cisco.

Performance Routing Version 3 Configuration Guide, Cisco IOS XE Gibraltar 16.11.x

First Published: 2019-03-11

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 © 2019 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1	Read Me First 1
CHAPTER 2	About this Guide 3
	Audience 3
	Document Organization 3
	Document Conventions 4
	New and Changed Information 5
	Additional References for PfRv3 6
CHAPTER 3	Performance Routing Version 3 9
	Performance Routing Version 3 9
	Feature Information for PfRv3 9
	Hardware and Software Support 10
	Restrictions for Configuring Performance Routing v3 11
	Information About PfRv3 11
	Performance Routing v3 Overview 11
	Benefits of PfRv3 11
	PfRv3 Design Overview 12
	PfRv3 Configuration Components 13
	Device Setup and Role 13
	Domain Policies 14
	PfRv3 and Link Group Configuration 15
	Configuring Performance Routing Version 3 15
	Configuring PfRv3 15
	Configuring Hub Master Controller 15
	Configuring Hub Border Router 18

	Configuring Domain Policies 21
	Configuring Branch Master Controller 24
	Configuring Branch Border Router 26
	Configuring Branch Master Controller and Border Router 27
	Verifying PfRv3 Configuration 29
	Verifying Hub Master Controller Configurations 29
	Verifying Hub Border Router Configurations 36
	Verifying Branch Master Controller Configurations 40
	Verifying Branch Border Configurations 42
	Monitoring PfRv3 47
	Monitoring Site Prefix 47
	Monitoring Traffic Classes 49
	Monitoring Channels 52
	Example: Configuring Performance Routing Version 3 55
CHAPTER 4	PfRv3 Transit Site Support 91
	Feature Information for PfRv3 Transit Site Support 91
	Prerequisites for PfRv3 Transit Site Support 92
	Restrictions for PfRv3 Transit Site Support 92
	Information About PfRv3 Transit Site Support 92
	Information About Transit Site Support 92
	PfRv3 Transit Site Use Case Scenarios 92
	How to Configure Transit Site Support 95
	Configuring Transit Hub 95
	Configuring Transit Site Border Routers 98
	Verifying PfRv3 Transit Site Support 101
	Configuration Examples for PfRv3 Transit Site Support 105
	Example: Configuring Transit Site Support 105
CHAPTER 5	PfRv3 Zero SLA Support 123
	Feature Information for PfRv3 Zero SLA Support 123
	Prerequisites for PfRv3 Zero SLA Support 124
	Restrictions for PfRv3 Zero SLA Support 124
	Information About PfRv3 Zero SLA Support 124

I

	Information About Zero SLA 124
	Information About Path of Last Resort 125
	Compatibility Matrix for Zero SLA Support 125
	How to Configure PfRv3 Zero SLA Support 126
	Configuring PfRv3 Zero SLA Support 126
	Verifying PfRv3 Zero SLA Support 128
	Configuration Examples for PfRv3 Zero SLA Support 132
	Example: Configuring PfRv3 Zero SLA Support 132
CHAPTER 6	PfRv3 Path of Last Resort 137
	Feature Information for PfRv3 Path of Last Resort 137
	Restrictions for PfRv3 Path of Last Resort 137
	Information About PfRv3 Path of Last Resort 138
	PfRv3 Path of Last Resort 138
	How to Configure PfRv3 Path of Last Resort 138
	Configuring Policy for Path of Last Resort 138
	Configuring Path of Last Resort 139
	Verifying PfRv3 Path of Last Resort 139
CHAPTER 7	– PfRv3 Fallback Timer 143
	Feature Information for PfRv3 Fallback Timer 143
	Prerequisites for PfRv3 Fallback Timer 144
	Information About PfRv3 Fallback Timer 144
	Overview of Fallback Timer 144
	How to Configure PfRv3 Fallback Timer 146
	PfRv3 Fallback Timer Configuration 146
	Fallback Timer Configuration Priority 146
	Viewing DfDy? Follbook Timer Status 116
	viewing PIKVS ranback Timer Status 140
	Configuration Examples for PfRv3 Fallback Timer 147
	Configuration Examples for PfRv3 Fallback Timer 147 Example: Configuring PfRv3 Fallback Timer Globally 147

Feature Information for PfRv3 Probe Reduction 149

	Prerequisites for PfRv3 Probe Reduction 149
	Information About PfRv3 Probe Reduction 149
	How to Configure PfRv3 Probe Reduction 150
	Configuring PfRv3 Probe Reduction 150
	Verifying PfRv3 Probe Reduction 151
	Configuration Examples for PfRv3 Probe Reduction 152
	Example: PfRv3 Probe Reduction 152
	Additional References for PfRv3 Probe Reduction 152
CHAPTER 9	PfRv3 Intelligent Load Balance 153
	Feature Information for PfRv3 Intelligent Load Balance 153
	Prerequisites for PfRv3 Intelligent Load Balance 154
	Restrictions for PfRv3 Intelligent Load Balance 154
	Information About PfRv3 Intelligent Load Balance 154
	How to Configure PfRv3 Intelligent Load Balance 154
	Configuring PfRv3 Intelligent Load Balance 154
	Verifying PfRv3 Intelligent Load Balance 156
	Example: Configuring PfRv3 Intelligent Load Balance 156
	Example: Verifying PfRv3 Intelligent Load Balance 156
CHAPTER 10	Path Preference Hierarchy 159
	Feature Information for Path Preference Hierarchy 159
	Information About Path Preference Hierarchy 159
	Overview of Path Preference Hierarchy 159
	How to Configure Path Preference Hierarchy 160
	Configuring Path Preference Hierarchy 160
	Additional References for Path Preference Hierarchy 161
CHAPTER 11	PfRv3 Remote Prefix Tracking 163
	Feature Information for PfRv3 Remote Prefix Tracking 163
	Information About PfRv3 Remote Prefix Tracking 164
	Site Prefixes Database 164
	Learning Local Site Prefixes 164
	Learning Remote Site Prefixes 165

Performance Routing Version 3 Configuration Guide, Cisco IOS XE Gibraltar 16.11.x

	PfRv3 Remote Prefix Tracking via Egress Flow 166
	PfRv3 Remote Prefix Tracking via RIB table 166
	How Site Prefix is Learnt? 166
	WAN Interfaces Configuration 167
	Prefix Learning on Border Router 167
	Forwarding the Prefix to Master Controller 167
	Prefix Classification by Master Controller 167
	Path Preference 168
	How to Display Site Prefixes 168
	Displaying Site Prefixes Learnt By a Border Router 168
	Displaying Site Prefixes Learnt By a Master Controller 169
	Additional References for PfRv3 Remote Prefix Tracking 173
CHAPTER 12	PfRv3 Per Interface Probe Tuning 175
	Feature Information for PfRv3 Per Interface Probe Tuning 175
	Prerequisites for PfRv3 Probe Reduction 176
	Restrictions for PfRv3 Per Interface Probe Tuning 176
	Information About PfRv3 Per Interface Probe Tuning 176
	Probe Reduction and Per Interface Probe Tuning 176
	How Per Interface Probe Tuning Works? 176
	Profile—Channel Association 178
	How to Configure PfRv3 Per Interface Probe Tuning 178
	Defining a Profile on a Border Hub Router 178
	Applying a Profile to an Interface on a Border Hub Router 178
	Verifying Profile Parameters 178
	Verifying Profile Parameters Associated with a Channel 179
	Configuration Examples for PfRv3 Per Interface Probe Tuning 180
	Additional References for PfRv3 Per Interface Probe Tuning 180
CHAPTER 13	PfRv3 Inter-DC Optimization 181
	Feature Information for PfRv3 Inter-DC Optimization 181
	Prerequisites for PfRv3 Inter-DC Optimization 181
	Limitations and Guidelines for Inter-DC Optimization 182
	Information About PfRv3-Inter-DC-Optimization 182

Datacenter Optimization 182 DCI Path Options 184 How to Configure PfRv3-Inter-DC-Optimization 184 Specifying the DCI interface on a Hub Site 184 Configuring Inter-DC on Hub Master Controller 184 Configuring Inter-DC on Transit Hub 185 Specifying IDC Local Policy 185 Verifying Inter-DC Configuration 185 Verifying Master Controller Configuration 186 Verifying the Channel Status 186 Example Configurations for PfRv3 Inter-DC 187 Additional References for PfRv3-Inter-DC-Optimization 188

CHAPTER 14 Direct Cloud Access 189

Feature Information for Configuring Direct Cloud Access 189 Prerequisites for Configuring Direct Cloud Access 190 Restrictions for Configuring Direct Cloud Access 190 Information About Configuring Direct Cloud Access 190 Direct Cloud Access Overview 190 Benefits of Direct Cloud Acces 191 Direct Cloud Access Architecture 191 Designate an Underlay Interface as Direct Access Interface 192 Direct Cloud Access Components 192 Cisco Umbrella Connector 193 NBAR Classification 193 Performance Routing Version 3 193 IPSLA 193 SaaS Reachability and Performance Management 193 Next-Hop Reachability 193 Performance Measurement 193 **Application Domain Mapping** 194 Reachability and Performance Probing 194 Traffic Steering and Flow Stickiness 194 Local Policy Configuration 194

	How to Configure Direct Cloud Access 194
	Assign an Underlay Interface as Direct Access Interface 194
	Define PfR Policy for SaaS Application on Hub Master Controller 195
	Define SaaS Application Mapping on Branch Master Controller 195
	Configure a DNS Resolver 195
	Configure the HTTP Ping Probe Interval 196
	Verify and Monitor Direct Cloud Access Configuration 197
	Configuration Examples for Configuring Direct Cloud Access 198
	Example: Configure DCA Link on a Single Branch Router 198
	Example: Configure DCA Link on a Dual Branch Router 204
	Example: Configuring Umbrella Branch for OpenDNS 206
	Additional References for Configuring Direct Cloud Access 207
CHAPTER 15	Channel-based Metrics Measurement 209
	Feature Information for Channel-based Metrics 209
	Prerequisites for Channel-based Metrics Measurement 209
	Information About Channel-based Metrics Measurement 210
	Overview 210
	How to Configure Channel-based Metrics Measurement 210
	Channel-based Metrics Measurement Configuration 210
	Configuration Examples 211
	Examples: Channel-based Metrics Measurement 211
	Additional References 211
	References 211
CHAPTER 16	PfRv3 Event Tracing 213
	Prerequisites for PfRv3 Event Tracing 213
	Destrictions for DfDv2 Event Tracing 212

Restrictions for PfRv3 Event Tracing Information About PfRv3 Event Tracing PfRv3 Event Tracing Options Benefits of PfRv3 Event Tracing How to Display PfRv3 Event Tracing Additional References for PfRv3 Event Tracing Feature Information for PfRv3 Event Tracing CHAPTER 17 PfRv3 Command References 235

Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E for Catalyst Switching and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Feature Information

Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References

Cisco IOS Command References, All Releases

Obtaining Documentation and Submitting a Service Request

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

I

About this Guide

- Audience, on page 3
- Document Organization, on page 3
- Document Conventions, on page 4
- New and Changed Information, on page 5
- Additional References for PfRv3, on page 6

Audience

The *Performance Routing Version 3 Configuration Guide* is for network managers and administrators. This guide provides an overview on Performance Routing v3 and describes how to configure performance routing v3 on Cisco devices.

Document Organization

This document is organized into the following chapters:

Chapter	Description	
Overview of Performance Routing v3	Describes the design and different device roles in PfRv3.	
Configuring Performance Routing v3	Describes the configuration, verification, and monitoring operations for different components of PfRv3.	
Performance Routing v3 Transit Site Support	Describes PfRv3 transit site support, and provides information on how to configure and verify PfRv3 transit sites configurations.	
Performance Routing v3 Zero SLA Support	Describes PfRv3 Zero SLA support, and provides information on how to configure and verify PfRv3 Zero SLA configurations.	
Troubleshooting	Describes the common troubleshooting scenarios along with the workaround.	
PfRv3 Remote Prefix Tracking	Describes the PfRv3 remote site prefixes, prefix tracking, and how to display site prefixes.	

I

Chapter	Description
Command Reference	Lists the various commands required to configure, verify, and debug PfRv3 configurations.

Document Conventions

This document uses the following conventions:

Convention	Description	
^ or Ctrl	Both the ^ symbol and Ctrl represent the Control (Ctrl) key on a keyboard. For example, the key combination ^D or Ctrl-D means that you hold down the Control key while you press the D key. (Keys are indicated in capital letters but are not case sensitive.)	
bold font	Commands and keywords and user-entered text appear in bold font.	
Italic font	Document titles, new or emphasized terms, and arguments for which you supply values are in <i>italic</i> font.	
Courier font	Terminal sessions and information the system displays appear in courier font.	
Bold Courier font Bold Courier font indicates text that the user must enter.		
[x]	Elements in square brackets are optional.	
	An ellipsis (three consecutive nonbolded periods without spaces) after syntax element indicates that the element can be repeated.	
	A vertical line, called a pipe, indicates a choice within a set of keywords or arguments.	
[x y]	Optional alternative keywords are grouped in brackets and separated by vertical bars.	
{x y}	Required alternative keywords are grouped in braces and separated by vertical bars.	
$[x \{y z\}]$	Nested set of square brackets or braces indicate optional or required choices within optional or required elements. Braces and a vertical bar within square brackets indicate a required choice within an optional element.	
string	A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.	
<>	Nonprinting characters such as passwords are in angle brackets.	
[]	Default responses to system prompts are in square brackets.	

Convention	Description	
!,#	An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.	

Reader Alert Conventions

This document uses the following conventions for reader alerts:

the following information will help you solve a problem.
data.
the described action saves time. You can save time by performing the action described in the paragraph.

New and Changed Information

This chapter provides release-specific information for each new and changed feature in the *Cisco Performance Routing v3 Configuration Guide*.

The following table summarizes the new and changed features for the *Cisco Performance Routing v3 Configuration Guide* and where they are documented.

Table 1: New a	and Changed	Features
----------------	-------------	----------

Feature Name	Releases	Feature Information	Where Documented
Performance Routing v3	15.5(1)T Cisco IOS XE 3.13S	PfRv3 is an intelligent-path control mechanism for improving application delivery and WAN efficiency. PfRv3 protects critical application and increases bandwidth utilization and serves as an integral part of the overall Cisco Intelligent WAN (IWAN) solution.	
Performance Routing v3 Zero SLA Support	15.5(1)T Cisco IOS XE 3.14S	The PfRv3 zero SLA support feature enables users to reduce probing frequency on various ISP links.	
Performance Routing v3 Transit Site Support	15.5(2)T Cisco IOS XE 3.15S	The PfRv3 transit site support feature enables enterprise organizations to configure multiple data centers at the hub site.	

Additional References for PfRv3

Related Documents

Related Topic	Document Title
Cisco PfRv3 commands: complete command syntax, command mode, command history, defaults, usage guidelines and examples	Cisco IOS Performance Routing Command Reference

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website	http://www.cisco.com/cisco/web/support/index.html http://www.cisco.com/support
requires a Cisco.com user ID and password.	

Performance Routing Version 3

- Performance Routing Version 3, on page 9
- Configuring Performance Routing Version 3, on page 15

Performance Routing Version 3

Performance Routing Version 3 (PfRv3) is the evolution of Performance Routing (PfR). PfRv3 is an intelligent-path control mechanism for improving application delivery and WAN efficiency. It protects critical applications, increases bandwidth utilization, and serves as an integral part of the Cisco Intelligent WAN (IWAN) solution. PfRv3 uses differentiated services code points (DSCP) and application-based policy framework to provide a multi-site aware bandwidth and path control optimization.

Feature Information for PfRv3

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3		Performance Routing v3 (PfRv3) is the evolution of Performance Routing.
		PfRv3 is an intelligent-path control mechanism for improving application delivery and WAN efficiency. It protects critical applications, increases bandwidth utilization, and serves as an integral part of the Cisco Intelligent WAN (IWAN) solution. The following commands were modified by this feature: domain default , vrf default , master , source-interface , site-prefixes , password , monitor-interval , route-control , load-balance , enterprise-prefix , advanced , minimum-mask-length , mitigation-mode , threshold-variance , smart-probes collector class
		match, priority, path-preference, border, domain-path.

Table 2: Feature Information for Configuring PfRv3

Hardware and Software Support

Cisco Performance Routing Version 3 (PfRv3) supports the following Cisco platforms and software releases:

Device	Cisco IOS Software Release	Hub/Remote Site
Cisco ISR 4000 Series Routers	Cisco IOS XE 3.13 or later	Hub site or remote site
Cisco ASR 1000 Series Routers	Cisco IOS XE 3.13 or later	Hub site
Cisco CSR 1000v Series Routers	Cisco IOS XE 3.14 or later	Hub site (master controller)
		Branch site (master controller and border router)
Cisco ISR-G2 Series Routers	Cisco IOS 15.5(1)T1 or later	Remote site
	Cisco IOS 15.4(3)M1 or later	

Restrictions for Configuring Performance Routing v3

- Asymmetric routing is not supported for application-based policy.
- A new session cannot be established with application-based policy during blackout failure until route converges to backup path. For application-based flows, application ID is not recognized by Network Based Application Recognition (NBAR2) until session gets established and packet exchanges directly. You can configure Differentiated Services Code Point (DSCP) based policy for fast failover with blackout failure.
- PfRv3 does not support High Availability (HA) for both master and border routers. ESP switch over can trigger temporary unreachable event for one to two seconds.
- IPv6 is not supported.
- Network Address Translation (NAT) is not supported.
- Remarking DSCP for traffic flows on WAN interface is not supported.
- On a HUB Master Controller (MC), when a class is configured for matching application within a PFRv3 domain, the list of NBAR application names are limited if there is no active Border Router (BR).

Note Use at atleast one active BR for the MC to display all possible NBAR application names based on the protocol pack installed in BR.

Note PfRv2 is not supported on Cisco IOS 15.6(3)M and Cisco IOS 15.7(3)M or later releases. Cisco IOS XE 16.3.1 has PfRv2 CLIs, but the functionality is not supported.

Information About PfRv3

Performance Routing v3 Overview

Performance Routing Version 3 (PfRv3) is a one-touch provisioning and multi-site coordination solution that simplifies network provisioning. It enables intelligence of Cisco devices to improve application performance and availability. PfRv3 is an application-based policy driven framework that provides a multi-site aware bandwidth and path control optimization for WAN and cloud-based applications.

PfRv3 monitors network performance and selects best path for each application based on criteria such as reachability, delay, jitter, and loss. It evenly distributes traffic and maintains equivalent link utilization levels and load balances traffic.

It is tightly integrated with existing AVC components such as Performance Monitoring, Quality of Service (QoS), and NBAR2. PfRv3 is useful for enterprise and managed service providers looking for ways to increase their WAN reliability and availability while saving cost.

Benefits of PfRv3

Performance Routing Version 3 provides the following benefits:

- Centralized provisioning Policies are defined on the hub-master controller and then distributed to all branches. Hence, per-site provisioning is not required in PfRv3.
- Simple provisioning PfRv3 has simplified policies with pre-existing templates that a user can choose from.
- Enterprise domain All sites belong to an enterprise domain and are connected with peering.
- Application and DSCP-based policies Policies are provisioned based on applications. PfRv3 provides application visibility such as bandwidth, performance, and correlation to Quality of Service (QoS) queues by using Unified Monitoring.
- Automatic discovery PfRv3 site are discovered using peering. Each site peers with the hub site. The WAN interfaces are automatically discovered on the branch sites.
- Scalable passive monitoring PfRv3 uses Unified Monitor to monitor traffic going into WAN links and traffic coming from the WAN links. It monitors performance metrics based on per DSCP instead of per flow or per prefix basis.
- Smart probing PfRv3 uses probing mechanism that generates traffic only when there in no traffic. It
 generates real-time transport protocol traffic, which allows measuring jitter and packet loss using
 performance monitors.
- Scaling Smart probing and enhanced passive metrics helps to attain scale up to 2000 branches.
- VRF awareness Different policies can be configured for different VRFs.

PfRv3 Design Overview

An enterprise organization has a hub and branch site. The hub site consists of master controller and border router.

Figure 1: PfRv3 Design Topology

• In a network, all the policies are created on the hub-master controller. Policies dictate the desired treatment for a set of specified differentiated service code points (DSCPs) or application IDs (such as telepresence, WebEx, and so on) in the network. The policies are percolated to all the master controllers on the network

via Service Advertisement Framework (SAF). The policies can be modified by the hub-master controller and the modified policies are sent over the SAF framework so that all the nodes in the network are in sync with the hub-master controller. The hub-master controller collects information about flows handled by border routers. This information is exported to the master controller periodically using the performance monitoring instances (PMI) exporter. A domain can be configured on the central location (Hub) and branches. PfRv3 allows only one domain configuration. Virtual Routing and Forwarding (VRF) and roles are defined on a domain.

- PfRv3 is enabled on the WAN interface of the hub-border routers. The border routers give the flow information to the branch-master controller.
- Every branch has a local-master controller. The master controller can be either co-located with a branch router or a separate router. You must configure both local master and branch border on the same domain. Border devices establishes connection with local-master controller only if both are in the same domain. In a scenario where master and border configurations are on different domain, peering rejects all messages from different peers. Border devices are automatically shut down for five minutes. The connection is established only when the domain conflict is resolved.

Based on the flow information provided by the hub-border router, the branch-master (local-master) controller applies appropriate controls on the branch router per flow. It ascertains if a flow is operating within the policy limits or out-of-policy. The master-controller to branch-border communication is done via a TCP connection. This connection is used for tasks such as sending configuration and control information from master controller to branch router and flow information from branch router to master controller.

• The branch router is the enforcer, which classifies and measures metrics and sends them to the local-master controller. It is also responsible for path enforcement.

PfRv3 Configuration Components

PfRv3 comprises of the following configuration components:

- Device setup and role Identifies devices in the network where PfRv3 should be configured and in what role.
- Policy configurations Identifies the traffic in the network and determines what policies to apply.

Device Setup and Role

There are four different roles a device can play in PfRv3 configuration:

- Hub-master controller The master controller at the hub site, which can be either a data center or a head quarter. All policies are configured on hub-master controller. It acts as master controller for the site and makes optimization decision.
- Hub-border router The border controller at the hub site. PfRv3 is enabled on the WAN interfaces of the hub-border routers. You can configure more than one WAN interface on the same device. You can have multiple hub border devices. On the hub-border router, PfRv3 must be configured with the address of the local hub-master controller, path names, and path-ids of the external interfaces. You can use the global routing table (default VRF) or define specific VRFs for the hub-border routers.
- Branch-master controller The branch-master controller is the master controller at the branch site. There is no policy configuration on this device. It receives policy from the hub-master controller. This device acts as master controller for the branch site and makes optimization decision.

• Branch- border router — The border device at the branch-site. There is no configuration other than enabling of PfRv3 border-master controller on the device. The WAN interface that terminates on the device is detected automatically.

Domain Policies

Domain policies are defined only on the hub-master controller and then sent over peering infrastructure to all the branch-master controllers. Policies can be defined per application or per differentiated service code point (DSCP). You cannot mix and match DSCP and application-based policies in the same class group. Traffic that does not match any of the classification and match statements falls into a default group, which is load balanced (no performance measurement is done).

You can either select an existing template for a policy or customize your policies for a domain type.

Pre-defined Template	Threshold Definition
Voice	Priority 1 one-way-delay threshold 150 threshold 150 (msec)
	Priority 2 packet-loss-rate threshold 1 (%)
	Priority 2 byte-loss-rate threshold 1 (%)
	Priority 3 jitter 30 (msec)
Real-time-video	Priority 1 packet-loss-rate threshold 1 (%)
	Priority 1 byte-loss-rate threshold 1 (%)
	Priority 2 one-way-delay threshold 150 (msec)
	Priority 3 jitter 20 (msec)
Low-latency-data	Priority 1 one-way-delay threshold 100 (msec))
	Priority 2 byte-loss-rate threshold 5 (%)
	Priority 2 packet-loss-rate threshold 5 (%)
Bulk-data	Priority 1 one-way-delay threshold 300 (msec)
	Priority 2 byte-loss-rate threshold 5 (%)
	Priority 2 packet-loss-rate threshold 5 (%)
Best-effort	Priority 1 one-way-delay threshold 500 (msec)
	Priority 2 byte-loss-rate threshold 10 (%)
	Priority 2 packet-loss-rate threshold 10 (%)
Scavenger	Priority 1 one-way-delay threshold 500 (msec)
	Priority 2 byte-loss-rate threshold 50 (%)
	Priority 2 packet-loss-rate threshold 50 (%)

The following table lists the existing templates for domain type policy:

Pre-defined Template	Threshold Definition
Custom	Defines customized user-defined policy values

PfRv3 and Link Group Configuration

PfRv3 allows you to configure the following option for link grouping:

- · Allows up to five primary path preferences and four fallback path preferences
- Allows a fallback blackhole configuration
- · Allows a fallback routing configuration

During Policy Decision Point (PDP), the exits are first sorted on the available bandwidth and then a second sort algorithm places all primary path preferences in the front of the list followed by fallback preferences. If you have a configuration of primary Internet Service Provider (ISP) 1 and ISP2 and ISP3 as fallback, during policy decision, ISP1 is selected as the primary channel and if ISP2 is equally good it is selected as the fallback. ISP3 is considered only if ISP2 is bad in bandwidth availability.

Routing configuration means that when the traffic is uncontrolled, the routing table takes the responsibility of pushing the flow out of the box.

Configuring Performance Routing Version 3

Configuring PfRv3

There are four different roles a device can play in the PfRv3 configuration:

- Hub Master Controller
- Hub Border Router
- Branch Master Controller
- Branch Border Router

Figure 2: PfRv3 Workflow

Configuring Hub Master Controller

The hub-master controller is located at the hub site in the Intelligent WAN (IWAN) topology and all policies are configured on the hub-master controller. For more information on hub-master controller, refer to the topic Hub Master Controller. For information on hardware and software supported on hub-master controller, refer to the topic Hardware and Software Requirements.

You can use the global routing table (default VRF) or define specific VRFs for the hub-master controller.

- 1. enable
- 2. configure terminal
- **3.** interface loopback interface-number
- 4. ip address ip-address-mask
- 5. exit
- 6. domain {*domain-name* | default}
- 7. vrf {*vrf-name* | default}
- 8. master {hub | branch | transit}
- 9. source-interface loopback interface-number
- 10. enterprise-prefix prefix-list site-list
- 11. site-prefixes prefix-list site -list
- 12. exit
- 13. ip prefix-list ip-list seq sequence-number permit ip-prefix-network le le-length
- 14. end
- 15. (Optional) show domain domain-name master status

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface loopback interface-number	Enters interface configuration mode.
	Example:	
	Device(config)# interface Loopback0	

	Command or Action	Purpose
Step 4	ip address ip-address-mask Example:	Configures an IP address for an interface on the hub-master controller.
	Device(config-if)# ip address 10.8.3.3 255.255.255.255	
Step 5	exit Example:	Exits interface configuration mode and returns to global configuration mode.
	Device(config-if)# exit	
Step 6	domain {domain-name default}	Enters domain configuration mode.
	Example: Device(config)# domain default	Note You can either configure a default domain or define a specific domain for the master controller configuration. If you are defining a specific domain, for example "domain-cisco", you must configure the same domain for all devices for PfRv3 configuration.
Step 7	vrf {vrf-name default}	Configures default Virtual Routing and Forwarding (VRF) instances for the default or specific domain.
	Example: Device(config-domain)# vrf default	Note You can configure specific VRF definition also for the hub-master controller configuration.
Step 8	<pre>master {hub branch transit} Example: Device(config-domain-vrf)# master hub</pre>	Enters master controller configuration mode and configures the master as a hub. When the master hub is configured, EIGRP SAF auto-configuration is enabled by default and requests from remote sites are sent to the hub-master controller.
Step 9	source-interface loopback interface-number	Configures the loopback used as a source for peering with other sites or master controller.
	Device(config-domain-vrf-mc)# source-interface Loopback0	Note The source-interface loopback also serves as a site ID of a particular site (hub or branch) on the master controller.
Step 10	enterprise-prefix prefix-list site-list	Configures an enterprise prefix-list with static site targets.
	<pre>Example: Device(config-domain-vrf-mc)# enterprise-prefix prefix-list ENTERPRISE</pre>	Note The enterprise-prefix prefix-list command defines the boundary for all the internal enterprise prefixes. A prefix that is not from the prefix-list is considered as internet prefix and is routed over internet-bound links.
Step 11	site-prefixes prefix-list site -list	Configures the prefix-list containing list of site prefixes.
	Example:	

	Command or Action	Purpose
	Device(config-domain-vrf-mc)# site-prefixes prefix-list Data_Center_1	Note The site-prefix prefix-list defines static site-prefix for the local site and disables automatic site-prefix learning on the border router. The static-site prefix list is only required for hub and transit sites.
Step 12	<pre>exit Example: Device(config-domain-vrf-mc)# exit</pre>	 Exits from master controller configuration mode and returns to domain configuration mode. Note Exit from domain configuration mode and enter in global configuration mode using the exit command.
Step 13	<pre>ip prefix-list ip-list seq sequence-number permit ip-prefix-network le le-length Example: Device(config)# ip prefix-list DATA_CENTER_1 seq 5 permit 10.8.0.0/16 le 24 Device(config)# ip prefix-list ENTERPRISE seq 5 permit 10.0.0.0/8 le 24</pre>	Configures the IP prefix list to filter traffic based on the IP network defined in the configuration.
Step 14	end Example: Device(config)# end	Exits configuration mode and returns to privileged EXEC mode.
Step 15	(Optional) show domain domain-name master status Example: Device# show domain one master status	Use this show command to display the status of a master controller.

What to do next

Configuring Domain Policies

Configuring Hub Border Routers

Configuring Branch Routers

Verifying PfRv3 Configuration

Configuring Channel-based Metrics Measurement

Configuring Hub Border Router

The border routers on the central site register to the central master controller with their external interface and the path names configured on the external interface. You can use the global routing table (default VRF) or define specific VRFs for hub-border routers.

Note

On the hub-border router, you must configure PfRv3 with the following:

- The source interface of the border router
- The IP address of the hub-master controller
- The path name on external interfaces

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3. interface loopback** *interface-number*
- 4. ip address ip-address-mask
- 5. exit
- 6. domain {*domain-name* | default}
- 7. vrf {*vrf-name* | default}
- 8. border
- 9. source-interface loopback interface-number
- **10.** master [*ip-address* | local]
- 11. exit
- **12.** exit
- 13. exit
- **14.** interface tunnel-name
- 15. ip address ip-address mask
- 16. domain domain-name path path-name
- 17. end
- 18. (Optional) show domain domain-name border status

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface loopback interface-number	Enters interface configuration mode.
	Example:	

	Command or Action	Purpose
	Device(config)# interface Loopback0	
Step 4	ip address ip-address-mask Example:	Configures an IP address for an interface on the hub-border router (Border Router 1).
	Device(config-if)# ip address 10.8.1.1 255.255.255.255	
Step 5	exit	Exits interface configuration mode and returns to global configuration mode.
	Example. Device(config-if)# exit	
Step 6	domain {domain-name default}	Enters domain configuration mode.
	Example: Device(config)# domain one	
Step 7	<pre>vrf {vrf-name default} Example:</pre>	Configures Virtual Routing and Forwarding (VRF) for the default domain.
	Device(config-domain)# vrf default	Note You can also configure specific VRF definition for hub-border configuration.
Step 8	border	Enters border configuration mode.
	Example: Device(config-domain-vrf) # border	
Step 9	source-interface loopback interface-number Example: Device (config-domain-vrf-br) # source-interface Loopback0	Configures the loopback used as a source for peering with other sites or master controller.
Step 10	master [ip-address local] Example: Device (config-domain-vrf-br) # master 10.8.3.3	Configures the IP address of the hub-master controller. You can also configure the local domain master controller as the master.
Step 11	<pre>exit Example: Device(config-domain-vrf-br)# exit</pre>	Exits border configuration mode and enters VRF configuration mode.
Step 12	<pre>exit Example: Device(config-domain-vrf)# exit</pre>	Exits VRF configuration mode and enters domain configuration mode.
Step 13	exit Example:	Exits domain configuration mode and enters global configuration mode.

	Command or Action	Purpose)
	Device(config-domain)# exit		
Step 14	interface tunnel-name	Enters i	nterface configuration mode.
	Example:		
	<pre>Device(config)# interface Tunnel100</pre>		
Step 15	ip address ip-address mask	Configu	ires an IP address for the tunnel interface.
	Example:		
	Device(config-if)# ip address 10.0.100.84 255.255.255.0		
Step 16	domain domain-name path path-name	Configures the Internet Service Provider (ISP). There a two types of external interfaces, enterprise link such as DMVPN tunnel interface and internet-bound interface. Internet-bound external interface is configured only on t	
	Example:		
	Device(config-if)# domain one path MPLS		
		hub site for the internet edge deployment and cannot be discovered by any branch site.	
		We reco for ente	ommend using front VRF on the tunnel interface rprise links over internet ISP links.
		Note	You can configure multiple ISPs. If you are defining specific domain name for example, domain_cisco, you must specify the same domain name for configuring ISP paths.
Step 17	end	Exits interface configuration mode and returns to privile	
	Example:	EXEC 1	node.
	Device(config-if) # end		
Step 18	(Optional) show domain domain-name border status	Use this show command to display the status of a border router.	
Exa Dev	Example:		
	Device# show domain one border status		

What to do next

Configuring Branch Master Controller

Configuring Branch Border Router

Verifying PfRv3 Configuration

Configuring Domain Policies

Note

You can define policies based on either per application or per differentiated services code point (DSCP) but, you cannot mix and match DSCP and application-based policies in the same class group. You can use predefined policies from the template or create custom policies.

Before you begin

Configure a device as hub-master controller at the hub site. To know more about how to configure a hub-master controller, see Configuring Hub Master Controller, on page 15 section.

SUMMARY STEPS

- **1. domain** {*domain-name* | **default**}
- **2. vrf** {*vrf-name* | **default**}
- **3**. master [hub | branch | transit]
- 4. monitor-interval seconds dscp ef
- 5. load-balance
- 6. class class-name sequence sequence-number
- 7. match {application | dscp} services-value policy
- 8. path-preference path-name fallback path-name
- 9. priority priority-number [jitter | loss | one-way-delay] threshold threshold-value
- 10. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	domain {domain-name default}	Enters domain configuration mode.
	Example: Device(config)# domain default	Note You can either configure a default domain or define a specific domain for the border configuration. If you are defining a specific domain, for example "domain-cisco", you must configure the same domain for all devices for PfRv3 configuration.
Step 2	vrf { <i>vrf-name</i> default}	Configures default Virtual Routing and Forwarding (VRF) instances for the default or specific domain.
	Device(config-domain) # vrf default	Note You can configure specific VRF definition also for the hub-master controller configuration.
Step 3	<pre>master [hub branch transit] Example: Device(config-domain-vrf)# master hub</pre>	Enters master controller configuration mode and configures the master as a hub. When the master hub is configured, EIGRP SAF auto-configuration is enabled by default and requests from remote sites are sent to the hub master controller.
Step 4	<pre>monitor-interval seconds dscp ef Example: Device(config-domain-vrf-mc)# monitor-interval 2 dscp ef</pre>	Configures interval time that defines monitoring interval on ingress monitors.NoteFor critical applications monitor interval is set to 2 seconds. Default value is 30 seconds. You can lower the monitor interval for critical applications to achieve a fast fail over to the secondary path. This is known as quick monitor.

I

	Command or Action	Purpose	
Step 5	load-balance	Configu	res load balancing.
	<pre>Example: Device(config-domain-vrf-mc)# load-balance</pre>	Note	When load balancing is enabled, all the traffic that falls in the default class is load balanced. When load balancing is disabled, PfRv3 deletes this default class and traffic is not load balanced and is routed based on the routing table information.
Step 6	class class-name sequence sequence-number	Enters p	olicy class configuration mode.
	Example:	Note	Class-name value must be in all capitals.
	<pre>Device(config-domain-vrf-mc)# class VOICE sequence 10</pre>		
Step 7	<pre>match {application dscp} services-value policy Example: Device(config-domain-vrf-mc-class)# match dscp ef policy_voice</pre>	Configur DSCP va policy ty	res policy on per DSCP basis. You can select a alue from 0 to 63. You can select the following ypes:
	policy voice	• Des	
		· bui	k-uata
		 custom low-latency-data real-time-video 	
		• sca	venger
		• voie	ce
		In this exvoice.	xample, the domain policy type is configured for
Step 8	path-preference path-name fallback path-name	Configu	res the path preference for applications.
	Example: Device(config-domain-vrf-mc-class)# path-preference MPLS fallback INET	Note	You can configure up to five primary path preferences and four fallback preferences. Group policies sharing the same purpose can be defined under the same class path preference. You cannot configure different path preference under the same class.
Step 9	<pre>priority priority-number [jitter loss one-way-delay] threshold threshold-value Example:</pre>	Enters class type configuration mode. Configures the user-defined threshold value for loss, jitter, and one-way-delay for the policy type. Threshold values	
	Device(config-domain-vrf-mc-class-type)# priority 2 loss threshold 10 Device(config-domain-vrf-mc-class-type)# priority 1 one-way-delay threshold 600	• Note	You can configure class type priorities only for a custom policy. You can configure multiple priorities for custom policies.

	Command or Action	Purpose
	<pre>Device(config-domain-vrf-mc-class-type)# priority 2 jitter threshold 200</pre>	
Step 10	end	Exits configuration mode and returns to privileged EXEC
	Example:	mode.
	Device(config)# end	

What to do next

Verifying PfRv3 Configurations

Configuring Branch Master Controller

You must configure the IP address of the hub-master controller for setting up the branch-master controller. You can use the global routing table (default VRF) or define specific VRFs for the branch-master controller.

Note

If default VRF (Global Routing Table) is used, then VRF definition can be omitted.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** interface loopback interface-number
- 4. ip address ip-address-mask
- **5. domain** {*domain-name* | **default**}
- 6. vrf {*vrf-name* | default}
- 7. master branch
- 8. source-interface loopback interface-number
- 9. hub ip-address
- 10. end
- 11. (Optional) show domain domain-name master status

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

	Command or Action	Purpose
Step 3	interface loopback interface-number	Enters interface configuration mode.
	Example:	
	<pre>Device(config)# interface Loopback0</pre>	
Step 4	ip address ip-address-mask	Configures an IP address for an interface on the
	Example:	branch-master controller.
	Device(config-if)# ip address 10.2.10.10 255.255.255.255	
Step 5	domain {domain-name default}	Enters domain configuration mode.
	Example: Device(config)# domain default	Note You can either configure a default domain or define a specific domain for master controller configuration. If you are defining the specific domain, for example "domain_cisco", you must configure the same domain for all devices for PfRv3 configuration.
Step 6	vrf {vrf-name default}	Configures Virtual Routing and Forwarding (VRF) for the default domain.
	Device(config-domain)# vrf default	Note You can also configure specific VRF definition for branch border configuration.
Step 7	master branch	Configures the device as master branch.
	Example:	
	<pre>Device(config-domain-vrf)# master branch</pre>	
Step 8	source-interface loopback interface-number	Configures the loopback used as a source for peering with
	Example:	other sites or master controller.
	<pre>Device(config-domain-vrf-mc)# source-interface Loopback0</pre>	
Step 9	hub ip-address	Specifies the IP address of the hub master controller.
	Example:	
	Device(config-domain-vrf-mc)# hub 10.8.3.3	
Step 10	end	Exits master controller domain configuration mode and
	Example:	returns to privileged EXEC mode.
	Device(config-domain-vrf-mc)# end	
Step 11	(Optional) show domain domain-name master status	s Use this show command to display the status of a master
	Example:	controller.
	Device# show domain one master status	

What to do next

Configuring Branch Border Router

Verifying Border Router

Configuring Branch Border Router

A border router on a branch site must register to the local master controller. You need not provision any external interfaces for border routers on branch. Interfaces are learnt during the discovery process together with the path names (colors). You can use the global routing table (default VRF) or define specific VRFs for border routers.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** domain {*domain-name* | default}
- **4. vrf** {*vrf-name* | **default**}
- 5. border
- 6. source-interface loopback interface-number
- 7. master ip-address
- **8**. end
- 9. (Optional) show domain domain-name border status

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	domain {domain-name default}	Enters domain configuration mode.
	Example:	
	Device(config)# domain default	
Step 4	vrf {vrf-name default}	Configures Virtual Routing and Forwarding (VRF) for the
	Example:	default domain.
	<pre>Device(config-domain)# vrf default</pre>	Note You can also configure specific VRF definition for the branch-border configuration.
Step 5	border	Enters border configuration mode.
	Example:	

DETAILED STEPS
	Command or Action	Purpose	
	Device(config-domain-vrf)# border		
Step 6	source-interface loopback interface-number	Configures the loopback address used as a source for	
	Example:	peering with other sites of the master controller.	
	Device(config-domain-vrf-br)# source-interface Loopback0		
Step 7	master ip-address	Specifies the IP address of the branch-master controller.	
	Example:		
	<pre>Device(config-domain-vrf-br)# master 10.1.1.1</pre>		
Step 8	end	Exits border configuration mode and returns to privileg	
	Example:	EXEC mode.	
	<pre>Device(config-domain-vrf-br)# end</pre>		
Step 9	(Optional) show domain domain-name border status	Use this show command to display the status of a border	
	Example:	router.	
	Device# show domain one border status		

What to do next

Verifying PfRv3 Configurations

Configuring Branch Master Controller and Border Router

A branch device can be configured to perform the role of a master controller and a border router. The branch-master controller or border router peers with the hub-master controller and receives all policy updates from it.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** interface loopback interface-number
- 4. ip address ip-address-mask
- 5. exit
- 6. domain {*domain-name* | default}
- 7. vrf {*vrf-name* | default}
- 8. border
- 9. source-interface loopback interface-number
- **10**. master local
- 11. master branch
- **12.** source-interface loopback interface-number
- 13. hub ip-address
- 14. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface loopback interface-number	Enters interface configuration mode.
	Example:	
	Device(config)# interface Loopback0	
Step 4	ip address ip-address-mask	Configures an IP address for an interface on the branch
	Example:	master controller.
	Device(config-if)# ip address 10.2.12.12 255.255.255.255	
Step 5	exit	Exits interface configuration mode and returns to global
	Example:	configuration mode.
	Device(config-if)# exit	
Step 6	domain {domain-name default}	Enters domain configuration mode.
	Example:	
	Device(config)# domain default	
Step 7	<pre>vrf {vrf-name default}</pre>	Configures Virtual Routing and Forwarding (VRF) for the
	Example:	default domain.
	Device(config-domain)# vrf default	
Step 8	border	Enters border configuration mode.
	Example:	
	Device(config-domain-vrf)# border	
Step 9	source-interface loopback interface-number	Configures the loopback used as a source for peering with other sites or master controller
	Example:	
	Device(config-domain-vrf-br)# source-interface Loopback0	
Step 10	master local	Configures the local IP address of the device as
	Example:	branch-master controller.
	1	

	Command or Action	Purpose	
	Device(config-domain-vrf-br)# master local		
Step 11	master branch	Configures the master type of the device as a branch.	
	Example:		
	<pre>Device(config-domain-vrf-mc)# master branch</pre>		
Step 12	source-interface loopback interface-number	Configures the loopback used as a source for peering with	
	Example:	other sites or master controller.	
	<pre>Device(config-domain-vrf-mc)# source-interface Loopback0</pre>		
Step 13	hub ip-address	Configures the IP address of the hub-master controller.	
	Example:		
	<pre>Device(config-domain-vrf-mc)# hub 10.8.3.3</pre>		
Step 14	end	Exits the configuration mode and returns to privileged EXEC mode.	
	Example:		
	<pre>Device(config-domain-vrf-mc)# end</pre>		

What to do next

Verifying PfRv3 Configuration

Verifying PfRv3 Configuration

Verifying Hub Master Controller Configurations

Use the following show commands in any order to verify the status of the hub-master controller.

SUMMARY STEPS

- 1. show domain domain-name master policy
- 2. show domain domain-name master status
- 3. show domain domain-name master exits
- 4. show domain domain-name master peering
- 5. show derived-config | section eigrp
- 6. show domain domain-name master discovered-sites

DETAILED STEPS

Step 1 show domain domain-name master policy

This command displays the policy information configured on the hub master controller.

Check the following fields in the output to ensure that the hub-master controller is configured accurately:

· Policy publishing status to remote sites

- · Policy threshold per class based on either DSCP or application
- Class default is enabled

Example:

HubMC# show domain one master policy

```
No Policy publish pending
class VOICE sequence 10
 path-preference MPLS fallback INET
 class type: Dscp Based
   match dscp ef policy custom
     priority 2 packet-loss-rate threshold 5.0 percent
     priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
     Number of Traffic classes using this policy: 1
class VIDEO sequence 20
 path-preference INET fallback MPLS
 class type: Dscp Based
   match dscp af41 policy custom
     priority 2 packet-loss-rate threshold 5.0 percent
     priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
     Number of Traffic classes using this policy: 1
   match dscp cs4 policy custom
     priority 2 packet-loss-rate threshold 5.0 percent
     priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
     Number of Traffic classes using this policy: 1
class CRITICAL sequence 30
 path-preference MPLS fallback INET
 class type: Dscp Based
   match dscp af31 policy custom
     priority 2 packet-loss-rate threshold 10.0 percent
     priority 1 one-way-delay threshold 600 msec
     priority 2 byte-loss-rate threshold 10.0 percent
     Number of Traffic classes using this policy: 1
class default
 match dscp all
   Number of Traffic classes using this policy: 3
```

The following table describes the significant fields shown in the command output.

Table 3: show domain master policy Field Descriptions

Field	Description
No policy publish pending	Specifies if the policy publishing is pending to remote sites.

L

Field	Description
class	Name of the class type. In this example, the following classes are listed:
	• VOICE
	• VIDEO
	• CRITICAL
path-preference	Specifies the path preferred for the class type.
match	Specifies the DSCP value to match for a policy type.
priority	Specifies the detailed policy threshold per class, based on the DSCP or application.

Step 2 show domain domain-name master status

This command displays the status of the hub-master controller.

Check the following fields in the output to ensure that the hub-master controller is configured accurately:

- Operational status is Up
- Configured status is Up
- External interfaces with appropriate path names are defined
- · Load balancing is enabled
- · Default channels for load-sharing are enabled and configured

Example:

HubMC# show domain one master status

```
*** Domain MC Status ***
Master VRF: Global
Instance Type: Hub
Instance id: 0
Operational status: Up
Configured status: Up
Loopback IP Address: 10.8.3.3
Load Balancing:
Admin Status: Enabled
Operational Status: Up
Enterprise top level prefixes configured: 1
Max Calculated Utilization Variance: 1%
Last load balance attempt: 00:27:23 ago
Last Reason: Variance less than 20%
Total unbalanced bandwidth:
      External links: 0 Kbps Internet links: 0 Kpbs
Route Control: Enabled
Mitigation mode Aggressive: Disabled
Policy threshold variance: 20
```

Table 4: show domain master status Field Descriptions

Field	Description
Instance Type	Displays the instance type of the device. In this output, the device is configured as a hub.
Operational Status	Displays the operational status of the hub.
Configured Status	Displays the configuration status of the hub.
Load Balancing	Displays the load balancing status. If load balancing is enabled, the master controller will load balance the default-class traffic among all the external interfaces.
Borders	Displays the information of border routers connected to the hub master controller.
Number of default Channels	Displays the number of channels configured.

Step 3 show domain *domain-name* **master exits**

This command displays the summary of the external interfaces configured at the hub site.

Check the following fields in the output to ensure that the hub-master controller is configured accurately:

- External interface capacity
- · Egress utilization
- Number of traffic classes per DSCP on external interface
- Range of Egress utilization

Example:

```
HubMC# show domain one master exits
*** Domain MC Status ***
BR address: 10.8.2.2 | Name: Tunnel200 | type: external | Path: INET |
   Egress capacity: 50000 Kbps | Egress BW: 17514 Kbps | Ideal:17948 Kbps | under:
434 Kbps | Egress Utilization: 35 %
   DSCP: cs4[32]-Number of Traffic Classes[1]
   DSCP: af41[34]-Number of Traffic Classes[1]
   DSCP: cs5[40]-Number of Traffic Classes[1]
BR address: 10.8.1.1 | Name: Tunnel100 | type: external | Path: MPLS |
  Egress capacity: 100000 Kbps | Egress BW: 36331 Kbps | Ideal: 35896 Kbps | over:
435 Kbps | Egress Utilization: 36 %
  DSCP: cs1[8]-Number of Traffic Classes[1]
  DSCP: af11[10]-Number of Traffic Classes[1]
  DSCP: af31[26]-Number of Traffic Classes[1]
  DSCP: ef[46]-Number of Traffic Classes[1]
_____
```

Table 5: show domain master exits Field Description	s

Field	Description
BR address	IP address of border routers configured at the hub site.
type	Type of interface. Internal or external. In this example, the type is external.
Path	Name of the path.
Egress capacity	Egress capacity of the interface.
DSCP	Number of traffic classed configured per DSCP on external interfaces.

Step 4 show domain *domain-name* **master peering**

This command displays the peering information of the hub-master controller.

Check the following fields in the output to ensure that the hub-master controller is configured accurately:

- Peering state status
- Cent-policy status
- PMI status
- · Globals service status

Example:

HubMC# show domain one master peering

```
*** Domain MC Status ***
Peering state: Enabled
Origin: Loopback0(10.8.3.3)
Peering type: Listener
Subscribed service:
  cent-policy (2) :
  site-prefix (1) :
     Last Notification Info: 00:23:15 ago, Size: 160, Compressed size: 144, Status: No Error, Count:
3
  service-provider (4) :
  globals (5) :
     Last Notification Info: 00:03:09 ago, Size: 325, Compressed size: 218, Status: No Error, Count:
 6
  pmi (3) :
Published service:
  site-prefix (1) :
     Last Publish Info: 00:03:10 ago, Size: 209, Compressed size: 138, Status: No Error
  cent-policy (2) :
     Last Publish Info: 00:02:58 ago, Size: 2244, Compressed size: 468, Status: No Error
  pmi (3) :
     Last Publish Info: 02:03:12 ago, Size: 2088, Compressed size: 458, Status: No Error
  globals (5) :
     Last Publish Info: 00:03:09 ago, Size: 325, Compressed size: 198, Status: No Error
_____
```

Table 6: show domain master peering Field Descriptions

Field	Description
Peering state	Status of peering.
Subscribed services	Lists the status of services subscribed to.
Published services	Services published by the hub-master controller to the remote sites.

Step 5 show derived-config | section eigrp

This command displays if EIGRP SAF is automatically configured.

Check the following fields in the output to ensure that the hub-master controller is configured accurately:

- EIGRP SAF configuration is auto enabled
- EIGRP SAF peering status between hub and branch sites

Example:

HubMC# show derived-config | section eigrp

router eigrp #AUTOCFG# (API-generated auto-configuration, not user configurable)

```
!
service-family ipv4 autonomous-system 59501
!
sf-interface Loopback0
hello-interval 120
hold-time 600
exit-sf-interface
!
topology base
exit-sf-topology
remote-neighbors source Loopback0 unicast-listen
exit-service-family
```

The fields shown above are self-explanatory.

Step 6 show domain domain-name master discovered-sites

This command displays the sites that are remotely connected to the hub site.

Example:

HubMC# show domain one master discovered-sites

```
*** Domain MC DISCOVERED sites ***
   Number of sites: 3
 *Traffic classes [Performance based] [Load-balance based]
Site ID: 255.255.255.255
 DSCP :default[0]-Number of traffic classes[0][0]
  DSCP :af31[26]-Number of traffic classes[0][0]
  DSCP :cs4[32]-Number of traffic classes[0][0]
  DSCP :af41[34]-Number of traffic classes[0][0]
  DSCP :cs5[40]-Number of traffic classes[0][0]
  DSCP :ef[46]-Number of traffic classes[0][0]
Site ID: 10.2.10.10
  DSCP :default[0]-Number of traffic classes[1][1]
  DSCP :af31[26]-Number of traffic classes[0][0]
  DSCP :cs4[32]-Number of traffic classes[1][0]
  DSCP :af41[34]-Number of traffic classes[0][0]
  DSCP :cs5[40]-Number of traffic classes[0][0]
  DSCP :ef[46]-Number of traffic classes[1][0]
Site TD: 10.2.11.11
 DSCP :default[0]-Number of traffic classes[0][0]
  DSCP :af31[26]-Number of traffic classes[0][0]
  DSCP :cs4[32]-Number of traffic classes[0][0]
  DSCP :af41[34]-Number of traffic classes[0][0]
  DSCP :cs5[40]-Number of traffic classes[0][0]
  DSCP :ef[46]-Number of traffic classes[0][0]
```

The fields shown above are self-explanatory.

Verifying Hub Border Router Configurations

Use the following show commands in any order to verify the status of the hub border routers.

SUMMARY STEPS

- 1. show domain domain-name border status
- 2. show domain domain-name border peering
- 3. show platform software pfrv3 rp active smart-probe
- 4. show platform software pfrv3 fp active smart-probe
- 5. show platform hardware qfp active feature pfrv3 client global pfrv3-instance detail

DETAILED STEPS

Step 1 show domain domain-name border status

This command displays the status of the border routers configured at the hub site.

Check the following fields in the output to ensure that the hub-border routers are configured accurately:

- · Border status is UP
- External interfaces are listed with the right path names
- Minimum requirement is met

Example:

HubBR# show domain one border status

```
****Border Status****
Instance Status: UP
Present status last updated: 02:07:43 ago
Loopback: Configured Loopback0 UP (10.8.2.2)
Master: 10.8.3.3
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 02:07:42
Route-Control: Enabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
     Name: Tunnel100 Interface Index: 14 SNMP Index: 9 SP:MPLS Status: UP
     Name: Tunnel200 Interface Index: 154 SNMP Index: 10 SP:INET Status: UP
Auto Tunnel information:
     Name: Tunnel0 if index: 15
     Borders reachable via this tunnel: 10.8.2.2
```

Table 7: show domain border status Field Descriptions

Field	Description
Instance Status	Displays the instance status.
Master	IP address of the master controller.
Minimum Requirement	Displays the minimum requirement status of the border router.
External Wan interfaces	Displays the information of external interfaces configured on border router.
Auto Tunnel information	Displays the information of auto-tunnel configuration.

Step 2 show domain domain-name border peering

This command displays the border router peering status.

Check the following fields in the output to ensure that the hub-border router is configured accurately:

- · Peering status
- PMI status
- Site-perfix status
- · Globals service status

Example:

HubBR# show domain one border peering

```
Peering state: Enabled
Origin: Loopback0(10.8.2.2)
Peering type: Peer(With 10.8.3.3)
Subscribed service:
    pmi (3) :
      Last Notification Info: 02:09:49 ago, Size: 2088, Compressed size: 478, Status:
No Error, Count: 1
      site-prefix (1) :
      Last Notification Info: 00:06:19 ago, Size: 128, Compressed size: 134, Status:
No Error, Count: 6
      globals (5) :
      Last Notification Info: 00:09:48 ago, Size: 325, Compressed size: 218, Status:
No Error, Count: 9
Published service:
```

The following table describes the significant fields shown in the command output.

Table 8: show d	lomain bord	ler peering	Field Descriptions	

Field	Description
Peering state	Status of peering.
Peering type	Type of peering. In this example, the border router is peering with master-hub controller.
Subscribed service	Lists the status of services subscribed to. In this example, the following services are subscribed: • pmi • site-prefix • globals
Published services	Services published by the hub-border routers to the remote sites.

Step 3 show platform software pfrv3 rp active smart-probe

Note To verify the status of a hub-border router on Cisco ASR 1000 Series Aggregation Services Routers, use the **show platform software pfrv3 rp active smart-probe** command.

This command displays the PfRv3 smart probe status on a Cisco ASR 1000 Series Aggregation Services Router configured at the hub site.

Example:

HubBR# show platform software pfrv3 rp active smart-probe

```
PfRv3 smart probe parameters :
Total number of PfRv3 smart probe: 1
Parameters :
    vrf id = 0
    Probe src = 10.8.3.3
    Src port = 18000, Dst port = 19000
    Unreach time = 1000, Probe period = 500
    Discovery = false
    Dscp bitmap = 0xfffffffffffffffffff
    interval = 10000
    Discovery_probe = true
    minimum prefix length = 28
```

The fields shown above are self-explanatory.

Step 4 show platform software pfrv3 fp active smart-probe

Note To verify the smart probe status of a embedded-service- processor on Cisco ASR 1000 Series Aggregation Services Routers, use the **show platform software pfrv3 fp active smart-probe** command.

This command displays the PfRv3 smart probe status on a Cisco ASR 1000 Series Aggregation Services Router configured at the hub site.

Example:

HubBR# show platform software pfrv3 fp active smart-probe

```
PfRv3 smart probe parameters :
Total number of PfRv3 smart probe: 1
Parameters :
    vrf id = 0
    Probe src = 10.8.3.3
    Src port = 18000, Dst port = 19000
    Unreach time = 1000, Probe period = 500
    Discovery = false
    Dscp bitmap = 0xfffffffffffffffff
    interval = 10000
    Discovery_probe = true
    minimum prefix length = 28
```

The fields shown above are self-explanatory.

Step 5 show platform hardware qfp active feature pfrv3 client global pfrv3-instance detail

Note To verify the platform hardware information for PfR v3 on Cisco ASR 1000 Series Aggregation Services Routers, use the **show platform hardware qfp active feature pfrv3 client global pfrv3-instance detail** command.

This command displays the platform hardware information on a Cisco ASR 1000 Series Aggregation Services Router configured at the hub site.

Example:

HubBR# show platform hardware qfp active feature pfrv3 client global pfrv3-instance detail

```
PfRv3 QFP CLIENT GLOBAL INFO
Number of Instances: 1
Instance
hash val: 5
tbl id: 0
symmetry: Off
discovery: Off
discovery probe: On
probe info:
   probe src: 10.8.3.3, src port: 18000, dst port: 19000
   unreach time: 1000, probe period: 500
   dscp bitmap: 0xfffffffffffffffff, interval: 10000
   mml: 28
exmem info:
    PPE addr: 0xe80b7830
```

The fields shown above are self-explanatory.

Verifying Branch Master Controller Configurations

Use the following show commands in any order to verify the status of the branch-master controller.

SUMMARY STEPS

- 1. show domain domain-name master status
- 2. show domain domain-name master policy

DETAILED STEPS

Step 1 show domain domain-name master status

This command displays the status information of the branch-master controller.

Check the following fields in the output to ensure that the branch-master controller is configured accurately:

- · External interfaces are listed with correct path names
- Minimum requirements are met
- Path names are correct

Example:

BRMC# show domain one master status

```
*** Domain MC Status ***
Master VRF: Global
Instance Type: Branch
Instance id: 0
Operational status: Up
Configured status: Up
Loopback IP Address: 10.2.10.10
 Load Balancing:
 Operational Status: Up
 Max Calculated Utilization Variance: 21%
 Last load balance attempt: 00:00:07 ago
 Last Reason: No channels yet for load balancing
 Total unbalanced bandwidth:
        External links: 5327 Kbps Internet links: 0 Kpbs
Route Control: Enabled
Mitigation mode Aggressive: Disabled
Policy threshold variance: 20
Minimum Mask Length: 28
 Sampling: off
Minimum Requirement: Met
```

```
Borders:
  IP address: 10.2.10.10
  Connection status: CONNECTED (Last Updated 02:03:22 ago )
  Interfaces configured:
    Name: Tunnel100 | type: external | Service Provider: MPLS | Status: UP
    Number of default Channels: 0
  Name: Tunnel200 | type: external | Service Provider: INET | Status: UP
    Number of default Channels: 0
  Tunnel if: Tunnel0
```

Table 9: show domain master status Field Descriptions

Field	Description
Instance Type	Displays the instance type of the device. In this output, the device is configured as a branch.
Operational Status	Displays the operational status of the branch-master controller.
Configured Status	Displays the configuration status of the branch-master controller.
Load Balancing	Displays the load balancing status. If load balancing is enabled on the hub-master controller, the branch master controller receives load balanced traffic.
Borders	Displays the information of border routers connected to the branch-master controller, and external interfaces connected to path names.

Step 2 show domain domain-name master policy

This command displays the policy information received from the hub-master controller.

Example:

BRMC# show domain one master policy

```
class VOICE sequence 10
  path-preference MPLS fallback INET
  class type: Dscp Based
  match dscp ef policy custom
    priority 2 packet-loss-rate threshold 5.0 percent
    priority 1 one-way-delay threshold 150 msec
    priority 2 byte-loss-rate threshold 5.0 percent
    Number of Traffic classes using this policy: 1
class VIDEO sequence 20
    path-preference INET fallback MPLS
```

```
class type: Dscp Based
   match dscp af41 policy custom
     priority 2 packet-loss-rate threshold 5.0 percent
     priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
     Number of Traffic classes using this policy: 1
   match dscp cs4 policy custom
     priority 2 packet-loss-rate threshold 5.0 percent
     priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
     Number of Traffic classes using this policy: 1
class CRITICAL sequence 30
 path-preference MPLS fallback INET
 class type: Dscp Based
   match dscp af31 policy custom
     priority 2 packet-loss-rate threshold 10.0 percent
     priority 1 one-way-delay threshold 600 msec
     priority 2 byte-loss-rate threshold 10.0 percent
     Number of Traffic classes using this policy: 1
class default
  match dscp all
```

Field	Description
class	Name of the class type. In this example, the following classes are listed:
	• VOICE
	• VIDEO
	• CRITICAL
path-preference	Specifies the path preferred for the class type.
match	Specifies the DSCP value to match for a policy type.
priority	Specifies the detailed policy threshold per class, based on the DSCP or application.

Table 10: show domain master policy Field Descriptions

Verifying Branch Border Configurations

Use the following show commands in any order to verify the status of the branch-border router.

SUMMARY STEPS

1. show domain domain-name border status

- 2. show eigrp service-family ipv4 neighbors detail
- 3. show domain domain-name master peering
- 4. show domain domain-name border pmi
- 5. show flow monitor type performance-monitor

DETAILED STEPS

Step 1 show domain domain-name border status

This command displays the status information of the branch-border routers.

Check the following fields in the output to ensure that the branch-border routers are configured accurately:

- · Border status is UP
- · External interfaces are listed with the right path names
- Minimum requirement is met

Example:

BR# show domain one border status

```
*** Border Status ***
```

```
Instance Status: UP
Present status last updated: 02:11:47 ago
Loopback: Configured Loopback0 UP (10.2.10.10)
Master: 10.2.10.10
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 02:11:41
Route-Control: Enabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
     Name: Tunnel100 Interface Index: 14 SNMP Index: 9 SP:MPLS Status: UP
     Name: Tunnel200 Interface Index: 15 SNMP Index: 10 SP:INET Status: UP
Auto Tunnel information:
  Name: Tunnel0 if index: 19
  Borders reachable via this tunnel:
```

The following table describes the significant fields shown in the command output.

Table 11: show domain border status Field Descriptions

Field	Description
Instance Status	Displays the instance status of the device.

Field	Description
Master	Displays the IP address of the local-master controller.
Connection Status with Master	 Displays the connection status with master controller. UP - Indicates that the connection is successful and the policy information is communicated from the master controller to the border router.
External Wan Interfaces	Displays the information about external WAN tunnel interfaces connected to the branch-master controller.

Step 2 show eigrp service-family ipv4 neighbors detail

This command displays the SAF peering information of the local master controller.

Example:

BR# show eigrp service-family ipv4 neighbors detail

```
EIGRP-SFv4 VR(#AUTOCFG#) Service-Family Neighbors for AS(59501)

H Address Interface Hold Uptime SRTT RTO Q Seq

(sec) (ms) Cnt Num

0 10.8.3.3 Lo0 497 02:12:18 5 100 0 31

Remote Static neighbor (static multihop)

Version 17.0/4.0, Retrans: 0, Retries: 0, Prefixes: 6

Topology-ids from peer - 0

Max Nbrs: 65535, Current Nbrs: 0
```

The fields shown above are self-explanatory.

Step 3 show domain domain-name master peering

This command displays the peering information of the branch-master controller.

Check the following fields in the output to ensure that the branch-border routers are configured accurately:

- · Peering status
- PMI status
- · Site-perfix status
- · Globals service status

Example:

BR# show domain one master peering

```
Peering state: Enabled
Origin: Loopback0(10.2.10.10)
Peering type: Listener, Peer(With 10.8.3.3)
```

```
Subscribed service:
    cent-policy (2) :
      Last Notification Info: 00:24:15 ago, Size: 2244, Compressed size: 488, Status:
No Error, Count: 5
    site-prefix (1) :
      Last Notification Info: 00:24:15 ago, Size: 128, Compressed size: 134, Status:
No Error, Count: 35
    service-provider (4) :
     globals (5) :
      Last Notification Info: 00:24:15 ago, Size: 325, Compressed size: 218, Status:
No Error, Count: 19
Published service:
     site-prefix (1) :
      Last Publish Info: 00:49:11 ago, Size: 160, Compressed size: 124, Status: No
Error
     globals (5) :
       Last Publish Info: 10:29:09 ago, Size: 325, Compressed size: 198, Status: No
Error
```

Table 12: show domain master peering Field Descriptions

Field	Description
Peering state	Status of peering.
Subscribed services	Displays the subscribed services list.
Published services	Displays the services published by the branch-master controller to the branch-border routers.

Step 4 show domain domain-name border pmi

This command displays the performance monitor information applied on the external interfaces.

Check the following fields in the output to ensure that the branch-border router is configured accurately and performance monitors are correctly applied on external interfaces :

- Ingress policy activation
- · Egress policy activation
- PMI status

Example:

```
BR# show domain one border pmi
*****Pfrv3 PMI INFORMATION****
Ingress policy Pfrv3-Policy-Ingress-0-4:
Ingress policy activated on:
Tunnel200 Tunnel100
[SNIP]
```

The fields shown above are self-explanatory.

Step 5 show flow monitor type performance-monitor

This command displays the flow monitor information for passive-performance monitoring on the egress interface of WAN. The flow monitors are automatically generated.

Check the following fields in the output to ensure that the branch-border router is configured accurately:

- Cache type
- Flow monitor interval time
- · Export spreading status

Example:

```
BR# show flow monitor type performance-monitor
```

```
Flow Monitor type performance-monitor MON-Egress-aggregate-0-48-9:
      Description :User defined
      Flow Record :CENT-FLOWREC-Egress-aggregate-0-11
     Flow Exporter :CENT FLOW EXP-2
        Cache type :synchronized
          entries :4000
          interval :30 (seconds)
     history size :0 (intervals)
          timeout :1 (intervals)
   export spreading:TRUE
Interface applied :2
Flow Monitor type performance-monitor MON-Egress-prefix-learn-0-48-10:
      Description :User defined
       Flow Record :CENT-FLOWREC-Egress-prefix-learn-0-12
     Flow Exporter :CENT FLOW EXP-2
       Cache type :synchronized
          entries :700
          interval :30 (seconds)
      history size :0 (intervals)
          timeout :1 (intervals)
   export spreading: FALSE
Interface applied :2
Flow Monitor type performance-monitor MON-Ingress-per-DSCP-0-48-11:
      Description :User defined
      Flow Record :CENT-FLOWREC-Ingress-per-DSCP-0-13
   Flow Exporter :not configured
      Cache type :synchronized
          entries :2000
         interval :30 (seconds)
     history size :0 (intervals)
         timeout :1 (intervals)
  export spreading:FALSE
```

```
Interface applied :2
```

The fields shown above are self-explanatory.

Monitoring PfRv3

Monitoring Site Prefix

Site prefixes are internal prefixes for each site. The site prefix database resides on both the master controller and the border routers. Site prefixes are learned from monitoring traffic moving in the egress direction on the WAN interface.

- The site prefix database at hub site learns the site prefixes and their origins from both local egress flow and advertisements from remote peers.
- The site prefix database at border router learns the site prefixes and their origins only from remote peer's advertisements.

By default, master controller and border routers age out all the site prefixes at a frequency of 24 hours.

SUMMARY STEPS

- 1. show domain domain-name master site-prefix
- 2. show domain domain-name border site-prefix
- 3. show domain domain-name border pmi | begin prefix-learn

DETAILED STEPS

Step 1 show domain domain-name master site-prefix

This command displays the site- prefix status information of the hub master controller.

Example:

```
HubMC# show domain one master site-prefix
Change will be published between 5-60 seconds
```

Next Publish 00:54:41 later Prefix DB Origin: 10.8.3.3 Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured;

Site-id	Site-prefix	Last Updated	Flag	
10.2.10.10	10.1.10.0/24	00:42:07 ago	S,	
10.2.10.10	10.2.10.10/32	00:42:07 ago	s,	
10.2.11.11	10.2.11.11/32	00:18:25 ago	s,	
10.8.3.3	10.8.3.3/32	1d05h ago	L,	
10.8.3.3	10.8.0.0/16	1d05h ago	С,	
255.255.255.255	*10.0.0/8	1d05h ago	Τ,	

The fields shown above are self-explanatory.

Step 2 show domain domain-name border site-prefix

This command displays the site- prefix status information of the hub-border router.

Example:

HubBR# show domain one border site-prefix

Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured;

Site-id	Site-prefix	Last Updated	Flag	
10.2.10.10	10.1.10.0/24	00:59:12 ago	s,	
10.2.11.11	10.1.11.0/24	01:14:42 ago	s,	
10.2.10.10	10.2.10.10/32	01:08:04 ago	s,	
10.2.11.11	10.2.11.11/32	01:22:01 ago	s,	
10.8.3.3	10.8.3.3/32	01:30:22 ago	s,	
10.8.3.3	10.8.0.0/16	01:30:22 ago	s,c,	
255.255.255.255	*10.0.0/8	01:30:22 ago	S,T,	

The fields shown above are self-explanatory.

Step 3 show domain domain-name border pmi | begin prefix-learn

This command displays the automatically learned site- prefix status information of the hub-border router.

Example:

HubBR# show domain one border pmi | begin prefix-learn

```
PMI[Egress-prefix-learn]-FLOW MONITOR[MON-Egress-prefix-learn-0-48-29]
   monitor-interval:30
   minimum-mask-length:28
   kev-list:
     ipv4 source prefix
     ipv4 source mask
     routing vrf input
   Non-key-list:
     counter bytes long
     counter packets long
     timestamp absolute monitoring-interval start
  DSCP-list:N/A
  Class:CENT-Class-Egress-ANY-0-51
  Exporter-list:
    10.2.10.10
                                        _____
```

The fields shown above are self-explanatory.

Monitoring Traffic Classes

PfRv3 manages aggregation of flows called traffic classes. A traffic class is an aggregation of flow going to the same destination prefix, with the same DSCP and application name (if application-based policies are used).

Traffic classes are divided in the following groups:

- Performance traffic classes This is the traffic class where the performance metrics is defined for the
 policy type.
- Non-performance traffic classes This is the default traffic class and does not have any performance metrics associated with it.

The master-hub controller learns the traffic classes by monitoring the traffic moving in egress direction on WAN interface.

SUMMARY STEPS

- 1. show domain domain-name master traffic-classes summary
- 2. show domain domain-name master traffic-classes
- 3. show domain domain-name master traffic-classes policy policy-name

DETAILED STEPS

Step 1 show domain domain-name master traffic-classes summary

This command displays the summary information of all the traffic classes.

Example:

HubMC# show domain one master traffic-classes summary

```
APP - APPLICATION, TC-ID - TRAFFIC-CLASS-ID, APP-ID - APPLICATION-ID
SP - SERVICE PROVIDER, PC = PRIMARY CHANNEL ID,
BC - BACKUP CHANNEL ID, BR - BORDER, EXIT - WAN INTERFACE
UC - UNCONTROLLED, PE - PICK-EXIT, CN - CONTROLLED, UK - UNKNOWN
```

Dst-Site-Pfx	Dst-Site-Id	APP	DSCP	TC-ID	APP-ID	State	SP
PC/BC BR/	EXIT						
10.1.10.0/24	10.2.10.10	N/A	af11	193	N/A	CN	MPLS
59/60 10.8.2.2	/Tunnel100						
10.1.10.0/24	10.2.10.10	N/A	cs1	192	N/A	CN	MPLS
57/58 10.8.2.2	/Tunnel100						
10.1.10.0/24	10.2.10.10	N/A	cs5	191	N/A	CN	MPLS
55/NA 10.8.2.2	/Tunnel100						
10.1.10.0/24 1	0.2.10.10	N/A	ef	190	N/A	CN	MPLS
52/NA 10.8.2.2	/Tunnel100						
10.1.10.0/24	10.2.10.10	N/A	af41	195	N/A	CN	INET
64/63 10.8.1.1	/Tunnel200						
10.1.10.0/24	10.2.10.10	N/A	cs4	189	N/A	CN	INET
54/53 10.8.1.1	/Tunnel200						
10.1.10.0/24	10.2.10.10	N/A	af31	194	N/A	CN	MPLS
61/62 10.8.2.2	/Tunnel100						
Total Traffic	Classes: 7 Sit	ce: 7 Int	ternet:	0			

The fields shown above are self-explanatory.

Step 2 show domain domain-name master traffic-classes

This command displays the status information of the traffic class for the hub-master controller.

Example:

HubMC# show domain one master traffic-classes

```
_____
                                                              _____
Dst-Site-Prefix: 10.1.10.0/24
                               DSCP: af11 [10] Traffic class id:193
TC Learned:
                        00:22:13 ago
Present State:
                        CONTROLLED
Current Performance Status: not monitored (default class)
Current Service Provider: MPLS since 00:12:10
Previous Service Provider: INET for 298 sec
                         9195 Kbps
BW Used:
                      عومہ دواو
Tunnell00 in Border 10.8.2.2
Present WAN interface:
Present Channel (primary): 59
Backup Channel:60Destination Site ID:10.2.10.10Class-Sequence in use:default
Class Name:
                        default
                        00:00:14 ago
BW Updated:
Reason for Route Change: Load Balance
_____
Dst-Site-Prefix: 10.1.10.0/24
                               DSCP: cs1 [8] Traffic class id:192
TC Learned:
               00:22:14 ago
Present State:
                       CONTROLLED
Current Performance Status:not monitored (default class)
Current Service Provider: MPLS since 00:12:40
Previous Service Provider: INET for 184 sec
BW Used:
                        9251 Kbps
Present WAN interface: Tunnel100 in Border 10.8.2.2
Present Channel (primary): 57
                    58
Backup Channel:
                      10.2.10.10
Destination Site ID:
Class-Sequence in use:
                       default
Class Name:
                       default
BW Updated: 00:00:12
                       ago
Reason for Route Change: Load Balance
```

The fields shown above are self-explanatory.

Step 3 show domain *domain-name* **master traffic-classes policy** *policy-name*

This command displays the occurrence of performance issues in a policy traffic class.

Example:

HubMC# show domain one master traffic-classes policy VIDEO

```
Dst-Site-Prefix: 10.1.10.0/24 DSCP: cs4 [32] Traffic class id:200
TC Learned: 00:06:00 ago
Present State: CONTROLLED
Current Performance Status: in-policy
```

```
Current Service Provider: MPLS since 00:00:30 (hold until 59 sec)
Previous Service Provider: INET for 117 sec
(A fallback provider. Primary provider will be re-evaluated 00:02:30 later)
BW Used:
                          309 Kbps
Present WAN interface:
                          Tunnel100 in Border 10.8.2.2
Present Channel (primary): 76
Backup Channel:
                           73
Destination Site ID:
                         10.2.10.10
Class-Sequence in use:
                         20
Class Name:
                          VIDEO using policy User-defined
  priority 2 packet-loss-rate threshold 5.0 percent
  priority 1 one-way-delay threshold 150 msec
 priority 2 byte-loss-rate threshold 5.0 percent
BW Updated:
                          00:00:03 ago
Reason for Route Change:
                         Delay
```

The fields shown above are self-explanatory.

Cisco IOS XE Platform Commands

To view traffic-classes on Cisco IOS XE platform, use the following show commands in any order:

SUMMARY STEPS

- 1. show platform software pfrv3 rp active route-control traffic-class
- 2. show platform software pfrv3 fp active route-control traffic-class
- 3. show platform hardware qfp active feature pfrv3 client route-control traffic-class detail
- 4. show platform software interface rp active name interface-name
- 5. show platform software interface fp active name interface-name
- 6. show platform hardware qfp active interface if-name interface-name

DETAILED STEPS

	Command or Action	Purpose
Step 1	show platform software pfrv3 rp active route-control traffic-class	This command displays the traffic class information for a platform.
Step 2	show platform software pfrv3 fp active route-control traffic-class	This command displays the traffic class information for a platform.
Step 3	show platform hardware qfp active feature pfrv3 client route-control traffic-class detail	This command displays the hardware information for the configured policy.
Step 4	show platform software interface rp active name interface-name	This command displays the ingress interface information for PfRv3.
Step 5	show platform software interface fp active name interface-name	This command displays the ingress interface information for PfRv3.

	Command or Action	Purpose
Step 6	show platform hardware qfp active interface if-name	This command displays the interface information in a data
	interjace-name	plane path for Tikv3.

Monitoring Channels

A channel is a unique combination of destination site-Id, path name, and DSCP value. A channel is created when there is a new DSCP value, or an interface, or a site is added to the network. Performance is measured per channel on remote site and feedback is sent to the source site in case of performance failure.

SUMMARY STEPS

- 1. show domain domain-name master channels dscp ef
- 2. show domain domain-name master channels link-name path-name
- 3. show domain domain-name border channels
- 4. show domain domain-name border exporter statistics
- 5. show domain domain-name border channels parent-route
- 6. show domain domain-name border parent-route

DETAILED STEPS

Step 1 show domain domain-name master channels dscp ef

This command displays channel information from the hub site. You can view the information of an active and backup channel using this command.

Example:

```
HubMC# show domain one master channels dscp ef
Legend: * (Value obtained from Network delay:)
```

```
Channel Id: 89 Dst Site-Id: 10.2.10.10 Link Name: MPLS DSCP: ef [46] TCs: 1
Channel Created: 00:01:15 ago
Provisional State: Initiated and open
Operational state: Available
Interface Id: 14
Estimated Channel Egress Bandwidth: 5380 Kbps
Immitigable Events Summary:
Total Performance Count: 0, Total BW Count: 0
TCA Statitics:
Received 0 ; Processed 0 ; Unreach_rcvd:0
```

The fields shown above are self-explanatory.

Step 2 show domain domain-name master channels link-name path-name

This command displays channel status information and the unreachable threshold crossing alerts (TCA) and on demand export (ODE) on a hub-master controller.

Example:

```
Legend: * (Value obtained from Network delay:)
Channel Id: 25 Dst Site-Id: 10.2.10.10 Link Name: INET DSCP: default [0] TCs: 0
 Channel Created: 13:39:27 ago
  Provisional State: Initiated and open
 Operational state: Available but unreachable
  Interface Id: 13
 Estimated Channel Egress Bandwidth: 0 Kbps
  Immitigable Events Summary:
   Total Performance Count: 0, Total BW Count: 0
  ODE Stats Bucket Number: 1
  Last Updated : 00:00:01 ago
   Packet Count : 0
   Byte Count : 0
   One Way Delay : N/A
   Loss Rate Pkts : N/A
   Loss Rate Bytes: N/A
   Jitter Mean : N/A
   Unreachable : TRUE
  ODE Stats Bucket Number: 2
   Last Updated : 00:00:57 ago
   Packet Count : 0
   Byte Count : 0
   One Way Delay : N/A
   Loss Rate Pkts : N/A
   Loss Rate Bytes: N/A
   Jitter Mean : N/A
   Unreachable : TRUE
   TCA Statitics:
    Received:4 ; Processed:1 ; Unreach rcvd:4
  Latest TCA Bucket
   Last Updated : 00:00:01 ago
```

HubMC# show domain one master channels link-name INET

The fields shown above are self-explanatory.

Step 3 show domain domain-name border channels

This command displays channel information from the hub-border site.

Example:

HubBR# show domain one border channels

```
Border Smart Probe Stats:
```

```
Channel id: 21

Channel dscp: 0

Channel site: 255.255.255

Channel interface: Tunnel200

Channel operation state: Initiated_n_open

Channel RX state: reachable

Channel TX state: reachable

Channel next hop: 0.0.0.0

Channel next hop: 0.0.0.0

Channel send_probes: 0

Channel recv_packets: 0
```

```
Channel send_packets: 0

Channel recv_bytes: 0

Channel send_bytes 0

Last Probe Received: N/A

Last Probe Sent: N/A

.
```

The fields shown above are self-explanatory.

Step 4 show domain domain-name border exporter statistics

This command displays the border site exporter statistics information.

Example:

```
HubBR# show domain one border exporter statistics
show on-demand exporter (default vrf)
On-demand exporter
Border: 10.2.10.10
Process ID: SEND=176, RECV=523
Interface: Tunnel200 (index=15, service provider=INET)
 Bandwidth: Ingress=23464 Kbit/sec, Capacity=50000 Kbit/sec
           Egress =7609 Kbit/sec, Capacity=50000 Kbit/sec
Total sent BW packets:
                                  Ω
Total sent BW templates:
                                  0, Last sent: not yet sent
Interface: Tunnel100 (index=14, service provider=MPLS)
 Bandwidth: Ingress=30285 Kbit/sec, Capacity=50000 Kbit/sec
           Egress =3757 Kbit/sec, Capacity=50000 Kbit/sec
Total sent BW packets:
                                  0
Total sent BW templates:
                                 0, Last sent: not yet sent
Global Stats:
 Table ID lookup count: 0
 Table ID Channel found count: 0
 Table ID Next hop found count: 0
_____
                                             _____
```

The fields shown above are self-explanatory.

Step 5 show domain domain-name border channels parent-route

This command displays the parent route information of a border channel.

Note PRv3 determines parent route preference in the following order: NHRP cache (when spoke-to-spoke direct tunnels are established), BGP, EIGRP, static routes, and RIB. A less specific prefix match from a higher preferred protocol will be selected over a more specific prefix from a less preferred protocol source. For example, prefix 10.0.0.0/8 is available through BGP and a more specific path is available through EIGRP. IWAN will not follow the longest prefix match available through EIGRP but will select 10.0.0.0/8 from BGP.

Example:

HubBR# show domain one border channels parent route Channel id: 21, Dscp: defa [0], Site-Id: 255.255.255.255, Path: INET, Interface: Tunnel200 Nexthop: 0.0.0.0 Protocol: None Channel id: 23, Dscp: defa [0], Site-Id: 10.2.11.11, Path: INET, Interface: Tunnel200 Nexthop: 10.0.200.11 Protocol: BGP Channel id: 25, Dscp: defa [0], Site-Id: 10.2.10.10, Path: INET, Interface: Tunnel200 Nexthop: 10.0.200.10 Protocol: BGP Channel id: 88, Dscp: cs4 [20], Site-Id: 10.2.10.10, Path: INET, Interface: Tunnel200 Nexthop: 10.0.200.10 Protocol: BGP Channel id: 91, Dscp: ef [2E], Site-Id: 10.2.10.10, Path: INET, Interface: Tunnel200 Nexthop: 10.0.200.10 Protocol: BGP Channel id: 92, Dscp: afl1 [A], Site-Id: 10.2.10.10, Path: INET, Interface: Tunnel200 Nexthop: 10.0.200.10 Protocol: BGP

The fields shown above are self-explanatory.

Step 6 show domain domain-name border parent-route

This command displays the parent route information of a channel.

Example:

HubBR# show domain one border parent route

```
Border Parent Route Details:
Prot: BGP, Network: 10.2.10.10/32, Gateway: 10.0.200.10, Interface: Tunnel200, Ref count: 8
Prot: BGP, Network: 10.2.11.11/32, Gateway: 10.0.200.11, Interface: Tunnel200, Ref count: 1
```

The fields shown above are self-explanatory.

Example: Configuring Performance Routing Version 3

Let us consider a use case scenario, where the service provider of a large enterprise network wants to optimize the WAN reliability and bandwidth of its network infrastructure based on applications between the head quarter site and branch sites. The service provider wants the network to intelligently choose a path that meets the performance requirement of its video-based applications over non-critical applications.

Figure 3: PfRv3 Topology

In this example, the following routers are used:

- Hub Master Controller Cisco ASR 1002-X router configured with bandwidth of 5 Gbps upgradable with software licensing options to 10 Gbps, 20 Gbps, and 36 Gbps and has a quad-core 2.13 GHz processor (with three memory options 4-GB, 8-GB, and 16-GB)
- Hub Border Routers Cisco ASR 1002 Series Router configured with an Embedded Services Processor 5 (ESP5)
- Branch Routers Cisco 4451X Integrated Services Router.

Example: Configuring Hub Master Controller

Configure the interfaces on hub master controller

```
HubMC> enable
HubMC# configure terminal
HubMC(config)# interface Loopback0
HubMC(config-if)# ip address 10.8.3.3 255.255.255
HubMC(config-if)# exit
```

Configure the device as hub-master controller

```
HubMC(config) # domain one
HubMC(config-domain) # vrf default
HubMC(config-domain-vrf) # master hub
HubMC(config-domain-vrf-mc) # source-interface Loopback0
HubMC(config-domain-vrf-mc) # enterprise-prefix prefix-list ENTERPRISE
HubMC(config-domain-vrf-mc) # site-prefixes prefix-list DATA_CENTER_1
HubMC(config-domain-vrf-mc) # exit
```

Configure IP prefix-lists

```
HubMC(config) # ip prefix-list DATA_CENTER_1 seq 5 permit 10.8.0.0/16 le 24
HubMC(config) # ip prefix-list ENTERPRISE seq 5 permit 10.0.0.0/8 le 24
```

Example: Configuring Domain Policies on Hub Master Controller

```
HubMC(config) # domain one
HubMC(config-domain) # vrf default
HubMC(config-domain-vrf)# master hub
HubMC(config-domain-vrf-mc) # monitor-interval 2 dscp ef
HubMC(config-domain-vrf-mc)# load-balance
HubMC(config-domain-vrf-mc)# class VOICE sequence 10
HubMC(config-domain-vrf-mc-class) # match dscp ef policy voice
HubMC(config-domain-vrf-mc-class) # path-preference MPLS fallback INET
HubMC(config-domain-vrf-mc-class) # exit
HubMC(config-domain-vrf-mc) # class VIDEO sequence 20
HubMC(config-domain-vrf-mc-class)# match dscp af41 policy real-time-video
HubMC(config-domain-vrf-mc-class)# match dscp cs4 policy real-time-video
HubMC(config-domain-vrf-mc-class) # path-preference INET fallback MPLS
HubMC(config-domain-vrf-mc-class)# exit
HubMC(config-domain-vrf-mc) # class CRITICAL sequence 30
HubMC (config-domain-vrf-mc-class) # match dscp af31 policy custom
HubMC(config-domain-vrf-mc-class-type) # priority 2 loss threshold 10
HubMC (config-domain-vrf-mc-class-type) # priority 1 one-way-delay threshold 600
HubMC(config-domain-vrf-mc-class-type) # priority 2 jitter threshold 600
HubMC(config-domain-vrf-mc-class) # exit
HubMC(config-domain-vrf-mc-class) # path-preference MPLS fallback INET
```

Example: Configuring Hub Border Routers

Configure the interfaces on hub border router (BR1)

```
BR1> enable
BR1# configure terminal
BR1(config)# interface Loopback0
BR1(config-if)# ip address 10.8.1.1 255.255.255
BR1(config-if)exit
```

Configure the device as border router (BR1)

```
BR1(config)# domain one
BR1(config-domain)# vrf default
BR1(config-domain-vrf)# border
BR1(config-domain-vrf-br)# source-interface Loopback0
BR1(config-domain-vrf-br)# master 10.8.3.3
BR1(config-domain-vrf-br)# exit
```

Configure tunnel from BR1 to DMVPN1 (MPLS)Link

```
BR1(config)# interface Tunnel100
BR1(config-if)# bandwidth 100000
BR1(config-if)# ip address 10.0.100.84 255.255.255.0
BR1(config-if)# no ip redirects
BR1(config-if)# ip mtu 1400
```

BR1 (config-if) # ip nhrp authentication cisco BR1 (config-if) # ip nhrp map multicast dynamic BR1 (config-if) # ip nhrp network-id 1 BR1 (config-if) # ip nhrp holdtime 600 BR1 (config-if) # ip tcp adjust-mss 1360 BR1 (config-if) # load-interval 30 BR1 (config-if) # tunnel source GigabitEthernet3 BR1 (config-if) # tunnel mode gre multipoint BR1 (config-if) # tunnel key 100 BR1 (config-if) # tunnel protection ipsec profile DMVPN-PROFILE1 BR1 (config-if) # domain one path MPLS

Configure the interfaces on hub border router (BR2)

```
BR2> enable
BR2# configure terminal
BR2 (config) # interface Loopback0
BR2 (config-if) # ip address 10.8.2.2 255.255.255
BR2 (config-if) # exit
```

Configure the device as border router (BR2)

```
BR2(config) # domain one
BR2(config-domain) # vrf default
BR2(config-domain-vrf) # border
BR2(config-domain-vrf-br) # source-interface Loopback0
BR2(config-domain-vrf-br) # master 10.8.3.3
BR2(config-domain-vrf-br) # exit
```

Configure tunnel from BR2 to DMVPN2 (INTERNET)Link

```
BR2(config) # interface Tunnel200
BR2(config-if) # bandwidth 50000
BR2(config-if) # ip address 10.0.200.85 255.255.255.0
BR2(config-if) # no ip redirects
BR2(config-if) # ip mtu 1400
BR2 (config-if) # ip nhrp authentication cisco
BR2 (config-if) # ip nhrp map multicast dynamic
BR2(config-if) # ip nhrp network-id 2
BR2(config-if) # ip nhrp holdtime 600
BR2(config-if) # ip tcp adjust-mss 1360
BR2(config-if) # load-interval 30
BR2(config-if) # delay 1000
BR2(config-if) # tunnel source GigabitEthernet3
BR2(config-if)# tunnel mode gre multipoint
BR2(config-if) # tunnel key 200
BR2(config-if) # tunnel protection ipsec profile DMVPN-PROFILE2
BR2(config-if) # domain one path INET
```

Example: Configuring Branch Routers (Single CPE)

Configure the interfaces (R10)

```
R10> enable
R10# configure terminal
R10(config)# interface Loopback0
R10(config-if)# ip address 10.2.10.10 255.255.255.255
R10(config-if) exit
```

Configure the device as branch master controller (R10)

```
R10(config)# domain one
R10(config-domain)# vrf default
R10(config-domain-vrf)# border
R10(config-domain-vrf-br)# source-interface Loopback0
R10(config-domain-vrf-br)# master local
R10(config-domain-vrf-br)# exit
R10(config-domain-vrf)# master branch
R10(config-domain-vrf-mc)# source-interface Loopback0
R10(config-domain-vrf-mc)# hub 10.8.3.3
```

Configure the tunnel interface and tunnel path from R10

```
R10(config) # interface Tunnel100
R10(config-if) # bandwidth 100000
R10(config-if) # ip address 10.0.100.10 255.255.255.0
R10(config-if) # no ip redirects
R10(config-if) # ip mtu 1400
R10 (config-if) # ip nhrp authentication cisco
R10(config-if)# ip nhrp map 10.0.100.84 172.16.84.4
R10(config-if) # ip nhrp map multicast 172.16.84.4
R10(config-if) # ip nhrp network-id 1
R10(config-if) # ip nhrp holdtime 600
R10(config-if)# ip nhrp nhs 10.0.100.84
R10 (config-if) # ip nhrp registration timeout 60
R10(config-if) # ip tcp adjust-mss 1360
R10(config-if) # load-interval 30
R10(config-if)# delay 1000
R10 (config-if) # tunnel source GigabitEthernet2
R10(config-if) # tunnel mode gre multipoint
R10(config-if) # tunnel key 100
R10(config-if) # tunnel protection ipsec profile DMVPN-PROFILE1
```

Configure another tunnel path from R10

```
R10(config) # interface Tunnel200
R10(config-if) # bandwidth 50000
R10 (config-if) # ip address 10.0.200.10 255.255.255.0
R10(config-if) # no ip redirects
R10(config-if)# ip mtu 1400
R10(config-if) # ip nhrp authentication cisco
R10(config-if) # ip nhrp map 10.0.200.85 172.16.85.5
R10 (config-if) # ip nhrp multicast 172.16.85.5
R10(config-if) # ip nhrp network-id 2
R10(config-if) # ip nhrp holdtime 600
R10(config-if) # ip nhrp nhs 10.0.200.85
R10(config-if) # ip tcp adjust-mss 1360
R10(config-if)# load-interval 30
R10(config-if)# delay 1000
R10 (config-if) # tunnel source GigabitEthernet3
R10(config-if) # tunnel mode gre multipoint
R10(config-if) # tunnel key 200
R10(config-if) # tunnel protection ipsec profile DMVPN-PROFILE2
```

Configure the interfaces (R11)

```
R11> enable
R11# configure terminal
R11(config)# interface Loopback0
R11(config-if)# ip address 10.2.11.11 255.255.255.255
R11(config-if)# exit
```

Configure the device as branch master controller (R11)

```
R11(config)# domain one
R11(config-domain)# vrf default
R11(config-domain-vrf)# border
R11(config-domain-vrf-br)# source-interface Loopback0
R11(config-domain-vrf-br)# master local
R11(config-domain-vrf-br)# exit
R11(config-domain-vrf)# master branch
R11(config-domain-vrf-mc)# source-interface Loopback0
R11(config-domain-vrf-mc)# hub 10.8.3.3
```

Configure the tunnel interface and tunnel path from R11

```
R11(config) # interface Tunnel100
R11(config-if) # bandwidth 100000
R11(config-if)# ip address 10.0.100.11 255.255.255.0
R11(config-if) # no ip redirects
R11(config-if)# ip mtu 1400
R11(config-if) # ip nhrp authentication cisco
R11(config-if) # ip nhrp map 10.0.100.84 172.16.84.4
R11(config-if) # ip nhrp map multicast 172.16.84.4
R11(config-if) # ip nhrp network-id 1
R11(config-if) # ip nhrp holdtime 600
R11(config-if)# ip nhrp nhs 10.0.100.84
R11(config-if) # ip nhrp registration timeout 60
R11(config-if) # ip tcp adjust-mss 1360
R11(config-if)# load-interval 30
R11(config-if)# delay 1000
R11(config-if) # tunnel source GigabitEthernet2
R11(config-if) # tunnel mode gre multipoint
R11(config-if) # tunnel key 100
R11(config-if)# tunnel protection ipsec profile DMVPN-PROFILE1
```

Configure another tunnel path from R11

```
R11(config) # interface Tunnel200
R11(config-if) # bandwidth 50000
R11(config-if) # ip address 10.0.200.11 255.255.255.0
R11(config-if) # no ip redirects
R11(config-if)# ip mtu 1400
R11(config-if) # ip nhrp authentication cisco
R11(config-if) # ip nhrp map 10.0.200.85 172.16.85.5
R11 (config-if) # ip nhrp multicast 172.16.85.5
R11(config-if) # ip nhrp network-id 2
R11(config-if) # ip nhrp holdtime 600
R11(config-if) # ip nhrp nhs 10.0.200.85
R11(config-if) # ip tcp adjust-mss 1360
R11(config-if)# load-interval 30
R11(config-if)# delay 1000
R11(config-if) # tunnel source GigabitEthernet3
R11(config-if) # tunnel mode gre multipoint
R11(config-if) # tunnel key 200
R11(config-if)# tunnel vrf INET2
R11(config-if) # tunnel protection ipsec profile DMVPN-PROFILE2
```

Example: Configuring Branch Routers (Dual CPE)

Configure the interfaces (R12)

```
R12> enable
R12# configure terminal
R12(config)# interface Loopback0
R12(config-if)# ip address 10.2.12.12 255.255.255.255
R12(config-if)# exit
```

Configure the device as branch master controller (R12)

```
R12(config)# domain one
R12(config-domain)# vrf default
R12(config-domain-vrf)# border
R12(config-domain-vrf-br)# source-interface Loopback0
R12(config-domain-vrf-br)# master local
R12(config-domain-vrf-br)# exit
R12(config-domain-vrf)# master branch
R12(config-domain-vrf-mc)# source-interface Loopback0
R12(config-domain-vrf-mc)# hub 10.8.3.3
```

Configure the tunnel interface and tunnel path from R12

```
R12(config) # interface Tunnel100
R12(config-if) # bandwidth 100000
R12(config-if)# ip address 10.0.100.13 255.255.255.0
R12(config-if) # no ip redirects
R12(config-if)# ip mtu 1400
R12(config-if) # ip nhrp authentication cisco
R12(config-if) # ip nhrp map 10.0.100.84 172.16.84.4
R12(config-if) # ip nhrp map multicast 172.16.84.4
R12(config-if) # ip nhrp network-id 1
R12(config-if) # ip nhrp holdtime 600
R12(config-if) # ip nhrp nhs 10.0.100.84
R12(config-if) # ip nhrp registration timeout 60
R12(config-if) # ip tcp adjust-mss 1360
R12(config-if)# load-interval 30
R12(config-if)# delay 1000
R12(config-if) # tunnel source GigabitEthernet3
R12(config-if) # tunnel mode gre multipoint
R12(config-if) # tunnel key 100
R12 (config-if) # tunnel protection ipsec profile DMVPN-PROFILE1
```

Configure the interfaces (R13)

```
R13> enable
R13# configure terminal
R13(config)# interface Loopback0
R13(config-if)# ip address 10.2.13.13 255.255.255.255
R13(config-if)# exit
```

Configure the device as a border router with R12 as the master controller (R13)

```
R13(config)# domain one
R13(config-domain)# vrf default
R13(config-domain-vrf)# border
R13(config-domain-vrf-br)# source-interface Loopback0
R13(config-domain-vrf-br)# master 10.2.12.12
```

Configure the tunnel interface and tunnel path from R13

```
R13(config)# interface Tunnel200
R13(config-if)# bandwidth 50000
```

R13(config-if) # ip address 10.0.200.13 255.255.255.0 R13(config-if) # no ip redirects R13(config-if)# ip mtu 1400 R13(config-if) # ip nhrp authentication cisco R13(config-if) # ip nhrp map 10.0.200.85 172.16.85.5 R13(config-if) # ip nhrp multicast 172.16.85.5 R13(config-if) # ip nhrp network-id 2 R13(config-if) # ip nhrp holdtime 600 R13(config-if) # ip nhrp nhs 10.0.200.85 R13(config-if) # ip tcp adjust-mss 1360 R13(config-if) # load-interval 30 R13(config-if)# delay 1000 R13(config-if) # tunnel source GigabitEthernet6 R13(config-if) # tunnel mode gre multipoint R13(config-if)# tunnel key 200 R13(config-if) # tunnel vrf INET2 R13(config-if) # tunnel protection ipsec profile DMVPN-PROFILE2

Verifying PfRv3 Configuration

To verify the PfRv3 configuration, use the following show commands in any order:

show domain domain-name master status

HubMC# show domain one master status

*** Domain MC Status *** Master VRF: Global Instance Type: Hub Instance id: 0 Operational status: Up Configured status: Up Loopback IP Address: 10.8.3.3 Load Balancing: Admin Status: Enabled Operational Status: Up Enterprise top level prefixes configured: 1 Max Calculated Utilization Variance: 1% Last load balance attempt: 00:27:23 ago Last Reason: Variance less than 20% Total unbalanced bandwidth: External links: O Kbps Internet links: O Kpbs Route Control: Enabled Mitigation mode Aggressive: Disabled Policy threshold variance: 20 Minimum Mask Length: 28 Sampling: off Borders: IP address: 10.8.2.2 Connection status: CONNECTED (Last Updated 1d11h ago) Interfaces configured: Name: Tunnel200 | type: external | Service Provider: INET | Status: UP Number of default Channels: 3 Tunnel if: Tunnel0 IP address: 10.8.1.1 Connection status: CONNECTED (Last Updated 1d11h ago)

Interfaces configured:
Name: Tunnel100 | type: external | Service Provider: MPLS | Status: UP Number of default Channels: 3 Tunnel if: Tunnel0

show domain domain-name master discovered-sites

HubMC# show domain one master discovered-sites

```
*** Domain MC DISCOVERED sites ***
Number of sites: 3
*Traffic classes [Performance based] [Load-balance based]
Site ID: 255.255.255.255
  DSCP :default[0]-Number of traffic classes[0][0]
  DSCP :af31[26]-Number of traffic classes[0][0]
  DSCP :cs4[32]-Number of traffic classes[0][0]
  DSCP :af41[34]-Number of traffic classes[0][0]
  DSCP :cs5[40]-Number of traffic classes[0][0]
  DSCP :ef[46]-Number of traffic classes[0][0]
Site ID: 10.2.10.10
  DSCP :default[0]-Number of traffic classes[1][1]
  DSCP :af31[26]-Number of traffic classes[0][0]
  DSCP :cs4[32]-Number of traffic classes[1][0]
  DSCP :af41[34]-Number of traffic classes[0][0]
  DSCP :cs5[40]-Number of traffic classes[0][0]
  DSCP :ef[46]-Number of traffic classes[1][0]
Site ID: 10.2.11.11
  DSCP :default[0]-Number of traffic classes[0][0]
  DSCP :af31[26]-Number of traffic classes[0][0]
  DSCP :cs4[32]-Number of traffic classes[0][0]
  DSCP :af41[34]-Number of traffic classes[0][0]
  DSCP :cs5[40]-Number of traffic classes[0][0]
  DSCP :ef[46]-Number of traffic classes[0][0]
```

show domain domain-name border status

HubBR# show domain one border status

****Border Status****
Instance Status: UP
Present status last updated: 02:07:43 ago
Loopback: Configured Loopback0 UP (10.8.2.2)
Master: 10.8.3.3
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 02:07:42
Route-Control: Enabled
Minimum Mask length: 28
Sampling: off

```
Minimum Requirement: Met
External Wan interfaces:
    Name: Tunnel100 Interface Index: 14 SNMP Index: 9 SP:MPLS Status: UP
Auto Tunnel information:
    Name:Tunnel0 if_index: 15
    Borders reachable via this tunnel: 10.8.2.2
```

show platform software pfrv3 rp active smart-probe

HubBR# show platform software pfrv3 rp active smart-probe

```
PfRv3 smart probe parameters :
Total number of PfRv3 smart probe: 1
Parameters :
    vrf id = 0
    Probe src = 10.8.3.3
    Src port = 18000, Dst port = 19000
    Unreach time = 1000, Probe period = 500
    Discovery = false
    Dscp bitmap = 0xfffffffffffffffff
    interval = 10000
    Discovery_probe = true
    minimum prefix length = 28
```

show derived-config | section eigrp

HubMC# show derived-config | section eigrp

```
router eigrp #AUTOCFG# (API-generated auto-configuration, not user configurable)
!
service-family ipv4 autonomous-system 59501
!
sf-interface Loopback0
hello-interval 120
hold-time 600
exit-sf-interface
!
topology base
exit-sf-topology
remote-neighbors source Loopback0 unicast-listen
exit-service-family
```

show domain domain-name master policy

HubMC# show domain one master policy

No Policy publish pending

```
class VOICE sequence 10 path-preference MPLS fallback INET
```

```
class type: Dscp Based
   match dscp ef policy custom
     priority 2 packet-loss-rate threshold 5.0 percent
     priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
      Number of Traffic classes using this policy: 1
class VIDEO sequence 20
 path-preference INET fallback MPLS
  class type: Dscp Based
   match dscp af41 policy custom
      priority 2 packet-loss-rate threshold 5.0 percent
     priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
     Number of Traffic classes using this policy: 1
   match dscp cs4 policy custom
     priority 2 packet-loss-rate threshold 5.0 percent
      priority 1 one-way-delay threshold 150 msec
     priority 2 byte-loss-rate threshold 5.0 percent
      Number of Traffic classes using this policy: 1
class CRITICAL sequence 30
  path-preference MPLS fallback INET
  class type: Dscp Based
   match dscp af31 policy custom
     priority 2 packet-loss-rate threshold 10.0 percent
      priority 1 one-way-delay threshold 600 msec
      priority 2 byte-loss-rate threshold 10.0 percent
     Number of Traffic classes using this policy: 1
class default
 match dscp all
   Number of Traffic classes using this policy: 3
```

show domain domain-name border pmi

BR# show domain one border pmi

show ip access-lists dynamic

```
BR# show ip access-lists dynamic
```

```
Extended IP access list mma-dvmc-acl#3
10 deny ip any 224.0.0.0 15.255.255.255
20 deny ip any any dscp cs6
```

30 permit tcp any any 40 permit udp any neq 18000 any neq 19000 50 permit icmp any any

show domain domain-name master site-prefix

HubMC# show domain one master site-prefix

Change will be published between 5-60 seconds Next Publish 00:54:41 later Prefix DB Origin: 10.8.3.3 Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured;

Site-id	Site-prefix	Last Update	ed	Flag
10.2.10.10	10.1.10.0/24	00:42:07 a	ago	s,
10.2.10.10	10.2.10.10/32	00:42:07 a	ago	S,
10.2.11.11	10.2.11.11/32	00:18:25 a	ago	S,
10.8.3.3	10.8.3.3/32	1d05h a	ago	L,
10.8.3.3	10.8.0.0/16	1d05h a	ago	С,
255.255.255.255	*10.0.0/8	1d05h a	ago 	т,

show domain domain-name border site-prefix

HubBR# show domain one border site-prefix

Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured;

Site-id	Site-prefix	Last Updated	Flag	
10.2.10.10	10.1.10.0/24	00:59:12 ago	s,	
10.2.11.11	10.1.11.0/24	01:14:42 ago	s,	
10.2.10.10	10.2.10.10/32	01:08:04 ago	s,	
10.2.11.11	10.2.11.11/32	01:22:01 ago	s,	
10.8.3.3	10.8.3.3/32	01:30:22 ago	s,	
10.8.3.3	10.8.0.0/16	01:30:22 ago	s,c,	
255.255.255.255	*10.0.0.0/8	01:30:22 ago	S,T,	

show domain domain-name master traffic-classess summary

HubMC# show domain one master traffic-classes summary

```
_____
APP - APPLICATION, TC-ID - TRAFFIC-CLASS-ID, APP-ID - APPLICATION-ID
SP - SERVICE PROVIDER, PC = PRIMARY CHANNEL ID,
BC - BACKUP CHANNEL ID, BR - BORDER, EXIT - WAN INTERFACE
UC - UNCONTROLLED, PE - PICK-EXIT, CN - CONTROLLED, UK - UNKNOWN
Dst-Site-Pfx Dst-Site-Id
                         APP
                             DSCP TC-ID APP-ID
                                                  State
                                                           SP
PC/BC BR/EXIT
10.1.10.0/24 10.2.10.10
                         N/A
                             af11
                                    193
                                           N/A
                                                   CN
                                                           MPLS
59/60 10.8.2.2/Tunnel100
10.1.10.0/24 10.2.10.10
                         N/A
                                    192
                                           N/A
                                                   CN
                                                           MPLS
                             cs1
57/58 10.8.2.2/Tunnel100
10.1.10.0/24 10.2.10.10
                         N/A
                             cs5
                                    191
                                           N/A
                                                   CN
                                                           MPLS
55/NA 10.8.2.2/Tunnel100
10.1.10.0/24 10.2.10.10
                         N/A
                              ef
                                    190
                                           N/A
                                                   CN
                                                           MPLS
52/NA 10.8.2.2/Tunnel100
10.1.10.0/24 10.2.10.10
                         N/A
                             af41
                                    195
                                           N/A
                                                   CN
                                                           INET
64/63 10.8.1.1/Tunnel200
10.1.10.0/24 10.2.10.10
                         N/A
                                    189
                             cs4
                                           N/A
                                                   CN
                                                           TNET
54/53 10.8.1.1/Tunnel200
10.1.10.0/24 10.2.10.10
                         N/A
                             af31 194
                                           N/A
                                                   CN
                                                           MPLS
61/62 10.8.2.2/Tunnel100
```

Total Traffic Classes: 7 Site: 7 Internet: 0

show domain domain-name master traffic-classess policy

HubMC# show domain one master traffic-classes policy VIDEO

```
Dst-Site-Prefix: 10.1.10.0/24 DSCP: cs4 [32] Traffic class id:200
  TC Learned:
                             00:06:00 ago
  Present State:
                              CONTROLLED
  Current Performance Status: in-policy
  Current Service Provider:
                              MPLS since 00:00:30 (hold until 59 sec)
  Previous Service Provider: INET for 117 sec
  (A fallback provider. Primary provider will be re-evaluated 00:02:30 later)
  Present WAN interface: Tuppello
                              Tunnel100 in Border 10.8.2.2
  Present Channel (primary):
                              76
                              73
  Backup Channel:
                             10.2.10.10
  Destination Site ID:
  Class-Sequence in use:
                             20
                              VIDEO using policy User-defined
  Class Name:
    priority 2 packet-loss-rate threshold 5.0 percent
    priority 1 one-way-delay threshold 150 msec
    priority 2 byte-loss-rate threshold 5.0 percent
  BW Updated: 00:00:03 ago
  Reason for Route Change: Delay
```

show running-config

HubMC# show running-config

```
Building configuration ...
Current configuration : 5137 bytes
! Last configuration change at 02:37:06 CST Mon Nov 3 2014
! NVRAM config last updated at 02:35:51 CST Mon Nov 3 2014
version 15.4
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
service internal
no platform punt-keepalive disable-kernel-core
platform console serial
hostname HubMC
boot-start-marker
boot-end-marker
1
1
vrf definition Mgmt-intf
address-family ipv4
exit-address-family
no logging console
no aaa new-model
```

clock timezone CST 8 0 1 no ip domain lookup 1 subscriber templating 1 multilink bundle-name authenticated domain one vrf default master hub source-interface Loopback0 site-prefixes prefix-list DC1 PREFIX monitor-interval 2 dscp cs5 monitor-interval 2 dscp ef load-balance enterprise-prefix prefix-list ENTERPRISE_PREFIX class VOICE sequence 10 match dscp ef policy custom priority 2 loss threshold 5 priority 1 one-way-delay threshold 150 path-preference MPLS fallback INET class VIDEO sequence 20 match dscp af41 policy custom priority 2 loss threshold 5 priority 1 one-way-delay threshold 150 match dscp cs4 policy custom priority 2 loss threshold 5 priority 1 one-way-delay threshold 150 path-preference INET fallback MPLS class CRITICAL sequence 30 match dscp af31 policy custom priority 2 loss threshold 10 priority 1 one-way-delay threshold 600 path-preference MPLS fallback INET T. license udi pid CSR1000V sn 90KU0SDCWNB license boot level ax spanning-tree extend system-id redundancy mode none 1 ip ftp source-interface GigabitEthernet1 ip ftp username mgcusr ip ftp password mgcusr ip tftp source-interface GigabitEthernet1 1 ! T. !

!

interface Loopback0 ip address 10.8.3.3 255.255.255.255 1 interface GigabitEthernet1 vrf forwarding Mgmt-intf ip address 10.124.19.208 255.255.255.0 negotiation auto interface GigabitEthernet2 no ip address load-interval 30 speed 1000 no negotiation auto 1 interface GigabitEthernet2.100 encapsulation dot1Q 100 ip address 10.8.101.1 255.255.255.0 1 interface GigabitEthernet2.101 encapsulation dot1Q 101 ip address 10.8.102.1 255.255.255.0 interface GigabitEthernet2.102 encapsulation dot1Q 102 ip address 10.8.103.1 255.255.255.0 1 interface GigabitEthernet2.103 encapsulation dot1Q 103 ip address 10.8.104.1 255.255.255.0 ! interface GigabitEthernet3 description --INTERNAL-ip address 10.8.24.2 255.255.255.0 speed 1000 no negotiation auto 1 interface GigabitEthernet4 description --INTERNAL-ip address 10.8.25.2 255.255.255.0 speed 1000 no negotiation auto 1 ! router eigrp 100 network 10.8.3.3 0.0.0.0 network 10.8.24.0 0.0.0.255 network 10.8.25.0 0.0.0.255 redistribute connected 1 virtual-service csr mgmt ! ip forward-protocol nd no ip http server no ip http secure-server ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 10.124.19.1 1 ip prefix-list DC1 PREFIX seq 10 permit 10.8.0.0/16 ip prefix-list ENTERPRISE PREFIX seq 10 permit 10.0.0/8 no service-routing capabilities-manager

```
!
T.
!
control-plane
1
!
line con O
exec-timeout 0 0
stopbits 1
line vty 0 4
exec-timeout 0 0
privilege level 15
no login
line vty 5 15
exec-timeout 0 0
privilege level 15
no login
ntp logging
ntp source Loopback0
ntp master 3
1
end
```

show running-config

HubBR1# show running-config

```
Building configuration ...
Current configuration : 5312 bytes
! Last configuration change at 02:31:02 CST Mon Nov 3 2014
! NVRAM config last updated at 02:31:02 CST Mon Nov 3 2014
1
version 15.4
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
service internal
no platform punt-keepalive disable-kernel-core
platform console serial
1
hostname HubBR1
boot-start-marker
boot-end-marker
1
1
vrf definition INET1
rd 65512:1
1
address-family ipv4
exit-address-family
vrf definition Mgmt-intf
1
address-family ipv4
exit-address-family
1
no logging console
no aaa new-model
clock timezone CST 8 0
```

!

```
1
!
no ip domain lookup
1
1
1
1
subscriber templating
1
multilink bundle-name authenticated
!
domain one
vrf default
border
source-interface Loopback0
master 10.8.3.3
!
1
license udi pid CSR1000V sn 952V3LWQECD
license boot level ax
spanning-tree extend system-id
!
1
redundancy
mode none
1
!
1
ip ftp source-interface GigabitEthernet1
ip ftp username mgcusr
ip ftp password mgcusr
ip tftp source-interface GigabitEthernet1
crypto keyring DMVPN-KEYRING1
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
1
!
1
crypto isakmp policy 10
encr aes
authentication pre-share
crypto isakmp performance
crypto isakmp profile ISAKMP-INET1
keyring DMVPN-KEYRING1
match identity address 0.0.0.0
1
crypto ipsec security-association replay disable
crypto ipsec security-association replay window-size 1024
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
mode transport
crypto ipsec profile DMVPN-PROFILE1
set transform-set AES256/SHA/TRANSPORT
set isakmp-profile ISAKMP-INET1
!
```

!

T. I. 1 interface Loopback0 ip address 10.8.1.1 255.255.255.255 T. interface Tunnel100 bandwidth 100000 ip address 10.0.100.84 255.255.255.0 no ip redirects ip mtu 1400 ip nhrp authentication cisco ip nhrp map multicast dynamic ip nhrp network-id 1 ip nhrp holdtime 600 ip nhrp redirect ip tcp adjust-mss 1360 load-interval 30 tunnel source GigabitEthernet3 tunnel mode gre multipoint tunnel key 100 tunnel protection ipsec profile DMVPN-PROFILE1 domain one path MPLS interface GigabitEthernet1 vrf forwarding Mgmt-intf ip address 10.124.19.210 255.255.255.0 negotiation auto interface GigabitEthernet2 description --INTERNAL-ip address 10.8.24.4 255.255.255.0 speed 1000 no negotiation auto interface GigabitEthernet3 description --MPLS-ip address 172.16.84.4 255.255.255.0 load-interval 30 speed 1000 no negotiation auto 1 interface GigabitEthernet4 no ip address load-interval 30 speed 1000 no negotiation auto interface GigabitEthernet5 ip address 101.1.4.1 255.255.255.0 speed 1000 no negotiation auto ! interface GigabitEthernet6 no ip address speed 1000 no negotiation auto ! !

```
router eigrp 100
network 10.8.2.2 0.0.0.0
network 10.8.24.0 0.0.0.255
redistribute bgp 10 metric 100000 1 255 255 1500
distance eigrp 90 210
router ospf 100
router-id 10.8.1.1
network 172.16.84.4 0.0.0.0 area 0
1
router bgp 10
bgp router-id 10.8.1.1
bgp log-neighbor-changes
bgp listen range 10.0.100.0/24 peer-group MPLS-SPOKES
neighbor MPLS-SPOKES peer-group
neighbor MPLS-SPOKES remote-as 10
neighbor MPLS-SPOKES timers 20 60
address-family ipv4
bgp redistribute-internal
network 10.8.1.1 mask 255.255.255.255
network 10.8.3.3 mask 255.255.255.255
network 10.8.101.0 mask 255.255.255.0
network 10.8.102.0 mask 255.255.255.0
network 10.8.103.0 mask 255.255.255.0
network 10.8.104.0 mask 255.255.255.0
aggregate-address 10.8.0.0 255.255.0.0 summary-only
neighbor MPLS-SPOKES activate
neighbor MPLS-SPOKES send-community
neighbor MPLS-SPOKES default-originate
neighbor MPLS-SPOKES route-map MPLS-DC1-IN in
neighbor MPLS-SPOKES route-map MPLS-DC1-OUT out
distance bgp 20 109 109
exit-address-family
virtual-service csr_mgmt
ip forward-protocol nd
ip bqp-community new-format
ip community-list standard MPLS-DMVPN permit 10:100
ip community-list standard INET-DMVPN permit 10:200
no ip http server
no ip http secure-server
ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 10.124.19.1
!
ip prefix-list DC1-LOCAL-ROUTES seq 10 permit 0.0.0.0/0
ip prefix-list DC1-LOCAL-ROUTES seq 20 permit 10.8.0.0/16 le 32
no service-routing capabilities-manager
route-map MPLS-DC1-IN deny 10
match ip address prefix-list DC1-LOCAL-ROUTES
route-map MPLS-DC1-IN permit 20
set community 10:100
1
route-map TO-PEER permit 10
match ip address prefix-list DC1-LOCAL-ROUTES
set ip next-hop self
set community no-advertise
route-map site prefixes permit 10
```

```
match ip address prefix-list site prefixes
route-map MPLS-DC1-OUT permit 10
match ip address prefix-list DC1-LOCAL-ROUTES
set community 10:100
route-map MPLS-DC1-OUT permit 20
description readvertise routes learned from MPLS DMVPN cloud
match community MPLS-DMVPN
1
L
control-plane
1
Т
line con 0
exec-timeout 0 0
stopbits 1
line vty 0 4
exec-timeout 0 0
privilege level 15
no login
line vty 5 15
exec-timeout 0 0
privilege level 15
no login
1
ntp source Loopback0
ntp server 10.8.3.3
end
```

show running-config

HubBR2# show running-config

```
_____
Current configuration : 5254 bytes
! Last configuration change at 02:30:54 CST Mon Nov 3 2014
! NVRAM config last updated at 02:25:26 CST Mon Nov 3 2014
T.
version 15.4
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
service internal
no platform punt-keepalive disable-kernel-core
platform console serial
hostname HubBR2
1
boot-start-marker
boot-end-marker
1
1
vrf definition INET2
rd 65512:2
1
address-family ipv4
exit-address-family
!
vrf definition Mgmt-intf
1
address-family ipv4
```

exit-address-family

```
1
no logging console
!
no aaa new-model
clock timezone CST 8 0
1
!
!
1
Т
1
1
no ip domain lookup
1
1
!
1
subscriber templating
!
multilink bundle-name authenticated
1
domain one
vrf default
border
source-interface Loopback0
master 10.8.3.3
1
license udi pid CSR1000V sn 94EFH1HPLI9
license boot level ax
spanning-tree extend system-id
!
!
redundancy
99
mode none
1
1
1
1
1
1
ip ftp source-interface GigabitEthernet1
ip ftp username mgcusr
ip ftp password mgcusr
ip tftp source-interface GigabitEthernet1
!
crypto keyring DMVPN-KEYRING2 vrf INET2
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
1
1
!
1
crypto isakmp policy 10
encr aes
authentication pre-share
crypto isakmp invalid-spi-recovery
crypto isakmp performance
crypto isakmp profile ISAKMP-INET2
keyring DMVPN-KEYRING2
match identity address 0.0.0.0 INET2
!
```

```
crypto ipsec security-association replay disable
crypto ipsec security-association replay window-size 1024
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
mode transport
crypto ipsec profile DMVPN-PROFILE2
set transform-set AES256/SHA/TRANSPORT
set isakmp-profile ISAKMP-INET2
interface Loopback0
ip address 10.8.2.2 255.255.255.255
Т
interface Tunnel200
bandwidth 50000
ip address 10.0.200.85 255.255.255.0
no ip redirects
ip mtu 1400
ip nhrp authentication cisco
ip nhrp map multicast dynamic
ip nhrp network-id 2
ip nhrp holdtime 600
ip nhrp redirect
ip tcp adjust-mss 1360
load-interval 30
delay 1000
tunnel source GigabitEthernet4
tunnel mode gre multipoint
tunnel key 200
100
tunnel vrf INET2
tunnel protection ipsec profile DMVPN-PROFILE2
domain one path INET
interface GigabitEthernet1
vrf forwarding Mgmt-intf
ip address 10.124.19.209 255.255.255.0
negotiation auto
1
interface GigabitEthernet2
description --INTERNAL--
ip address 10.8.25.5 255.255.255.0
speed 1000
no negotiation auto
interface GigabitEthernet3
ip address 101.1.4.2 255.255.255.0
speed 1000
no negotiation auto
1
interface GigabitEthernet4
description --INET--
vrf forwarding INET2
ip address 172.16.85.5 255.255.255.0
load-interval 30
speed 1000
```

```
no negotiation auto
1
1
router eigrp 100
network 10.8.1.1 0.0.0.0
network 10.8.25.0 0.0.0.255
redistribute bgp 10 metric 100000 1 255 255 1500
distance eigrp 90 210
!
router ospf 100 vrf INET2
router-id 10.8.2.2
network 172.16.85.5 0.0.0.0 area 0
router bgp 10
bgp router-id 10.8.2.2
bgp log-neighbor-changes
bgp listen range 10.0.200.0/24 peer-group INET-SPOKES
neighbor INET-SPOKES peer-group
neighbor INET-SPOKES remote-as 10
neighbor INET-SPOKES timers 20 60
1
address-family ipv4
bgp redistribute-internal
network 10.8.2.2 mask 255.255.255.255
network 10.8.3.3 mask 255.255.255.255
network 10.8.101.0 mask 255.255.255.0
network 10.8.102.0 mask 255.255.255.0
network 10.8.103.0 mask 255.255.255.0
network 10.8.104.0 mask 255.255.255.0
aggregate-address 10.8.0.0 255.255.0.0 summary-only
neighbor INET-SPOKES activate
neighbor INET-SPOKES send-community
neighbor INET-SPOKES default-originate
neighbor INET-SPOKES route-map INET-DC1-IN in
neighbor INET-SPOKES route-map INET-DC1-OUT out
distance bgp 20 109 109
exit-address-family
1
1
101
virtual-service csr_mgmt
ip forward-protocol nd
ip bgp-community new-format
ip community-list standard MPLS-DMVPN permit 10:100
ip community-list standard INET-DMVPN permit 10:200
no ip http server
no ip http secure-server
ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 10.124.19.1
1
1
ip prefix-list DC1-LOCAL-ROUTES seq 10 permit 0.0.0.0/0
ip prefix-list DC1-LOCAL-ROUTES seq 20 permit 10.8.0.0/16 le 32
no service-routing capabilities-manager
route-map INET-DC1-IN deny 10
match ip address prefix-list DC1-LOCAL-ROUTES
!
route-map INET-DC1-IN permit 20
set community 10:200
route-map TO-PEER permit 10
match ip address prefix-list DC1-LOCAL-ROUTES
```

```
set ip next-hop self
set community no-advertise
!
route-map site prefixes permit 10
match ip address prefix-list site prefixes
route-map INET-DC1-OUT permit 10
match ip address prefix-list DC1-LOCAL-ROUTES
set community 10:200
1
route-map INET-DC1-OUT permit 20
description readvertise routes learned from INTERNET DMVPN cloud
match community INET-DMVPN
!
T.
!
control-plane
1
1
line con 0
exec-timeout 0 0
stopbits 1
line vty 0 4
exec-timeout 0 0
privilege level 15
no login
line vty 5 15
exec-timeout 0 0
privilege level 15
no login
1
ntp source Loopback0
ntp server 10.8.3.3
1
end
```

show running-config

BR10# show running-config

```
_____
Building configuration...
Current configuration : 8517 bytes
! Last configuration change at 02:29:54 CST Mon Nov 3 2014
Т
version 15.4
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
service internal
no platform punt-keepalive disable-kernel-core
platform shell
platform console serial
hostname Branch10
boot-start-marker
boot-end-marker
1
T.
vrf definition INET2
rd 65512:2
1
address-family ipv4
```

L

```
exit-address-family
1
vrf definition Mgmt-intf
!
address-family ipv4
exit-address-family
1
no logging console
!
no aaa new-model
clock timezone CST 8 0
1
1
!
Т
1
!
1
1
!
Т
!
1
1
1
1
no ip domain lookup
!
1
!
!
1
!
1
!
subscriber templating
1
multilink bundle-name authenticated
1
domain one
vrf default
border
source-interface Loopback0
master local
master branch
source-interface Loopback0
hub 10.8.3.3
!
!
license udi pid CSR1000V sn 92WYKUIJKRO
license boot level ax
spanning-tree extend system-id
!
!
redundancy
mode none
!
1
1
!
1
!
ip ftp source-interface GigabitEthernet1
```

```
ip ftp username mgcusr
ip ftp password mgcusr
ip tftp source-interface GigabitEthernet1
crypto keyring DMVPN-KEYRING1
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
crypto keyring DMVPN-KEYRING2 vrf INET2
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
crypto isakmp policy 10
encr aes
authentication pre-share
crypto isakmp invalid-spi-recovery
crypto isakmp keepalive 40 5
crypto isakmp profile ISAKMP-INET1
keyring DMVPN-KEYRING1
match identity address 0.0.0.0
crypto isakmp profile ISAKMP-INET2
keyring DMVPN-KEYRING2
match identity address 0.0.0.0 INET2
1
crypto ipsec security-association idle-time 60
crypto ipsec security-association replay window-size 512
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
mode transport
crypto ipsec profile DMVPN-PROFILE1
set transform-set AES256/SHA/TRANSPORT
set isakmp-profile ISAKMP-INET1
!
crypto ipsec profile DMVPN-PROFILE2
set transform-set AES256/SHA/TRANSPORT
set isakmp-profile ISAKMP-INET2
interface Loopback0
ip address 10.2.10.10 255.255.255.255
interface Tunnel100
bandwidth 100000
ip address 10.0.100.10 255.255.255.0
no ip redirects
ip mtu 1400
ip nhrp authentication cisco
ip nhrp map 10.0.100.84 172.16.84.4
ip nhrp map multicast 172.16.84.4
ip nhrp network-id 1
ip nhrp holdtime 600
ip nhrp nhs 10.0.100.84
ip nhrp registration timeout 60
ip nhrp shortcut
```

```
ip tcp adjust-mss 1360
load-interval 30
delay 1000
tunnel source GigabitEthernet2
tunnel mode gre multipoint
tunnel key 100
tunnel protection ipsec profile DMVPN-PROFILE1
1
interface Tunnel200
bandwidth 50000
ip address 10.0.200.10 255.255.255.0
no ip redirects
ip mtu 1400
ip nhrp authentication cisco
ip nhrp map 10.0.200.85 172.16.85.5
ip nhrp map multicast 172.16.85.5
ip nhrp network-id 2
ip nhrp holdtime 600
ip nhrp nhs 10.0.200.85
ip nhrp registration timeout 60
ip nhrp shortcut
ip tcp adjust-mss 1360
load-interval 30
delay 1000
tunnel source GigabitEthernet3
tunnel mode gre multipoint
tunnel key 200
tunnel vrf INET2
tunnel protection ipsec profile DMVPN-PROFILE2
interface GigabitEthernet1
vrf forwarding Mgmt-intf
ip address 10.124.19.212 255.255.255.0
negotiation auto
interface GigabitEthernet2
description --MPLS--
ip address 172.16.101.10 255.255.255.0
speed 1000
no negotiation auto
1
interface GigabitEthernet3
description --INET--
vrf forwarding INET2
ip address 172.16.102.10 255.255.255.0
load-interval 30
speed 1000
no negotiation auto
interface GigabitEthernet4
no ip address
speed 1000
no negotiation auto
interface GigabitEthernet5
no ip address
speed 1000
no negotiation auto
1
interface GigabitEthernet5.100
encapsulation dot1Q 100
ip address 10.1.10.1 255.255.255.0
1
router ospf 200 vrf INET2
```

```
network 172.16.102.10 0.0.0.0 area 0
router ospf 100
router-id 10.2.10.10
network 101.7.7.2 0.0.0.0 area 0
network 172.16.101.10 0.0.0.0 area 0
router bgp 10
bgp router-id 10.2.10.10
bgp log-neighbor-changes
neighbor MPLS-HUB peer-group
neighbor MPLS-HUB remote-as 10
neighbor MPLS-HUB timers 20 60
neighbor INET-HUB peer-group
neighbor INET-HUB remote-as 10
neighbor INET-HUB timers 20 60
neighbor 10.0.100.84 peer-group MPLS-HUB
neighbor 10.0.200.85 peer-group INET-HUB
address-family ipv4
network 10.1.10.0 mask 255.255.255.0
network 10.2.10.10 mask 255.255.255.255
neighbor MPLS-HUB send-community
neighbor MPLS-HUB route-map MPLS-SPOKE-IN in
neighbor MPLS-HUB route-map MPLS-SPOKE-OUT out
neighbor INET-HUB send-community
neighbor INET-HUB route-map INET-SPOKE-IN in
neighbor INET-HUB route-map INET-SPOKE-OUT out
neighbor 10.0.100.84 activate
neighbor 10.0.100.84 soft-reconfiguration inbound
neighbor 10.0.200.85 activate
neighbor 10.0.200.85 soft-reconfiguration inbound
exit-address-family
virtual-service csr mgmt
1
ip forward-protocol nd
ip bgp-community new-format
ip community-list standard MPLS-HUB1 permit 10:100
ip community-list standard MPLS-HUB2 permit 10:101
ip community-list standard INET-HUB1 permit 10:200
ip community-list standard INET-HUB2 permit 10:201
no ip http server
no ip http secure-server
ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 10.124.19.1
ip access-list extended RC
permit tcp host 10.1.10.2 any
ip access-list extended SMP
permit udp any eq 18000 any eq 19000
ip prefix-list INET-DMVPN seq 5 permit 0.0.0.0/0
ip prefix-list INET-DMVPN seq 10 permit 10.8.0.0/16
ip prefix-list MPLS-DMVPN seq 5 permit 0.0.0/0
ip prefix-list MPLS-DMVPN seq 10 permit 10.8.0.0/16
no service-routing capabilities-manager
route-map MPLS-SPOKE-OUT deny 10
match ip address prefix-list INET-DMVPN
!
```

route-map MPLS-SPOKE-OUT permit 20 route-map INET-SPOKE-OUT deny 10 match ip address prefix-list MPLS-DMVPN route-map INET-SPOKE-OUT permit 20 route-map MPLS-SPOKE-IN permit 5 match ip address prefix-list MPLS-DMVPN set local-preference 201 1 route-map MPLS-SPOKE-IN permit 10 match community MPLS-HUB1 set local-preference 201 1 route-map MPLS-SPOKE-IN permit 20 match community MPLS-HUB2 set local-preference 200 1 route-map INET-SPOKE-IN permit 5 match ip address prefix-list MPLS-DMVPN set local-preference 151 1 route-map INET-SPOKE-IN permit 30 match community INET-HUB1 set local-preference 151 1 route-map INET-SPOKE-IN permit 40 match community INET-HUB2 set local-preference 150 ! Т ! control-plane line con 0 exec-timeout 0 0 stopbits 1 line vty 0 4 exec-timeout 0 0 privilege level 15 no login line vty 5 15 exec-timeout 0 0 privilege level 15 no login 1 ntp source Loopback0 ntp server 10.8.3.3 1 end

show running-config

BR11# show running-config

```
Building configuration...
Current configuration : 6929 bytes
!
! Last configuration change at 02:30:33 CST Mon Nov 3 2014
! NVRAM config last updated at 02:30:34 CST Mon Nov 3 2014
```

```
version 15.4
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
service internal
no platform punt-keepalive disable-kernel-core
platform shell
platform console serial
hostname Branch11
1
boot-start-marker
boot-end-marker
1
!
vrf definition INET2
rd 65512:2
1
address-family ipv4
exit-address-family
!
vrf definition Mgmt-intf
1
address-family ipv4
exit-address-family
!
no logging console
1
no aaa new-model
clock timezone CST 8 0
!
T.
1
I.
L
I
1
1
no ip domain lookup
!
L.
Т
I.
Т
subscriber templating
Т
multilink bundle-name authenticated
1
domain one
vrf default
border
source-interface Loopback0
master local
```

master branch

```
source-interface Loopback0
hub 10.8.3.3
1
license udi pid CSR1000V sn 9YRYPG7XWOA
license boot level ax
spanning-tree extend system-id
!
1
redundancy
mode none
Т
1
1
ip ftp source-interface GigabitEthernet1
ip ftp username mgcusr
ip ftp password mgcusr
ip tftp source-interface GigabitEthernet1
crypto keyring DMVPN-KEYRING1
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
crypto keyring DMVPN-KEYRING2 vrf INET2
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
I
!
crypto isakmp policy 10
encr aes
authentication pre-share
crypto isakmp invalid-spi-recovery
crypto isakmp keepalive 40 5
crypto isakmp profile ISAKMP-INET1
keyring DMVPN-KEYRING1
match identity address 0.0.0.0
crypto isakmp profile ISAKMP-INET2
keyring DMVPN-KEYRING2
match identity address 0.0.0.0 INET2
crypto ipsec security-association idle-time 60
crypto ipsec security-association replay window-size 512
!
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
mode transport
crypto ipsec profile DMVPN-PROFILE1
set transform-set AES256/SHA/TRANSPORT
set isakmp-profile ISAKMP-INET1
1
crypto ipsec profile DMVPN-PROFILE2
set transform-set AES256/SHA/TRANSPORT
set isakmp-profile ISAKMP-INET2
1
1
1
!
Т
!
!
```

I.

interface Loopback0 ip address 10.2.11.11 255.255.255.255 interface Tunnel100 bandwidth 100000 ip address 10.0.100.11 255.255.255.0 no ip redirects ip mtu 1400 ip nhrp authentication cisco ip nhrp map 10.0.100.84 172.16.84.4 ip nhrp map multicast 172.16.84.4 ip nhrp network-id 1 ip nhrp holdtime 600 ip nhrp nhs 10.0.100.84 ip nhrp registration timeout 60 ip nhrp shortcut ip tcp adjust-mss 1360 load-interval 30 delay 1000 tunnel source GigabitEthernet3 tunnel mode gre multipoint tunnel key 100 tunnel protection ipsec profile DMVPN-PROFILE1 1 interface Tunnel200 bandwidth 50000 ip address 10.0.200.11 255.255.255.0 no ip redirects ip mtu 1400 ip nhrp authentication cisco ip nhrp map 10.0.200.85 172.16.85.5 ip nhrp map multicast 172.16.85.5 ip nhrp network-id 2 ip nhrp holdtime 600 ip nhrp nhs 10.0.200.85 ip nhrp registration timeout 60 ip nhrp shortcut ip tcp adjust-mss 1360 load-interval 30 delay 1000 tunnel source GigabitEthernet6 tunnel mode gre multipoint tunnel key 200 tunnel vrf INET2 tunnel protection ipsec profile DMVPN-PROFILE2 1 interface GigabitEthernet1 vrf forwarding Mgmt-intf ip address 10.124.19.213 255.255.255.0 negotiation auto interface GigabitEthernet2 no ip address shutdown negotiation auto 1 interface GigabitEthernet3 description --MPLS-ip address 172.16.111.11 255.255.255.0 load-interval 30 negotiation auto !

```
interface GigabitEthernet4
no ip address
shutdown
negotiation auto
interface GigabitEthernet5
no ip address
negotiation auto
interface GigabitEthernet5.200
encapsulation dot1Q 200
ip address 10.1.11.1 255.255.255.0
interface GigabitEthernet6
description --INET--
vrf forwarding INET2
ip address 172.16.112.11 255.255.255.0
negotiation auto
1
router ospf 200 vrf INET2
network 172.16.112.11 0.0.0.0 area 0
1
router ospf 100
router-id 10.2.11.11
network 101.7.8.2 0.0.0.0 area 0
network 172.16.111.11 0.0.0.0 area 0
1
router bgp 10
bgp router-id 10.2.11.11
bgp log-neighbor-changes
neighbor MPLS-HUB peer-group
neighbor MPLS-HUB remote-as 10
neighbor MPLS-HUB timers 20 60
neighbor INET-HUB peer-group
neighbor INET-HUB remote-as 10
neighbor INET-HUB timers 20 60
neighbor 10.0.100.84 peer-group MPLS-HUB
neighbor 10.0.200.85 peer-group INET-HUB
address-family ipv4
network 10.1.11.0 mask 255.255.255.0
network 10.2.11.11 mask 255.255.255.255
neighbor MPLS-HUB send-community
neighbor MPLS-HUB route-map MPLS-SPOKE-IN in
neighbor MPLS-HUB route-map MPLS-SPOKE-OUT out
neighbor INET-HUB send-community
neighbor INET-HUB route-map INET-SPOKE-IN in
neighbor INET-HUB route-map INET-SPOKE-OUT out
neighbor 10.0.100.84 activate
neighbor 10.0.100.84 soft-reconfiguration inbound
neighbor 10.0.200.85 activate
neighbor 10.0.200.85 soft-reconfiguration inbound
exit-address-family
1
1
virtual-service csr mgmt
1
ip forward-protocol nd
ip bgp-community new-format
ip community-list standard MPLS-HUB1 permit 10:100
ip community-list standard MPLS-HUB2 permit 10:101
ip community-list standard INET-HUB1 permit 10:200
ip community-list standard INET-HUB2 permit 10:201
```

no ip http server no ip http secure-server ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 10.124.19.1 ip prefix-list INET-DMVPN seq 5 permit 0.0.0/0 ip prefix-list INET-DMVPN seq 10 permit 10.8.0.0/16 ip prefix-list MPLS-DMVPN seq 5 permit 0.0.0.0/0 ip prefix-list MPLS-DMVPN seq 10 permit 10.8.0.0/16 no service-routing capabilities-manager route-map MPLS-SPOKE-OUT deny 10 match ip address prefix-list INET-DMVPN 1 route-map MPLS-SPOKE-OUT permit 20 route-map INET-SPOKE-OUT deny 10 match ip address prefix-list MPLS-DMVPN 1 route-map INET-SPOKE-OUT permit 20 1 route-map MPLS-SPOKE-IN permit 5 match ip address prefix-list MPLS-DMVPN set local-preference 201 1 route-map MPLS-SPOKE-IN permit 10 match community MPLS-HUB1 set local-preference 201 route-map MPLS-SPOKE-IN permit 20 match community MPLS-HUB2 set local-preference 200 route-map site prefixes permit 10 match ip address prefix-list site prefixes 1 route-map INET-SPOKE-IN permit 5 match ip address prefix-list MPLS-DMVPN set local-preference 151 Т route-map INET-SPOKE-IN permit 30 match community INET-HUB1 set local-preference 151 route-map INET-SPOKE-IN permit 40 match community INET-HUB2 set local-preference 150 1 Т control-plane ! 1 line con 0 exec-timeout 0 0 stopbits 1 line vty 0 4 exec-timeout 0 0 privilege level 15 no login line vty 5 15 exec-timeout 0 0

privilege level 15

no login ! ntp source Loopback0 ntp server 10.8.3.3 ! end

PfRv3 Transit Site Support

Starting with Cisco IOS XE Release 3.15S and Cisco IOS Release 15.5(2)T release, Performance Routing version 3 (PfRv3) supports multiple data centers at the hub site. The multi-data center or the transit site support feature enables service providers to scale their network infrastructure, and load-balance the traffic when required.

- Feature Information for PfRv3 Transit Site Support, on page 91
- Prerequisites for PfRv3 Transit Site Support, on page 92
- Restrictions for PfRv3 Transit Site Support, on page 92
- Information About PfRv3 Transit Site Support, on page 92
- How to Configure Transit Site Support, on page 95
- Configuration Examples for PfRv3 Transit Site Support, on page 105

Feature Information for PfRv3 Transit Site Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3 Transit Site Support	15.5(2)T Cisco IOS XE Release 3.15S	The PfRv3 Transit Site Support feature enables service providers to configure multiple-data centers at the hub site. The following commands were modified by this feature: master (domain VRF configuration), domain (interface configuration).

Table 13: Feature Information for PfRv3 Transit Site Support

Prerequisites for PfRv3 Transit Site Support

• Upgrade all branch sites, hub, and transit sites with latest Cisco IOS image to enable transit site support feature.

Restrictions for PfRv3 Transit Site Support

- Multiple next hops are supported only on hub or transit hub.
- Basic tunnel function is not supported between an old Cisco IOS release version and a new version, if transit site support is enabled.
- Hub sites must be connected by a Layer 3 routed link, which provides primary routing between the hub sites. Routing between hub sites over the DMVPN network is not supported

Information About PfRv3 Transit Site Support

Information About Transit Site Support

The multi-data center or the transit site support feature enables service providers to scale their network infrastructure, and load-balance the traffic when required. The multi-data center support enables all the hub sites to be connected with all the branch sites in an enterprise network. For example, in a use case scenario, an organization with two data centers and a single branch site, the branch site can communicate with the master-hub controller through the two next-hops (hub-branch routers) located at the hub site. If one hub-border router is down, then the branch site can still communicate through the second hub-border router. To differentiate the traffic from different hub-border routers, a path-id is configured on each interface of every channel. The branch router determines the inbound traffic based on the path-id of hub-branch routers. A path-id is a unique 32-bit number for a path between two sites.

PfRv3 Transit Site Use Case Scenarios

The transit site support feature supports the following use case scenarios:

- Single data center with multiple borders
- Dual data center with multiple borders
- Dual data center with same prefix

Single Data Center with Multiple Borders

In the following illustration, spoke A (R10) is connected to two (BR1 and BR2) DMVPN hubs in a single Dynamic Multipoint VPN (DMVPN) domain. There are two paths and two next-hops to the hub site from the spoke A. To differentiate traffic from different ISP paths, a path-id is added on each domain path. Use the **domain** *domain-name* **path** *path-name* **path-id** command to configure the path-ids.

Figure 4: Single Data Center with Multiple Borders

Dual Data Center with Multiple Borders

In the following illustration, the two data centers are connected to all the branch sites. You can use both the data centers in active mode and use separate prefixes for both the data centers. To differentiate the traffic originating from different data centers, a transit-id is assigned to each data center. The valid range for a transit-id is from 1 to 62. By default, 0 is assigned to the master hub. Use the **master transit** command to configure the transit-id.

Figure 5: Dual Data Center with Multiple Borders

Dual Data Center with Same Prefix

In the following illustration, two data centers are connected to all the branch sites. However, in this scenario both the data centers are active and load-balance the traffic. If one data center is down, then traffic is routed through the other data center. Both the data centers share the same prefix.

I

Figure 6: Dual Data Center with Same Prefix

How to Configure Transit Site Support

Configuring Transit Hub

Before you begin

Configure the primary hub before configuring the transit hub.

Note

In the current release, transit hub support is available only on Cisco ASR 1000 Series Aggregation Services Routers and Cisco 4000 Series Integrated Services Routers.

Note

All policies are configured on the primary hub-master controller.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface loopback** *interface-number*
- 4. exit
- **5. domain** {*domain-name* | **default**}
- 6. vrf {*vrf-name* | default}
- 7. master transit *pop-id*
- 8. source-interface loopback interface-number
- 9. site-prefixes prefix-list site -list
- 10. hub ip-address
- 11. exit
- **12**. end
- **13.** (Optional) show domain *domain-name* master status

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface loopback interface-number	Enters interface configuration mode.
	Example:	
	Device(config)# interface Loopback0	
Step 4	exit	Exits interface configuration mode and returns to global
	Example:	configuration mode.
	Device(config-if)# exit	
Step 5	domain {domain-name default}	Enters domain configuration mode.
	Example:	

	Command or Action	Purpose
	Device(config)# domain default	Note You can either configure a default domain or define a specific domain for the transit hub configuration. If you are defining a specific domain, for example "domain-cisco", you must configure the same domain for all devices for PfRv3 configuration.
Step 6	<pre>vrf {vrf-name default} Example: Device(config-domain)# vrf default</pre>	Configures default Virtual Routing and Forwarding (VRF) instances for the default or specific domain.
Step 7	<pre>master transit pop-id Example: Device(config-domain-vrf)# master transit 1</pre>	Enters master-controller configuration mode and configures the master as a transit hub. The valid range for a pop-id is from 1 to 62.
Step 8	source-interface loopback interface-number Example:	Configures the loopback used as a source for peering with other sites or master controller.
	Device(config-domain-vrf-mc)# source-interface Loopback0	Note The source-interface loopback also serves as a site ID of a particular site (hub or branch) on the master controller.
Step 9	site-prefixes prefix-list site -list	Configures the prefix-list containing list of site prefixes.
	Example: Device(config-domain-vrf-mc)# site-prefixes prefix-list Data_Center_1	Note You must configure the static-site prefix list for a hub and transit sites.
Step 10	<pre>hub ip-address Example: Device(config-domain-vrf-mc)# hub 10.8.3.3</pre>	Configures the hub for the transit site.
Step 11	<pre>exit Example: Device(config-domain-vrf-mc)# exit</pre>	 Exits from master controller configuration mode and returns to domain configuration mode. Note Exit from domain configuration mode and enter in global configuration mode using the exit command
Step 12	end Example: Device(config)# end	Exits configuration mode and returns to privileged EXEC mode.
Step 13	(Optional) show domain domain-name master status Example: Device# show domain one master status	Use this show command to display the status of a master controller.

Configuring Transit Site Border Routers

Note In Cisco IOS XE Release 3.15S and Cisco IOS Release 15.5(2)T release, the transit site support is available only on Cisco ASR 1000 Series Aggregation Services Routers and Cisco 4000 Series Integrated Services Routers.

In a transit site support scenario, you must configure hub-border routers with the following:

- The source interface of the border router
- The IP address of the hub-master controller
- The domain path name on external interfaces
- The domain path ID for each external interface

To configure multiple hub-border routers to the same ISP path, perform the following task on each hub-border router.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface loopback** *interface-number*
- 4. ip address *ip-address-mask*
- 5. exit
- 6. domain {*domain-name* | default}
- 7. vrf {*vrf-name* | default}
- 8. border
- 9. source-interface loopback interface-number
- **10.** master *ip-address*
- **11.** exit
- 12. exit
- 13. exit
- **14. interface** *tunnel-name*
- **15.** ip address ip-address mask
- **16. description** *description-line*
- 17. domain domain-name path path-name path-id path-id
- 18. end
- 19. (Optional) show domain domain-name border status

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Command or Action	Purpose
---------	---	--
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface loopback interface-number	Enters interface configuration mode.
	Example:	
	Device(config)# interface Loopback0	
Step 4	ip address ip-address-mask	Configures an IP address for an interface on the hub-border
	Example:	router (Border Router 1).
	Device(config-if)# ip address 10.9.4.4 255.255.255.255	
Step 5	exit	Exits interface configuration mode and returns to global
	Example:	configuration mode.
	Device(config-if)# exit	
Step 6	domain {domain-name default}	Enters domain configuration mode.
	Example:	
	Device(config)# domain default	
Step 7	vrf { <i>vrf-name</i> default }	Configures Virtual Routing and Forwarding (VRF) for the
	Example:	
	Device(config-domain)# vrf default	Note You can configure specific VRF definition for the hub-border configuration.
Step 8	border	Enters border configuration mode and configures the
	Example:	device as border.
	<pre>Device(config-domain-vrf)# border</pre>	
Step 9	source-interface loopback interface-number	Configures the loopback used as a source for peering with
	Example:	other sites or master controller.
	<pre>Device(config-domain-vrf-br)# source-interface Loopback0</pre>	
Step 10	master ip-address	Configures the IP address of the hub-master controller.
	Example:	
	Device(config-domain-vrf-br)# master 10.9.3.3	

	Command or Action	Purpose
Step 11	exit	Exits border configuration mode and enters VRF
	Example:	configuration mode.
	<pre>Device(config-domain-vrf-br)# exit</pre>	
Step 12	exit	Exits VRF configuration mode and enters domain
	Example:	configuration mode.
	<pre>Device(config-domain-vrf)# exit</pre>	
Step 13	exit	Exits domain configuration mode and enters global
	Example:	configuration mode.
	<pre>Device(config-domain) # exit</pre>	
Step 14	interface tunnel-name	Enters interface configuration mode.
	Example:	
	<pre>Device(config)# interface Tunnel100</pre>	
Step 15	ip address ip-address mask	Configures an IP address for the tunnel interface.
	Example:	
	Device(config-if)# ip address 10.0.100.84 255.255.255.0	
Step 16	description description-line	Configures a description to associate with an ISP path.
	Example:	
	<pre>Device1(config-if)# description primary path</pre>	
	<pre>Device2(config-if)# description secondary path</pre>	
Step 17	domain domain-name path path-name path-id path-id	Configures the Internet Service Provider (ISP) associated
	Example:	with the domain and the path. There are two types of external interfaces enterprise link such as DMVPN tunnel
	Device(config-if)# domain default path MPLS path-id 1	interface and internet -bound interface. Multiple next hop
		path-id is a unique identifier for each path in a domain.
		Valid values for a path-id are from 1 to 62.
		We recommend using front VRF on the tunnel interface for enterprise links.
		Note You can configure multiple ISPs. If you are
		domain_cisco, you must specify the same
		domain name for configuring ISP paths.
		You must assign a unique path-id for all the paths that are connected from hub-border routers to the same ISP domain.
Step 18	end	Exits interface configuration mode and returns to privileged
	Example:	EXEC mode.

	Command or Action	Purpose
	Device(config-if) # end	
Step 19	(Optional) show domain domain-name border status	Use this show command to display the status of a border
	Example:	router.
	Device# show domain default border status	

What to do next

Verifying PfRv3 Transit Site Support

Verifying PfRv3 Transit Site Support

The show commands can be entered in any order.

Before you begin

Configure multiple DMVPN paths from hub-border routers or from transit-hub border routers.

SUMMARY STEPS

- 1. show domain domain-name master channels
- 2. show domain domain-name border channel
- 3. show domain domain-name master site-prefix
- 4. show domain domain-name border site-prefix
- 5. show domain domain-name master channels dst-site-id destination-site-id

DETAILED STEPS

Step 1 show domain domain-name master channels

Displays channel information of the hub-master controller.

Example:

HubMC# show domain default master channels

```
Channel Id: 8 Dst Site-Id: 10.2.11.11 Link Name: MPLS DSCP: default [0] pfr-label: 0:0 | 2:30
[0x21E] TCs: 0
  Channel Created: 03:19:14 ago
  Provisional State: Initiated and open
  Operational state: Available but unreachable
 Channel to hub: FALSE
  Interface Id: 11
  Supports Zero-SLA: Yes
 Muted by Zero-SLA: No
  Estimated Channel Egress Bandwidth: 0 Kbps
  Immitigable Events Summary:
  Total Performance Count: 0, Total BW Count: 0
  ODE Stats Bucket Number: 1
  Last Updated : 00:00:21 ago
   Packet Count : 0
   Bvte Count
                 : 0
```

```
One Way Delay : N/A
 Loss Rate Pkts : N/A
 Loss Rate Bytes: N/A
 Jitter Mean : N/A
 Unreachable
              : TRUE
ODE Stats Bucket Number: 2
Last Updated : 00:00:52 ago
 Packet Count : 0
 Byte Count
               : 0
 One Way Delay : N/A
 Loss Rate Pkts : N/A
 Loss Rate Bytes: N/A
 Jitter Mean : N/A
 Unreachable
              : TRUE
TCA Statistics:
   Received:355 ; Processed:354 ; Unreach rcvd:355
Latest TCA Bucket
Last Updated : 00:00:21 ago
 Local unreachable TCA received (Check for stale TCA 00:00:09 later)
```

Step 2 show domain domain-name border channel

Displays the information of border router channels at the hub site.

Example:

HubBR# show domain default border channels

```
Border Smart Probe Stats:
Smart probe parameters:
   Source address used in the Probe: 10.2.10.10
   Unreach time: 1000 ms
   Probe source port: 18000
   Probe destination port: 19000
   Interface Discovery: ON
   Probe freq for channels with traffic :10 secs
   Discovery Probes: OFF
   Number of transit probes consumed :29
   Number of transit probes re-routed: 0
  DSCP's using this: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]
 [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37]
 [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57]
 [58] [59] [60] [61] [62] [63] [64]
   All the other DSCPs use the default interval: 10 secs
Channel id: 20
  Channel create time: 06:42:54 ago
  Site id : 10.2.11.11
 DSCP : default[0]
 Service provider : MPLS
 Pfr-Label : 0:0 | 0:0 [0x0]
 exit path-id: 0
 Exit path-id sent on wire: 0
 Number of Probes sent : 77407
 Number of Probes received : 75949
 Last Probe sent : 00:00:00 ago
 Last Probe received : 00:00:00 ago
 Channel state : Initiated and open
 Channel next_hop : 10.0.100.11
```

```
RX Reachability : Reachable
TX Reachability : Reachable
Channel is sampling 0 flows
Channel remote end point: 10.0.100.11
Channel to hub: FALSE
Version: 3
Supports Zero-SLA: Yes
Muted by Zero-SLA: No
Probe freq with traffic : 1 in 10000 ms
```

```
Step 3 show domain domain-name master site-prefix
```

Displays the details of site-prefixes configured to the master hub.

Example:

HubMC# show domain default master site-prefix

```
Load for five secs: 0%/0%; one minute: 0%; five minutes: 0%
Time source is NTP, 11:28:29.421 CET Tue Mar 17 2015
```

Change will be published between 5-60 seconds Next Publish 00:33:03 later Prefix DB Origin: 10.9.3.3 Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured; M-shared

Site-id	Site-prefix	Last Updated	DC Bitmap	Flag
10.2.10.10	10.1.10.0/24	01:25:15 ago	0x0	S
10.2.11.11	10.1.11.0/24	01:25:19 ago	0x0	S
10.2.10.10	10.2.10.10/32	01:25:15 ago	0x0	S
10.2.11.11	10.2.11.11/32	01:25:19 ago	0x0	S
10.2.12.12	10.2.12.12/32	01:28:54 ago	0x0	S
10.8.3.3	10.8.3.3/32	01:28:47 ago	0x1	S
10.9.3.3	10.8.0.0/16	01:28:47 ago	0x5	C,M
10.8.3.3	10.8.0.0/16	01:28:47 ago	0x5	C,M
10.9.3.3	10.9.3.3/32	03:29:04 ago	0x4	L
10.9.3.3	10.9.0.0/16	01:28:47 ago	0x5	C,M
10.8.3.3	10.9.0.0/16	01:28:47 ago	0x5	C,M
255.255.255.255	*10.0.0/8	01:28:47 ago	0x1	S,T

Step 4 show domain domain-name border site-prefix

Displays the details of site-prefixes configured on the border.

Example:

HubBR# show domain default border site-prefix

Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured; M-shared

Site-id	Site-prefix	Last Updated	DC Bitmap	Flag
10.2.10.10	10.1.10.0/24	00:36:58 ago	0x0	S
10.2.11.11	10.1.11.0/24	00:37:02 ago	0x0	S

10.2.10.10	10.2.10.10/32	00:36:58 ago	0x0	S	
10.2.11.11	10.2.11.11/32	00:37:02 ago	0x0	S	
10.2.12.12	10.2.12.12/32	00:40:37 ago	0x0	S	
10.8.3.3	10.8.3.3/32	00:40:29 ago	0x1	S	
10.9.3.3	10.8.0.0/16	00:38:40 ago	0x5	S,C,M	
10.8.3.3	10.8.0.0/16	00:38:40 ago	0x5	S,C,M	
10.9.3.3	10.9.3.3/32	00:38:40 ago	0 x 4	S	
10.9.3.3	10.9.0.0/16	00:38:40 ago	0x5	S,C,M	
10.8.3.3	10.9.0.0/16	00:38:40 ago	0x5	S,C,M	
255.255.255.255	*10.0.0/8	00:40:29 ago	0x1	S,T	

Step 5 show domain domain-name master channels dst-site-id destination-site-id

Displays the details of destination site-ids configured with hub-master controller.

Note Use this command on a spoke or a branch device to view the details of the destination site-ids.

Example:

 ${\tt BR\#}$ show domain default master channels dst-site-id 10.8.3.3

_____ Legend: * (Value obtained from Network delay:) Channel Id: 27 Dst Site-Id: 10.8.3.3 Link Name: INET DSCP: default [0] pfr-label: 0:20 | 0:0 [0x140000] TCs: 0 Channel Created: 01:16:34 ago Provisional State: Initiated and open Operational state: Available Channel to hub: TRUE Interface Id: 12 Supports Zero-SLA: Yes Muted by Zero-SLA: No Estimated Channel Egress Bandwidth: 5 Kbps Immitigable Events Summary: Total Performance Count: 0, Total BW Count: 0 Site Prefix List 10.8.3.3/32 (Active) 10.8.0.0/16 (Active) 10.9.0.0/16 (Standby) ODE Stats Bucket Number: 1 Last Updated : 00:00:24 ago Packet Count : 562 Byte Count : 47208 One Way Delay : 71 msec* Loss Rate Pkts: 0.0 % Loss Rate Byte: 0.0 % Jitter Mean : 619 usec : FALSE Unreachable ODE Stats Bucket Number: 2 Last Updated : 00:00:54 ago Packet Count : 558 Byte Count : 46872 One Way Delay : 55 msec* Loss Rate Pkts: 0.0 % Loss Rate Byte: 0.0 % Jitter Mean : 556 usec Unreachable : FALSE TCA Statistics: Received:133 ; Processed:133 ; Unreach rcvd:0 Latest TCA Bucket Last Updated : 00:00:24 ago

```
One Way Delay : 71 msec*
Loss Rate Pkts: NA
Loss Rate Byte: NA
Jitter Mean : NA
Unreachability: FALSE
```

Configuration Examples for PfRv3 Transit Site Support

Example: Configuring Transit Site Support

In this use case scenario, an enterprise organization has two data centers with multiple-border routers connected to the same ISP domain. The branch-border routers can reach the hub-master controller through multiple next-hops.

Figure 7: PfRv3 Transit Hub Topology

In this example, the following routers are used:

• Hub Master Controller — Cisco ASR 1002-X router configured with an embedded services processor (ESP) default bandwidth of 5 Gbps upgradable with software licensing options to 10 Gbps, 20 Gbps, and 36 Gbps.

- Hub Border Routers Cisco ASR 1000 Series Embedded Services Processor 2
- Branch Routers Cisco 4451X Integrated Services Router.

Example: Configuring Data Center 1 (DC1) Devices

Configure the interfaces on master hub controller (R82)

```
HubMC> enable
HubMC# configure terminal
HubMC(config)# interface Loopback0
HubMC(config-if)# ip address 10.8.3.3 255.255.255
HubMC(config-if)# exit
```

Configure the device as hub-master controller

```
HubMC(config) # domain default
HubMC(config-domain) # vrf default
HubMC(config-domain-vrf) # master hub
HubMC(config-domain-vrf-mc) # source-interface Loopback0
HubMC(config-domain-vrf-mc) # enterprise-prefix prefix-list ENTERPRISE_PREFIX
HubMC(config-domain-vrf-mc) # site-prefixes prefix-list DC1_PREFIX
HubMC(config-domain-vrf-mc) # exit
```

Configure IP prefix-lists

```
HubMC(config) # ip prefix-list DC1_PREFIX seq 10 permit 10.8.0.0/16
HubMC(config) # ip prefix-list DC1_PREFIX seq 10 permit 10.9.0.0/16
HubMC(config) # ip prefix-list ENTERPRISE_PREFIX seq 10 permit 10.0.0.0/8
```

Configure domain policies on hub master controller

```
HubMC(config) # domain default
HubMC(config-domain) # vrf default
HubMC(config-domain-vrf) # master hub
HubMC(config-domain-vrf-mc) # source-interface Loopback0
HubMC(config-domain-vrf-mc)# site-prefixes prefix-list DC1 PREFIX
HubMC(config-domain-vrf-mc) # load-balance
HubMC(config-domain-vrf-mc)# enterprise-prefix prefix-list ENTERPRISE PREFIX
HubMC(config-domain-vrf-mc)# class VOICE sequence 10
HubMC(config-domain-vrf-mc-class) # match dscp ef policy custom
HubMC(config-domain-vrf-mc-class-type) # priority 2 loss threshold 5
HubMC(config-domain-vrf-mc-class-type) # priority 1 one-way-delay threshold 150
HubMC(config-domain-vrf-mc-class-type) # exit
HubMC(config-domain-vrf-mc-class) # path-preference MPLS fallback INET
HubMC(config-domain-vrf-mc-class) # exit
HubMC(config-domain-vrf-mc)# class VIDEO sequence 20
HubMC (config-domain-vrf-mc-class) # match dscp af41 policy custom
HubMC(config-domain-vrf-mc-class-type) # priority 2 loss threshold 5
HubMC(config-domain-vrf-mc-class-type) # priority 1 one-way-delay threshold 150
HubMC(config-domain-vrf-mc-class-type) # exit
HubMC(config-domain-vrf-mc-class) # match dscp cs4 policy custom
HubMC(config-domain-vrf-mc-class-type) # priority 2 loss threshold 5
HubMC(config-domain-vrf-mc-class-type) # priority 1 one-way-delay threshold 150
HubMC(config-domain-vrf-mc-class-type) # exit
HubMC (config-domain-vrf-mc-class) # path-preference INET fallback MPLS
HubMC(config-domain-vrf-mc-class)# exit
```

HubMC(config-domain-vrf-mc)# class CRITICAL sequence 30

```
HubMC (config-domain-vrf-mc-class) # match dscp af31 policy custom
HubMC (config-domain-vrf-mc-class-type) # priority 2 loss threshold 10
HubMC (config-domain-vrf-mc-class-type) # priority 1 one-way-delay threshold 600
HubMC (config-domain-vrf-mc-class) # path-preference MPLS fallback INET
HubMC (config-domain-vrf-mc-class) # path-preference 100
HubMC (config-domain-vrf-mc-class) # match dscp default policy custom
HubMC (config-domain-vrf-mc-class-type) # priority 2 loss threshold 5
HubMC (config-domain-vrf-mc-class-type) # priority 1 one-way-delay threshold 50
HubMC (config-domain-vrf-mc-class-type) # priority 3 jitter threshold 200000
HubMC (config-domain-vrf-mc-class-type) # exit
```

Configure hub border routers on DC1 (R84)

```
BR84> enable
BR84# configure terminal
BR84(config)# interface Loopback0
BR84(config-if)# ip address 10.8.4.4 255.255.255
BR84(config-if)exit
```

Configure the device as border router (BR84)

```
BR84(config)# domain default
BR84(config-domain)# vrf default
BR84(config-domain-vrf)# border
BR84(config-domain-vrf-br)# source-interface Loopback0
BR84(config-domain-vrf-br)# master 10.8.3.3
BR84(config-domain-vrf-br)# exit
```

Configure tunnel from BR84 to DMVPN1 (MPLS)Link

```
BR84(config) # interface Tunnel100
BR84(config-if) # bandwidth 100000
BR84(config-if) # ip address 10.0.100.84 255.255.255.0
BR84(config-if) # no ip redirects
BR84(config-if) # ip mtu 1400
BR84(config-if) # ip nhrp authentication cisco
BR84(config-if) # ip nhrp map multicast dynamic
BR84(config-if) # ip nhrp network-id 1
BR84(config-if) # ip nhrp holdtime 60
BR84(config-if) # ip nhrp redirect
BR84(config-if) # ip tcp adjust-mss 1360
BR84(config-if) # load-interval 30
BR84(config-if) # delay 1000
BR84(config-if) # tunnel source Ethernet0/1
BR84(config-if) # tunnel mode gre multipoint
BR84(config-if) # tunnel key 100
BR84(config-if) # tunnel vrf IWAN-TRANSPORT-1
BR84(config-if) # domain path MPLS path-id 10
```

Configure hub border routers on DC1 (R85)

```
BR85> enable
BR85# configure terminal
BR85(config)# interface Loopback0
BR85(config-if)# ip address 10.8.5.5 255.255.255
BR85(config-if)exit
```

Configure the device as border router (BR85)

```
BR85(config)# domain default
BR85(config-domain)# vrf default
BR85(config-domain-vrf)# border
BR85(config-domain-vrf-br)# source-interface Loopback0
```

BR85(config-domain-vrf-br)# master 10.8.3.3 BR85(config-domain-vrf-br)# exit

Configure tunnel from BR84 to DMVPN2 (INET)Link

```
BR85(config) # interface Tunnel200
BR85(config-if) # bandwidth 5000
BR85(config-if) # ip address 10.0.200.85 255.255.255.0
BR85(config-if) # no ip redirects
BR85(config-if) # ip mtu 1400
BR85(config-if) # ip nhrp authentication cisco
BR85(config-if) # ip nhrp map multicast dynamic
BR85(config-if) # ip nhrp network-id 2
BR85(config-if) # ip nhrp holdtime 60
BR85(config-if) # ip nhrp redirect
BR85(config-if) # ip tcp adjust-mss 1360
BR85(config-if) # load-interval 30
BR85(config-if) # delay 1000
BR85(config-if) # tunnel source Ethernet0/1
BR85(config-if) # tunnel mode gre multipoint
BR85(config-if) # tunnel key 200
BR85(config-if) # tunnel vrf IWAN-TRANSPORT-2
BR85(config-if) # domain path INET path-id 20
```

Example: Configuring Data Center 2 (DC2) Devices

Configure the interfaces on master hub controller (R92)

```
HubMC> enable
HubMC# configure terminal
HubMC(config)# interface Loopback0
HubMC(config-if)# ip address 10.9.3.3 255.255.255
HubMC(config-if)# exit
```

Configure the device as transit-hub master controller

```
HubMC(config)# domain default
HubMC(config-domain)# vrf default
HubMC(config-domain-vrf)# master transit 2
HubMC(config-domain-vrf-mc)# source-interface Loopback0
HubMC(config-domain-vrf-mc)# site-prefixes prefix-list DC2_PREFIX
HubMC(config-domain-vrf-mc)# hub 10.8.3.3
HubMC(config-domain-vrf-mc)# exit
```

Configure IP prefix-lists

```
HubMC(config)# ip prefix-list DC2_PREFIX seq 10 permit 10.9.0.0/16
HubMC(config)# ip prefix-list DC2_PREFIX seq 20 permit 10.8.0.0/16
HubMC(config)# ip prefix-list ENTERPRISE_PREFIX seq 10 permit 10.0.0.0/8
```

Configure hub border routers on DC2 (R94)

```
BR94> enable
BR94# configure terminal
BR94(config)# interface Loopback0
BR94(config-if)# ip address 10.9.4.4 255.255.255
BR94(config-if)exit
```

Configure the device as border router (BR94)

```
BR94(config) # domain default
BR94(config-domain) # vrf default
BR94(config-domain-vrf) # border
BR94(config-domain-vrf-br) # source-interface Loopback0
```

BR94(config-domain-vrf-br)# master 10.9.3.3
BR94(config-domain-vrf-br)# exit

Configure tunnel from BR94 to DMVPN1 (MPLS)Link

```
BR94 (config) # interface Tunnel100
BR94(config-if) # bandwidth 1000
BR94(config-if) # ip address 10.0.100.94 255.255.255.0
BR94(config-if) # no ip redirects
BR94(config-if) # ip mtu 1400
BR94(config-if) # ip nhrp authentication cisco
BR94(config-if) # ip nhrp map multicast dynamic
BR94(config-if) # ip nhrp network-id 1
BR94(config-if) # ip nhrp holdtime 60
BR94(config-if) # ip nhrp redirect
BR94(config-if) # ip tcp adjust-mss 1360
BR94(config-if) # load-interval 30
BR94(config-if)# delay 1000
BR94(config-if) # tunnel source Ethernet0/1
BR94(config-if) # tunnel mode gre multipoint
BR94(config-if) # tunnel key 100
BR94(config-if) # tunnel vrf IWAN-TRANSPORT-1
BR94(config-if) # domain path MPLS path-id 30
```

Configure hub border routers on DC2 (R95)

```
BR95> enable
BR95# configure terminal
BR95(config)# interface Loopback0
BR95(config-if)# ip address 10.9.5.5 255.255.255
BR95(config-if)exit
```

Configure the device as border router (BR95)

```
BR95(config)# domain default
BR95(config-domain)# vrf default
BR95(config-domain-vrf)# border
BR95(config-domain-vrf-br)# source-interface Loopback0
BR95(config-domain-vrf-br)# master 10.9.3.3
BR95(config-domain-vrf-br)# exit
```

Configure tunnel from BR95 to DMVPN2 (INET)Link

```
BR95(config) # interface Tunnel200
BR95(config-if) # bandwidth 1000
BR95(config-if) # ip address 10.0.200.95 255.255.255.0
BR95(config-if) # no ip redirects
BR95(config-if) # ip mtu 1400
BR95(config-if) # ip nhrp authentication cisco
BR95(config-if) # ip nhrp map multicast dynamic
BR95(config-if) # ip nhrp network-id 2
BR95(config-if) # ip nhrp holdtime 60
BR95(config-if) # ip nhrp redirect
BR95(config-if) # ip tcp adjust-mss 1360
BR95(config-if) # load-interval 30
BR95(config-if) # delay 1000
BR95(config-if) # tunnel source Ethernet0/1
BR95(config-if) # tunnel mode gre multipoint
BR95(config-if) # tunnel key 200
BR95(config-if) # tunnel vrf IWAN-TRANSPORT-2
BR95(config-if) # domain path INET path-id 40
```

Example: Configuring Branch Routers

Configure the interfaces (R10)

```
R10> enable
```

```
R10# configure terminal
R10(config)# interface Loopback0
R10(config-if)# ip address 10.2.10.10 255.255.255
R10(config-if)# exit
```

Configure the device as branch-master controller (R10)

```
R10(config)# domain default
R10(config-domain)# vrf default
R10(config-domain-vrf)# border
R10(config-domain-vrf-br)# source-interface Loopback0
R10(config-domain-vrf-br)# master local
R10(config-domain-vrf-br)# exit
R10(config-domain-vrf)# master branch
R10(config-domain-vrf-mc)# source-interface Loopback0
R10(config-domain-vrf-mc)# hub 10.8.3.3
```

```
R10 (config) # interface Tunnel100
R10(config-if) # bandwidth 400
R10(config-if) # ip address 10.0.100.10 255.255.255.0
R10(config-if) # no ip redirects
R10(config-if)# ip mtu 1400
R10(config-if) # ip nhrp authentication cisco
R10 (config-if) # ip nhrp map multicast dynamic
R10(config-if) # ip nhrp network-id 1
R10(config-if) # ip nhrp holdtime 60
R10 (config-if) # ip nhrp nhs 10.0.100.84 nbma 172.16.84.4 multicast
R10(config-if) # ip nhrp nhs 10.0.100.94 nbma 172.16.94.4 multicast
R10 (config-if) # ip nhrp registration no-unique
R10 (config-if) # ip nhrp registration timeout 60
R10(config-if) # ip nhrp shortcut
R10(config-if) # ip nhrp redirect
R10 (config-if) # ip tcp adjust-mss 1360
R10(config-if) # load-interval 30
R10(config-if)# delay 1000
R10(config-if) # no nhrp route-watch
R10(config-if) # if-state nhrp
R10(config-if) # tunnel source Ethernet0/1
R10(config-if) # tunnel mode gre multipoint
R10(config-if) # tunnel key 100
R10(config-if) # tunnel vrf IWAN-TRANSPORT-1
R10 (config) # interface Tunnel200
R10 (config-if) # bandwidth 5000
R10(config-if)# ip address 10.0.200.10 255.255.255.0
R10(config-if) # no ip redirects
R10(config-if) # ip mtu 1400
R10(config-if) # ip nhrp authentication cisco
R10 (config-if) # ip nhrp map multicast dynamic
R10(config-if) # ip nhrp network-id 2
R10(config-if) # ip nhrp holdtime 600
R10(config-if) # ip nhrp nhs 10.0.200.85 nbma 172.16.85.5 multicast
R10(config-if) # ip nhrp nhs 10.0.200.95 nbma 172.16.95.5 multicast
R10(config-if) # ip nhrp registration no-unique
R10 (config-if) # ip nhrp registration timeout 60
```

R10(config-if)# ip nhrp shortcut R10(config-if)# ip nhrp redirect R10(config-if)# ip tcp adjust-mss 1360 R10(config-if)# load-interval 30 R10(config-if)# delay 1000 R10(config-if)# delay 1000 R10(config-if)# if-state nhrp R10(config-if)# if-state nhrp R10(config-if)# tunnel source Ethernet0/2 R10(config-if)# tunnel mode gre multipoint R10(config-if)# tunnel key 200 R10(config-if)# tunnel vrf IWAN-TRANSPORT-2

Configure the interfaces (R11)

```
R11> enable
R11# configure terminal
R11(config)# interface Loopback0
R11(config-if)# ip address 10.2.11.11 255.255.255.255
R11(config-if)# exit
```

Configure the device as branch master controller (R11)

```
Rl1(config)# domain default
Rl1(config-domain)# vrf default
Rl1(config-domain-vrf)# border
Rl1(config-domain-vrf-br)# source-interface Loopback0
Rl1(config-domain-vrf-br)# master local
Rl1(config-domain-vrf-br)# exit
Rl1(config-domain-vrf)# master branch
Rl1(config-domain-vrf-mc)# source-interface Loopback0
Rl1(config-domain-vrf-mc)# hub 10.8.3.3
```

```
R11(config) # interface Tunnel100
R11(config-if) # bandwidth 2000
R11(config-if) # ip address 10.0.100.11 255.255.255.0
R11(config-if) # no ip redirects
R11(config-if)# ip mtu 1400
R11(config-if) # ip nhrp authentication cisco
R11 (config-if) # ip nhrp map multicast dynamic
R11(config-if) # ip nhrp network-id 1
R11(config-if) # ip nhrp holdtime 60
R11 (config-if) # ip nhrp nhs 10.0.100.84 nbma 172.16.84.4 multicast
R11 (config-if) # ip nhrp nhs 10.0.100.94 nbma 172.16.94.4 multicast
R11(config-if) # ip nhrp registration no-unique
R11(config-if) # ip nhrp registration timeout 60
R11(config-if) # ip nhrp shortcut
R11(config-if) # ip nhrp redirect
R11(config-if) # ip tcp adjust-mss 1360
R11(config-if)# load-interval 30
R11(config-if)# delay 1000
R11(config-if) # no nhrp route-watch
R11(config-if)# if-state nhrp
R11(config-if) # tunnel source Ethernet0/1
R11(config-if) # tunnel mode gre multipoint
R11(config-if) # tunnel key 100
R11(config-if) # tunnel vrf IWAN-TRANSPORT-1
R11(config) # interface Tunnel200
R11(config-if) # bandwidth 5000
R11(config-if) # ip address 10.0.200.11 255.255.255.0
R11(config-if)# no ip redirects
R11(config-if)# ip mtu 1400
```

```
R11(config-if) # ip nhrp authentication cisco
R11(config-if) # ip nhrp map multicast dynamic
R11(config-if) # ip nhrp network-id 2
R11(config-if) # ip nhrp holdtime 600
R11 (config-if) # ip nhrp nhs 10.0.200.85 nbma 172.16.85.5 multicast
R11(config-if)# ip nhrp nhs 10.0.200.95 nbma 172.16.95.5 multicast
R11(config-if) # ip nhrp registration no-unique
R11(config-if)# ip nhrp registration timeout 60
R11(config-if) # ip nhrp shortcut
R11(config-if) # ip nhrp redirect
R11(config-if) # ip tcp adjust-mss 1360
R11(config-if)# load-interval 30
R11(config-if)# delay 1000
R11(config-if) # no nhrp route-watch
R11(config-if) # if-state nhrp
R11(config-if)# tunnel source Ethernet0/2
R11(config-if) # tunnel mode gre multipoint
R11(config-if)# tunnel key 200
R11(config-if) # tunnel vrf IWAN-TRANSPORT-2
```

Configure the interfaces (R12)

```
R12> enable
R12# configure terminal
R12(config)# interface Loopback0
R12(config-if)# ip address 10.2.12.12 255.255.255
R12(config-if)# exit
```

Configure the device as branch-master controller (R12)

```
R12(config)# domain default
R12(config-domain)# vrf default
R12(config-domain-vrf)# border
R12(config-domain-vrf-br)# source-interface Loopback0
R12(config-domain-vrf-br)# master local
R12(config-domain-vrf-br)# exit
R12(config-domain-vrf)# master branch
R12(config-domain-vrf-mc)# source-interface Loopback0
R12(config-domain-vrf-mc)# hub 10.8.3.3
```

```
R12(config) # interface Tunnel100
R12(config-if) # bandwidth 400
R12(config-if) # ip address 10.0.100.12 255.255.255.0
R12(config-if) # no ip redirects
R12(config-if) # ip mtu 1400
R12(config-if) # ip nhrp authentication cisco
R12(config-if) # ip nhrp map multicast dynamic
R12(config-if) # ip nhrp network-id 1
R12(config-if) # ip nhrp holdtime 600
R12(config-if) # ip nhrp nhs 10.0.100.84 nbma 172.16.84.4 multicast
R12(config-if) # ip nhrp nhs 10.0.100.94 nbma 172.16.94.4 multicast
R12(config-if) # ip nhrp registration no-unique
R12(config-if) # ip nhrp registration timeout 60
R12(config-if) # ip nhrp shortcut
R12(config-if) # ip tcp adjust-mss 1360
R12(config-if)# load-interval 30
R12(config-if)# delay 1000
R12(config-if) # no nhrp route-watch
R12(config-if) # if-state nhrp
R12(config-if) # tunnel source Ethernet0/1
R12(config-if)# tunnel mode gre multipoint
```

```
R12(config-if)# tunnel key 100
R12(config-if)# tunnel vrf IWAN-TRANSPORT-1
```

Configure the interfaces (R13)

```
R13> enable
R13# configure terminal
R13(config)# interface Loopback0
R13(config-if)# ip address 10.2.13.13 255.255.255
R13(config-if)# exit
```

Configure the device as a border router with R12 as the master controller (R13)

```
R13(config)# domain default
R13(config-domain)# vrf default
R13(config-domain-vrf)# border
R13(config-domain-vrf-br)# source-interface Loopback0
R13(config-domain-vrf-br)# master 10.2.12.12
R13(config-domain-vrf-br)# exit
```

Configure the tunnel interface and tunnel path from R13

```
R13(config) # interface Tunnel200
R13(config-if) # bandwidth 400
R13(config-if) # ip address 10.0.200.13 255.255.255.0
R13(config-if) # no ip redirects
R13(config-if)# ip mtu 1400
R13(config-if) # ip nhrp authentication cisco
R13(config-if) # ip nhrp network-id 2
R13(config-if) # ip nhrp holdtime 600
R13(config-if) # ip nhrp nhs 10.0.200.85 nbma 172.16.85.5 multicast
R13 (config-if) # ip nhrp nhs 10.0.100.95 nbma 172.16.95.5 multicast
R13(config-if) # ip nhrp registration no-unique
R13(config-if) # ip nhrp registration timeout 60
R13(config-if) # ip nhrp shortcut
R13(config-if) # ip tcp adjust-mss 1360
R13(config-if)# load-interval 30
R13(config-if)# delay 1000
R13(config-if)# if-state nhrp
R13(config-if) # tunnel source Ethernet0/2
R13(config-if) # tunnel mode gre multipoint
R13(config-if)# tunnel key 200
R13(config-if)# tunnel vrf IWAN-TRANSPORT-2
```

Verifying PfRv3 Transit Site Configuration

To verify the PfRv3 transit site configuration, use the following show commands in any order:

HubMC2# show domain default master status

```
*** Domain MC Status ***
Master VRF: Global
Instance Type: Transit
POP ID: 2
Instance id: 0
Operational status: Up
Configured status: Up
Loopback IP Address: 10.9.3.3
Load Balancing:
Operational Status: Up
Max Calculated Utilization Variance: 0%
```

```
Last load balance attempt: 03:07:30 ago
   Last Reason: Variance less than 20%
   Total unbalanced bandwidth:
        External links: 0 Kbps Internet links: 0 Kbps
  Route Control: Enabled
  Mitigation mode Aggressive: Disabled
  Policy threshold variance: 20
  Minimum Mask Length: 28
 Minimum Requirement: Met
  Borders:
    IP address: 10.9.5.5
    Version: 2
   Connection status: CONNECTED (Last Updated 03:25:38 ago )
   Interfaces configured:
Name: Tunnel200 | type: external | Service Provider: INET path-id:40 | Status: UP | Zero-SLA:
NO
          Number of default Channels: 0
    Tunnel if: Tunnel0
    IP address: 10.9.4.4
   Version: 2
    Connection status: CONNECTED (Last Updated 03:25:37 ago )
    Interfaces configured:
```

```
Name: Tunnel100 | type: external | Service Provider: MPLS path-id:30 | Status: DOWN
Tunnel if: Tunnel0
```

HubMC2# show domain default master channels

```
Channel Id: 8 Dst Site-Id: 10.2.11.11 Link Name: MPLS DSCP: default [0] pfr-label: 0:0
| 2:30 [0x21E] TCs: 0
  Channel Created: 03:19:14 ago
  Provisional State: Initiated and open
  Operational state: Available but unreachable
  Channel to hub: FALSE
  Interface Id: 11
  Supports Zero-SLA: Yes
  Muted by Zero-SLA: No
 Estimated Channel Egress Bandwidth: 0 Kbps
  Immitigable Events Summary:
  Total Performance Count: 0, Total BW Count: 0
  ODE Stats Bucket Number: 1
  Last Updated : 00:00:21 ago
   Packet Count : 0
   Byte Count
               : 0
   One Way Delay : N/A
   Loss Rate Pkts : N/A
   Loss Rate Bytes: N/A
    Jitter Mean : N/A
   Unreachable
                : TRUE
  ODE Stats Bucket Number: 2
  Last Updated : 00:00:52 ago
   Packet Count : 0
   Byte Count
                 : 0
   One Way Delay : N/A
   Loss Rate Pkts : N/A
   Loss Rate Bytes: N/A
    Jitter Mean
                : N/A
```

Unreachable : TRUE

```
TCA Statistics:
    Received:355 ; Processed:354 ; Unreach rcvd:355
 Latest TCA Bucket
  Last Updated : 00:00:21 ago
  Local unreachable TCA received (Check for stale TCA 00:00:09 later)
HubMC2# show domain default master site-capability device-capb path-id
Site pop id : 1
Site mc type : Transit
Border Address : 10.9.4.4
Service provider: MPLS path-id: 30 if index: 11
Border Address : 10.9.5.5
Service provider: INET path-id: 40 if index: 11
 _____
HubMC2# show domain default master site-prefix
_____
Load for five secs: 0%/0%; one minute: 0%; five minutes: 0%
Time source is NTP, 11:28:29.421 CET Tue Mar 17 2015
 Change will be published between 5-60 seconds
 Next Publish 00:33:03 later
 Prefix DB Origin: 10.9.3.3
 Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured; M-shared
Site-id
               Site-prefix
                              Last Updated
                                               DC Bitmap Flag
_____
                            01:25:15 ago
               10.1.10.0/24
10.2.10.10
                                              0x0
                                                        S
10.2.11.11
               10.1.11.0/24
                               01:25:19 ago
                                              0x0
                                                        S
                               01:25:15 ago
10.2.10.10
               10.2.10.10/32
                                              0x0
                                                        S
               10.2.11.11/32
10.2.11.11
                               01:25:19 ago
                                               0x0
                                                        S
                                01:28:54 ago
10.2.12.12
                10.2.12.12/32
                                               0x0
                                                        S
                               01:28:47 ago
10.8.3.3
                10.8.3.3/32
                                               0x1
                                                        S
                               01:28:47 ago
10.9.3.3
               10.8.0.0/16
                                               0x5
                                                        С.М
               10.8.0.0/16
                               01:28:47 ago
10.8.3.3
                                               0x5
                                                        С,М
                                               0x4
10.9.3.3
               10.9.3.3/32
                               03:29:04 ago
                                                        T.
               10.9.0.0/16
                                01:28:47 ago
10.9.3.3
                                               0x5
                                                        C,M
10.8.3.3
                10.9.0.0/16
                                01:28:47 ago
                                               0x5
                                                         C,M
              *10.0.0/8
255.255.255.255
                                01:28:47 ago
                                               0x1
                                                         S,T
_____
HubMC2# show domain default master policy
_____
```

Load for five secs: 0%/0%; one minute: 0%; five minutes: 0% Time source is NTP, 11:31:10.977 CET Tue Mar 17 2015

```
class VOICE sequence 10
  path-preference MPLS fallback INET
  class type: Dscp Based
  match dscp ef policy custom
    priority 2 packet-loss-rate threshold 5.0 percent
```

```
priority 1 one-way-delay threshold 150 msec
       priority 2 byte-loss-rate threshold 5.0 percent
  class VIDEO sequence 20
   path-preference MPLS fallback INET
    class type: Dscp Based
     match dscp af41 policy custom
       priority 2 packet-loss-rate threshold 5.0 percent
       priority 1 one-way-delay threshold 150 msec
       priority 2 byte-loss-rate threshold 5.0 percent
     match dscp cs4 policy custom
       priority 2 packet-loss-rate threshold 5.0 percent
       priority 1 one-way-delay threshold 150 msec
       priority 2 byte-loss-rate threshold 5.0 percent
  class CRITICAL sequence 30
   path-preference MPLS fallback INET
    class type: Dscp Based
     match dscp af31 policy custom
       priority 2 packet-loss-rate threshold 10.0 percent
       priority 1 one-way-delay threshold 600 msec
       priority 2 byte-loss-rate threshold 10.0 percent
       Number of Traffic classes using this policy: 1
class DEFAULTO sequence 100
   class type: Dscp Based
     match dscp default policy custom
       priority 2 packet-loss-rate threshold 5.0 percent
       priority 1 one-way-delay threshold 50 msec
       priority 3 jitter threshold 200000 usec
       priority 2 byte-loss-rate threshold 5.0 percent
       Number of Traffic classes using this policy: 1
  class default
     match dscp all
_____
HubMC2# show domain default master discovered
Load for five secs: 0%/0%; one minute: 0%; five minutes: 0%
Time source is NTP, 14:31:58.410 CET Tue Mar 17 2015
  *** Domain MC DISCOVERED sites ***
 Number of sites: 5
 *Traffic classes [Performance based] [Load-balance based]
 Site ID: 255.255.255.255
  Site Discovered:06:32:33 ago
    Off-limits: Disabled
   DSCP :default[0]-Number of traffic classes[0][0]
   DSCP :af31[26]-Number of traffic classes[0][0]
 Site ID: 10.8.3.3
  Site Discovered:06:30:37 ago
   Off-limits: Disabled
   DSCP :default[0]-Number of traffic classes[0][0]
   DSCP :af31[26]-Number of traffic classes[0][0]
 Site ID: 10.2.10.10
 Site Discovered:06:30:37 ago
   Off-limits: Disabled
```

```
DSCP :default[0]-Number of traffic classes[1][0]
   DSCP :af31[26]-Number of traffic classes[1][0]
Site ID: 10.2.11.11
 Site Discovered:06:30:34 ago
   Off-limits: Disabled
   DSCP :default[0]-Number of traffic classes[0][0]
   DSCP :af31[26]-Number of traffic classes[0][0]
Site ID: 10.2.12.12
 Site Discovered:06:30:37 ago
   Off-limits: Disabled
   DSCP :default[0]-Number of traffic classes[0][0]
   DSCP :af31[26]-Number of traffic classes[0][0]
        _____
                                                _____
BR94# show domain default border status
  _____
**** Border Status ****
Instance Status: UP
Present status last updated: 06:39:21 ago
Loopback: Configured Loopback0 UP (10.9.4.4)
Master: 10.9.3.3
Master version: 2
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 06:39:15
Route-Control: Enabled
Asymmetric Routing: Disabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
    Name: Tunnel100 Interface Index: 11 SNMP Index: 8 SP: MPLS path-id: 30 Status: DOWN
Zero-SLA: NO
Auto Tunnel information:
```

Name:Tunnel0 if_index: 12 Borders reachable via this tunnel: 10.9.5.5

BR94# show domain default border site-prefix

Prefix Flag: S-From SAF; L-Learned; T-Top Level; C-Configured; M-shared

Site-id	Site-prefix	Last Updated	DC Bitmap	Flag
10.2.10.10	10.1.10.0/24	00:36:58 ago	0x0	S
10.2.11.11	10.1.11.0/24	00:37:02 ago	0x0	S
10.2.10.10	10.2.10.10/32	00:36:58 ago	0x0	S
10.2.11.11	10.2.11.11/32	00:37:02 ago	0x0	S
10.2.12.12	10.2.12.12/32	00:40:37 ago	0x0	S
10.8.3.3	10.8.3.3/32	00:40:29 ago	0x1	S
10.9.3.3	10.8.0.0/16	00:38:40 ago	0x5	S,C,M
10.8.3.3	10.8.0.0/16	00:38:40 ago	0x5	S,C,M
10.9.3.3	10.9.3.3/32	00:38:40 ago	0 x 4	S
10.9.3.3	10.9.0.0/16	00:38:40 ago	0x5	S,C,M
10.8.3.3	10.9.0.0/16	00:38:40 ago	0x5	S,C,M

255.255.255.255 *10.0.0.0/8 00:40:29 ago 0x1 S,T _____ _____ R10# show domain default master channels dst-site-id 10.8.3.3 _____ Legend: * (Value obtained from Network delay:) Channel Id: 27 Dst Site-Id: 10.8.3.3 Link Name: INET DSCP: default [0] pfr-label: 0:20 | 0:0 [0x140000] TCs: 0 Channel Created: 01:16:34 ago Provisional State: Initiated and open Operational state: Available Channel to hub: TRUE Interface Id: 12 Supports Zero-SLA: Yes Muted by Zero-SLA: No Estimated Channel Egress Bandwidth: 5 Kbps Immitigable Events Summary: Total Performance Count: 0, Total BW Count: 0 Site Prefix List 10.8.3.3/32 (Active) 10.8.0.0/16 (Active) 10.9.0.0/16 (Standby) ODE Stats Bucket Number: 1 Last Updated : 00:00:24 ago Packet Count : 562 Bvte Count : 47208 One Way Delay : 71 msec* Loss Rate Pkts: 0.0 % Loss Rate Byte: 0.0 % Jitter Mean : 619 usec Unreachable : FALSE ODE Stats Bucket Number: 2 Last Updated : 00:00:54 ago Packet Count : 558 Byte Count : 46872 One Way Delay : 55 msec* Loss Rate Pkts: 0.0 % Loss Rate Byte: 0.0 % Jitter Mean : 556 usec Unreachable : FALSE TCA Statistics: Received:133 ; Processed:133 ; Unreach rcvd:0 Latest TCA Bucket Last Updated : 00:00:24 ago One Way Delay : 71 msec* Loss Rate Pkts: NA Loss Rate Byte: NA Jitter Mean : NA Unreachability: FALSE _____ R10# show domain default border status Tue Mar 24 04:52:50.379 **** Border Status ****

Instance Status: UP

```
Present status last updated: 3d14h ago
Loopback: Configured Loopback0 UP (10.2.10.10)
Master: 10.2.10.10
Master version: 2
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 3d14h
Route-Control: Enabled
Asymmetric Routing: Disabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
Name: Tunnel100 Interface Index: 14 SNMP Index: 8 SP: MPLS Status: UP Zero-SLA: NO Path-id
List: 0:10, 1:30
Name: Tunnel200 Interface Index: 15 SNMP Index: 9 SP: INET Status: UP Zero-SLA: NO Path-id
List: 0:20, 1:40
Auto Tunnel information:
Name: Tunnel0 if index: 13
Borders reachable via this tunnel:
_____
R10# show domain default master status
_____
*** Domain MC Status ***
Master VRF: Global
Instance Type: Branch
Instance id: 0
Operational status: Up
Configured status: Up
Loopback IP Address: 10.2.10.10
Load Balancing:
Operational Status: Up
Max Calculated Utilization Variance: 1%
Last load balance attempt: never
Last Reason: Variance less than 20%
Total unbalanced bandwidth:
External links: 0 Kbps Internet links: 0 Kbps
Route Control: Enabled
Mitigation mode Aggressive: Disabled
Policy threshold variance: 20
Minimum Mask Length: 28
Minimum Requirement: Met
Borders:
IP address: 10.2.10.10
Version: 2
Connection status: CONNECTED (Last Updated 3d14h ago )
Interfaces configured:
Name: Tunnel100 | type: external | Service Provider: MPLS | Status: UP | Zero-SLA: NO
Number of default Channels: 0
Path-id list: 0:10 1:30
Name: Tunnel200 | type: external | Service Provider: INET | Status: UP | Zero-SLA: NO
Number of default Channels: 0
```

Path-id list: 0:20 1:40 Tunnel if: Tunnel0 R10# show domain default master site-capability 10.9.3.3 path-id _____ Site id : 10.9.3.3 Site pop id : 1 Site mc type : Transit Border Address : 10.9.4.4 Service provider: MPLS path-id: 30 if_index: 11 Border Address : 10.9.5.5 Service provider: INET path-id: 40 if index: 11 _____ R10# show domain default master site-capability 10.8.3.3 path-id _____ Site id : 10.8.3.3 Site pop id : 0 Site mc type : Hub Border Address : 10.8.5.5 Service provider: INET path-id: 20 if index: 11 Border Address : 10.8.4.4 Service provider: MPLS path-id: 10 if_index: 11 _____ R10# show domain default border channels service-provider INET _____ Tue Mar 24 04:53:39.968 Border Smart Probe Stats: Smart probe parameters: Source address used in the Probe: 10.2.10.10 Unreach time: 1000 ms Probe source port: 18000 Probe destination port: 19000 Interface Discovery: ON Probe freq for channels with traffic :10 secs Discovery Probes: OFF Number of transit probes consumed :0 Number of transit probes re-routed: 0 DSCP's using this: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] All the other DSCPs use the default interval: 10 secs Channel id: 6 Channel create time: 3d14h ago Site id : 10.8.3.3 DSCP : default[0] Service provider : INET Pfr-Label : 0:20 | 0:0 [0x140000]

L

```
exit path-id: 0
Exit path-id sent on wire: 0
Number of Probes sent : 5657983
Number of Probes received : 5823008
Last Probe sent : 00:00:00 ago
Last Probe received : 00:00:00 ago
Channel state : Discovered and open
Channel next hop : 10.0.200.85
RX Reachability : Reachable
TX Reachability : Reachable
Channel is sampling 0 flows
Channel remote end point: 10.0.200.85
Channel to hub: TRUE
Version: 3
Supports Zero-SLA: Yes
Muted by Zero-SLA: No
Probe freq with traffic : 1 in 10000 ms
٠
```

R10# show ip nhrp nhs

```
_____
```

Legend: E=Expecting replies, R=Responding, W=Waiting Tunnel100: 10.0.100.84 RE NBMA Address: 172.16.84.4 priority = 0 cluster = 0 10.0.100.94 RE NBMA Address: 172.16.94.4 priority = 0 cluster = 0 Tunnel200: 10.0.200.85 RE NBMA Address: 172.16.85.5 priority = 0 cluster = 0 10.0.200.95 RE NBMA Address: 172.16.95.5 priority = 0 cluster = 0

PfRv3 Zero SLA Support

The Performance Routing v3 (PfRv3) Zero SLA Support feature enables users to reduce probing frequency on various ISP links, such as 3G, 4G, and LTE. When the Zero SLA (0-SLA) feature is configured on an ISP link, only the channel with the DSCP (Differentiated Services Code Point) value 0 is probed. For all other DSCPs, channels are created only if there is traffic, but no probing is performed.

- Feature Information for PfRv3 Zero SLA Support, on page 123
- Prerequisites for PfRv3 Zero SLA Support, on page 124
- Restrictions for PfRv3 Zero SLA Support, on page 124
- Information About PfRv3 Zero SLA Support, on page 124
- How to Configure PfRv3 Zero SLA Support, on page 126
- Configuration Examples for PfRv3 Zero SLA Support, on page 132

Feature Information for PfRv3 Zero SLA Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3 Path of Last Resort Support	15.5(3)M	The PfRv3 Path of Last Resort is a route used by the device when a service provider cannot be reached or the exits are out of bandwidth. The following commands were modified or added by this feature: domain path isp-name , show domain default vrf border , show domain default vrf master .

Table 14: Feature Information for PfRv3 Zero SLA Support

Feature Name	Releases	Feature Information
Performance Routing v3 Zero SLA Support	15.5(1)T Cisco IOS XE Release 3.14S	The Performance Routing v3 Zero SLA Support enables users to reduce probing frequency on various ISP links. The following command was modified by this feature: domain (interface configuration).

Prerequisites for PfRv3 Zero SLA Support

• Upgrade hub-border routers with the latest Cisco IOS image to configure the Zero SLA feature.

Restrictions for PfRv3 Zero SLA Support

• Fast-monitor interval and brown out features are not supported with Zero SLA configurations.

Information About PfRv3 Zero SLA Support

Information About Zero SLA

The Zero SLA (0-SLA) feature enables users to reduce probing frequency in their network infrastructure. Reduction in probing process helps in reducing cost especially when ISPs charge based on traffic, and helps in optimizing network performance when ISPs provide limited bandwidth. When this feature is configured, probe is sent only on the DSCP-0 channel. For all other DSCPs, channels are created if there is traffic, but no probing is performed. The reachability of other channels is learnt from the DSCP-0 channel that is available at the same branch site. Figure 8: Probing on Zero SLA

In the above illustration, the branch and hub sites are connected with red and blue ISP links. On the red ISP link, Zero SLA is configured at the hub site. Traffic exists on DSCP-0, DSCP AF31, and DSCP-EF channels on both ISP links, but on the red link probing is sent only on the DSCP-0 channel. A probe sent during the WAN discovery signals if a link is a Zero SLA link or a normal link.

Information About Path of Last Resort

A Path of Last Resort is a route used by the device when a service provider cannot be reached or the exits are out of bandwidth. This feature is supported for 3G and 4G metered links. When the service provider is not available, the traffic is routed to the path of last resort if you have specified the **path of last resort** keyword in the **domain path** command. When the exits are up with optimum bandwidth, the links are transitioned back. The following are the different supported modes:

- Standby mode-No traffic classes are routed over the path of last resort service provider.
- Active mode-Traffic classes are routed over the path of last resort service provider.
- Disabled mode—The path of last resort is not enabled for the interface.

The path of last resort routes are muted when it is in standby mode. The smart probe frequency is reduced to 1 packet every 10 seconds from 20 packets per second.

Compatibility Matrix for Zero SLA Support

In Performance Routing v3, capability negation happens through service advertisement framework (SAF) messages. When the PfR v3 domain comes up, it registers itself to the SAF to publish the compatibility and support for different release versions.

Use the **show domain default master site-capability** command to view the release version and the capability negation between hub and branch sites.

The following table shows the devices with various Cisco IOS/XE release versions and its support for Zero SLA within a single branch.

Master Controller	Border Router	Compatibility Between Release Versions	Zero SLA Support
Cisco IOS XE Release 3.14 or later Cisco IOS Release 15.5(1)T or later	Cisco IOS XE Release 3.14 or later Cisco IOS Release 15.5(1)T or later	Yes	If the master controller and border routers have the same Cisco IOS release versions, the Zero SLA feature is enabled.
Cisco IOS XE Release 3.14 or later Cisco IOS Release 15.5(1)T or later	Cisco IOS XE Release 3.13 or earlier Cisco IOS Release 15.4T or earlier	Yes	If the master controller has the latest Cisco IOS release and the border router has the earlier release version, the Zero SLA feature is disabled.
Cisco IOS XE Release 3.13 Cisco IOS Release 15.4T	Cisco IOS XE Release 3.13 Cisco IOS Release 15.4T	Yes	Zero SLA is not supported on Cisco IOS XE Release 3.13.
Cisco IOS XE Release 3.13 Cisco IOS Release 15.4T	Cisco IOS XE Release 3.14 or later Cisco IOS Release 15.5(1)T or later	No	The release versions are not compatible and hence, Zero SLA cannot be enabled.

Note

- If you are configuring PfRv3 on a site, it is mandatory that the hub master and the hub border routers in a site are on the same version of the Cisco IOS XE software.
- In a site, the branch master controller and the associated borders in the branch should also have the same version of the Cisco IOS XE software. But, it is not mandatory for the software version on the hub master or the hub border to match the software version on the branch master controller and its borders.
- Ensure that the Cisco IOS XE software version installed on the hub master, hub border router, branch master controller and borders support Zero SLA.

How to Configure PfRv3 Zero SLA Support

Configuring PfRv3 Zero SLA Support

Configure the Zero SLA (0-SLA) feature on the border router at the hub site.

Before you begin

Configure PfRv3 topology on the hub and branch site. For more information on configuring PfRv3, see the "How to Configure PfRv3" topic in the *Performance Routing v3 Configuration Guide*.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3. interface tunnel** *tunnel-number*
- 4. bandwidth bandwidth-value
- 5. ip address ip-address mask
- 6. domain path *isp-name* [internet-bound | path-id | path-last-resort | zero-sla]

DETAILED STEPS

	Command or Action	Purpose		
Step 1	enable	Enables p	privileged EXEC mode.	
	Example:	• Ente	er your password if prompted.	
	Device> enable			
Step 2	configure terminal	Enters gl	obal configuration mode.	
	Example:			
	Device# configure terminal			
Step 3	interface tunnel tunnel-number	Enters in	terface configuration mode.	
	Example:			
	<pre>Device(config)# interface tunnel 100</pre>			
Step 4	bandwidth bandwidth-value	Configur	es inherited and received bandwidth values for the	
	Example:	tunnel int	terface. The bandwidth value is in kilobits and the	
	<pre>Device(config-if)# bandwidth 10000000</pre>	vana van		
Step 5	ip address ip-address mask	Configures an IP address of the border router at the hub		
	Example:	site.		
	Device(config-if)# ip address 10.32.1.1 255.0.0.0			
Step 6	domain path isp-name [internet-bound path-id	Specifies	a service provider for the interface.	
	path-last-resort zero-sla]	• internet-bound—Configures an internet bound		
	Example:	inter	rface.	
	Device(config-if)# domain path ISPl zero-sla	• path inter	1-id —Configures service provider's path-id for the rface.	
		• path	n-last-resort —Configures the interface to be a of a last resort.	
		• zero	-sla—Configures Zero SLA for the interface.	
		Note	You can configure multiple Internet Service Providers (ISPs). If you are defining a specific domain name for an ISP (for example, domain_abc), you must specify the same domain name while configuring the ISP paths.	

Verifying PfRv3 Zero SLA Support

The show commands can be entered in any order.

Before you begin

Configure Zero SLA on the hub-border router.

SUMMARY STEPS

- 1. show domain default master status
- 2. show domain default master channel
- **3**. show domain default border status
- 4. show domain default border channel
- 5. show domain default master site-capability
- 6. show domain default vrf vrf-name master status
- 7. show domain default vrf vrf-name border status
- 8. show domain default vrf vrf-name master channels
- 9. show domain default vrf vrf-name border channels
- 10. show domain default vrf vrf-name master policy

DETAILED STEPS

Step 1	show domain default maste	er status				
	Displays the status of the hub	o master	controller.			
Step 2	show domain default maste	er chann	el			
	Displays channel information	n of the h	ub master co	ontroller	r.	
Step 3	show domain default borde	er status				
	Displays the status of the hub border routers.					
Step 4	show domain default borde	er channe	el			
Displays the information of border router chan				s at the	hub site.	
Step 5	show domain default master site-capability					
	Displays the capability information of master controller.					
	Example:					
	Device# show domain default master site-capability					
	Device Capability					
	Capability	I	Major	I	Minor	I
	Capability Domain	 	Major 2	 	Minor 0	

Site id :10.2.10.10

	Capability		Major		Minor	
	Domain		2		0	I
	Zero-SLA		1		0	I
Site	id :10.2.12.12					
	Capability		Major		Minor	
	Domain		2		0	I
	Zero-SLA		1		0	I

Table 15: show domain default master site-capability Field Descriptions

Field	Description
Capability	Features supported by PfR v3 domain.
Domain	Domain version.
	Major - Means the major release version number for PfR v3.
	Minor - Means the minor release version number for PfR v3.
Zero-SLA	Zero-SLA feature support.
	Major - Means the major release version of the Zero-SLA feature on the master controller.
	Minor - Means the minor release version of the Zero-SLA feature on the master controller.

Step 6 show domain default vrf vrf-name master status

Displays the master status of the hub border routers.

Example:

```
Device# show domain default vrf vrfl master status

Borders:

IP address: 10.204.1.4

Version: 2

Connection status: CONNECTED (Last Updated 00:59:16 ago )

Interfaces configured:

Name: Tunnel20 | type: external | Service Provider: ISP2 | Status: UP | Zero-SLA: NO | Path of

Last Resort: Disabled

Number of default Channels: 0

Tunnel if: Tunnel1

IP address: 10.203.1.3

Version: 2

Connection status: CONNECTED (Last Updated 00:59:16 ago )
```

Interfaces configured: Name: Tunnel10 | type: external | Service Provider: ISP1 | Status: UP | Zero-SLA: YES | Path of Last Resort: Standby Number of default Channels: 0 Tunnel if: Tunnel1

Step 7 show domain default vrf *vrf-name* **border status**

Displays the master status of the hub border routers.

Example:

Device# show domain default vrf vrf1 border status

```
_____
**** Border Status ****
Instance Status: UP
Present status last updated: 01:01:42 ago
Loopback: Configured Loopback1 UP (30.209.1.9)
Master: 30.209.1.9
Master version: 2
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 01:01:42
Route-Control: Enabled
Asymmetric Routing: Disabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
   Name: TunnellO Interface Index: 16 SNMP Index: 13 SP: ISP1 path-id: 0 Status: UP Zero-SLA: YES
Path of Last Resort: Standby Path-id List: 0:0
 Name: Tunnel20 Interface Index: 18 SNMP Index: 15 SP: ISP2 Status: UP Zero-SLA: NO Path of Last
Resort: Disabled Path-id List: 0:0
```

Auto Tunnel information:

Name:Tunnel1 if_index: 21 Borders reachable via this tunnel:

Step 8 show domain default vrf *vrf-name* master channels

Displays the master status of the hub master controller.

Example:

Device# show domain default vrf vrf1 master channels

```
Channel Id: 9 Dst Site-Id: 30.209.1.9 Link Name: ISP1 DSCP: af41 [34] pfr-label: 0:0 | 0:0 [0x0]
TCs: 0
Channel Created: 00:57:15 ago
Provisional State: Initiated and open
Operational state: Available
Channel to hub: FALSE
Interface Id: 16
Supports Zero-SLA: Yes
Muted by Zero-SLA: Yes
Muted by Path of Last Resort: Yes
Estimated Channel Egress Bandwidth: 0 Kbps
Immitigable Events Summary:
Total Performance Count: 0, Total BW Count: 0
```

```
ODE Stats Bucket Number: 1
 Last Updated : 00:56:15 ago
  Packet Count : 505
  Byte Count : 42420
  One Way Delay : 229 msec*
   Loss Rate Pkts: 0.0 %
  Loss Rate Byte: 0.0 %
  Jitter Mean : 535 usec
  Unreachable : FALSE
  TCA Statistics:
  Received:1 ; Processed:1 ; Unreach rcvd:0
Latest TCA Bucket
 Last Updated : 00:56:15 ago
  One Way Delay : 229 msec*
  Loss Rate Pkts: NA
  Loss Rate Byte: NA
   Jitter Mean : NA
   Unreachability: FALSE
```

Step 9 show domain default vrf *vrf-name* border channels

Displays the information of border router channels at the hub site.

Example:

Device# show domain default vrf vrf1 border channels

```
Channel id: 2
Channel create time: 00:46:02 ago
Site id : 255.255.255.255
DSCP : default[0]
Service provider : ISP1
Pfr-Label : 0:0 | 0:0 [0x0]
exit path-id: 0
Exit path-id sent on wire: 0
Number of Probes sent : 0
Number of Probes received : 0
Last Probe sent : 00:46:02 ago
Last Probe received : - ago
Channel state : Initiated and open
Channel next hop : 0.0.0.0
RX Reachability : Initial State
TX Reachability : Reachable
Channel is sampling 0 flows
Channel remote end point: 0.0.0.0
Channel to hub: FALSE
Version: 0
Supports Zero-SLA: No
Muted by Zero-SLA: No
Muted by Path of Last Resort: Yes
Probe freq with traffic : 1 in 10000 ms
```

Step 10 show domain default vrf vrf-name master policy

Displays the status of the master policy.

Example:

Device# show domain default vrf vrf1 master policy

class VOICE sequence 10 path-last-resort ISP1 class type: Dscp Based match dscp ef policy custom

```
priority 1 one-way-delay threshold 200 msec
Number of Traffic classes using this policy: 2
```

Configuration Examples for PfRv3 Zero SLA Support

Example: Configuring PfRv3 Zero SLA Support

Let us consider a use case scenario, where the service provider of a large enterprise network wants to reduce the probing frequency on all its channels. To reduce probing, Zero-SLA is configured on the ISP link from BR1.

Note

In the following example, only the hub master controller, BR1 (border router 1), R10 and R11 (branch border router) configurations are described.

Figure 9: PfRv3 Topology

In this example, the following routers are used:

- Hub Master Controller Cisco ASR 1002-X router configured with an embedded services processor (ESP) default bandwidth of 5 Gbps upgradable with software licensing options to 10 Gbps, 20 Gbps, and 36 Gbps.
- Hub Border Routers Cisco ASR 1000 Series Embedded Services Processor 2

Branch Routers — Cisco 4451X Integrated Services Router.

Configure the interfaces on hub master controller

```
HubMC> enable
HubMC# configure terminal
HubMC(config)# interface Loopback0
HubMC(config-if)# ip address 10.8.3.3 255.255.255
HubMC(config-if)# exit
```

Configure the device as hub-master controller

```
HubMC(config) # domain one
HubMC(config-domain) # vrf default
HubMC(config-domain-vrf) # master hub
HubMC(config-domain-vrf-mc) # source-interface Loopback0
HubMC(config-domain-vrf-mc) # enterprise-prefix prefix-list ENTERPRISE
HubMC(config-domain-vrf-mc) # site-prefixes prefix-list DATA_CENTER_1
HubMC(config-domain-vrf-mc) # site-prefixes prefix-list DATA_CENTER_1
```

Configure IP prefix-lists

```
HubMC(config) # ip prefix-list DATA_CENTER_1 seq 5 permit 10.8.0.0/16 le 24
HubMC(config) # ip prefix-list ENTERPRISE seq 5 permit 10.0.0.0/8 le 24
```

Configure domain policies on hub master controller

```
HubMC(config) # domain one
HubMC(config-domain) # vrf default
HubMC(config-domain-vrf) # master hub
HubMC(config-domain-vrf-mc) # monitor-interval 2 dscp ef
HubMC(config-domain-vrf-mc) # load-balance
HubMC (config-domain-vrf-mc) # class VOICE sequence 10
HubMC(config-domain-vrf-mc-class)# match dscp ef policy voice
HubMC (config-domain-vrf-mc-class) # path-preference MPLS fallback INET
HubMC(config-domain-vrf-mc-class) # exit
HubMC(config-domain-vrf-mc) # class VIDEO sequence 20
HubMC(config-domain-vrf-mc-class)# match dscp af41 policy real-time-video
HubMC (config-domain-vrf-mc-class) # match dscp cs4 policy real-time-video
HubMC (config-domain-vrf-mc-class) # path-preference INET fallback MPLS
HubMC(config-domain-vrf-mc-class) # exit
HubMC(config-domain-vrf-mc) # class CRITICAL sequence 30
HubMC (config-domain-vrf-mc-class) # match dscp af31 policy custom
HubMC(config-domain-vrf-mc-class-type) # priority 2 loss threshold 10
HubMC(config-domain-vrf-mc-class-type) # priority 1 one-way-delay threshold 600
HubMC(config-domain-vrf-mc-class-type) # priority 2 jitter threshold 600
HubMC(config-domain-vrf-mc-class) # exit
HubMC (config-domain-vrf-mc-class) # path-preference MPLS fallback INET
```

Configure the interfaces on hub border router (BR1)

```
BR1> enable
BR1# configure terminal
BR1(config)# interface Loopback0
BR1(config-if)# ip address 10.8.1.1 255.255.255
BR1(config-if)exit
```

Configure the device as border router (BR1)

```
BR1 (config) # domain one
BR1 (config-domain) # vrf default
BR1 (config-domain-vrf) # border
BR1 (config-domain-vrf-br) # source-interface Loopback0
BR1 (config-domain-vrf-br) # master 10.8.3.3
BR1 (config-domain-vrf-br) # exit
```

Configure tunnel from BR1 to DMVPN1 (MPLS)Link

```
BR1 (config) # interface Tunnel100
BR1(config-if) # bandwidth 100000
BR1(config-if) # ip address 10.0.100.84 255.255.255.0
BR1(config-if) # no ip redirects
BR1(config-if)# ip mtu 1400
BR1 (config-if) # ip nhrp authentication cisco
BR1(config-if) # ip nhrp map multicast dynamic
BR1(config-if) # ip nhrp network-id 1
BR1(config-if) # ip nhrp holdtime 600
BR1(config-if) # ip tcp adjust-mss 1360
BR1(config-if) # load-interval 30
BR1(config-if) # tunnel source GigabitEthernet3
BR1(config-if)# tunnel mode gre multipoint
BR1(config-if)# tunnel key 100
BR1(config-if) # tunnel protection ipsec profile DMVPN-PROFILE1
BR1(config-if) # domain one path MPLS
```

Configure Zero-SLA on BR1 to DMVPN1 (MPLS)Link

BR1 (config-if) # domain one path MPLS zero-sla

Configure the interfaces (R10)

```
R10> enable
R10# configure terminal
R10(config)# interface Loopback0
R10(config-if)# ip address 10.2.10.10 255.255.255.255
R10(config-if)exit
```

Configure the device as branch master controller (R10)

```
R10(config)# domain one
R10(config-domain)# vrf default
R10(config-domain-vrf)# border
R10(config-domain-vrf-br)# source-interface Loopback0
R10(config-domain-vrf-br)# master local
R10(config-domain-vrf-br)# exit
R10(config-domain-vrf)# master branch
R10(config-domain-vrf-mc)# source-interface Loopback0
R10(config-domain-vrf-mc)# hub 10.8.3.3
```

```
R10(config) # interface Tunnel100
R10(config-if) # bandwidth 100000
R10(config-if) # ip address 10.0.100.10 255.255.255.0
R10(config-if) # no ip redirects
R10(config-if) # ip mtu 1400
R10(config-if) # ip nhrp authentication cisco
R10(config-if)# ip nhrp map 10.0.100.84 172.16.84.4
R10 (config-if) # ip nhrp map multicast 172.16.84.4
R10 (config-if) # ip nhrp network-id 1
R10(config-if) # ip nhrp holdtime 600
R10(config-if)# ip nhrp nhs 10.0.100.84
R10(config-if) # ip nhrp registration timeout 60
R10 (config-if) # ip tcp adjust-mss 1360
R10(config-if) # load-interval 30
R10(config-if)# delay 1000
R10 (config-if) # tunnel source GigabitEthernet2
R10(config-if) # tunnel mode gre multipoint
R10(config-if)# tunnel key 100
R10 (config-if) # tunnel protection ipsec profile DMVPN-PROFILE1
R10 (config-if) # domain one path MPLS
```
Configure another tunnel path from R10

```
R10 (config) # interface Tunnel200
R10 (config-if) # bandwidth 50000
R10 (config-if) # ip address 10.0.200.10 255.255.255.0
R10(config-if) # no ip redirects
R10(config-if)# ip mtu 1400
R10 (config-if) # ip nhrp authentication cisco
R10(config-if) # ip nhrp map 10.0.200.85 172.16.85.5
R10(config-if) # ip nhrp multicast 172.16.85.5
R10(config-if)# ip nhrp network-id 2
R10(config-if) # ip nhrp holdtime 600
R10(config-if) # ip nhrp nhs 10.0.200.85
R10(config-if) # ip tcp adjust-mss 1360
R10(config-if) # load-interval 30
R10(config-if)# delay 1000
R10(config-if) # tunnel source GigabitEthernet3
R10(config-if) # tunnel mode gre multipoint
R10(config-if) # tunnel key 200
R10 (config-if) # tunnel protection ipsec profile DMVPN-PROFILE2
R10(config-if) # domain one path INET
```

Configure the interfaces (R11)

```
R11> enable
R11# configure terminal
R11(config)# interface Loopback0
R11(config-if)# ip address 10.2.11.11 255.255.255.255
R11(config-if)# exit
```

Configure the device as branch master controller (R11)

```
R11(config)# domain one
R11(config-domain)# vrf default
R11(config-domain-vrf)# border
R11(config-domain-vrf-br)# source-interface Loopback0
R11(config-domain-vrf-br)# master local
R11(config-domain-vrf-br)# exit
R11(config-domain-vrf)# master branch
R11(config-domain-vrf-mc)# source-interface Loopback0
R11(config-domain-vrf-mc)# hub 10.8.3.3
```

Configure the tunnel interface and tunnel path from R11

```
R11(config) # interface Tunnel100
R11(config-if) # bandwidth 100000
R11(config-if)# ip address 10.0.100.11 255.255.255.0
R11(config-if) # no ip redirects
R11(config-if) # ip mtu 1400
R11(config-if) # ip nhrp authentication cisco
R11(config-if)# ip nhrp map 10.0.100.84 172.16.84.4
R11(config-if) # ip nhrp map multicast 172.16.84.4
R11(config-if) # ip nhrp network-id 1
R11(config-if) # ip nhrp holdtime 600
R11(config-if) # ip nhrp nhs 10.0.100.84
R11(config-if) # ip nhrp registration timeout 60
R11(config-if) # ip tcp adjust-mss 1360
R11(config-if) # load-interval 30
R11(config-if)# delay 1000
R11(config-if) # tunnel source GigabitEthernet2
R11(config-if)# tunnel mode gre multipoint
R11(config-if)# tunnel key 100
R11(config-if)# tunnel protection ipsec profile DMVPN-PROFILE1
R11(config-if) # domain one path MPLS
```

Configure another tunnel path from R11

```
R11(config) # interface Tunnel200
R11(config-if) # bandwidth 50000
R11(config-if) # ip address 10.0.200.11 255.255.255.0
R11(config-if) # no ip redirects
R11(config-if)# ip mtu 1400
R11(config-if) # ip nhrp authentication cisco
R11(config-if) # ip nhrp map 10.0.200.85 172.16.85.5
R11(config-if) # ip nhrp multicast 172.16.85.5
R11(config-if) # ip nhrp network-id 2
R11(config-if) # ip nhrp holdtime 600
R11(config-if)# ip nhrp nhs 10.0.200.85
R11(config-if) # ip tcp adjust-mss 1360
R11(config-if) # load-interval 30
R11(config-if)# delay 1000
R11(config-if) # tunnel source GigabitEthernet3
R11(config-if) # tunnel mode gre multipoint
R11(config-if) # tunnel key 200
R11(config-if) # tunnel vrf INET2
R11(config-if)# tunnel protection ipsec profile DMVPN-PROFILE2
R11(config-if) # domain one path INET
```

Verifying PfRv3 Zero-SLA Configurations

To verify the PfRv3 Zero-SLA configuration, use the following show commands in any order:

- show domain domain-name master status
- show domain domain-name border status
- show domain domain-name master channel
- show domain domain-name border channel
- show domain domain-name master site-capability

PfRv3 Path of Last Resort

The PfRv3 path of last resort feature allows the traffic to be routed to the path of last resort.

- Feature Information for PfRv3 Path of Last Resort, on page 137
- Restrictions for PfRv3 Path of Last Resort, on page 137
- Information About PfRv3 Path of Last Resort, on page 138
- How to Configure PfRv3 Path of Last Resort, on page 138

Feature Information for PfRv3 Path of Last Resort

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

	Table	16: Feature	Information	for PfRv3	Path of Last	Resort
--	-------	-------------	-------------	-----------	--------------	--------

Feature Name	Releases	Feature Information
PfRv3 Path of Last Resort	15.5(3)M	The PfRv3 Path of Last Resort is a route used by the device when a service provider cannot be reached or the exits are out of bandwidth.
		The following commands were modified or added by this feature: domain path isp-name, show domain default vrf border, show domain default vrf master.

Restrictions for PfRv3 Path of Last Resort

- Path of last resort supports probing per interface and not per channel.
- Path of last resort is not supported on multi next hop interfaces.

Information About PfRv3 Path of Last Resort

PfRv3 Path of Last Resort

The PfRv3 Path of Last Resort feature provides the ability to designate a service provider as a path of last resort such that when the primary and fallback service providers become unavailable due to unreadability or out of bandwidth situations, traffic is routed over the path of last resort service provider. This feature is used for metered links where data is charged on a per-usage basis and is used when no other service providers are available.

The following are the different supported modes:

- Standby mode—No traffic classes are currently routed over the path of last resort service provider.
- Active mode-Traffic classes are currently routed over the path of last resort service provider.
- Disabled mode—The path of last resort is not enabled.

The channels of the path of last resort are inactive when it is in standby mode. Once the path of last resort is active, smart probes are sent only on DSCP 0 (Zero SLA) to conserve bandwidth. In addition, smart probe frequency is reduced to 1 packet every 10 seconds from 20 packets per seconds, unreachable detection are extended to 60 seconds.

How to Configure PfRv3 Path of Last Resort

Configuring Policy for Path of Last Resort

To configure policy for path of last resort, perform the steps below.

SUMMARY STEPS

1. domain default

DETAILED STEPS

	Command or Action	Purpose	
Step 1	domain default	The keyword specifics that the traffic for this policy is	
	Example:	routed over the path of last resort when the primary and fallback service providers are unavailable.	
	domain default	1	
	vrf default		
	master hub		
	class foo seq 1		
	match dscp ef policy voice		
	path-preference ISP1 fallback ISP2 path-last-resort ISP4		

Configuring Path of Last Resort

To configure path of last resort, perform the steps below.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** interface tunnel tunnel-number
- 4. domain path *isp-name* [internet-bound | path-id | path-last-resort | zero-sla]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Device# configure terminal	
Step 3	<pre>interface tunnel tunnel-number Example: Device(config)# interface tunnel 100</pre>	Enters interface configuration mode.
Step 4	<pre>domain path isp-name [internet-bound path-id path-last-resort zero-sla] Example: Device(config-if)# domain path ISP1 path-last-resort</pre>	 Specifies a service provider for the interface. internet-bound—Configures an internet bound interface. path-id—Configures service provider's path-id for the interface. path-last-resort—Configures the interface to be a path of a last resort. zero-sla—Configures Zero SLA for the interface. Note You can configure multiple Internet Service Providers (ISPs). If you are defining a specific domain name for an ISP (for example, domain_abc), you must specify the same domain name while configuring the ISP paths.

Verifying PfRv3 Path of Last Resort

The show commands can be entered in any order.

SUMMARY STEPS

- **1.** show domain default vrf *vrf-name* master status
- 2. show domain default vrf vrf-name border status
- 3. show domain default vrf vrf-name master channels
- 4. show domain default vrf vrf-name border channels
- 5. show domain default vrf vrf-name master policy

DETAILED STEPS

Step 1 show domain default vrf *vrf-name* master status

Displays the master status of the hub border routers.

Example:

Device# show domain default vrf vrf1 master status

```
Borders:
 IP address: 10.204.1.4
 Version: 2
  Connection status: CONNECTED (Last Updated 00:59:16 ago )
  Interfaces configured:
  Name: Tunnel20 | type: external | Service Provider: ISP2 | Status: UP | Zero-SLA: NO | Path of
Last Resort: Disabled
   Number of default Channels: 0
 Tunnel if: Tunnel1
  IP address: 10.203.1.3
 Version: 2
 Connection status: CONNECTED (Last Updated 00:59:16 ago )
 Interfaces configured:
   Name: Tunnell0 | type: external | Service Provider: ISP1 | Status: UP | Zero-SLA: YES | Path of
Last Resort: Standby
      Number of default Channels: 0
  Tunnel if: Tunnel1
```

Step 2 show domain default vrf vrf-name border status

Displays the master status of the hub border routers.

Example:

Device# show domain default vrf vrf1 border status

```
**** Border Status ****
Instance Status: UP
Present status last updated: 01:01:42 ago
Loopback: Configured Loopback1 UP (30.209.1.9)
Master: 30.209.1.9
Master version: 2
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 01:01:42
Route-Control: Enabled
Asymmetric Routing: Disabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
   Name: TunnellO Interface Index: 16 SNMP Index: 13 SP: ISP1 path-id: 0 Status: UP Zero-SLA: YES
```

```
Path of Last Resort: Standby Path-id List: 0:0
Name: Tunnel20 Interface Index: 18 SNMP Index: 15 SP: ISP2 Status: UP Zero-SLA: NO Path of Last
Resort: Disabled Path-id List: 0:0
Auto Tunnel information:
Name:Tunnel1 if_index: 21
Borders reachable via this tunnel:
```

Step 3 show domain default vrf *vrf-name* master channels

Displays the master status of the hub master controller.

Example:

Device# show domain default vrf vrf1 master channels

```
Channel Id: 9 Dst Site-Id: 30.209.1.9 Link Name: ISP1 DSCP: af41 [34] pfr-label: 0:0 | 0:0 [0x0]
TCs: 0
  Channel Created: 00:57:15 ago
 Provisional State: Initiated and open
 Operational state: Available
  Channel to hub: FALSE
  Interface Id: 16
 Supports Zero-SLA: Yes
 Muted by Zero-SLA: Yes
 Muted by Path of Last Resort: Yes
 Estimated Channel Egress Bandwidth: 0 Kbps
  Immitigable Events Summary:
   Total Performance Count: 0, Total BW Count: 0
 ODE Stats Bucket Number: 1
   Last Updated : 00:56:15 ago
    Packet Count : 505
    Byte Count : 42420
    One Way Delay : 229 msec*
    Loss Rate Pkts: 0.0 %
    Loss Rate Byte: 0.0 %
    Jitter Mean : 535 usec
    Unreachable : FALSE
   TCA Statistics:
    Received:1 ; Processed:1 ; Unreach rcvd:0
 Latest TCA Bucket
   Last Updated : 00:56:15 ago
    One Way Delay : 229 msec*
    Loss Rate Pkts: NA
    Loss Rate Byte: NA
     Jitter Mean : NA
     Unreachability: FALSE
```

Step 4 show domain default vrf *vrf-name* border channels

Displays the information of border router channels at the hub site.

Example:

Device# show domain default vrf vrf1 border channels

```
Channel id: 2
Channel create time: 00:46:02 ago
Site id : 255.255.255.255
DSCP : default[0]
Service provider : ISP1
```

Pfr-Label : 0:0 | 0:0 [0x0] exit path-id: 0 Exit path-id sent on wire: 0 Number of Probes sent : 0 Number of Probes received : 0 Last Probe sent : 00:46:02 ago Last Probe received : - ago Channel state : Initiated and open Channel next hop : 0.0.0.0 RX Reachability : Initial State TX Reachability : Reachable Channel is sampling 0 flows Channel remote end point: 0.0.0.0 Channel to hub: FALSE Version: 0 Supports Zero-SLA: No Muted by Zero-SLA: No Muted by Path of Last Resort: Yes Probe freq with traffic : 1 in 10000 $\ensuremath{\operatorname{ms}}$

Step 5 show domain default vrf *vrf-name* master policy

Displays the status of the master policy.

Example:

Device# show domain default vrf vrf1 master policy

class VOICE sequence 10
 path-last-resort ISP1
 class type: Dscp Based
 match dscp ef policy custom
 priority 1 one-way-delay threshold 200 msec
 Number of Traffic classes using this policy: 2

PfRv3 Fallback Timer

PfRv3 can move a specific traffic class (TC) from a primary, preferred path to a backup path to optimize performance. Use fallback-timer to set the time interval (called timeout) for the next re-evaluation of the primary path. Increasing the time interval causes PfRv3 to wait longer before reassessing. This can help to prevent excessive switching between the primary and secondary paths.

- Feature Information for PfRv3 Fallback Timer, on page 143
- Prerequisites for PfRv3 Fallback Timer, on page 144
- Information About PfRv3 Fallback Timer, on page 144
- How to Configure PfRv3 Fallback Timer, on page 146
- Configuration Examples for PfRv3 Fallback Timer, on page 147

Feature Information for PfRv3 Fallback Timer

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3 Fallback Timer	Cisco IOS XE Gibraltar 16.10.1	 The PfRv3 Fallback Timer sets the re-evaluation interval for re-evaluating the primary path after a traffic class has been changed to a backup path. The following commands were modified or added by this feature: fallback-time, show domain vrf master.
		master.

Table 17: Feature Information for PfRv3 Fallback Timer

Prerequisites for PfRv3 Fallback Timer

Latest Cisco IOS XE image

Information About PfRv3 Fallback Timer

Overview of Fallback Timer

As part of its intelligent path selection, PfRv3 can move a specific traffic class (TC) from a primary, preferred path to a backup path to optimize performance. After changing the TC to a backup path, PfRv3 re-evaluates the primary path to determine when to return the TC to the primary path. The re-evaluation occurs in cycles of a specific period of time, and continues for as long as the traffic is not on the primary path.

In some situations, if the primary path alternates between meeting the performance requirements specified for the TC and not meeting the requirements, the TC may be switched excessively between the primary and backup paths. This "bouncing" between paths reduces the stability of the TC.

To prevent excessive switching between paths, you can increase the evaluation interval (called timeout) and apply a dampening algorithm.

Figure 10: Default Timeout

Default Timeout

Figure 11: Longer Timeout Interval

Method	Description	Applicable to
Increase evaluation interval	Use fallback-timer to set the time interval (called timeout) for the next re-evaluation of the primary path. Increasing the time interval causes PfRv3 to wait longer before reassessing. This prevents excessive switching between the primary and secondary paths. Possible values: 1 to 1440 minutes Default: 3 minutes	Global (per VRF) Traffic class
Dampening	Use fallback-timer to enable automatic adjustment of the re-evaluation time interval to prevent excessive switching between paths.	Traffic class
	When enabled, dampening temporarily increases the evaluation period if a traffic class has been switched more than once from the primary path to a backup path within a short time. It then gradually reduces the evaluation period over time if the primary path meets the performance requirements specified for the traffic class.	
	Possible values: enable, disable	
	Default: enable (if fallback-timer is configured)	

How to Configure PfRv3 Fallback Timer

PfRv3 Fallback Timer Configuration

To configure the fallback timer, use:

fallback-timer time-in-minutes [dampening {enable/disable}]

See the examples below.

Fallback Timer Configuration Priority

Priority of fallback timer configuration:

per class (policy) > global > default

Example

Configuration:

- Traffic class A configuration: fallback-timer 4 dampening enable
- Global configuration: fallback-timer 6

Result:

Trafic class A will operate with a timeout of 4 minutes and dampening. Other traffic classes will have a fixed timeout (no dampening) of 6 minutes.

Viewing PfRv3 Fallback Timer Status

The show commands can be entered in any order.

Before you begin

Perform on hub master controller.

SUMMARY STEPS

- 1. show domain domain-name vrf vrf-name master policy
- 2. show domain domain-name vrf vrf-name master traffic-classes detail

DETAILED STEPS

Step 1 show domain domain-name vrf vrf-name master policy

Example

Sections of the output in bold are relevant to fallback timer.

```
Device# show domain default vrf green master policy
No Policy publish pending
Last publish Status : Peering Success
Total publish errors : 0
Global-policy-list:
  class SER CS1 sequence 10
   path-preference ISP1 fallback ISP2
   fallback timer timeout 5 minutes, dampening Enabled
   class type: Dscp Based
     match dscp cs1 policy custom
        priority 1 packet-loss-rate threshold 10.0 percent
       priority 1 byte-loss-rate threshold 10.0 percent
       Number of Traffic classes using this policy: 1
  class SER EF sequence 20
   path-preference ISP1 fallback ISP2
   fallback timer timeout 6 minutes, dampening Disabled
   class type: Dscp Based
     match dscp ef policy custom
       priority 1 packet-loss-rate threshold 10.0 percent
        priority 1 byte-loss-rate threshold 10.0 percent
```

Step 2 show domain domain-name vrf vrf-name master traffic-classes detail

Example

Sections of the output in bold are relevant to fallback timer.

Device# show domain default vrf green master traffic-classes dscp cs1 detail

Dst-Site-Prefix: 100.20.0.0/16 DSCP: cs1 [8] Traffic class id:28 Clock Time: 09:51:00 (CST) 08/24/2018 TC Learned: 00:10:29 ago Present State: CONTROLLED Current Performance Status: in-policy Current Service Provider: ISP2 path-id:4 since 00:01:50 Previous Service Provider: ISP1 pfr-label: 0:0 | 0:1 [0x1] for 488 sec (A fallback provider. Primary provider will be re-evaluated 00:03:11 later)

Configuration Examples for PfRv3 Fallback Timer

Example: Configuring PfRv3 Fallback Timer Globally

Configure the global fallback timer settings on a hub master controller.

Configure global fallback timer to 4 minutes

domain iwan vrf default master hub advanced fallback-timer 4

Disable fallback timer globally

Use **fallback-timer off** to disable re-evaluation of the primary path after a traffic class switches to a backup path. In this mode, traffic does not switch back to the primary path.

Note Consider restoring the fallback timer to the default 3 minutes instead of disabling.

```
domain iwan
vrf default
master hub
advanced
fallback-timer off
```

Example: Configuring PfRv3 Fallback Timer for Traffic Class

Configure the global fallback timer settings on a hub master controller.

Fallback 5 minutes, dampening enabled by default

```
domain iwan
vrf default
master hub
class VOICE sequence 10
match app audio policy voice
path-preference MPLS1 fallback INET1
fallback-timer 5
```

Fallback 10 minutes, dampening disabled

```
class REAL_TIME_VIDEO sequence 20
match dscp cs4 policy real-time-video
match dscp af41 policy real-time-video
path-preference MPLS1 fallback INET1
fallback-timer 10 dampening disable
```

Fallback timer off

Use **fallback-timer off** to disable re-evaluation of the primary path after a traffic class switches to a backup path. In this mode, traffic does not switch back to the primary path.

Note (

Consider restoring the fallback timer to the default 3 minutes instead of disabling.

```
class LOW_LATENCY_DATA sequence 30
match dscp cs2 policy real-time-video
match dscp af21 policy real-time-video
path-preference INET1 fallback MPLS1
fallback-timer off
```


PfRv3 Probe Reduction

This document provides information about the PfRv3 Probe Reduction feature that allows reducing traffic probe on channels that do not carrying any traffic.

- Feature Information for PfRv3 Probe Reduction, on page 149
- Prerequisites for PfRv3 Probe Reduction, on page 149
- Information About PfRv3 Probe Reduction, on page 149
- How to Configure PfRv3 Probe Reduction, on page 150
- Configuration Examples for PfRv3 Probe Reduction, on page 152
- Additional References for PfRv3 Probe Reduction, on page 152

Feature Information for PfRv3 Probe Reduction

Table 18: Feature Information for PfRv3 Probe Reduction

Feature Name	Releases	Feature Information
PfRv3 Probe Reduction		This document provides information about the PfRv3 Probe Reduction feature that allows reducing traffic probe on channels that do not carrying any traffic. The following command was introduced: smart-probes burst

Prerequisites for PfRv3 Probe Reduction

Information About PfRv3 Probe Reduction

The PfRv3 Probe Reduction feature allows reducing traffic probe on channels that do not carry any traffic. Probing is used to compute important metrics such as reachability, one-way delay (OWD), jitter, and loss on channels that do not have user traffic. It helps PfRv3 algorithm to choose the best channel to use for a given traffic class.

A domain level parameter is defined to store the probing information. You need to store two sets of parameters; general monitor and quick monitor. In other words, one can specify the number of packets to be sent in a probe burst and the interval between such bursts.

Smart probe are of three types:

- Active Channel Probe—Active channel probe is sent out to measure network delay if no probe is sent out for past 10 seconds interval.
- Unreachable Probe—Unreachable probe is used to detect channel reachability when there is no traffic send out.
- **Burst Probe**—Burst probes are used to calculate delay, loss, jitter on a channel that is not carrying active user traffic.

How to Configure PfRv3 Probe Reduction

Configuring PfRv3 Probe Reduction

You can perform this task on a hub master or a border device.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. domain default
- **4.** Do one of the following:
 - master hub
 - border
- 5. advanced
- 6. smart-probes burst [quick] number-of-packets packets every interval seconds

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	domain default	Enters domain configuration mode.
	Example:	
	Device(config)# domain default	

	Command or Action	Purpose
Step 4	Do one of the following:	Configures the device as a master hub and enters master controller configuration mode.
	<pre>• master hub • border Example: Device(config-domain)# master hub Example: Device(config-domain)# border</pre>	Configures the device as the border and enters border configuration mode. Note If you select border configuration, it overwrites the master configuration.
Step 5	<pre>advanced Example: Device(config-domain-mc)# advanced Example: Device(config-domain-br)# advanced</pre>	Enters advanced configuration mode.
Step 6	<pre>smart-probes burst [quick] number-of-packets packets every interval seconds Example: Device(config-domain-mc-advanced)# smart-probe burst 10 packets every 20 seconds Example: Device(config-domain-br-advanced)# smart-probe burst quick 10 packets every 1 seconds</pre>	 Specifies the number of packets to be sent in a probe burst and the interval between the bursts. The default values are as follows: 1 packet every 1 second for default monitor 20 packets every 1 second for quick monitor

Verifying PfRv3 Probe Reduction

SUMMARY STEPS

1. show domain {default | *domain-name*} [vrf vrf-name] {master | border} status

DETAILED STEPS

show domain {default | domain-name} [vrf vrf-name] {master | border} status

Use this command to verify the configuration.

Example:

Router# show domain default vrf green master status Smart Probe Profile: General Monitor: Current Provision Level: Master Hub Master Hub: Packets per burst: 10 Interval(secs): 20 Quick Monitor: Current Provision Level: Master Hub

```
Master Hub:
Packets per burst: 10
Interval(secs): 1
Smart Probe Inter-Packet Gap (ms) : 16
Smart Probe Timer Wheel Granularity (ms): 8
```

Configuration Examples for PfRv3 Probe Reduction

Example: PfRv3 Probe Reduction

```
domain default
master hub
advanced
smart-probe burst 10 packets every 20 seconds
smart-probe burst quick 10 packets every 1 seconds
```

Additional References for PfRv3 Probe Reduction

Related Documents

Related Topic	Document Title
Performance Routing Version 3 commands	Cisco IOS Performance Routing Version 3 Command Reference

PfRv3 Intelligent Load Balance

The Performance Routing v3 (PfRv3) Intelligent Load Balance feature helps to move the traffic-classes based on the remote ingress interface, if the remote interface is overrun the bandwidth threshold. It validates remote interface ingress bandwidth when choosing the path. The PfRv3 Intelligent Load Balance feature detects the remote bandwidth overrun at the earliest and helps to reduce the packet drop caused by per tunnel QoS and increases the bandwidth utilization.

- Feature Information for PfRv3 Intelligent Load Balance, on page 153
- Prerequisites for PfRv3 Intelligent Load Balance, on page 154
- Restrictions for PfRv3 Intelligent Load Balance, on page 154
- Information About PfRv3 Intelligent Load Balance, on page 154
- How to Configure PfRv3 Intelligent Load Balance, on page 154

Feature Information for PfRv3 Intelligent Load Balance

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3 Intelligent Load Balance	Cisco IOS XE 16.11	The Performance Routing v3 (PfRv3) Intelligent Load Balance feature helps to move the traffic-classes (TC) based on the remote ingress interface, if the remote interface is overrun the bandwidth threshold. The following command was introduced: remote-ingress-bandwidth-check .

Prerequisites for PfRv3 Intelligent Load Balance

You must upgrade master hub software version to 16.11 or later. The spoke sites that require PfRv3 Intelligent Load Balance feature must be upgraded to version 16.11 or later. However, It is not mandatory to upgrade the spoke sites that do not use the PfRv3 intelligent Load Balance feature to the recommended versions.

Restrictions for PfRv3 Intelligent Load Balance

- The PfRv3 Intelligent Load balance supports the traffic only from hub to spoke.
- Only the default traffic classes are load-balanced among paths when the WAN interface is overrun in remote spoke sites.
- Remote bandwidth check is only supported on the hub or on the transit hub.
- Remote bandwidth TCA is sent from branch to hub or from branch to transit hub only.

Information About PfRv3 Intelligent Load Balance

How to Configure PfRv3 Intelligent Load Balance

Configuring PfRv3 Intelligent Load Balance

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. domain iwan
- 4. vrf default
- 5. master hub
- 6. load-balance
- 7. load-balance advanced
- 8. path-preference INET1 fallback MPLS1
- 9. advanced
- 10. remote-ingress-bandwidth-check max 75
- 11. exit

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	

Performance Routing Version 3 Configuration Guide, Cisco IOS XE Gibraltar 16.11.x

	Command or Action	Purpose		
	Example:	Enter your password if prompted.		
	Device> enable			
Step 2	configure terminal	Enters global configuration mode.		
	Example:			
	Device# configure terminal			
Step 3	domain iwan	Enters domain iwan configuration mode.		
	Example:			
	Device(config)# domain iwan			
Step 4	vrf default	Configures Virtual Routing and Forwarding (VRF) for the		
	Example:	default domain.		
	Device(config-domain)# vrf default			
Step 5	master hub	Configures the device as a master hub and enters master		
	Example:	controller configuration mode.		
	<pre>Device(config-domain-vrf)# master hub</pre>			
Step 6	load-balance	Enables load balance.		
	Example:			
	<pre>Device(config-domain-vrf-mc)# load-balance</pre>			
Step 7	load-balance advanced	(Optional) Enables advanced mode of VRF on master hub.		
	Example:			
	<pre>Device(config-domain-vrf-mc)# load balance advanced</pre>			
Step 8	path-preference INET1 fallback MPLS1	Specifies the path preference name and the fallback path(s)		
	Example:	preference to use when the primary path(s) are out of		
	Device(config-domain-vrf-mc-load-balance)# path-preference INET1 fallback MPLS1	poney.		
Step 9	advanced	Enters advanced configuration mode.		
	Example:			
	<pre>Device(config-domain-vrf-mc-load-balance)# advanced</pre>			
Step 10	remote-ingress-bandwidth-check max 75	(Optional) Enables to change the value of remote		
	Example:	bandwidth threshold. The default value of remote handwidth threshold is 75% Var should show so the remote		
	Device(config-domain-vrf-mc-advanced) #	bandwidth threshold followed by per tunnel QoS.		
	remote-ingress-bandwidth-check max 75	Note Remote spoke site sends out BW-TCA, if WAN interface BW utilization exceeds the threshold.		

	Command or Action	Purpose
Step 11	exit	Exits border configuration mode and returns to privileged
	Example:	EXEC mode.
	Device(config-domain-vrf-mc-advanced)exit	

What to do next

The remote BW percentage must be configured after configuring PfRv3 Intelligent Load Balance.

Verifying PfRv3 Intelligent Load Balance

Use the following commands to verify PfRv3 intelligent load balance configuration:

- show domain domain-name vrf vrf-name master exits
- show domain domain-name vrf vrf-name master exists site-id path-id

Example: Configuring PfRv3 Intelligent Load Balance

```
domain iwan
vrf default
master hub
load-balance advanced
path-preference INET1 fallback MPLS1
advanced
remote-ingress-bandwidth-check max 75
```

Example: Verifying PfRv3 Intelligent Load Balance

The following is an example output from the show domain iwan master exits command.

```
Device#show domain iwan master exits

BR address: 168.254.0.2 | Name: Tunnel10 | type: external | Path: MPLS1 | path-id: 11 |

PLR TCs: 0

Egress capacity: 1000000 Kbps | Egress EW: 2 Kbps | Ideal:1078 Kbps | under: 1076

Kbps | Egress Utilization: 0 %

Ingress capacity: 1000000 Kbps | Ingress EW: 1076 Kbps | Ingress Utilization: 0 %

BR address: 168.254.0.3 | Name: Tunnel20 | type: external | Path: INET1 | path-id: 12 |

PLR TCs: 0

Egress capacity: 1000000 Kbps | Egress EW: 1076 Kbps | Ideal:1078 Kbps | under: 2

Kbps | Egress Utilization: 0 %

Ingress capacity: 1000000 Kbps | Egress EW: 2 Kbps | Ideal:1078 Kbps | under: 2

Kbps | Egress Utilization: 0 %

Ingress capacity: 1000000 Kbps | Ingress EW: 2 Kbps | Ingress Utilization: 0 %

DSCP: default[0]-Number of Traffic Classes[1]
```

The following is an example output from the **show domain iwan master exits 168.254.0.9 path-id** command.

```
Device#domain iwan master exits 168.254.0.9 path-id
Site id : 168.254.0.9
Site mc type : Branch
Border Address : 168.254.0.9
Service provider: MPLS1 path-id: 11 if_index: 28 bandwidth: 2000Kbps
bw-from-local-to-remote: 0Kbps Address: NA
```

Service provider: INET1 path-id: 12 if_index: 29 bandwidth: 300000Kbps bw-from-local-to-remote: 1040Kbps Address: NA

Path Preference Hierarchy

The Path Preference Hierarchy feature allows you to configure service providers per VRF for traffic classes.

- Feature Information for Path Preference Hierarchy, on page 159
- Information About Path Preference Hierarchy, on page 159
- How to Configure Path Preference Hierarchy, on page 160
- Additional References for Path Preference Hierarchy, on page 161

Feature Information for Path Preference Hierarchy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 20: Feature Information for Path Preference Hierarchy

Feature Name	Releases	Feature Information
Path Preference Hierarchy	Cisco IOS XE Denali 16.3.1	The Path Preference Hierarchy feature allows you to configure service providers per VRF for traffic classes. The following command was introduced or modified: path-preference .

Information About Path Preference Hierarchy

Overview of Path Preference Hierarchy

In an enterprise network, you would need to configure service providers to interconnect the hub and branches. The Path Preference Hierarchy feature allows you to configure three service providers per VRF for traffic classes. The service providers could be primary service provider, fallback service provider, and next-fallback service provider respectively. As the name suggests, the primary service provider is the first preference in the network, followed by fallback and next-fallback, respectively. You cannot have the same service provider for

primary and fallback as this results in a "fallback backhole." In other words, each service provider must be unique.

Use the **path-preference** command to specify the service provider order. Use the **blackhole** or **routing** keywords for a next-fallback service provider to drop the packet if fallback is unavailable or to specify there is no next-fallback service provider, respectively. When a packet reaches "blackhole," the packet is discarded.

How to Configure Path Preference Hierarchy

Configuring Path Preference Hierarchy

Perform this task to configure Path Preference Hierarchy feature on a hub.

```
domain default
vrf green
master hub
source-interface Loopback1
site-prefixes prefix-list HUBPFX
class HEIRARCHICAL sequence 100
match dscp ef policy custom
priority 1 loss threshold 10
path-preference ISP1 ISP2 fallback ISP3 next-fallback blackhole
```

The following is a sample output on a device that displays the route change reason and history. In this example, the traffic class jumps from next-fallback service provider to primary service provider, when the fallback is unavailable.

```
Dst-Site-Prefix: 100.30.0.0/16
                                   DSCP: ef [46] Traffic class id:2
 Clock Time: 12:57:15 (PST) 03/30/2015
                           00:22:14 ago
 TC Learned:
 Present State:
                            CONTROLLED
 Current Performance Status: in-policy
 Current Service Provider: ISP2 path-id:2 since 00:03:28
 Previous Service Provider: ISP3 pfr-label: 0:0 | 0:7 [0x7] for 180 sec
 (A fallback/next-fallback provider. Primary provider will be re-evaluated 00:02:34 later)
                            3 Kbps
 BW Used:
 Present WAN interface:
                            Tunnel20 in Border 100.10.2.1
 Present Channel (primary): 46 ISP2 pfr-label:0:0 | 0:2 [0x2]
 Backup Channel:
                    42 ISP3 pfr-label:0:0 | 0:7 [0x7]
 Destination Site ID bitmap: 0
 Destination Site ID: 100.30.1.1
Class-Sequence in use: 10
 Class-Sequence in use:
                          BUSINESS using policy User-defined
 Class Name:
   priority 2 packet-loss-rate threshold 10.0 percent
   priority 2 byte-loss-rate threshold 10.0 percent
 BW Updated:
                           00:00:14 ago
 Reason for Latest Route Change: next-fallback to Higher Path Preference
 Route Change History:
          Date and Time
                                           Previous Exit
                                                                                Current
Exit
                         Reason
   1: 12:53:47 (PST) 03/30/2015 ISP3/100.10.1.1/Tu30 (Ch:42)
ISP2/100.10.2.1/Tu20 (Ch:46)
                                  next-fallback to Higher Path Preference
   2: 12:50:47 (PST) 03/30/2015 None/0.0.0.0/None (Ch:0)
ISP3/100.10.1.1/Tu30 (Ch:42)
                                     Uncontrolled to Controlled Transition
   3: 12:50:15 (PST) 03/30/2015 ISP3/100.10.1.1/Tu30 (Ch:42)
                                                                    None/0.0.0.0/None
 (Ch:0)
                     No Channels Available
   4: 12:48:14 (PST) 03/30/2015 ISP2/100.10.4.1/Tu20 (Ch:43)
```

L

ISP3/100.10.1.1/Tu30 (Ch:42)	Exit down	
5: 12:47:57 (PST) 03/30/2015	ISP2/100.10.2.1/Tu20	(Ch:46
ISP2/100.10.4.1/Tu20 (Ch:43)	Exit down	

In the following example, continuation of the above example, the traffic class is now controlled by primary service provider.

```
Route Change History:
            Date and Time
                                           Previous Exit
                                                                                 Current
Exit
                         Reason
   1: 12:59:49 (PST) 03/30/2015 ISP2/100.10.2.1/Tu20 (Ch:46)
ISP1/100.10.1.1/Tu10 (Ch:41)
                                      Backup to Primary path preference transition
   2: 12:53:47 (PST) 03/30/2015
                                 ISP3/100.10.1.1/Tu30 (Ch:42)
ISP2/100.10.2.1/Tu20 (Ch:46)
                                      next-fallback to Higher Path Preference
   3: 12:50:47 (PST) 03/30/2015 None/0.0.0.0/None (Ch:0)
ISP3/100.10.1.1/Tu30 (Ch:42)
                                      Uncontrolled to Controlled Transition
   4: 12:50:15 (PST) 03/30/2015 ISP3/100.10.1.1/Tu30 (Ch:42)
                                                                     None/0.0.0.0/None
 (Ch:0)
                      No Channels Available
   5: 12:48:14 (PST) 03/30/2015 ISP2/100.10.4.1/Tu20 (Ch:43)
ISP3/100.10.1.1/Tu30 (Ch:42)
                                      Exit down
```

In the following example, continuation of the above example, the traffic class is discarded since the packet has reached a blackhole.

		Change History:	Route
Current	Previous Exit	Date and Time	
		Reason	Exit
None/0.0.0.0/None	3/100.10.1.1/Tu30 (Ch:42)	12:50:15 (PST) 03/30/2015	1:
	ilable)) No Channels	(Ch:(
	P2/100.10.4.1/Tu20 (Ch:43)	12:48:14 (PST) 03/30/2015	2:
	Exit down	00.10.1.1/Tu30 (Ch:42)	ISP3/1
	P2/100.10.2.1/Tu20 (Ch:46)	12:47:57 (PST) 03/30/2015	3:
	Exit down	100.10.4.1/Tu20 (Ch:43)	ISP2/1
	P1/100.10.1.1/Tu10 (Ch:41)	12:44:42 (PST) 03/30/2015	4:
	Exit down	00.10.2.1/Tu20 (Ch:46)	ISP2/1
	P1/100.10.3.1/Tu10 (Ch:44)	12:44:13 (PST) 03/30/2015	5:
	Exit down	100.10.1.1/Tu10 (Ch:41)	ISP1/1

Additional References for Path Preference Hierarchy

Related Documents

Related Topic	Document Title
Performance Routing Version 3 commands	Cisco IOS Performance Routing Version 3 Command Reference

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

PfRv3 Remote Prefix Tracking

Performance Routing Version 3 (PfRv3) is an intelligent-path control mechanism for improving application delivery and WAN efficiency. The PfRv3 Remote Prefix Tracking feature enhances networks running Performance Routing Version 3 (PfRv3) to learn the prefix of a remote device from the Routing Information Base (RIB) table.

- Feature Information for PfRv3 Remote Prefix Tracking, on page 163
- Information About PfRv3 Remote Prefix Tracking, on page 164
- How to Display Site Prefixes, on page 168
- Additional References for PfRv3 Remote Prefix Tracking, on page 173

Feature Information for PfRv3 Remote Prefix Tracking

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3 Remote Prefix Tracking	Cisco IOS release 3.16.6, 15.6M2, 15.5.3M6, 15.7M, 16.3.5, and Cisco IOS XE Everest 16.6.1.	Performance Routing Version 3 (PfRv3) is an intelligent-path control mechanism for improving application delivery and WAN efficiency. The PfRv3 Remote Prefix Tracking feature enhances networks running Performance Routing Version 3 (PfRv3) to learn the prefix of a remote device from the Routing Information Base (RIB) table. The following command was modified: show domain default vrf .

Table 21: Feature Information for PfRv3 Remote Prefix Tracking

Information About PfRv3 Remote Prefix Tracking

Site Prefixes Database

Site Prefixes are LAN side prefixes owned by each site. The site prefix database is central to the site concept in PfRv3. Site prefix database reside on the master controller.

- The master site learns the remote site prefix through SAF advertised by remote MC. Master site learns the local site prefix from the local borders. The border learns the prefix from RIB and sends the prefix learned to the local master
- The border site prefix database is populated by SAF messages published by all the remote site master and local site master.
- By default, MCs and BRs delete site prefixes every 24 hours.

Learning Local Site Prefixes

Border routers collect the prefix from the RIB table and send it to the local master controller. After receiving prefixes from a border router, the local master controller filters prefixes as per the following criteria.

- 1. If a prefix is learned on a tunnel interface, the prefix is marked remote and not added to local LAN list.
- 2. If a prefix is learned from NHRP, the prefix is not added to LAN list.
- 3. If a prefix is learned on a physical interface of the tunnel interface, the prefix is not added to LAN list.
- 4. If an enterprise prefix is configured on the hub and the prefix is part of the enterprise prefix list configured on hub, the branch master adds the prefix from the RIB table to the LAN list.

The prefixes in the LAN list are added to the site prefix database as local site prefix list.

L

Figure 12: Learning Local Site Prefixex

Learning Remote Site Prefixes

In order to learn from advertisements via the peering infrastructure from remote peers, every MC and BR subscribes to the peering service for the subservice of site prefix. MCs publish and receive site prefixes. BRs only receive site prefixes. MC learns prefixes from the border and filters the prefixes as explained in the previous section and publishes the prefixex to all sites. This message is received by all MCs and BRs that subscribe to the peering service. The message is decoded and added to the site prefix databases at those MCs and BRs.

PfRv3 Remote Prefix Tracking via Egress Flow

Prior to Cisco IOS XE Everest 16.6.1, the site prefix was learnt via the egress flow on the WAN interface. The prefix thus, learnt is published to all remote sites in the network using the EIGRP SAF message. If a remote site does not receive a new SAF message within 24 hours, the prefix is removed from the local-prefix database. If the routing is updated within 24 hours, corresponding prefix table will not be updated. Since, the prefix is learned from the egress traffic, sometimes-wrong prefixes are learnt due to redirected traffic. These wrongly learnt prefixes are not cleaned up until the 24 hour age out time.

Additionally, the prefix reachability is not tracked per channel. For example, if the prefix belongs to a specific site, it is assumed that prefix is reachable through all the channels available for that site. This results in a traffic blackhole when the prefix is not reachable through the selected channel.

PfRv3 Remote Prefix Tracking via RIB table

The PfRv3 Remote Prefix Tracking feature prevents the above scenarios by learning the local site prefixes from the RIB table instead of the egress flow. The prefixes are advertised to the remote sites. Changes to RIB table are tracked and are accordingly notified to all remote sites. Therefore, all sites are updated automatically with the precise site prefix information. Remote site tracks the prefix learnt via the WAN interface. While controlling the traffic, remote sites validate the reachability of the prefix on all channels available for a site.

There is no specific configuration required for this feature. You only need to configure the WAN interfaces.

How Site Prefix is Learnt?

The following workflow illustrates the process of how site prefix is learnt.

Figure 14: Site Prefix Learning Workflow

WAN Interfaces Configuration

You must configure the WAN interfaces on a border router in a branch using the **domain***domain-name* **dynamic-path** command. For more information, see "Configuring Branch Border Router" in the *Performance Routing Version 3* chapter.

Prefix Learning on Border Router

On initialization, the border device learns the entire prefix from the RIB table and stores in the local prefix database, where the information is classified per VRF. Any changes in the RIB database, such as addition or deletion of prefixes, are accounted in the prefix database as appropriate. Prefixes learned from the RIB on the local border are forwarded to the local master controller. The prefix information in the border device can be viewed using the **show domain default vrf** *vrf name* **border route-import** command.

Forwarding the Prefix to Master Controller

Master controller learns about a new prefix added or removed in the RIB table from the border device.

On a branch site, when the WAN interfaces are configured using the **domain***domain-name* **dynamic-path** command., the wan interface details are shared with the master controller by all border routers in a site. The master controller classifies this prefix information as WAN or LAN prefix, as appropriate.

On a hub site, The prefixes are learnt and classified similar to a branch site. The only difference is the command used to configure the WAN interface, which is **domain path service-provider-name path-id** *number* command.

Note

It is mandatory to configure prefixes on the hub and the transit hub. It is also mandatory to configure the **domain** *domain-name* **dynamic-path** in branch tunnel interface.

Prefix Classification by Master Controller

Master controller filters the prefix using the criteria described in the *Learning Local Site Prefixes* section and updates the local prefix database. The local prefix database is published to all the subscribers using the EIGRP SAF message. The prefix information in the border device can be viewed using the following commands:

- show domain {domain-name | default} vrf vrf-name master route-import local all
- show domain {domain-name | default} vrf vrf-name master route-import border border-ip
- show domain {domain-name | default} vrf vrf-name master route-import local
- show domain {domain-name | default} vrf vrf-name master route-import remote

- show domain {domain-name | default} vrf vrf-name border route-import
- show domain {domain-name | default} vrf vrf-name border local-prefix interface interface-name

Path Preference

When a master controller receives prefixes from a border router, the master controller evaluates the traffic classes to a device, whose prefixes are listed in the RIB table and performs a policy decision to select a channel.

A channel is added to a channel list of a traffic class when a device associated with a prefix is reachable. The master controller decides on a path to a device based on the reachability of device (with a prefix in the RIB) on a channel. Prefixes are validated as follows:

- The list of interfaces on which prefixes are reachable is obtained from the prefix database and the prefix is verified for reachability via the same interface as the channel interface.
- A list of routes is obtained for a prefix that is reachable via an interface.

The channel is verified for the next hop address and if the next hop matches the appropriate prefix route. If the parent route of a device pertaining to a prefix matches the channel next hop, it indicates that the device with the prefix is reachable through a channel. If prefixes cannot be reached on a channel, a syslog message is displayed.

Note Maximum secondary paths must be configured on the border devices using the maximum-paths command so that prefixes are reachable. This command are enabled in the EIGRP or BGP router configuration mode.

How to Display Site Prefixes

Displaying Site Prefixes Learnt By a Border Router

SUMMARY STEPS

- 1. show domain domain-name vrf vrf-name border site-prefix
- 2. show domain default vrf vrf name border route-import
- **3.** show domain default vrf *vrf name* border route-import interface
- 4. show monitor event-trace pfrv3 all

DETAILED STEPS

Step 1 show domain domain-name vrf vrf-name border site-prefix

Use this command to verify the reachability of the prefix on all channels.

Step 2 show domain default vrf *vrf name* border route-import

Use this command to view the prefix information learnt by a border device from the RIB table.

Example:

B1MCBR# show domain default vrf green border route-import

Codes	<pre>odes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP a - application route</pre>					
Proto	Prefix	Location	Next-Hop	Index	Interface	In-RIB
L	10.20.0.1/32	Local	0.0.0.0	29	Ethernet0/2.30	YES
С	10.20.0.0/24	Local	0.0.0.0	29	Ethernet0/2.30	YES
L	10.20.1.1/32	Local	0.0.0.0	25	Ethernet0/1.30	YES
С	10.20.1.0/24	Local	0.0.0.0	25	Ethernet0/1.30	YES
D	10.20.2.0/24	Local	10.20.0.2	29	Ethernet0/2.30	YES
L	51.1.0.4/32	Local	0.0.0.0	24	Tunnel10	YES
С	51.1.0.0/16	Local	0.0.0.0	24	Tunnel10	YES
D	52.1.0.0/16	Local	10.20.0.2	29	Ethernet0/2.30	YES
С	100.20.1.1/32	Local	0.0.0.0	22	Loopback1	YES
D	100.20.2.1/32	Local	10.20.0.2	29	Ethernet0/2.30	YES
S	100.20.3.1/32	Local	10.20.0.3	29	Ethernet0/2.30	YES

Step 3 show domain default vrf *vrf name* border route-import interface

Use this command to view the prefix information associated with an interface.

Example:

BIMCBR# show domain default vrf green border route-import interface Loopback1

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
      a - application route
      + - replicated route, % - next hop override, p - overrides from PfR
                                                                                         In-RIB
Proto Prefix
              Location Next-Hop
                                                   Index Interface
     100.20.1.1/32
С
                         Local
                                   0.0.0.0
                                                    22
                                                              Loopback1
                                                                                         YES
```

Step 4 show monitor event-trace pfrv3 all

Enables debugging by collecting trace.

Displaying Site Prefixes Learnt By a Master Controller

SUMMARY STEPS

- 1. show domain default vrf vrf name master route-import
- 2. show domain default vrf vrf name master route-import interface
- 3. show domain default vrf vrf name master local-prefix

DETAILED STEPS

```
Step 1 show domain default vrf vrf name master route-import
```

Use this command to view the prefix information learnt by a master controller.

Example:

B1MCBR# show domain default vrf green master route-import all

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
```

Enterprise Prefix List: Prefix: 100.20.0.0, Mask: 16 Prefix: 100.30.0.0, Mask: 16 Prefix: 100.0.0.0, Mask: 8

Proto	Prefix IF-Role	Location In-RIB	BR-IP	Next-Hop	Index	Interface	
B	10.10.1.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30	
В	WAN 10.10.2.0/24	YES Local	100.20.2.1	10.20.2.2	25	Ethernet0/1.32	
В	LAN 10.10.3.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30	
В	10.10.4.0/24	Local	100.20.2.1	10.20.2.2	25	Ethernet0/1.32	
В	10.15.1.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30	
В	WAN 10.15.2.0/24	Local	100.20.2.1	10.20.2.2	25	Ethernet0/1.32	
L	10.20.0.1/32	Local	100.20.1.1	0.0.0.0	29	Ethernet0/2.30	
L	10.20.0.2/32	Local	100.20.2.1	0.0.0.0	28	Ethernet0/2.30	
С	10.20.0.0/24	Local	100.20.1.1	0.0.0.0	29	Ethernet0/2.30	
С	10.20.0.0/24	Local	100.20.2.1	0.0.0.0	28	Ethernet0/2.30	
L	10.20.1.1/32	Remote	100.20.1.1	0.0.0.0	25	Ethernet0/1.30	
С	10.20.1.0/24	Remote	100.20.1.1	0.0.0.0	25	Ethernet0/1.30	
D	10.20.1.0/24	Remote	100.20.2.1	10.20.0.1	28	Ethernet0/2.30	
L	10.20.2.1/32	Local	100.20.2.1	0.0.0.0	25	Ethernet0/1.32	
D	10.20.2.0/24	Local	100.20.1.1	10.20.0.2	29	Ethernet0/2.30	
С	10.20.2.0/24	Local	100.20.2.1	0.0.0.0	25	Ethernet0/1.32	
В	10.30.1.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30	
в	WAN 10.30.2.0/24	Local	100.20.2.1	10.20.2.2	25	Ethernet0/1.32	
	LAN	YES					
---	-------------	-----	--------	------------	---------	----	----------
L	51.1.0.4/32		Remote	100.20.1.1	0.0.0.0	24	Tunnel10
	WAN	YES					
С	51.1.0.0/16		Remote	100.20.1.1	0.0.0.0	24	Tunnel10
	WAN	YES					

B1MCBR# show domain default vrf green master route-import local

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP a - application route + - replicated route, % - next hop override, p - overrides from PfR

Enterprise Prefix List:

Prefix: 100.20.0.0, Mask: 16 Prefix: 100.30.0.0, Mask: 16 Prefix: 100.0.0.0, Mask: 8

Proto	Prefix IF-Role	Location In-RIB	BR-IP	Next-Hop	Index	Interface
L	10.20.0.1/32	Local	100.20.1.1	0.0.0.0	29	Ethernet0/2.30
	LAN	YES				
С	10.20.0.0/24	Local	100.20.1.1	0.0.0.0	29	Ethernet0/2.30
	LAN	YES				
С	10.20.0.0/24	Local	100.20.2.1	0.0.0.0	28	Ethernet0/2.30
	LAN	YES				
D	10.20.2.0/24	Local	100.20.1.1	10.20.0.2	29	Ethernet0/2.30
	LAN	YES				
С	10.20.2.0/24	Local	100.20.2.1	0.0.0.0	25	Ethernet0/1.32
	LAN	YES				
С	100.20.1.1/32	Local	100.20.1.1	0.0.0.0	22	Loopback1
	LAN	YES				
D	100.20.1.1/32	Local	100.20.2.1	10.20.0.1	28	Ethernet0/2.30
	LAN	YES				
D	100.20.2.1/32	Local	100.20.1.1	10.20.0.2	29	Ethernet0/2.30
	LAN	YES				
С	100.20.2.1/32	Local	100.20.2.1	0.0.0.0	23	Loopback1
	LAN	YES				-
S	100.20.3.1/32	Local	100.20.1.1	10.20.0.3	29	Ethernet0/2.30
	LAN	YES				

B1MCBR# show domain default vrf green master route-import remote

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP a - application route + - replicated route, % - next hop override, p - overrides from PfR

Enterprise Prefix List: Prefix: 100.20.0.0, Mask: 16 Prefix: 100.30.0.0, Mask: 16 Prefix: 100.0.0.0, Mask: 8

```
Proto Prefix
```

```
Location BR-IP
```

Next-Hop

Index Interface

	11 1010	111 1(12)				
	10.20.1.1/32	Remote	100.20.1.1	0.0.0.0	25	Ethernet0/1.30
	WAN	YES				
С	10.20.1.0/24	Remote	100.20.1.1	0.0.0.0	25	Ethernet0/1.30
	WAN	YES				
L	51.1.0.4/32	Remote	100.20.1.1	0.0.0.0	24	Tunnel10
	WAN	YES				
С	51.1.0.0/16	Remote	100.20.1.1	0.0.0.0	24	Tunnel10
	WAN	YES				
D	52.1.0.0/16	Remote	100.20.1.1	10.20.0.2	29	Ethernet0/2.30
	LAN	NO				
D	52.1.0.0/16	Remote	100.20.1.1	51.1.0.3	24	Tunnel10
	WAN	YES				
В	10.10.1.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30
	WAN	YES				
В	10.10.3.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30
	WAN	YES				
В	10.15.1.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30
	WAN	YES				
В	10.30.1.0/24	Remote	100.20.1.1	10.20.1.2	25	Ethernet0/1.30
	WAN	YES				
D	100.10.0.0/16	Remote	100.20.1.1	10.20.0.2	29	Ethernet0/2.30
	LAN	NO				
D	100.10.0.0/16	Remote	100.20.1.1	51.1.0.2	24	Tunnel10
	WAN	YES				

IF-Role In-RIB

B1MCBR# show domain default vrf green master route-import border 100.20.1.1

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP a - application route + - replicated route, % - next hop override, p - overrides from PfR

Enterprise Prefix List: Prefix: 100.20.0.0, Mask: 16 Prefix: 100.30.0.0, Mask: 16 Prefix: 100.0.0.0, Mask: 8

Proto	Prefix I	IF-Role	In-F	Location RIB	BR-IP	Next-Hop	Index	Interface
L	10.20.0.	1/32	VEQ	Local	100.20.1.1	0.0.0.0	29	Ethernet0/2.30
С	10.20.0.	0/24 AN	YES	Local	100.20.1.1	0.0.0.0	29	Ethernet0/2.30
L	10.20.1. W	1/32 JAN	YES	Remote	100.20.1.1	0.0.0.0	25	Ethernet0/1.30
С	10.20.1. W	0/24 JAN	YES	Remote	100.20.1.1	0.0.0.0	25	Ethernet0/1.30
D	10.20.2.	0/24 AN	YES	Local	100.20.1.1	10.20.0.2	29	Ethernet0/2.30
L	51.1.0.4	1/32 JAN	YES	Remote	100.20.1.1	0.0.0.0	24	Tunnel10
С	51.1.0.0 W)/16 JAN	YES	Remote	100.20.1.1	0.0.0.0	24	Tunnel10
D	52.1.0.0)/16 .AN	NO	Remote	100.20.1.1	10.20.0.2	29	Ethernet0/2.30
D	52.1.0.0 W)/16 /AN	YES	Remote	100.20.1.1	51.1.0.3	24	Tunnel10

С	100.20.1.1/32	Local	100.20.1.1	0.0.0.0	22	Loopback1
	LAN	YES				
D	100.20.2.1/32	Local	100.20.1.1	10.20.0.2	29	Ethernet0/2.30
	LAN	YES				

Step 2 show domain default vrf *vrf name* master route-import interface

Use this command to view the prefix information associated with an interface.

Example:

```
Router# show domain default vrf green border local-prefix interface Ethernet0/0.10
Codes: L - local, C - connected, S - static, R - RIP, M - mobile,
      B-BGP D - EIGRP, EX - EIGRP external, O - OSPF,
      IA - OSPF inter area N1 - OSPF NSSA external type 1,
      N2 - OSPF NSSA external type 2 E1 - OSPF external type 1,
      E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary,
      L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area,
      * - candidate default, H- NHRP
Local -- Prefix learned over LAN.
Remote - Prefix learned over WAN.
Prefix
         Interface BR IP
                                     Index Prefix-site Proto Next-Hop
                                                                            Status
 _____
100.10.4.1/32 Ethernet0/0.10 100.20.1.1 12
                                           Local
                                                       С
                                                                            ____
   Uр
```

Step 3 show domain default vrf *vrf name* master local-prefix

Use this command to view the prefix information associated with an border router.

Example:

```
Router# show domain default vrf green master local-prefix border-ip 100.20.1.1
Codes: L - local, C - connected, S - static, R - RIP, M - mobile,
      B-BGP D - EIGRP, EX - EIGRP external, O - OSPF,
      IA - OSPF inter area N1 - OSPF NSSA external type 1,
     N2 - OSPF NSSA external type 2 E1 - OSPF external type 1,
      E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary,
     L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area,
      * - candidate default, H- NHRP
Local -- Prefix learned over LAN.
Remote - Prefix learned over WAN.
Prefix
         Interface BR IP Index Prefix-site Proto
                                                                 Next-Hop
                                                                             Status
_____
100.10.4.1/32 Ethernet0/0.10 100.20.1.1 12
                                            Local
                                                       С
```

Additional References for PfRv3 Remote Prefix Tracking

Related Documents

Related Topic	Document Title
PfRv3commands	Cisco IOS Performance Routing Version 3 Command Reference
Site Prefix Splitting	Site Prefix Splitting

PfRv3 Per Interface Probe Tuning

The PfRv3 Per Interface Probe Tuning feature provides the flexibility to specify different profiles for a channel associated with an interface thereby allowing you to measure the metrics of a channel.

- Feature Information for PfRv3 Per Interface Probe Tuning, on page 175
- Prerequisites for PfRv3 Probe Reduction, on page 176
- Restrictions for PfRv3 Per Interface Probe Tuning, on page 176
- Information About PfRv3 Per Interface Probe Tuning, on page 176
- How to Configure PfRv3 Per Interface Probe Tuning, on page 178
- Configuration Examples for PfRv3 Per Interface Probe Tuning, on page 180
- Additional References for PfRv3 Per Interface Probe Tuning, on page 180

Feature Information for PfRv3 Per Interface Probe Tuning

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3 Per Interface Probe Tuning	Cisco IOS XE Everest 16.6.1	The PfRv3 Per Interface Probe Tuning feature provides the flexibility to specify different profiles for a channel associated with an interface thereby allowing you to measure the metrics of a channel.
		The following commands were introduced or modified: domain smart-probe , smart-probe , show platform hardware qfp active feature pfrv3 , show platform software pfrv3 .

Table 22: Feature Information for PfRv3 Per Interface Probe Tuning

Prerequisites for PfRv3 Probe Reduction

Restrictions for PfRv3 Per Interface Probe Tuning

- The profile parameters must be defined or enforced on all border hub routers. Configuring the profile on a hub master controller does not propagate the profile parameters to the border hub routers.
- The default data expiration value for a channel is 90 seconds.
- You must configure the Performance Routing v3 Zero SLA Support feature on the hub border router to suppress nonzero DSCP (Differentiated Services Code Point) channels.

Information About PfRv3 Per Interface Probe Tuning

Probe Reduction and Per Interface Probe Tuning

Probing helps in measuring the metrics of a channel. A "profile" is a set of probing parameters configured on a device to send a probe packet on a channel that must be monitored. Before sending a probe packets on a channel, the channel that is to be monitored must be understood because each monitor has different profiles. In most cases, there are two monitors—default and quick. Each probe has two parameters, namely, burst packets and burst interval, which can be configured to define the probe packets sent on a PfR channel.

The PfRv3 Probe Reduction feature allows reducing traffic probe on channels that do not carry any traffic. For more information see the PfRv3 Probe Reduction module.

The PfRv3 Probe Reduction feature enforces similar probing on all interfaces irrespective of an interface through which a channel goes out, whereas the PfRv3 Per Interface Probe Tuning feature provides the flexibility to enforce different profiles on channels associated with an interface.

How Per Interface Probe Tuning Works?

The PfRv3 Per Interface Probe Tuning feature is configured on border hub routers via the *profile-id* argument in the **smart-probes** command and applied to an interface via the **domain smart-probe profile** command.

If you do not configure these commands, the default profile 0, is set on a device. The default profile has predefined parameters of 1 packet every 1 second for a default monitor and 20 packets every 1 second for a quick monitor.

The following is a sample topology to explain the working of the PfRv3 Per Interface Probe Tuning feature.

Figure 15: Per Interface Probe Tuning—Sample Topology

A hub branch router communicates to two branch routers Branch 1 Router and Branch 2 Router via ISP. Branch 1 Router has a regular interface, while Branch 2 Router has an Long-Term Evolution (LTE) interface. The LTE interface requires different probing parameters on the channel connected to the interface as LTE radio channels are established when data needs to be transmitted over the interface and radio frequency band occupies the transmission.

The profile parameters for the LTE interface are 100 packets every 1200 seconds for default monitor and default values for quick monitor. The profile parameters for the regular interface is the default parameters, which is, one packet every one second for default monitor and 20 packets every one second for quick monitor.

The hub border router establishes channels through its WAN interface to Branch 1 Router and Branch 2 Router via the ISP. Based on the defined profile parameters, channels from the hub border router to the Branch 1 Router are probed at regular intervals. Channels from the hub border router to Branch 2 Router wil have not have incoming probes for 19 minutes. The following happens before data is transmitted to the LTE interface:

- Burst probe packets are sent over the channel to measure the metrics.
- The burst interval range is increased to allow a longer duration so that radio bandwidth is not stagnated.
- Unreachable probe packets are not sent after sending the burst probe packets. This is to free up the radio bandwidth. to transmit the data.
- The burst interval range is configured to a longer duration so that radio bandwidth is not occupied.
- Unreachability detection is suppressed to ensure that there is no unreachability from a remote device for a period of time.

Profile—Channel Association

The profiles are associated with the channel and not the interface because it is possible that the same interface may host different channels, especially on border hub routers. If two channels have different profile numbers, the channel with a higher profile number is chosen to transmit data. The profile negotiation rule requires a profile with higher ID number to have a slower probing rate. The default profile (one packet every one second for default monitor and 20 packets every one second for quick monitor) has sufficient probing rate. When a channel probes at a slower rate (bigger profile ID number) another channel in the network probes at a higher rate (smaller profile ID number).

Note

There is no automatic detection mechanism to calculate the rate of different profiles if the profile negotiation rule (higher-ID-slower-rate) is violated.

How to Configure PfRv3 Per Interface Probe Tuning

Defining a Profile on a Border Hub Router

```
domain domain1
border
advanced
smart-probe 1 burst quick 10 packets every 20 seconds 1
```

Applying a Profile to an Interface on a Border Hub Router

interface tunnel 100 domain smart-probe profile 1

Verifying Profile Parameters

The following is a sample output of the **show platform software pfrv3** command that displays the profile parameters applied to an device:

```
HubBr2# show platform software pfrv3 rp active smart-probe
PfRv3 smart probe parameters :
Profile ID: 0
Attribute: 0x0000
Probe Burst interval: 1 second
Probe Burst number: 1 packets
Quick Monitor Probe Burst interval: 1 second
Quick Monitor Probe Burst number: 20 packets
Unreachable interval: 4 second
Profile TD: 1
Attribute: 0x0000
Probe Burst interval: 0 second
Probe Burst number: 0 packets
Quick Monitor Probe Burst interval: 0 second
Quick Monitor Probe Burst number: 0 packets
Unreachable interval: 4 second
Profile ID: 2
Attribute: 0x0000
```

```
Probe Burst interval: 0 second
Probe Burst number: 0 packets
Quick Monitor Probe Burst interval: 0 second
Quick Monitor Probe Burst number: 0 packets
Unreachable interval: 4 second
```

Verifying Profile Parameters Associated with a Channel

The following is a sample output of the **show platform hardware qfp** command that displays the profile parameters associated with a channel:

```
Branch100# show platform hardware qfp active feature pfrv3 client channel id 7 detail
Chan id: 7 tbl-id: 0, if_h: 14(Tunnel100), site-id: 10.3.1.1, in_uidb: 65528, dscp: 0,
pfr-label: 0:0 | 0:0 [0000000]
  Supports zero-sla: Yes
  Muted by zero-sla: No
  Plr rx state: No
  Plr tx state: No
  Plr establish state: No
  next hop: 100.1.1.1
  State: Discovered and open
  rx state: Reachable
  tx state: Reachable
  Smart Probe in Burst: No
  Unreach Probing only: Off
  Profile ID: 0
  V4 Smart Probe Received: Yes
  V4 Smart Probe Sent: Yes
  Current profile_id: 1 <<< different than "Profile ID" (two lines above), resulted from
negotiation
  Remote profile id: 1
  hash val: 25699
  exmem info:
        PPE addr: 0xebd26000
  stats:
   RX pkts: 0 bytes: 0
    TX pkts: 0 bytes: 0
   Blackhole pkts: 0 bytes: 0
   Loop pkts: 0 bytes: 0
    Probes: rx: 6288 tx: 474
   Number of SMP Profile Bursts sent: 100
   Number of Active Channel Probes sent: 374
   Number of Reachability Probes sent: 0
   Number of Force Unreaches sent: 0
    Last Probe rx: 44115 ms Ago
   Last Probe tx: 3379 ms Ago
```

Configuration Examples for PfRv3 Per Interface Probe Tuning

Additional References for PfRv3 Per Interface Probe Tuning

Related Documents

Related Topic	Document Title
Performance Routing Version 3 commands	Cisco IOS Performance Routing Version 3 Command Reference
Probe Reduction	PfRv3 Probe Reduction

Standards and RFCs

Standard/RFC Title

PfRv3 Inter-DC Optimization

The PfRv3 Inter-DC (IDC) Optimization feature optimizes traffic between hub and transit hub sites over a WAN overlay or a DCI overlay. A path-preference policy specific to inter-DC Optimization is used for optimizing traffic between two or more hub sites. The PfRv3-Inter-DC-Optimization routs traffic from a hub site to another hub site for specific traffic types such as data, voice, video, and so on.

- Feature Information for PfRv3 Inter-DC Optimization, on page 181
- Prerequisites for PfRv3 Inter-DC Optimization, on page 181
- Limitations and Guidelines for Inter-DC Optimization, on page 182
- Information About PfRv3-Inter-DC-Optimization, on page 182
- How to Configure PfRv3-Inter-DC-Optimization, on page 184
- Additional References for PfRv3-Inter-DC-Optimization, on page 188

Feature Information for PfRv3 Inter-DC Optimization

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
PfRv3 Inter-DC Optimization	Cisco IOS XE Everest 16.6.1	The following commands were introduced or modified: domain , inter-dc , interdc-path-preference .

Table 23: Feature Information for PfRv3 Inter-DC Optimization

Prerequisites for PfRv3 Inter-DC Optimization

- Hub sites must be upgraded for using the same version of IOS for the master and border devices.
- Static NHRP mapping must be used between hub sites. (NHRP shortcuts are not allowed between hub sites)

• Local LAN prefixes on each hub site (all borders) must have a specific route pointing to LAN interfaces and not to DCI or WAN interfaces.

Limitations and Guidelines for Inter-DC Optimization

• The PfRv3 Inter-DC Optimization does not optimize routes using common prefixes.

Note A common prefix is a prefix which is configurated as a static prefix on all the hub sites, that include hub sites and transite hub sites.

- The command **domain dci-path** should be added in DCI tunnel interface, but normal WAN interface with **domain path** command can also be chosen as DCI path. But DCI interface using **domain dci-path** cannot be chosen as the path for normal hub to spoke traffic.
- We recommend to use static configuration under DCI tunnel interface to set up peer between DC sites. If **nhrp shortcut** is used, a forwarding loop may occur.
- After enabling the IDC feature using the inter-dc command, you can configure path-preference and interdc-path-preference under policy.

You should not configure DCI path in **global path-preference** because if you add DCI path into path-preference, there is no channel available between hub and spoke in the DCI path. The DCI path cannot be chosen for the normal traffic-classes.

• The IDC feature must be enabled on both peer masters. It is recommended to use the same overlay routing protocol for all WAN and DCI tunnels.

Information About PfRv3-Inter-DC-Optimization

Datacenter Optimization

The following figure illustrates the PfRv3 Inter-DC Optimization feature where traffic between hub sites DC1, DC2 and DC3 are routed to forward specific traffic trough a specific hub. The figure shows four paths can be used as candidates for the traffic from DC1 to DC2. IDC1 and IDC2 are Inter-DC links those can be used for this traffic. MPLS and INET are normal WAN paths that can also be used for this traffic as candidates. It depends on the path-preference policy specific to inter-DC optimization.

L

Figure 16: Datacenter Optimization

The PfRv3 Inter-DC Optimization feature can be enabled with the **inter-dc** command in domain master controller advanced mode. All hubs in the network must be connected through WAN overlay or DCI overlay. All hub and transit hub masters must be enabled with this feature locally. WAN overlay is configured by defining a WAN interface using the **domain path** command. DCI overlay is configured by defining a DCI interface using the **domain dci-path** command.

The salient points of the PfRv3 Inter-DC Optimization feature are as follows:

- The **domain dci-path** command enables route control which routes the transit traffic on all DCI interfaces in ingress direction.
- Traffic classes are learnt based on the egress aggregate update and traffic channels over the WAN and DCI overlay.
- Tunnel addresses and path ID mapping are exchanged by site capability between the hub and transit masters.

The tunnel IP address for corresponding interface or path-id is advertised among the hub and transit masters when the PfRv3 Inter-DC Optimization feature is enabled.

DCI Path Options

Based on the actual deployment requirement, you can choose any of the following options for providing the DCI path:

Using the existing DMVPN overlay and the same tunnel interface:

In the hub to spoke DMVPN tunnel interface configuration, there is no dmvpn peer between DC sites. So, if the normal hub tunnel interface is used as DCI path, some additional configuration should be added to set up the dmvpn peer between DC sites, such as ip nhrp nhs 161.1.0.5 nbma 155.155.155.155.5 multicast above.

Using an independent DCI link(s) with independent DMVPN overlay

When there is dedicated DCI links between DC sites, a dedicated DMVPN overlay can be used as DCI path. And ideally, the dedicated DCI links are more stable than the normal WAN links. Using the existing hub to spoke DMVPN, or using a dedicated DCI DMVPN built over dedicated DCI links will depend on the available interfaces in the network, and which solution will meet the need of the network

Note A third option of building a second set of DMVPN tunnels using the same transport as the existing DMVPN hub and spoke network is not recommended and it has not been validated.

How to Configure PfRv3-Inter-DC-Optimization

Specifying the DCI interface on a Hub Site

enable configure terminal interface tunnel155 domain dci-path DCI path-id 11 exit

Configuring Inter-DC on Hub Master Controller

To configure the Inter-DC Optimization feature on the hub master controller, use the following commands:

```
enable
configure terminal
domain default
vrf green
master hub
source-interface Loopback1
site-prefixes prefix-list HUBPFX
```

```
advanced
inter-dc
enterprise-prefix prefix-list ENTPFX
class BUSINESS sequence 10
match dscp ef policy custom
priority 1 one-way-delay threshold 100
interdc-path-preference DCI1 DCI2 fallback MPLS next-fallback INET
exit
```

Configuring Inter-DC on Transit Hub

To configure Inter-DC on the transit hub, use the following commands:

```
enable
Configure terminal
domain default
vrf green
master transit 2
source-interface Loopback1
site-prefixes prefix-list HUBPFX
hub 100.10.1.1
advanced
inter-dc
class BUSINESS sequence 10
interdc-path-preference DCI1 fallback MPLS next-fallback INET
exit
```

Specifying IDC Local Policy

This is an optional task to overwrite the global path-preference.

```
enable
configure termainal
domain default
vrf green
  master transit 2
    class BUSINESS sequence 10
    interdc-path-preference DCI1 fallback ISP1 next-fallback ISP2
exit
```

Verifying Inter-DC Configuration

```
HMCBR# show domain default vrf green master status
 *** Domain MC Status ***
Master VRF: green
 Instance Type:
                   Hub
 Instance id:
                  1
 Operational status: Up
  Configured status: Up
 Loopback IP Address: 100.10.1.1
 Global Config Last Publish status: Peering Success
 Smart Probe Profile:
   General Monitor:
     Packets per burst: 1
     Interval(secs): 1
    Ouick Monitor:
     Packets per burst: 20
     Interval(secs): 1
```

Load Balancing: Admin Status: Disabled Operational Status: Down Enterprise top level prefixes configured: 0 Route Control: Enabled Transit Site Affinity: Enabled Load Sharing: Enabled Path Pruning Depth: Disabled Inter-DC Optimization: Enabled

Verifying Master Controller Configuration

```
HMCBR# show domain default vrf green master status
  *** Domain MC Status ***
 Master VRF: green
 Instance Type:
                    Hub
  Instance id:
                    1
  Operational status: Up
  Configured status: Up
  Loopback IP Address: 100.10.1.1
  Global Config Last Publish status: Peering Success
 . . . . . . . . .
Minimum Packet Loss Calculation Threshold: 15 packets
  Minimum Bytes Loss Calculation Threshold: 1 bytes
 Borders:
    IP address: 100.10.3.1
    Version: 2
   Connection status: CONNECTED (Last Updated 15:44:28 ago )
    Interfaces configured:
     Name: Tunnel10 | type: external | Service Provider: ISP1 path-id:3 | Status: UP |
Zero-SLA: NO | Path of Last Resort: Disabled
          Number of default Channels: 0
      Name: Tunnel40 | type: external | Service Provider: ISP4 path-id:9 | Status: UP |
Zero-SLA: NO | Path of Last Resort: Disabled
          Number of default Channels: 0
      Name: Tunnel155 | type: DCI | Service Provider: DCI1 path-id:103 | Status: UP |
Zero-SLA: NO | Path of Last Resort: Disabled
          Number of default Channels: 0
    Tunnel if: Tunnel0
    IP address: 100.10.1.1
    Version: 2
    Connection status: CONNECTED (Last Updated 15:44:21 ago )
    Interfaces configured:
      Name: Tunnel10 | type: external | Service Provider: ISP1 path-id:1 | Status: UP |
Zero-SLA: NO | Path of Last Resort: Disabled
          Number of default Channels: 0
      Name: Tunnel30 | type: external | Service Provider: ISP3 path-id:7 | Status: UP |
Zero-SLA: NO | Path of Last Resort: Disabled
         Number of default Channels: 0
      Name: Tunnel155 | type: DCI | Service Provider: DCI1 path-id:101 | Status: UP |
Zero-SLA: NO | Path of Last Resort: Disabled
          Number of default Channels: 0
```

Verifying the Channel Status

```
HMCBR# show domain default vrf green master channels
Legend: * (Value obtained from Network delay:)
Channel Id: 7 Dst Site-Id: 100.20.1.1 Link Name: ISP1 DSCP: default [0] pfr-label: 0:0
```

```
| 0:3 [0x3] TCs: 0 BackupTCs: 0
  Channel Created: 15:43:53 ago
  Provisional State: Initiated and open
  Operational state: Available
  Channel to hub: FALSE
  Inter-DC Channel: FALSE
  Interface Id: 25
  Supports Zero-SLA: Yes
  Muted by Zero-SLA: No
  Unreach Probing only: OFF
  Estimated Channel Egress Bandwidth: 0 Kbps
  Immitigable Events Summary:
   Total Performance Count: 0, Total BW Count: 0
   ODE Statistics:
     Received: 0
   TCA Statistics:
      Received: 0 ; Processed: 0 ; Unreach rcvd: 0 ; Local Unreach rcvd: 0
      TCA lost byte rate: 0
      TCA lost packet rate: 0
      TCA one-way-delay: 0
      TCA network-delay: 0
      TCA jitter mean: 0
Channel Id: 117 Dst Site-Id: 100.16.1.1 Link Name: ISP1 DSCP: default [0] pfr-label:
3:13 | 0:3 [0x30D0003] TCs: 0 BackupTCs: 0
  Channel Created: 15:33:02 ago
  Provisional State: Initiated and open
  Operational state: Available
  Channel to hub: TRUE
  Inter-DC Channel: TRUE
  Interface Id: 25
  Supports Zero-SLA: Yes
  Muted by Zero-SLA: No
  Unreach Probing only: OFF
  Estimated Channel Egress Bandwidth: 0 Kbps
  Immitigable Events Summary:
  Total Performance Count: 0, Total BW Count: 0
  Site Prefix List
   100.16.1.1/32 (Routable)
    100.16.0.0/16 (Routable)
   100.10.0.0/16 (Routable)
   100.15.0.0/16 (Routable)
   100.0.0/8 (Routable)
   ODE Statistics:
      Received: 0
   TCA Statistics:
      Received: 0 ; Processed: 0 ; Unreach_rcvd: 0 ; Local Unreach_rcvd: 0
      TCA lost byte rate: 0
      TCA lost packet rate: 0
      TCA one-way-delay: 0
      TCA network-delay:
      TCA jitter mean: 0
```

Example Configurations for PfRv3 Inter-DC

Example for Policy Configured on the Hub MC with Inter DC

In this example, the policy can work on the normal hub-spoke traffic and the IDC traffic. For IDC traffic, the 'interdc-path-preference' takes effect. DCI1 and DCI2 are primary paths. If they are out-of-policy, the MPLS, which is a backup path, will be used. For normal hub-spoke traffic, the 'path-preference' takes effect. The other configuration is same as normal PfRv3 policy. For example, the threshold of delay is 100 ms for both the IDC traffic and the normal hub-spoke traffic.

```
class BUSINESS sequence 10
  match dscp ef policy custom
  priority 1 one-way-delay threshold 100
  path-preference MPLS fallback INET
   interdc-path-preference DCI1 DCI2 fallback MPLS next-fallback INET
```

Example for Policy Configured on the Transit Hub MC with Inter DC

On transit hub master, you can see the same policy. But, if the **interdc-path-preference** is configured on this transit hub. The local interdc-path-preference will overwrite the policy from hub site

```
class BUSINESS sequence 10
interdc-path-preference DCI1 fallback MPLS next-fallback INET
```

Example for 'show domain vrf master policy' on hub master

Additional References for PfRv3-Inter-DC-Optimization

Related Documents

Related Topic	Document Title
Performance Routing commands	Cisco IOS Performance Routing Version 3 Command Reference

Direct Cloud Access

The Direct Cloud Access IWAN 2.3 feature enables users at branch sites to have best application experience to SaaS applications, such as, Office 365, Google services, with reduced cost. This feature helps in constantly monitoring network and application performance and select the optimized paths (usually local break out from branch to Cloud SaaS applications instead of back-haul to the data center). Non-SaaS traffic still back-haul to data center for further inspection.

- Feature Information for Configuring Direct Cloud Access, on page 189
- Prerequisites for Configuring Direct Cloud Access, on page 190
- Restrictions for Configuring Direct Cloud Access, on page 190
- Information About Configuring Direct Cloud Access, on page 190
- How to Configure Direct Cloud Access, on page 194
- Configuration Examples for Configuring Direct Cloud Access, on page 198
- Additional References for Configuring Direct Cloud Access, on page 207

Feature Information for Configuring Direct Cloud Access

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
Direct Cloud Access IWAN 2.3	Cisco IOS XE Fuji 16.8.1	The Direct Cloud Access (DCA) feature allows traffic from trusted applications, part of well-trusted domains, to pass the local Internet security check because traffic from these trusted applications have a lower security risk than untrusted Internet sites. The following commands were introduced or modified: domain path , path-preference , show domain dca-status , show domain default border , show domain default policy , show domain vrf border channels , show domain vrf master channels .

Table 24: Feature Information for Direct Cloud Access IWAN 2.3

Prerequisites for Configuring Direct Cloud Access

• NAT:

To enable a host that typically operates in a private network directly communicate with a SaaS application in a public network, use a NAT. Enable NAT on the same router that has DCA enabled or other devices in the path.

· Firewall security:

To improve security, you can enable a firewall, such as a zone-based firewall (ZBFW), in the path.

Note By default OpenDNS is used as DNS resolver for SaaS traffic, but you can choose to use other DNS resolver such as Google DNS resolver 8.8.8.8. OpenDNS license/registration is not a must if you don't need OpenDNS security services.

Restrictions for Configuring Direct Cloud Access

- IPv6 address is not supported.
- DCA is not supported if the DNS traffic does not pass through the router which is enabled with DCA.
- DCA does not work if SaaS applications use proxy. All traffic going to proxy server as DCA may not classify these applications and cannot perform local breakout for traffic that is bound to proxy.
- Applications that directly access the content and not through DNS resolution, NBAR may fail to classify as SaaS and cannot provide local break-out.
- DCA may not work on a device when NBAR classification results are not available on the device. You
 must customize NBAR to classify the results to support DCA.
- This feature depends on applications classification. SD-AVC helps in better classification with NBAR.
- To access SaaS applications, a public IP address is required. NAT helps translate the user's private IP address to a public IP address. Configure NAT on the border router that has DCA enabled, or on other internet-facing devices.

Information About Configuring Direct Cloud Access

Direct Cloud Access Overview

The infrastructure of cloud-hosted services, such as Microsoft Office 365 and Google Apps, is in the cloud. Back-hauling traffic from remote users and sites through the private WAN to the data center via Internet imposes additional bandwidth requirements on the private WAN and may add latency to each connection. Moreover, private WAN connectivity is more expensive than direct Internet connections, which could add a tremendous amount of cost to the equation.

The Direct Cloud Access IWAN 2.3 feature implements direct cloud access (DCA) on Cisco IWAN networks and allows trusted SaaS traffic to be forwarded out over the optimized path (directly local break out) while other traffic still back-haul to headquarters over VPN. DCA monitors the candidate path (DCA path, back-haul path to headquarter) performance and chooses the optimized path in policy to get the best SaaS application performance. While adding direct Internet connectivity to the branch site without back hauling to data center, IWAN DCA provides the security capability at branch site by enabling security features like NAT and Firewall (Zone-based Firewall, Snort IPS, etc.) at branch sites.

Features

DCA features include:

- Automatic configuration of Cisco Umbrella Connector (supported from Cisco IOS XE Gibraltar 16.10.1)
- · Support for policy configured on a centralized hub, or per-site customized local policy
 - · Customized local policy overrides global plicy.
 - If a hub connection goes down, local policy remains in effect.
- Support for P2P interface, such as dialer interface, as DCA interface

Benefits of Direct Cloud Acces

- Reduced operation cost as SaaS traffic no longer needs to go to headquarters which consume additional headquarter network bandwidth.
- Business processes run faster through direct network access to the major cloud providers. A traffic classification mechanism is required in order to achieve direct Internet access for selected cloud applications.

Direct Cloud Access Architecture

The overlay DMVPN WAN tunnels on a branch router are configured to dynamically learn the service provider they are connected to. An underlay interface is identified as a direct access interface via configuration.

Packets from the LAN side on a branch site are sent over the overlay when packets do not match the criteria of the configured application. When a flow matches the DCA criteria, the packets are directed to the DCA interface that is specified in the path preference. DCA interfaces can be listed in the order of priority in the path preference configuration of the policy for the application. The DCA interfaces are evaluated in the order of the order of the order of the order priority.

NBAR classification occurs at LAN ingress. NBAR provides the application ID, which is exported by the border router. If a match occurs on the Master Controller for an application, the policy for the application is applied to the traffic class for the specific flow.

The following figure explains the DCA functionality for Office365 application:

The following actions are performed to achieve DCA functionality:

- Classify all the cloud applications based on the DNS.
- Intercept DNS traffic and make decisions based on the classification.
 - If the traffic is from a trusted application, direct Internet access is provided. Ensure that security concerns are addressed for the breakout traffic, which include, constant application monitoring, choosing network performance over candidate paths (DCA path, back-haul path), selecting the optimized path according to policy (if DCA path is not good), back-hauling SaaS traffic to data center and reverting back if DCA path recovered.
 - If the traffic is not from a trusted application, the traffic is passed it to the Headquarter for further security inspection and processing.
- Route HTTP, HTTPS data traffic to Internet or Headquarter depending on the above decision.

Designate an Underlay Interface as Direct Access Interface

An interface of the border router must be designated as direct access interface. **domain path** *path-name* **direct-cloud-access** command to specify the direct access interface. A service provider may have multiple links of direct access and each of the direct access interface is measured independently.

When an interface is selected to be the direct access interface, all traffic to the whitelisted applications is directed through the direct access interface. If there are multiple direct access interfaces, the traffic is directed on one direct access interface depending on the performance metrics and policy.

Direct Cloud Access Components

Direct Cloud Access functionality has the following components:

Cisco Umbrella Connector

To achieve location proximity, the SaaS server must be closer to the branch router to achieve better application performance. Generally, DNS requests for a SaaS application are destined to an enterprise DNS resolver. However, the DNS request must be changed from enterprise DNS resolver to a public DNS resolver, such as, OpenDNS resolver or Google DNS resolver. The public DNS resolver helps in placing the SaaS server closer to the branch router by using Cisco Umbrella connector. OpenDNS account and registration is not mandatory.

DNS requests must be unencrypted traffic from the endpoint to the DNS server. Each direct access interface must be configured with Open DNS.

NBAR Classification

Network Based Application Recognition (NBAR) is a classification engine that recognizes and classifies a wide variety of protocols and applications. NBAR uses several classification information metadata such as application name, ID, traffic class, business relevance, and so on.

For Direct Cloud Access functionality, once NBAR recognizes the DNS traffic as belonging to interesting cloud application, it attaches this information to DNS packet in a way so that the umbrella connector feature can extract and use the information.

Cisco NBAR provides the first packet classification for some applications. Cisco NBAR uses DNS learning for application recognition of user defined and predefined domains, Once the server is learned from the DNS response, traffic going to this server can be classified as FIFO. SD-AVC also improves the first packet classification result.

Performance Routing Version 3

Performance Routing version 3 (PfRv3) delivers intelligent path control for application-aware routing across the WAN. Once a DNS response is received, the data traffic (HTTP, HTTPS etc.) from cloud application is provided direct Internet access (local break-out) or is sent to the headquarter for further security inspection.

IPSLA

IPSLA is enabled automatically by PfRv3 to probe each SaaS application over candidate paths by using IPSLA HTTP operation. PfRv3 leverages the metrics reported by IPSLA to select the optimized path.

SaaS Reachability and Performance Management

Performance and reachability of each whitelisted application determines the path that an application takes. PfR measures the reachability and performance of all VRFs and enables and shares one measurement across multiple VRFs.

Next-Hop Reachability

One DSCP-agnostic channel is created as the next-hop for the direct access interface. The DSCP of DCA channel is configured as FF. The routing protocol configured on the direct access interface determines the next hop for the channel.

Performance Measurement

After the channel next hop is up, the service is reached via next hop by using the following steps:

Application Domain Mapping

Application to domain URL and Differentiated Services Code Point (DSCP) mapping must be configured on the master controller of each branch router so that IPSLA can measure the SaaS application using right domain and DSCP.

Reachability and Performance Probing

Measuring network characteristics is performed using IPSLA. IPSLA probes are not sent per VRF, instead, PFR creates a probing layer for all the VRFs and path preferences in the VRFs in a domain. Reachability and performance can be verified per application by using the **show domain** *domain-name* **border dca** command. This command provides information per application, per interface for a border router.

Traffic Steering and Flow Stickiness

When DCA is implemented on a network, traffic classes are automatically created for interested applications. The applications configured in the policy includes path preferences, which corresponds to the respective DSCP configured per application.

When selecting a path, PfR assigns a path to a flow that is destined to a service, for example, Offic365. These flows might traverse a NAT device or a firewall device that maintains the state for the flow sequence numbers. Changing the flow during packet traversal may lead to flow reset. Therefore, when a path is selected, flows must align to that path only. If a path is unreachable, the flow is reset by the client and retried. If the path experiences packet loss but still usable, new flows are routed via alternate paths.

Local Policy Configuration

Direct Cloud Access (DCA) policy can be configured on a centralized hub, or it can be configured on any individual site as a customized local policy. To configure local DCA policy, use the **policy local type DCA** command.

- · Customized local policy overrides global policy.
- If a hub connection goes down, local policy remains in effect.

Example of Local Policy Configuration

```
policy local type DCA
class DCA sequence 4
  match application ms-cloud-group saas-dca
    path-preference DCA1 fallback DCA2
```

How to Configure Direct Cloud Access

Assign an Underlay Interface as Direct Access Interface

The following configuration snippet explains how to assign an Ethernet interface as direct access interface.

```
Router(config)# interface Ethernet 0/1
Router(config-interface)# domain path ATT-DCA direct-cloud-access
```

Define PfR Policy for SaaS Application on Hub Master Controller

The following configuration snippet explains how SaaS application policies are defined on hub master controller at a central point and published to all branch sites. There is no need to define policies at each branch sites because branch sites still have the capability to customize the interested SaaS.

```
Router(config)# domain iwan Router
Router(config-domain)# vrf green
Router(config-domain-vrf)# master hub
Router(config-domain-vrf-master)# class BUSINESS-CRITICAL sequence 10
Router(config-domain-vrf-master-class)# match app-group ms-cloud-group policy custom
Router(config-domain-vrf-master-class-match)# priority 1 delay 500 ms
Router(config-domain-vrf-master-class-match)# exit
Router(config-domain-vrf-master-class)# path-preference ATT-DCA fallback ATT next-fallback
INET
```

Define SaaS Application Mapping on Branch Master Controller

To measure the SasS application's reachability and performance, the domain URL and DSCP must be specified for IPSLA probing for each SaaS application.

Use HTTP ping to probe a specific SaaS to determine reachability and performance. The system has built-in default URL domains for popular SaaS applications. For a complete list, use **show domain xxx master dca domain-map**.


```
Note
```

If there are multiple VRFs, IP SLA probing is performed for all domains defined for each VRF and the same IP SLA ID is used for each domain group in the VRF.

If a desired SaaS is not included in the list, create a domain map for the service in PfRv3. For example, to add Servicenow:

```
master branch
domain-map
application servicenow-group domain http://www.servicenow.com dscp af21
```

Configure a DNS Resolver

By default, DNS requests for white-listed SaaS are intercepted by Umbrella, and the OpenDNS resolver is used to achieve location proximity.

Optionally, configure a specific DNS resolver, either on a hub master controller or on an specific branch master controller. Configuring a DNS resolver on a specific branch overrides, for that branch, the DNS resolver configured on the hub.

Hub

Use the following on a hub master controller to configure a DNS resolver for all DCA branches.

```
domain default
master hub
advanced
dns-redirect dns-server-address
```

Example:

```
domain default
master hub
advanced
dns-redirect 8.8.8.8
```

Branch

Use the following on a branch master controller to configure a DNS resolver for the branch, overriding the hub setting.

```
domain default
master branch
dns-redirect dns-server-address
```

Example:

```
domain default
master branch
dns-redirect 8.8.8.8
```

Configure the HTTP Ping Probe Interval

The HTTP ping probe uses a default probe interval of 30 seconds.

Optionally, you can configure a specific interval on the hub master controller, which applies the change to all DCA branches, or to a branch master controller, to change the interval for a specific branch.

Hub

Use the following on a hub master controller to configure the interval for all DCA branches.

```
domain default
master hub
advanced
dca-probe-http-interval interval-in-seconds
```

Example:

```
domain default
master hub
advanced
dca-probe-http-interval 20
```

Branch

Use the following on a branch master controller to configure the interval for a specific branch. The branch setting overrides a setting made at the hub.

```
domain default
master branch
dca-probe-http-interval interval-in-seconds
```

Example:

```
domain default
master branch
dca-probe-http-interval 20
```

Verify and Monitor Direct Cloud Access Configuration

Use the following commands to verify and monitor DCA configuration.

- · show domain iwan master traffic-classes summary
- · show domain iwan master traffic-classes detail
- show domain iwan master traffic-classes dca detail
- show domain iwan master traffic-classes dca application
- show domain domain-name border dca

Displays information about reachability and metrics collected for all paths towards a service. This command helps in understanding the behavior of various paths for a service and how PFR is selecting the best paths depending on the metrics.

Device# show domain iwan border dca

[*] PFR created IP SLA entry ID IPSLA DNS Resolver:208.67.220.220

App DSCP RTT/ms DCA2 MP	'LS1
thresh Gi0/0/2 Tu10	(0:1)
RTT/ms[*] RTT/ms[*]
share-point default 1000	7 [31]
youtube default 1000 78 [33]
box default 1000 7 [39]	
dropbox default 1000 3 [4	1]
google-services default 10	000 108 [49] -
google-group default 1000	109 [51]
gtalk-group default 1000	112 [53]
hangouts-group default 100	0 115 [55]
ms-lync-group default 1000	6 [57]
ms-cloud-group default 100	0 7 [59]

show domain default policy

Displays the default policy on the master controller.

• To troubleshoot, use **debug domain default master dca** and *debug domain default border dca* commands.

Configuration Examples for Configuring Direct Cloud Access

Example: Configure DCA Link on a Single Branch Router

Overview

In this example, DCA is configured on Cisco IWAN network with a single branch router as shown in the following topology.

Figure 18: DCA Link on a Single Branch Router

Umbrella Service

Beginning with Cisco IOS XE Gibraltar 16.10.1, the Umbrella service configuration is automatic.

Underlay Interface

DCA is configured on WAN underlay interface in order to distinguish tunnel WAN interface.

```
interface GigabitEthernet0/0/3 ! INET branch WAN DCA interface
domain iwan path DCA1 direct-cloud-access
umbrella out
```

Optionally, a second DCA can be created as WAN underlay interface.

```
interface GigabitEthernet0/0/2 ! INET branch DCA2 interface
domain iwan path DCA2 direct-cloud-access
umbrella out
```

Create Domain Map

Optionally, create a domain map for a specific SaaS not included by default.

```
master branch
domain-map
application servicenow-group domain http://www.servicenow.com dscp af21
```

Hub Master Controller Configuration

The policy can be local or from a centralized hub master controller. Configure a hub master controller as follows:

Note

Configure only one master controller, either at a hub site or a branch site.

```
domain default
vrf default
master hub
class DCA sequence 4
match application ms-cloud-group saas-dca
path-preference DCA1 fallback DCA2
```

Branch 1 and Master Controller Configuration

A branch site can serve as master controller instead of a hub site. In this example, Branch 1 serves as master conroller. The configuration includes LAN interface and WAN (DCA) interface.

Ì

Note Configure only one master controller, either at a hub site or a branch site.

```
domain default

vrf default

border

master local

master branch

source-interface Loopback0

hub 100.20.1.1
```

LAN interface configuration:

```
interface GigabitEthernet3.30
  description B1MCBR-LAN
  encapsulation dot1Q 30
  ip address 10.20.0.1 255.255.255.0
  ip nat inside
```

Assigning the DCA to a WAN interface:

```
interface GigabitEthernet2.30
encapsulation dot1Q 30
ip vrf forwarding fvrf
ip address 10.20.1.1 255.255.255.0
ip nat outside
domain path DCA1 direct-cloud-access
```

Branch 2 Configuration

This branch configuration includes LAN interface and WAN (DCA) interface.

```
domain default
vrf default
border
source-interface Loopback0
master 192.168.3.22
```

LAN interface configuration:

```
interface GigabitEthernet3.30
  description B1MCBR-LAN
  encapsulation dot1Q 30
  ip address 10.20.0.1 255.255.255.0
  ip nat inside
```

Assigning the DCA to a WAN interface:

```
interface GigabitEthernet2.30
encapsulation dotlQ 30
ip vrf forwarding fvrf
ip address 10.20.1.1 255.255.255.0
ip nat outside
domain path DCA2 direct-cloud-access
```

Verifying the Configuration

The following commands are used to verify the configuration. To verify OpenDNS configuration, use the **show umbrella deviceid** and **show umbrella configuration** commands.

```
router# show umbrella deviceid
```

```
Device registration details
Interface Name
                                 Tag
                                                      Status
                                                                             Device-id
GigabitEthernet3.64 inside-network 200 SUCCESS
                                                      010a3d458c172b8b
router# show umbrella configuration
Umbrella Configuration
_____
  Token: 7772166EF2E473ADE8FA2204B37D0BD7001FE4F5
  OrganizationID: 2090229
  Local Domain Regex parameter-map name: dns_bypass
  DNSCrypt: Enabled
  Public-key: B735:1140:206F:225D:3E2B:D822:D7FD:691E:A1C3:3CC8:D666:8D0C:BE04:BFAB:CA43:FB79
  UDP Timeout: 5 seconds
  Resolver address:
      1. 208.67.220.220
       2. 208.67.222.222
      3. 2620:119:53::53
      4. 2620:119:35::35
Umbrella Interface Config:
```

```
Number of interfaces with "umbrella out" config: 2
 1. GigabitEthernet0/0/0
     Mode : OUT
     VRF
             : IWAN-TRANSPORT-2(Id: 3)
  2. GigabitEthernet0/0/1
     Mode : OUT
     VRF
              : IWAN-TRANSPORT-1(Id: 2)
Number of interfaces with "umbrella in" config: 1
  1. GigabitEthernet3.64
              : IN
     Mode
               : Enabled
     DCA
     Policy Name: umbrella-direct-access
     Tag : lan064
     Device-id : 010a3d458c172b8b
     VRF
               : global(Id: 0)
```

To verify the DCA configuration, use the following commands:

- show domain iwan border dca
- show domain iwan master dca status
- show domain iwan master traffic-classes summary
- · show domain iwan master traffic-classes detail
- show ip sla summary
- show ip sla configuration
- show ip sla statistics
- · show flow monitor name flow-monitor cache format table

Use the **show ip sla summary**, **show ip sla configuration**, and **show ip sla statistics** commands to verify the probe functions.

Use the **show flow monitor** command to verify that the flow is passes through the DCA path.

Router# show domain iwan master traffic-classes summary

APP - APPLICATION, TC-ID - TRAFFIC-CLASS-ID, APP-ID - APPLICATION-ID Current-EXIT - Service-Provider(PFR-label)/Border/Interface(Channel-ID) UC - UNCONTROLLED, PE - PICK-EXIT, CN - CONTROLLED, UK - UNKNOWN

Dst-Site-Pfx Dst-Site-Id State DSCP TC-ID APP-ID APP Current-Exit

DCA	Internet	CN	default[0]	30	9424	ms-cloud-group
DCA1(0:0 0:0)/	'10.255.241.31/Gi0/	0/3(Ch:6)				
DCA	Internet	CN	default[0]	29	4478	ms-lync-group
DCA1(0:0 0:0)/	'10.255.241.31/Gi0/	0/3(Ch:6)				
DCA	Internet	CN	default[0]	28	8388	hangouts-group
DCA1(0:0 0:0)/	'10.255.241.31/Gi0/	0/3(Ch:6)				
DCA	Internet	CN	default[0]	27	4692	gtalk-group
DCA1(0:0 0:0)/	'10.255.241.31/Gi0/	0/3(Ch:6)				
DCA	Internet	CN	default[0]	26	4456	google-group
DCA1(0:0 0:0)/	'10.255.241.31/Gi0/	0/3(Ch:6)				
DCA	Internet	CN	default[0]	25	218104328	google-service
DCA1(0:0 0:0)/	10.255.241.31/Gi0/	0/3(Ch:6)				
DCA	Internet	CN	default[0]	21	50349148	dropbox
DCA1(0:0 0:0)/	10.255.241.31/Gi0/	0/3(Ch:6)				
DCA	Internet	CN	default[0]	20	218104882	box
DCA1(0:0 0:0)/	'10.255.241.31/GiO/	0/3(Ch:6)				

DCA

ms-lync-group

ms-cloud-group

default[0] 17 218103890 youtube

DCA1(0:0|0:0)/10.255.241.31/Gi0/0/3(Ch:6) Router# show domain iwan border dca [*] PFR created IP SLA entry ID IPSLA DNS Resolver:208.67.220.220 DSCP RTT/ms DCA2 MPLS1 App thresh Gi0/0/2 Tu10 (0:1) RTT/ms[*] RTT/ms[*] share-point default 1000 7 [31] youtube default 1000 78 [33] ___ box default 1000 7 [39] dropbox default 1000 3 [41] ___ google-services default 1000 108 [49] -google-group default 1000 109 [51] -default 1000 112 [53] gtalk-group hangouts-group default 1000 115 [55] --

CN

Router# show domain iwan master traffic-classes detail

default 1000 6 [57]

default 1000 7 [59]

Internet

Dst-Site-Prefix: DCA Application: ms-cloud-group DSCP: default [0] Traffic class id:30 app_id:9424 Clock Time: 22:13:32 (UTC) 01/17/2018 TC Learned: 4d23h ago Present State: CONTROLLED Current Performance Status: not monitored (internet) Current Service Provider: DCA1 since 4d23h Previous Service Provider: Unknown BW Used: 0 bps GigabitEthernet0/0/3 in Border 10.255.241.31 Present WAN interface: Present Channel (primary): 6 DCA1 pfr-label:0:0 | 0:0 [0x0] 4 DCA2 pfr-label:0:0 | 0:0 [0x0] Backup Channel: Destination Site ID: Internet DNS Primary Channel: 6 DCA1 pfr-label:0:0 | 0:0 [0x0] DNS Backup Channel: 4 DCA2 pfr-label:0:0 | 0:0 [0x0] 55 Class-Sequence in use: saasapp using policy User-defined Class Name: priority 1 one-way-delay threshold 500 msec BW Updated: - ago Method for choosing channel: Random Reason for Latest Route Change: Uncontrolled to Controlled Transition Route Change History

Router# show ip sla sum

ID	Туре	Destination	Stats	Return Code	Last Run
*1255	http	216.58.217.164	RTT=198	OK	30 seconds ago
*1256	http	216.58.217.164	RTT=184	OK	30 seconds ago
*1257	http	216.58.217.164	RTT=219	OK	30 seconds ago
*1258	http	216.58.217.164	RTT=219	OK	30 seconds ago
*1259	http	13.107.7.190	RTT=76	Http Error	30 seconds ago

Router# show ip sla config 1255

```
Entry number: 1255
Type of operation to perform: http
Target address/Source address: 216.58.217.164/172.16.1.1
Target port/Source port: 80/0
Type Of Service parameters: 0x0
Vrf Name: IWAN-TRANSPORT-2
HTTP Operation: get
HTTP Server Version: 1.0
URL: http://www.google.com
Proxy:
Raw String(s):
Cache Control: enable
Owner:
Tag:
Operation timeout (milliseconds): 30000
Schedule:
  Operation frequency (seconds): 60 (not considered if randomly scheduled)
  Next Scheduled Start Time: Start Time already passed
  Group Scheduled : FALSE
  Randomly Scheduled : FALSE
  Life (seconds): Forever
  Entry Ageout (seconds): never
  Recurring (Starting Everyday): FALSE
  Status of entry (SNMP RowStatus): Active
Threshold (milliseconds): 20000
Distribution Statistics:
  Number of statistic hours kept: 2
   Number of statistic distribution buckets kept: 1
  Statistic distribution interval (milliseconds): 20
History Statistics:
  Number of history Lives kept: 0
  Number of history Buckets kept: 15
   History Filter Type: None
Router# show ip sla statistics 1255
IPSLA operation id: 1255
       Latest RTT: 179 milliseconds
Latest operation start time: 19:09:14 UTC Fri Jan 26 2018
Latest operation return code: OK
Latest DNS RTT: 6 ms
Latest TCP Connection RTT: 62 ms
Latest HTTP Transaction RTT: 111 ms
Number of successes: 29
Number of failures: 0
Operation time to live: Forever
Router# show flow monitor Monitor-FNF-IWAN cache format table | i office
54.209.129.73 172.31.1.2
                                           80
                                                 62102 Gi0/0/0
                                                                                   Input
           6 layer7 ms-office-365
                                               0.0.0.0
                                                                             /30 Null
                        4
                                            0x00
              52.109.2.14
                                                        443 Gi0/0/2.101
172.31.1.2
                                         5110
                                                                                  Output
          6 layer7 ms-office-web-apps
                                              172.31.1.1
                                                                             /0 Gi0/0/0
                      7
                                          0x00
10.30.32.200
              104.91.217.163
                                                        443 Gi0/0/2.101
                                        50319
                                                                                   Input
           6 layer7 ms-office-365
                                               172.31.1.1
                                                                             /0 Gi0/0/0
                      9
                                          0x00
172.31.1.2
              208.67.222.222
                                        52262
                                                                                  Output
                                                         53 Null
         17 layer7 ms-office-365
                                                                            /30 Gi0/0/0
                                              172.31.1.1
                      1 www.office.com 0x00
10.30.32.200
                104.91.188.182
                                50341
                                                        443 Gi0/0/2.101
                                                                                   Input
                                                                             /0 Gi0/0/0
           6 layer7 ms-office-365
                                               172.31.1.1
                     11
                                          0x00
10.30.32.200 104.91.188.182
                                       50310
                                                       443 Gi0/0/2.101
                                                                                   Input
```

6 layer7 ms-office-365	172.3	/0 Gi0/0/0	
11	0x00		
172.31.1.2 52.109.2.14	5108	443 Gi0/0/2.101	Output
6 layer7 ms-office-web-apps	ayer7 ms-office-web-apps 172.31.1.1		
8	0x00		

Example: Configure DCA Link on a Dual Branch Router

Overview

In this example, DCA is configured on Cisco IWAN network with a dual branch router as shown in the following topology.

The policy can be local or from a centralized hub. This example illustrates the use of a local policy in a non-IWAN scenario.

Figure 19: DCA Link on a Dual Branch Router

Branch 1 and Master Controller Configuration

A branch site can serve as master controller instead of a hub site. In this example, Branch 1 serves as master conroller. The configuration includes LAN interface and WAN (DCA) interface.

Note

Configure only one master controller, either at a hub site or a branch site.

```
domain default
vrf default
border
master local
master branch
source-interface Loopback0
hub 100.20.1.1
policy local type DCA
class DCA sequence 4
match application ms-cloud-group saas-dca
path-preference DCA1 fallback DCA2
```

LAN interface configuration:

```
interface GigabitEthernet3.30
  description B1MCBR-LAN
  encapsulation dot1Q 30
  ip address 10.20.0.1 255.255.255.0
  ip nat inside
```

Assigning the DCA to a WAN interface:

```
interface GigabitEthernet2.30
encapsulation dot1Q 30
ip vrf forwarding fvrf
ip address 10.20.1.1 255.255.255.0
ip nat outside
domain path DCA1 direct-cloud-access
```

Branch 2 Configuration

This branch configuration includes LAN interface and WAN (DCA) interface.

```
domain default
vrf default
border
source-interface Loopback0
master 192.168.3.22
```

LAN interface configuration:

```
interface GigabitEthernet3.30
  description B1MCBR-LAN
  encapsulation dot1Q 30
  ip address 10.20.0.1 255.255.255.0
  ip nat inside
```

Assigning the DCA to a WAN interface:

```
interface GigabitEthernet2.30
encapsulation dot1Q 30
ip vrf forwarding fvrf
ip address 10.20.1.1 255.255.255.0
ip nat outside
domain path DCA2 direct-cloud-access
```

Example: Configuring Umbrella Branch for OpenDNS

Overview

Beginning with Cisco IOS XE Gibraltar 16.10.1, DCA configures the Cisco Umbrella Connector automatically on the router. However, it is still possible to configure Umbrella manually.

For example, if it is necessary to validate OpenDNS, you must configure Cisco Umbrella Connector on the branch, as shown in the example below.

Procedure

1. Configure the DNS server, setting the router's clock and time zone correctly.

ip domain name cisco.com
ip host api.opendns.com 67.215.92.210

2. Log into the OpenDNS portal to get an API token.

https://login.opendns.com/?return_to=https://dashboard2.opendns.com

3. Import the certificate, entering a PEM-formatted CA certificate.

(config)#crypto pki trustpool import terminal

Enter a PEM-formatted CA certificate.

```
(config) #crypto pki trustpool import terminal
----BEGIN CERTIFICATE---
MIIElDCCA3ygAwIBAgIQAf2j627KdciIQ4tyS8+8kTANBgkqhkiG9w0BAQsFADBh
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
d3cuZGlnaWNlcnQuY29tMSAwHgYDVQQDExdEaWdpQ2VydCBHbG9iYWwgUm9vdCBD
QTAeFw0xMzAzMDqxMjAwMDBaFw0yMzAzMDqxMjAwMDBaME0xCzAJBqNVBAYTA1VT
MRUwEwYDVQQKEwxEaWdpQ2VydCBJbmMxJzAlBgNVBAMTHkRpZ2lDZXJ0IFNIQTIg
U2VjdXJlIFNlcnZlciBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB
ANyuWJBNwcQwFZA1W248ghX1LFy949v/cUP6ZCWA104Yok3wZtAKc24RmDYXZK83
nf36QYSvx6+M/hpzTc8z15CilodTqyu5pnVILR1WN3vaMTIa16yrBvSqXUu3R0bd
KpPDkC55gIDvEwRqFDu1m5K+wgdlTvza/P96rtxcflUxD0g5B6TXvi/TC2rSsd9f
/ld0Uzs1gN2ujkSYs58009rg1/RrKatEp0tYhG2SS4HD2nOLEpdIkARFdRrdNzGX
kujNVA075ME/OV4uuPNcfhCOhkEAjUVmR7ChZc6gqikJTvOX6+guqw9ypzAO+sf0
/RR3w6RbKFfCs/mC/bdFWJsCAwEAAaOCAVowqqFWMBIGA1UdEwEB/wQIMAYBAf8C
AQAwDgYDVR0PAQH/BAQDAgGGMDQGCCsGAQUFBwEBBCgwJjAkBggrBgEFBQcwAYYY
aHR0cDovL29jc3AuZGlnaWNlcnQuY29tMHsGA1UdHwR0MHIwN6A1oDOGMWh0dHA6
Ly9jcmwzLmRpZ21jZXJ0LmNvbS9EaWdpQ2VydEdsb2JhbFJvb3RDQS5jcmwwN6A1
oDOGMWh0dHA6Ly9jcmw0LmRpZ2ljZXJ0LmNvbS9EaWdpQ2VydEdsb2JhbFJvb3RD
QS5jcmwwPQYDVR0gBDYwNDAyBgRVHSAAMCowKAYIKwYBBQUHAgEWHGh0dHBzOi8v
d3d3LmRpZ2ljZXJ0LmNvbS9DUFMwHQYDVR0OBBYEFA+AYRyCMWHVLyjnjUY4tCzh
xtniMB8GA1UdIwQYMBaAFAPeUDVW0Uy7ZvCj4hsbw5eyPdFVMA0GCSqGSIb3DQEB
CwUAA4IBAQAjPt9L0jFCpbZ+QlwaRMxp0Wi0XUvgBCFsS+JtzLHgl4+mUwnNqipl
5T1PHoOlblyYoiQm5vuh7ZPHLgLGTUq/sELfeNqzqPlt/yGFUzZgTHbO7Djc1lGA
8MXW5dRNJ2Srm8c+cftIl7gzbckTB+6WohsYFf2cTEDts8Ls/3HB40f/1LkAtDdC
2iDJ6m6K7hQGrn2iWZiIqBtvLfTyyRRfJs8sjX7tN8Cp1Tm5gr8ZDOo0rwAhaPit
c+LJMto4JQtV05od8GiG7S5BN098pVAdvzr508EIDObtHopYJeS4d60tbvVS3bR0
j6tJLp07kzQoH3j0l0rHvdPJbRzeXDLz----END CERTIFICATE----
```


Note This is the PEM-formatted version. Keep the "END CERTIFICATE" portion. Without this, the certificate will be lost after a router reloads.

4. (Optional) Configure local domains.
DNS queries directed to a local domain will remain untouched and will not be redirected to OpenDNS cloud.

```
parameter-map type regex dns_bypass
pattern www.cisco.com
pattern .*eisg.cisco.*
```

5. Configure the token.

```
parameter-map type umbrella global
token 0F32C32FEC26991C2B562D3C7FF844E0001C70E7
local-domain dns_bypass
```

Note

Cisco OpenDNS is used by default. To use a different DNS resolver, add the following line:

resolver ipv4 DNS-server- IP

Note Enter a fake token for this step if you are using another DNS server or do not want to register with OpenDNS server.

6. Assign the above policy to a LAN interface.

GigabitEthernet0/0/0.100 ! INET branch LAN interface umbrella in direct-cloud-access default lan100

7. Assign the Umbrella to a WAN interface.

interface GigabitEthernet0/0/3 ! INET branch WAN DCA interface
domain iwan path DCA1 direct-cloud-access
umbrella out

8. Apply **umbrella out** on all DCA interfaces. This includes the MPLS branch of a dual branch if the MPLS branch has a DCA interface.

interface GigabitEthernet0/0/2 ! MPLS branch WAN DCA interface
domain iwan path DCA2 direct-cloud-access
umbrella out

interface GigabitEthernet0/0/0.100 ! MPLS branch LAN interface
umbrella in direct-cloud-access default lan100

Additional References for Configuring Direct Cloud Access

Related Documents

Related Topic	Document Title
Performance Routing Version 3 commands	Cisco IOS Performance Routing Version 3 Command Reference

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Channel-based Metrics Measurement

Channel-based metrics measurement configures the performance monitors used by PfRv3 to employ a data collection method that combines the use of metadata and traffic sampled at intervals to provide traffic metrics.

- Feature Information for Channel-based Metrics, on page 209
- Prerequisites for Channel-based Metrics Measurement, on page 209
- Information About Channel-based Metrics Measurement, on page 210
- How to Configure Channel-based Metrics Measurement, on page 210
- Configuration Examples, on page 211
- Additional References, on page 211

Feature Information for Channel-based Metrics

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
Channel-based measurement of performance metrics	Cisco IOS XE Gibraltar 16.11.1	Configures the performance monitors used by PfRv3 to employ a data collection method that combines the use of metadata and traffic sampled at intervals to provide traffic metrics. New command: channel-based-measurement

Table 25: Feature Information for Channel-based Metrics Measurement

Prerequisites for Channel-based Metrics Measurement

Cisco IOS XE Gibraltar 16.11.1 or later

Information About Channel-based Metrics Measurement

Overview

As part of its intelligent path selection, PfRv3 uses performance monitors to gather traffic metrics. Channel-based measurement typically provides improved accuracy for metrics. The method samples packets in the traffic stream, and uses packet metadata, such as timestamp and sequence information, to generate traffic metrics. This feature uses packet-based loss measurement, not byte-loss.

Channel-based measurement of metrics provides the following benefits:

- Packets of any protocol are acceptable.
- Overcomes inaccuracies caused by methods that aggregate data from individual flows that are carried across different channels.
- Provides better tolerance of out-of-order packets.
- Reduces false threshold crossing alarms (TCAs): Previously, performance metrics have been calculated based on the samples collected in one interval. Typically, a TCA for lost packets is set for about 1% to 2%. In such a case, if there are, for example, only 30 samples in the interval and 1 packet is lost, then the packet loss rate is 3.3% and the TCA is triggered. This would be considered a false TCA because it was triggered by a single lost packet. Channel-based measurement ensures that at least 100 samples (even if these samples must be taken from different intervals) are used to calculate metrics, reducing the occurrence of false TCA.

Migration

During migration of multiple sites to a later Cisco IOS version, it may occur that the hub site and branch sites are upgraded at different times. Migrate the hub site and transit hub site first. After upgrading a hub site, if channel-based-measurement is enabled on the hub site, some branch sites might still be using IOS versions that do not support channel-based-measurement. Channel-based measurement of traffic between two branch sites requires both sites to be using Cisco IOS XE Gibraltar 16.11 or later.

How to Configure Channel-based Metrics Measurement

Channel-based Metrics Measurement Configuration

To configure the channel-based metrics measurement, use:

config terminal			
domain iwan			
master hub			
advanced			
channel-based-	measurement		
[sampling-rate	sampling-rate]	[quick	sampling-rate-for-quick-monitoring]

[sample-packet-size maximum-packet-size]

Configuration Examples

Examples: Channel-based Metrics Measurement

Configure channel-based metrics measurement on a hub master controller, regardless of the number of branch sites.

Enable channel-based measurement for traffic metrics.

```
Device#config terminal
Device(config)#domain iwan
Device(config-domain)#master hub
Device(config-domain-mc)#advanced
Device(config-domain-mc-advanced)#channel-based-measurement
```

Enable channel-based measurement and configure a sampling packet size of 1300 and a sampling rate of 20 samples per second.

```
Device#config terminal
Device(config)#domain iwan
Device(config-domain)#master hub
Device(config-domain-mc)#advanced
Device(config-domain-mc-advanced)#channel-based-measurement
Device(config-domain-mc-advanced-channel-measure)#sample-packet-size 1300
Device(config-domain-mc-advanced-channel-measure)#sampling-rate 20
```

Additional References

References

Related Documents

Related Topic	Document Title
Cisco PfR commands: complete command syntax, command mode, command history, defaults, usage guidelines and examples.	Cisco IOS Performance Routing Command Reference

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	https://www.cisco.com/c/ en/us/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

PfRv3 Event Tracing

The Event Trace for PFRv3 feature provides a trace facility for troubleshooting Performance Routing Version 3 (PfRv3). This feature enables you to monitor PfRv3 events and channels. During runtime, the event trace mechanism logs trace information in a buffer space. A display mechanism extracts and decodes the debug data.

- Prerequisites for PfRv3 Event Tracing, on page 213
- Restrictions for PfRv3 Event Tracing, on page 213
- Information About PfRv3 Event Tracing, on page 213
- How to Display PfRv3 Event Tracing, on page 214
- Additional References for PfRv3 Event Tracing, on page 233
- Feature Information for PfRv3 Event Tracing, on page 233

Prerequisites for PfRv3 Event Tracing

PfRv3 event trace is enabled by default. When PfRv3 features are enabled on the route, PfRv3 writes event trace data into PfRv3's event trace buffer.

Restrictions for PfRv3 Event Tracing

By default, PfRv3 event trace can store 4096 entries of event traces. The entry size can be adjusted from 1 to 1000000 entries. Event traces are stored in memory and every event trace entry uses the memory size. The greater the number of entries, more memory is consumed. In PfRv3, each entry consumes 104 bytes. This indicates that PfRv3 event trace will consume about 416K bytes memory. Per design, the memory will have a delay allocation until first entry is written.

Information About PfRv3 Event Tracing

PfRv3 Event Tracing Options

Event Tracing uses event-trace infra framework by providing the ability to retrieve relevant part of event trace by providing show commands, such as, **show monitor event-trace pfrv3 sub-comp channel** command.

In Cisco IOS XE Fuji 16.9.1, PfRv3 supports event trace for the following subcomponents:

- process
- policy
- PDP
- channel

You can use the Event Trace for PFRv3 feature to analyze the cause of a device failure. When you configure PFRv3 features, the device records PfRv3 setup workflow and logs messages from specific subsystem components into the device memory. You can view trace messages stored in the memory by using the commands or save them to a file.

Benefits of PfRv3 Event Tracing

- · Displays debug information on the console during runtime.
- Avoids multiple debug calls, and, therefore, improves device performance.
- Saves memory space.

How to Display PfRv3 Event Tracing

SUMMARY STEPS

- **1.** show monitor event-trace pfrv3 sub-comp channel {all | back *duration* | clock *duration* | from-boot *seconds* | latest} [detail]
- 2. show monitor event-trace pfrv3 sub-comp pdp {all | back duration | clock duration | from-boot seconds | latest} [detail]
- **3.** show monitor event-trace pfrv3 sub-comp policy {all | back *duration* | clock *duration* | from-boot *seconds* | latest} [detail]
- 4. show monitor event-trace pfrv3 sub-comp process {all | back duration | clock duration | from-boot seconds | latest} [detail]

DETAILED STEPS

Step 1 show monitor event-trace pfrv3 sub-comp channel {all | back duration | clock duration | from-boot seconds | latest} [detail]

Example:

Router# show monitor event-trace pfrv3 sub-comp channel all

Jul 12 02:03:01.966: CHANNEL: INFO: BR[3] create WAN interface: name[Tunnel11] sp_color[ISP1] ip_addr[172.16.0.1] intf_index[29] snmp index[24] CMD enabled[YES] intf_type[External] sp_tag[0x1] zero_sla[Disable] plr[Disabled]

Jul 12 02:03:01.971: CHANNEL: INFO: BR[3] create WAN interface: name[Tunnel31] sp_color[ISP3] ip_addr[192.168.0.1] intf_index[31] snmp index[26] CMD enabled[YES] intf_type[External] sp_tag[0x7] zero_sla[Disable] plr[Disabled]

Jul 12 02:03:02.469: CHANNEL: INFO: BR[3] Tunnel0 interface line protocol is coming back

Jul 12 02:03:11.685: CHANNEL: INFO: BR[2] Tunnel1 interface line protocol is coming back

Jul 12 02:03:16.272: CHANNEL: INFO: BR[2] create WAN interface: name[Tunnel10] sp_color[ISP1] ip_addr[172.16.0.1] intf_index[28] snmp index[23] CMD enabled[YES] intf_type[External] sp_tag[0x1] zero sla[Disable] plr[Disabled]

Jul 12 02:03:16.282: CHANNEL: INFO: BR[2] create WAN interface: name[Tunnel30] sp_color[ISP3] ip_addr[192.168.0.1] intf_index[30] snmp index[25] CMD enabled[YES] intf_type[External] sp_tag[0x7] zero_sla[Disable] plr[Disabled]

Jul 12 02:04:48.465: CHANNEL: INFO: MC[3] add channel[1]: site_id[10.30.1.1] dscp[0] intf_index[29] label[0x1] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:48.465: CHANNEL: INFO: MC[3] add channel[2]: site_id[10.30.1.1] dscp[0] intf_index[31] label[0x7] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:48.465: CHANNEL: INFO: MC[3] add channel[3]: site_id[10.30.1.1] dscp[0] intf_index[29] label[0x3] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:48.464: CHANNEL: INFO: MC[3] add channel[4]: site_id[10.30.1.1] dscp[0] intf_index[31] label[0x9] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:48.465: CHANNEL: INFO: MC[3] add channel[5]: site_id[10.30.1.1] dscp[0] intf_index[27] label[0x2] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:48.465: CHANNEL: INFO: MC[3] add channel[6]: site_id[10.30.1.1] dscp[0] intf_index[27] label[0x4] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:48.472: CHANNEL: INFO: BR[3] create channel[1] site_id[10.30.1.1] dscp[0] intf_index[29] label[0x1] sp_color[ISP1] next-hop[172.16.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:04:48.475: CHANNEL: INFO: BR[3] create channel[2] site_id[10.30.1.1] dscp[0] intf_index[31] label[0x7] sp_color[ISP3] next-hop[192.168.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:04:57.246: CHANNEL: INFO: MC[2] add channel[7]: site_id[10.30.1.1] dscp[0] intf_index[28] label[0x1] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:57.246: CHANNEL: INFO: MC[2] add channel[8]: site_id[10.30.1.1] dscp[0] intf_index[30] label[0x7] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:57.246: CHANNEL: INFO: MC[2] add channel[9]: site_id[10.30.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:57.246: CHANNEL: INFO: MC[2] add channel[10]: site_id[10.30.1.1] dscp[0] intf_index[26] label[0x2] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:57.247: CHANNEL: INFO: MC[2] add channel[11]: site_id[10.30.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:57.248: CHANNEL: INFO: MC[2] add channel[12]: site id[10.30.1.1] dscp[0] intf index[30]

label[0x9] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:04:57.251: CHANNEL: INFO: BR[2] create channel[7] site_id[10.30.1.1] dscp[0] intf_index[28] label[0x1] sp_color[ISP1] next-hop[172.16.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:04:57.264: CHANNEL: INFO: BR[2] create channel[8] site_id[10.30.1.1] dscp[0] intf_index[30] label[0x7] sp_color[ISP3] next-hop[192.168.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:05:13.128: CHANNEL: INFO: MC[3] add channel[13]: site_id[10.20.1.1] dscp[0] intf_index[29] label[0x1] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:13.129: CHANNEL: INFO: MC[3] add channel[14]: site_id[10.20.1.1] dscp[0] intf_index[31] label[0x7] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:13.129: CHANNEL: INFO: MC[3] add channel[15]: site_id[10.20.1.1] dscp[0] intf_index[29] label[0x3] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:13.129: CHANNEL: INFO: MC[3] add channel[16]: site_id[10.20.1.1] dscp[0] intf_index[31] label[0x9] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:13.129: CHANNEL: INFO: MC[3] add channel[17]: site_id[10.20.1.1] dscp[0] intf_index[27] label[0x2] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:13.129: CHANNEL: INFO: MC[3] add channel[18]: site_id[10.20.1.1] dscp[0] intf_index[27] label[0x4] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:13.132: CHANNEL: INFO: BR[3] create channel[13] site_id[10.20.1.1] dscp[0] intf_index[29] label[0x1] sp_color[ISP1] next-hop[172.16.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:05:13.134: CHANNEL: INFO: BR[3] create channel[14] site_id[10.20.1.1] dscp[0] intf_index[31] label[0x7] sp_color[ISP3] next-hop[192.168.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:05:15.268: CHANNEL: INFO: MC[2] add channel[19]: site_id[10.20.1.1] dscp[0] intf_index[28] label[0x1] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:15.268: CHANNEL: INFO: MC[2] add channel[20]: site_id[10.20.1.1] dscp[0] intf_index[30] label[0x7] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:15.269: CHANNEL: INFO: MC[2] add channel[21]: site_id[10.20.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:15.270: CHANNEL: INFO: MC[2] add channel[22]: site_id[10.20.1.1] dscp[0] intf_index[26] label[0x2] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:15.270: CHANNEL: INFO: MC[2] add channel[23]: site_id[10.20.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:15.270: CHANNEL: INFO: MC[2] add channel[24]: site id[10.20.1.1] dscp[0] intf index[30]

label[0x9] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[default channel to branch] op state[Initiated and open]

Jul 12 02:05:15.272: CHANNEL: INFO: BR[2] create channel[19] site_id[10.20.1.1] dscp[0] intf_index[28] label[0x1] sp_color[ISP1] next-hop[172.16.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:05:15.274: CHANNEL: INFO: BR[2] create channel[20] site_id[10.20.1.1] dscp[0] intf_index[30] label[0x7] sp_color[ISP3] next-hop[192.168.0.1] RX state[Initial state] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:05:21.766: CHANNEL: INFO: MC[2] delete channel[23] created 00:00:06 ago: site_id[10.20.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:05:21.766: CHANNEL: INFO: MC[2] delete channel[11] created 00:00:24 ago: site_id[10.30.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] channel status[Not-Available(no next-hop)] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:05:21.766: CHANNEL: INFO: MC[2] delete channel[12] created 00:00:24 ago: site_id[10.30.1.1] dscp[0] intf_index[30] label[0x9] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:05:21.767: CHANNEL: INFO: MC[2] delete channel[24] created 00:00:06 ago: site_id[10.20.1.1] dscp[0] intf_index[30] label[0x9] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:05:21.877: CHANNEL: INFO: MC[2] delete channel[21] created 00:00:06 ago: site_id[10.20.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:05:21.877: CHANNEL: INFO: MC[2] delete channel[9] created 00:00:24 ago: site_id[10.30.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:07:15.434: CHANNEL: INFO: MC[2] add channel[25]: site_id[10.30.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[new interface/sp-tag added] op state[Initiated and open]

Jul 12 02:07:15.434: CHANNEL: INFO: MC[2] add channel[26]: site_id[10.20.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[new interface/sp-tag added] op state[Initiated and open]

Jul 12 02:07:15.438: CHANNEL: INFO: MC[2] add channel[27]: site_id[10.30.1.1] dscp[0] intf_index[30] label[0x9] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[new interface/sp-tag added] op state[Initiated and open]

Jul 12 02:07:15.438: CHANNEL: INFO: MC[2] add channel[28]: site_id[10.20.1.1] dscp[0] intf_index[30] label[0x9] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[new interface/sp-tag added] op state[Initiated and open]

Jul 12 02:07:15.788: CHANNEL: INFO: MC[2] add channel[29]: site_id[10.30.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[new interface/sp-tag added] op state[Initiated and open]

Jul 12 02:07:15.788: CHANNEL: INFO: MC[2] add channel[30]: site_id[10.20.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] IDC channel[NO] MHOP channel[NO] To-HUB channel[NO] reason[new interface/sp-tag added] op state[Initiated and open]

Jul 12 02:08:47.133: CHANNEL: INFO: BR[2] delete channel[7] when clear BR DB: site_id[10.30.1.1] dscp[0] intf_index[28] label[0x1] sp_color[ISP1] next-hop[172.16.0.1] RX state[Reachable] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:08:47.135: CHANNEL: INFO: BR[2] delete channel[8] when clear BR DB: site id[10.30.1.1]

dscp[0] intf_index[30] label[0x7] sp_color[ISP3] next-hop[192.168.0.1] RX state[Reachable] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:08:47.136: CHANNEL: INFO: BR[2] delete channel[19] when clear BR DB: site_id[10.20.1.1] dscp[0] intf_index[28] label[0x1] sp_color[ISP1] next-hop[172.16.0.1] RX state[Reachable] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:08:47.137: CHANNEL: INFO: BR[2] delete channel[20] when clear BR DB: site_id[10.20.1.1] dscp[0] intf_index[30] label[0x7] sp_color[ISP3] next-hop[192.168.0.1] RX state[Reachable] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open]

Jul 12 02:08:47.174: CHANNEL: INFO: MC[2] delete channel[30] created 00:01:31 ago: site_id[10.20.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] channel status[Not-Available(no next-hop)] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.174: CHANNEL: INFO: MC[2] delete channel[29] created 00:01:31 ago: site_id[10.30.1.1] dscp[0] intf_index[26] label[0x4] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.175: CHANNEL: INFO: MC[2] delete channel[19] created 00:03:31 ago: site_id[10.20.1.1] dscp[0] intf_index[28] label[0x1] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.175: CHANNEL: INFO: MC[2] delete channel[7] created 00:03:49 ago: site_id[10.30.1.1] dscp[0] intf_index[28] label[0x1] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.175: CHANNEL: INFO: MC[2] delete channel[8] created 00:03:49 ago: site_id[10.30.1.1] dscp[0] intf_index[30] label[0x7] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.175: CHANNEL: INFO: MC[2] delete channel[20] created 00:03:31 ago: site_id[10.20.1.1] dscp[0] intf_index[30] label[0x7] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.175: CHANNEL: INFO: MC[2] delete channel[22] created 00:03:31 ago: site_id[10.20.1.1] dscp[0] intf_index[26] label[0x2] intf_type[External] channel status[Not-Available(no next-hop)] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.175: CHANNEL: INFO: MC[2] delete channel[10] created 00:03:49 ago: site_id[10.30.1.1] dscp[0] intf_index[26] label[0x2] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.176: CHANNEL: INFO: MC[2] delete channel[26] created 00:01:31 ago: site_id[10.20.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.176: CHANNEL: INFO: MC[2] delete channel[25] created 00:01:31 ago: site_id[10.30.1.1] dscp[0] intf_index[28] label[0x3] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.177: CHANNEL: INFO: MC[2] delete channel[27] created 00:01:31 ago: site_id[10.30.1.1] dscp[0] intf_index[30] label[0x9] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.177: CHANNEL: INFO: MC[2] delete channel[28] created 00:01:31 ago: site_id[10.20.1.1] dscp[0] intf_index[30] label[0x9] intf_type[External] channel status[Not-Available(no next-hop)] TC count[0] backup-TC count[0] op state[Initiated and open]

Jul 12 02:08:47.211: CHANNEL: INFO: BR[2] Tunnel1 interface line protocol is going down, may enqueue ALL CHAN UNREACH msg

Jul 12 02:08:48.235: CHANNEL: INFO: BR[3] delete channel[1] when clear BR DB: site_id[10.30.1.1] dscp[0] intf_index[29] label[0x1] sp_color[ISP1] next-hop[172.16.0.1] RX state[Reachable] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open] Jul 12 02:08:48.235: CHANNEL: INFO: BR[3] delete channel[2] when clear BR DB: site_id[10.30.1.1]

dscp[0] intf_index[31] label[0x7] sp_color[ISP3] next-hop[192.168.0.1] RX state[Reachable] TX
state[Reachable] muted-by-0-sla[N0] op state[Initiated and open]

Jul 12 02:08:48.235: CHANNEL: INFO: BR[3] delete channel[13] when clear BR DB: site_id[10.20.1.1] dscp[0] intf index[29] label[0x1] sp color[ISP1] next-hop[172.16.0.1] RX state[Reachable] TX

state[Reachable] muted-by-0-sla[NO] op state[Initiated and open] Jul 12 02:08:48.235: CHANNEL: INFO: BR[3] delete channel[14] when clear BR DB: site id[10.20.1.1] dscp[0] intf index[31] label[0x7] sp color[ISP3] next-hop[192.168.0.1] RX state[Reachable] TX state[Reachable] muted-by-0-sla[NO] op state[Initiated and open] Jul 12 02:08:48.259: CHANNEL: INFO: MC[3] delete channel[6] created 00:03:59 ago: site id[10.30.1.1] dscp[0] intf index[27] label[0x4] intf type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.259: CHANNEL: INFO: MC[3] delete channel[18] created 00:03:35 ago: site id[10.20.1.1] dscp[0] intf index[27] label[0x4] intf type[External] channel status[Not-Available(no next-hop)] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.260: CHANNEL: INFO: MC[3] delete channel[1] created 00:03:59 ago: site id[10.30.1.1] dscp[0] intf index[29] label[0x1] intf type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.260: CHANNEL: INFO: MC[3] delete channel[13] created 00:03:35 ago: site id[10.20.1.1] dscp[0] intf index[29] label[0x1] intf type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[2] created 00:03:59 ago: site id[10.30.1.1] dscp[0] intf index[31] label[0x7] intf type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[14] created 00:03:35 ago: site id[10.20.1.1] dscp[0] intf_index[31] label[0x7] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[5] created 00:03:59 ago: site id[10.30.1.1] dscp[0] intf_index[27] label[0x2] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[17] created 00:03:35 ago: site id[10.20.1.1] dscp[0] intf index[27] label[0x2] intf type[External] channel status[Not-Available(no next-hop)] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[3] created 00:03:59 ago: site id[10.30.1.1] dscp[0] intf index[29] label[0x3] intf type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[15] created 00:03:35 ago: site id[10.20.1.1] dscp[0] intf_index[29] label[0x3] intf_type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[4] created 00:03:59 ago: site id[10.30.1.1] dscp[0] intf index[31] label[0x9] intf type[External] channel status[Not-Available] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.261: CHANNEL: INFO: MC[3] delete channel[16] created 00:03:35 ago: site id[10.20.1.1] dscp[0] intf index[31] label[0x9] intf type[External] channel status[Not-Available(no next-hop)] TC count[0] backup-TC count[0] op state[Initiated and open] Jul 12 02:08:48.288: CHANNEL: INFO: BR[3] Tunnel0 interface line protocol is going down, may enqueue ALL CHAN UNREACH msg

Displays event trace for PfRv3 channels.

Step 2 show monitor event-trace pfrv3 sub-comp pdp {all | back duration | clock duration | from-boot seconds | latest} [detail]

Example:

Router# show monitor event-trace pfrv3 sub-comp pdp all

Jul 12 02:23:01.024: PDP: INFO: MC[6] TC[2] PDP RESULT: state is un-controlled, PDP trigger reason is New TC Learned, violate type is None Jul 12 02:23:31.948: PDP: INFO: MC[6] TC[2]: +Channel[55]: Path-Pref[Primary], Usable[P], Reachable[P], TCA Loss[-], TCA Delay[-], TCA Jitter[-], 95Bandwidth[P], Prefix Reachable[P] Jul 12 02:23:31.948: PDP: INFO: MC[6] TC[2]: -Channel[57]: Path-Pref[Fallback], Usable[P], Reachable[P], TCA Loss[-], TCA Delay[-], TCA Jitter[-], 95Bandwidth[P], Prefix Reachable[P] Jul 12 02:23:31.948: PDP: INFO: MC[6] TC[2]: -Channel[58]: Path-Pref[Fallback], Usable[P], Reachable[P], TCA Loss[-], TCA Delay[-], TCA Jitter[-], 95Bandwidth[P], Prefix Reachable[P] Jul 12 02:23:31.948: PDP: INFO: MC[6] TC[2]: *Channel[59]: Path-Pref[Fallback], Usable[P], Reachable[P], TCA Loss[-], TCA Delay[-], TCA Jitter[-], 95Bandwidth[P], Prefix Reachable[P] Jul 12 02:23:31.948: PDP: INFO: MC[6] TC[2]: *Channel[59]: Path-Pref[Primary], Usable[P], Reachable[P], TCA Loss[-], TCA Delay[-], TCA Jitter[-], 95Bandwidth[P], Prefix Reachable[P] Jul 12 02:23:31.948: PDP: INFO: MC[6] TC[2]: *Channel[59]: Path-Pref[Primary], Usable[P], Reachable[P], TCA Loss[-], TCA Delay[-], TCA Jitter[-], 95Bandwidth[P], Prefix Reachable[P] Jul 12 02:23:31.948: PDP: INFO: MC[6] TC[2]: PDP RESULT: state is controlled, PDP trigger reason is Backoff Timer Expired, violate type is Uncontrolled to Controlled Transition Displays event trace for PfRv3 policy decision points (PDP).

Step 3 show monitor event-trace pfrv3 sub-comp policy {all | back duration | clock duration | from-boot seconds | latest} [detail]

Example:

Router# show monitor event-trace pfrv3 sub-comp policy all

Jul 12 02:02:42.727: POLICY: INFO: MC[2]: Pol_map seq 10: Set sp pref to ISP1 at index 0 Jul 12 02:02:42.727: POLICY: INFO: MC[2]: Pol_map seq 10: Set sp fallback to ISP2 at index 0 Jul 12 02:02:42.890: POLICY: INFO: MC[2]: Pol map seq 20: Set sp pref to ISP1 at index 0 Jul 12 02:03:01.959: POLICY: INFO: BR[3]: Create C3PL policy for Egress direction Jul 12 02:03:01.959: POLICY: INFO: BR[3]: Create C3PL policy for Ingress direction Jul 12 02:03:01.967: POLICY: INFO: BR[3]: Create C3PL policy for Egress direction Jul 12 02:03:01.967: POLICY: INFO: BR[3]: Create C3PL policy for Ingress direction Jul 12 02:03:08.212: POLICY: INFO: MC[2]: MC policy downloaded:site id[10.10.1.1], domain[default], vrf[green] Jul 12 02:03:08.212: POLICY: INFO: MC[2]: Policy publish max allowed xml size[3030], exact xml size[2099] Jul 12 02:03:09.355: POLICY: INFO: MC[3]: MC policy downloaded:site id[10.10.1.1], domain[default], vrf[red] Jul 12 02:03:09.355: POLICY: INFO: MC[3]: Policy publish max allowed xml size[2303], exact xml size[1571] Jul 12 02:03:10.927: POLICY: INFO: BR[2]: Updating PMI policies Jul 12 02:03:10.927: POLICY: INFO: BR[2]: Create C3PL policy for Ingress direction Jul 12 02:03:10.949: POLICY: INFO: BR[2]: Create flow monitor MON-Ingress-per-DSCP-2-48-0 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create filter dscp:46,appid:0 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create class CENT-Class-Ingress-DSCP-ef-2-2 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create filter dscp:40,appid:0 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create class CENT-Class-Ingress-DSCP-cs5-2-3 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create filter dscp:32,appid:0 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create class CENT-Class-Ingress-DSCP-cs4-2-4 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create react for class CENT-Class-Ingress-DSCP-ef-2-2 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react packet-loss-rate val=100 id=2 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react one-way-delay val=20 id=3 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react network-delay-avg val=40 id=4 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react jitter val=5000 id=5 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react byte-loss-rate val=100 id=6 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create react for class CENT-Class-Ingress-DSCP-cs5-2-3 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react jitter val=5000 id=7 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Create react for class CENT-Class-Ingress-DSCP-cs4-2-4 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react one-way-delay val=20 id=8 Jul 12 02:03:10.950: POLICY: INFO: BR[2]: Provision react network-delay-avg val=40 id=9

How to Display PfRv3 Event Tracing

Jul	12	02:03:10.950:	POLICY:	INFO:	BR[2]:	Create PMI policy CENT-Policy-Ingress-2-2
Jul	12	02:03:10.950:	POLICY:	INFO:	BR[2]:	Create C3PL policy for Egress direction
Jul	12	02:03:10.976:	POLICY:	INFO:	BR[2]:	Create flow monitor MON-Egress-aggregate-2-48-1
Jul	12	02:03:10.976:	POLICY:	INFO:	BR[2]:	Create filter dscp:0,appid:0
Jul	12	02:03:10.976:	POLICY:	INFO:	BR[2]:	Create class CENT-Class-Egress-ANY-2-5
Jul	12	02:03:10.977:	POLICY:	INFO:	BR[2]:	Create PMI policy CENT-Policy-Egress-2-3
Jul	12	02:03:12.013:	POLICY:	INFO:	BR[3]:	Updating PMI policies
Jul	12	02:03:12.013:	POLICY:	INFO:	BR[3]:	Create C3PL policy for Ingress direction
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Create flow monitor MON-Ingress-per-DSCP-3-48-2
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Create filter dscp:46,appid:0
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Create class CENT-Class-Ingress-DSCP-ef-3-6
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Create filter dscp:40,appid:0
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Create class CENT-Class-Ingress-DSCP-cs5-3-7
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Create react for class CENT-Class-Ingress-DSCP-ef-3-6
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Provision react packet-loss-rate val=100 id=10
Jul	12	02:03:12.014:	POLICY:	INFO:	BR[3]:	Provision react byte-loss-rate val=100 id=11
Jul	12	02:03:12.015:	POLICY:	INFO:	BR[3]:	Create react for class CENT-Class-Ingress-DSCP-cs5-3-7
Jul	12	02:03:12.015:	POLICY:	INFO:	BR[3]:	Provision react packet-loss-rate val=100 id=12
Jul	12	02:03:12.015:	POLICY:	INFO:	BR[3]:	Provision react byte-loss-rate val=100 id=13
Jul	12	02:03:12.015:	POLICY:	INFO:	BR[3]:	Create PMI policy CENT-Policy-Ingress-3-4
Jul	12	02:03:12.094:	POLICY:	INFO:	BR[3]:	Activate flow monitor MON-Ingress-per-DSCP-3-48-2
Jul	12	02:03:12.094:	POLICY:	INFO:	BR[3]:	Activate PMI policy CENT-Policy-Ingress-3-4 on Tunnel31
Jul	12	02:03:12.094:	POLICY:	INFO:	BR[3]:	Activate PMI policy CENT-Policy-Ingress-3-4 on Tunnel11
Jul	12	02:03:12.094:	POLICY:	INFO:	BR[3]:	Create C3PL policy for Egress direction
Jul	12	02:03:12.119:	POLICY:	INFO:	BR[3]:	Create flow monitor MON-Egress-aggregate-3-48-3
Jul	12	02:03:12.118:	POLICY:	INFO:	BR[3]:	Create filter dscp:0,appid:0
Jul	12	02:03:12.118:	POLICY:	INFO:	BR[3]:	Create class CENT-Class-Egress-ANY-3-8
Jul	12	02:03:12.118:	POLICY:	INFO:	BR[3]:	Create PMI policy CENT-Policy-Egress-3-5
Jul	12	02:03:12.151:	POLICY:	INFO:	BR[3]:	Activate PMI policy CENT-Policy-Egress-3-5 on Tunnel31
Jul	12	02:03:12.151:	POLICY:	INFO:	BR[3]:	Activate PMI policy CENT-Policy-Egress-3-5 on Tunnel11
Jul	12	02:03:16.251:	POLICY:	INFO:	BR[2]:	Activate PMI policy CENT-Policy-Egress-2-3 on Tunnel10
Jul	12	02:03:16.265:	POLICY:	INFO:	BR[2]:	Activate flow monitor MON-Ingress-per-DSCP-2-48-0
Jul	12	02:03:16.265:	POLICY:	INFO:	BR[2]:	Activate PMI policy CENT-Policy-Ingress-2-2 on Tunnel10
Jul	12	02:03:16.274:	POLICY:	INFO:	BR[2]:	Activate PMI policy CENT-Policy-Egress-2-3 on Tunnel30
Jul	12	02:03:16.275:	POLICY:	INFO:	BR[2]:	Activate PMI policy CENT-Policy-Ingress-2-2 on Tunnel30
Jul	12	02:08:47.180:	POLICY:	INFO:	BR[2]:	De-activate PMI policy CENT-Policy-Egress-2-3 on Tunnel30
Jul	12	02:08:47.182:	POLICY:	INFO:	BR[2]:	De-activate PMI policy CENT-Policy-Ingress-2-2 on Tunnel30
Jul	12	02:08:47.188:	POLICY:	INFO:	BR[2]:	Delete class CENT-Class-Egress-ANY-2-5
Jul	12	02:08:47.190:	POLICY:	INFO:	BR[2]:	Delete flow monitor MON-Egress-aggregate-2-48-1
Jul	12	02:08:47.190:	POLICY:	INFO:	BR[2]:	De-activate PMI policy CENT-Policy-Egress-2-3 on Tunnel10
Jul	12	02:08:47.190:	POLICY:	INFO:	BR[2]:	De-activate flow monitor MON-Ingress-per-DSCP-2-48-0
J111	12	02:08:47 201	POLTCY	INFO	BR[2].	Delete react from class CENT-Class-Ingress-DSCP-ef-2-2
Jul	12	02:08:47.201	POLICY:	INFO:	BR[2]	Delete class CENT-Class-Ingress-DSCP-ef-2-2
Jul	12	02:08:47.201	POLICY	INFO	BR[2]:	Delete react from class CENT-Class-Ingress-DSCP-cs5-2-3
Jul	12	02:08:47 201	POLICY	TNFO.	BR[2].	Delete class CENT-Class-Ingress-DSCP-cs5-2-3
Jul	12	02:08:47.201	POLICY:	INFO:	BR[2].	Delete react from class CENT-Class-Ingress-DSCP-cs4-2-4
Jul	12	02:08:47.201:	POLICY:	INFO:	BR[2]:	Delete class CENT-Class-Ingress-DSCP-cs4-2-4

Jul 12 02:08:47.201: POLICY: INFO: BR[2]: Delete flow monitor MON-Ingress-per-DSCP-2-48-0 Jul 12 02:08:47.202: POLICY: INFO: BR[2]: De-activate PMI policy CENT-Policy-Ingress-2-2 on Tunnel10 Jul 12 02:08:48.264: POLICY: INFO: BR[3]: De-activate PMI policy CENT-Policy-Egress-3-5 on Tunnel31 Jul 12 02:08:48.265: POLICY: INFO: BR[3]: De-activate PMI policy CENT-Policy-Ingress-3-4 on Tunnel31 Jul 12 02:08:48.281: POLICY: INFO: BR[3]: Delete class CENT-Class-Egress-ANY-3-8 Jul 12 02:08:48.281: POLICY: INFO: BR[3]: Delete flow monitor MON-Egress-aggregate-3-48-3 Jul 12 02:08:48.281: POLICY: INFO: BR[3]: De-activate PMI policy CENT-Policy-Egress-3-5 on Tunnel11 Jul 12 02:08:48.281: POLICY: INFO: BR[3]: De-activate flow monitor MON-Ingress-per-DSCP-3-48-2 Jul 12 02:08:48.281: POLICY: INFO: BR[3]: De-activate flow monitor MON-Ingress-per-DSCP-3-48-2 Jul 12 02:08:48.287: POLICY: INFO: BR[3]: Delete class CENT-Class-Ingress-DSCP-ef-3-6 Jul 12 02:08:48.287: POLICY: INFO: BR[3]: Delete class CENT-Class-Ingress-DSCP-ef-3-6 Jul 12 02:08:48.287: POLICY: INFO: BR[3]: Delete react from class CENT-Class-Ingress-DSCP-cs5-3-7 Jul 12 02:08:48.287: POLICY: INFO: BR[3]: Delete class CENT-Class-Ingress-DSCP-cs5-3-7 Jul 12 02:08:48.287: POLICY: INFO: BR[3]: Delete class CENT-Class-Ingress-DSCP-cs5-3-7 Jul 12 02:08:48.287: POLICY: INFO: BR[3]: Delete class CENT-Class-Ingress-DSCP-cs5-3-7 Jul 12 02:08:48.287: POLICY: INFO: BR[3]: Delete flow monitor MON-Ingress-per-DSCP-3-48-2 Jul 12 02:08:48.286: POLICY: INFO: BR[3]: Delete flow monitor MON-Ingress-per-DSCP-3-48-2

Displays event trace for PfRv3 policies.

Step 4 show monitor event-trace pfrv3 sub-comp process {all | back duration | clock duration | from-boot seconds | latest} [detail]

Example:

Router# show monitor event-trace pfrv3 sub-comp process all

Jul 12 02:02:42.467: PROCESS: INFO: BR[2] Register CMD client : client id 4, result Succeed

Jul 12 02:02:42.473: PROCESS: INFO: BR[2] started

Jul 12 02:02:42.965: PROCESS: INFO: BR[3] started

Jul 12 02:02:57.957: PROCESS: INFO: MC[2] Eigrp autocfg opcode: Listening, interface: Loopback1, split: FALSE, action: Add, result: Succeed Jul 12 02:02:57.957: PROCESS: INFO: MC[2] Eigrp autocfg opcode: Stub, interface: Loopback1, split: FALSE, stub stubbed: FALSE, stub connected: FALSE, stub leaking: FALSE, action: Delete

Jul 12 02:02:57.957: PROCESS: INFO: MC[2] SAF peering succeed listener: 10.10.1.1

Jul 12 02:02:57.958: PROCESS: INFO: MC[2] SAF peering subscribe sub-service: cent-policy succeed

Jul 12 02:02:57.968: PROCESS: INFO: MC[2] SAF peering publish sub-service: globals, origin: 10.10.1.1, size: 997, compressed size: 417, publish seq: 1, publish reason: Normal, result: Peering Success

Jul 12 02:02:57.968: PROCESS: INFO: MC[2] SAF peering subscribe sub-service: site-prefix succeed Jul 12 02:02:57.968: PROCESS: INFO: MC[2] SAF peering subscribe sub-service: Capability succeed Jul 12 02:02:57.968: PROCESS: INFO: MC[2] SAF peering subscribe sub-service: globals succeed Jul 12 02:02:57.970: PROCESS: INFO: MC server listening on: 10.10.1.1, port: 17749 Jul 12 02:02:57.970: PROCESS: INFO: MC[2] SAF peering publish sub-service: globals, origin: 10.10.1.1, size: 997, compressed size: 417, publish seq: 2, publish reason: Normal, result: Peering Success

Jul 12 02:02:57.970: PROCESS: INFO: MC[2] SAF peering publish sub-service: globals, origin: 10.10.1.1, size: 997, compressed size: 417, publish seq: 3, publish reason: Normal, result: Peering Success

Jul 12 02:02:58.490: PROCESS: INFO: MC[3] Eigrp autocfg opcode: Listening, interface: Loopback2, split: FALSE, action: Add, result: Succeed Jul 12 02:02:58.492: PROCESS: INFO: MC[3] Eigrp autocfg opcode: Stub, interface: Loopback2, split: FALSE, stub stubbed: FALSE, stub connected: FALSE, stub leaking: FALSE, action: Delete Jul 12 02:02:58.492: PROCESS: INFO: MC[3] SAF peering succeed listener: 10.10.1.1 Jul 12 02:02:58.492: PROCESS: INFO: MC[3] SAF peering subscribe sub-service: cent-policy succeed Jul 12 02:02:58.500: PROCESS: INFO: MC[3] SAF peering publish sub-service: globals, origin: 10.10.1.1, size: 996, compressed size: 419, publish seq: 1, publish reason: Normal, result: Peering Success Jul 12 02:02:58.500: PROCESS: INFO: MC[3] SAF peering subscribe sub-service: site-prefix succeed Jul 12 02:02:58.500: PROCESS: INFO: MC[3] SAF peering subscribe sub-service: Capability succeed Jul 12 02:02:58.500: PROCESS: INFO: MC[3] SAF peering subscribe sub-service: globals succeed Jul 12 02:02:58.501: PROCESS: INFO: MC server listening on: 10.10.1.1, port: 17749 Jul 12 02:03:00.020: PROCESS: INFO: MC[2] SAF peering subscribe sub-service: pmi succeed Jul 12 02:03:01.455: PROCESS: INFO: BR[3] no shutdown Jul 12 02:03:01.462: PROCESS: INFO: BR[3] start communication process Jul 12 02:03:01.463: PROCESS: INFO: BR[3] start exporter process Jul 12 02:03:01.535: PROCESS: INFO: BR[3] start route learn Jul 12 02:03:01.540: PROCESS: INFO: MC[3] SAF peering subscribe sub-service: pmi succeed Jul 12 02:03:01.738: PROCESS: INFO: BR[3] ip: 10.10.1.1, port: 20660, connected to MC ip: 10.10.1.1, port: 17749 Jul 12 02:03:01.739: PROCESS: INFO: BR[3] Eigrp autocfg opcode: Stub, interface: Loopback2, split: FALSE, stub stubbed: FALSE, stub connected: FALSE, stub leaking: FALSE, action: Delete

Jul 12 02:03:01.739: PROCESS: INFO: BR[3] Eigrp autocfg opcode: Neighbor multihop, Hub ip: 10.10.1.1, interface: Loopback2, split: FALSE, action: Add, result: Succeed

Jul 12 02:03:01.739: PROCESS: INFO: BR[3] SAF peering succeed: 10.10.1.1 to 10.10.1.1 Jul 12 02:03:01.740: PROCESS: INFO: BR[3] SAF peering subscribe sub-service: pmi succeed Jul 12 02:03:01.740: PROCESS: INFO: BR[3] SAF peering received sub-service: globals, from: 10.10.1.1, data size: 439, data seq: 1 Jul 12 02:03:01.741: PROCESS: INFO: BR[3] SAF peering subscribe sub-service: globals succeed Jul 12 02:03:01.741: PROCESS: INFO: BR[3] SAF peering subscribe sub-service: globals succeed Jul 12 02:03:01.741: PROCESS: INFO: BR[3] SAF peering subscribe sub-service: Capability succeed Jul 12 02:03:01.741: PROCESS: INFO: BR[3] Register CMD IDB : idb Tunnel0, client id 4, result Succeed Jul 12 02:03:01.966: PROCESS: INFO: BR[3] Register CMD IDB : idb Tunnel11, client id 4, result Succeed Jul 12 02:03:01.971: PROCESS: INFO: BR[3] Register CMD IDB : idb Tunnel11, client id 4, result Succeed Jul 12 02:03:01.966: PROCESS: INFO: BR[3] Register CMD IDB : idb Tunnel11, client id 4, result Succeed Jul 12 02:03:01.971: PROCESS: INFO: BR[3] Register CMD IDB : idb Tunnel31, client id 4, result Succeed Jul 12 02:03:04.116: PROCESS: INFO: BR[3] Register CMD IDB : idb Tunnel31, client id 4, result Succeed Jul 12 02:03:04.116: PROCESS: INFO: MC[2] SAF peering publish sub-service: site-prefix, origin: 10.10.1.1, size: 333, compressed size: 174, publish seq: 4, publish reason: On-Demand, result: Peering

Jul 12 02:03:04.117: PROCESS: INFO: MC[2] SAF peering publish sub-service: Capability, origin: 10.10.1.1, size: 274, compressed size: 159, publish seq: 5, publish reason: Periodic, result: Peering

Success

Jul 12 02:03:05.247: PROCESS: INFO: BR[3] SAF peering received sub-service: site-prefix, from: 10.10.1.1, data size: 190, data seq: 2 Jul 12 02:03:05.256: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.10.1.1/32 from 10.10.1.1 Jul 12 02:03:05.257: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.10.1.1 Jul 12 02:03:05.258: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.10.1.1 Jul 12 02:03:05.258: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.10.1.1 Jul 12 02:03:05.259: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.10.1.1 Jul 12 02:03:05.259: PROCESS: INFO: MC[3] SAF peering publish sub-service: site-prefix, origin: 10.10.1.1, size: 333, compressed size: 170, publish seq: 2, publish reason: On-Demand, result: Peering Success Jul 12 02:03:05.258: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.10.1.1, data size: 260, data seq: 3 Jul 12 02:03:05.259: PROCESS: INFO: MC[3] SAF peering publish sub-service: Capability, origin: 10.10.1.1, size: 618, compressed size: 240, publish seq: 3, publish reason: Periodic, result: Peering Success Jul 12 02:03:08.213: PROCESS: INFO: MC[2] SAF peering publish sub-service: cent-policy, origin: 10.10.1.1, size: 210, compressed size: 455, publish seq: 6, publish reason: Normal, result: Peering Success Jul 12 02:03:09.355: PROCESS: INFO: MC[3] SAF peering publish sub-service: cent-policy, origin: 10.10.1.1, size: 1572, compressed size: 372, publish seq: 4, publish reason: Normal, result: Peering Success Jul 12 02:03:09.610: PROCESS: INFO: MC[3] SAF peering received sub-service: site-prefix, from: 10.15.1.1, data size: 193, data seq: 1 Jul 12 02:03:09.610: PROCESS: INFO: BR[3] SAF peering received sub-service: site-prefix, from: 10.15.1.1, data size: 193, data seq: 1 Jul 12 02:03:09.610: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:09.610: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:09.610: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:09.610: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1 Jul 12 02:03:09.610: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:09.611: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:09.611: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:09.611: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:09.611: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1 Jul 12 02:03:09.611: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:09.614: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:09.614: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:09.614: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:09.614: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1

Jul 12 02:03:09.615: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:09.615: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:09.615: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:09.615: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:09.615: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1 Jul 12 02:03:09.615: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:09.626: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 251, data seq: 2 Jul 12 02:03:09.626: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 251, data seq: 2 Jul 12 02:03:10.180: PROCESS: INFO: BR[2] no shutdown Jul 12 02:03:10.185: PROCESS: INFO: BR[2] start communication process Jul 12 02:03:10.185: PROCESS: INFO: BR[2] start exporter process Jul 12 02:03:10.262: PROCESS: INFO: MC[2] SAF peering publish sub-service: pmi, origin: 10.10.1.1, size: 1874, compressed size: 494, publish seq: 7, publish reason: Normal, result: Peering Success Jul 12 02:03:10.724: PROCESS: INFO: BR[2] start route learn Jul 12 02:03:10.925: PROCESS: INFO: BR[2] ip: 10.10.1.1, port: 52402, connected to MC ip: 10.10.1.1, port: 17749 Jul 12 02:03:10.925: PROCESS: INFO: BR[2] Eigrp autocfg opcode: Stub, interface: Loopback1, split: FALSE, stub stubbed: FALSE, stub connected: FALSE, stub leaking: FALSE, action: Delete Jul 12 02:03:10.924: PROCESS: INFO: BR[2] Eigrp autocfg opcode: Neighbor multihop, Hub ip: 10.10.1.1, interface: Loopback1, split: FALSE, action: Add, result: Succeed Jul 12 02:03:10.924: PROCESS: INFO: BR[2] SAF peering succeed: 10.10.1.1 to 10.10.1.1 Jul 12 02:03:10.925: PROCESS: INFO: BR[2] SAF peering received sub-service: pmi, from: 10.10.1.1, data size: 514, data seq: 7 Jul 12 02:03:10.925: PROCESS: INFO: BR[2] SAF peering subscribe sub-service: pmi succeed Jul 12 02:03:10.925: PROCESS: INFO: BR[2] SAF peering received sub-service: site-prefix, from: 10.10.1.1, data size: 194, data seq: 4 Jul 12 02:03:10.925: PROCESS: INFO: BR[2] SAF peering subscribe sub-service: site-prefix succeed Jul 12 02:03:10.925: PROCESS: INFO: BR[2] SAF peering received sub-service: globals, from: 10.10.1.1, data size: 437, data seq: 3 Jul 12 02:03:10.926: PROCESS: INFO: BR[2] SAF peering subscribe sub-service: globals succeed Jul 12 02:03:10.926: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.10.1.1, data size: 179, data seq: 5 Jul 12 02:03:10.926: PROCESS: INFO: BR[2] SAF peering subscribe sub-service: Capability succeed Jul 12 02:03:10.977: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.10.1.1/32 from 10.10.1.1 Jul 12 02:03:10.978: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.10.1.1 Jul 12 02:03:10.978: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.10.1.1 Jul 12 02:03:10.978: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.10.1.1

Jul 12 02:03:10.979: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.10.1.1 Jul 12 02:03:12.011: PROCESS: INFO: BR[3] SAF peering received sub-service: pmi, from: 10.10.1.1, data size: 460, data seq: 5 Jul 12 02:03:12.131: PROCESS: INFO: MC[3] SAF peering publish sub-service: pmi, origin: 10.10.1.1, size: 1682, compressed size: 440, publish seq: 5, publish reason: Normal, result: Peering Success Jul 12 02:03:16.244: PROCESS: INFO: BR[2] Register CMD IDB : idb Tunnell, client id 4, result Succeed Jul 12 02:03:16.272: PROCESS: INFO: BR[2] Register CMD IDB : idb Tunnel10, client id 4, result Succeed Jul 12 02:03:16.281: PROCESS: INFO: BR[2] Register CMD IDB : idb Tunnel30, client id 4, result Succeed Jul 12 02:03:24.577: PROCESS: INFO: MC[2] SAF peering received sub-service: site-prefix, from: 10.15.1.1, data size: 193, data seq: 1 Jul 12 02:03:24.577: PROCESS: INFO: BR[2] SAF peering received sub-service: site-prefix, from: 10.15.1.1, data size: 193, data seq: 1 Jul 12 02:03:24.577: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:24.577: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:24.577: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:24.578: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1 Jul 12 02:03:24.578: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:24.579: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:24.579: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:24.579: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:24.579: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1 Jul 12 02:03:24.579: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:24.581: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:24.581: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:24.581: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:24.581: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1 Jul 12 02:03:24.581: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:24.582: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.15.1.1/32 from 10.15.1.1 Jul 12 02:03:24.582: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.10.0.0/16 from 10.15.1.1 Jul 12 02:03:24.582: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.15.0.0/16 from 10.15.1.1 Jul 12 02:03:24.582: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.16.0.0/16 from 10.15.1.1 Jul 12 02:03:24.582: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.0.0.0/8 from 10.15.1.1 Jul 12 02:03:24.582: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 250, data seq: 2 Jul 12 02:03:24.582: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 250, data seq: 2 Jul 12 02:03:40.913: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 280, data seq: 3

Jul 12 02:03:40.913: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 280, data seq: 3 Jul 12 02:03:51.318: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.10.1.1, data size: 290, data seq: 6 Jul 12 02:03:51.319: PROCESS: INFO: MC[3] SAF peering publish sub-service: Capability, origin: 10.10.1.1, size: 822, compressed size: 270, publish seq: 6, publish reason: On-Demand, result: Peering Success Jul 12 02:03:55.763: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 278, data seq: 3 Jul 12 02:03:55.763: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.15.1.1, data size: 278, data seq: 3 Jul 12 02:04:00.542: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.10.1.1, data size: 287, data seq: 8 Jul 12 02:04:00.543: PROCESS: INFO: MC[2] SAF peering publish sub-service: Capability, origin: 10.10.1.1, size: 822, compressed size: 267, publish seq: 8, publish reason: On-Demand, result: Peering Success Jul 12 02:04:48.460: PROCESS: INFO: MC[3] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 159, data seq: 1 Jul 12 02:04:48.460: PROCESS: INFO: BR[3] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 159, data seq: 1 Jul 12 02:04:48.461: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:48.461: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:48.462: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:48.463: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:48.463: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 183, data seq: 2 Jul 12 02:04:48.464: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 183, data seq: 2 Jul 12 02:04:57.245: PROCESS: INFO: MC[2] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 159, data seq: 1 Jul 12 02:04:57.245: PROCESS: INFO: BR[2] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 159, data seq: 1 Jul 12 02:04:57.245: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:57.245: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:57.246: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:57.247: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:04:57.247: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 183, data seq: 2 Jul 12 02:04:57.246: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 183, data seq: 2 Jul 12 02:05:00.536: PROCESS: INFO: MC[3] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 184, data seq: 3 Jul 12 02:05:00.536: PROCESS: INFO: BR[3] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 184, data seq: 3 Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.0.1/32 from 10.30.1.1 Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.0.0/24 from 10.30.1.1 Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.2.1/32 from 10.30.1.1 Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1

Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.0.1/32 from 10.30.1.1 Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.0.0/24 from 10.30.1.1 Jul 12 02:05:00.537: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.30.2.1/32 from 10.30.1.1 Jul 12 02:05:00.537: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:05:00.538: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.0.1/32 from 10.30.1.1 Jul 12 02:05:00.539: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.0.0/24 from 10.30.1.1 Jul 12 02:05:00.540: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.2.1/32 from 10.30.1.1 Jul 12 02:05:00.540: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:05:00.540: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.0.1/32 from 10.30.1.1 Jul 12 02:05:00.540: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.0.0/24 from 10.30.1.1 Jul 12 02:05:00.540: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.30.2.1/32 from 10.30.1.1 Jul 12 02:05:00.541: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 306, data seq: 4 Jul 12 02:05:00.541: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 306, data seq: 4 Jul 12 02:05:11.981: PROCESS: INFO: MC[2] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 171, data seq: 3 Jul 12 02:05:11.981: PROCESS: INFO: BR[2] SAF peering received sub-service: site-prefix, from: 10.30.1.1, data size: 171, data seg: 3 Jul 12 02:05:11.982: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:05:11.982: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.30.0.0/16 from 10.30.1.1 Jul 12 02:05:11.982: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:05:11.983: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.30.0.0/16 from 10.30.1.1 Jul 12 02:05:11.983: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:05:11.985: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.30.0.0/16 from 10.30.1.1 Jul 12 02:05:11.985: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.30.1.1/32 from 10.30.1.1 Jul 12 02:05:11.985: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.30.0.0/16 from 10.30.1.1 Jul 12 02:05:11.985: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 297, data seq: 4 Jul 12 02:05:11.985: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 297, data seq: 4 Jul 12 02:05:13.127: PROCESS: INFO: MC[3] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 159, data seq: 1 Jul 12 02:05:13.127: PROCESS: INFO: BR[3] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 159, data seq: 1 Jul 12 02:05:13.126: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:13.126: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:13.128: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:13.128: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:13.128: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 184, data seq: 2

Jul 12 02:05:13.128: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 184, data seq: 2 Jul 12 02:05:15.265: PROCESS: INFO: MC[2] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 159, data seq: 1 Jul 12 02:05:15.265: PROCESS: INFO: BR[2] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 159, data seq: 1 Jul 12 02:05:15.265: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:15.265: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:15.267: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:15.267: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:15.267: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 184, data seq: 2 Jul 12 02:05:15.267: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 184, data seq: 2 Jul 12 02:05:21.764: PROCESS: WARNING: MC[2] Tcp connection to peer: 10.10.3.1, socket: 9 is reset, detected at TCP read handler Jul 12 02:05:21.874: PROCESS: WARNING: MC[2] Tcp connection to peer: 10.10.4.1, socket: 7 is reset, detected at TCP read handler Jul 12 02:05:23.756: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 306, data seq: 5 Jul 12 02:05:23.756: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 306, data seq: 5 Jul 12 02:05:26.806: PROCESS: INFO: MC[2] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 185, data seq: 3 Jul 12 02:05:26.806: PROCESS: INFO: BR[2] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 185, data seq: 3 Jul 12 02:05:26.807: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:26.807: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:05:26.807: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:26.807: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.0.0/16 from 10.20.1.1 Jul 12 02:05:26.807: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:26.807: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:26.807: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:05:26.808: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:26.808: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.0.0/16 from 10.20.1.1 Jul 12 02:05:26.808: PROCESS: INFO: MC[2] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:26.808: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:26.810: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:05:26.810: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.0.0/16 from 10.20.1.1 Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1

Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.0.0/16 from 10.20.1.1 Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:26.811: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 299, data seq: 4 Jul 12 02:05:26.811: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 299, data seq: 4 Jul 12 02:05:29.366: PROCESS: INFO: MC[3] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 194, data seq: 3 Jul 12 02:05:29.366: PROCESS: INFO: BR[3] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 194, data seq: 3 Jul 12 02:05:29.366: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.2/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.2/32 from 10.20.1.1 Jul 12 02:05:29.367: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:29.369: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:05:29.370: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:29.371: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:29.372: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:05:29.372: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.2/32 from 10.20.1.1 Jul 12 02:05:29.372: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:05:29.372: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:05:29.372: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:05:29.372: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.2.1/32 from 10.20.1.1 Jul 12 02:05:29.372: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:05:29.373: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.2/32 from 10.20.1.1 Jul 12 02:05:29.373: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 300, data seq: 4

Jul 12 02:05:29.374: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 300, data seq: 4 Jul 12 02:05:32.997: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 297, data seq: 5 Jul 12 02:05:32.997: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.30.1.1, data size: 297, data seq: 5 Jul 12 02:05:48.848: PROCESS: INFO: MC[2] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 299, data seg: 5 Jul 12 02:05:48.848: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 299, data seq: 5 Jul 12 02:05:48.847: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 300, data seq: 5 Jul 12 02:05:48.847: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 300, data seq: 5 Jul 12 02:05:52.133: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.10.1.1, data size: 258, data seq: 9 Jul 12 02:05:52.134: PROCESS: INFO: MC[2] SAF peering publish sub-service: Capability, origin: 10.10.1.1, size: 548, compressed size: 238, publish seq: 9, publish reason: On-Demand, result: Peering Success Jul 12 02:07:46.213: PROCESS: INFO: BR[2] SAF peering received sub-service: Capability, from: 10.10.1.1, data size: 288, data seq: 10

Jul 12 02:07:46.213: PROCESS: INFO: MC[2] SAF peering publish sub-service: Capability, origin: 10.10.1.1, size: 822, compressed size: 268, publish seq: 10, publish reason: On-Demand, result: Peering Success

Jul 12 02:08:27.105: PROCESS: INFO: MC[3] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 183, data seq: 6 Jul 12 02:08:27.105: PROCESS: INFO: BR[3] SAF peering received sub-service: site-prefix, from: 10.20.1.1, data size: 183, data seq: 6 Jul 12 02:08:27.107: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:08:27.107: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:08:27.107: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:08:27.107: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:08:27.107: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:08:27.107: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:08:27.107: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:08:27.106: PROCESS: INFO: MC[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:08:27.106: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:08:27.106: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:08:27.106: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:08:27.106: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:08:27.109: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.1.1/32 from 10.20.1.1 Jul 12 02:08:27.109: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.1/32 from 10.20.1.1 Jul 12 02:08:27.109: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.0.0/24 from 10.20.1.1 Jul 12 02:08:27.109: PROCESS: INFO: BR[3] SAF peering site prefix update: prefix 10.20.3.1/32 from 10.20.1.1 Jul 12 02:08:27.110: PROCESS: INFO: MC[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 265, data seq: 7

Jul 12 02:08:27.110: PROCESS: INFO: BR[3] SAF peering received sub-service: Capability, from: 10.20.1.1, data size: 265, data seq: 7 Jul 12 02:08:47.153: PROCESS: INFO: BR[2] Deregister CMD IDB : idb Tunnell, client id 4, result Succeed Jul 12 02:08:47.155: PROCESS: INFO: BR[2] Deregister CMD IDB : idb Tunnel10, client id 4, result Succeed Jul 12 02:08:47.157: PROCESS: INFO: BR[2] Deregister CMD IDB : idb Tunnel30, client id 4, result Succeed Jul 12 02:08:47.174: PROCESS: INFO: BR[2] SAF peering destroyed: 10.10.1.1 to 10.10.1.1 Jul 12 02:08:47.177: PROCESS: INFO: MC[2] SAF peering listener destroyed: 10.10.1.1 Jul 12 02:08:47.177: PROCESS: INFO: BR[2] SAF peering unsubscribe sub-service: pmi succeed Jul 12 02:08:47.178: PROCESS: INFO: MC[2] SAF peering unsubscribe sub-service: cent-policy succeed Jul 12 02:08:47.178: PROCESS: INFO: BR[2] SAF peering unsubscribe sub-service: site-prefix succeed Jul 12 02:08:47.178: PROCESS: INFO: MC[2] SAF peering unsubscribe sub-service: site-prefix succeed Jul 12 02:08:47.178: PROCESS: INFO: BR[2] SAF peering unsubscribe sub-service: globals succeed Jul 12 02:08:47.178: PROCESS: INFO: MC[2] SAF peering unsubscribe sub-service: Capability succeed Jul 12 02:08:47.179: PROCESS: INFO: BR[2] SAF peering unsubscribe sub-service: Capability succeed Jul 12 02:08:47.179: PROCESS: INFO: MC[2] SAF peering unsubscribe sub-service: globals succeed Jul 12 02:08:47.179: PROCESS: INFO: BR[2] Eigrp uncfg opcode: Neighbor multihop, vrf: , interface: Loopback1, action: Delete, result: Succeed Jul 12 02:08:47.226: PROCESS: INFO: BR[2] stopped Jul 12 02:08:47.226: PROCESS: INFO: MC[2] SAF peering unsubscribe sub-service: pmi succeed Jul 12 02:08:48.234: PROCESS: INFO: MC[2] Eigrp uncfg opcode: Family only, vrf: , interface: Loopback1, action: Delete, result: Succeed Jul 12 02:08:48.246: PROCESS: INFO: BR[3] Deregister CMD IDB : idb Tunnel0, client id 4, result Succeed Jul 12 02:08:48.248: PROCESS: INFO: BR[3] Deregister CMD IDB : idb Tunnel11, client id 4, result Succeed Jul 12 02:08:48.249: PROCESS: INFO: BR[3] Deregister CMD IDB : idb Tunnel31, client id 4, result Succeed Jul 12 02:08:48.261: PROCESS: INFO: BR[3] SAF peering destroyed: 10.10.1.1 to 10.10.1.1 Jul 12 02:08:48.263: PROCESS: INFO: MC[3] SAF peering listener destroyed: 10.10.1.1 Jul 12 02:08:48.264: PROCESS: INFO: BR[3] SAF peering unsubscribe sub-service: pmi succeed Jul 12 02:08:48.264: PROCESS: INFO: MC[3] SAF peering unsubscribe sub-service: cent-policy succeed Jul 12 02:08:48.263: PROCESS: INFO: BR[3] SAF peering unsubscribe sub-service: site-prefix succeed Jul 12 02:08:48.263: PROCESS: INFO: MC[3] SAF peering unsubscribe sub-service: site-prefix succeed Jul 12 02:08:48.263: PROCESS: INFO: BR[3] SAF peering unsubscribe sub-service: globals succeed Jul 12 02:08:48.263: PROCESS: INFO: MC[3] SAF peering unsubscribe sub-service: Capability succeed Jul 12 02:08:48.263: PROCESS: INFO: BR[3] SAF peering unsubscribe sub-service: Capability succeed Jul 12 02:08:48.263: PROCESS: INFO: MC[3] SAF peering unsubscribe sub-service: globals succeed Jul 12 02:08:48.263: PROCESS: INFO: BR[3] Eigrp uncfg opcode: Neighbor multihop, vrf: , interface: Loopback2, action: Delete, result: Succeed Jul 12 02:08:48.298: PROCESS: INFO: BR[3] Deregister CMD client : client id 4, result Succeed Jul 12 02:08:48.299: PROCESS: INFO: BR[3] stopped Jul 12 02:08:48.299: PROCESS: INFO: MC[3] SAF peering unsubscribe sub-service: pmi succeed Jul 12 02:08:49.301: PROCESS: INFO: MC[3] Eigrp uncfg opcode: Family only, vrf: , interface: Loopback2, action: Delete, result: Succeed

Displays event trace for PfRv3 processes.

I

Additional References for PfRv3 Event Tracing

Related Documents

Related Topic	Document Title
PfRv3 commands	Cisco IOS Performance Routing Version 3 Command Reference

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for PfRv3 Event Tracing

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
Event Trace for PFRv3 Errors and PFRv3 Channels	Cisco IOS XE Fuji 16.9.1	The Event Trace for PFRv3 feature provides a trace facility for troubleshooting Performance Routing Version 3 (PfRv3). This feature enables you to monitor PfRv3 events and channels. During runtime, the event trace mechanism logs trace information in a buffer space. A display mechanism extracts and decodes the debug data. The following commands were introduced or modified: show monitor event-trace pfrv3 sub-comp channel , show monitor event-trace pfrv3 sub-comp pdp , show monitor event-trace pfrv3 sub-comp policy , show monitor event-trace pfrv3 sub-comp process .

Table 26: Feature Information for PfRv3 Event Tracing

PfRv3 Command References

The following tables lists various Cisco IOS commands that are used for PfRv3 along with the command mode from which they are entered.

Command mode	Command name	Description
Interface configuration	bandwidth bandwidth-value	Configures inherited and received bandwidth values for the tunnel interface. The bandwidth value is in kilobits and the valid values are 1 to 10000000.
Border configuration	border	Defines a device as a border.
Domain master controller configuration	branch-to-branch	Disable branch to branch PfR optimization.This is configured on Branch Masters.NoteConfiguring the command results in two different bahaviors for the different releases. See, PfRv3 Command Reference guide.
Configuration	domain domain name	Configures a top level domain for PfRv3.
Configuration interface	domain domain name pathpath-name	Configures a path for the domain for PfRv3.
Global configuration	domain domain name pathpath-name path-idpath-id	Configures a path and path-id for a specified domain.
Global configuration	domain path isp-name zero-sla	Configures Zero SLA on tunnel interface for an ISP path.
Master controller configuration	hub ip-address	Configures an IP address for the hub.
Domain class configuration	match {application dscp}	Specifies applications or DSCP policies to be associated with a class.

Table 27: Configuration Commands for PfRv3

Command mode	Command name	Description
Master controller configuration	master ip-address	Configures an IP address for the master controller.
Domain VRF configuration	master {hub branch transit}	Defines a device as a master type. You can configure a master device as a hub, border, or a transit.
Domain VRF configuration	master transit pop-id	Configures an ID for the master transit branch.
Domain-class configuration	path-preference <i>path-name</i> fallback <i>path-name</i>	Specifies a path preference for a traffic class policy.
Master controller class type	priority priority-number [jitter loss one-way-delay] threshold thershold-value	Specifies threshold values for user-defined policies.
Domain configuration	vrf vrf- name	Configures a Virtual Routing and Forwarding (VRF) instance for a domain.

Table 28: Show Commands for PfRv3

Command mode	Command name	Description
Privileged EXEC	show domain domain-name border peering	Displays the border router peering status.
Privileged EXEC	show domain domain-name border pmi begin prefix-learn	Displays the automatically learned site- prefix status information of the hub-border router.
Privileged EXEC	show domain domain-name border status	Displays the status of the border routers configured at the hub site.
Privileged EXEC	show domain domain-name border site-prefix	Displays the site-prefix status information of the hub- border router.
Privileged EXEC	show domain domain-name border channels	Displays channel information from the hub-border site.
Privileged EXEC	show domain domain-name border parent route	Displays the parent route information of a border channel.
Privileged EXEC	show domain domain-name border channels parent route	Displays the parent route information of a channel.
Privileged EXEC	show domain domain-name master exits	Displays the summary of the external interfaces configured at the hub site.
Privileged EXEC	show domain domain-name master peering	Displays the peering information of the hub-master controller.

Command mode	Command name	Description	
Privileged EXEC	show domain domain-name master discovered-sites	Displays branch sites that are remotely connected to the hub site.	
Privileged EXEC	show domain domain-name master site-prefix	Displays the site-prefix status information of the hub- master controller.	
Privileged EXEC	show platform pfrv3 rp active smart-probe	Displays the PfRv3 smart probe status on a Cisco ASR 1000 Series Aggregation Services Router configured at the hub site.	
Privileged EXEC	show platform pfrv3 fp active smart-probe	Displays the PfRv3 active smart probes status of a embedded-service-processor on Cisco ASR 1000 Series Aggregation Services Routers.	
Privileged EXEC	show platform hardware qfp active feature pfrv3 client global pfrv3-instance detail	Displays the platform hardware information on a Cisco ASR 1000 Series Aggregation Services Routers.	
Privileged EXEC	show flow monitor type performance-monitor	Displays the flow monitor information for passive performance monitoring on the egress interface of WAN.	
Privileged EXEC	show domain domain-name master traffic-classes summary	Displays the summary information of all the traffic classes.	
Privileged EXEC	show domain domain-name master traffic-classes	Displays the status information of the traffic class for the hub-master controller.	
Privileged EXEC	show domain domain-name master traffic-classes policy policy-name	Displays the occurrence of performance issues in a policy traffic class.	
Privileged EXEC	show domain domain-name master channels	Displays channel information from the hub site.	
Privileged EXEC	show domain domain-name master channels link-name path-name	Displays channel status information and the unreachable threshold crossing alerts (TCA) and on demand export (ODE) instances on a hub-master controller.	
Privileged EXEC	show domain domain-name master channels dst-site-id destination-site-id	Displays the details of destination site-ids configured with hub-master controller.	
Privileged EXEC	show domain domain-name default master site-capability	Displays the capability information of master controller.	

Command mode	Command name	Description
Privileged EXEC	debug platform hardware qfp active feature pfrv3 client	Enables PfRv3 Cisco Quantum Flow Processor (QFP) client debug logging.
Privileged EXEC	debug platform hardware qfp active feature pfrv3 datapath	Enables PfRv3 Cisco Quantum Flow Processor (QFP) data path debug logging.
Privileged EXEC	debug platform hardware qfp active feature pfrv3 pal	Enables debug logging for PfRv3 in the Cisco Quantum Flow Processor (QFP).
Privileged EXEC	debug platform software pfrv3	Enables PfRv3 platform debug commands.

Table 29: Debug Commands for PfRv3