
HTTP Inspection Engine

Last Updated: March 26, 2012

The HTTP Inspection Engine feature allows users to configure their Cisco IOS Firewall to detect and
prohibit HTTP connections--such as tunneling over port 80, unauthorized request methods, and non-HTTP
compliant file transfers--that are not authorized within the scope of the security policy configuration.
Tunneling unauthorized protocols through port 80 and over HTTP exposes a network to significant security
risks.

The Cisco IOS Firewall can now be configured with a security policy that adheres to the following tasks:

• Allowing specific traffic targeted for port 80 to traverse the firewall. The traffic is inspected for
protocol conformance and for the types of HTTP commands that are allowed or disallowed.

• Denying specific traffic targeted for port 80 that does not comply to HTTP traffic standards. The
firewall is enabled to drop the packet, reset the connection, and send a syslog message, as appropriate.

• Finding Feature Information, page 1

• Restrictions for HTTP Inspection Engine, page 2

• Information About HTTP Inspection Engine, page 2

• How to Define and Apply an HTTP Application Policy to a Firewall for Inspection, page 2

• Configuration Examples for Setting Up an HTTP Inspection Engine, page 10

• Additional References, page 11

• Feature Information for Setting Up an HTTP Inspection Engine, page 12

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest feature
information and caveats, see the release notes for your platform and software release. To find information
about the features documented in this module, and to see a list of the releases in which each feature is
supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Americas Headquarters:
Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

http://www.cisco.com/go/cfn

Restrictions for HTTP Inspection Engine
The Cisco 831 router with 48M RAM does not have enough memory to support this feature.

Information About HTTP Inspection Engine
Before configuring an application firewall to detect and police specific traffic targeted for port 80, you
should understand the following concepts:

• What Is a Security Policy, page 2

• Cisco IOS HTTP Application Policy Overview, page 2

What Is a Security Policy
The application firewall uses a security policy, which consists of a collection of static signatures, to detect
security violations. A static signature is a collection of parameters that specify protocol conditions that
must be met before an action is taken. (For example, a signature may specify that an HTTP data stream
containing the POST method must reset the connection.) These protocol conditions and reactions are
defined by the end user via the command-line interface (CLI) to form a security policy.

Cisco IOS HTTP Application Policy Overview
HTTP uses port 80 to transport Internet web services, which are commonly used on the network and rarely
challenged with regards to their legitimacy and conformance to standards. Because port 80 traffic is
typically allowed through the network without being challenged, many application developers are
leveraging HTTP traffic as an alternative transport protocol in which to enable their application to travel
through or even bypass the firewall.

Most firewalls provide only packet filtering capabilities that simply permit or deny port 80 traffic without
inspecting the data stream; the Cisco IOS application firewall for HTTP performs packet inspection as
follows:

• Detects HTTP connections that are not authorized within the scope of the security policy
configuration.

• Detects users who are tunneling applications through port 80.

If the packet is not in compliance with the HTTP protocol, it will be dropped, the connection will be reset,
and a syslog message will be generated, as appropriate.

How to Define and Apply an HTTP Application Policy to a
Firewall for Inspection

• Defining an HTTP Application Policy, page 3

• Applying an HTTP Application Policy to a Firewall for Inspection, page 7

What Is a Security Policy
 Restrictions for HTTP Inspection Engine

2

Defining an HTTP Application Policy
Use this task to create an HTTP application firewall policy.

Note Although application firewall policies are defined in global configuration mode, only one global policy for
a given protocol is allowed per interface.

>

SUMMARY STEPS

1. enable

2. configure terminal

3. appfw policy-name policy-name

4. application protocol

5. strict-http action {reset | allow} [alarm]

6. content-length {min bytes max bytes | min bytes | max bytes} action {reset | allow} [alarm]

7. content-type-verification [match-req-resp] action {reset | allow} [alarm]

8. max-header-length {request bytes response bytes} action {reset | allow} [alarm]

9. max-uri-length bytes action {reset | allow} [alarm]

10. request method {rfc rfc-method | extension extension-method} action {reset | allow} [alarm]

11. port-misuse {p2p | tunneling | im | default} action {reset | allow} [alarm]

12. transfer-encoding type {chunked | compress | deflate | gzip | identity | default} action {reset | allow}
[alarm]

13. timeout seconds

14. audit-trail {on | off}

15. exit

16. exit

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

 Defining an HTTP Application Policy
How to Define and Apply an HTTP Application Policy to a Firewall for Inspection

 3

Command or Action Purpose

Step 3 appfw policy-name policy-name

Example:

Router(config)# appfw policy-name
mypolicy

Defines an application firewall policy and puts the router in application
firewall policy configuration mode.

Step 4 application protocol

Example:

Router(cfg-appfw-policy)# application
http

Allows you to configure inspection parameters for a given protocol.
Currently, only HTTP traffic can be inspected.

• protocol --Specify the http keyword.

This command puts you in appfw-policy-protocolconfiguration mode,
where “protocol” is dependent upon the specified protocol. Because
only HTTP can be specified, the configuration mode is appfw-policy-
http.

Step 5 strict-http action {reset | allow} [alarm]

Example:

Router(cfg-appfw-policy-http)# strict-
http action allow alarm

(Optional) Allows HTTP messages to pass through the firewall or resets
the TCP connection when HTTP noncompliant traffic is detected.

Step 6 content-length {min bytes max bytes | min
bytes | max bytes} action {reset | allow}
[alarm]

Example:

Router(cfg-appfw-policy-http)# content-
length max 1 action allow alarm

(Optional) Permits or denies HTTP traffic through the firewall on the
basis of message size.

• min | max bytes--Minimum or maximum content length, in bytes,
allowed per message. Number of bytes range: 0 to 65535.

Step 7 content-type-verification [match-req-resp]
action {reset | allow} [alarm]

Example:

Router(cfg-appfw-policy-http)# content-
type-
verification match-req-resp action
allow alarm

(Optional) Permits or denies HTTP traffic through the firewall on the
basis of content message type.

Defining an HTTP Application Policy
 How to Define and Apply an HTTP Application Policy to a Firewall for Inspection

4

Command or Action Purpose

Step 8 max-header-length {request bytes response
bytes} action {reset | allow} [alarm]

Example:

Router(cfg-appfw-policy-http)# max-
header-length request 1 response 1
action allow alarm

(Optional) Permits or denies HTTP traffic on the basis of the message
header length.

• bytes --Number of bytes ranging from 0 to 65535.

Step 9 max-uri-length bytes action {reset | allow}
[alarm]

Example:

Router(cfg-appfw-policy-http)# max-uri-
length 1 action allow alarm

(Optional) Permits or denies HTTP traffic on the basis of the URI length
in the request message.

Step 10 request method {rfc rfc-method | extension
extension-method} action {reset | allow}
[alarm]

Example:

Router(cfg-appfw-policy-http)# request-
method rfc default action allow alarm

(Optional) Permits or denies HTTP traffic according to either the request
methods or the extension methods.

• rfc --Specifies that the supported methods of RFC 2616, Hypertext
Transfer Protocol--HTTP/1.1 , are to be used for traffic inspection.

• rfc-method --Any one of the following RFC 2616 methods can be
specified: connect, default, delete, get, head, options, post, put,
trace.

• extension --Specifies that the extension methods are to be used for
traffic inspection.

• extension-method --Any one of the following extension methods
can be specified: copy, default, edit, getattribute, getproperties,
index, lock, mkdir, move, revadd, revlabel, revlog, save,
setattribute, startrev, stoprev, unedit, unlock.

Step 11 port-misuse {p2p | tunneling | im | default}
action {reset | allow} [alarm]

Example:

Router(cfg-appfw-policy-http)# port-
misuse default action allow alarm

(Optional) Permits or denies HTTP traffic through the firewall on the
basis of specified applications in the HTTP message.

• p2p --Peer-to-peer protocol applications subject to inspection:
Kazaa and Gnutella.

• tunneling --Tunneling applications subject to inspection:
HTTPPort/HTTPHost, GNU Httptunnel, GotoMyPC, Firethru,
Http-tunnel.com Client

• im --Instant messaging protocol applications subject to inspection:
Yahoo Messenger.

• default --All applications are subject to inspection.

 Defining an HTTP Application Policy
How to Define and Apply an HTTP Application Policy to a Firewall for Inspection

 5

Command or Action Purpose

Step 12 transfer-encoding type {chunked | compress |
deflate | gzip | identity | default} action {reset |
allow} [alarm]

Example:

Router(cfg-appfw-policy-http)#
transfer-encoding type default action
allow alarm

Example:

(Optional) Permits or denies HTTP traffic according to the specified
transfer-encoding of the message.

• chunked --Encoding format (specified in RFC 2616, Hypertext
Transfer Protocol--HTTP/1) in which the body of the message is
transferred in a series of chunks; each chunk contains its own size
indicator.

• compress --Encoding format produced by the UNIX “compress”
utility.

• deflate --“ZLIB” format defined in RFC 1950, ZLIB Compressed
Data Format Specification version 3.3 , combined with the
“deflate” compression mechanism described in RFC 1951,
DEFLATE Compressed Data Format Specification version 1.3 .

• gzip --Encoding format produced by the “gzip” (GNU zip)
program.

• identity --Default encoding, which indicates that no encoding has
been performed.

• default --All of the transfer encoding types.

Step 13 timeout seconds

Example:

Router(cfg-appfw-policy-http)# timeout
60

(Optional) Overrides the global TCP idle timeout value for HTTP traffic.

Note If this command is not issued, the default value specified via the
ip inspect tcp idle-timecommand will be used.

Step 14 audit-trail {on | off}

Example:

Router(cfg-appfw-policy-http)# audit-
trail on

(Optional) Turns audit trail messages on or off.

Note If this command is not issued, the default value specified via the
ip inspect audit-trailcommand will be used.

Step 15 exit

Example:

Router(cfg-appfw-policy-http)# exit

Exits cfg-appfw-policy-http configuration mode.

Step 16 exit

Example:

Router(cfg-appfw-policy)# exit

Exits cfg-appfw-policy configuration mode.

• What to Do Next, page 7

Defining an HTTP Application Policy
 How to Define and Apply an HTTP Application Policy to a Firewall for Inspection

6

What to Do Next
After you have successfully defined an application policy for HTTP traffic inspection, you must apply the
policy to an inspection rule. Thereafter, the inspection rule must be applied to an interface. For information
on completing this task, see the section “Applying an HTTP Application Policy to a Firewall for
Inspection.”

Applying an HTTP Application Policy to a Firewall for Inspection
Use this task to apply an HTTP application policy to an inspection rule, followed by applying the
inspection rule to an interface.

Note An application policy can coexist with other inspection protocols (for example, an HTTP policy and an
FTP policy can coexist).

You must have already defined an application policy (as shown in the section “Defining an HTTP
Application Policy”).

or

show ip inspect {name inspection-name | config | interfaces | session [detail] | statistics | all}

SUMMARY STEPS

1. enable

2. configure terminal

3. ip inspect name inspection-name appfw policy-name

4. ip inspect name inspection-name http [alert {on | off}] [audit-trail {on | off}] [timeout seconds]

5. interface type number

6. ip inspect inspection-name in | out}

7. exit

8. exit

9. show appfw configuration [name]

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

 Applying an HTTP Application Policy to a Firewall for Inspection
What to Do Next

 7

Command or Action Purpose

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 ip inspect name inspection-name appfw policy-name

Example:

Router(config)# ip inspect name firewall appfw
mypolicy

Defines a set of inspection rules for the application
policy.

• policy-name --Must match the policy name specified
via the appfw policy-name command.

Step 4 ip inspect name inspection-name http [alert {on | off}]
[audit-trail {on | off}] [timeout seconds]

Example:

Router(config)# ip inspect name firewall http

Defines a set of inspection rules that is to be applied to
all HTTP traffic.

• The inspection-name argument must match the
inspection-name argument specified in Step 3.

Step 5 interface type number

Example:

Router#(config)# interface FastEthernet0/0

Configures an interface type and enters interface
configuration mode.

Step 6 ip inspect inspection-name in | out}

Example:

Router#(config-if)# ip inspect firewall in

Applies the inspection rules (defined in Step 3 and Step
4) to all traffic entering the specified interface.

• The inspection-name argument must match the
inspection name defined via the ip inspect name
command.

Step 7 exit

Example:

Router#(config-if)# exit

Exits interface configuration mode.

Step 8 exit

Example:

Router(config)# exit

Exits global configuration mode.

Applying an HTTP Application Policy to a Firewall for Inspection
 What to Do Next

8

Command or Action Purpose

Step 9 show appfw configuration [name]

Example:

Router# show appfw configuration

Example:

or

Example:
show ip inspect {name inspection-name | config |
interfaces | session [detail] | statistics |
 all}

Example:

Router# show ip inspect config

(Optional) Displays application firewall policy
configuration information.

(Optional) Displays firewall-related
configuration information.

• Troubleshooting Tips, page 9

Troubleshooting Tips
To help troubleshoot the application firewall configuration, issue the following application-firewall specific
debug command: debug appfw{application protocol | function-trace | object-creation | object-deletion |
events | timers | detailed}.

The following sample configuration shows how to configure an HTTP policy with application firewall
debugging enabled:

Router(config)# appfw policy-name myPolicyAPPFW FUNC:appfw_policy_find
APPFW FUNC:appfw_policy_find -- Policy myPolicy is not found
APPFW FUNC:appfw_policy_alloc
APPFW FUNC:appfw_policy_alloc -- policy_alloc 0x65727278
APPFW FUNC:appfw_policy_alloc -- Policy 0x65727278 is set to valid
APPFW FUNC:appfw_policy_alloc -- Policy myPolicy has been created
APPFW FUNC:appfw_policy_command -- memlock policy 0x65727278

! Debugging sample for application (HTTP) creation

Router(cfg-appfw-policy)# application httpAPPFW FUNC:appfw_http_command
APPFW FUNC:appfw_http_appl_find
APPFW FUNC:appfw_http_appl_find -- Application not found
APPFW FUNC:appfw_http_appl_alloc
APPFW FUNC:appfw_http_appl_alloc -- appl_http 0x64D7A25C
APPFW FUNC:appfw_http_appl_alloc -- Application HTTP parser structure 64D7A25C created
! Debugging sample for HTTP-specific application inspection
Router(cfg-appfw-policy-http)#
Router(cfg-appfw-policy-http)# strict-http action reset alarm
APPFW FUNC:appfw_http_subcommand
APPFW FUNC:appfw_http_subcommand -- strict-http cmd turned on
Router# debug appfw detailed
APPFW Detailed Debug debugging is on

 Applying an HTTP Application Policy to a Firewall for Inspection
Troubleshooting Tips

 9

fw7-7206a#debug appfw object-creation
APPFW Object Creations debugging is on
fw7-7206a#debug appfw object-deletion
APPFW Object Deletions debugging is on

Configuration Examples for Setting Up an HTTP Inspection
Engine

• Example Setting Up and Verifying an HTTP Inspection Engine, page 10

Example Setting Up and Verifying an HTTP Inspection Engine
The following example show how to define the HTTP application firewall policy “mypolicy.” This policy
includes all supported HTTP policy rules. This example also includes sample output from the show appfw
configuration and show ip inspect config commands, which allow you to verify the configured setting for
the application policy.

! Define the HTTP policy.
appfw policy-name mypolicy
 application http
 strict-http action allow alarm
 content-length maximum 1 action allow alarm
 content-type-verification match-req-rsp action allow alarm
 max-header-length request 1 response 1 action allow alarm
 max-uri-length 1 action allow alarm
 port-misuse default action allow alarm
 request-method rfc put action allow alarm
 transfer-encoding type default action allow alarm
!
!
! Apply the policy to an inspection rule.
ip inspect name firewall appfw mypolicy
ip inspect name firewall http
!
!
! Apply the inspection rule to all HTTP traffic entering the FastEthernet0/0 interface.
interface FastEthernet0/0
 ip inspect firewall in
!
!
! Issue the show appfw configuration
 command and the show ip inspect config
command after the inspection rule “mypolicy” is applied to all incoming HTTP traffic on
the FastEthernet0/0 interface.
!
Router# show appfw configuration

Application Firewall Rule configuration
 Application Policy name mypolicy
 Application http
 strict-http action allow alarm
 content-length minimum 0 maximum 1 action allow alarm
 content-type-verification match-req-rsp action allow alarm
 max-header-length request length 1 response length 1 action allow alarm
 max-uri-length 1 action allow alarm
 port-misuse default action allow alarm
 request-method rfc put action allow alarm
 transfer-encoding default action allow alarm
Router# show ip inspect config

Session audit trail is disabled
Session alert is enabled
one-minute (sampling period) thresholds are [400:500] connections

Example Setting Up and Verifying an HTTP Inspection Engine
 Configuration Examples for Setting Up an HTTP Inspection Engine

10

max-incomplete sessions thresholds are [400:500]
max-incomplete tcp connections per host is 50. Block-time 0 minute.
tcp synwait-time is 30 sec -- tcp finwait-time is 5 sec
tcp idle-time is 3600 sec -- udp idle-time is 30 sec
dns-timeout is 5 sec
Inspection Rule Configuration
Inspection name firewall
http alert is on audit-trail is off timeout 3600

Additional References
Related Documents

Related Topic Document Title

Cisco IOS commands Cisco IOS Master Commands List, All Releases

Firewall commands: complete command syntax,
command mode, defaults, usage guidelines, and
examples

Cisco IOS Security Command Reference

Standards

Standards Title

No new or modified standards are supported by this
feature.

--

MIBs

MIBs MIBs Link

No new or modified MIBs are supported by this
feature.

To locate and download MIBs for selected
platforms, Cisco IOS releases, and feature sets, use
Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

RFCs Title

RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1

 Example Setting Up and Verifying an HTTP Inspection Engine
Additional References

 11

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html
http://www.cisco.com/go/mibs
http://www.ietf.org/rfc/rfc2616.txt

Technical Assistance

Description Link

The Cisco Support and Documentation website
provides online resources to download
documentation, software, and tools. Use these
resources to install and configure the software and
to troubleshoot and resolve technical issues with
Cisco products and technologies. Access to most
tools on the Cisco Support and Documentation
website requires a Cisco.com user ID and
password.

http://www.cisco.com/cisco/web/support/
index.html

Feature Information for Setting Up an HTTP Inspection Engine
The following table provides release information about the feature or features described in this module.
This table lists only the software release that introduced support for a given feature in a given software
release train. Unless noted otherwise, subsequent releases of that software release train also support that
feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Example Setting Up and Verifying an HTTP Inspection Engine
 Feature Information for Setting Up an HTTP Inspection Engine

12

http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/go/cfn

Table 1 Feature Information for Setting Up an HTTP Inspection Engine

Feature Name Releases Feature Information

Setting Up an HTTP Inspection
Engine

12.3(14)T The HTTP Inspection Engine
feature allows users to configure
their Cisco IOS Firewall to detect
and prohibit HTTP connections--
such as tunneling over port 80,
unauthorized request methods,
and non-HTTP compliant file
transfers--that are not authorized
within the scope of the security
policy configuration. Tunneling
unauthorized protocols through
port 80 and over HTTP exposes a
network to significant security
risks.

The following commands were
introduced or modified: appfw
policy-name, application, audit-
trail, content-length, content-
type-verification, debug appfw,
ip inspect name, max-header-
length, max-uri-length, port-
misuse, request-method, show
appfw, strict-http, timeout,
transfer-encoding type.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S.
and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner
does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP
addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.

 Example Setting Up and Verifying an HTTP Inspection Engine

 13

http://www.cisco.com/go/trademarks

	HTTP Inspection Engine
	Finding Feature Information
	Restrictions for HTTP Inspection Engine
	Information About HTTP Inspection Engine
	What Is a Security Policy
	Cisco IOS HTTP Application Policy Overview

	How to Define and Apply an HTTP Application Policy to a Firewall for Inspection
	Defining an HTTP Application Policy
	What to Do Next

	Applying an HTTP Application Policy to a Firewall for Inspection
	Troubleshooting Tips

	Configuration Examples for Setting Up an HTTP Inspection Engine
	Example Setting Up and Verifying an HTTP Inspection Engine

	Additional References
	Feature Information for Setting Up an HTTP Inspection Engine

