATM PVC is not required. If you do not create a PVC, one is created for you. For ATM-to-Ethernet local switching, the autoprovisioned PVC is given the default encapsulation type AAL5SNAP.

ATM-to-Ethernet local switching supports both the IP and Ethernet interworking types. When the Ethernet interworking type is used, the interworking device (router) expects a bridged packet. Therefore, configure the ATM CPE for either IRB or RBE.


Note Enabling ICMP Router Discovery Protocol on the Ethernet side is recommended.


ATM-to-Ethernet local switching supports the following encapsulation types:

ATM-to-Ethernet with IP interworking: AAL5SNAP, AAL5MUX

ATM-to-Ethernet with Ethernet interworking: AAL5SNAP

The VLAN header is removed from frames that are received on an Ethernet subinterface.

Perform this task to configure local switching for ATM to Ethernet in VLAN mode.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface atmslot/subslot/port

4. pvc vpi/vci l2transport

5. encapsulation layer-type

6. exit

7. interface fastethernetslot/port/subinterface-number

8. encapsulation dot1q vlan-id

9. exit

10. connect connection-name interface pvc interface [interworking ip | ethernet]

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface atmslot/subslot/port

Example:

Router(config)# interface atm1/0/0

Specifies an ATM line card, subslot (if available), and port, and enters interface configuration mode.

Step 4 

pvc vpi/vci l2transport

Example:

Router(config-if)# pvc 1/200 l2transport

Assigns a VPI and VCI and enters PVC l2transport configuration mode.

The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Step 5 

encapsulation layer-type

Example:

Router(cfg-if-atm-l2trans-pvc)# encapsulation aal5snap

Specifies the encapsulation type for the PVC.

Step 6 

exit

Example:

Router(cfg-if-atm-l2trans-pvc)# exit

Exits PVC l2transport configuration mode and returns to interface configuration mode.

Step 7 

interface fastethernetslot/port/subinterface-number

Example:

Router(config-if)# interface fastethernet6/0/0.1

Specifies a Fast Ethernet line card, subslot (if available), port, and subinterface, and enters subinterface configuration mode.

Step 8 

encapsulation dot1q vlan-id

Example:

Router(config-subif)# encapsulation dot1q 100

Enables the interface to accept 802.1Q VLAN packets.

Step 9 

exit

Example:

Router(config-subif)# exit

Exits subinterface configuration mode and returns to global configuration mode.

Step 10 

connect connection-name interface pvc interface [interworking ip | ethernet]

Example:

Router(config)# connect atm-eth-vlan-con atm1/0/0 0/100 fastethernet6/0/0.1 interworking ethernet

In global configuration mode, creates a local connection between the two interfaces and specifies the interworking type.

Both the IP and Ethernet interworking types are supported.

Configuring Ethernet VLAN Same-Port Switching

Perform this task to configure Ethernet VLAN same-port switching.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface fastethernetslot/port.subinterface-number

4. encapsulation dot1q vlan-id

5. exit

6. interface fastethernetslot/port.subinterface-number

7. encapsulation dot1q vlan-id

8. exit

9. connect connection-name interface interface

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface fastethernetslot/port.subinterface-number

Example:

Router(config)# interface fastethernet6/0.1

Specifies the first Fast Ethernet line card, subslot (if available), port, and subinterface, and enters subinterface configuration mode.

Step 4 

encapsulation dot1q vlan-id

Example:

Router(config-subif)# encapsulation dot1q 10

Enables that subinterface to accept 802.1Q VLAN packets and specifies the first VLAN.

Step 5 

exit

Example:

Router(config-subif)# exit

Exits subinterface configuration mode and returns to global configuration mode.

Step 6 

interface fastethernetslot/port.subinterface-number

Example:

Router(config)# interface fastethernet6/0.2

In global configuration mode, specifies the second Fast Ethernet line card, subslot (if available), port, and subinterface, and enters subinterface configuration mode.

Step 7 

encapsulation dot1q vlan-id

Example:

Router(config-subif)# encapsulation dot1q 20

Enables this subinterface to accept 802.1Q VLAN packets and specifies the second VLAN.

Step 8 

exit

Example:

Router(config-subif)# exit

Exits subinterface configuration mode and returns to global configuration mode.

Step 9 

connect connection-name interface interface

Example:

Router(config)# connect conn fastethernet6/0.1 fastethernet6/0.2

In global configuration mode, creates a local connection between the two subinterfaces (and hence their previously specified VLANs) on the same Fast Ethernet port.

Configuring Ethernet Port Mode to Ethernet VLAN Local Switching

Perform this task to configure local switching for Ethernet (port mode) to Ethernet VLAN.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface fastethernetslot/subslot/port

4. interface fastethernetslot/port/subinterface-number

5. encapsulation dot1q vlan-id

6. exit

7. connect connection-name interface interface [interworking ip | ethernet]

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface fastethernetslot/subslot/port

Example:

Router(config)# interface fastethernet3/0/0

Specifies a Fast Ethernet line card, subslot (if available), and port, and enters interface configuration mode. This is the interface on one side of the PE router that passes Ethernet packets to and from the customer edge (CE) router.

Step 4 

interface fastethernetslot/port/subinterface-number

Example:

Router(config)# interface fastethernet6/0/0.1

Specifies a Fast Ethernet line card, subslot (if available), port, and subinterface, and enters subinterface configuration mode. This is the interface on the other side of the PE router than passes Ethernet VLAN packets to and from the CE router.

Step 5 

encapsulation dot1q vlan-id

Example:

Router(config-subif)# encapsulation dot1q 100

Enables the interface to accept 802.1Q VLAN packets.

Step 6 

exit

Example:

Router(config-subif)# exit

Exits subinterface configuration mode and returns to global configuration mode.

Step 7 

connect connection-name interface interface [interworking ip | ethernet]

Example:

Router(config)# connect eth-ethvlan-con fastethernet3/0/0 fastethernet6/0/0.1 interworking ethernet

Creates a local connection between the two interfaces and specifies the interworking type.

Both the IP and Ethernet interworking types are supported.

Configuring ATM-to-Frame Relay Local Switching

You use the interworking ip keywords for configuring ATM-to-Frame Relay local switching.

FRF.8 Frame Relay-to-ATM service interworking functionality is not supported. Frame Relay discard-eligible (DE) bits do not get mapped to ATM cell loss priority (CLP) bits, and forward explicit congestion notification (FECN) bits do not get mapped to ATM explicit forward congestion indication (EFCI) bits.

Creating the PVC is not required. If you do not create a PVC, one is created for you. For ATM-to-Ethernet local switching, the automatically provisioned PVC is given the default encapsulation type AAL5SNAP.

ATM-to-Frame Relay local switching supports the following encapsulation types:

AAL5SNAP

AAL5NLPID (GSR uses AAL5MUX instead, for IP interworking)

SUMMARY STEPS

1. enable

2. configure terminal

3. interface atmslot/port

4. pvc vpi/vci l2transport

5. encapsulation layer-type

6. exit

7. interface serialslot/port

8. encapsulation frame-relay [cisco | ietf]

9. frame-relay interface-dlci dlci switched

10. exit

11. connect connection-name interface pvc interface dlci [interworking ip | ethernet]

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface atmslot/port

Example:

Router(config)# interface atm1/0

Specifies an ATM line card, subslot (if available), and port, and enters interface configuration mode.

Step 4 

pvc vpi/vci l2transport

Example:

Router(config-if)# pvc 1/200 l2transport

Assigns a VPI and VCI and enters PVC l2transport configuration mode.

The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Step 5 

encapsulation layer-type

Example:

Router(cfg-if-atm-l2trans-pvc)# encapsulation aal5snap

Specifies the encapsulation type for the PVC.

Step 6 

exit

Example:

Router(cfg-if-atm-l2trans-pvc)# exit

Exits PVC l2transport configuration mode and returns to interface configuration mode.

Step 7 

interface serialslot/subslot/port

Example:

Router(config-if)# interface serial6/0/0

Specifies a channelized line card, subslot (if available), and serial port.

Step 8 

encapsulation frame-relay [cisco | ietf]

Example:

Router(config-if)# encapsulation frame-relay ietf

Specifies Frame Relay encapsulation for the interface.

The encapsulation type does not matter for local switching. It has relevance only for terminated circuits.

Step 9 

frame-relay interface-dlci dlci switched

Example:

Router(config-if)# frame-relay interface-dlci 100 switched

(Optional) Configures a switched Frame Relay DLCI.

If you do not create a Frame Relay PVC in this step, one is automatically created by the connect command.

Step 10 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 11 

connect connection-name interface pvc interface dlci [interworking ip | ethernet]

Example:

Router(config)# connect atm-fr-con

atm1/0 0/100 serial6/0/0 100 interworking ip

Creates a local connection between the two interfaces.

Configuring Frame Relay-to-Frame Relay Local Switching

For information on Frame Relay-to-Frame Relay Local Switching, see the Distributed Frame Relay Switching feature module.

With Cisco IOS Release 12.0(30)S, you can switch between virtual circuits on the same port, as detailed in the "Configuring Frame Relay Same-Port Switching" section.

SUMMARY STEPS

1. enable

2. configure terminal

3. ip cef [distributed]

4. frame-relay switching

5. interface type number

6. encapsulation frame-relay [cisco | ietf]

7. frame-relay interface-dlci dlci switched

8. exit

9. exit

10. connect connection-name interface dlci interface dlci

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

ip cef [distributed]

Example:

Router(config)# ip cef

Enables Cisco Express Forwarding operation.

For the Cisco 7500 series router, use the ip cef distributed command. (On the GSR, this command is already enabled by default).

For the Cisco 7200 series router, use the ip cef command.

Step 4 

frame-relay switching

Example:

Router(config)# frame-relay switching

Enables PVC switching on a Frame Relay DCE device or a Network-to-Network Interface (NNI).

Step 5 

interface type number

Example:

Router(config)# interface serial 0

Specifies a Frame Relay interface and enters interface configuration mode.

Step 6 

encapsulation frame-relay [cisco | ietf]

Example:

Router(config-if)# encapsulation frame-relay

Enables Frame Relay encapsulation.

The default is cisco encapsulation.

You do not need to specify an encapsulation type.

Step 7 

frame-relay interface-dlci dlci switched

Example:

Router(config-if)# frame-relay interface-dlci 100 switched

(Optional) Creates a switched PVC and enters Frame Relay DLCI configuration mode.

Repeat Steps 5 through 7 for each switched PVC.

If you do not create a Frame Relay PVC in this step, it will automatically be created by the connect command.

Step 8 

exit

Example:

Router(config-fr-dlci)# exit

Exits Frame Relay DLCI configuration mode and returns to interface configuration mode.

Step 9 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 10 

connect connection-name interface dlci interface dlci

Example:

Router(config)# connect connection1 serial0 100 serial1 101

Defines a connection between Frame Relay PVCs.

Configuring Frame Relay Same-Port Switching

Perform this task to configure Frame Relay switching on the same interface.

SUMMARY STEPS

1. enable

2. configure terminal

3. ip cef [distributed]

4. frame-relay switching

5. interface type number

6. encapsulation frame-relay [cisco | ietf]

7. frame-relay intf-type [dce | dte | nni]

8. frame-relay interface-dlci dlci switched

9. exit

10. exit

11. connect connection-name interface dlci interface dlci

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

ip cef [distributed]

Example:

Router(config)# ip cef

Enables Cisco Express Forwarding operation.

For the Cisco 7500 series router, use the ip cef distributed command. (On the GSR, this command is already enabled by default).

For the Cisco 7200 series router, use the ip cef command.

Step 4 

frame-relay switching

Example:

Router(config)# frame-relay switching

Enables PVC switching on a Frame Relay DCE device or a NNI.

Step 5 

interface type number

Example:

Router(config)# interface serial 0

Specifies a Frame Relay interface and enters interface configuration mode.

Step 6 

encapsulation frame-relay [cisco | ietf]

Example:

Router(config-if)# encapsulation frame-relay

Enables Frame Relay encapsulation.

The default is cisco encapsulation.

You do not need to specify an encapsulation type.

Step 7 

frame-relay intf-type [dce | dte | nni]

Example:

Router(config-if)# frame-relay intf-type nni

(Optional) Enables support for a particular type of connection:

DCE

DTE (default)

NNI

Step 8 

frame-relay interface-dlci dlci switched

Example:

Router(config-if)# frame-relay interface-dlci 100 switched

(Optional) Creates a switched PVC and enters Frame Relay DLCI configuration mode.

If you do not create a Frame Relay PVC in this step, it will automatically be created by the connect command.

Step 9 

exit

Example:

Router(config-fr-dlci)# exit

Exits Frame Relay DLCI configuration mode and returns to interface configuration mode.

Step 10 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 11 

connect connection-name interface dlci interface dlci

Example:

Router(config)# connect connection1 serial1/0 100 serial1/0 200

Defines a connection between the two data links.

Configuring HDLC Local Switching

Perform this task to configure local switching for HDLC. The PE routers are configured with HDLC encapsulation. The CE routers are configured with any HDLC-based encapsulation, including HDLC, PPP, and Frame Relay.

Prerequisites

Ensure that the interfaces you configure for HDLC encapsulation can handle ping packets that are smaller, the same size as, or larger than the CE interface MTU.

Enable Cisco Express Forwarding.

Restrictions

Do not configure other settings on the interfaces configured for HDLC encapsulation. If you assign an IP address on the interface, the connect command is rejected and the following error message displays:

Incompatible with IP address command on interface - command rejected.
 
   

If you configure other settings on the interface that is enabled for HDLC encapsulation, the local switching feature may not work.

Interworking is not supported.

Same-port local switching for HDLC is not supported.

Dialer and ISDN interfaces are not supported. Only serial, HSSI, and POS interfaces can be configured for HDLC local switching.

SUMMARY STEPS

1. enable

2. configure terminal

3. ip cef [distributed]

4. interface type number

5. exit

6. connect connection-name interface interface

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

ip cef

Example:

Router(config)# ip cef

Enables Cisco Express Forwarding operation.

Step 4 

interface type number

Example:

Router(config)# interface serial 2/0

Specifies an interface and enters interface configuration mode.

Step 5 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 6 

connect connection-name interface interface

Example:

Router(config)# connect connection1 serial1/0 serial1/0

Defines a connection between the two interfaces.

Configuring ACR for ATM-to-ATM Local Switching


Note The connect command provides an infrastructure to create the required L2 transport VCs with the default AAl0 encapsulation type and does not require that the VCs must exist.


Perform this task to configure ACR for ATM-to-ATM local switching.

SUMMARY STEPS

1. enable

2. configure terminal

3. interface atmslot/subslot/port

4. aps group [acr] group-number

5. aps working circuit-number

6. aps protect circuit-number ip-address

7. exit

8. interface acr acr-group-number

9. pvc [name] vpi/vci l2transport

10. exit

11. exit

12. connect connection-name type number pvc type number pvc

13. exit

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

interface atmslot/subslot/port

Example:

Router(config)# interface atm8/0/0

Specifies an ATM line card, a subslot (if available), and a port, and enters interface configuration mode.

Step 4 

aps group [acr] group-number

Example:

Router(config-if)# aps group acr 1

Configures an ACR working and protect interface.

group-number—Number of the group.

Step 5 

aps working circuit-number

Example:

Router(config-if)# aps working 1

Enables an ATM OC-3 interface as the working interface.

circuit-number—Number of the circuit that will be enabled as the working interface.

Repeat Steps 3 to 5 for the protect interface.

Step 6 

aps protect circuit-number ip-address

Example:

Router(config-if)# aps protect 1 10.0.0.1

Enables an ATM OC-3 interface as the protect interface.

circuit-number—Number of the circuit that will be enabled as the protect interface.

ip-address—IP address of the router that has the working ATM OC-3 interface.

Step 7 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 8 

interface acr acr-group-number

Example:

Router(config)# interface acr 1

Specifies an ACR interface and enters interface configuration mode.

acr-group-number—The group number assigned to the working and protect interface.

Step 9 

pvc [name] vpi/vci l2transport

Example:

Router(config-if)# pvc 0/32 l2transport

Creates an ATM PVC and enters ATM virtual circuit configuration mode.

Step 10 

exit

Example:

Router(config-if-atm-vc)# exit

Exits ATM virtual circuit configuration mode and returns to interface configuration mode.

Repeat Steps 8 and 9 for the other ACR group.

Step 11 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 12 

connect connection-name type number pvc type number pvc

Example:

Router(config)# connect connection1 acr 1 0/32 acr 2 1/32

Defines the connection between the ATM-ACR interfaces.

connection-name—Local switching connection name.

type—Interface or circuit type used to create a local switching connection.

number—Integer that identifies the number of the interface or circuit.

Step 13 

exit

Example:

Router(config)# exit

Exits global configuration and returns to privileged EXEC mode.

Configuring CEM-to-CEM ACR Local Switching

Perform this task to configure ACR for CEM-to-CEM local switching.

SUMMARY STEPS

1. enable

2. configure terminal

3. controller sonet slot/subslot/port

4. aps group [acr] group-number

5. aps working circuit-number

6. aps protect circuit-number ip-address

7. exit

8. controller sonet-acr acr-group-number

9. framing sonet

10. sts-1 number

11. mode vt-15

12. vtg number t1 number cem-group number timeslots number

13. exit

14. exit

15. interface cem-acr acr-group-number

16. exit

17. cem slot/port/channel

18. xconnect virtual-connect-id

19. exit

20. exit

21. connect connection-name type number circuit-id type number circuit-id

22. exit

DETAILED STEPS

 
Command or Action
Purpose

Step 1 

enable

Example:

Router> enable

Enables privileged EXEC mode.

Enter your password if prompted.

Step 2 

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 

controller sonet slot/subslot/port

Example:

Router(config)# controller sonet 8/0/0

Specifies a virtual controller and enters SONET controller configuration mode.

Step 4 

aps group [acr] group-number

Example:

Router(config-controller)# aps group acr 1

Configures an ACR working and protect interface.

group-number—Number of the group.

Step 5 

aps working circuit-number

Example:

Router(config-controller)# aps working 1

Enables a SONET interface as the working interface.

circuit-number—Number of the circuit that will be enabled as the working interface.

Repeat steps 3 to 5 for the protect interface.

Step 6 

aps protect circuit-number ip-address

Example:

Router(config-controller)# aps protect 1 10.0.0.1

Enables a SONET interface as the protect interface.

circuit-number—Number of the circuit that will be enabled as the protect interface.

ip-address—IP address of the router that has the working SONET interface.

Step 7 

exit

Example:

Router(config-controller)# exit

Exits SONET controller configuration mode and returns to global configuration mode.

Step 8 

controller sonet-acr acr-group-number

Example:

Router(config)# controller SONET-acr 1

Specifies the SONET ACR controller and enters SONET controller configuration mode.

acr-group-number—The group number assigned to the working and protect interface.

Step 9 

framing sonet

Example:

Router(config-controller)# framing sonet

Configures the controller framing for SONET framing.

Step 10 

sts-1 number

Example:

Router(config-controller)# sts-1 2

Specifies the STS identifier and enters STS configuration mode.

Step 11 

mode vt-15

Example:

Router(config-ctrlr-sts1)# mode vt-15

Specifies VT-15 as the STS-1 mode of operation.

Step 12 

vtg number t1 number cem-group number timeslots number

Example:

Router(config-ctrlr-sts1)# vtg 2 t1 4 cem-group 2 timeslots 1-5,14

Creates a virtual tributary group carrying a single T1 Circuit Emulation Service over Packet Switched Networks (CESoPSN) group.

Step 13 

exit

Example:

Router(config-ctrlr-sts1)# exit

Exits STS configuration mode and returns to SONET controller configuration mode.

Step 14 

exit

Example:

Router(config-controller)# exit

Exits SONET controller configuration mode and returns to global configuration mode.

Step 15 

interface cem-acr acr-group-number

Example:

Router(config)# interface cem-acr 1

Specifies the CEM-ACR interface and enters interface configuration mode.

Step 16 

exit

Example:

Router(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 17 

cem slot/port/channel

Example:

Router(config)# cem 1/2/0

Configures CEM and enters circuit emulation (CEM) configuration mode.

Step 18 

xconnect virtual-connect-id

Example:

Router(config-cem)# xconnect 0

Builds the CEM connection and enters CEM xconnect configuration mode.

virtual-connect-id—Virtual connect ID (VCID).

Step 19 

exit

Example:

Router(config-cem-xconnect)# exit

Exits CEM xconnect configuration mode and returns to CEM configuration mode.

Step 20 

exit

Example:

Router(config-cem)# exit

Exits CEM configuration mode and returns to global configuration mode.

Repeat Steps 15 to 19 for the other CEM group.

Step 21 

connect connection-name type number circuit-id type number circuit-id

Example:

Router(config)# connect connect1 cem-acr 1 2 cem-acr 2 3

Defines a connection between the two CEM-ACR circuits.

connection-name—Local switching connection name.

type—Interface or circuit type used to create a local switching connection.

number—Integer that identifies the number of the interface or circuit.

circuit-id—CEM group ID.

Step 22 

exit

Example:

Router(config)# exit

Exits global configuration and returns to privileged EXEC mode.

Verifying Layer 2 Local Switching

Verifying Layer 2 Local Switching Configuration

Verifying the NSF SSO Local Switching Configuration

Troubleshooting Tips

Verifying Layer 2 Local Switching Configuration

To verify configuration of the Layer 2 Local Switching feature, use the following commands on the provider edge (PE) router:

SUMMARY STEPS

1. show connection [all | element | id id | name name | port port]

2. show atm pvc

3. show frame-relay pvc [pvc]

DETAILED STEPS


Step 1 show connection [all | element | id id | name name | port port]

The show connection command displays the local connection between an ATM interface and a Fast Ethernet interface:

Router# show connection name atm-eth-con
 
   
ID  Name            Segment 1              Segment 2         State
==================================================================
1   atm-eth-con     ATM0/0/0 AAL5 0/100    FastEthernet6/0/0  UP
 
   

This example displays the local connection between an ATM interface and a serial interface:

Router# show connection name atm-fr-con
 
   
ID  Name            Segment 1              Segment 2         State
==================================================================
1   atm-fr-con     ATM0/0/0 AAL5 0/100    Serial1/0/0  16     UP
 
   

This example displays a same-port connection on a serial interface.

Router# show connection name same-port
 
   
ID  Name            Segment 1              Segment 2         State
==================================================================
1   same-port      Serial1/1/1  101       Serial1/1/1  102    UP
 
   

Step 2 show atm pvc

The show atm pvc command shows that interface ATM3/0 is UP:

Router# show atm pvc
 
   
            VCD/                                      Peak   Avg/Min   Burst
Interface   Name   VPI   VCI   Type   Encaps      SC  Kbps   Kbps      Cells    Sts
3/0         10     1     32    PVC    FRATMSRV    UBR 155000                    UP
 
   

Step 3 show frame-relay pvc [pvc]

The show frame-relay pvc command shows a switched Frame Relay PVC:

Router# show frame-relay pvc 16
 
   
PVC Statistics for interface POS5/0 (Frame Relay NNI)
DLCI = 16, DLCI USAGE = SWITCHED, PVC STATUS = UP, INTERFACE = POS5/0
LOCAL PVC STATUS = UP, NNI PVC STATUS = ACTIVE
input pkts 0 output pkts 0 in bytes 0
out bytes 0 dropped pkts 100 in FECN pkts 0
in BECN pkts 0 out FECN pkts 0 out BECN pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 0 out bcast bytes 0
switched pkts 0
Detailed packet drop counters:
no out intf 0 out intf down 100 no out PVC 0
in PVC down 0 out PVC down 0 pkt too big 0
pvc create time 00:25:32, last time pvc status changed 00:06:31 

Verifying the NSF SSO Local Switching Configuration

Layer 2 local switching provides NSF/SSO support for Local Switching of the following attachment circuits on the same router:

Ethernet (port mode) to Ethernet VLAN

Frame Relay to Frame Relay

For information about configuring NSF/SSO on the RPs, see the Stateful Switchover feature module. To verify that the NSF/SSO: Layer 2 Local Switching is working correctly, follow the steps in this section.

SUMMARY STEPS

1. ping

2. redundancy force-switchover

3. show connect all

4. ping

DETAILED STEPS


Step 1 Issue the ping command or initiate traffic between the two CE routers.

Step 2 Force the switchover from the active RP to the standby RP by using the redundancy force-switchover command. This manual procedure allows for a "graceful" or controlled shutdown of the active RP and switchover to the standby RP. This graceful shutdown allows critical cleanup to occur.

Step 3 Issue the show connect all command to ensure that the Layer 2 local switching connection on the dual RP is operating.

Router# show connect all
 
   
ID      Name          Segment 1     Segment 2     State
2      Eth-Vlan1      Fa1/1/1       Fa6/0/0/0.1   UP
 
   

Step 4 Issue the ping command from the CE router to verify that the contiguous packet outage was minimal during the switchover.


Troubleshooting Tips

You can troubleshoot Layer 2 local switching using the following commands on the PE router:

debug atm l2transport

debug conn

debug frame-relay pseudowire

show frame-relay pvc

show connection

show atm pvc

Configuration Examples for Layer 2 Local Switching

Example: ATM-to-ATM Local Switching

Example: ATM PVC Same-Port Switching

Example: ATM PVP Same-Port Switching

Example: ATM-to-Ethernet Local Switching

Example: Ethernet VLAN Same-Port Switching

Example: ATM-to-Frame Relay Local Switching

Example: Frame Relay-to-Frame Relay Local Switching

Example: Frame Relay DLCI Same-Port Switching

Example: HDLC Local Switching

Example: NSF SSO: Ethernet Port Mode to Ethernet VLAN Local Switching

Example: ATM-to-ATM Local Switching

The following example shows local switching on ATM interfaces configured for AAL5:

interface atm1/0/0
 pvc 0/100 l2transport
 encapsulation aal5
 
   
interface atm2/0/0
 pvc 0/100 l2transport
 encapsulation aal5
 
   
connect aal5-conn atm1/0/0 0/100 atm2/0/0 0/100

Example: ATM PVC Same-Port Switching

The following example shows same-port switching between two PVCs on one ATM interface:

interface atm1/0/0
 pvc 0/100 l2transport
 encapsulation aal5
 pvc 0/200 l2transport
 encapsulation aal5
 
   
connect conn atm1/0/0 0/100 atm1/0/0 0/200

Example: ATM PVP Same-Port Switching

The following example shows same-port switching between two PVPs on one ATM interface:

interface atm1/0/0
 atm pvp 100 l2transport
 atm pvp 200 l2transport
 
   
connect conn atm1/0/0 100 atm1/0/0 200

Example: ATM-to-Ethernet Local Switching

ATM-to-Ethernet local switching terminates an ATM frame to an Ethernet/VLAN frame over the same PE router. Two interworking models are used: Ethernet mode and IP mode.

Example: ATM to Ethernet VLAN

The following example shows an Ethernet interface configured for Ethernet VLAN, and an ATM PVC interface configured for AAL5 encapsulation. The connect command allows local switching between these two interfaces and specifies the interworking type as Ethernet mode.

interface fastethernet6/0/0.1
 encapsulation dot1q 10
 
   
interface atm2/0/0
 pvc 0/400 l2transport
 encapsulation aal5
 
   
connect atm-ethvlan-con atm2/0/0 0/400 fastethernet6/0/0.1 interworking ethernet

Example: ATM to Ethernet Port Mode

The following example shows an Ethernet interface configured for Ethernet and an ATM interface configured for AAL5SNAP encapsulation. The connect command allows local switching between these two interfaces and specifies the interworking type as IP mode.

interface atm0/0/0
 pvc 0/100 l2transport
 encapsulation aal5snap
 
   
interface fastethernet6/0/0
 
   
connect atm-eth-con atm0/0/0 0/100 fastethernet6/0/0 interworking ip

Example: Ethernet VLAN Same-Port Switching

The following example shows same-port switching between two VLANs on one Ethernet interface:

interface fastethernet0/0.1
 encapsulation dot1q 1
interface fastethernet0/0.2
 encapsulation dot1q 2
 
   
connect conn FastEthernet0/0.1 FastEthernet0/0.2

Example: ATM-to-Frame Relay Local Switching

The following example shows a serial interface configured for Frame Relay and an ATM interface configured for AAL5SNAP encapsulation. The connect command allows local switching between these two interfaces.

interface serial1/0
 encapsulation frame-relay
 
   
interface atm1/0
 pvc 7/100 l2transport
 encapsulation aal5snap
 
   
connect atm-fr-conn atm1/0 7/100 serial1/0 100 interworking ip 

Example: Frame Relay-to-Frame Relay Local Switching

The following example shows serial interfaces configured for Frame Relay. The connect command allows local switching between these two interfaces.

frame-relay switching
ip cef distributed
 
   
interface serial3/0/0
 encapsulation frame-relay
 frame-relay interface-dlci 100 switched
 frame-relay intf-type dce
 
   
interface serial3/1/0
 encapsulation frame-relay ietf
 frame-relay interface-dlci 200 switched
 frame-relay intf-type dce
 
   
connect fr-con serial3/0/0 100 serial3/1/0 200 

Example: Frame Relay DLCI Same-Port Switching

The following example shows same-port switching between two data links on one Frame Relay interface:

interface serial1/0
 encapsulation frame-relay
 frame-relay int-type nni
 
   
connect conn serial1/0 100 serial1/0 200

Example: HDLC Local Switching

The following example shows local switching of two serial interfaces for HDLC:

interface serial1/0
 no ip address
 
   
interface serial2/0
 no ip address
 
   
connect conn1 serial1/0 serial1/0 

Example: NSF SSO: Ethernet Port Mode to Ethernet VLAN Local Switching

The following configuration uses the network topology shown in Figure 4.

Figure 4 NSF/SSO: Layer 2 Local Switching: Ethernet to Ethernet VLAN

The following example shows the configuration of the CE interfaces to connect to the PE1 router:

CE1
CE2

ip routing

!

interface fa3/1/0

 description: connection to PE fa1/1/1

 no shutdown

 ip address 10.1.1.1 255.255.255.0

ip routing

!

interface fa4/0

 no shutdown

!

interface fa4/0.1

 description: connection to PE1 fa6/0/0.1

 encapsulation dot1Q 10

 ip address 10.1.1.2 255.255.255.0

!

interface fa4/0.2

 description - connection to PE1 fa6/0/0.2

 encapsulation dot1Q 20

 ip address 172.16.1.2 255.255.255.0


The following example shows the configuration of the PE1 router with NSF/SSO and the PE interfaces to the CE routers:

PE1

redundancy

 no keepalive-enable

 mode sso

!

hw-module slot 2 image disk0:rsp-pv-mz.shaft.111004

hw-module slot 3 image disk0:rsp-pv-mz.shaft.111004

!

ip routing

ip cef distributed

!

interface fa1/1/1

 description - connection to CE1 fa3/1/0

 no shutdown

 no ip address

!

interface fa4/0/0

 description - connection to CE3 fa6/0

 no shutdown

 no ip address

!

interface fa6/0/0

 no shutdown

 no ip address

!

interface fa6/0/0.1

 description - connection to CE2 fa4/0.1

 encapsulation dot1Q 10

 no ip address

!

interface fa6/0/0.2

 description - connection to CE2 fa4/0.2

 encapsulation dot1Q 20

 no ip address


The following example shows the configuration of ICMP Router Discovery Protocol (IRDP) on the CE router for Interworking IP for ARP mediation:

CE1
CE2

interface FastEthernet3/1/0

 ip irdp

 ip irdp maxadvertinterval 0

interface FastEthernet4/0.1

 ip irdp

 ip irdp maxadvertinterval 0


The following example shows the configuration of OSPF on the CE routers:

CE1
CE2

interface loopback 1

 ip address 10.11.11.11 255.255.255.255

!

router ospf 10

 network 10.11.11.11 0.0.0.0 area 0

 network 192.168.1.1 0.0.0.0 area 0

interface loopback 1

 ip address 12.12.12.12 255.255.255.255

!

router ospf 10

 network 10.12.12.12 0.0.0.0 area 0

 network 192.168.1.2 0.0.0.0 area 0


The following example shows the configuration of local switching on the PE1 router for interworking Ethernet:

connect eth-vlan1 fa1/1/1 fa6/0/0.1 interworking ethernet

connect eth-vlan2 fa4/0/0 fa6/0/0.2 interworking ethernet

The following example shows the configuration of local switching on the PE1 router for interworking IP:

connect eth-vlan1 fa1/1/1 fa6/0/0.1 interworking ip

connect eth-vlan2 fa4/0/0 fa6/0/0.2 interworking ip

Additional References

Related Documents

Related Topic
Document Title

MPLS

MPLS Product Literature

Layer 2 local switching configuration tasks

Configuring Layer 2 Local Switching

Frame Relay-ATM interworking configuration tasks

Configuring Frame Relay-ATM Interworking

Frame Relay-to-Frame Relay local switching configuration tasks

Distributed Frame Relay Switching

CEoP and Channelized ATM SPAs on 7600 series router configuration tasks

Configuring the CEoP and Channelized ATM SPAs


Standards

Standard
Title

draft-ietf-l2tpext-l2tp-base-03.txt

Layer Two Tunneling Protocol (Version 3) 'L2TPv3'

draft-martini-l2circuit-trans-mpls-09.txt

Transport of Layer 2 Frames Over MPLS

draft-martini-l2circuit-encap-mpls-04.txt

Encapsulation Methods for Transport of Layer 2 Frames Over IP and MPLS Networks

draft-ietf-ppvpn-l2vpn-00.txt

An Architecture for L2VPNs


MIBs

MIB
MIBs Link

None

To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs


RFCs

RFC
Title

None


Technical Assistance

Description
Link

The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

http://www.cisco.com/cisco/web/support/index.html


Feature Information for Layer 2 Local Switching

Table 1 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.


Note Table 1 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.


Table 1 Feature Information for Layer 2 Local Switching 

Feature Name
Releases
Feature Information

Layer 2 Local Switching

12.0(27)S
12.2(25)S
12.0(30)S
12.0(31)S2
12.0(32)SY
12.2(28)SB
12.4(11)T
12.2(33)SRB
12.2(33)SXH
12.2(33)SB
15.0(1)S

The Layer 2 Local Switching feature allows you to switch Layer 2 data between two interfaces on the same router, and in some cases to switch Layer 2 data between two circuits on the same interface port.

The feature was introduced in Cisco IOS Release 12.0(27)S on the Cisco 7200 and 7500 series routers.

The feature was integrated into Cisco IOS Release 12.2(25)S for the Cisco 7500 series router.

In Cisco IOS Release 12.0(30)S, support for same-port switching was added. Support for Layer 2 interface-to-interface local switching was added on the GSR.

In Cisco IOS Release 12.0(31)S2, support was added for customer edge-facing IP Service Engine (ISE) interfaces on the GSR.

In Cisco IOS Release 12.0(32)SY, support was added for customer edge-facing interfaces on Engine 5 shared port adapters (SPAs) and SPA Interface Processors (SIPs) on the GSR.

In Cisco IOS Release 12.2(28)SB, this feature was updated to include NSF/SSO support on the Cisco 7500 series routers for the following local switching types on nonstop forwarding/stateful switchover (NSF/SSO):

NSF/SSO—Ethernet-to-Ethernet VLAN local switching support

NSF/SSO—Frame Relay-to-Frame Relay local switching support

In Cisco IOS Release 12.4(11)T, support was added for the following local switching types for the Cisco 7200 series router:

Ethernet to Ethernet VLAN

Same-port switching for Ethernet VLAN

Frame Relay to Frame Relay

Same-port switching for Frame Relay

In Cisco IOS Release 12.2(28)SB, supported was added for Local Switching on the Cisco 10000 series router.

In Cisco IOS Release 12.2(33)SXH, support was added for like-to-like Local Switching (ATM to ATM, and FR to FR only) on Cisco 6500 series switches and Cisco 7600 series routers. Same-port switching is not supported on those routers.

In Cisco IOS Release 12.2(33)SB, support was added for HDLC Local Switching on the Cisco 7200 series router and the Cisco 10000 series router.

The following sections provide information about this feature:

Information About Layer 2 Local Switching

How to Configure Layer 2 Local Switching

The following commands were introduced or modified: connect (L2VPN local switching), encapsulation (Layer 2 local switching), show connection.

Access Circuit Redundancy for ATM Local Switching

15.1(1)S

Access Circuit Redundancy (ACR) ensures low data traffic downtime by reducing the switchover time. ACR works on the APS 1+1, nonrevertive model where each redundant line pair consists of a working line and a protect line. If a signal fail condition or a signal degrade condition is detected, the hardware switches from the working line to the protect line.

In Cisco IOS Release 15.1(1)S, this feature was introduced.

The following sections provide information about this feature:

Access Circuit Redundancy Local Switching

ACR for ATM-to-ATM Local Switching

The following commands were introduced or modified: aps group, connect (L2VPN local switching).

ACR support for CEM

15.1(1)S

This feature provides Access Circuit Redundancy (ACR) support for CEM.

In Cisco IOS Release 15.1(1)S, this feature was introduced.

The following sections provide information about this feature:

Access Circuit Redundancy Local Switching

ACR for CEM-to-CEM Local Switching

The following commands were introduced or modified: aps group, connect (L2VPN local switching).