Dynamic Multipoint VPN Configuration Guide, Cisco IOS XE Release 3S (Cisco ASR 1000)
Per-Tunnel QoS for DMVPN
Downloads: This chapterpdf (PDF - 149.0KB) The complete bookPDF (PDF - 1.38MB) | The complete bookePub (ePub - 1.12MB) | Feedback

Per-Tunnel QoS for DMVPN

Per-Tunnel QoS for DMVPN

Last Updated: March 28, 2013

The Per-Tunnel QoS for DMVPN feature introduces per-tunnel quality of service (QoS) support for Dynamic Multipoint VPN (DMVPN) and increases per-tunnel QoS performance for Internet Protocol Security (IPsec) tunnel interfaces. This feature allows you to apply a QoS policy on a DMVPN hub on a tunnel instance (per-endpoint or per-spoke basis) in the egress direction for DMVPN hub-to-spoke tunnels. The QoS policy on a DMVPN hub on a tunnel instance allows you to shape the tunnel traffic to individual spokes (parent policy) and to differentiate individual data flows going through the tunnel for policing (child policy). The QoS policy that is used by the hub for a particular endpoint or spoke is selected by the Next Hop Resolution Protocol (NHRP) group in which the spoke is configured. Even though many spokes may be configured in the same NHRP group, the tunnel traffic of each spoke is measured individually for shaping and policing.


Note


Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Per-Tunnel QoS for DMVPN

  • Before you configure the Per-Tunnel QoS for DMVPN feature, you must configure Cisco Express Forwarding (formerly known as CEF) switching.
  • Before you can configure an NHRP group on a spoke and to map the NHRP group to a QoS policy on a hub, the spoke and the hub must already be configured for DMVPN without the per-tunnel QoS.

Restrictions for Per-Tunnel QoS for DMVPN

  • The Per-Tunnel QoS for DMVPN feature supports only IPv4.
  • Quality of service (QoS) on a Dynamic Multipoint VPN (DMVPN) tunnel with Layer 2 Tunnel Protocol (L2TP) is not supported.
  • The class default shaper with the QoS service policy on a physical interface that is applied to the DMVPN tunnel does not support point-to-point generic routing encapsulation (GRE) tunnels, shaper on physical interfaces, and shaper on VLAN/subinterfaces.
  • QoS on a physical interface is limited only to the class default shaper on the physical interface. No other QoS configurations on the physical interface are supported when two separate QoS policies are applied to the physical and tunnel interfaces.
  • Addition of a QoS policy with a class default shaper on a physical interface is not supported when multiple QoS policies are utilized.
  • You can attach a per-tunnel QoS policy on the tunnel only in the egress direction.
  • The class default shaper policy map on the main interface must be applied before the tunnel policy map is applied.
  • The class default shaper policy map must contain only the class class-default and shape commands.
  • The main interface policy map is checked for validity only when a QoS service policy is applied on the tunnel interface. The main interface policy map is not checked during a tunnel move or modification.
  • Adding new classes or features to the main interface policy map is not supported. Doing so, however, will not be blocked.

Information About Per-Tunnel QoS for DMVPN

Per-Tunnel QoS for DMVPN Overview

The Per-Tunnel QoS for DMVPN feature lets you apply a quality of service (QoS) policy on a Dynamic Multipoint VPN (DMVPN) hub on a per-tunnel instance (per-spoke basis) in the egress direction for DMVPN hub-to-spoke tunnels. The QoS policy on a DMVPN hub on a per-tunnel instance lets you shape tunnel traffic to individual spokes (a parent policy) and differentiate individual data flows going through the tunnel for policing (a child policy). The QoS policy that the hub uses for a specific spoke is selected according to the specific Next Hop Resolution Protocol (NHRP) group into which that spoke is configured. Although you can configure many spokes into the same NHRP group, the tunnel traffic for each spoke is measured individually for shaping and policing.

You can use this feature with DMVPN with or without Internet Protocol Security (IPsec).

When the Per-Tunnel QoS for DMVPN feature is enabled, queueing and shaping are performed at the outbound physical interface for generic routing encapsulation (GRE)/IPsec tunnel packets. The Per-Tunnel QoS for DMVPN feature ensures that the GRE header, the IPsec header, and the Layer 2 (for the physical interface) header are included in the packet-size calculations for shaping and bandwidth queuing of packets under QoS.

Benefits of Per-Tunnel QoS for DMVPN

Before the introduction of Per-Tunnel QoS for DMVPN feature, quality of service (QoS) on a Dynamic Multipoint VPN (DMVPN) hub could be configured to measure only either the outbound traffic in the aggregate (overall spokes) or outbound traffic on a per-spoke basis (with extensive manual configuration).

The Per-Tunnel QoS for DMVPN feature provides the following benefits:

  • The QoS policy is attached to the DMVPN hub, and the criteria for matching the tunnel traffic are set up automatically as each spoke registers with the hub (which means that extensive manual configuration is not needed).
  • Traffic can be regulated from the hub to spokes on a per-spoke basis.
  • The hub cannot send excessive traffic to (and overrun) a small spoke.
  • The amount of outbound hub bandwidth that a "greedy" spoke can consume can be limited, and therefore, the traffic cannot monopolize a hub's resources and starve other spokes.

NHRP QoS Provisioning for DMVPN

Next Hop Resolution Protocol (NHRP) performs the provisioning for the Per-Tunnel QoS for DMVPN feature by using NHRP groups.

An NHRP group, a new functionality introduced by this feature, is the group identity information signaled by a Dynamic Multipoint VPN (DMVPN) node (a spoke) to the DMVPN hub. The hub uses this information to select a locally defined quality of service (QoS) policy instance for the remote node.

You can configure an NHRP group on the spoke router on the DMVPN generic routing encapsulation (GRE) tunnel interface. The NHRP group name is communicated to the hub in each of the periodic NHRP registration requests sent from the spoke to the hub.

NHRP group-to-QoS policy mappings are configured on the hub DMVPN GRE tunnel interface. The NHRP group string received from a spoke is mapped to a QoS policy, which is applied to that hub-to-spoke tunnel in the egress direction.

After an NHRP group is configured on a spoke, the group is not immediately sent to the hub, but is sent in the next periodic registration request. The spoke can belong to only one NHRP group per GRE tunnel interface. If a spoke is configured as part of two or more DMVPN networks (multiple GRE tunnel interfaces), then the spoke can have a different NHRP group name on each of the GRE tunnel interfaces.

If an NHRP group is not received from the spoke, then a QoS policy is not applied to the spoke, and any existing QoS policy applied to that spoke is removed. If an NHRP group is received from the spoke when previous NHRP registrations did not have an NHRP group, then the corresponding QoS policy is applied. If the same NHRP group is received from a spoke similar to the earlier NHRP registration request, then no action is taken because a QoS policy would have already been applied for that spoke. If a different NHRP group is received from the spoke than what was received in the previous NHRP registration request, any applied QoS policy is removed, and the QoS policy corresponding to the new NHRP group is applied.

How to Configure Per-Tunnel QoS for DMVPN

To configure the Per-Tunnel QoS for DMVPN feature, you define a Next Hop Resolution Protocol (NHRP) group on the spokes and then map the NHRP group to a quality of service (QoS) policy on the hub.

Configuring an NHRP Group on a Spoke

SUMMARY STEPS

1.    enable

2.    configure terminal

3.    interface tunnel number

4.    ip nhrp group group-name

5.    end


DETAILED STEPS
  Command or Action Purpose
Step 1
enable


Example:

Device> enable

 

Enables privileged EXEC mode.

  • Enter your password if prompted.
 
Step 2
configure terminal


Example:

Device# configure terminal

 

Enters global configuration mode.

 
Step 3
interface tunnel number


Example:

Device(config)# interface tunnel 1

 

Configures a tunnel interface and enters interface configuration mode.

 
Step 4
ip nhrp group group-name


Example:

Device(config-if)# ip nhrp group spoke_group1

 

Configures a Next Hop Resolution Protocol (NHRP) group on the spoke.

 
Step 5
end


Example:

Device(config-if)# end

 

Exits interface configuration mode and returns to privileged EXEC mode.

 

Mapping an NHRP Group to a QoS Policy on the Hub

Before You Begin
SUMMARY STEPS

1.    enable

2.    configure terminal

3.    interface tunnel number

4.    ip nhrp map group group-name service-policy output qos-policy-map-name

5.    end


DETAILED STEPS
  Command or Action Purpose
Step 1
enable


Example:

Device> enable

 

Enables privileged EXEC mode.

  • Enter your password if prompted.
 
Step 2
configure terminal


Example:

Device# configure terminal

 

Enters global configuration mode.

 
Step 3
interface tunnel number


Example:

Device(config)# interface tunnel 1

 

Configures a tunnel interface and enters interface configuration mode.

 
Step 4
ip nhrp map group group-name service-policy output qos-policy-map-name


Example:

Device(config-if)# ip nhrp map group spoke_group1 service-policy output group1_parent

 

Adds the Next Hop Resolution Protocol (NHRP) group to the quality of service (QoS) policy mapping on the hub.

 
Step 5
end


Example:

Device(config-if)# end

 

Exits interface configuration mode and returns to privileged EXEC mode.

 

Verifying Per-Tunnel QoS for DMVPN

SUMMARY STEPS

1.    enable

2.    show dmvpn detail

3.    show ip nhrp

4.    show ip nhrp group-map [group-name]

5.    show policy-map multipoint [tunnel tunnel-interface-number]

6.    show tunnel endpoints


DETAILED STEPS
  Command or Action Purpose
Step 1
enable


Example:

Device> enable

 

Enables privileged EXEC mode.

  • Enter your password if prompted.
 
Step 2
show dmvpn detail


Example:

Device# show dmvpn detail

 

Displays detailed Dynamic Multipoint VPN (DMVPN) information for each session, including the Next Hop Server (NHS) and NHS status, crypto session information, and socket details.

  • Also displays the Next Hop Resolution Protocol (NHRP) group received from the spoke and the quality of service (QoS) policy applied to the spoke tunnel.

 
Step 3
show ip nhrp


Example:

Device# show ip nhrp

 

Displays the NHRP cache and the NHRP group received from the spoke.

 
Step 4
show ip nhrp group-map [group-name]


Example:

Device# show ip nhrp group-map group1-parent

 

Displays the group-to-policy maps configured on the hub and also displays the tunnels on which the QoS policy is applied.

 
Step 5
show policy-map multipoint [tunnel tunnel-interface-number]


Example:

Device# show policy-map multipoint tunnel 1

 

Displays QoS policy details applied to multipoint tunnels.

 
Step 6
show tunnel endpoints


Example:

Device# show tunnel endpoints

 

Displays information about the source and destination endpoints for multipoint tunnels and the QoS policy applied on the spoke tunnel.

 

Configuration Examples for Per-Tunnel QoS for DMVPN

Example: Configuring an NHRP Group on a Spoke

The following example shows how to configure two Next Hop Resolution Protocol (NHRP) groups on three spokes:

Configuring the First Spoke

interface tunnel 1
 ip address 209.165.200.225 255.255.255.224
 no ip redirects
 ip mtu 1400
 ip nhrp authentication testing
 ip nhrp group spoke_group1
 ip nhrp map 209.165.200.226 203.0.113.1
 ip nhrp map multicast 203.0.113.1
 ip nhrp network-id 172176366
 ip nhrp holdtime 300
 ip tcp adjust-mss 1360
 ip nhrp nhs 209.165.200.226
 tunnel source fastethernet 2/1/1
 tunnel mode gre multipoint
 tunnel protection ipsec profile DMVPN
interface fastethernet 2/1/1
 ip address 203.0.113.2 255.255.255.0

Configuring the Second Spoke

interface tunnel 1
 ip address 209.165.200.227 255.255.255.224
 no ip redirects
 ip mtu 1400
 ip nhrp authentication testing
 ip nhrp group spoke_group1
 ip nhrp map 209.165.200.226 203.0.113.1
 ip nhrp map multicast 203.0.113.1
 ip nhrp network-id 172176366
 ip nhrp holdtime 300
 ip tcp adjust-mss 1360
 ip nhrp nhs 209.165.200.226
 tunnel source fastethernet 2/1/1
 tunnel mode gre multipoint
 tunnel protection ipsec profile DMVPN
interface fastethernet 2/1/1
 ip address 203.0.113.3 255.255.255.0

Configuring the Third Spoke

interface tunnel 1
 ip address 209.165.200.228 255.255.255.224
 no ip redirects
 ip mtu 1400
 ip nhrp authentication testing
 ip nhrp group spoke_group2
 ip nhrp map 209.165.200.226 203.0.113.1
 ip nhrp map multicast 203.0.113.1
 ip nhrp network-id 172176366
 ip nhrp holdtime 300
 ip tcp adjust-mss 1360
 ip nhrp nhs 209.165.200.226
 tunnel source fastethernet 2/1/1
 tunnel mode gre multipoint
 tunnel protection ipsec profile DMVPN
interface fastethernet 2/1/1
 ip address 203.0.113.4 255.255.255.0

Example: Mapping an NHRP Group to a QoS Policy on the Hub

The following example shows how to map Next Hop Resolution Protocol (NHRP) groups to a quality of service (QoS) policy on the hub. The example shows a hierarchical QoS policy (parent: group1_parent/group2_parent; child: group1/group2) that will be used for configuring Per-tunnel QoS for Dynamic Multipoint VPN (DMVPN) feature. The example also shows how to map the NHRP group spoke_group1 to the QoS policy group1_parent and map the NHRP group spoke_group2 to the QoS policy group2_parent on the hub:

class-map match-all group1_Routing
 match ip precedence 6
class-map match-all group2_Routing
 match ip precedence 6
class-map match-all group2_voice
 match access-group 100
class-map match-all group1_voice
 match access-group 100
policy-map group1
 class group1_voice
    priority 1000
 class group1_Routing
    bandwidth percent 20
policy-map group1_parent
 class class-default
    shape average 3000000
  service-policy group1
policy-map group2
 class group2_voice
    priority percent 20
 class group2_Routing
    bandwidth percent 10
policy-map group2_parent
 class class-default
    shape average 2000000
  service-policy group2
interface tunnel 1
 ip address 209.165.200.225 255.255.255.224
 no ip redirects
 ip mtu 1400
 ip nhrp authentication testing
 ip nhrp map multicast dynamic
 ip nhrp map group spoke_group1 service-policy output group1_parent
 ip nhrp map group spoke_group2 service-policy output group2_parent
 ip nhrp network-id 172176366
 ip nhrp holdtime 300
 ip nhrp registration no-unique
 tunnel source fastethernet 2/1/1
 tunnel mode gre multipoint
 tunnel protection ipsec profile DMVPN
interface fastethernet 2/1/1
 ip address 209.165.200.226 255.255.255.224

Example: Verifying Per-Tunnel QoS for DMVPN

The following example shows how to display the information about Next Hop Resolution Protocol (NHRP) groups received from the spokes and display the quality of service (QoS) policy that is applied to each spoke tunnel. You can enter this command on the hub.

Device# show dmvpn detail

Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
        N - NATed, L - Local, X - No Socket
        # Ent --> Number of NHRP entries with same NBMA peer
        NHS Status: E --> Expecting Replies, R --> Responding
        UpDn Time --> Up or Down Time for a Tunnel
==========================================================================
Interface Tunnel1 is up/up, Addr. is 209.165.200.225, VRF ""
   Tunnel Src./Dest. addr: 209.165.200.226/MGRE, Tunnel VRF ""
   Protocol/Transport: "multi-GRE/IP", Protect "DMVPN"
Type:Hub, Total NBMA Peers (v4/v6): 3
# Ent  Peer NBMA Addr Peer Tunnel Add State  UpDn Tm Attrb    Target Network
----- --------------- --------------- ----- -------- ----- -----------------
    1   209.165.200.227     192.0.2.2     UP 00:19:20    D        192.0.2.2/32
NHRP group: spoke_group1
 Output QoS service-policy applied: group1_parent
    1   209.165.200.228     192.0.2.3     UP 00:19:20    D        192.0.2.3/32
NHRP group: spoke_group1
 Output QoS service-policy applied: group1_parent
    1    209.165.200.229     192.0.2.4     UP 00:19:23    D        192.0.2.4/32
NHRP group: spoke_group2
 Output QoS service-policy applied: group2_parent
Crypto Session Details:
-----------------------------------------------------------------------------
Interface: tunnel1
Session: [0x04AC1D00]
  IKE SA: local 209.165.200.226/500 remote 209.165.200.227/500 Active
  Crypto Session Status: UP-ACTIVE
  fvrf: (none), Phase1_id: 209.165.200.227
  IPSEC FLOW: permit 47 host 209.165.200.226 host 209.165.200.227
        Active SAs: 2, origin: crypto map
   Outbound SPI : 0x9B264329, transform : ah-sha-hmac
    Socket State: Open
Interface: tunnel1
Session: [0x04AC1C08]
  IKE SA: local 209.165.200.226/500 remote 209.165.200.228/500 Active
  Crypto Session Status: UP-ACTIVE
  fvrf: (none), Phase1_id: 209.165.200.228
  IPSEC FLOW: permit 47 host 209.165.200.226 host 209.165.200.228
        Active SAs: 2, origin: crypto map
   Outbound SPI : 0x36FD56E2, transform : ah-sha-hmac
    Socket State: Open
Interface: tunnel1
Session: [0x04AC1B10]
  IKE SA: local 209.165.200.226/500 remote 209.165.200.229/500 Active
  Crypto Session Status: UP-ACTIVE
  fvrf: (none), Phase1_id: 209.165.200.229
  IPSEC FLOW: permit 47 host 209.165.200.226 host 209.165.200.229
        Active SAs: 2, origin: crypto map
   Outbound SPI : 0xAC96818F, transform : ah-sha-hmac
    Socket State: Open
Pending DMVPN Sessions:

The following example shows how to display information about the NHRP groups that are received from the spokes. You can enter this command on the hub.

Device# show ip nhrp

192.0.2.240/32 via 192.0.2.240
   Tunnel1 created 00:22:49, expire 00:01:40
   Type: dynamic, Flags: registered
   NBMA address: 209.165.200.227
     Group: spoke_group1
192.0.2.241/32 via 192.0.2.241
   Tunnel1 created 00:22:48, expire 00:01:41
   Type: dynamic, Flags: registered
   NBMA address: 209.165.200.228
      Group: spoke_group1
192.0.2.242/32 via 192.0.2.242
   Tunnel1 created 00:22:52, expire 00:03:27
   Type: dynamic, Flags: registered
   NBMA address: 209.165.200.229
      Group: spoke_group2

The following example shows how to display the details of NHRP group mappings on a hub and the list of tunnels using each of the NHRP groups defined in the mappings. You can enter this command on the hub.

Device# show ip nhrp group-map

Interface: tunnel1
          NHRP group: spoke_group1
  QoS policy: group1_parent
  Tunnels using the QoS policy:
  Tunnel destination overlay/transport address
  198.51.100.220/203.0.113.240
  198.51.100.221/203.0.113.241
          NHRP group: spoke_group2
  QoS policy: group2_parent
  Tunnels using the QoS policy:
  Tunnel destination overlay/transport address
  198.51.100.222/203.0.113.242

The following example shows how to display statistics about a specific QoS policy as it is applied to a tunnel endpoint. You can enter this command on the hub.

Device# show policy-map multipoint

Interface tunnel1 <--> 203.0.113.252
          Service-policy output: group1_parent
    Class-map: class-default (match-any)
      29 packets, 4988 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
      Match: any
      Queueing
      queue limit 750 packets
      (queue depth/total drops/no-buffer drops) 0/0/0
      (pkts output/bytes output) 0/0
      shape (average) cir 3000000, bc 12000, be 12000
      target shape rate 3000000
      Service-policy : group1
        queue stats for all priority classes:
          queue limit 250 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
        Class-map: group1_voice (match-all)
          0 packets, 0 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: access-group 100
          Priority: 1000 kbps, burst bytes 25000, b/w exceed drops: 0
        Class-map: group1_Routing (match-all)
          0 packets, 0 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: ip precedence 6
          Queueing
          queue limit 150 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
          bandwidth 20% (600 kbps)
        Class-map: class-default (match-any)
          29 packets, 4988 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: any
          queue limit 350 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
Interface tunnel1 <--> 203.0.113.253
          Service-policy output: group1_parent
    Class-map: class-default (match-any)
      29 packets, 4988 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
      Match: any
      Queueing
      queue limit 750 packets
      (queue depth/total drops/no-buffer drops) 0/0/0
      (pkts output/bytes output) 0/0
      shape (average) cir 3000000, bc 12000, be 12000
      target shape rate 3000000
      Service-policy : group1
        queue stats for all priority classes:
          queue limit 250 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
        Class-map: group1_voice (match-all)
          0 packets, 0 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: access-group 100
          Priority: 1000 kbps, burst bytes 25000, b/w exceed drops: 0
        Class-map: group1_Routing (match-all)
          0 packets, 0 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: ip precedence 6
          Queueing
          queue limit 150 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
          bandwidth 20% (600 kbps)
        Class-map: class-default (match-any)
          29 packets, 4988 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: any
          queue limit 350 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
Interface tunnel1 <--> 203.0.113.254
           Service-policy output: group2_parent
    Class-map: class-default (match-any)
      14 packets, 2408 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
      Match: any
      Queueing
      queue limit 500 packets
      (queue depth/total drops/no-buffer drops) 0/0/0
      (pkts output/bytes output) 0/0
      shape (average) cir 2000000, bc 8000, be 8000
      target shape rate 2000000
      Service-policy : group2
        queue stats for all priority classes:
          queue limit 100 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
        Class-map: group2_voice (match-all)
          0 packets, 0 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: access-group 100
          Priority: 20% (400 kbps), burst bytes 10000, b/w exceed drops: 0
        Class-map: group2_Routing (match-all)
          0 packets, 0 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: ip precedence 6
          Queueing
          queue limit 50 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0
          bandwidth 10% (200 kbps)
        Class-map: class-default (match-any)
          14 packets, 2408 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: any
          queue limit 350 packets
          (queue depth/total drops/no-buffer drops) 0/0/0
          (pkts output/bytes output) 0/0

Additional References for Per-Tunnel QoS for DMVPN

Related Documents

Related Topic

Document Title

Cisco IOS commands

Cisco IOS Master Command List, All Releases

IP NHRP commands

Cisco IOS IP Addressing Services Command Reference

Configuring Basic Cisco Express Forwarding

IP Switching Cisco Express Forwarding Configuration Guide

Configuring NHRP

IP Addressing: NHRP Configuration Guide

Recommended cryptographic algorithms

Next Generation Encryption

Technical Assistance

Description

Link

The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

http://www.cisco.com/cisco/web/support/index.html

Feature Information for per-Tunnel QoS for DMVPN

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for per-Tunnel QoS for DMVPN

Feature Name

Releases

Feature Information

Per-Tunnel QoS for DMVPN

Cisco IOS XE Release 3.6S

The per-Tunnel QoS for DMVPN feature introduces per-tunnel QoS support for DMVPN and increases per-tunnel QoS performance for IPsec tunnel interfaces.

No new commands were introduced or modified.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2013 Cisco Systems, Inc. All rights reserved.