

снарте 10

Configuring QoS on the GGSN

This chapter describes how to configure quality of service (QoS) functions to differentiate traffic flow through the gateway GPRS support node (GGSN) on the Cisco SAMI in the Cisco 7600 series router platform.

For a complete description of the GGSN commands in this chapter, refer to the *Cisco GGSN Command Reference* for the Cisco GGSN release you are using. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Overview of QoS Support on the GGSN, page 10-1
- Configuring UMTS QoS on the GGSN, page 10-2
- Configuring the GGSN Default QoS as Requested QoS, page 10-12
- Configuring Call Admission Control on the GGSN, page 10-12
- Configuring Per-PDP Policing, page 10-16
- Monitoring and Maintaining QoS on the GGSN, page 10-19
- Configuration Examples, page 10-21

Overview of QoS Support on the GGSN

The Cisco GGSN software supports 3G Universal Mobile Telecommunication System (UMTS) QoS. Each GPRS/UMTS packet data protocol (PDP) context request contains a UMTS QoS profile.

The implementation of QoS support in the GPRS/UMTS public LAN mobile network (PLMN) varies by the service provider and the available resources in the network. The 3GPP standards define the UMTS QoS classes that can be defined by a UMTS MS. However, the resulting QoS is negotiated and variable within the GPRS/UMTS network backbone according to the implementations of the service provider.

UMTS QoS

To manage different level of QoS, UMTS has defined the four QoS traffic classes based on delay, jitter, bandwidth, and reliability factors:

- Conversational
- Streaming
- Interactive
- Background

The Cisco GGSN delivers end-to-end UMTS QoS by implementing it using the Cisco IOS QoS differentiated services (Diffserv).

This chapter describes the QoS support that the GGSN provides for the UMTS QoS classes.

Configuring UMTS QoS on the GGSN

This section describes how to configure the UMTS QoS on the GGSN. It includes the following topics:

- Overview of UMTS QoS, page 10-2
- Configuring UMTS QoS Task Lists, page 10-3
- Enabling UMTS QoS Mapping on the GGSN, page 10-3
- Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group, page 10-3
- Assigning a DSCP to a DiffServ PHB Group, page 10-4
- Configuring the DSCP in the Subscriber Datagram, page 10-6
- Configuring the Cisco 7600 Platform GGSN UMTS QoS Requirements, page 10-7
- Verifying the UMTS QoS Configuration, page 10-10

Overview of UMTS QoS

3GPP standards define four QoS traffic classes based on delay, jitter, bandwidth, and reliability for UMTS. Table 10-1 describes these UMTS traffic classes and their characteristics, applications, and the mapped Cisco IOS QoS Diffserv class.

Traffic Class	Conversational (Real Time)	Streaming (Real Time)	Interactive (Best Effort)	Background (Best Effort)
Characteristics	Preserve time relation (variation) between information entities of the stream. Conversational pattern, therefore, very low delay and jitter.	Preserve time relation (variation) between information entities of the stream. Delay and jitter requirements are not as strict as with the conversational class.	Request/response pattern. Retransmission of payload content in-route.	Destination is not expecting the data with a stringent time. Retransmission of payload content in-route might occur.
Example Applications	Voice over IP	Streaming audio and video	Web browsing	Downloading email
Diffserv Class / Map to DSCP	Expedited Forwarding Class	Assured Forwarding 2 Class	Assured Forwarding 3 Class	Best Effort

Table 10-1 UMTS Traffic Classes

The Cisco GGSN supports end-to-end UMTS QoS by implementing it using the Cisco IOS Differentiated Services (DiffServ) model. The DiffServ model is a multiple-service model that can satisfy differing QoS requirements. With DiffServ, the network tries to deliver a particular kind of service based on the QoS specified by each packet. This specification can occur in different ways, for example, using the 6-bit differentiated services code point (DSCP) setting in IP packets or source and destination addresses. The network uses the QoS specification to classify, mark, shape, and police traffic, and to perform intelligent queueing.

For complete information on Cisco IOS QoS and the DiffServ service model, refer to the *Cisco IOS Quality of Service Solutions Configuration Guide*.

Configuring UMTS QoS Task Lists

To implement the UMTS QoS method on a GGSN, you must first enable the function. From there, you can modify the UMTS QoS options to support your network needs.

Configuring GGSN UMTS QoS on the Cisco 7600 Platform Task List

If configuring UMTS QoS on a GGSN on the Cisco 7600 platform, perform the following tasks:

- Enabling UMTS QoS Mapping on the GGSN, page 10-3 (Required)
- Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group, page 10-3 (Optional)
- Assigning a DSCP to a DiffServ PHB Group, page 10-4 (Optional)
- Configuring the DSCP in the Subscriber Datagram, page 10-6 (Optional)
- Configuring the Cisco 7600 Platform GGSN UMTS QoS Requirements, page 10-7 (Required)
- Configuring Call Admission Control on the GGSN, page 10-12 (Optional)
- Verifying the UMTS QoS Configuration, page 10-10

Enabling UMTS QoS Mapping on the GGSN

By default, UMTS QoS is not enabled on the GGSN. To enable UMTS QoS on the GGSN, use the following command in global configuration mode:

Command	Purpose
Router(config)# gprs qos map umts	Enables UMTS QoS mapping on the GGSN.

Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group

Before you can specify a QoS mapping from the UMTS QoS traffic classes to a DiffServ per-hop behavior (PHB) group, you must enable UMTS QoS mapping using the **gprs qos map umts** global configuration command.

The default mapping values for UMTS QoS traffic classes are as follows:

- Conversational traffic class to the ef-class DiffServ PHB group
- Streaming traffic class to the af2-class DiffServ PHB group

- Interactive traffic class to the af3-class DiffServ PHB group
- Background traffic class to the best-effort DiffServ PHB group

If you wish to use mapping values other than these defaults, you can use the **gprs umts-qos map traffic-class** command to map a UMTS traffic class to another DiffServ PHB group.

To successfully map UMTS QoS traffic classes to a DiffServ PHB, the class maps must be configured using the **class map** and **match ip dscp** Cisco IOS software commands. For more information about configuring class maps, refer to the *Cisco IOS Quality of Service Solutions Configuration Guide*.

To map a UMTS traffic class to a DiffServ PHB group, use the following command in global configuration mode:

Command	Purpose			
Router(config)# gprs umts-qos map traffic-class traffic-class diffserv-phb-group	Enables mapping of UMTS QoS traffic classes to a DiffServ PHB, where the UMTS traffic classes are:			
	• signalling			
	• conversational			
	• streaming			
	• interactive			
	• background			
	and the DiffServ PHB groups are:			
	• signalling-class			
	• ef-class			
	• af1-class			
	• af2-class			
	• af3-class			
	• af4-class			
	• best-effort			

Assigning a DSCP to a DiffServ PHB Group

By default, the default differentiated services code point (DSCP) value associated with a PHB class is used. Table 10-2 lists the default DSCP values for each PHB group.

Table 10-2 Default DSCP Values for PHB Groups

PHB Group	DSCP Value
EF	101110
AF11	001010
AF12	001100
AF13	001110

<u>Note</u>

PHB Group	DSCP Value	
AF21	010010	
AF22	010100	
AF23	010110	
AF31	011010	
AF32	011100	
AF33	011110	
AF41	100010	
AF42	100100	
AF43	100110	
Best Effort	000000	

Table 10-2 Default DSCP Values for PHB Groups (continued)

However, you can assign a DSCP to PHB groups.

For the Assured Forwarding (AF) PHB group, you can specify up to three DSCPs for each drop precedence. The signalling, EF, and best-effort classes do not have drop precedence, so only the first DSCP value is used. If you enter a value for the *dscp2* or *dscp3* arguments for these classes, it is ignored.

Note

Drop precedence indicates the order in which a packet will be dropped when there is congestion on the network.

۵, Note

To successfully map UMTS QoS traffic classes to a DiffServ PHB and assign a DSCP value to a DiffServ PHB group, the class maps must be configured using the **class map** and **match ip dscp** commands. For more information about configuring class maps, see *Cisco IOS Quality of Service Solutions Configuration Guide* and *Cisco IOS Quality of Service Solutions Command Reference*.

I

By default, signalling class is assigned to CS5 (101000), which is the equivalent of IP precedence 5.

To assign	a DSCP	value to	a DiffServ	PHB	group,	use th	e following	command	in glob	al config	guration
mode:											

Command	Purpose
Router(config)# gprs umts-qos map diffserv-phb diffserv-phb-group [dscp1] [dscp2] [dscp3]	Assigns a DSCP to a DiffServ PHB group where the DiffServ PHB groups are:
	• signalling
	• ef-class
	• af1-class
	• af2-class
	• af3-class
	• af4-class
	• best-effort
	and the DSCPs are:
	• dscp1—Required for all classes. Specifies one of 64 DSCP values from 0 to 63. This DSCP value corresponds to drop precedence 1.
	• dscp2—(Optional for AF classes) Specifies one of 64 DSCP values from 0 to 63. This DSCP value corresponds to drop precedence 2.
	• dscp3—(Optional for AF classes) Specifies one of 64 DSCP values from 0 to 63. This DSCP value corresponds to drop precedence 3.

Configuring the DSCP in the Subscriber Datagram

By default, the DSCP in subscriber datagrams is re-marked with the DSCP assigned to the traffic class when the PDP context was created.

To specify that the subscriber datagram be forwarded through the GTP path without modifying its DSCP, use the following command in global configuration mode:

Command	Purpose
Router(config)# gprs umts-qos dscp unmodified [up	Specifies that the subscriber datagram be forwarded through
down all]	the GTP path without modifying its DSCP.

To return to the default value, issue the no gprs umts-qos dscp unmodified command.

Configuring the Cisco 7600 Platform GGSN UMTS QoS Requirements

When configuring UMTS QoS for a GGSN running on a Cisco Service and Application Module for IP (SAMI) in the Cisco 7600 platform, the different components of the platform perform different QoS functions. Table 10-3 summarizes the QoS function performed by the Cisco 7600 platform component.

Table 10-3 QoS Function by Cisco 7600 Platform Compone
--

Cisco 7600 Component	UMTS QoS Function
Catalyst Line Card	Classification and ingress and egress scheduling
Supervisor Engine	Classification and aggregate policing
Cisco IOS GGSN image on the Cisco SAMI	Classification, DSCP marking, and output queuing

After you configure UMTS QoS on the GGSN, ensure the following tasks are completed:

Supervisor Engine

Note

The following list is a summary of the required tasks that need to be completed on the supervisor engine for UMTS QoS on a GGSN. For complete information each of these tasks, see the *Cisco 7600 Series Cisco IOS Software Configuration Guide*.

1. Enable Mutlilayer Switching QoS using the mls qos global configuration command.

Router# mls qos

2. On the supervisor engine, configure aggregate policing for Gi traffic.

Note Because there can be multiple Gn and Gi interfaces, but all the traffic eventually needs to go to a single GE port on the SAMI (one GE port for two GGSNs), we recommend that you use a Named Aggregate Policer to rate limit the traffic to the SAMI. We also recommend dropping all non-conforming traffic.

The following example illustrates the configuration for a named aggregate policer. The named policer is attached to the Gi interface:

Access-lis	t 101	permit	ip	any	any	dscp	ef	
Access-lis	t 102	permit	ip	any	any	dscp	af21	
Access-lis	permit	ip	any	any	dscp	af31		
Access-lis	permit	ip	any	any	dscp	af32		
Access-lis	t 103	permit	ip	any	any	dscp	af33	
Access-list 104 permit ip any any								
Class-map match-all conversational								
Match access-group 101								
Class-map match-all streaming								
Match access-group 102								
Class-map	Class-map match-all interactive							
Match	latch access-group 103							
Class-map	match-all background							
Match	access-group 104							

```
Mls qos aggregate-policer AGGREGATE-CONV bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-STREAMING bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-INTERACTIVE bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-BACKGROUND bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop
Policy-map Gi-incoming
Class conversational
Police aggregate AGGREGATE-CONV
```

```
Class streaming
Police aggregate AGGREGATE-STREAMING
Class interactive
Police aggregate AGGREGATE-INTERACTIVE
Class background
Police aggregate AGGREGATE-BACKGROUND
```

Router(config-if) # service-policy input Gi-incoming

<u>Note</u>

- To monitor policing statistics, you can use the following **show** commands:
- show mls qos aggregate-policer name
- show policy-map interface interface
- show policy interface interface
- **3.** Set the trust state of the ingress ports to trust-dscp mode using the **msl qos trust dscp** interface configuration command:

```
Router(config)# interface FastEthernet2/1
Router(config-if)# mls gos trust dscp
```

- 4. Configure egress port scheduling by completing the following tasks:
 - **a.** Obtain the UMTS traffic class-to-DSCP mappings using the **show gprs umts-qos traffic class** privilege EXEC command on the GGSN instance running on the Cisco SAMI:

```
Router# ggsn show gprs umts-qos traffic-class
```

b. Obtain the default DSCP-to-CoS mapping by displaying the QoS mapping information using the **show mls qos maps** privilege EXEC command.

Router# show mls gos maps

c. Obtain the default CoS-to-queue mapping by displaying the queueing statistics of an interface using the **show queuing interface** privilege EXEC command.

Router# show queuing interface interface

d. Using the information obtained in Steps A, B, and C, determine if customized egress DSCP-to-CoS mapping is necessary and if so, define the mapping using the **mls qos map dscp-cos** global configuration command.

Router(config) # mls qos map dscp-cos dscp to cos

When customizing DSCP-CoS mapping, ensure that:

- Conversational and streaming traffic are put into egress queue 4
- Interactive and background traffic are equally distributed between the two normal queues.
- Interactive traffic is mapped to different CoS values so that different thresholds can be configured on the queue to take advantage of WRED.
- 5. If the line card supports Weighted Random Early Detection WRED, configure congestion avoidance by completing the following tasks:
 - **a.** Enable WRED and specify the minimum and maximum threshold for specified queues using the **wrr-queue random-detect max-threshold** interface configuration command (the defaults are recommended).

Router(config-if)# wrr-queue random-detect max-threshold queue
percent-of-queue-size

b. Map CoS values to drop thresholds using the **wrr-queue cos map** interface configuration command. When the threshold is exceeded, frames with specific CoS values will be dropped.

```
wrr-queue cos-map queue-id threshold-id cos-1 ... cos-n
```

In the following example, CoS values 3 and 4 are assigned to transmit queue 1/threshold 2 and transmit 2/threshold 1.

Router(config-if)# wrr-queue cos-map 1 1 3
Router(config-if)# wrr-queue cos-map 1 2 4

c. Allocate bandwidth between standard transmit queue 1 (low priority) and standard transmit queue 2 (high priority) using the **wrr-queue bandwidth** interface configuration command.

Router(config-if) # wrr-queue bandwidth weight1 weight2 weight3

Cisco GGSN

1. Configure an output queueing strategy for the UMTS traffic classes for each GGSN.

You can configure a queueing strategy for each of the UMTS traffic classes for each GGSN.

The following configuration example assumes that the UMTS traffic classes and class maps have been defined.

```
Interface GigabitEthernet0/0
Bandwidth <max-bandwidth>
Service-policy output sami-output
Policy-map sami-output
Class conversational
Priority percent 5
Class streaming
Priority percent15
Class interactive
Bandwidth 20
Class background
Bandwidth 20
Class signaling
Bandwidth 15
```

I

Verifying the UMTS QoS Configuration

To verify your UMTS QoS configuration, use the **show running-config** command on the supervisor engine and the GGSN instance running on the Cisco SAMI and observe the UMTS QoS parameters in the following example:

Supervisor Engine Configuration:

```
Mls qos
Mls qos map dscp-cos 18 20 22 to 5
Mls qos map dscp-cos 26 to 4
Mls gos map dscp-cos 28,30 to 3
Access-list 101 permit ip any any dscp ef
Access-list 102 permit ip any any dscp af21
Access-list 103 permit ip any any dscp af31
Access-list 103 permit ip any any dscp af32
Access-list 103 permit ip any any dscp af33
Access-list 104 permit ip any any
Class-map match-all conversational
   Match access-group 101
Class-map match-all streaming
   Match access-group 102
Class-map match-all interactive
   Match access-group 103
Class-map match-all background
   Match access-group 104
```

```
Mls qos aggregate-policer AGGREGATE-CONV <bit rate1> <normal-burst> <max-burst>
Conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-STREAMING <bit rate2> <normal-burst> <max-burst>
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-INTERACTIVE <bit rate3> <normal-burst> <max-burst>
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-BACKGROUND <bit rate4> <normal-burst> <max-burst>
conform-action transmit exceed-action drop
```

Policy-map Gi-incoming Class conversational Police aggregate AGGREGATE-CONV Class streaming Police aggregate AGGREGATE-STREAMING Class interactive Police aggregate AGGREGATE-INTERACTIVE Class background Police aggregate AGGREGATE-BACKGROUND

```
Interface FastEthernet2/1
   Description "Gi interface"
   Mls gos trust dscp
   Wrr-queue cos-map 1 1 3
        Wrr-queue cos-map 1 2 4
        Wrr-queue bandwidth 50 40 10
   Service-policy input Gi-incoming
Interface FastEthernet2/2
   Description "Gn interface"
   Mls gos trust dscp
```

GGSN Configuration

```
Gprs qos map umts
Class-map match-all conversational
   Match ip dscp 46
Class-map match-any interactive
   Match ip dscp 26
   Match ip dscp 28
   Match ip dscp 30
Class-map match-any streaming
   Match ip dscp 18
   Match ip dscp 20
   Match ip dscp 22
Class-map match-all signaling
   Match ip dscp 40
Class-map match-any background
   Description default class
   Match ip dscp 0
Policy-map sami-output
   Class conversational
       Priority percent 5
```

```
Class streaming
Priority percent 15
Class interactive
Bandwidth 20
Class background
Bandwidth 20
Class signaling
Bandwidth 15
```

I

```
interface Gigabitthernet 0/0
    bandwidth 250000
    service-policy output max-output
```

Configuring the GGSN Default QoS as Requested QoS

If you are not using UMTS QoS mapping on the GGSN, you can configure the GGSN to set its default QoS values in the response message exactly as requested in the Create PDP Context request. By using this command, you can prevent the GGSN from lowering the requested QoS.

To configure the GGSN to set the requested QoS as the default QoS, use the following command, beginning in global configuration mode:

Command	Purpose
Router(config)# gprs qos default-response requested	(Optional) Specifies that the GGSN sets its default QoS values in the response message exactly as requested in the Create PDP Context request.

When the **gprs qos default-response requested** command is not configured, and GPRS canonical QoS is not enabled, the GGSN sets its default QoS class to best effort.

Configuring Call Admission Control on the GGSN

The Call Admission Control (CAC) feature on the GGSN ensures that required network resources are available for real-time data traffic such as voice and video. CAC is applied at the APN and consists of two functions: maximum QoS authorization and bandwidth management.

The following sections describe how to configure these functions on the GGSN:

- Configuring Maximum QoS Authorization, page 10-12
- Configuring Bandwidth Management, page 10-15
- Configuration Examples, page 10-21
- CAC Configuration Example, page 10-23

CAC on the GGSN requires that UMTS QoS has been enabled using the **gprs qos map umts** global configuration command and that traffic class criterion and traffic policies have been created.

Configuring Maximum QoS Authorization

The CAC maximum QoS authorization function ensures that the QoS requested by a create PDP context does not exceed the maximum QoS configured within an APN. Using a *CAC maximum QoS policy*, you define certain QoS parameters within a policy and attach the policy to an APN. The CAC maximum QoS policy limits the QoS requested by the PDP during its creation and modification process.

A CAC maximum QoS policy can be attached to multiple APNs.

The following parameters can be defined in a CAC maximum QoS policy:

- Maximum number of active PDP contexts—Maximum number of active PDP contexts for an APN. If the total number of active PDPs on an APN exceeds the number configured with this parameter in a policy, the GGSN rejects the PDP context. Optionally, you can configure CAC to accept only PDP contexts with Allocation/Retention priority set to 1 after the threshold is reached.
- **Maximum bit rate**—Highest maximum bit rate (MBR) that can be allowed for each traffic class in both the uplink and downlink directions for an APN. If an MBR is configured in the policy, CAC ensures that the MBR is greater than the maximum GBR. If an MBR is not configured, CAC accepts any MBR requested by a PDP context.
- **Guaranteed bit rate**—Highest guaranteed bit rate (GBR) that can be accepted for real-time traffic (conversational and streaming) in both the uplink and downlink directions for an APN. If a GBR is not configured in the policy, the CAC accepts any GBR requested by a PDP context.
- **Highest traffic class**—Highest traffic class that can be accepted at an APN. If the requested traffic class is higher than the highest traffic class specified in the policy, the PDP context is rejected. If this parameter is not configured, any traffic class is accepted.

The GGSN does not downgrade the traffic classes during PDP context creation, however, the GGSN does downgrade the traffic class during the PDP context modification if the highest traffic class configured in an APN is changed after the PDP context creation and the GGSN receives a request for a new traffic class (in a PDP context update request) that is greater than the new highest traffic class. If this occurs, the GGSN downgrades the request to the new highest traffic class.

- **Maximum traffic handling priority**—Specifies the maximum traffic handling priority for interactive traffic class that can be accepted at an APN. If this parameter is not specified, all traffic handling priorities are accepted.
- Maximum delay class—Defines the maximum delay class for R97/R98 QoS that can be accepted at an APN.
- Maximum peak throughput class—Defines the maximum peak throughput class for R97/R98 QoS that can be accepted at an APN.

Configuring a CAC Maximum QoS Policy

To configure a CAC maximum QoS policy, use the following commands, beginning in global configuration mode:

	Command	Purpose
Step 1	Router(config)# gprs qos cac-policy policy-name	Creates or modifies a CAC maximum QoS policy.
Step 2	Router(config-umts-cac-policy)# maximum pdp-context number [threshold number2]	Specifies the maximum number PDP contexts that can be created for a particular APN. Optionally, a second threshold can be configured that after reached, only PDP contexts with allocation/retention priority 1 are accepted.
Step 3	Router(config-umts-cac-policy)# maximum traffic-class traffic-class-name [priority value]	Specifies the highest traffic class that can be accepted at an APN. Valid values are conversational, streaming, interactive, or background. Optionally, the highest traffic handling priority for the interactive traffic class can be specified.

	Command	Purpose
Step 4	Router(config-umts-cac-policy)# maximum peak-throughput value [reject]	Defines the maximum peak throughput for R97/R98 QoS that can be accepted at an APN. Valid values are between 1 and 9.
		By default, PDP contexts for which the peak throughput is higher than the configured value are downgraded to the configured value. Optionally, you can specify the reject keyword to have these PDP contexts rejected instead.
Step 5	Router(config-umts-cac-policy)# maximum delay-class value [reject]	Specifies the maximum delay class for R97/R98 QoS that can be accepted at an APN.
		By default, PDP contexts for which the maximum delay-class is higher than the configured value are downgraded to the configured value. Optionally, you can specify the reject keyword to have these PDP contexts rejected instead.
Step 6	<pre>Router(config-umts-cac-policy)# mbr traffic-class traffic-class-name bitrate {uplink downlink} [reject]</pre>	Specifies the maximum bit rate (MBR) that can be allowed for each traffic class in both directions (downlink and uplink). Valid value is between 1 and 16000.
		Note Although the valid command range for both the uplink and downlink direction is 1 to 16000, the maximum rate that can be acheived in the uplink direction is 8640. Additionally, a value greater than 8640 in the downlink direction is supported for GTPv1 PDPs only.
		Optionally, using the reject keyword option, you can specify for create PDP context requests to be rejected when the MBR exceeds the configured value.
Step 7	<pre>Router(config-umts-cac-policy)# gbr traffic-class traffic-class-name bitrate {uplink downlink} [reject]</pre>	Specifies the highest guaranteed bit rate (GBR) that can be allowed in uplink and downlink directions for real-time classes (conversational and streaming) at an APN. Valid value is between 1 and 16000.
		Note Although the valid command range for both the uplink and downlink direction is 1 to 16000, the maximum rate that can be acheived in the uplink direction is 8640. Additionally, a value greater than 8640 in the downlink direction is supported for GTPv1 PDPs only.
		Optionally, using the reject keyword option, you can specify for create PDP context requests to be rejected when the GBR exceeds the configured value.

Enabling the CAC Maximum QoS Policy Function and Attaching a Policy to an APN

To enable the CAC maximum QoS policy function and attach a policy to an APN, use the following command in access-point configuration mode:

Command	Purpose
Router(config-access-point) # cac-policy	Enables the maximum QoS policy function of the CAC
	feature and applies a policy to an APN.

Configuring Bandwidth Management

The CAC bandwidth management function ensures that there is sufficient bandwidth for real-time PDP contexts during the PDP context activation and modification process.

The CAC feature uses user-defined bandwidth pools to negotiate and reserve bandwidth. In these pools, you define the total bandwidth allocated to that pool and then allocate a percentage of that bandwidth to each traffic class.

In the following example, bandwidth pool (pool A) has been created with 100000 kbps allocated to it. Additionally, a percentage of that 100000 kbps of bandwidth has been allocated to each traffic class, creating four "traffic class-based" bandwidth pools.

```
gprs bandwidth-pool A
bandwidth 100000
traffic-class conversational percent 40
traffic-class streaming percent 30
traffic-class interactive percent 20
traffic-class background percent 10
```

Configuring a CAC Bandwidth Pool

The CAC bandwidth pool is used by CAC to negotiate and reserve bandwidth. However, to guarantee reserved bandwidth, a Cisco IOS QoS service policy that defines queuing and scheduling must be created and attached to the physical interface.

To configure a CAC bandwidth pool, use the following commands, beginning in global configuration mode:

	Command	Purpose
Step 1	Router(config)# gprs qos bandwidth-pool pool-name	Creates or modifies a CAC bandwidth pool.

I

	Command	Purpose
Step 2	Router(config-gprs-bw-pool)# bandwidth value	Specifies the total bandwidth, in kilobits per second, for a bandwidth pool. Valid value is a number from 1 to 4294967295.
Step 3	Router(config-gprs-bw-pool)# traffic-class traffic-class [percent] value	Allocates bandwidth from a bandwidth pool to a specific traffic class in either a percentage (1 to 100% when used with the optional percent keyword), or absolute value in kilobits per second (0 to 4292967295). Note that the same unit (percentage or absolute value) must be used for all traffic classes.

Enabling the CAC Bandwidth Management Function and Applying a Bandwidth Pool to an APN

To enable the CAC bandwidth management function and apply a bandwidth pool to an APN, use the following command in access-point configuration mode:

Command	Purpose
Router(config-access-point)# bandwidth pool { input output } <i>pool-name</i>	Enables the CAC bandwidth management function and applies a bandwidth pool to the input (Gn) interface in the downlink direction (input keyword) or output (Gi) interface in the uplink direction (output keyword) of an APN.

A CAC bandwidth pool can be applied to multiple APNs.

Configuring Per-PDP Policing

Per-PDP policing (session-based policing) is a GGSN Traffic Conditioner (3G TS 23.107) function that can be used to limit the maximum rate of traffic received on the Gi interface for a particular PDP context.

The policing function enforces the CAC-negotiated data rates for a PDP context. The GGSN can be configured to either drop non-conforming traffic or mark non-conforming traffic for preferential dropping if congestion occurs.

The policing parameters used depends on the PDP context. Specifically,

- For GTPv1 PDPs with R99 QoS profiles, the MBR and GBR parameters from the CAC-negotiated QoS profile are used. For non real time traffic, only the MBR parameter is used.
- For GTPv1 PDPs with R98 QoS profiles and GTPv0 PDPs, the peak throughput parameter from the CAC-negotiated QoS policy is used.

Restrictions

Before configuring per-PDP policing, note the following:

- Per-PDP policing is supported for IPv4 PDP contexts only.
- UMTS QoS mapping must be enabled on the GGSN.
- Cisco Express Forwarding (CEF) must be enabled on Gi interface.
- Per-PDP policing is supported for downlink traffic at the Gi interface only.
- The initial packets of a PDP context are not policed.
- Hiearchical policing is not supported.
- If flow-based policing is configured in a policy map that is attached to an APN, the **show policy-map apn** command displays the total number of packets received before policing and does not display the policing counters.
- A service policy that has been applied to an APN cannot be modified. To modify a service policy, remove the service policy from the APN, modify it, and then re-apply it.
- Multiple class maps, each with **match flow pdp** configured and a different differentiated services code point (DSCP), are supported in a policy map only if the DSCP is trusted (the **gprs umts-qos dscp unmodified** global configuration command has not been configured on the GGSN).

Per-PDP Policing Configuration Task List

To configure per-PDP policing on the GGSN, perform the following tasks:

- Creating a Class Map with PDP Flows as the Match Criterion, page 10-17
- Creating a Policy Map and Configuring Traffic Policing, page 10-18
- Attaching the Policy to an APN, page 10-18
- Resetting APN Policing Statistics, page 10-19

Creating a Class Map with PDP Flows as the Match Criterion

To create a class match and specify PDP flows as the match criterion, use the following commands, beginning in global configuration mode:

	Command	Purpose
Step 1	Router(config)# class-map class-map-name	Creates a class map to be used for matching packets.
Step 2	Router(config-cmap)# match flow pdp	Specifies PDP flows as the match criterion in a class map.
Step 3	Router(config-cmap)# exit	Exits class map configuration mode.

Note

Do no specify the **match-any** option when defining a class for PDP flow classification. The default is **match-all**.

Additional match criteria can also be configured in the class map. DSCP and precedence-based classifications are supported.

Creating a Policy Map and Configuring Traffic Policing

To create a policy map and assign the class map, use the following commands, beginning in global configuration mode:

	Command	Purpose
Step 1	Router(config)# policy map policy-map-name	Creates or modifies a policy map that can be attached to one or more APN to specify a service policy.
Step 2	Router(config-pmap)# class class-map-name	Specifies the name of the class whose policy you want to create or change.
Step 3	Router(config-pmap)# police rate pdp [burst bytes] [peak-rate pdp [peak-burst bytes]] conform-action action exceed-action action [violate-action action]	Configures traffic policing and the action to take on non-conforming packets. The rate and peak-rate parameters are obtained from individual flows.
		Note When configuring the police command, burst sizes may be specified but are not recommended. Incorrect configuration of burst values results in incorrect behavior.
		Possible values for the <i>action</i> variable are:
		• drop —Drops the packet.
		• set-dscp-transmit —Sets the IP differentiated services code point (DSCP) value and transmits the packet with the new IP DSCP value setting.
		• set-prec-transmit —Sets the IP precedence and transmits the packet with the new IP precedence value setting.
		• transmit —Transmits the packet. The packet is not altered.
Step 4	Router(config-pmap)# exit	Exits policy map configuration mode.

Attaching the Policy to an APN

To attach the policy map to an APN, use the following commands, beginning in access-point configuration mode:

	Command	Purpose
Step 1	Router(config-)# access-point index	Specifies an access point number and enters access-point configuration mode.
Step 2	Router(config-access-point)# service-policy input policy-map-name	Attaches a service policy to an APN, to be used as the service policy in the downlink direction for PDP flows of that APN.
Step 3	Router(config-access-point)# exit	Exits access-point configuration mode.

Resetting APN Policing Statistics

To reset policing counters displayed by the **show policy-map apn** command, use the following command in global configuration mode

Command	Purpose
Router(config)# clear gprs access-point statistics access-point-index	Clears statistics counters for a specific access point.

Monitoring and Maintaining QoS on the GGSN

This section describes the commands used to display QoS configuration parameters and status on the GGSN. It contains the following information:

- show Command Summary, page 10-19
- Monitoring UMTS QoS, page 10-20

show Command Summary

I

This section provides a summary list of the **show** commands that you can use to monitor GPRS and UMTS QoS on the GGSN. Not all commands provide information for all types of QoS methods on the GGSN.

The following privileged EXEC commands are used to monitor and maintain QoS on the GGSN:

Command	Purpose
Router# show gprs bandwidth-pool status pool-name	Displays a list of configured CAC bandwidth pools, along with their status.
Router# show gprs gtp pdp-context imsi hex-data	Displays PDP contexts by international mobile subscriber identity (IMSI).
Router# show gprs gtp pdp-context tid hex-data	Displays PDP contexts by tunnel ID.
Router# show gprs gtp pdp-context qos-umts-class {conversational streaming interactive background}	Displays PDP context by UMTS QoS traffic class. Applies to UMTS QoS only.
Router# show gprs qos status	Displays QoS statistics for the GGSN.

Command	Purpose
Router# show gprs umts-gos map traffic-class	Displays UMTS QoS mapping information.
Router# show gprs umts-gos police pdp tid tid	Displays policing statistics for a PDP context.
Router# show gprs umts-qos profile pdp tid tid	Displays requested and negotiated QoS information for a PDP context.

Monitoring UMTS QoS

This section describes the commands used to display UMTS QoS configuration parameters and status on the GGSN.

It includes the following topics:

- Displaying UMTS QoS Status on the GGSN, page 10-20
- Displaying UMTS QoS Information for a PDP Context, page 10-20

Displaying UMTS QoS Status on the GGSN

You can use the **show gprs qos status** command to display the number of current active PDP contexts by UMTS traffic class.

The following example shows 100 active PDP contexts on the GGSN that are using the UMTS QoS conversational traffic class, 140 active PDP contexts that have a streaming UMTS QoS traffic class, 1345 active PDP contexts that have an interactive UMTS traffic class, and 2000 active PDP contexts that have a background UMTS QoS traffic class.

The following example shows output from the **show gprs qos status** command for UMTS QoS:

```
Router# show gprs qos status
GPRS QoS Status:
   type:UMTS
   conversational_pdp 100 streaming_pdp 150
   interactive_pdp 1345 background_pdp 2000
```

Displaying UMTS QoS Information for a PDP Context

To display UMTS QoS information for a particular PDP context, you can use the **show gprs gtp pdp-context** command with the **tid** or **imsi** keyword. The following example shows sample output for the **show gprs gtp pdp-context tid** command for a PDP context in the XX UMTS QoS traffic class. The output fields displaying QoS information are shown in bold:

```
Router# show gprs gtp pdp-context tid 111111111111111
ΨTD
               MS Addr
                          Source SGSN Addr
                                                       APN
111111111111111 10.0.0.1
                               Static 10.39.39.1
                                                      www.corporate.com
current time :Nov 12 2002 08:10:23
   user_name (IMSI):21300000000000
                                      MS address:2.0.0.1
   MS International PSTN/ISDN Number (MSISDN):987
   sgsn_addr_signal:15.15.0.2
                                     sgsn_addr_data: 15.15.0.3
   control teid local: 0x6309ABF4
   control teid remote:0x0000021
    data teid local: 0x6308AA38
                     0x00000022
    data teid remote:
   primary pdp:Y
                          nsapi:1
```

```
signal_sequence: 1
                                  seq_tpdu_up:
                                                   0
seq_tpdu_down: 0
upstream_signal_flow: 0
                                upstream_data_flow:
                                                      0
downstream_signal_flow:0
                                  downstream_data_flow:0
RAupdate_flow: 0
pdp_create_time: Nov 12 2002 08:10:09
last_access_time: Nov 12 2002 08:10:09
mnrgflag: 0
                      tos mask map:68
gtp pdp idle time:72
umts gos_reg:0911016901010111050101
umts qos_neg:0911016901010111050101
QoS class:interactive
QoS for charging:
                      qos_req:000000
                                         qos_neg:000000
                     rcv_byte_count: 0
send_byte_count: 0
rcv_pkt_count: 0
send_pkt_count: 0
cef_up_pkt: 0
                             cef_up_byte: 0
cef_down_pkt: 0
cef_drop: 0
charging_id: 223415403
                             cef_down_byte: 0
pdp reference count:2
primary dns: 0.0.0.0
secondary dns: 0.0.0.0
primary nbns: 0.0.0.0
secondary nbns: 0.0.0.0
ntwk_init_pdp:
                   0
```

Configuration Examples

This section includes the following examples:

- UMTS QoS Configuration Examples, page 10-21
- CAC Configuration Example, page 10-23
- Per-PDP Policing Configuration Example, page 10-24

UMTS QoS Configuration Examples

Supervisor Engine Configuration:

```
Mls qos

Mls qos map dscp-cos 18 20 22 to 5

Mls qos map dscp-cos 26 to 4

Mls qos map dscp-cos 28,30 to 3

Access-list 101 permit ip any any dscp ef

Access-list 102 permit ip any any dscp af21

Access-list 103 permit ip any any dscp af31

Access-list 103 permit ip any any dscp af32

Access-list 103 permit ip any any dscp af33

Access-list 104 permit ip any any

Class-map match-all conversational

Match access-group 101

Class-map match-all streaming

Match access-group 102

Class-map match-all interactive
```

Match access-group 103

```
Class-map match-all background

Match access-group 104

Mls qos aggregate-policer AGGREGATE-CONV <bit rate1> <normal-burst> <max-burst>

Conform-action transmit exceed-action drop

Mls qos aggregate-policer AGGREGATE-STREAMING <bit rate2> <normal-burst> <max-burst>

conform-action transmit exceed-action drop

Mls qos aggregate-policer AGGREGATE-INTERACTIVE <bit rate3> <normal-burst> <max-burst>

conform-action transmit exceed-action drop

Mls qos aggregate-policer AGGREGATE-BACKGROUND <bit rate4> <normal-burst> <max-burst>

conform-action transmit exceed-action drop
```

Policy-map Gi-incoming Class conversational Police aggregate AGGREGATE-CONV Class streaming Police aggregate AGGREGATE-STREAMING Class interactive Police aggregate AGGREGATE-INTERACTIVE Class background Police aggregate AGGREGATE-BACKGROUND

```
Interface FastEthernet2/1
Description "Gi interface"
Mls gos trust dscp
Wrr-queue cos-map 1 1 3
Wrr-queue cos-map 1 2 4
Wrr-queue bandwidth 50 40 10
Service-policy input Gi-incoming
```

Interface FastEthernet2/2
Description "Gn interface"
Mls gos trust dscp

GGSN Configuration

```
Gprs qos map umts
```

```
Class-map match-all conversational
   Match ip dscp 46
Class-map match-any interactive
   Match ip dscp 26
   Match ip dscp 28
   Match ip dscp 30
Class-map match-any streaming
   Match ip dscp 18
   Match ip dscp 20
   Match ip dscp 22
Class-map match-all signaling
   Match ip dscp 40
Class-map match-any background
   Description default class
   Match ip dscp 0
Policy-map sami-output
   Class conversational
       Priority percent 5
   Class streaming
```

Priority percent 15 Class interactive Bandwidth 20

```
Class background
Bandwidth 20
Class signaling
Bandwidth 15
interface Gigabitthernet 0/0
bandwidth 250000
service-policy output max-output
```

!Enable UMTS QoS Mapping

CAC Configuration Example

The following is a configuration example of CAC and QoS implemented on a GGSN running on the Cicso SAMI in a Cisco 7600 series router.

```
gprs qos map umts
!Create CAC Maximum QoS authorization policy
gprs qos cac-policy abc_qos_policy1
 maximum pdp-context 1200 threshold 1000
 maximum traffic-class conversational
  mbr traffic-class conversational 100 uplink
  mbr traffic-class conversational 100 downlink
  mbr traffic-class streaming 100 uplink
  mbr traffic-class streaming 100 downlink
  mbr traffic-class interactive 120 uplink
  mbr traffic-class interactive 120 downlink
  mbr traffic-class background 120 uplink
  mbr traffic-class background 120 downlink
  gbr traffic-class conversational 64 uplink
  gbr traffic-class conversational 80 uplink
  gbr traffic-class streaming 80 downlink
  gbr traffic-class streaming 80 downlink
gprs qos cac-policy max_qos_policy2
  maximum pdp-context 1500
  maximum traffic-class interactive priority 1
  mbr traffic-class interactive 200
  mbr traffic-class background 150
! Create class-map to classify UMTS traffic class
class-map match-any conversational
  match ip dscp ef
class-map match-any streaming
  match ip dscp af21
  match ip dscp af22
  match ip dscp af23
class-map match-any interactive
  match ip dscp af31
  match ip dscp af32
  match ip dscp af33
class-map match-any background
  match ip dscp default
!Create traffic policy
```

```
policy-map ggsn1_traffic_policy
 class conversational
 priority percent 25
class streaming
 bandwidth percent 20
class interactive
  bandwidth percent 20
  random-detect dscp-based
 class background
 bandwidth percent 10
  random-detect dscp-based
! Create bandwidth pool
gprs qos bandwidth-pool ggsn1_bw_pool
  bandwidth 500000
  traffic-class streaming percent 20
  traffic-class interactive percent 20
  traffic-class background percent 10
! Set interface bandwidth
int gigabitEthernet 0/0
  bandwidth 500000
  service-policy output ggsn1_traffic_policy
!Attach bandwidth pool to the APN
gprs access-point-list gprs
access-point 1
 access-point-name abc.com
  cac-policy abc_qos_policy1
  bandwidth-pool output ggsn1_bw_pool
  bandwidth-pool input ggsn1_bw_pool
 access-point 2
  access-point-name xyz.com
  cac-policy xyz_qos_policy1
  bandwidth-pool output ggsn1_bw_pool
  bandwidth-pool input ggsn1_bw_pool
```

Per-PDP Policing Configuration Example

The following is a configuration example of per-pdp policing.

! Create a class for PDP flows class-map class-pdp Match flow pdp

ſ

```
! Create a policy map and assign a class to the map
policy-map policy-gprs
  class class-pdp
! Configure traffic policing
  police rate pdp conform-action action exceed-action action violate-action action
! Attach a service policy to an APN
gprs access-point-list gprs
  access-point 1
   service-policy in policy-gprs
```

