

Configuring ISG Access for IP Subscriber Sessions

First Published: December 5, 2006 Last Updated: January 6, 2011

Intelligent Services Gateway (ISG) is a Cisco IOS XE software feature set that provides a structured framework in which edge devices can deliver flexible and scalable services to subscribers. ISG supports IP sessions for subscribers who connect to ISG from routed, Layer 2 or Layer 3 access networks. This module describes how to configure ISG to bring up IP subscriber sessions, manage subscriber IP addressing, and configure dynamic Virtual Private Network (VPN) selection.

This document assumes that Network Address Translation is performed on a Layer 3 gateway other than the ISG.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the "Feature Information for ISG Access for IP Subscriber Sessions" section on page 42.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Prerequisites for ISG Access for IP Subscriber Sessions, page 2
- Restrictions for ISG Access for IP Subscriber Sessions, page 2
- Information About ISG Access for IP Subscriber Sessions, page 3
- How to Configure ISG for IP Subscriber Sessions, page 14

- Configuration Examples for ISG Access for IP Subscriber Sessions, page 36
- Additional References, page 40
- Feature Information for ISG Access for IP Subscriber Sessions, page 42

Prerequisites for ISG Access for IP Subscriber Sessions

For information about release and platform requirements, see the "Feature Information for ISG Access for IP Subscriber Sessions" section on page 42.

The Dynamic Host Configuration Protocol (DHCP) server must support the DHCP lease protocol.

Restrictions for ISG Access for IP Subscriber Sessions

Overlapping IP Address Restrictions

Overlapping IP addresses in the same virtual routing and forwarding (VRF) instance are not supported.

Overlapping IP subscribers in different VRFs are not supported on the same interface for static IP subscriber sessions and routed IP subscriber sessions. Overlapping IP subscribers in different VRFs are supported on the same interface for Layer 2 connected DHCP subscriber sessions.

IP Subnet Session Restrictions

IP subnet sessions are not supported on an interface configured with the **ip subscriber 12-connected** command. IP subnet sessions are supported only when the **ip subscriber routed** command is configured on the interface.

ISG DHCP Restrictions

ISG cannot relay DHCP requests when a Layer 3 DHCP relay agent is between the ISG device and subscriber devices.

Dynamic VPN Selection Restrictions

Dynamic VPN selection is not supported for IP subnet sessions and subscribers coming in on nonglobal VRF interfaces.

Dynamic VPN selection is not supported for subscribers with a static VPN configuration on the access interface.

Dynamic VPN selection with address reassignment is not supported for routed IP subscriber sessions that are initiated by DHCP. IP addresses of routed IP subscribers must be routable in the access network. Because Internet service provider (ISP) or VRF-owned private addresses could overlap or be unroutable in the network between subscribers and the ISG device, it is not possible to assign IP addresses to those subscribers.

IP interface sessions do not support dynamic VRF; only static VRF is supported. If an interface is configured with the **ip subscriber interface** command, dynamic VRF through a RADIUS VSA is not supported, only static VRF is supported.

General IP Session Restrictions

IP subscriber sessions are not supported on ambiguous IEEE 802.1QinQ (QinQ) or IEEE 802.1Q (Dot1Q) subinterfaces.

IP subscriber sessions are not supported on interfaces that receive Multiprotocol Label Switching (MPLS) packets.

Configuring features on static IP sessions is not supported.

ISG IP subscriber functionality is not supported on the following types of access interfaces:

- Gigabit EtherChannel (Port Channel)
- Generic routing encapsulation (GRE)
- PPP (virtual-template)
- Layer 2 Tunnel Protocol (L2TP)

Interface statistics are not generated for ISG multiservice interfaces.

Stateful switchover (SSO) and In Service Software Upgrade (ISSU) are not supported for any features on ISG IP subscriber sessions or traffic class sessions. Upon switchover, an IP session must be re-created or restarted (for DHCP sessions) when the session becomes active again.

The following subscriber features are not supported on IPoE sessions:

- Per-session firewall
- Per-session NAT
- Per-session PBR
- Per-session NBAR
- Per-session netflow
- · Per-session multicast

The following PPP session features are not supported on IP sessions:

- Session limit per system, VLAN, or MAC
- Dual stack session (single PPP session carrying both IPv4 and IPv6 traffic)
- Packet of Disconnect (PoD)

Multiservice Interface Restrictions

IP interface features (such as QoS and access lists) are not supported on multiservice interfaces.

Only one multiservice interface can belong to a single VRF. For example, the following configuration will not work:

```
interface multiservice 1
  ip vrf forwarding VRF_A
!
interface multiservice 2
  ip vrf forwarding VRF_A
```

Information About ISG Access for IP Subscriber Sessions

- Types of IP Subscriber Sessions, page 4
- IP Subscriber Connectivity, page 5
- IP Subscriber Session Initiation, page 6
- IP Subscriber Addressing, page 6
- IP Subscriber Identity, page 9

- VPN Connectivity and Services for IP Subscribers, page 10
- IP Session Termination, page 13
- IP Session Recovery for DHCP-Initiated IP Sessions, page 13
- Default Services for IP Subscriber Sessions, page 14

Types of IP Subscriber Sessions

ISG supports the following types of IP subscriber sessions on Cisco IOS XE software:

- IP Sessions, page 4
- IP Interface Sessions, page 4
- IP Subnet Sessions, page 4

IP Sessions

An IP session includes all the traffic that is associated with a single subscriber IP address. If the IP address is not unique to the system, other distinguishing characteristics such as a VRF or MAC address form part of the identity of the session. ISG can be configured to create IP sessions upon receipt of DHCP packets, packets with unclassified IP or MAC addresses, or RADIUS packets. See the "IP Subscriber Session Initiation" section on page 6 for more information.

IP sessions may be hosted for a connected subscriber device (one routing hop from the ISG) or one that is more than one hop from the gateway.

IP Interface Sessions

An IP interface session includes all IP traffic received on a specific physical or virtual interface. IP interface sessions are provisioned through the CLI; that is, a session is created when the IP interface session commands are entered, and the session is continuous, even when the interface is shut down. By default, IP interface sessions come up in the state "unauthenticated" with full network access.

IP interface sessions might be used in situations in which a subscriber is represented by an interface (with the exception of PPP) and communicates using more than one IP address. For example, a subscriber using routed bridge encapsulation (RBE) access might have a dedicated ATM virtual circuit (VC) to home customer premises equipment (CPE) that is hosting a number of PCs.

IP Subnet Sessions

An IP subnet session represents all the traffic that is associated with a single IP subnet. IP subnet sessions are used to apply uniform edge processing to packets associated with a particular IP subnet. When an IP subnet session is configured, ISG treats the subnet as a single subscriber, which means that ISG features and functionality are applied to the subnet traffic as an aggregate.

IP subnet sessions are supported for routed IP subscriber traffic.

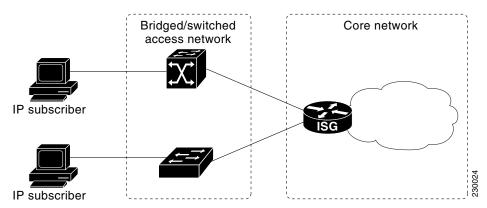
IP subnet sessions are created the same way as IP sessions, except that when a subscriber is authorized or authenticated and the Framed-IP-Netmask attribute is present in the user or service profile, ISG converts the source-IP-based session into a subnet session with the subnet value in the Framed-IP-Netmask attribute.

Where an ingress interface maps to a single subnet, the subnet might be accommodated with an IP interface session. However, if the ISG is more than one hop away from a subscriber, and there is the possibility that multiple subnets are accessible through the same interface, IP subnet sessions may be defined to distinguish the traffic and apply appropriate edge functionality to each subnet.

Coexistence of Multicast and IP Sessions

The ISG Session Multicast Coexistence feature introduces the ability to host all the subscribers and services (data and multicast) on the same VLAN by enabling multicast and IP sessions to coexist on the same subinterface for Cisco ASR 10000 Series Aggregation Routers. ISG IP sessions are supported on nonaccess-type subinterfaces. In the case of an existing session or even when no session exists, this support helps the multicast traffic to pass through the interfaces configured for the IP sessions in both upstream and downstream directions without creating a session.

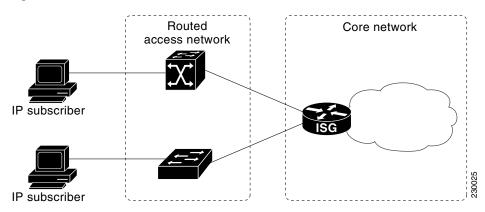
IP Subscriber Connectivity


IP subscribers connect to ISG through either Layer 2 connected access networks or routed access networks. The following sections describe these types of IP subscriber connectivity:

- Layer 2 Connected Access Networks, page 5
- Routed Access Networks, page 6

Layer 2 Connected Access Networks

Layer 2 connected subscribers are either directly attached to the physical interfaces of an ISG or connected to an ISG through a Layer 2 access network, such as a bridged or a switched network. Layer 3 forwarding is either absent or not used to direct subscriber traffic in the Layer 2 access network. IP addresses of the subscribers may or may not be on the same subnet as the Layer 2 connected physical interfaces. Figure 1 shows an example of a Layer 2 connected access network.


Figure 1 Layer 2 Connected Access Network

Routed Access Networks

Routed subscriber traffic is routed through a Layer 3 access network with at least one transit router before reaching the ISG. IP addresses of the subscribers are at least routable in the Layer 3 access network. Layer 3 access networks contain a single routing domain and therefore do not support overlapping IP addresses. Figure 2 shows an example of a routed access network.

Figure 2 Routed Access Network

IP Subscriber Session Initiation

ISG can be configured to allow one or more of the following events to signal the start of an IP session or IP subnet session on an interface:

DHCP DISCOVER packet

If the following conditions are met, receipt of a DHCP DISCOVER packet will trigger the creation of an IP session:

- The ISG serves as a DHCP relay or server for new IP address assignments.
- Subscribers are configured for DHCP.
- The DHCP DISCOVER packet is the first DHCP request received from the subscriber.
- Unclassified source IP address

For routed IP subscribers, a new IP session is triggered by the appearance of an IP packet with an unclassified source IP address (which means that an IP session does not yet exist for that IP address).

Unclassified source MAC address

For Layer 2 connected IP subscribers, a new IP session is triggered by the appearance of an IP packet with an unclassified source MAC address (which means that an IP session does not yet exist for that MAC address).

• RADIUS Access-Request packet

For routed or Layer 2 connected access, a new IP session is triggered by the appearance of a RADIUS Access-Request packet when ISG is serving as a RADIUS proxy.

IP Subscriber Addressing

The following sections provide information about how ISG handles IP addressing for IP subscribers:

- Methods of ISG Subscriber IP Address Assignment, page 7
- Public and Private IP Addresses, page 8
- Overlapping IP Addresses, page 8
- ISG Subscriber IP Address Assignment Using DHCP, page 8

Methods of ISG Subscriber IP Address Assignment

IP subscribers either have IP addresses configured statically or obtain IP addresses dynamically through some network protocol that has the ability to assign IP addresses. For a subscriber to be routable within a given IP service domain, the subscriber must present a domain-specific IP address to the network. If a subscriber transfers between IP service domains (which include any private domain managed by the access provider), the IP address presented to the network must change to reflect the new domain.

The following sections describe the methods of IP address assignment that ISG supports for each type of Layer 3 session:

- IP Interface Sessions, page 7
- IP Sessions, page 7
- IP Subnet Sessions, page 7

IP Interface Sessions

For IP interface sessions, ISG is not involved in (or aware of) the assignment of subscriber IP addresses.

IP Sessions

For IP sessions, ISG supports the following methods of IP address assignment:

• Static IP addresses

If a subscriber's static IP address is configured correctly for the service domain, ISG does not have to be involved in the assignment of an IP address for the subscriber.

DHCP

If DHCP is being used to assign IP addresses, and the IP address that is assigned by DHCP is correct for the service domain, ISG does not have to be involved in the assignment of an IP address for the subscriber.

If the IP address that is assigned by DHCP is not correct for the service domain, or if the domain changes because of a VRF transfer, ISG can be configured to influence the DHCP IP address assignment.

The following conditions must be met in order for ISG to influence DHCP IP address assignment:

- The subscriber must be Layer 2 connected.
- The ISG device must be in the path of DHCP requests by serving as a DHCP server or relay.
- Subscribers must not have statically configured IP addresses.

For deployments that support it, DHCP is the recommended method of IP address assignment.

IP Subnet Sessions

For IP subnet sessions, the IP subnet is specified in the user profile.

Public and Private IP Addresses

No matter how an IP subscriber is assigned an IP address, the IP address falls in either the public or the private IP address category. If an IP subscriber is assigned with a private IP address and the subscriber has to reach the Internet, a Layer 3 gateway, such as ISG or a firewall, between the subscriber and the Internet must perform Network Address Translation (NAT) for the subscriber's private IP address.

When the access network is a Layer 2 connected network, a subscriber IP address can be either native or foreign to an access interface. A native subscriber IP address is one that belongs to the subnet provisioned on the access interface. A foreign subscriber IP address is one that does not belong to the subnet provisioned on the access interface. A foreign subscriber IP address could result when a retail ISP assigns an IP address to the IP subscriber from its own IP address allotment, which is different from the wholesale ISPs, or when an IP subscriber with a static IP address that is native in the home access network roams to a foreign access network. To support IP subscribers with foreign IP addresses, ISG must be able to respond to Address Resolution Protocol (ARP) requests that originate from foreign IP addresses with a MAC address of the ISG itself. Because the access network is Layer 2 connected, ISG maintains an adjacency to every subscriber.

When the access network is a routed network, a subscriber IP address must be routable in the access network; otherwise, subscriber traffic will never be able to reach ISG. ISG may not have an adjacency for each subscriber in this case, but rather an adjacency of the next hop toward a subscriber. The next hop is determined by the routing process on ISG.

Overlapping IP Addresses

When an access network is deployed without VPN capability, the IP address space in the access network is shared among all IP subscribers. When the IP addresses are assigned dynamically, care must be taken to ensure that these addresses do not overlap. In cases where overlapping IP addresses are assigned to IP subscribers intentionally, the access network should use a Layer 2 separation mechanism to differentiate the IP address spaces. For example, the access network may put each IP address space in a different VLAN.

In cases in which the access network serves both local IP subscribers and roaming users, the static private IP address of a roaming subscriber may overlap the native private IP address of another subscriber. For example, a public wireless hot spot that generally assigns dynamic IP addresses might want to provide access to occasional roaming users with statically configured IP addresses. To support this special overlapping condition, all IP subscribers must be in a Layer 2 connected access network in which overlapping MAC addresses do not exist. In this case, IP subscribers can be distinguished using MAC addresses.

ISG Subscriber IP Address Assignment Using DHCP

When ISG is in the path of DHCP requests (as either a DHCP server or a DHCP relay), ISG can influence the IP address pool and DHCP server that are used to assign subscriber IP addresses. To enable ISG to influence the IP addresses assigned to subscribers, associate a DHCP address pool class with an address domain. The DHCP address pool class must also be configured in a service policy map, service profile, or user profile that is associated with a subscriber. When a DHCP request is received from a subscriber, DHCP uses the address pool class that is associated with the subscriber to determine which DHCP address pool should be used to service the request. As a result, on a per-request basis, an IP address is provided by the local DHCP server or relayed to a remote DHCP server that is defined in the selected pool.

IP Subscriber Identity

IP subscriber identity is closely related to IP session initiation because ISG must uniquely identify an IP subscriber at the moment that it creates the IP session. However, the need to identify an IP subscriber goes beyond the session initiation phase. The following sections describe how ISG uniquely identifies IP subscribers:

- Routed IP Subscriber Identity, page 9
- MAC Address as Secondary Identity, page 10
- DHCP Lease Query Support, page 10
- Layer 2 Connected IP Subscriber Identity, page 10

Routed IP Subscriber Identity

If the access network is a routed network, subscriber IP addresses can be used to uniquely identify IP subscribers because by definition subscriber IP addresses are at least routable in the access network.

When using a subscriber IP address as the identifier, ISG assumes that the subscriber IP address is unique. If the access network is deployed with Layer 3 load balancing, redundancy, or asymmetric routing, ISG also assumes that IP traffic from the same IP subscriber may arrive at different access interfaces. To support this type of deployment, ISG assumes a single IP address space for all the access interfaces connecting to the same access network.

If there is a requirement to support several IP address spaces over a single physical access network, the access network must use some Layer 2 encapsulation to create a separate logical access network for each IP address space. In this case, ISG can still have a single IP address space for all the logical access interfaces that connect to a logical access network.

When subscriber IP addresses are private IP addresses, the access network must be able to route such subscriber traffic. If the subscriber traffic is destined to the Internet, NAT must be performed.

For routed IP subscribers, the subscriber IP address serves as the key for an IP session. ISG associates IP traffic with an IP session as follows:

- In the upstream direction, the source IP address of an IP packet is used to identify the IP session. The source IP address is the subscriber IP address.
- In the downstream direction, the destination IP address of an IP packet is used to identify the IP session. The destination IP address is the subscriber IP address.

If the IP subscriber is a VPN user, the subscriber IP address must be routable in both the global routing table and the VPN routing table on the ISG.

In the case of an IP subnet subscriber, a subscriber IP address is defined as an IP prefix address instead of a /32 IP host address. This IP prefix covers a range of IP addresses used by end users but represents a single logical IP subscriber from the ISG point of view. In this deployment, all end users share the same connectivity and services provided by the ISG.

To normalize the classification of IP subscribers that have different network masks, ISG uses the network mask in conjunction with the subscriber IP address for routed IP subscribers.

MAC Address as Secondary Identity

You must configure the **collect identifier mac-address** command at the start of a session. This instructs the ISG devices to store the MAC address as part of the session identifiers. For routed IP subscriber sessions, the MAC address is collected from the DHCP server using the DHCP Lease Query Protocol. For information about configuring the command, see the "Configuring ISG Control Policies" module in the *Cisco IOS ISG Configuration Guide*.

DHCP Lease Query Support

The DHCP Lease Query message is a DHCP message type transmitted from a DHCP relay agent to a DHCP server. A DHCP Lease Query-aware relay agent sends the location of an IP endpoint to the DHCP Lease Query message.

The DHCP Lease Query transaction is a DHCP transaction with special message types that enable clients to query DHCP servers regarding the owner and the lease expiration time of an IP address. For information about configuring DHCP server for Lease Query, see the "Configuring a DHCP Server IP Address" section on page 31.

Layer 2 Connected IP Subscriber Identity

A Layer 2 connected access network is capable of providing IP connectivity to IP subscribers with foreign and overlapping IP addresses, in addition to IP subscribers with native IP addresses. Because subscriber IP addresses might not be unique in such an access network, ISG uses the subscriber MAC address to identify Layer 2 connected IP subscribers, regardless of what kind of IP address a subscriber has

Traffic that comes from IP subscribers with private or overlapping IP addresses and that is destined to the Internet is subject to NAT.

For Layer 2 connected IP subscribers, both the subscriber MAC address (unique within a VLAN) and the IP address serve as the keys for the IP session, but they are used in different directions:

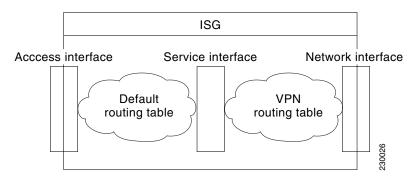
- In the upstream direction, the VLAN ID and source MAC address of an IP packet are used to identify the IP session.
- In the downstream direction, both the destination IP address and the VLAN ID of an IP packet are used to identify the IP subscriber context.

VPN Connectivity and Services for IP Subscribers

- Subscriber VPN Membership, page 11
- Multiservice Interface Model, page 11
- VPN Addressing, page 11
- VPN IP Subscriber Identity, page 12
- Service Model for VRF Transfers, page 12
- Benefits of Dynamic VPN Selection, page 13

Subscriber VPN Membership

Depending on deployment requirements, an IP subscriber may or may not have VPN service. If an IP subscriber does have VPN service, the subscriber may belong to only one VPN domain at any time. An IP subscriber is associated with a VPN domain in one of the following ways:


- Static VPN assignment—The VPN IP subscriber belongs to a static VPN domain. Whenever the IP subscriber connects to ISG, the IP subscriber is placed in the preassigned VPN domain.
- Dynamic VPN selection—The VPN IP subscriber can choose and switch among different VPN
 domains through dynamic service logon. Whenever a new VPN domain is selected, VPN services
 of the current VPN domain must be removed before VPN services of the new VPN domain can be
 applied to the IP subscriber.

Dynamic VPN selection can be initiated through automatic service logon, where the VRF is downloaded and applied to the subscriber session at session start, or through subscriber service selection at a web portal, in which case the subscriber is transferred to the VRF that corresponds to the selected service.

Multiservice Interface Model

For a subscriber without a static VPN configuration, a multiservice interface must be configured on the ISG device to map the IP session to a VRF. The multiservice interface represents a boundary between a VPN routing domain and the default routing domain. In cases where an IP subscriber may be associated with several routing domains throughout the duration of a connection, multiservice interfaces serve as demarcation points for the IP subscriber to switch from one VPN domain to another. One multiservice interface must be configured for each VPN routing domain. Figure 3 illustrates the multiservice interface model.

Figure 3 Multiservice Interface Model

VPN Addressing

When a subscriber session is transferred from one VPN domain to another, it is effectively entering a new addressing domain that may or may not overlap the subscriber's previous domain. The subscriber's network-facing address must be altered accordingly so that packets can be correctly routed back from within the service domain.

A VRF transfer is necessary when a subscriber's identity and subscribed services cannot be determined without interaction with a web portal. A local routing context is required, at least initially, so that IP packets may be routed to and from the portal server. Following portal-based service selection, the

subscriber would typically have to be transferred into the VRF associated with the selected service domain. Following a VRF transfer, the subscriber must also receive an address that is routable in this new domain.

If ISG is adjacent to the subscriber device and serves as a DHCP relay or server, DHCP can be used to assign domain-specific addresses to subscribers.

In order for VRF transfers to be supported, it is strongly recommended that DHCP be configured with short initial leases, this is because existing subscriber addresses can only be altered once the current lease has expired. Subscribers will not have access to the selected domain before the next DHCP renew request is received. Using short initial lease times minimizes the interval between a VRF change and a DHCP renewal. If long lease times are used, an out-of-band method of initiating IP address change should be implemented.

When DHCP can be used to assign a new address at the subscriber device, subnet-based VRF selection can be used to bring about the transfer. Subnet-based VRF selection (also known as *VRF autoclassify*) is a feature that selects the VRF at the ingress port on the basis of the source IP subnet address.

Service providers and organizations have allocated public IP address blocks that are not overlapping by nature. Therefore, when they are assigned public IP addresses, VPN IP subscribers have no overlapping IP addresses. When VPN IP subscribers of different VPN domains have private IP addresses assigned, they are likely to have overlapping addresses in the access network.

An access network is a single IP address space when there is no Layer 2 encapsulation separating VPN IP subscribers of different VPN domains. Therefore, ISG must be able to handle overlapping IP addresses when deploying VPN IP subscribers. IP connectivity for VPN IP subscribers with overlapping IP addresses is possible only when they are connected to ISG through a Layer 2 connected access network.

VPN IP Subscriber Identity

ISG identifies VPN IP subscribers in the same way that it identifies non-VPN IP subscribers. Upstream IP traffic is defined as the subscriber IP traffic traveling from the access network to the VPN (overlaid on top of the service provider core network). Downstream IP traffic is defined as the subscriber IP traffic traveling from the VPN to the access network.

Service Model for VRF Transfers

A *primary* service is a service that contains a network-forwarding policy (such as a VRF) in its service definition. Only one primary service at a time can be activated for a session. A *secondary* service is any service that does not contain a network-forwarding policy.

When a subscriber for whom a primary service has already been activated tries to select another primary service, ISG will deactivate all current services (including the current primary service) and activate the new primary service, and hence switch the VRF.

When a subscriber for whom a primary service has already been activated tries to select a secondary service, the action taken by ISG depends on whether the secondary service is part of a service group. A *service group* is a grouping of services that may be simultaneously active for a given session. Typically, a service group includes one primary service and one or more secondary services. Table 1 describes the action that ISG will take when a subscriber selects a secondary service.

Primary Service Characteristics	Secondary Service Characteristics	Resulting Behavior at ISG	
Primary service with no service group attribute	Secondary service with service group	Do not bring up the secondary service.	
	Secondary service with no service group	Bring up the secondary service.	
Primary service with service group attribute	Secondary service with different service group	Do not bring up the secondary service.	
	Secondary service with same service group	Bring up the secondary service.	
	Secondary service with no service group	Bring up the secondary service.	

Table 1 ISG Activation Policy for Secondary Services

Benefits of Dynamic VPN Selection

The need for switching of a subscriber session between routing and forwarding domains (also called *network services*) occurs frequently in markets where so-called *equal access networking* must be supported. Equal access networking is often mandated by regulatory rules stating that an access provider should allow service providers equal access to a retail subscriber network. ISG dynamic VPN selection facilitates equal access networking by allowing subscribers to transfer between network services.

IP Session Termination

An IP session may be terminated in one of the following ways:

- DHCP Lease Expiry or DHCP Release from client
 If DHCP is used to detect a new session, its departure may also be signaled by a DHCP event.
- Application stop

An application command that is used to terminate a session. The **application stop** command is typically used to terminate a session when a subscriber initiates an account logoff from a web portal. An application stop may also result from the actions of an administrator, such as action taken in response to rogue behavior from a subscriber.

- Idle timeout and session timeout

 Idle timeouts and session timeouts can be used to detect or impose termination of an IP session.
- Control policy
 A control policy containing the "service disconnect" action can be used to terminate a session.

IP Session Recovery for DHCP-Initiated IP Sessions

When an IP session is terminated (for example, by account logoff or session timeout) or lost (for example, by router reload), the client may continue to hold an unexpired DHCP lease. When this happens, ISG performs a session restart to prevent the client's IP connection from being stuck until the DHCP lease expires. A control policy can be configured to define the actions that ISG will take when

the session restart event occurs. If a policy is not defined, a default policy will take effect. The default policy causes ISG to disconnect the session after 60 seconds following a session restart and is the equivalent of the following configuration:

```
policy-map type control GLOBAL
  class type control always event session-restart
  1 service disconnect delay 60
```

This default policy appears in the output for the show subscriber policy rules command as follows:

```
Rule: internal-rule-session-restart
Class-map: always event session-restart
Action: 1 service disconnect delay 60
Executed: 0
```

Default Services for IP Subscriber Sessions

Newly created IP sessions may require a default service to allow subsequent subscriber packets to be processed appropriately; for example, to permit or force TCP packets to a captive portal where menu-driven authentication and service selection can be performed. A default service policy map or service profile may be configured for IP sessions to redirect traffic, enable port-bundle host-key functionality for session identification, or enable transparent autologon. A default service would also likely include a network service, which allows subscribers to access a web portal for authentication and service selection.

How to Configure ISG for IP Subscriber Sessions

- Creating ISG Sessions for IP Subscribers, page 14 (required)
- Assigning ISG Subscriber IP Addresses Using DHCP, page 25 (required)
- Configuring ISG Dynamic VPN Selection, page 32 (required)

Creating ISG Sessions for IP Subscribers

An ISG device creates IP sessions for IP traffic on subscriber-side interfaces. The following tasks enable IP sessions and indicate how sessions will be identified:

- Creating IP Subscriber Sessions for Routed ISG Subscribers, page 15 (required)
- Creating IP Subscriber Sessions for Layer 2 Connected ISG Subscribers, page 16 (required)
- Creating ISG IP Interface Sessions, page 18 (required)
- Creating an ISG Static Session, page 19 (required)
- Creating ISG IP Subnet Sessions, page 20 (required)
- Configuring IP Session Recovery for DHCP-Initiated IP Sessions, page 22 (required)
- Verifying ISG IP Subscriber Sessions, page 23 (optional)
- Clearing ISG IP Subscriber Sessions, page 24 (optional)

Creating IP Subscriber Sessions for Routed ISG Subscribers

Routed IP subscribers are subscribers that are routed through a Layer 3 access network with at least one transit router before reaching the ISG. Perform this task to configure ISG to create IP sessions for routed IP subscribers.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interface type number
- 4. ip subscriber routed
- 5. initiator {dhcp [class-aware] | radius-proxy | unclassified ip-address}
- 6. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface type number	Specifies an interface and enters interface configuration mode.
	Example:	
	Router(config)# interface gigabitethernet 0/0/0	
Step 4	ip subscriber routed	Specifies the type of IP subscriber to be hosted on the interface, and enters ISG IP subscriber configuration mode.
	Example:	
	Router(config-if)# ip subscriber routed	

	Command or Action	Purpose
Step 5	<pre>initiator {dhcp [class-aware] radius-proxy unclassified ip-address}</pre>	Configures ISG to create an IP subscriber session upon receipt of the specified packet type.
	<pre>Example: Router(config-subscriber)# initiator dhcp</pre>	• dhcp —ISG will initiate an IP session upon receipt of a DHCP DISCOVER packet. The class-aware keyword allows ISG to influence the IP address assigned by DHCP by providing DHCP with a class name.
		• radius-proxy—ISG will initiate an IP session upon receipt of a RADIUS Access-Request packet.
		• unclassified ip-address—ISG will initiate an IP session upon receipt of the first IP packet with an unclassified IP source address.
		This command can be entered more than once to specify more than one method of IP session initiation.
		Note If the ISG device serves as either a DHCP relay or DHCP server in the assignment of client IP addresses, ISG must be configured to initiate IP sessions upon receipt of DHCP DISCOVER packets. In other words, the initiator dhcp command must be configured instead of the initiator unclassified ip or initiator unclassified mac command.
Step 6	end	(Optional) Returns to privileged EXEC mode.
	Example: Router(config-subscriber)# end	

Creating IP Subscriber Sessions for Layer 2 Connected ISG Subscribers

Layer 2 connected subscribers are either directly attached to the physical interfaces of an ISG or connected to an ISG through a Layer 2 access network, such as a bridged network or a switched network. Perform this task to configure ISG to create IP sessions for Layer 2 connected IP subscribers.

- 1. enable
- 2. configure terminal
- 3. interface type number
- 4. ip subscriber 12-connected
- 5. initiator {dhcp [class-aware] | radius-proxy | unclassified mac-address}
- 6. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface type number	Specifies an interface and enters interface configuration mode.
	<pre>Example: Router(config) # interface gigabitethernet 0/0/0</pre>	
Step 4	ip subscriber 12-connected	Specifies the type of IP subscriber to be hosted on the interface, and enters ISG IP subscriber configuration mode.
	<pre>Example: Router(config-if)# ip subscriber 12-connected</pre>	Note It is recommended that IP sessions for Layer 2 connected subscribers be configured using the ip subscriber 12-connected command. However, the ip subscriber routed command could also be used if subscriber IP addresses are routable in the access domain.
Step 5	<pre>initiator {dhcp [class-aware] radius-proxy unclassified mac-address}</pre>	Configures ISG to create an IP subscriber session upon receipt of the specified packet type.
	<pre>Example: Router(config-subscriber)# initiator unclassified mac-address</pre>	• dhcp —ISG initiates an IP session upon receipt of a DHCP DISCOVER packet. The class-aware keyword allows ISG to influence the IP address assigned by DHCP by providing DHCP with a class name.
		• radius-proxy—ISG initiates an IP session upon receipt of a RADIUS packet.
		• unclassified mac-address—ISG will initiate an IP session upon receipt of the first IP packet with an unclassified MAC source address.
		• This command can be entered more than once to specify more than one method of IP session initiation.
		Note If the ISG device serves as either a DHCP relay or DHCP server in the assignment of client IP addresses, ISG must be configured to initiate IP sessions upon receipt of DHCP DISCOVER packets. In other words, the initiator dhcp command must be configured instead of the initiator unclassified ip or initiator unclassified mac command.

	Command or Action	Purpose
Step 6	end	(Optional) Returns to privileged EXEC mode.
	Example:	
	Router(config-subscriber) # end	

Creating ISG IP Interface Sessions

An ISG IP interface session encompasses all IP packets that cross the specified interface or subinterface. Perform this task to create an ISG IP interface session.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **interface** *type number*[.*subinterface-number*]
- 4. ip subscriber interface
- 5. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	<pre>interface type number[.subinterface-number]</pre>	Specifies an interface or subinterface and enters interface configuration mode.
	Example:	
	Router(config) # interface GigabitEthernet 0//0/0.1	
Step 4	ip subscriber interface	Specifies the type of IP subscriber to be hosted on the interface.
	Example:	
	Router(config-subif)# ip subscriber interface	
Step 5	end	(Optional) Returns to privileged EXEC mode.
	Example:	
	Router(config-subif)# exit	

Creating an ISG Static Session

The ISG Static Session Creation feature enables administrator initiated static IP sessions. An ISG static session enables you to configure static IP sessions from the CLI. You can create static IP sessions by configuring a group of server addresses.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip subscriber list list-name
- 4. ip source ipaddress mac macaddress

or

ip source ipaddress mask subnetmask

- 5. exit
- **6. interface** *type number*
- 7. ip subscriber 12-connected

or

ip subscriber routed

- 8. initiator static ip subscriber list list-name
- 9. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
0. 0		
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	ip subscriber list list-name	Specifies the IP subscriber list name and enters server list configuration mode.
	Example:	
	Router(config)# ip subscriber list mylist	

	Command or Action	Purpose
Step 4	<pre>ip source ipaddress mac macaddress or ip source ipaddress mask subnetmask</pre>	Specifies the static server IP address and MAC address (in the case of Layer 2-connected) or subnet mask (in the case of routed).
Step 5	Example: Router(config-server-list)# ip source 209.165.200.225 mac 0.7.f Or Router(config-server-list)# ip source 209.165.200.225 mask 255.255.255.224	Returns to global configuration mode.
	<pre>Example: Router(config-server-list)# exit</pre>	rectains to groom configuration mode.
Step 6	interface type number	Specifies an interface and enters interface configuration mode.
	<pre>Example: Router(config) # interface GigabitEthernet 2/0/0</pre>	
Step 7	ip subscriber 12-connected Or	Specifies the type of IP subscriber to be hosted on the interface and enters ISG IP subscriber configuration mode.
	<pre>Example: Router(config-if)# ip subscriber 12-connected or Router(config-if)# ip subscriber routed</pre>	Note It is recommended that IP sessions for Layer 2 connected subscribers be configured using the ip subscriber 12-connected command. However, the ip subscriber routed command could also be used if subscriber IP addresses are routable in the access domain.
Step 8	initiator static ip subscriber list list-name	Creates an IP subscriber session with the packet type as static and attaches the session to the list.
	<pre>Example: Router(config-subscriber)# initiator static ip subscriber list mylist</pre>	
Step 9	end	Returns to privileged EXEC mode.
	Example: Router(config-subscriber)# end	

Creating ISG IP Subnet Sessions

An IP subnet session represents all the traffic that is associated with a single IP subnet. IP subnet sessions are used to apply uniform edge processing to packets associated with a particular IP subnet. When an IP subnet session is configured, ISG treats the subnet as a single subscriber, which means that ISG features and functionality are applied to the subnet traffic as an aggregate. Perform this task to configure an IP subnet session.

SUMMARY STEPS

1. enable

- 2. configure terminal
- **3. interface** *type number*
- 4. ip subscriber routed
- 5. initiator unclassified ip-address
- 6. end
- 7. Add the Framed-IP-Netmask attribute to the service or user profile.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface type number	Specifies an interface and enters interface configuration mode.
	Example:	
	Router(config)# interface gigabitethernet 0/0/0	
Step 4	ip subscriber routed	Specifies the type of IP subscriber to be hosted on the interface, and enters ISG IP subscriber configuration mode.
	Example:	
	Router(config-if)# ip subscriber routed	
Step 5	initiator unclassified ip-address	Configures ISG to create an IP subscriber session upon receipt of an IP packet with an unclassified IP source address.
	Example:	address.
	Router(config-subscriber)# initiator unclassified ip-address	
Step 6	end	(Optional) Returns to privileged EXEC mode.
	<pre>Example: Router(config-subscriber)# end</pre>	
Step 7	Add the Framed-IP-Netmask attribute to the service or	Enables an IP subnet session for the subscriber.
	user profile.	When a subscriber is authorized or authenticated and the Framed-IP-Netmask attribute is present in the user or service profile, ISG converts the source-IP-based session into a subnet session with the subnet value in the Framed-IP-Netmask attribute.

Configuring IP Session Recovery for DHCP-Initiated IP Sessions

Perform this task to configure ISG to perform specific actions upon recovery of an IP session after ISG has terminated the session or reloaded. This task applies to DHCP-initiated IP sessions only.

If a policy for session recovery is not configured, ISG will apply the following default policy:

```
policy-map type control GLOBAL
  class type control always event session-restart
  1 service disconnect delay 60
```

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. policy-map type control policy-map-name
- 4. class type control {control-class-name | always} event session-restart
- 5. action-number authorize [aaa list list-name] [password password] [upon network-service-found {continue | stop}] identifier {authenticated-domain | authenticated-username | auto-detect | circuit-id [plus remote-id] | dnis | mac-address | nas-port | remote-id [plus circuit-id] | source-ip-address | tunnel-name | unauthenticated-domain | unauthenticated-username}
- 6. action-number service-policy type service [unapply] [aaa list list-name] {name service-name | identifier {authenticated-domain | authenticated-username | dnis | nas-port | tunnel-name | unauthenticated-domain | unauthenticated-username}}
- 7. action-number set-timer name-of-timer minutes

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	policy-map type control policy-map-name	Creates or modifies a control policy map, which is used to define a control policy, and enters control policy-map
	<pre>Example: Router(config) # policy-map type control MY-POLICY</pre>	configuration mode.
Step 4	<pre>class type control {control-class-name always} event session-restart</pre>	Specifies a control class that will be evaluated when the session-restart event occurs and enters policy map class control configuration mode.
	<pre>Example: Router(config-control-policymap)# class type control always event session-restart</pre>	• A policy rule for which the control class is always will always be treated as the lowest priority rule within the control policy map.

	Command or Action	Purpose
Step 5	action-number authorize [aaa list list-name] [password password] [upon network-service-found {continue stop}] identifier {authenticated-domain authenticated-username auto-detect circuit-id [plus remote-id] dnis mac-address nas-port remote-id [plus circuit-id] source-ip-address tunnel-name unauthenticated-domain unauthenticated-username}	(Optional) Initiates a request for authorization on the basis of the specified identifier.
	<pre>Example: Router(config-control-policymap-class-control)# 1 authorize identifier source-ip-address</pre>	
Step 6	action-number service-policy type service [unapply] [aaa list list-name] {name service-name identifier {authenticated-domain authenticated-username dnis nas-port tunnel-name unauthenticated-domain unauthenticated-username}}	 (Optional) Activates an ISG service. Specifying an identifier instead of a service name will activate a service that has the same name as the specified identifier.
	Example: Router(config-control-policymap-class-control)# 1 service-policy type service aaa list LISTA name REDIRECT	
Step 7	action-number set-timer name-of-timer minutes	(Optional) Starts a named policy timer.
	<pre>Example: Router(config-control-policymap-class-control)# 1 set-timer TIMERA 5</pre>	Expiration of the timer generates the event timed-policy-expiry.

Verifying ISG IP Subscriber Sessions

Perform this task to verify IP subscriber session configuration and creation. The commands can be used in any order.

- 1. enable
- 2. show subscriber session [detailed] [identifier | uid session-id | username name]
- 3. show ip subscriber [dangling seconds | detail | ip ip-address | mac mac-address | vrf vrf-name static list listname [dangling seconds | detail | ip ip-address]]
- 4. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	<pre>Example: Router> enable</pre>	Enter your password if prompted.
Step 2	show subscriber session [detailed] [identifier identifier uid session-id username name]	Displays information about ISG policies and features for subscriber sessions.
	Example: Router# show subscriber session detailed	
Step 3	<pre>show ip subscriber [dangling seconds detail ip ip-address mac mac-address vrf vrf-name static list listname [dangling seconds detail ip ip-address]]</pre>	 Displays information about ISG IP subscriber sessions. Use this command to display the IP sessions on ISG.
	Example: Router# show ip subscriber ip 10.10.10.10	
Step 4	exit	Exits privileged EXEC mode.
	Example: Router# exit	

Clearing ISG IP Subscriber Sessions

Perform this task to clear IP subscriber sessions.

- 1. **show ip subscriber** [**dangling** seconds | **detail** | **ip** ip-address | **mac** mac-address | **vrf** vrf-name [**dangling** seconds | **detail** | **ip** ip-address]]
- 2. clear ip subscriber [dangling seconds | ip ip-address | mac mac-address | vrf vrf-name [dangling seconds | ip ip-address]]

	Command or Action	Purpose
Step 1	<pre>show ip subscriber [dangling seconds detail ip ip-address mac mac-address vrf vrf-name [dangling seconds detail ip ip-address]]</pre>	(Optional) Displays information about ISG subscriber IP sessions. • Use this command to display the IP sessions on ISG.
	Example: Router# show ip subscriber ip 10.10.10.10	
Step 2	<pre>clear ip subscriber [dangling seconds ip ip-address mac mac-address vrf vrf-name [dangling seconds ip ip-address]]</pre>	Clears ISG IP subscriber sessions.
	Example: Router# clear ip subscriber ip 10.10.10.10	

Troubleshooting Tips

Use the following commands to troubleshoot ISG IP subscriber sessions:

- · debug ip subscriber
- · debug condition

Assigning ISG Subscriber IP Addresses Using DHCP

- Configuring an ISG Interface for Dynamic DHCP Class Association, page 25 (required)
- Configuring DHCP Server User Authentication, page 27 (required)
- Configuring a DHCP Class in a Service Policy Map, page 29 (required)
- Configuring a DHCP Class in a Service Profile or User Profile on the AAA Server, page 30 (required)

Prerequisites

For ISG to use DHCP to assign IP addresses, the following prerequisites must be met:

- The subscriber must be Layer 2 connected.
- ISG must be in the path of DHCP requests, serving as a DHCP server or relay.
- The appropriate IP subnets must be configured on the subscriber interface.

The tasks in this section assume that you have configured DHCP support in your network.

Configuring an ISG Interface for Dynamic DHCP Class Association

Perform this task to enable ISG to influence the assignment of IP addresses to subscribers on the interface by providing the local DHCP component with a class name. The class name refers to a class configured using the **ip dhcp pool** command and can reference a pool of addresses or a relay destination.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **interface** *type number*
- 4. ip address ip-address mask [secondary]
- 5. ip subscriber [12-connected | routed]
- 6. initiator dhcp class-aware
- 7. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
0. 0	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface type number	Specifies an interface for configuration, and enters interface configuration mode.
	<pre>Example: Router(config) # interface gigabitethernet 0/0/0</pre>	
Step 4	<pre>ip address ip-address mask [secondary]</pre>	Sets a primary or secondary IP address for an interface.
	Example: Router(config-if)# ip address 10.1.0.1 255.255.0.0	
Step 5	ip subscriber [12-connected routed]	Enables ISG IP subscriber configuration mode.
	<pre>Example: Router(config-if)# ip subscriber</pre>	
Step 6	initiator dhcp class-aware	Configures ISG to create IP sessions upon receipt of DHCP DISCOVER packets.
	Example:	• The class-aware keyword allows ISG to influence the
	Router(config-if) initiator dhcp class-aware	IP address assigned by DHCP by providing DHCP with a class name.
Step 7	end	(Optional) Returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Configuring DHCP Server User Authentication

Perform this task to authenticate the DHCP clients on the server.

Prerequisites

You need to use the ISG framework to enable DHCP server user authentication.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. aaa new-model
- 4. aaa authentication login list-name local
- 5. **ip dhcp pool** *pool-name*
- **6. network** *network-number mask*
- 7. exit
- **8. interface** *type number*
- 9. ip subscriber 12-connected
- 10. initiator dhep class-aware
- 11. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	aaa new-model	Enables authentication, authorization, and accounting (AAA).
	Example:	
	Router(config)# aaa new model	
Step 4	aaa authentication login list-name local	Sets the AAA authentication at login.
	Example:	
	Router(config) # aaa authentication login mylist local	

	Command or Action	Purpose
Step 5	ip dhcp pool pool-name	Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.
	<pre>Example: Router(config)# ip dhcp pool testpool</pre>	
Step 6	network network-number mask	Configures the network number and mask for a DHCP address pool primary or secondary subnet on a Cisco IOS DHCP
	Example: Router(dhcp-config) # network 172.16.0.0 255.240.0.0	server.
Step 7	exit	Returns to global configuration mode.
	<pre>Example: Router(dhcp-config)# exit</pre>	
Step 8	interface type number	Enters interface configuration mode.
	<pre>Example: Router(config) # interface Ethernet 0/0</pre>	
Step 9	ip subscriber 12-connected	Configures a Layer 2 connected IP session on the interface and enters IP subscriber configuration mode.
	<pre>Example: Router(config-if)# ip subscriber 12-connected</pre>	
Step 10	initiator dhcp class-aware	Initiates a class for DHCP for an IP session initiated by DHCP.
	<pre>Example: Router(config-subscriber)# initiator dhcp class-aware</pre>	
Step 11	end	Returns to privileged EXEC mode.
	Example: Router(config-subscriber)# end	

Troubleshooting Tips

You can determine the DHCP authentication by using the **debug ip dhcp server events**, **debug ip dhcp server packet**, and **debug subscriber policy dpm event** commands. The following is sample output from the **debug subscriber policy dpm event** command:

```
*Apr 20 20:20:03.510: SG-DPM: DHCP Discover notification from client, mac_address = 001a.7014.c03e

*Apr 20 20:20:03.510: SG-DPM: getting the context for mac_address = 001a.7014.c03e

*Apr 20 20:20:03.510: SG-DPM: Could not find a dhcp_context for 001a.7014.c03e:

*Apr 20 20:20:03.510: SG-DPM: Sending an ID manager request with key as 001a.7014.c03e

*Apr 20 20:20:03.510: SG-DPM: Received reply from Id manager

*Apr 20 20:20:03.510: SG-DPM: Session Initiation notification on Active

*Apr 20 20:20:03.510: SG-DPM: Allocated SHDB Handle (0xB6000252) for Mac address

001a.7014.c03e

*Apr 20 20:20:03.510: SG-DPM: Client is able to perform DHCP Authentication.Setting the SSS_INFOTYPE_DHCP_AUTH_KEY

*Apr 20 20:20:03.510: SG-DPM: Sending Session start to PM, mac_address = 001a.7014.c03e
```

```
*Apr 20 20:20:03.514: SG-DPM: Request for Classname from client, mac_address = 001a.7014.c03e

*Apr 20 20:20:03.514: SG-DPM: getting the context for mac_address = 001a.7014.c03e

*Apr 20 20:20:03.514: SG-DPM: Sending an ID manager request with key as 001a.7014.c03e

*Apr 20 20:20:03.514: SG-DPM: Received reply from Id manager

*Apr 20 20:20:03.514: SG-DPM: No session found in ID manager

*Apr 20 20:20:03.514: SG-DPM: Processing sg_dpm_get_more_keys from SSS hdl 56000E52

*Apr 20 20:20:03.514: SG-DPM: DPM is providing Auth-User
```

You can also use the **show subscriber session detailed** and **show ip dhcp binding** commands to display subscriber information and DHCP pool information. The following is sample output from the **show ip dhcp binding** command:

Router# show ip dhcp binding

```
Bindings from all pools not associated with VRF:

IP address Client-ID/ Lease expiration Type
Hardware address/
User name

10.0.0.1 0100.1a70.1530.38 Nov 18 2008 03:43 PM Automatic
```

Configuring a DHCP Class in a Service Policy Map

Perform this task to assign a DHCP class to a service policy map. Subscribers for which this service policy map is activated will be assigned IP addresses from the DHCP pool or the remote server that is associated with the class.

Prerequisites

A DHCP pool must be configured. Classes configured within the DHCP pool must match the DHCP classes configured in the service policy map.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. policy-map type service policy-name
- 4. classname class-name
- 5. end
- 6. show policy-map type service

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	policy-map type service policy-name	Creates a service policy map or specifies an existing service policy map for configuration, and enters service policy-map
	Example:	configuration mode.
	Router(config) # policy-map type service service1	
Step 4	classname class-name	Associates a DHCP pool with a service policy map.
	Example:	
	Router(config-service-policymap)# classname class1	
Step 5	end	(Optional) Returns to privileged EXEC mode.
	Example:	
	Router(config-service-policymap)# end	
Step 6	show policy-map type service	(Optional) Displays the contents of all service policy maps.
	Evennler	• Use this command to verify that the DHCP class is associated with the service policy map.
	Example: Router# show policy-map type service	associated with the service policy map.

What to Do Next

Once you have configured the DHCP address pool class in a service policy map, you may want to configure a method of activating the service policy map; for example, control policies can be used to activate services. For more information about methods of service activation, see the module "Configuring ISG Subscriber Services."

Configuring a DHCP Class in a Service Profile or User Profile on the AAA Server

Perform this task to add the vendor-specific attribute (VSA) for a DHCP class to a user profile or service profile on the AAA server. Subscribers for whom the user or service profile is activated will be assigned IP addresses from the DHCP pool or the remote server that is associated with the class.

Prerequisites

A DHCP address pool must be configured. Classes configured within the DHCP address pool must match the DHCP address pool classes configured in the service or user profile.

SUMMARY STEPS

1. Add the DHCP Class attribute to the user or service profile.

	Command or Action	Purpose
Step 1	Add the DHCP Class attribute to the user or service profile.	Associates a DHCP address pool with a service or specific subscriber.
	<pre>Example: 26,9,1 = "subscriber:classname=class-name"</pre>	

What to Do Next

You may want to configure a method of activating the service policy map or service profile; for example, control policies can be used to activate services. For more information about methods of service activation, see the module "Configuring ISG Subscriber Services."

Configuring a DHCP Server IP Address

Perform this task to specify which DHCP servers to use on your network, or to configure the IP address of one or more DHCP servers available on the network, and to specify the DHCP Lease Query for routed IP sessions.

The DHCP server IP address needs to be configured for routed IP sessions, if the DHCP Lease Query is performed.

Prerequisites

- The DHCP server must support the DHCP lease protocol.
- The IP address of the phone must be assigned by DHCP address assignments.
- The traffic must be classified as Layer 3.

- 1. enable
- 2. configure terminal
- **3. ip dhcp-server** {*ip-address* | **query lease** {**retries** *max-retransmissions* | **timeout** *timeout-query-seconds*}
- 4. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	<pre>ip dhcp-server {ip-address query lease {retries max-retransmissions timeout timeout-query-seconds}}</pre>	Configures the IP address of one or more DHCP servers available on the network, and specifies the DHCP Lease Query for routed IP sessions.
	Example:	
	Router(config)# ip dhcp-server query lease retries 3	
Step 4	end	Exits global configuration mode.
	Example:	
	Router(config)# end	

Configuring ISG Dynamic VPN Selection

- Configuring a Multiservice Interface, page 32 (required)
- Specifying a VRF in a Service Policy Map, page 33 (required)
- Verifying VRF Transfer for IP Sessions, page 34 (optional)
- Troubleshooting VRF Transfer for IP Sessions, page 36 (optional)

Configuring a Multiservice Interface

Perform the steps in this procedure to configure a multiservice interface.

- 1. enable
- 2. configure terminal
- 3. interface multiservice interface-number
- 4. ip vrf forwarding vrf-name
- 5. ip address ip-address mask

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface multiservice interface-number	Creates a multiservice interface, which enables dynamic VPN selection and enters interface configuration mode.
	<pre>Example: Router(config)# interface multiservice 1</pre>	
Step 4	ip vrf forwarding vrf-name	Associates a VPN VRF with an interface or subinterface.
	<pre>Example: Router(config-if)# ip vrf forwarding vrf1</pre>	
Step 5	ip address ip-address mask	Sets the primary IP address for an interface.
		• Specify the IP address of the VPN.
	Example: Router(config-if)# ip address 209.165.200.223 255.255.255.0	

Specifying a VRF in a Service Policy Map

VRF transfer occurs when a new primary service is activated for a session, causing the session to transfer from one VRF to another. Services can be configured in service profiles on an external authentication, authorization, and accounting (AAA) server or they can be configured on the ISG device in service policy maps. Perform this task to configure a VRF in a service policy map on the ISG device.

- 1. enable
- 2. configure terminal
- 3. policy-map type service policy-map-name
- 4. ip vrf forwarding name-of-vrf
- 5. sg-service-type primary
- **6. sg-service-group** *service-group-name*

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	<pre>Example: Router> enable</pre>	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	policy-map type service policy-map-name	Creates or modifies a service policy map, which is used to define an ISG service, and enters service policy-map
	<pre>Example: Router(config)# policy-map type service service1</pre>	configuration mode.
Step 4	ip vrf forwarding name-of-vrf	Associates the service with a VRF.
	<pre>Example: Router(config-service-policymap)# ip vrf forwarding vrf2</pre>	
Step 5	sg-service-type primary	Defines the service as a primary service.
	<pre>Example: Router(config-service-policymap)# sg-service-type primary</pre>	 A primary service is a service that contains a network-forwarding policy. A primary service must be defined as a primary service by using the sg-service-type primary command. Any service that is not a primary service is defined as a secondary service by default.
Step 6	sg-service-group service-group-name	(Optional) Associates an ISG service with a service group.
	<pre>Example: Router(config-service-policymap)# sg-service-group group1</pre>	 A service group is a grouping of services that may be active simultaneously for a given session. Typically, a service group includes one primary service and one or more secondary services.

Verifying VRF Transfer for IP Sessions

Perform the steps in the following task as needed to verify VRF transfer for IP sessions.

- 1. enable
- 2. show subscriber session uid session-identifier detail
- 3. show ip subscriber [dangling seconds | detail | ip ip-address | mac mac-address | vrf vrf-name [dangling seconds | detail | ip ip-address]]

- 4. show idmgr {memory [detailed [component [substring]]] | service key session-handle session-handle-string service-key key-value | session key {aaa-unique-id aaa-unique-id-string | domainip-vrf ip-address ip-address vrf-id vrf-id | nativeip-vrf ip-address ip-address vrf-id vrf-id | portbundle ip ip-address bundle bundle-number | session-guid session-guid | session-handle session-handle-string | session-id session-id-string} | statistics}
- 5. **show ip route** [**vrf** *vrf-name*]
- 6. show ip dhcp binding [ip-address]

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	<pre>Example: Router> enable</pre>	
Step 2	show subscriber session uid session-identifier detail	Displays information about ISG subscriber sessions with a specific session identifier.
	Example: Router# show subscriber session uid 4 detail	
Step 3	<pre>show ip subscriber [dangling seconds detail ip ip-address mac mac-address vrf vrf-name [dangling seconds detail ip ip-address]]</pre>	Displays information about ISG IP subscriber sessions.
	Example: Router# show ip subscriber vrf vrf3	
Step 4	<pre>show idmgr {memory [detailed [component [substring]]] service key session-handle session-handle-string service-key key-value session key {aaa-unique-id aaa-unique-id-string domainip-vrf ip-address ip-address vrf-id vrf-id nativeip-vrf ip-address ip-address vrf-id vrf-id portbundle ip ip-address bundle bundle-number session-guid session-guid session-handle session-handle-string session-id session-id-string} statistics}</pre>	Displays information related to ISG session and service identity.
	Example: Router# show idmgr session key nativeip-vrf ip-address 10.0.0.1	
Step 5	show ip route [vrf vrf-name]	Displays the current state of the routing table.
	Example: Router# show ip route	
Step 6	show ip dhcp binding [ip-address]	Displays address bindings on the Cisco IOS DHCP server.
	Example: Router# show ip dhcp binding	

Troubleshooting VRF Transfer for IP Sessions

The commands in this procedure can be used to troubleshoot VRF transfer for IP sessions. These commands can be entered in any order.

SUMMARY STEPS

- 1. debug subscriber {event | error | packet | policy | service}
- 2. debug ip subscriber {event | error | packet | fsm | all}
- 3. debug subscriber policy dpm {error | event}
- 4. debug ip dhcp server {events | packets | linkage | class}

DETAILED STEPS

	Command or Action	Purpose
Step 1	<pre>debug subscriber {event error packet policy service}</pre>	Displays debugging messages pertaining to subscriber policies, policy server events, and changes to service.
	Example: Router# debug subscriber service	
Step 2	<pre>debug ip subscriber {event error packet fsm all}</pre>	Displays debugging messages pertaining to an IP session created on the service gateway.
	Example: Router# debug ip subscriber error	
Step 3	debug subscriber policy dpm {error event}	Displays diagnostic information about policy execution that is related to DHCP events.
	Example: Router# debug subscriber policy dpm event	
Step 4	<pre>debug ip dhcp server {events packets linkage class}</pre>	Enables Cisco IOS DHCP server debugging.
	Example: Router# debug dhcp ip dhcp server events	

Configuration Examples for ISG Access for IP Subscriber Sessions

- Example: ISG IP Interface Subscriber, page 37
- Example: ISG Routed IP Subscriber, page 37
- Example: ISG Layer 2 Connected IP Subscriber, page 37
- Example: DHCP-Initiated Session Recovery, page 37
- Example: ISG Interface with DHCP Class-Aware Capability, page 38

- Example: DHCP Address Pool Classes and Relay Actions for ISG, page 38
- Example: Dynamic VPN Selection, page 40

Example: ISG IP Interface Subscriber

The following example shows how to configure an IP interface session on GigabitEthernet interface 0/0/1.401:

```
interface GigabitEthernet 0/0/1.401
ip subscriber interface
```

Example: ISG Routed IP Subscriber

The following example shows how to configure ISG to create IP sessions for subscribers who connect to ISG on GigabitEthernet interface 0/0/1.401 through a routed access network. ISG will create IP sessions upon receipt of DHCP DISCOVER packets, incoming valid IP packets, and RADIUS Access-Request packets.

```
interface GigabitEthernet0/0/1.401
ip subscriber routed
  initiator dhcp class-aware
  initiator unclassified ip-address
  initiator radius-proxy
```

Example: ISG Layer 2 Connected IP Subscriber

The following example shows how to configure ISG to create IP sessions for subscribers who connect to ISG on GigabitEthernet interface0/0/1.401 through a Layer 2 connected access network. ISG will create IP sessions upon receipt of any frame with a valid source MAC address.

```
interface GigabitEthernet0/0/1.401
ip subscriber 12-connected
initiator unclassified mac-address
```

Example: ISG Static Session Creation

The following example shows how to create an ISG static session for server 209.165.200.225 for subscribers who connect to ISG on GigabitEthernet interface 0/4 through a Layer 2 connected access network. ISG will create a static session upon receipt of valid source IP address.

```
ip subscriber list mylist
  ip source 209.165.200.225 mac 0.7.f
interface GigabitEthernet 2/0/0
  ip subscriber 12-connected
  initiator static ip subscriber list mylist
```

Example: DHCP-Initiated Session Recovery

The following example configures an ISG policy that applies a service called "FIRST-SERVICE" upon session restart for subscribers belonging to the VRF "FIRST":

```
class-map type control TEST
```

```
match vrf FIRST

policy-map type control GLOBAL

class type control TEST event session-restart

1 service-policy type service name FIRST-SERVICE
```

Example: ISG Interface with DHCP Class-Aware Capability

In the following example, GigabitEthernet interface 1/0/0.400 is configured with DHCP class-aware functionality, which enables ISG to influence DHCP IP address assignment. If the service "SERVICE_DHCP" is activated, the DHCP pool "DHCP_POOL2" is used for address assignment. Otherwise, the default pool "DHCP_POOL1" is used.

```
interface GigabitEthernet1/0/0.400
 encapsulation dot1Q 400
 ip address 10.1.15.1 255.255.255.0 secondary
 ip address 10.1.10.1 255.255.255.0
no snmp trap link-status
service-policy type control RULE_406a
 ip subscriber 12-connected
  initiator dhcp class-aware
ip dhcp excluded-address 10.1.10.1
ip dhcp pool DHCP_POOL1
   network 10.1.10.0 255.255.255.0
   default-router 10.1.10.1
   lease 0 0 30
   class default
ip dhcp class default
ip dhcp pool DHCP_POOL2
   network 10.1.15.0 255.255.255.0
   default-router 10.1.15.1
   lease 0 0 30
   class DHCP_CLASS2
ip dhcp class DHCP_CLASS2
policy-map type service SERVICE_DHCP
classname DHCP CLASS2
```

Example: DHCP Address Pool Classes and Relay Actions for ISG

This section contains examples of DHCP address pool configuration and relay actions for ISG.

DHCP Server Coresident with ISG Configuration

In the following configuration example, the ISPs are ISP1 and ISP2 companies. The ISP1 company has its addresses assigned from an address pool that is dynamically allocated using on-demand address pools (ODAP). The ISP2 company has its customer addresses assigned from the address pool 10.100.0.0/16. Customers not associated with any ISP will have an address allocated from the address pool 10.1.0.0/16, and the lease time is set to 10 minutes.

```
!Address pool for ISP1 customers ip dhcp pool isp1-pool
```

```
origin dhcp
class isp1
!
!Address pool for ISP2 customers
!
ip dhcp pool isp2-pool
network 10.100.0.0 255.255.0.0
class isp2
!
!Address pool for customers without an ISP
!
ip dhcp pool temp
network 10.1.0.0 255.255.0.0
lease 0 0 10
class default
```

DHCP Relay Agent Coresident with ISG Configuration

In the following configuration example, there are two ISPs, "poolA" and "poolB". The "poolA" ISP and its customers are allowed to have addresses in the ranges 10.1.0.0/16 and 10.3.0.0/16, and are relayed to the DHCP server at 10.55.10.1. The "poolB" ISP and its customers are allowed to have addresses in the range 10.2.0.0/16 and 10.4.0.0/16, and are relayed to the DHCP server at 10.10.2.1.

```
!Address ranges:
interface gigabitethernet1/0/0
ip address 10.1.0.0 255.255.0.0
ip address 10.2.0.0 255.255.0.0 secondary
interface gigabitethernet2/0/0
ip address 10.3.0.0 255.255.0.0
ip address 10.4.0.0 255.255.0.0
!Address pools for poolA1 and poolB2:
ip dhcp pool poolA1
relay source 10.1.0.0 255.255.0.0
class poolA1
relay target 10.55.10.1
!Address pool for poolA2:
ip dhcp pool poolA2
relay source 10.3.0.0 255.255.0.0
class poolA2
relay target 10.55.10.1
!Address pools for poolB1 and poolB2:
ip dhcp pool poolB1
relay source 10.2.0.0 255.255.0.0
class poolB1
relay target 10.10.2.1
ip dhcp pool poolB2
relay source 10.4.0.0 255.255.0.0
class poolB2
 relay target 10.10.2.1
```

Configuration of secure ARP for the relay will use the same configuration command as secure ARP already uses on a DHCP server by using the **update arp** command in address-pool configuration mode. If the system is allocating an address from this address pool, it will add secure ARP. If the system is relaying a packet using this address pool, it will also add secure ARP.

Example: Dynamic VPN Selection

The following example shows how to configure dynamic VPN selection using a multiservice interface:

```
ip dhcp pool POOL1
   vrf vrf1
   network 10.0.0.1 255.255.0.0
   default-router 20.10.1.1
   lease 0 0 2
   class vrf-class-vrf1
ip dhcp class vrf-class-vrf1
policy-map type control TAL
class type control always event session-start
 1 service-policy type service name pbhk
 2 authorize identifier mac-address
interface GigabitEthernet0/0/7
 ip address 10.1.1.0 255.255.0.0
load-interval 30
negotiation auto
no cdp enable
service-policy type control TAL
 ip subscriber 12-connected
   initiator dhcp class-aware
```

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases
ISG commands	Cisco IOS Intelligent Services Gateway Command Reference
DHCP configuration	The "DHCP" module of the Cisco IOS XE IP Addressing Configuration Guide
Configuring ISG control policies	"Configuring ISG Control Policies" module in the Cisco IOS Intelligent Services Gateway Configuration Guide

Standards

Standard	Title
None	

MIBs

MIB	MIBs Link
None	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
None	_

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/cisco/web/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for ISG Access for IP Subscriber Sessions

Table 2 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 2 Feature Information for ISG Access for IP Subscriber Sessions

Feature Name	Releases	Feature Configuration Information
DHCP—Server User Authentication Cisco IOS XI Release 3.1S	Cisco IOS XE Release 3.1S	The DHCP Server User Authentication feature is used to authenticate the DHCP clients.
		The following section provides information about this feature:
		• Configuring DHCP Server User Authentication, page 27
		The following commands were introduced or modified by this feature: aaa authentication login, network (DHCP).
3	Cisco IOS XE Release 2.2	ISG provides a default policy and the ability to configure a policy that determines the actions ISG will take upon session restart following the recovery of a DHCP-initiated IP session.
		The following sections provide information about this feature:
		• IP Session Recovery for DHCP-Initiated IP Sessions, page 13
		• Configuring IP Session Recovery for DHCP-Initiated IP Sessions, page 22
		The following commands were introduced or modified by this feature: class type control, match vrf.
	Cisco IOS XE Release 2.2	Some of the commands that are used to configure ISG IP subscriber sessions were modified or replaced.
		The following section provides information about this feature:
		How to Configure ISG for IP Subscriber Sessions, page 14
		The following commands were introduced or modified by this feature: clear ip subscriber, debug ip subscriber, identifier interface, identifier ip src-addr, initiator, interface multiservice, ip subscriber interface, ip subscriber, show ip subscriber.

Table 2 Feature Information for ISG Access for IP Subscriber Sessions (continued)

Feature Name	Releases	Feature Configuration Information
ISG: Instrumentation: DHCP Lease Query Support	Cisco IOS XE Release 2.5.0	The DHCP Lease Query transaction is a DHCP transaction with special message types that enable, among other things, clients to query DHCP servers regarding the owner and the lease expiration time of an IP address.
		The following sections provide more information about this feature:
		• IP Subscriber Identity, page 9
		Configuring a DHCP Server IP Address, page 31
		The following commands were introduced or modified: ip dhcp-server , collect identifier .
ISG: Policy Control: DHCP Proxy	Cisco IOS XE Release 2.2	This feature enables ISG to dynamically interact with DHCP and apply policies that influence the IP addresses that DHCP assigns subscribers.
		The following section provides information about this feature:
		Assigning ISG Subscriber IP Addresses Using DHCP, page 25
ISG: Session: Creation: Interface IP Session: L2	Cisco IOS XE Release 2.5.0	ISG IP interface sessions include all IP traffic received on a specific physical or virtual interface. IP interface sessions are provisioned through the CLI; that is, a session is created when the IP interface session commands are entered.
		The following sections provide information about this feature:
		• Information About ISG Access for IP Subscriber Sessions, page 3
		Creating ISG IP Interface Sessions, page 18
ISG: Session: Creation: Interface IP Session: L3	Cisco IOS XE Release 2.5.0	ISG IP interface sessions include all IP traffic received on a specific physical or virtual interface. IP interface sessions are provisioned through the CLI; that is, a session is created when the IP interface session commands are entered.
		The following sections provide information about this feature:
		• Information About ISG Access for IP Subscriber Sessions, page 3
		Creating ISG IP Interface Sessions, page 18
ISG: Session: Creation: IP Session: Protocol Event (DHCP)	Cisco IOS XE Release 2.2	Most ISG sessions are created upon detection of a data flow that cannot be affiliated with an already active session. An ISG can be configured to create an IP session upon receipt of the first DHCP DISCOVER packet received from a subscriber.
		The following sections provide information about this feature:
		• Information About ISG Access for IP Subscriber Sessions, page 3
		How to Configure ISG for IP Subscriber Sessions, page 14
ISG: Session: Creation: IP Session: Subnet and Source IP: L2	Cisco IOS XE Release 2.2	The ISG session is the primary component used for associating services and policies across specific data flows. An IP subnet session is an ISG session that includes any IP traffic from a single IP subnet. A source-IP-based session includes traffic from a single source IP address.
		The following sections provide information about this feature:
		• Information About ISG Access for IP Subscriber Sessions, page 3
		How to Configure ISG for IP Subscriber Sessions, page 14

Table 2 Feature Information for ISG Access for IP Subscriber Sessions (continued)

Feature Name	Releases	Feature Configuration Information
ISG: Session: Creation: IP Session: Subnet and Source IP: L3	Cisco IOS XE Release 2.2	The ISG session is the primary component used for associating services and policies across specific data flows. An IP subnet session is an ISG session that includes any IP traffic from a single IP subnet. A source-IP-based session includes traffic from a single source IP address.
		The following sections provide information about this feature:
		• Information About ISG Access for IP Subscriber Sessions, page 3
		How to Configure ISG for IP Subscriber Sessions, page 14
ISG: Session: Multicast: Coexistence	Cisco IOS XE Release 2.5.0	The ISG Session Multicast Coexistence feature introduces the ability to host all the subscribers and services (data and multicast) on the same VLAN by enabling multicast and IP sessions to coexist on the same subinterface for Cisco ASR 10000 Series Aggregation Routers.
		The following sections provide information about this feature:
		• Coexistence of Multicast and IP Sessions, page 5
		• Creating IP Subscriber Sessions for Routed ISG Subscribers, page 15
		 Creating IP Subscriber Sessions for Layer 2 Connected ISG Subscribers, page 16
		Creating ISG IP Subnet Sessions, page 20
		• Configuring an ISG Interface for Dynamic DHCP Class Association, page 25
	Cisco IOS XE Release 2.2	The ISG session is the primary component used for associating services and policies with specific data flows. ISG sessions are associated with virtual routing and forwarding instances when routing is required for the network service. ISG VRF transfer provides a means to dynamically switch an active session between virtual routing domains.
		The following sections provide information about this feature:
		• Information About ISG Access for IP Subscriber Sessions, page 3
		How to Configure ISG for IP Subscriber Sessions, page 14
	Cisco IOS XE Release 2.5.0	The ISG Static Session Creation feature enables administrator initiated static IP sessions.
		The following section provides information about this feature:
		Creating an ISG Static Session, page 19
		The following commands were introduced or modified by this feature: initiator static subscriber list, ip source, ip subscriber list, show ip subscriber list.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2006–2011 Cisco Systems, Inc. All rights reserved.