Configuring Weighted Fair Queueing

Feature History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS</td>
<td>For information about feature support in Cisco IOS software, use Cisco Feature Navigator.</td>
</tr>
</tbody>
</table>

This module describes the tasks for configuring flow-based weighted fair queueing (WFQ), distributed WFQ (DWFQ), and class-based WFQ (CBWFQ), and distributed class-based WFQ (DCBWFQ) and the related features described in the following section, which provide strict priority queueing (PQ) within WFQ or CBWFQ:

- IP RTP Priority Queueing
- Frame Relay IP RTP Priority Queueing
- Frame Relay PVC Interface Priority Queueing
- Low Latency Queueing
- Distributed Low Latency Queueing
- Low Latency Queueing (LLQ) for Frame Relay
- Burst Size in Low Latency Queueing
- Per-VC Hold Queue Support for ATM Adapters

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Flow-Based Weighted Fair Queueing Configuration Task List

WFQ provides traffic priority management that automatically sorts among individual traffic streams without requiring that you first define access lists. WFQ can also manage duplex data streams such as those between pairs of applications, and simplex data streams such as voice or video. There are two categories of WFQ sessions: high bandwidth and low bandwidth. Low-bandwidth traffic has effective priority over high-bandwidth traffic, and high-bandwidth traffic shares the transmission service proportionally according to assigned weights.
When WFQ is enabled for an interface, new messages for high-bandwidth traffic streams are discarded after the configured or default congestive messages threshold has been met. However, low-bandwidth conversations, which include control message conversations, continue to enqueue data. As a result, the fair queue may occasionally contain more messages than its configured threshold number specifies.

With standard WFQ, packets are classified by flow. Packets with the same source IP address, destination IP address, source TCP or User Datagram Protocol (UDP) port, or destination TCP or UDP port belong to the same flow. WFQ allocates an equal share of the bandwidth to each flow. Flow-based WFQ is also called fair queueing because all flows are equally weighted.

The Cisco IOS software provides two forms of flow-based WFQ:

- Standard WFQ, which is enabled by default on all serial interfaces that run at 2 Mbps or below, and can run on all Cisco serial interfaces.
- Distributed WFQ, which runs only on Cisco 7000 series routers with a Route Switch Processor (RSP)-based RSP7000 interface processor or Cisco 7500 series routers with a Versatile Interface Processor (VIP)-based VIP2-40 or greater interface processor. (A VIP2-50 interface processor is strongly recommended when the aggregate line rate of the port adapters on the VIP is greater than DS3. A VIP2-50 interface processor is required for OC-3 rates.)

Flow-based WFQ uses a traffic data stream discrimination registry service to determine to which traffic stream a message belongs. Refer to the table accompanying the description of the `fair-queue` (WFQ) command in the *Cisco IOS Quality of Service Solutions Command Reference* for the attributes of a message that are used to classify traffic into data streams.

Defaults are provided for the congestion threshold after which messages for high-bandwidth conversations are dropped, and for the number of dynamic and reservable queues; however, you can fine-tune your network operation by changing these defaults. Refer to the tables accompanying the description of the `fair-queue` (WFQ) command in the *Cisco IOS Quality of Service Solutions Command Reference* for the default number of dynamic queues that WFQ and CBWFQ use when they are enabled on an interface or ATM VC. These values do not apply for DWFQ.

Note

WFQ is the default queueing mode on interfaces that run at E1 speeds (2.048 Mbps) or below. It is enabled by default for physical interfaces that do not use Link Access Procedure, Balanced (LAPB), X.25, or Synchronous Data Link Control (SDLC) encapsulations. WFQ is not an option for these protocols. WFQ is also enabled by default on interfaces configured for Multilink PPP (MLP). However, if custom queueing (CQ) or priority queueing (PQ) is enabled for a qualifying link, it overrides fair queueing, effectively disabling it. Additionally, WFQ is automatically disabled if you enable autonomous or silicon switching.

If you enable flow-based DWFQ and then enable class-based DWFQ (either QoS-group based or ToS-based), class-based DWFQ will replace flow-based DWFQ.

If you enable class-based DWFQ and then want to switch to flow-based DWFQ, you must disable class-based DWFQ using the `no fair-queue class-based` command before enabling flow-based DWFQ.

If you enable one type of class-based DWFQ and then enable the other type, the second type will replace the first.

DWFQ runs only on Cisco 7000 series routers with an RSP-based RSP7000 interface processor or Cisco 7500 series routers with a VIP-based VIP2-40 or greater interface processor. (A VIP2-50 interface processor is strongly recommended when the aggregate line rate of the port adapters on the VIP is greater than DS3. A VIP2-50 interface processor is required for OC-3 rates.)

DWFQ can be configured on interfaces but not subinterfaces. It is not supported on Fast EtherChannel, tunnel, or other logical or virtual interfaces such as MLP.
For flow-based DWFQ, packets are classified by flow. Packets with the same source IP address, destination IP address, source TCP or UDP port, destination TCP or UDP port, and protocol belong to the same flow.

To configure flow-based WFQ, perform the tasks described in the following sections.

- **Configuring WFQ** (Required)
- **Monitoring Fair Queueing** (Optional)

Flow-based WFQ is supported on unavailable bit rate (UBR), variable bit rate (VBR), and available bit rate (ABR) ATM connections.

Configuring WFQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# fair-queue [congestivediscardthreshold] [dynamic-queues [reservable-queues]]</td>
<td>Configures an interface to use WFQ.</td>
</tr>
</tbody>
</table>

Monitoring Fair Queueing

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces [interface]</td>
<td>Displays statistical information specific to an interface.</td>
</tr>
<tr>
<td>Router# show queue interface-type interface-number</td>
<td>Displays the contents of packets inside a queue for a particular interface or virtual circuit (VC).</td>
</tr>
<tr>
<td>Router# show queueing fair</td>
<td>Displays status of the fair queueing configuration.</td>
</tr>
</tbody>
</table>

Distributed Weighted Fair Queueing Configuration Task List

To configure DWFQ, perform one of the mutually exclusive tasks described in the following sections:

- **Configuring Flow-Based DWFQ**, page 4
- **Configuring QoS-Group-Based DWFQ**, page 4
- **Configuring Type of Service-Based DWFQ**, page 5
- **Monitoring DWFQ**, page 5 (Optional)
Configuring Flow-Based DWFQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# fair-queue</td>
<td>Enables flow-based DWFQ.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# fair-queue aggregate-limit aggregate-packet</td>
<td>(Optional) Sets the total number of buffered packets before some packets may be dropped. Below this limit, packets will not be dropped. Note In general, you should not change the aggregate, individual, or class limit value from the default. Use the fair-queue aggregate-limit, fair-queue individual-limit, and fair-queue limit commands only if you have determined that you would benefit from using different values, based on your particular situation.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# fair-queue individual-limit individual-packet</td>
<td>(Optional) Sets the maximum queue size for individual per-flow queues during periods of congestion.</td>
</tr>
</tbody>
</table>

Configuring QoS-Group-Based DWFQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# fair-queue qos-group</td>
<td>Enables QoS-group-based DWFQ.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# fair-queue qos-group number weight weight</td>
<td>For each QoS group, specifies the percentage of the bandwidth to be allocated to each class.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# fair-queue aggregate-limit aggregate-packet</td>
<td>(Optional) Sets the total number of buffered packets before some packets may be dropped. Below this limit, packets will not be dropped. Note In general, you should not change the aggregate, individual, or class limit value from the default. Use the fair-queue aggregate-limit, fair-queue individual-limit, and fair-queue limit commands only if you have determined that you would benefit from using different values, based on your particular situation.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# fair-queue individual-limit individual-packet</td>
<td>(Optional) Sets the maximum queue size for every per-flow queue during periods of congestion.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# fair-queue qos-group number limit class-packet</td>
<td>(Optional) Sets the maximum queue size for a specific QoS group queue during periods of congestion.</td>
</tr>
</tbody>
</table>
Configuring Type of Service-Based DWFQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# fair-queue tos</td>
<td>Enables ToS-based DWFQ</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# fair-queue tos number weight weight</td>
<td>(Optional) For each ToS class, specifies the percentage of the bandwidth to be allocated to each class.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# fair-queue aggregate-limit aggregate-packet</td>
<td>(Optional) Sets the total number of buffered packets before some packets may be dropped. Below this limit, packets will not be dropped.</td>
</tr>
<tr>
<td>Note</td>
<td>In general, you should not change the aggregate, individual, or class limit value from the default. Use the fair-queue aggregate-limit, fair-queue individual-limit, and fair-queue limit commands only if you have determined that you would benefit from using different values, based on your particular situation.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# fair-queue individual-limit individual-packet</td>
<td>(Optional) Sets the maximum queue size for every per-flow queue during periods of congestion.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# fair-queue tos number limit class-packet</td>
<td>(Optional) Sets the maximum queue size for a specific ToS queue during periods of congestion.</td>
</tr>
</tbody>
</table>

Monitoring DWFQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces [interface]</td>
<td>Displays the statistical information specific to an interface.</td>
</tr>
<tr>
<td>Router# show queueing fair-queue</td>
<td>Displays status of the fair queueing configuration.</td>
</tr>
</tbody>
</table>

Class-Based Weighted Fair Queueing Configuration Task List

To configure CBWFQ, perform the tasks described in the following sections.

- Defining Class Maps, page 6 (Required)
- Configuring Class Policy in the Policy Map, page 6 (Required)
- Attaching the Service Policy and Enabling CBWFQ, page 10 (Required)
- Modifying the Bandwidth for an Existing Policy Map Class, page 10 (Optional)
- Modifying the Queue Limit for an Existing Policy Map Class, page 10 (Optional)
- Deleting Class Maps From Service Policy Maps, page 11 (Optional)
- Deleting Class Maps From Service Policy Maps, page 11 (Optional)
- Deleting Policy Maps, page 11 (Optional)
- Verifying Configuration of Policy Maps and Their Classes, page 11 (Optional)

CBWFQ is supported on VBR and ABR ATM connections. It is not supported on UBR connections.
Defining Class Maps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# class-map class-map-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-cmap)# match access-group (access-group</td>
</tr>
<tr>
<td></td>
<td>name access-group-name)</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
</tbody>
</table>

Note: Other match criteria can be used when defining class maps. For additional match criteria, see “Applying QoS Features Using the MQC” module.

Configuring Class Policy in the Policy Map

To configure a policy map and create class policies that make up the service policy, use the `policy-map` command to specify the policy map name, then use one or more of the following commands to configure policy for a standard class or the default class:

- `class`
- `bandwidth` (policy-map class)
- `fair-queue` (for class-default class only)
- `queue-limit` or `random-detect`

For each class that you define, you can use one or more of the listed commands to configure class policy. For example, you might specify bandwidth for one class and both bandwidth and queue limit for another class.

The default class of the policy map (commonly known as the class-default class) is the class to which traffic is directed if that traffic does not satisfy the match criteria of other classes whose policy is defined in the policy map.

You can configure class policies for as many classes as are defined on the router, up to the maximum of 64. However, the total amount of bandwidth allocated for all classes included in a policy map must not exceed 75 percent of the available bandwidth on the interface. The other 25 percent is used for control and routing traffic. (To override the 75 percent limitation, use the `max-reserved bandwidth` command.) If not all of the bandwidth is allocated, the remaining bandwidth is proportionally allocated among the classes, based on their configured bandwidth.
The class-default class is used to classify traffic that does not fall into one of the defined classes. Once a packet is classified, all of the standard mechanisms that can be used to differentiate service among the classes apply. The class-default class was predefined when you created the policy map, but you must configure it. If no default class is configured, then by default the traffic that does not match any of the configured classes is flow classified and given best-effort treatment.

To configure class policies in a policy map, perform the optional tasks described in the following sections. If you do not perform the steps in these sections, the default actions are used.

- Configuring Class Policy Using Tail Drop, page 7 (Optional)
- Configuring Class Policy Using WRED Packet Drop, page 7 (Optional)
- Configuring the Class-Default Class Policy, page 8 (Optional)

Configuring Class Policy Using Tail Drop

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# policy-map policy-map</td>
<td>Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2
Router(config-pmap)# class class-name</td>
<td>Specifies the name of a class to be created and included in the service policy. Note To configure policy for more than one class in the same policy map, repeat Step 2 through Step 4. Note that because this set of commands uses the <code>queue-limit</code> command, the policy map uses tail drop, not Weighted Random Early Detection (WRED) packet drop.</td>
</tr>
<tr>
<td>Step 3
Router(config-pmap-c)# bandwidth {bandwidth-kbps</td>
<td>percent percent}</td>
</tr>
<tr>
<td>Step 4
Router(config-pmap-c)# queue-limit number-of-packets</td>
<td>Specifies the maximum number of packets that can be queued for the class.</td>
</tr>
</tbody>
</table>

Configuring Class Policy Using WRED Packet Drop

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# policy-map policy-map</td>
<td>Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2
Router(config-pmap)# class class-name</td>
<td>Specifies the name of a class to be created and included in the service policy. Note To configure policy for more than one class in the same policy map, repeat Step 2 through Step 5. Note that this set of commands uses WRED packet drop, not tail drop.</td>
</tr>
</tbody>
</table>
Configuring Weighted Fair Queueing

Class-Based Weighted Fair Queueing Configuration Task List

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Class-Default Class Policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# policy-map policy-map</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pmap)# class class-default default-class-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-pmap-c)# bandwidth (bandwidth-kbps</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-pmap-c)# queue-limit number-of-packets</td>
</tr>
</tbody>
</table>
To configure a policy map and configure the class-default class to use WRED packet drop, use the first command in global configuration mode to specify the policy map name, then to configure policy for the default class use the following commands in policy-map class configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# policy-map policy-map</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pmap)# class class-default default-class-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-pmap-c)# bandwidth {bandwidth-kbps</td>
</tr>
<tr>
<td></td>
<td>Router(config-pmap-c)# fair-queue [number-of-dynamic-queues]</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-pmap-c)# random-detect</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-pmap-c)# random-detect exponential-weighting-constant exponent</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Router(config-pmap-c)# random-detect precedence precedence min-threshold max-threshold mark-prob-denominator</td>
</tr>
</tbody>
</table>
Configuring Weighted Fair Queueing

Class-Based Weighted Fair Queueing Configuration Task List

1. Attaching the Service Policy and Enabling CBWFQ
2. Modifying the Bandwidth for an Existing Policy Map Class
3. Modifying the Queue Limit for an Existing Policy Map Class

Attaching the Service Policy and Enabling CBWFQ

Command
`Router(config-if)# service-policy output policy-map`
Purpose
Enables CBWFQ and attaches the specified service policy map to the output interface.
Note
Configuring CBWFQ on a physical interface is only possible if the interface is in the default queueing mode. Serial interfaces at E1 (2.048 Mbps) and below use WFQ by default—other interfaces use FIFO by default. Enabling CBWFQ on a physical interface overrides the default interface queueing method. Enabling CBWFQ on an ATM permanent virtual circuit (PVC) does not override the default queueing method.

Modifying the Bandwidth for an Existing Policy Map Class

Step 1
`Router(config)# policy-map policy-map`
Purpose
Specifies the name of the policy map containing the class to be modified.
Step 2
`Router(config-pmap)# class class-name`
Purpose
Specifies the name of a class whose bandwidth you want to modify.
Step 3
`Router(config-pmap-c)# bandwidth {bandwidth-kbps | percent percent}`
Purpose
Specifies the new amount of bandwidth, in kbps, or percentage of available bandwidth to be used to reconfigure the class. The amount of bandwidth configured should be large enough to also accommodate Layer 2 overhead.

Modifying the Queue Limit for an Existing Policy Map Class

Step 1
`Router(config)# policy-map policy-map`
Purpose
Specifies the name of the policy map containing the class to be modified.
Step 2
`Router(config-pmap)# class class-name`
Purpose
Specifies the name of a class whose queue limit you want to modify.
Step 3
`Router(config-pmap-c)# queue-limit number-of-packets`
Purpose
Specifies the new maximum number of packets that can be queued for the class to be reconfigured. The default and maximum number of packets is 64.
Deleting Class Maps From Service Policy Maps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# policy-map policy-map</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pmap)# no class class-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-pmap-c)# no class class-default</td>
</tr>
</tbody>
</table>

Deleting Policy Maps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# no policy-map policy-map</td>
<td>Specifies the name of the policy map to be deleted.</td>
</tr>
</tbody>
</table>

Verifying Configuration of Policy Maps and Their Classes

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show policy-map policy-map</td>
<td>Displays the configuration of all classes that make up the specified policy map.</td>
</tr>
<tr>
<td>Router# show policy-map policy-map class class-name</td>
<td>Displays the configuration of the specified class of the specified policy map.</td>
</tr>
<tr>
<td>Router# show policy-map interface interface-name</td>
<td>Displays the configuration of all classes configured for all policy maps on the specified interface.</td>
</tr>
</tbody>
</table>

Note: The counters displayed after issuing the `show policy-map interface` command are updated only if congestion is present on the interface.

Router# show queue interface-type interface-number | Displays queueing configuration and statistics for a particular interface. |

Distributed Class-Based Weighted Fair Queueing Configuration Task List

To configure DCBWFQ, perform the tasks described in the following sections. Although all the tasks are listed as optional, you must complete the task in either the first or second section.

- **Modifying the Bandwidth for an Existing Traffic Class**, page 12 (Optional)
- **Modifying the Queue Limit for an Existing Traffic Class**, page 12 (Optional)
- **Monitoring and Maintaining DCBWFQ**, page 12 (Optional)

DCBWFQ is configured using user-defined traffic classes and service policies. Traffic classes and service policies are configured using the Modular Quality of Service Command-Line Interface (CLI) feature.
Modifying the Bandwidth for an Existing Traffic Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# policy-map policy-map</td>
<td>Specifies the name of the traffic policy to be created or modified.</td>
</tr>
<tr>
<td>Step 2: Router(config-pmap)# class class-name</td>
<td>Specifies the name of a traffic class whose bandwidth you want to modify.</td>
</tr>
<tr>
<td>Step 3: Router(config-pmap-c)# bandwidth bandwidth-kbps</td>
<td>Specifies the amount of allocated bandwidth, in kbps, to be reserved for the traffic class in congested network environments. Note After configuring the traffic policy with the <code>policy-map</code> command, you must still attach the traffic policy to an interface before it is successfully enabled. For information on attaching a traffic policy to an interface, see the "Applying QoS Features Using the MQC" module.</td>
</tr>
</tbody>
</table>

Modifying the Queue Limit for an Existing Traffic Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# policy-map policy-map</td>
<td>Specifies the name of the traffic policy to be created or modified.</td>
</tr>
<tr>
<td>Step 2: Router(config-pmap)# class class-name</td>
<td>Specifies the name of a traffic class whose queue limit you want to modify.</td>
</tr>
<tr>
<td>Step 3: Router(config-pmap-c)# queue-limit number-of-packets</td>
<td>Specifies the new maximum number of packets that can be queued for the traffic class to be reconfigured. The default and maximum number of packets is 64. Note After configuring the service policy with the <code>policy-map</code> command, you must still attach the traffic policy to an interface before it is successfully enabled. For information on attaching a traffic policy to an interface, see the “Applying QoS Features Using the MQC” module.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining DCBWFD

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show policy-map</td>
<td>Displays all configured traffic policies.</td>
</tr>
<tr>
<td>Router# show policy-map policy-map-name</td>
<td>Displays the user-specified traffic policy.</td>
</tr>
<tr>
<td>Router# show policy-map interface</td>
<td>Displays statistics and configurations of all input and output policies attached to an interface.</td>
</tr>
</tbody>
</table>
To configure IP RTP Priority, perform the tasks described in the following sections.

- Configuring IP RTP Priority, page 14 (Required)
- Verifying IP RTP Priority, page 14 (Optional)
- Verifying IP RTP Priority, page 14 (Optional)
- Monitoring and Maintaining IP RTP Priority, page 14 (Optional)

Frame Relay Traffic Shaping (FRTS) and Frame Relay Fragmentation (FRF.12 or higher) must be configured before the Frame Relay IP RTP Priority feature is used.

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show policy-map interface interface-spec</code></td>
<td>Displays configuration and statistics of the input and output policies attached to a particular interface.</td>
</tr>
<tr>
<td><code>Router# show policy-map interface interface-spec input</code></td>
<td>Displays configuration and statistics of the input policy attached to an interface.</td>
</tr>
<tr>
<td><code>Router# show policy-map interface interface-spec output</code></td>
<td>Displays configuration statistics of the output policy attached to an interface.</td>
</tr>
<tr>
<td>`Router# show policy-map [interface [interface-spec [input</td>
<td>output] [class class-name]]]`</td>
</tr>
</tbody>
</table>
Configuring IP RTP Priority

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>ip rtp priority</code>
<code>starting-rtp-port-number port-number-range bandwidth</code></td>
<td>Reserves a strict priority queue for a set of RTP packet flows belonging to a range of UDP destination ports.</td>
</tr>
<tr>
<td>Note</td>
<td>The <code>ip rtp reserve</code> and <code>ip rtp priority</code> commands cannot be configured on the same interface.</td>
</tr>
<tr>
<td>Caution</td>
<td>Because the <code>ip rtp priority</code> command gives absolute priority over other traffic, it should be used with care. In the event of congestion, if the traffic exceeds the configured bandwidth, then all the excess traffic is dropped.</td>
</tr>
</tbody>
</table>

Verifying IP RTP Priority

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show queue interface-type interface-number</code></td>
<td>Displays queueing configuration and statistics for a particular interface.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining IP RTP Priority

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>debug priority</code></td>
<td>Displays priority queueing output if packets are dropped from the priority queue.</td>
</tr>
<tr>
<td>Router# <code>show queue interface-type interface-number</code></td>
<td>Displays queueing configuration and statistics for a particular interface.</td>
</tr>
</tbody>
</table>

Frame Relay IP RTP Priority Configuration Task List

To configure Frame Relay IP RTP Priority, perform the tasks described in the following sections.

- Configuring Frame Relay IP RTP Priority, page 15 (Required)
- Verifying Frame Relay IP RTP Priority, page 15 (Optional)
- Monitoring and Maintaining Frame Relay IP RTP Priority, page 15 (Optional)
Configuring Frame Relay IP RTP Priority

Command

Router(config-map-class)# frame-relay ip rtp priority starting-rtp-port-number port-number-range bandwidth

Purpose

Reserves a strict priority queue for a set of RTP packet flows belonging to a range of UDP destination ports.

Note

Because the `frame-relay ip rtp priority` command gives absolute priority over other traffic, it should be used with care. In the event of congestion, if the traffic exceeds the configured bandwidth, then all the excess traffic is dropped.

Verifying Frame Relay IP RTP Priority

Command

Router# show frame-relay pvc

Purpose

Displays statistics about PVCs for Frame Relay interfaces.

Router# show queue interface-type interface-number

Purpose

Displays fair queueing configuration and statistics for a particular interface.

Router# show traffic-shape queue

Purpose

Displays information about the elements queued at a particular time at the VC data-link connection identifier (DLCI) level.

Monitoring and Maintaining Frame Relay IP RTP Priority

Command

Router# debug priority

Purpose

Displays priority queueing output if packets are dropped from the priority queue.

Frame Relay PVC Interface Priority Configuration Task List

To configure the Frame Relay PVC Interface Priority feature, perform the tasks described in the following sections.

- Configuring PVC Priority in a Map Class, page 16 (Required)
- Enabling Frame Relay PIPQ and Setting Queue Limits, page 16 (Required)
- Assigning a Map Class to a PVC, page 16 (Required)
- Verifying Frame Relay PIPQ, page 16 (Optional)
- Monitoring and Maintaining Frame Relay PIPQ, page 16 (Optional)
Configuring PVC Priority in a Map Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# map-class frame-relay map-class-name</td>
</tr>
<tr>
<td></td>
<td>Specifies a Frame Relay map class.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-map-class)# frame-relay interface-queue priority (high</td>
</tr>
<tr>
<td></td>
<td>Assigns a PVC priority level to a Frame Relay map class.</td>
</tr>
</tbody>
</table>

Enabling Frame Relay PIPQ and Setting Queue Limits

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number [name-tag]</td>
</tr>
<tr>
<td></td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation frame-relay [cisco</td>
</tr>
<tr>
<td></td>
<td>Enables Frame Relay encapsulation.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# frame-relay interface-queue priority [high-limit medium-limit normal-limit low-limit]</td>
</tr>
<tr>
<td></td>
<td>Enables Frame Relay PIPQ and sets the priority queue limits.</td>
</tr>
</tbody>
</table>

Assigning a Map Class to a PVC

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# frame-relay interface-dlci dlci</td>
</tr>
<tr>
<td></td>
<td>Specifies a single PVC on a Frame Relay interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-fr-dlci)# class map-class-name</td>
</tr>
<tr>
<td></td>
<td>Associates a map class with a specified PVC.</td>
</tr>
</tbody>
</table>

Verifying Frame Relay PIPQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show frame-relay pvc [interface interface][dlci]</td>
<td>Displays statistics about PVCs for Frame Relay interfaces.</td>
</tr>
<tr>
<td>Router# show interfaces [type number][first][last]</td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
<tr>
<td>Router# show queueing [custom</td>
<td>fair</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining Frame Relay PIPQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug priority</td>
<td>Displays priority queueing output if packets are dropped from the priority queue.</td>
</tr>
<tr>
<td>Router# show frame-relay pvc [interface interface][dlci]</td>
<td>Displays statistics about PVCs for Frame Relay interfaces.</td>
</tr>
<tr>
<td>Router# show interfaces [type number][first][last]</td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
</tbody>
</table>
Low Latency Queueing Configuration Task List

To configure LLQ, perform the tasks described in the following sections.

- Configuring LLQ, page 17 (Required)
- Verifying LLQ, page 17 (Optional)
- Verifying LLQ, page 17 (Optional)
- Monitoring and Maintaining LLQ, page 17 (Optional)

Configuring LLQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-pmap-c)# priority bandwidth</td>
<td>Reserves a strict priority queue for this class of traffic.</td>
</tr>
</tbody>
</table>

Verifying LLQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show queue interface-type interface-number</td>
<td>Displays queueing configuration and statistics for a particular interface.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining LLQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug priority</td>
<td>Displays priority queueing output if packets are dropped from the priority queue.</td>
</tr>
<tr>
<td>Router# show queue interface-type interface-number</td>
<td>Displays queueing configuration and statistics for a particular interface.</td>
</tr>
<tr>
<td>Router# show policy-map interface interface-name</td>
<td>Displays the configuration of all classes configured for all traffic policies on the specified interface. Displays if packets and bytes were discarded or dropped for the priority class in the traffic policy attached to the interface.</td>
</tr>
</tbody>
</table>

Distributed LLQ Configuration Task List

To configure Distributed LLQ, perform the tasks described in the following sections.
• Configuring a Priority Queue for an Amount of Available Bandwidth, page 19 (Required)
• Configuring a Priority Queue for a Percentage of Available Bandwidth, page 19 (Required)
• Configuring a Transmission Ring Limit on an ATM PVC, page 19 (Optional)
• Verifying Distributed LLQ, page 20 (Optional)
• Verifying a Transmission Ring Limit, page 20 (Optional)
• Monitoring and Maintaining Distributed LLQ, page 20 (Optional)
Configuring a Priority Queue for an Amount of Available Bandwidth

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# policy-map policy-name</td>
<td>Specifies the name of the policy map to configure. Enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 2
Router(config-pmap)# class class-name</td>
<td>Specifies the name of a predefined class included in the service policy. Enters policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 3
Router(config-pmap-c)# priority kbps [bytes]</td>
<td>Reserves a priority queue with a specified amount of available bandwidth for CBWFQ traffic. Note The traffic policy configured in this section is not yet attached to an interface. For information on attaching a traffic policy to an interface, see the “Applying QoS Features Using the MQC” module.</td>
</tr>
</tbody>
</table>

Configuring a Priority Queue for a Percentage of Available Bandwidth

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# policy-map policy-name</td>
<td>Specifies the name of the traffic policy to configure. Enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 2
Router(config-pmap)# class class-name</td>
<td>Specifies the name of a predefined class included in the service policy. Enters policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 3
Router(config-pmap-c)# priority percent percent</td>
<td>Reserves a priority queue with a specified percentage of available bandwidth for CBWFQ traffic. Note The traffic policy configured in this section is not yet attached to an interface. For information on attaching a traffic policy to an interface, see the “Applying QoS Features Using the MQC” module.</td>
</tr>
</tbody>
</table>

Configuring a Transmission Ring Limit on an ATM PVC

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# interface atm interface-name</td>
<td>Specifies the name of the ATM interface to configure.</td>
</tr>
<tr>
<td>Step 2
Router(config-if)# atm pvc vcd-number vpi-number vci-number Encapsulation-type tx-ring-limit ring-limit</td>
<td>Specifies the ATM PVC to configure, the encapsulation type, and the transmission ring limit value.</td>
</tr>
</tbody>
</table>
Configuring a Transmission Ring Limit on an ATM Subinterface

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface atm subinterface name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-subif)# pvc pvc-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if-atm-vc)# tx-ring-limit ring-limit</td>
</tr>
</tbody>
</table>

Verifying Distributed LLQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces [interface-type interface-number] fair-queue</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
<tr>
<td>Router# show policy-map policy-map-name</td>
<td>Displays the contents of a policy map, including the priority setting in a specific policy map.</td>
</tr>
</tbody>
</table>

Verifying a Transmission Ring Limit

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show atm vc vc-name</td>
<td>Displays the contents of a VC. The show atm vc command output will indicate the transmission ring limit value if the tx-ring-limit command is successfully enabled.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining Distributed LLQ

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces [interface-type interface-number] fair-queue</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
<tr>
<td>Router# show policy-map policy-map-name</td>
<td>Displays the contents of a traffic policy, including the priority setting in a specific policy map.</td>
</tr>
<tr>
<td>Router# show policy interface interface-name</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface. Displays if packets and bytes were discarded or dropped for the priority class in the service policy attached to the interface.</td>
</tr>
<tr>
<td>Router# show atm vc vc-name</td>
<td>Displays the contents of a VC. The show atm vc command output will indicate the transmission ring limit value if the tx-ring-limit command is successfully enabled.</td>
</tr>
</tbody>
</table>

Low Latency Queueing for Frame Relay Configuration Task List

To configure LLQ for Frame Relay, perform the tasks described in the following sections.
Defining Class Maps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# class-map class-map-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-cmap)# match access-group {access-group</td>
</tr>
<tr>
<td></td>
<td>or Router(config-cmap)# match input-interface interface-name</td>
</tr>
<tr>
<td></td>
<td>or Router(config-cmap)# match protocol protocol</td>
</tr>
</tbody>
</table>

Configuring Class Policy in the Policy Map

To configure a policy map and create class policies that make up the service policy, begin with the policy-map command to specify the policy map name. Then use one or more of the following commands to configure the policy for a standard class or the default class:

- priority
- bandwidth
- queue-limit or random-detect
- fair-queue (for class-default class only)

For each class that you define, you can use one or more of the commands listed to configure the class policy. For example, you might specify bandwidth for one class and both bandwidth and queue limit for another class.

The default class of the policy map (commonly known as the class-default class) is the class to which traffic is directed if that traffic does not satisfy the match criteria of the other classes defined in the policy map.
The class-default class is used to classify traffic that does not fall into one of the defined classes. Even though the class-default class is predefined when you create the policy map, you still have to configure it. If a default class is not configured, then traffic that does not match any of the configured classes is given best-effort treatment, which means that the network will deliver the traffic if it can, without any assurance of reliability, delay prevention, or throughput.

You can configure class policies for as many classes as are defined on the router, up to the maximum of 64. However, the total amount of bandwidth allocated for all classes in a policy map must not exceed the minimum committed information rate (CIR) configured for the VC minus any bandwidth reserved by the `frame-relay voice bandwidth` and `frame-relay ip rtp priority` commands. If the minimum CIR is not configured, the bandwidth defaults to one half of the CIR. If all of the bandwidth is not allocated, the remaining bandwidth is allocated proportionally among the classes on the basis of their configured bandwidth.

To configure class policies in a policy map, perform the tasks described in the following sections.

- Configuring Class Policy for a LLQ Priority Queue, page 23 (Required)
- Configuring Class Policy Using a Specified Bandwidth and WRED Packet Drop, page 23 (Optional)
- Configuring the Class-Default Class Policy, page 23 (Optional)
Configuring Class Policy for a LLQ Priority Queue

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# policy-map policy-map Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pmap)# class class-name Specifies the name of a class to be created and included in the service policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-pmap-c)# priority bandwidth-kbps Creates a strict priority class and specifies the amount of bandwidth, in kbps, to be assigned to the class.</td>
</tr>
</tbody>
</table>

Configuring Class Policy Using a Specified Bandwidth and WRED Packet Drop

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# policy-map policy-map Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pmap)# class class-name Specifies the name of a class to be created and included in the service policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-pmap-c)# bandwidth bandwidth-kbps Specifies the amount of bandwidth to be assigned to the class, in kbps, or as a percentage of the available bandwidth. Bandwidth must be specified in kbps or as a percentage consistently across classes. (Bandwidth of the priority queue must be specified in kbps.)</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-pmap-c)# random-detect Enables WRED.</td>
</tr>
</tbody>
</table>

Configuring the Class-Default Class Policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# policy-map policy-map Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pmap)# class class-default default-class-name Specifies the default class so that you can configure or modify its policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-pmap-c)# bandwidth bandwidth-kbps or Router(config-pmap-c)# fair-queue [number-of-dynamic-queues] Specifies the number of dynamic queues to be reserved for use by flow-based WFQ running on the default class. The number of dynamic queues is derived from the bandwidth of the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-pmap-c)# queue-limit number-of-packets Specifies the maximum number of packets that the queue for the default class can accumulate.</td>
</tr>
</tbody>
</table>
Attaching the Service Policy and Enabling LLQ for Frame Relay

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Router(config-map-class)# service-policy output policy-map` | Attaches the specified service policy map to the output interface and enables LLQ for Frame Relay.
Note When LLQ is enabled, all classes configured as part of the service policy map are installed in the fair queueing system. |

Verifying Configuration of Policy Maps and Their Classes

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show frame-relay pvc dlci</code></td>
<td>Displays statistics about the PVC and the configuration of classes for the policy map on the specified DLCI.</td>
</tr>
</tbody>
</table>
| `Router# show policy-map interface interface-name` | When FRTS is configured, displays the configuration of classes for all Frame Relay VC-level policy maps.
When FRTS is not configured, displays the configuration of classes for the interface-level policy. |
| `Router# show policy-map interface interface-name dlci` | When FRTS is configured, displays the configuration of classes for the policy map on the specified DLCI. |

Monitoring and Maintaining LLQ for Frame Relay

For a list of commands that can be used to monitor LLQ for Frame Relay, see the previous section “Verifying Configuration of Policy Maps and Their Classes.”

Configuring Burst Size in LLQ Configuration Task List

To configure the burst size in LLQ, perform the tasks described in the following sections.

- Configuring the LLQ Bandwidth, page 25 (Required)
- Configuring the LLQ Burst Size, page 25 (Required)
- Verifying the LLQ Burst Size, page 25 (Optional)
Configuring the LLQ Bandwidth

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# priority bandwidth</code></td>
<td>Specifies the maximum amount of bandwidth, in kpbs, for the priority traffic.</td>
</tr>
</tbody>
</table>

Configuring the LLQ Burst Size

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# priority bandwidth burst</code></td>
<td>Specifies the burst size in bytes. The range is from 32 to 2 million.</td>
</tr>
</tbody>
</table>

Verifying the LLQ Burst Size

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show policy-map</code></td>
<td>Displays the configuration of all classes comprising the specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td><code>Router# show policy-map interface</code></td>
<td>Displays the configuration of classes configured for service polices on the specified interface or PVC.</td>
</tr>
</tbody>
</table>

Per-VC Hold Queue Support for ATM Adapters Configuration Task List

To configure the per-VC hold queue support for ATM adapters, perform the tasks described in the following sections.

- Configuring the per-VC Hold Queue on an ATM Adapter, page 26 (Required)
- Verifying the Configuration of the per-VC Hold Queue on an ATM Adapter, page 26 (Optional)
Configuring Weighted Fair Queueing

Examples: Flow-Based WFQ Configuration

The following example requests a fair queue with a congestive discard threshold of 64 messages, 512 dynamic queues, and 18 RSVP queues:

```
Router(config)# interface Serial 3/0
Router(config-if)# ip unnumbered Ethernet 0/0
Router(config-if)# fair-queue 64 512 18
```

Examples: DWFQ Configuration

Example: Flow-Based DWFQ

The following example enables DWFQ on the HSSI interface 0/0/0:

```
Router(config)# interface Hssi0/0/0
Router(config-if)# description 45Mbps to R2
Router(config-if)# ip address 200.200.14.250 255.255.255.252
Router(config-if)# fair-queue
```

The following is sample output from the `show interfaces fair-queue` command for this configuration:

```
Router# show interfaces hssi 0/0/0 fair-queue

Hssi0/0/0 queue size 0
packets output 35, drops 0
WFQ: global queue limit 401, local queue limit 200
```

Example: QoS-Group-Based DWFQ

The following example configures QoS-group-based DWFQ. Committed access rate (CAR) policies are used to assign packets with an IP Precedence value of 2 to QoS group 2, and packets with an IP Precedence value of 6 are assigned to QoS group 6.

```
Router(config)# interface Hssi0/0/0
Router(config-if)# ip address 188.1.3.70 255.255.255.0
```

Verifying the Configuration of the per-VC Hold Queue on an ATM Adapter

```
Command | Purpose
---|---
Router(config)# vc-hold-queue number-of-packets | Specifies the number of packets contained in the per-VC hold queue. This can be a number from 5 to 1024.
```

Examples: Flow-Based WFQ Configuration

The following example requests a fair queue with a congestive discard threshold of 64 messages, 512 dynamic queues, and 18 RSVP queues:

```
Router(config)# interface Serial 3/0
Router(config-if)# ip unnumbered Ethernet 0/0
Router(config-if)# fair-queue 64 512 18
```

Examples: DWFQ Configuration

Example: Flow-Based DWFQ

The following example enables DWFQ on the HSSI interface 0/0/0:

```
Router(config)# interface Hssi0/0/0
Router(config-if)# description 45Mbps to R2
Router(config-if)# ip address 200.200.14.250 255.255.255.252
Router(config-if)# fair-queue
```

The following is sample output from the `show interfaces fair-queue` command for this configuration:

```
Router# show interfaces hssi 0/0/0 fair-queue

Hssi0/0/0 queue size 0
packets output 35, drops 0
WFQ: global queue limit 401, local queue limit 200
```

Example: QoS-Group-Based DWFQ

The following example configures QoS-group-based DWFQ. Committed access rate (CAR) policies are used to assign packets with an IP Precedence value of 2 to QoS group 2, and packets with an IP Precedence value of 6 are assigned to QoS group 6.

```
Router(config)# interface Hssi0/0/0
Router(config-if)# ip address 188.1.3.70 255.255.255.0
```
Examples: DWFQ Configuration

Router(config-if)# rate-limit output access-group rate-limit 6 155000000 2000000 8000000
corform-action set-qos-transmit 6 exceed-action drop
Router(config-if)# rate-limit output access-group rate-limit 2 155000000 2000000 8000000
conform-action set-qos-transmit 2 exceed-action drop
Router(config-if)# fair-queue qos-group
Router(config-if)# fair-queue qos-group 2 weight 10
Router(config-if)# fair-queue qos-group 2 limit 27
Router(config-if)# fair-queue qos-group 6 weight 30
Router(config-if)# fair-queue qos-group 6 limit 27
!
Router(config)# access-list rate-limit 2 2
Router(config)# access-list rate-limit 6 6

The following sample output shows how to view WFQ statistics using the `show interfaces fair-queue` command:

Router# show interfaces fair-queue

Hssi0/0/0 queue size 0
packets output 806232, drops 1
WFQ: aggregate queue limit 54, individual queue limit 27
max available buffers 54

Class 0: weight 60 limit 27 qsize 0 packets output 654 drops 0
Class 2: weight 10 limit 27 qsize 0 packets output 402789 drops 0
Class 6: weight 30 limit 27 qsize 0 packets output 402789 drops 1

Example: ToS-Based DWFQ

The following example configures type of service (ToS)-based DWFQ using the default parameters:

Router# configure terminal
Router(config)# interface Hssi0/0/0
Router(config-if)# fair-queue tos
Router(config-if)# end

The following is output of the `show running-config` command for the HSSI interface 0/0/0. Notice that the router automatically adds the default weights and limits for the ToS classes to the configuration.

interface Hssi0/0/0
ip address 188.1.3.70 255.255.255.0
fair-queue tos
fair-queue tos 1 weight 20
fair-queue tos 1 limit 27
fair-queue tos 2 weight 30
fair-queue tos 2 limit 27
fair-queue tos 3 weight 40
fair-queue tos 3 limit 27

The following sample output shows how to view DWFQ statistics using the `show interfaces fair-queue` command:

Router# show interfaces fair-queue

Hssi0/0/0 queue size 0
packets output 1417079, drops 2
WFQ: aggregate queue limit 54, individual queue limit 27
max available buffers 54

Class 0: weight 10 limit 27 qsize 0 packets output 1150 drops 0
Class 1: weight 20 limit 27 qsize 0 packets output 0 drops 0
Class 2: weight 30 limit 27 qsize 0 packets output 775482 drops 1
Examples: CBWFQ Configuration

Example: Class Map Configuration

In the following example, ACLs 101 and 102 are created. Next, two class maps are created and their match criteria are defined. For the first map class, called class1, the numbered ACL 101 is used as the match criterion. For the second map class, called class2, the numbered ACL 102 is used as the match criterion. Packets are checked against the contents of these ACLs to determine if they belong to the class.

Router(config)# access-list 101 permit udp host 10.10.10.10 host 10.10.10.20 range 16384 20000
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 53000 56000

Router(config)# class-map class1
Router(config-cmap)# match access-group 101
Router(config-cmap)# exit

Router(config-cmap)# class-map class2
Router(config-cmap)# match access-group 102
Router(config-cmap)# exit

Example: Policy Creation

In the following example, a policy map called policy1 is defined to contain policy specification for the two classes, class1 and class2. The match criteria for these classes were defined in the previous “Example: Class Map Configuration” section.

For class1, the policy specifies the bandwidth allocation request and the maximum number of packets that the queue for this class can accumulate. For class2, the policy specifies only the bandwidth allocation request, so the default queue limit of 64 packets is assumed.

Router(config)# policy-map policy1

Router(config-pmap)# class class1
Router(config-pmap-c)# bandwidth 3000
Router(config-pmap-c)# queue-limit 30
Router(config-pmap-c)# exit

Router(config-pmap)# class class2
Router(config-pmap-c)# bandwidth 2000
Router(config-pmap-c)# exit

Example: Policy Attachment to Interfaces

The following example shows how to attach an existing policy map. After you define a policy map, you can attach it to one or more interfaces to specify the service policy for those interfaces. Although you can assign the same policy map to multiple interfaces, each interface can have only one policy map attached at the input and one policy map attached at the output.

The policy map in this example was defined in the previous section, “Example: Policy Creation.”
Configuring Weighted Fair Queueing

Examples: CBWFQ Configuration

```
Router(config)# interface e1/1
Router(config-if)# service output policy1
Router(config-if)# exit

Router(config)# interface fa1/0/0
Router(config-if)# service output policy1
Router(config-if)# exit
```

Example: CBWFQ Using WRED Packet Drop

In the following example, the class map called class1 is created and defined to use the input FastEthernet interface 0/1 as a match criterion to determine if packets belong to the class. Next, the policy map policy1 is defined to contain policy specification for class1, which is configured for WRED packet drop.

```
Router(config)# class-map class1
Router(config-cmap)# match input-interface FastEthernet0/1
!
Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# bandwidth 1000
Router(config-pmap-c)# random-detect
!
Router(config)# interface serial0/0
Router(config-if)# service-policy output policy1
```

Examples: Display Service Policy Map Content

The following examples show how to display the contents of service policy maps. Four methods can be used to display the contents.

- Display all classes that make up a specified service policy map
- Display all classes configured for all service policy maps
- Display a specified class of a service policy map
- Display all classes configured for all service policy maps on a specified interface

All Classes for a Specified Service Policy Map

The following example displays the contents of the service policy map called pol1:

```
Router# show policy-map pol1
Policy Map pol1
  Weighted Fair Queueing
    Class class1
      Bandwidth 937 (kbps) Max thresh 64 (packets)
    Class class2
      Bandwidth 937 (kbps) Max thresh 64 (packets)
    Class class3
      Bandwidth 937 (kbps) Max thresh 64 (packets)
    Class class4
      Bandwidth 937 (kbps) Max thresh 64 (packets)
    Class class5
      Bandwidth 937 (kbps) Max thresh 64 (packets)
    Class class6
```
Examples: CBWFQ Configuration

Specified Class for a Service Policy Map

The following example displays configurations for the class called class7 that belongs to the policy map called pol1:

Router# show policy-map pol class class7

Class class7
Bandwidth 937 (kbps) Max Thresh 64 (packets)

All Classes for All Service Policy Maps on a Specified Interface

The following example displays configurations for classes on the output Ethernet interface 2/0. The numbers shown in parentheses are for use with the Management Information Base (MIB).
Examples: Distributed CBWFQ Configuration

Example: Traffic Class Configuration

In the following example, two traffic classes are created and their match criteria are defined. For the first traffic class, called class1, the numbered ACL 101 is used as the match criterion. For the second traffic class, called class2, the numbered ACL 102 is used as the match criterion. Packets are checked against the contents of these ACLs to determine if they belong to the traffic class.

```
Router(config)# class-map class1
Router(config-cmap)# match access-group 101
Router(config-cmap)# exit

Router(config)# class-map class2
Router(config-cmap)# match access-group 102
Router(config-cmap)# exit
```

Example: Traffic Policy Creation

In the following example, a traffic policy called policy1 is defined to associate QoS features with the two traffic classes, class1 and class2. The match criteria for these traffic classes were defined in the previous “Example: Class Map Configuration” section.

```
Router# show policy-map interface e2/0

Ethernet2/0

Service-policy output:p1 (1057)

Class-map:c1 (match-all) (1059/2)
  19 packets, 1140 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match:ip precedence 0  (1063)

 weighted Fair Queueing
  Output Queue:Conversation 265
    Bandwidth 10 (%) Max Threshold 64 (packets)
    (pkts matched/bytes matched) 0/0
    (depth/total drops/no-buffer drops) 0/0/0

Class-map:c2 (match-all) (1067/3)
  0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match:ip precedence 1  (1071)

 weighted Fair Queueing
  Output Queue:Conversation 266
    Bandwidth 10 (%) Max Threshold 64 (packets)
    (pkts matched/bytes matched) 0/0
    (depth/total drops/no-buffer drops) 0/0/0

Class-map:class-default (match-any) (1075/0)
  8 packets, 2620 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match: any  (1079)
```
For class1, the QoS policies include bandwidth allocation request and maximum packet count limit for the queue reserved for the traffic class. For class2, the policy specifies only a bandwidth allocation request, so the default queue limit of 64 packets is assumed.

Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# bandwidth 3000
Router(config-pmap-c)# queue-limit 30
Router(config-pmap)# exit

Router(config-pmap)# class class2
Router(config-pmap-c)# bandwidth 2000
Router(config-pmap)# exit

Example: Traffic Policy Attachment to an Interface

The following example shows how to attach an existing traffic policy to an interface. After you define a traffic policy, you can attach it to one or more interfaces to specify a traffic policy for those interfaces. Although you can assign the same traffic policy to multiple interfaces, each interface can have only one traffic policy attached at the input and one policy map attached at the output at one time.

Router(config)# interface fe1/0/0
Router(config-if)# service output policy1
Router(config-if)# exit

Examples: IP RTP Priority Configuration

Example: CBWFQ Configuration

The following example first defines a CBWFQ configuration and then reserves a strict priority queue:

! The following commands define a class map:
Router(config)# class-map class1
Router(config-cmap)# match access-group 101
Router(config-cmap)# exit

! The following commands create and attach a policy map:
Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# bandwidth 3000
Router(config-pmap-c)# queue-limit 30
Router(config-pmap-c)# random-detect
Router(config-pmap-c)# random-detect precedence 0 32 256 100
Router(config-pmap-c)# exit
Router(config)# interface Serial1
Router(config-if)# service-policy output policy1

! The following command reserves a strict priority queue:
Router(config-if)# ip rtp priority 16384 16383 40

The queue-limit and random-detect commands are optional commands for CBWFQ configurations. The queue-limit command is used for configuring tail drop limits for a class queue. The random-detect command is used for configuring RED drop limits for a class queue, similar to the random-detect command available on an interface.
Example: Virtual Template Configuration

The following example configures a strict priority queue in a virtual template configuration with CBWFQ.

```
Router(config)# multilink virtual-template 1
Router(config)# interface virtual-template 1
Router(config-if)# ip address 172.16.1.1 255.255.255.0
Router(config-if)# no ip directed-broadcast
Router(config-if)# ip rtp priority 16384 16383 25
Router(config-if)# service-policy output policy1
Router(config-if)# ppp multilink
Router(config-if)# ppp multilink fragment-delay 20
Router(config-if)# ppp multilink interleave
Router(config-if)# end

Router(config)# interface Serial0/1
Router(config-if)# bandwidth 64
Router(config-if)# ip address 1.1.1.2 255.255.255.0
Router(config-if)# no ip directed-broadcast
Router(config-if)# encapsulation ppp
Router(config-if)# ppp multilink
Router(config-if)# end
```

Note

To make the virtual access interface function properly, the `bandwidth` policy-map class configuration command should not be configured on the virtual template. It needs to be configured on the actual interface, as shown in the example.

Example: Multilink Bundle Configuration

The following example configures a strict priority queue in a multilink bundle configuration with WFQ. The advantage to using multilink bundles is that you can specify different ip rtp priority parameters on different interfaces.

The following commands create multilink bundle 1, which is configured for a maximum ip rtp priority bandwidth of 200 kbps.

```
Router(config)# interface multilink 1
Router(config-if)# ip address 172.17.254.161 255.255.255.248
Router(config-if)# no ip directed-broadcast
Router(config-if)# ip rtp priority 16384 16383 200
Router(config-if)# no ip mrRoute-cache
Router(config-if)# fair-queue 64 256 0
Router(config-if)# ppp multilink
Router(config-if)# ppp multilink fragment-delay 20
Router(config-if)# ppp multilink interleave
```

The following commands create multilink bundle 2, which is configured for a maximum ip rtp priority bandwidth of 100 kbps:

```
Router(config)# interface multilink 2
Router(config-if)# ip address 172.17.254.162 255.255.255.248
Router(config-if)# no ip directed-broadcast
Router(config-if)# ip rtp priority 16384 16383 100
Router(config-if)# no ip mrRoute-cache
Router(config-if)# fair-queue 64 256 0
Router(config-if)# ppp multilink
Router(config-if)# ppp multilink fragment-delay 20
```
Examples: Frame Relay IP RTP Priority Configuration

This “Example: Strict Priority Service to Matching RTP Packets” section provides a configuration example.

Example: Strict Priority Service to Matching RTP Packets

The following example first configures the Frame Relay map class called voip and then applies the map class to PVC 100 to provide strict priority service to matching RTP packets. In this example, RTP packets on PVC 100 with UDP ports in the range 16384 to 32764 will be matched and given strict priority service.

map-class frame-relay voip
Configuring Weighted Fair Queueing

Examples: Frame Relay PVC Interface PQ Configuration

This section provides configuration examples for Frame Relay PIPQ.

This example shows the configuration of four PVCs on serial interface 0. DLCI 100 is assigned high priority, DLCI 200 is assigned medium priority, DLCI 300 is assigned normal priority, and DLCI 400 is assigned low priority.

The following commands configure Frame Relay map classes with PVC priority levels:

```
Router(config)# map-class frame-relay HI
Router(config-map-class)# frame-relay interface-queue priority high
Router(config-map-class)# exit

Router(config)# map-class frame-relay MED
Router(config-map-class)# frame-relay interface-queue priority medium
Router(config-map-class)# exit

Router(config)# map-class frame-relay NORM
Router(config-map-class)# frame-relay interface-queue priority normal
Router(config-map-class)# exit

Router(config)# map-class frame-relay LOW
Router(config-map-class)# frame-relay interface-queue priority low
Router(config-map-class)# exit
```

The following commands enable Frame Relay encapsulation and Frame Relay PIPQ on serial interface 0. The sizes of the priority queues are set at a maximum of 20 packets for the high priority queue, 40 for the medium priority queue, 60 for the normal priority queue, and 80 for the low priority queue.

```
Router(config)# interface Serial0
Router(config-if)# encapsulation frame-relay
Router(config-if)# frame-relay interface-queue priority 20 40 60 80
```

The following commands assign priority to four PVCs by associating the DLCIs with the configured map classes:

```
Router(config-if)# frame-relay interface-dlci 100
Router(config-fr-dlci)# class HI
Router(config-fr-dlci)# exit
Router(config-if)# frame-relay interface-dlci 200
```
Examples: LLQ Configuration

Example: ATM PVC Configuration

In the following example, a strict priority queue with a guaranteed allowed bandwidth of 50 kbps is reserved for traffic that is sent from the source address 10.10.10.10 to the destination address 10.10.10.20, in the range of ports 16384 through 20000 and 53000 through 56000.

First, the following commands configure access list 102 to match the desired voice traffic:

```
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 16384 20000
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 53000 56000
```

Next, the class map voice is defined, and the policy map called policy1 is created; a strict priority queue for the class voice is reserved, a bandwidth of 20 kbps is configured for the class bar, and the default class is configured for WFQ. The `service-policy` command then attaches the policy map to the PVC interface 0/102 on the subinterface atm1/0.2.

```
Router(config)# class-map voice
Router(config-cmap)# match access-group 102

Router(config)# policy-map policy1
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 50
Router(config-pmap)# class bar
Router(config-pmap-c)# bandwidth 20
Router(config-pmap)# class class-default
Router(config-pmap-c)# fair-queue

Router(config)# interface atm1/0.2
Router(config-subif)# pvc 0/102
Router(config-subif-vc)# service-policy output policy1
```

Example: Virtual Template Configuration

The following example configures a strict priority queue in a virtual template configuration with CBWFQ. Traffic on virtual template 1 that is matched by access list 102 will be directed to the strict priority queue.

First, the class map voice is defined, and the policy map called policy1 is created. A strict priority queue (with a guaranteed allowed bandwidth of 50 kbps) is reserved for the class called voice.

```
Router(config)# class-map voice
Router(config-cmap)# match access-group 102
Router(config)# policy-map policy1
Router(config-pmap)# class voice
```
Router(config-pmap-c)# **priority** 50

Next, the **service-policy** command attaches the policy map called policy1 to virtual template 1.

Router(config)# **multilink virtual-template** 1
Router(config)# **interface** virtual-template 1
Router(config-if)# **ip address** 172.16.1.1 255.255.255.0
Router(config-if)# **no ip directed-broadcast**
Router(config-if)# **service-policy output policy1**
Router(config-if)# **ppp multilink**
Router(config-if)# **ppp multilink fragment-delay** 20
Router(config-if)# **ppp multilink interleave**
Router(config-if)# end

Router(config)# **interface** serial 2/0
Router(config-if)# **bandwidth** 256
Router(config-if)# **no ip address**
Router(config-if)# **no ip directed-broadcast**
Router(config-if)# **encapsulation ppp**
Router(config-if)# **no fair-queue**
Router(config-if)# **clockrate** 256000
Router(config-if)# **ppp multilink**

Example: Multilink Bundle Configuration

The following example configures a strict priority queue in a multilink bundle configuration with CBWFQ. Traffic on serial interface 2/0 that is matched by access list 102 will be directed to the strict priority queue. The advantage to using multilink bundles is that you can specify different priority parameters on different interfaces. To specify different priority parameters, you would configure two multilink bundles with different parameters.

First, the class map voice is defined, and the policy map called policy1 is created. A strict priority queue (with a guaranteed allowed bandwidth of 50 kbps) is reserved for the class called voice.

Router(config)# **class-map** voice
Router(config-cmap)# **match access-group** 102
Router(config)# **policy-map policy1**
Router(config-pmap)# **class voice**
Router(config-pmap-c)# **priority** 50

The following commands create multilink bundle 1. The policy map called policy1 is attached to the bundle by the **service-policy** command.

Router(config)# **interface** multilink 1
Router(config-if)# **ip address** 172.17.254.161 255.255.255.248
Router(config-if)# **no ip directed-broadcast**
Router(config-if)# **no ip mroute-cache**
Router(config-if)# **service-policy output policy1**
Router(config-if)# **ppp multilink**
Router(config-if)# **ppp multilink fragment-delay** 20
Router(config-if)# **ppp multilink interleave**

In the next part of the example, the **multilink-group** command configures serial interface 2/0 to be part of multilink bundle 1, which effectively directs traffic on serial interface 2/0 that is matched by access list 102 to the strict priority queue:

Router(config)# **interface** serial 2/0
Router(config-if)# **bandwidth** 256
Router(config-if)# **no ip address**
Router(config-if)# **no ip directed-broadcast**
Router(config-if)# **encapsulation ppp**
Examples: Distributed LLQ Configuration

Example: Enabling PQ for an Amount of Available Bandwidth on an ATM Subinterface

The `priority` command can be enabled on an ATM subinterface, and that subinterface must have only one enabled ATM PVC. This configuration provides a sufficient amount of ATM PVC support.

In the following example, a priority queue with a guaranteed allowed bandwidth of 50 kbps is reserved for traffic that is sent from the source address 10.10.10.10 to the destination address 10.10.10.20, in the range of ports 16384 through 20000 and 53000 through 56000.

First, the following commands configure access list 102 to match the desired voice traffic:

```sh
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 16384 20000
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 53000 56000
```

Next, the traffic class called voice is defined, and the policy map called policy1 is created; a priority queue for the class voice is reserved with a guaranteed allowed bandwidth of 50 kbps and an allowable burst size of 60 bytes, a bandwidth of 20 kbps is configured for the class called bar, and the default class is configured for flow-based fair queuing. The `service-policy` command then attaches the policy map to the PVC interface 0/102 on the subinterface atm1/0.

```sh
Router(config)# class-map voice
Router(config-cmap)# match access-group 102

Router(config)# policy-map policy1
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 50 60
Router(config-pmap-c)# class bar
Router(config-pmap-c)# bandwidth 20
Router(config-pmap-c)# class class-default
Router(config-pmap-c)# fair-queue

Router(config)# interface atm1/0
Router(config-subif)# pvc 0/102

Router(config-subif)# service-policy output policy1
```

Example: Enabling PQ for a Percentage of Available Bandwidth on an ATM Subinterface

The `priority percent` command can be enabled on an ATM subinterface, and that subinterface must have only one enabled ATM PVC. This configuration provides a sufficient amount of ATM PVC support.
In the following example, a priority queue with a guaranteed allowed bandwidth percentage of 15 percent is reserved for traffic that is sent from the source address 10.10.10.10 to the destination address 10.10.10.20, in the range of ports 16384 through 20000 and 53000 through 56000.

First, the following commands configure access list 102 to match the desired voice traffic:

```
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 16384 20000
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 53000 56000
```

Next, the traffic class called voice is defined, and the policy map called policy1 is created; a priority queue for the class voice is reserved with a guaranteed allowed bandwidth percentage of 15 percent, a bandwidth percentage of 20 percent is configured for the class called bar, and the default class is configured for flow-based fair queueing. The `service-policy` command then attaches the policy map to the ATM subinterface 1/0.2.

```
Router(config)# class-map voice
Router(config-cmap)# match access-group 102

Router(config)# policy-map policy1
Router(config-pmap)# class voice
Router(config-pmap-c)# priority percent 15
Router(config-pmap)# class bar
Router(config-pmap-c)# bandwidth percent 20
Router(config-pmap)# class class-default
Router(config-pmap-c)# fair-queue

Router(config)# interface atm1/0.2
Router(config-subif)# service-policy output policy1
```

Example: Limiting the Transmission Ring Limit on an ATM Interface

In the following example, the number of particles on the transmission ring of an ATM interface is limited to seven particles:

```
Router(config)# interface atm 1/0/0
Router(config-if)# atm pvc 32 0 32 tx-ring-limit 7
```

Example: Limiting the Transmission Ring Limit on an ATM PVC Subinterface

In the following example, the number of particles on the transmission ring of an ATM PVC subinterface is limited to ten particles:

```
Router(config)# interface ATM1/0/0.1 point-to-point
Router(config-subif)# pvc 2/200
Router(config-if-atm-vc)# tx-ring-limit 10
```

The `tx-ring-limit` command can be applied to several ATM PVC subinterfaces on a single interface. Every individual PVC can configure a transmission ring limit.

Examples: LLQ for Frame Relay Configuration

The following section provides a LLQ for Frame Relay configuration examples.
The following example shows how to configure a PVC shaped to a 64K CIR with fragmentation. The shaping queue is configured with a class for voice, two data classes for IP precedence traffic, and a default class for best-effort traffic. WRED is used as the drop policy on one of the data classes.

The following commands define class maps and the match criteria for the class maps:

```plaintext
! class-map voice
  match access-group 101
!
class-map immediate-data
  match access-group 102
!
class-map priority-data
  match access-group 103

! access-list 101 permit udp any any range 16384 32767
access-list 102 permit ip any any precedence immediate
access-list 103 permit ip any any precedence priority
```

The following commands create and define a policy map called mypolicy:

```plaintext
! policy-map mypolicy
  class voice
    priority 16
  class immediate-data
    bandwidth 32
    random-detect
  class priority-data
    bandwidth 16
  class class-default
    fair-queue 64
    queue-limit 20
```

The following commands enable Frame Relay fragmentation and attach the policy map to DLCI 100:

```plaintext
! interface Serial1/0.1 point-to-point
  frame-relay interface-dlci 100
  class fragment
  !
  map-class frame-relay fragment
  frame-relay cir 64000
  frame-relay mincir 64000
  frame-relay bc 640
  frame-relay fragment 50
  service-policy output mypolicy
```

Examples: Burst Size in LLQ Configuration

The following example configures the burst parameter to 1250 bytes for the class called Voice, which has an assigned bandwidth of 1000 kbps:

```plaintext
policy policy1
class Voice
  priority 1000 1250
```
Examples: Per-VC Hold Queue Support for ATM Adapters

The following example sets the per-VC hold queue to 55:

```
interface atm2/0.1
pvc 1/101
vc-hold-queue 55
```
Examples: Per-VC Hold Queue Support for ATM Adapters