

# **Implementing IPv6 for Network Management**

#### Last Updated: December 19, 2011

This document describes the concepts and commands used to manage Cisco applications over IPv6 and to implement IPv6 for network management.

- Finding Feature Information, page 1
- Information About Implementing IPv6 for Network Management, page 1
- How to Implement IPv6 for Network Management, page 6
- Configuration Examples for Implementing IPv6 for Network Management, page 14
- Additional References, page 17
- Feature Information for Implementing IPv6 for Network Management, page 19

# **Finding Feature Information**

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

# Information About Implementing IPv6 for Network Management

- Telnet Access over IPv6, page 2
- TFTP IPv6 Support, page 2
- ping and traceroute Commands in IPv6, page 2
- SSH over an IPv6 Transport, page 2
- SNMP over an IPv6 Transport, page 2
- Cisco IOS IPv6 Embedded Management Components, page 3

# cisco.

Americas Headquarters: Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

I

### **Telnet Access over IPv6**

The Telnet client and server in the Cisco IOS software support IPv6 connections. A user can establish a Telnet session directly to the router using an IPv6 Telnet client, or an IPv6 Telnet connection can be initiated from the router. A vty interface and password must be created in order to enable Telnet access to an IPv6 router.

### **TFTP IPv6 Support**

The Trivial File Transfer Protocol (TFTP) is designed to transfer files over the network from one host to another using the most minimal set of functionality possible. TFTP uses a client-server model in which clients can request to copy files to or from a server. TFTP uses UDP over IPv4 or IPv6 as its transport, and can work over IPv4 and IPv6 network layers.

TFTP File Downloading for IPv6, page 2

#### **TFTP File Downloading for IPv6**

IPv6 supports TFTP file downloading and uploading using the **copy**command. The **copy**command accepts a destination IPv6 address or IPv6 hostname as an argument and saves the running configuration of the router to an IPv6 TFTP server, as follows:

Router# copy running-config tftp://[3ffe:xxxx:c18:1:290:27ff:fe3a:9e9a]/running-config

## ping and traceroute Commands in IPv6

The **ping** command accepts a destination IPv6 address or IPv6 hostname as an argument and sends Internet Control Message Protocol version 6 (ICMPv6) echo request messages to the specified destination. The ICMPv6 echo reply messages are reported on the console. Extended ping functionality is also supported in IPv6.

The **traceroute** command accepts a destination IPv6 address or IPv6 hostname as an argument and will generate IPv6 traffic to report each IPv6 hop used to reach the destination address.

# SSH over an IPv6 Transport

SSH in IPv6 functions the same and offers the same benefits as SSH in IPv4. The SSH Server feature enables an SSH client to make a secure, encrypted connection to a Cisco router, and the SSH Client feature enables a Cisco router to make a secure, encrypted connection to another Cisco router or to any other device running an SSH server. IPv6 enhancements to SSH consist of support for IPv6 addresses that enable a Cisco router to accept and establish secure, encrypted connections with remote IPv6 nodes over an IPv6 transport.

# **SNMP** over an IPv6 Transport

Simple Network Management Protocol (SNMP) can be configured over IPv6 transport so that an IPv6 host can perform SNMP queries and receive SNMP notifications from a device running Cisco IOS software for IPv6. The SNMP agent and related MIBs have been enhanced to support IPv6 addressing.

SNMP for IPv6 provides 3DES and AES are provided for message encryption.

Cisco IOS IPv6 MIBs, page 3

• MIBs Supported for IPv6, page 3

#### **Cisco IOS IPv6 MIBs**

Cisco has long supported IP-MIB and IP-FORWARD-MIB in IPv4. CISCO-IETF-IP-MIB and CISCO-IETF-IP-FORWARDING-MIB are IPv6 MIBs that are defined as being protocol-independent, but are implemented only for IPv6 objects and tables. In Cisco IOS Release 12.2(33)SRC, IP-MIB and IP-FORWARD-MIB were updated to RFC 4293 and RFC 4292 standards, as follows:

- The upgrade is backward-compatible; all IP-MIB and IP-FORWARD-MIB objects and tables still appear.
- IP-MIB and IP-FORWARD-MIB include definitions of new IPv6-only, IPv4-only, and protocolversion independent (PVI) objects and tables. However, support is added only for the new IPv6-only and the new IPv6 part of the PVI objects and tables in these MIBs.

CISCO-IETF-IP-MIB and CISCO-IETF-IP-FORWARDING-MIB have been removed from the Cisco IOS releases in which the new standards have been applied. Information in these MIBs is now included in these new MIBs: IP-MIB and IP-FORWARD-MIB. See the Feature Information for Implementing IPv6 for Network Management, page 19 for the releases.

#### **MIBs Supported for IPv6**

The following MIBs are supported for IPv6:

- CISCO-CONFIG-COPY-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-DATA-COLLECTION-MIB
- CISCO-FLASH-MIB
- IP-FORWARD-MIB
- IP-MIB
- ENTITY-MIB
- NOTIFICATION-LOG-MIB
- SNMP-TARGET-MIB

CISCO-CONFIG-COPY-MIB and CISCO-FLASH-MIB support IPv6 addressing when TFTP, remote copy protocol (rcp), or FTP is used.

The following MIB was added to support IPv6 over SNMP:

CISCO-SNMP-TARGET-EXT-MIB

The following MIBs were modified to support IPv6 over SNMP:

- CISCO-FLASH-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-CONFIG-COPY-MIB

# **Cisco IOS IPv6 Embedded Management Components**

This section describes Cisco IOS embedded management components that have IPv6-compliant operability in IPv6 and dual-stack IPv6 and IPv4 networks.

- Syslog, page 4
- CNS Agents, page 4

- Config Logger, page 5
- HTTP(S) IPv6 Support, page 5
- TCL, page 5
- NETCONF, page 5
- SOAP Message Format, page 5
- IP SLAs for IPv6, page 6

#### Syslog

The Cisco IOS system message logging (syslog) process in IPv6 allows users to log syslog messages to external syslog servers and hosts with IPv6 addresses. This implementation allows user to specify an IPv4-based logging host (syslog server) by providing the host's IP address in IPv4 format (for example, 192.168.0.0) or IPv6 format (for example, 2001:DB8:A00:1::1/64).

#### **CNS** Agents

IPv6 addressing is supported in the Cisco Networking Services (CNS) subsystem. CNS is a foundation technology for linking users to networking services and provides the infrastructure for the automated configuration of large numbers of network devices. Many IPv6 networks are complex, with many devices, and each device must be configured individually. When standard configurations do not exist or have been modified, the time involved in initial installation and subsequent upgrading is considerable. Internet service providers (ISPs) need a method for sending out partial configurations to introduce new services.

To address all these issues, CNS was designed to provide "plug-and-play" network services using a central directory service and distributed agents. CNS features include CNS agents and a flow-through provisioning structure. CNS flow-through provisioning uses the CNS configuration and event agents to provide an automated workflow, eliminating the need for an onsite technician.

IPv6 addressing supports the CNS agents described in the following sections:

- CNS Configuration Agent, page 4
- CNS Event Agent, page 4
- CNS EXEC Agent, page 5
- CNS Image Agent, page 5

#### **CNS Configuration Agent**

The CNS configuration agent is involved in the initial configuration and subsequent partial configurations on a Cisco IOS device. The configuration agent uses a CNS configuration engine to provide methods for automating initial Cisco IOS device configurations, incremental configurations, and synchronized configuration updates, and the configuration engine reports the status of the configuration load as an event to which a network monitoring or workflow application can subscribe.

#### **CNS Event Agent**

The CNS event agent provides a transport connection to the CNS event bus for all other CNS agents. No event can be sent to the router by the configuration engine until the CNS event agent is operational and has successfully built a connection between the configuration engine and the router.

I

The event agent uses a CNS configuration engine to provide methods for automating initial Cisco IOS device configurations, incremental configurations, and synchronized configuration updates.

#### CNS EXEC Agent

The CNS EXEC agent allows a remote application to execute a CLI command in EXEC mode on a Cisco IOS device by sending an event message that contains the command.

#### **CNS Image Agent**

Administrators maintaining large networks of Cisco IOS devices need an automated mechanism to load image files onto large numbers of remote devices. Network management applications are useful to determine which images to run and how to manage images received from the Cisco online software center. Other image distribution solutions do not scale to cover thousands of devices and cannot distribute images to devices behind a firewall or using Network Address Translation (NAT). The CNS image agent enables the managed device to initiate a network connection and request an image download allowing devices using NAT, or behind firewalls, to access the image server.

The CNS image agent can be configured to use the CNS event bus. To use the CNS event bus, the CNS event agent must be enabled and connected to the CNS event gateway in the CNS Configuration Engine. The CNS image agent can also use an HTTP server that understands the CNS image agent protocol. Deployment of CNS image agent operations can use both the CNS event bus and an HTTP server.

#### **Config Logger**

Config logger tracks and reports configuration changes. Config logger supports two content types:

Plain text--With plain-text format, the config logger reports configuration changes only.

XML--The config logger uses Extensible Markup Language (XML) to report the configuration change details (for example, what changed, who changed it, when changes were made, parser return code (PRC) values, and incremental NVGEN results).

#### HTTP(S) IPv6 Support

This feature enhances the HTTP(S) client and server to support IPv6 addresses. The HTTP server in Cisco IOS software can service requests from both IPv6 and IPv4 HTTP clients. The HTTP client in Cisco IOS software supports sending requests to both IPv4 and IPv6 HTTP servers. When you use the HTTP client, URLs with literal IPv6 addresses must be formatted using the rules listed in RFC 2732.

#### TCL

Tool command language (TCL) is used in Cisco IOS software for IPv6 to support features such as embedded syslog manager (ESM), embedded event manager (EEM), interactive voice response (IVR), and tclsh parser mode. TCL supports both initiating (client) and listening (server) sockets.

#### NETCONF

The Network Configuration Protocol (NETCONF) defines a mechanism through which a network device can be managed, configuration data information can be retrieved, and new configuration data can be uploaded and manipulated. NETCONF uses XML-based data encoding for the configuration data and protocol messages.

#### **SOAP Message Format**

Using the Service-Oriented Access Protocol (SOAP) protocol provides a way to format the layout of CNS messages in a consistent manner. SOAP is a protocol intended for exchanging structured information in a decentralized, distributed environment. SOAP uses XML technologies to define an extensible messaging framework that provides a message format that can be exchanged over a variety of underlying protocols.

Within the SOAP message structure, there is a security header that enables CNS notification messages to authenticate user credentials.

#### **IP SLAs for IPv6**

Cisco IOS IP Service Level Agreements (SLAs) are a portfolio of technology embedded in most devices that run Cisco IOS software that allows Cisco customers to analyze IPv6 service levels for IPv6 applications and services, to increase productivity, to lower operational costs, and to reduce the frequency of network outages. IP SLAs uses active traffic monitoring--the generation of traffic in a continuous, reliable, and predictable manner--for measuring network performance.

The following Cisco IOS IP SLAs are supported for IPv6:

- Internet Control Message Protocol (ICMP) echo operation--Used to monitor end-to-end response time between a Cisco router and devices using IPv4 or IPv6. ICMP Echo is useful for troubleshooting network connectivity issues.
- TCP connect operation--Used to measure the response time taken to perform a TCP Connect operation between a Cisco router and devices using IPv4 or IPv6.
- User Datagram Protocol (UDP) echo operation--Used to monitor end-to-end response time between a Cisco router and devices using IPv4 or IPv6.
- UDP jitter operation--Used to analyze round-trip delay, one-way delay, one-way jitter, one-way packet loss, and connectivity in networks that carry UDP traffic in IPv4 or IPv6 networks.
- UDP jitter operation--Used to proactively monitor VoIP quality levels in your network, allowing you to guarantee VoIP quality levels to your users in IPv4 or IPv6 networks.

# How to Implement IPv6 for Network Management

- Enabling Telnet Access to an IPv6 Router and Establishing a Telnet Session, page 6
- Enabling SSH on an IPv6 Router, page 8
- Configuring an SNMP Notification Server over IPv6, page 10
- Configuring Cisco IOS IPv6 Embedded Management Components, page 13

# Enabling Telnet Access to an IPv6 Router and Establishing a Telnet Session

Using either IPv4 or IPv6 transport, you can use Telnet to connect from a host to a router, from a router to a router, and from a router to a host.

I

#### **SUMMARY STEPS**

- 1. enable
- 2. configure terminal
- **3. ipv6 host** *name* [port] *ipv6-address1 ipv6-address2...ipv6-address4*
- 4. line [aux | console | tty | vty] line-number [ending-line-number]
- 5. password password
- 6. login [local | tacacs]
- 7. ipv6 access-class *ipv6-access-list-name* {in | out
- 8. telnet host port ] [keyword

#### **DETAILED STEPS**

|        | Command or Action                                                                                                      | Purpose                                                             |  |
|--------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Step 1 | enable                                                                                                                 | Enables privileged EXEC mode.                                       |  |
|        |                                                                                                                        | • Enter your password if prompted.                                  |  |
|        | Example:                                                                                                               |                                                                     |  |
|        | Router> enable                                                                                                         |                                                                     |  |
| Step 2 | configure terminal                                                                                                     | Enters global configuration mode.                                   |  |
|        |                                                                                                                        |                                                                     |  |
|        | Example:                                                                                                               |                                                                     |  |
|        | Router# configure terminal                                                                                             |                                                                     |  |
| Step 3 | <b>ipv6 host</b> name [port] ipv6-address1 ipv6-address2ipv6-<br>address4                                              | Defines a static hostname-to-address mapping in the hostname cache. |  |
|        | Example:                                                                                                               |                                                                     |  |
|        | Router(config)# ipv6 host cisco-sj 2001:DB8:20:1::12                                                                   |                                                                     |  |
| Step 4 | <b>line</b> [ <b>aux</b>   <b>console</b>   <b>tty</b>   <b>vty</b> ] <i>line-number</i> [ <i>ending-line-number</i> ] | Works with the <b>vty</b> keyword to create a vty interface.        |  |
|        | Example:                                                                                                               |                                                                     |  |
|        | Router(config)# line vty 0 4                                                                                           |                                                                     |  |
| Step 5 | password password                                                                                                      | Creates a password that enables Telnet.                             |  |
|        | Example:                                                                                                               |                                                                     |  |
|        | Router(config)# password hostword                                                                                      |                                                                     |  |

I

|        | Command or Action                                        | Purpose                                                                                                    |  |  |
|--------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Step 6 | login [local   tacacs]                                   | (Optional) Enables password checking at login.                                                             |  |  |
|        | Example:                                                 |                                                                                                            |  |  |
|        | Router(config)# login tacacs                             |                                                                                                            |  |  |
| Step 7 | ipv6 access-class <i>ipv6-access-list-name</i> {in   out | (Optional) Adds an IPv6 access list to the line interface.                                                 |  |  |
|        | Example:                                                 | • Using this command restricts remote access to sessions that match the access list.                       |  |  |
|        | Router(config)# ipv6 access-list hostlist                |                                                                                                            |  |  |
| Step 8 | telnet host port ] [keyword                              | Establishes a Telnet session from a router to a remote host using either the hostname or the IPv6 address. |  |  |
|        | Example:                                                 | The Telnet session can be established to a router name or to an IPv6 address.                              |  |  |
|        | Router(config)# telnet cisco-sj                          |                                                                                                            |  |  |

# **Enabling SSH on an IPv6 Router**

If you do not configure SSH parameters, then the default values will be used.

Before configuring SSH over an IPv6 transport, ensure that the following conditions exist:

- An IPsec (Data Encryption Standard (DES) or 3DES) encryption software image from Cisco IOS Release 12.2(8)T or later releases or Cisco IOS Release 12.0(22)S or later releases is loaded on your router. IPv6 transport for the SSH server and SSH client requires an IPsec encryption software image.
- A hostname and host domain are configured for your router. Refer to the "Mapping Host Names to IPv6 Addresses" section of the Implementing IPv6 Addressing and Basic Connectivity module for information on assigning hostnames to IPv6 addresses and specifying default domain names that can be used by both IPv4 and IPv6.
- A Rivest, Shamir, and Adelman (RSA) key pair, which automatically enables SSH, is generated for your router.

Note

RSA is the public key cryptographic system developed by Ron Rivest, Adi Shamir, and Leonard Adelman. RSA keys come in pairs: one public key and one private key.

• A user authentication mechanism for local or remote access is configured on your router.



The basic restrictions for SSH over an IPv4 transport listed in " Configuring Secure Shell " in the Cisco IOS Security Configuration Guide apply to SSH over an IPv6 transport. In addition to the restrictions listed in that chapter, the use of locally stored usernames and passwords is the only user authentication mechanism supported by SSH over an IPv6 transport; the TACACS+ and RADIUS user authentication mechanisms are not supported over an IPv6 transport.



Note

To authenticate SSH clients, configure TACACS+ or RADIUS over an IPv4 transport and t an SSH server over an IPv6 transport.

**SUMMARY STEPS** 

1. enable

>

- 2. configure terminal
- **3.** ip ssh [timeout seconds | authentication-retries integer]
- 4. exit
- 5. ssh [-v {1|2}] [-c {3des | aes128-cbc | aes192-cbc | aes256-cbc}] [-l userid | -l userid : number ipaddress | -l userid :rotary number ip-address] [-m {hmac-md5| hmac-md5-96 | hmac-sha1 | hmacsha1-96}][-o numberofpasswordprompts n][-p port-num] {ip-addr | hostname} [command

#### **DETAILED STEPS**

|        | Command or Action          | Purpose                            |  |
|--------|----------------------------|------------------------------------|--|
| Step 1 | enable                     | Enables privileged EXEC mode.      |  |
|        |                            | • Enter your password if prompted. |  |
|        | Example:                   |                                    |  |
|        | Router> enable             |                                    |  |
| Step 2 | configure terminal         | Enters global configuration mode.  |  |
|        |                            |                                    |  |
|        | Example:                   |                                    |  |
|        | Router# configure terminal |                                    |  |

|        | Command or Action                                                                                                                                                                                                                                                                                        | Purpose                                                                                                                                                                                                                       |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 3 | <b>ip ssh</b> [ <b>timeout</b> seconds   <b>authentication-retries</b> integer]                                                                                                                                                                                                                          | Configures SSH control variables on your router.                                                                                                                                                                              |  |  |
|        | <pre>Example:<br/>Router(config)# ip ssh timeout 100 authentication-<br/>retries 2</pre>                                                                                                                                                                                                                 | • You can specify the timeout in seconds, not to exceed 120 seconds. The default is 120. This setting applies to the SSH negotiation phase. Once the EXEC session starts, the standard timeouts configured for the vty apply. |  |  |
|        |                                                                                                                                                                                                                                                                                                          | By default, five vty lines are defined (0-4); therefore, five terminal sessions are possible. After the SSH executes a shell, the vty timeout starts. The vty timeout defaults to 10 minutes.                                 |  |  |
|        |                                                                                                                                                                                                                                                                                                          | • You can also specify the number of authentication retries, not to exceed five authentication retries. The default is three.                                                                                                 |  |  |
| Step 4 | exit                                                                                                                                                                                                                                                                                                     | Exits configuration mode, and returns the router to privileged EXEC mode.                                                                                                                                                     |  |  |
|        | Example:                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |  |  |
|        | Router(config)# exit                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |  |  |
| Step 5 | ssh [-v {1  2}] [-c {3des   aes128-cbc   aes192-cbc   aes256-<br>cbc}] [-l userid   -l userid : number ip-address   -l<br>userid :rotary number ip-address] [-m {hmac-md5  hmac-<br>md5-96   hmac-sha1   hmac-sha1-96}] [-o<br>numberofpasswordprompts n] [-p port-num] {ip-addr  <br>hostname} [command | Starts an encrypted session with a remote networking device.                                                                                                                                                                  |  |  |
|        | Example:                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |  |  |
|        | Router# ssh                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |  |  |

# **Configuring an SNMP Notification Server over IPv6**

Use an SNMP community string to define the relationship between the SNMP manager and the agent. The community string acts like a password to regulate access to the agent on the router. Optionally, you can specify one or more of the following characteristics associated with the string:

- An access list of IP addresses of the SNMP managers that are permitted to use the community string to gain access to the agent.
- A MIB view, which defines the subset of all MIB objects accessible to the given community.
- Read and write or read-only permission for the MIB objects accessible to the community.

You can configure one or more community strings. To remove a specific community string, use the **no snmp-server community** command.

The **snmp-server host** command specifies which hosts will receive SNMP notifications, and whether you want the notifications sent as traps or inform requests. The **snmp-server enable traps** command globally

enables the production mechanism for the specified notification types (such as Border Gateway Protocol [BGP] traps, config traps, entity traps, and Hot Standby Router Protocol [HSRP] traps).

#### **SUMMARY STEPS**

- 1. enable
- 2. configure terminal
- **3.** snmp-server community *string* [view *view-name*] [ro | rw] [ipv6 *nacl*] [access-list-number]
- **4. snmp-server engineID remote** {*ipv4-ip-address*| *ipv6-address*} [**udp-port** *udp-port-number*] [**vrf** *vrf-name*] *engineid-string*
- **5. snmp-server group** *group-name* {**v1** | **v2c** | **v3** {**auth** | **noauth** | **priv**}} [**context** *context-name*] [**read** *read-view*] [**write** *write-view*] [**notify** *notify-view*] [**access** [**ipv6** *named-access-list*]{*acl-number* | *aclname*}]
- **6. snmp-server host** {*hostname* | *ip-address*} [**vrf** *vrf-name*] [**traps** | **informs**] [**version** {**1** | **2c** | **3** [**auth** | **noauth** | **priv**]}] *community-string* [**udp-port** *port*] [*notification-type*]
- 7. snmp-server user *username group-name* [remote *host* [udp-port *port*]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access [ipv6 *nacl*] [priv {des | 3des | aes{128 192| 256}} *privpassword*] {*acl-number* | *acl-name*} ]
- 8. snmp-server enable traps [notification-type] [vrrp

#### **DETAILED STEPS**

|        | Command or Action                                                                                                                                               | Purpose                              |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
| Step 1 | enable                                                                                                                                                          | Enables privileged EXEC mode.        |  |  |
|        |                                                                                                                                                                 | • Enter your password if prompted.   |  |  |
|        | Example:                                                                                                                                                        |                                      |  |  |
|        | Router> enable                                                                                                                                                  |                                      |  |  |
| Step 2 | configure terminal                                                                                                                                              | Enters global configuration mode.    |  |  |
|        |                                                                                                                                                                 |                                      |  |  |
|        | Example:                                                                                                                                                        |                                      |  |  |
|        | Router# configure terminal                                                                                                                                      |                                      |  |  |
| Step 3 | <b>snmp-server community</b> <i>string</i> [ <b>view</b> <i>view-name</i> ] [ <b>ro</b>   <b>rw</b> ] [ <b>ipv6</b> <i>nacl</i> ] [ <i>access-list-number</i> ] | Defines the community access string. |  |  |
|        |                                                                                                                                                                 |                                      |  |  |
|        | Example:                                                                                                                                                        |                                      |  |  |
|        | Router(config)# snmp-server community mgr view restricted rw ipv6 mgr2                                                                                          |                                      |  |  |

|        | Command or Action                                                                                                                                                                                   | Purpose                                                                                                                                                                                        |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 4 | <b>snmp-server engineID remote</b> { <i>ipv4-ip-address</i>   <i>ipv6-address</i> }<br>[ <b>udp-port</b> <i>udp-port-number</i> ] [ <b>vrf</b> <i>vrf-name</i> ] <i>engineid-string</i>             | (Optional) Specifies the name of the remote SNMP engine (or copy of SNMP).                                                                                                                     |  |  |
| Step 5 | Example:<br>Router(config)# snmp-server engineID remote<br>3ffe:b00:c18:1::3/127 remotev6<br>snmp-server group group-name {v1   v2c   v3 {auth   noauth                                             | (Optional) Configures a new SNMP group, or a                                                                                                                                                   |  |  |
| ·      | <pre>priv} [context context-name] [read read-view] [write write-view] [notify notify-view] [access [ipv6 named-access-list]{acl-number   acl-name}]</pre>                                           | table that maps SNMP users to SNMP views.                                                                                                                                                      |  |  |
|        | Example:                                                                                                                                                                                            |                                                                                                                                                                                                |  |  |
|        | Router(config)# snmp-server group public v2c access ipv6<br>public2                                                                                                                                 |                                                                                                                                                                                                |  |  |
| Step 6 | <pre>snmp-server host {hostname   ip-address} [vrf vrf-name] [traps   informs] [version {1   2c   3 [auth   noauth   priv]}] community- string [udp-port port] [notification-type]</pre>            | <ul> <li>Specifies the recipient of an SNMP notification operation.</li> <li>Specifies whether you want the SNMP notifications sent as traps or informs, the</li> </ul>                        |  |  |
|        | Example:                                                                                                                                                                                            | version of SNMP to use, the security level of<br>the notifications (for SNMPv3), and the<br>recipient (host) of the notifications.                                                             |  |  |
|        | Router(config)# snmp-server host hostl.com 2c vrf trap-<br>vrf                                                                                                                                      | recipient (nost) of the nonnearons.                                                                                                                                                            |  |  |
| Step 7 | <b>snmp-server user</b> username group-name [ <b>remote</b> host [ <b>udp-port</b> port]] { <b>v1</b>   <b>v2c</b>   <b>v3</b> [ <b>encrypted</b> ] [ <b>auth</b> { <b>md5</b>   <b>sha</b> } auth- | (Optional) Configures a new user to an existing SNMP group.                                                                                                                                    |  |  |
|        | <pre>password] { [access [ipv6 nacl] [priv {des   3des   aes{128 192 <br/>256} } privpassword] { acl-number   acl-name } ]</pre>                                                                    | <b>Note</b> You cannot configure a remote user for an address without first configuring the engine ID for that remote host. This is a restriction improved in the design of these communds; if |  |  |
|        | Example:                                                                                                                                                                                            | you try to configure the user before the host,                                                                                                                                                 |  |  |
|        | Router(config)# snmp-server user user1 bldg1 remote<br>3ffe:b00:c18:1::3/127 v2c access ipv6 public2                                                                                                | you will receive a warning message and the<br>command will not be executed                                                                                                                     |  |  |
| Step 8 | snmp-server enable traps [notification-type] [vrrp                                                                                                                                                  | Enables sending of traps or informs, and specifies the type of notifications to be sent.                                                                                                       |  |  |
|        | <b>Example:</b><br>Router(config)# snmp-server enable traps bgp                                                                                                                                     | <ul> <li>If a <i>notification-type</i> is not specified, all supported notification will be enabled on the router.</li> <li>To discover which notifications are available.</li> </ul>          |  |  |
|        |                                                                                                                                                                                                     | on your router, enter the <b>snmp-server enable</b><br><b>traps ?</b> command.                                                                                                                 |  |  |

# **Configuring Cisco IOS IPv6 Embedded Management Components**

Most IPv6 embedded management components are enabled automatically when IPv6 is enabled and do not need further configuration. To configure syslog over IPv6 or disable HTTP access to a router, refer to the tasks in the following sections:

- Configuring Syslog over IPv6, page 13
- Disabling HTTP Access to an IPv6 Router, page 13

# **Configuring Syslog over IPv6**

### SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** logging host {{*ip-address* | *hostname*} | {**ipv6** *ipv6-address* | *hostname*}} [transport {udp [port *port-number*] | **tcp** [port *port-number*] [audit]}] [xml | filtered [stream *stream-id*]] [alarm [*severity*]]

### **DETAILED STEPS**

|        | Command or Action                                                                                                                                                                                                                                                                  | Purpose                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Step 1 | enable                                                                                                                                                                                                                                                                             | Enables privileged EXEC mode.                              |
|        |                                                                                                                                                                                                                                                                                    | • Enter your password if prompted.                         |
|        | Example:                                                                                                                                                                                                                                                                           |                                                            |
|        | Router> enable                                                                                                                                                                                                                                                                     |                                                            |
| Step 2 | configure terminal                                                                                                                                                                                                                                                                 | Enters global configuration mode.                          |
|        |                                                                                                                                                                                                                                                                                    |                                                            |
|        | Example:                                                                                                                                                                                                                                                                           |                                                            |
|        | Router# configure terminal                                                                                                                                                                                                                                                         |                                                            |
| Step 3 | logging host {{ <i>ip-address</i>   <i>hostname</i> }   { <b>ipv6</b> <i>ipv6-address</i>   <i>hostname</i> }}<br>[transport {udp [port <i>port-number</i> ]   tcp [port <i>port-number</i> ] [audit]}] [xml  <br>filtered [stream <i>stream-id</i> ]] [alarm [ <i>severity</i> ]] | Logs system messages and debug<br>output to a remote host. |
|        | Example:                                                                                                                                                                                                                                                                           |                                                            |
|        | Router(config)# logging host ipv6 AAAA:BBBB:CCCC:DDDD::FFFF                                                                                                                                                                                                                        |                                                            |

### **Disabling HTTP Access to an IPv6 Router**

HTTP access over IPv6 is automatically enabled if an HTTP server is enabled and the router has an IPv6 address. If the HTTP server is not required, it should be disabled.

#### **SUMMARY STEPS**

- 1. enable
- 2. configure terminal
- 3. no ip http server

#### **DETAILED STEPS**

| Command or Action                 | Purpose                                                                                                                                                                                                                                      |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| enable                            | Enables privileged EXEC mode.                                                                                                                                                                                                                |  |  |
|                                   | • Enter your password if prompted.                                                                                                                                                                                                           |  |  |
| Example:                          |                                                                                                                                                                                                                                              |  |  |
| Router> enable                    |                                                                                                                                                                                                                                              |  |  |
| configure terminal                | Enters global configuration mode.                                                                                                                                                                                                            |  |  |
|                                   |                                                                                                                                                                                                                                              |  |  |
| Example:                          |                                                                                                                                                                                                                                              |  |  |
| Router# configure terminal        |                                                                                                                                                                                                                                              |  |  |
| no ip http server                 | Disables HTTP access.                                                                                                                                                                                                                        |  |  |
|                                   |                                                                                                                                                                                                                                              |  |  |
| Example:                          |                                                                                                                                                                                                                                              |  |  |
| Router(config)# no ip http server |                                                                                                                                                                                                                                              |  |  |
|                                   | Command or Action         enable         Example:         Router> enable         configure terminal         Example:         Router# configure terminal         no ip http server         Example:         Router(config)# no ip http server |  |  |

# Configuration Examples for Implementing IPv6 for Network Management

- Examples Enabling Telnet Access to an IPv6 Router Configuration, page 14
- Example Disabling HTTP Access to the Router, page 16
- Examples Configuring an SNMP Notification Server over IPv6, page 16

# **Examples Enabling Telnet Access to an IPv6 Router Configuration**

The following examples provide information on how to enable Telnet and start a session to or from an IPv6 router. In the following example, the IPv6 address is specified as 2001:DB8:20:1::12, and the hostname is specified as cisco-sj. The **show host** command is used to verify this information.

```
Router# configure terminal
Router(config)# ipv6 host cisco-sj 2001:DB8:20:1::12
Router(config)# end
Router# show host
Default domain is not set
Name/address lookup uses static mappings
```

```
Codes:UN - unknown, EX - expired, OK - OK, ?? - revalidate

temp - temporary, perm - permanent

NA - Not Applicable None - Not defined

Host Port Flags Age Type Address(es)

cisco-sj None (perm, OK) 0 IPv6 2001:DB8:20:1::12
```

To enable Telnet access to a router, create a vty interface and password:

```
Router(config)# line vty 0 4
password lab
login
```

To use Telnet to access the router, you must enter the password:

```
Router# telnet cisco-sj
Trying cisco-sj (2001:DB8:20:1::12)... Open
User Access Verification
Password:
cisco-sj
.
.
.
verification
```

It is not necessary to use the **telnet** command. Specifying either the hostname or the address is sufficient, as shown in the following examples:

Router# cisco-sj

or

```
Router# 2001:DB8:20:1::12
```

To display the IPv6 connected user (line 130) on the router to which you are connected, use the **show users** command:

| Rc | uter# <b>show</b> | users |         |          |          |
|----|-------------------|-------|---------|----------|----------|
|    | Line              | User  | Host(s) | Idle     | Location |
| *  | 0 con 0           |       | idle    | 00:00:00 |          |
| 1  | .30 vty 0         |       | idle    | 00:00:22 | 8800::3  |

Note that the address displayed is the IPv6 address of the source of the connection. If the hostname of the source is known (either through a domain name server [DNS] or locally in the host cache), then it is displayed instead:

| Router# <b>show</b> | users |         |          |          |
|---------------------|-------|---------|----------|----------|
| Line                | User  | Host(s) | Idle     | Location |
| * 0 con 0           |       | idle    | 00:00:00 |          |
| 130 vty 0           |       | idle    | 00:02:47 | cisco-sj |

If the user at the connecting router suspends the session with ^6x and then enters the **show sessions** command, the IPv6 connection is displayed:

Router# show sessions Conn Host Address Byte Idle Conn Name \* 1 cisco-sj 2001:DB8:20:1::12 0 0 cisco-sj

The Conn Name field shows the hostname of the destination only if it is known. If it is not known, the output might look similar to the following:

Router# show sessions

| Conn | Host              | Address           | Byte | Idle Conn Name      |
|------|-------------------|-------------------|------|---------------------|
| * 1  | 2001:DB8:20:1::12 | 2001:DB8:20:1::12 | 0    | 0 2001:DB8:20:1::12 |

I

### **Example Disabling HTTP Access to the Router**

In the following example, the **show running-config** command is used to show that HTTP access is disabled on the router:

```
Router# show running-config
Building configuration...
!
Current configuration : 1490 bytes
!
version 12.2
!
hostname Router
!
no ip http server
!
line con 0
line aux 0
line vty 0 4
```

# Examples Configuring an SNMP Notification Server over IPv6

The following example permits any SNMP to access all objects with read-only permission using the community string named public. The router also will send BGP traps to the IPv4 host 172.16.1.111 and IPv6 host 3ffe:b00:c18:1::3/127 using SNMPv1 and to the host 172.16.1.27 using SNMPv2c. The community string named public is sent with the traps.

```
Router(config)# snmp-server
community public
Router(config)# snmp-server enable traps bgp
Router(config)# snmp-server host
172.16.1.27 version 2c public
Router(config)# snmp-server host
172.16.1.111 version 1 public
Router(config)# snmp-server host
3ffe:b00:c18:1::3/127 public
```

#### Associate an SNMP Server Group with Specified Views Example

In the following example, the SNMP context A is associated with the views in SNMPv2c group GROUP1 and the IPv6 named access list public2:

```
Router(config)# snmp-server context A
Router(config)# snmp mib community-map commA context A target-list commAVpn
Router(config)# snmp mib target list commAVpn vrf CustomerA
Router(config)# snmp-server view viewA ciscoPingMIB included
Router(config)# snmp-server view viewA ipForward included
Router(config)# snmp-server group GROUP1 v2c context A read viewA write viewA notify
access ipv6 public2
```

#### **Create an SNMP Notification Server Example**

The following example configures the IPv6 host as the notification server:

```
Router> enable
Router# configure terminal
Router(config)# snmp-server community mgr view restricted rw ipv6 mgr2
```

```
Router(config)# snmp-server engineID remote 3ffe:b00:c18:1::3/127 remotev6
Router(config)# snmp-server group public v2c access ipv6 public2
Router(cofig)# snmp-server host host1.com 2c vrf trap-vrf
Router(cofig)# snmp-server user user1 bldg1 remote 3ffe:b00:c18:1::3/127 v2c access ipv6
public2
Router(config)# snmp-server enable traps bgp
Router(config)# exit
```

# **Additional References**

# **Related Documents**

| Related Topic                                                                                        | Document Title                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IPv6 supported features                                                                              | "Start Here: Cisco IOS Software Release Specifics<br>for IPv6 Features ," <i>Cisco IOS IPv6 Configuration</i><br><i>Guide</i>                                                                                                                                                                                                                                                                                         |
| Basic IPv6 configuration tasks                                                                       | "Implementing IPv6 Addressing and Basic<br>Connectivity," <i>Cisco IOS IPv6 Configuration</i><br><i>Guide</i>                                                                                                                                                                                                                                                                                                         |
| IPv6 commands: complete command syntax,<br>command mode, defaults, usage guidelines, and<br>examples | Cisco IOS IPv6 Command Reference                                                                                                                                                                                                                                                                                                                                                                                      |
| SSH configuration information                                                                        | Cisco IOS Security Command Reference                                                                                                                                                                                                                                                                                                                                                                                  |
| IPv4 CNS, SOAP                                                                                       | "Cisco Networking Services," Cisco IOS Network<br>Management Configuration Guide                                                                                                                                                                                                                                                                                                                                      |
| NETCONF                                                                                              | "Network Configuration Protocol," Cisco IOS Network Management Configuration Guide                                                                                                                                                                                                                                                                                                                                    |
| IP SLAs for IPv6                                                                                     | <ul> <li>IP SLAsAnalyzing IP Service Levels Using<br/>the ICMP Echo Operation</li> <li>IP SLAsAnalyzing IP Service Levels Using<br/>the TCP Connect Operation</li> <li>IP SLAsAnalyzing IP Service Levels Using<br/>the UDP Echo Operation</li> <li>IP SLAsAnalyzing IP Service Levels Using<br/>the UDP Jitter Operation</li> <li>IP SLAsAnalyzing VoIP Service Levels<br/>Using the UDP Jitter Operation</li> </ul> |

1

#### Standards

| Standard                                                                                                                              | Title |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|
| No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. |       |

#### MIBs

| MIB                                                                                                                                                                                                                                                                                             | MIBs Link                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>CISCO-CONFIG-COPY-MIB</li> <li>CISCO-CONFIG-MAN-MIB</li> <li>CISCO-DATA-COLLECTION-MIB</li> <li>CISCO-FLASH-MIB</li> <li>CISCO-RTTMON-IPv6-MIB</li> <li>CISCO-SNMP-TARGET-EXT-MIB</li> <li>ENTITY-MIB</li> <li>IP-FORWARD-MIB</li> <li>IP-MIB</li> <li>NOTIFICATION-LOG-MIB</li> </ul> | To locate and download MIBs for selected<br>platforms, Cisco software releases, and feature sets,<br>use Cisco MIB Locator found at the following<br>URL:<br>http://www.cisco.com/go/mibs |

• SNMP-TARGET-MIB

#### RFCs

| RFC      | Title                                                                                                  |  |
|----------|--------------------------------------------------------------------------------------------------------|--|
| RFC 2732 | Format for Literal IPv6 Addresses in URLs                                                              |  |
| RFC 3414 | User-based Security Model (USM) for version 3 of<br>the Simple Network Management Protocol<br>(SNMPv3) |  |
| RFC 3484 | Default Address Selection for Internet Protocol version 6 (IPv6)                                       |  |
| RFC 4292 | IP Forwarding Table MIB                                                                                |  |
| RFC 4293 | Management Information Base for the Internet<br>Protocol (IP)                                          |  |

|   |    |    | -   |         |    |     |    |
|---|----|----|-----|---------|----|-----|----|
|   | 20 | hn | 100 | <br>100 | -0 | ton | ~~ |
|   |    |    |     | <br>    |    |     |    |
|   |    |    | ւսս | <br>    |    | ւսո |    |
| _ |    |    |     | <br>    |    |     |    |
|   |    |    |     |         |    |     |    |

| Description                                                                                                                                                                                                                                                                                                                                                                                                   | Link                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| The Cisco Support and Documentation website<br>provides online resources to download<br>documentation, software, and tools. Use these<br>resources to install and configure the software and<br>to troubleshoot and resolve technical issues with<br>Cisco products and technologies. Access to most<br>tools on the Cisco Support and Documentation<br>website requires a Cisco.com user ID and<br>password. | http://www.cisco.com/cisco/web/support/<br>index.html |

# Feature Information for Implementing IPv6 for Network Management

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

| Feature Name         | Releases                                                | Feature Information                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CNS Agents for IPv6  | 12.2(33)SB 12.2(33)SRC<br>12.2(50)SY 12.4(20)T          | CNS configuration and event<br>agents use a CNS configuration<br>engine to provide methods for<br>automating initial Cisco IOS<br>device configurations,<br>incremental configurations, and<br>synchronized configuration<br>updates, and the configuration<br>engine reports the status of the<br>configuration load as an event to<br>which a network monitoring or<br>workflow application can<br>subscribe. |
| HTTP(S) IPv6 Support | 12.2(33)SB 12.2(33)SRC<br>12.2(50)SY 12.4(20)T          | This feature enhances the<br>HTTP(S) client and server to<br>support IPv6 addresses.                                                                                                                                                                                                                                                                                                                            |
| IP SLAs for IPv6     | 12.2(33)SB 12.2(33)SRC<br>12.2(50)SY 12.4(20)T 15.0(1)S | IP SLAs are supported for IPv6.                                                                                                                                                                                                                                                                                                                                                                                 |

 Table 1
 Feature Information for Managing Cisco IOS Applications over IPv6

| Feature Name                                                                            | Releases                                                                               | Feature Information                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IPv6 for Config Logger                                                                  | 12.2(33)SB 12.2(33)SRC<br>12.2(50)SY 12.4(20)T                                         | Config logger tracks and reports configuration changes.                                                                                                                                                                                                  |
| IPv6 NETCONF Support                                                                    | 12.2(33)SB 12.2(33)SRC<br>12.2(50)SY 12.4(20)T                                         | The Network Configuration<br>Protocol (NETCONF) defines a<br>simple mechanism through which<br>a network device can be<br>managed, configuration data<br>information can be retrieved, and<br>new configuration data can be<br>uploaded and manipulated. |
| IPv6syslog over IPv6                                                                    | 12.2(33)SB 12.2(33)SRC<br>12.2(33)SXI 12.4(4)T                                         | The Cisco IOS syslog process in<br>IPv6 allows users to log syslog<br>messages to external syslog<br>servers and hosts with IPv6<br>addresses.                                                                                                           |
| IPv6 ServicesIP-FORWARD-<br>MIB Support                                                 | 12.0(22)S 12.2(14)S 12.2(28)SB<br>12.2(33)SRA 12.2(15)T 12.3<br>12.3(2)T 12.4 12.4(2)T | A MIB is a database of objects<br>that can be managed on a device.<br>The managed objects, or<br>variables, can be set or read to<br>provide information on the<br>network devices and interfaces.                                                       |
| IPv6 ServicesIP-MIB Support                                                             | 12.0(22)S 12.2(14)S 12.2(28)SB<br>12.2(33)SRA 12.2(15)T 12.3<br>12.3(2)T 12.4 12.4(2)T | A MIB is a database of objects<br>that can be managed on a device.<br>The managed objects, or<br>variables, can be set or read to<br>provide information on the<br>network devices and interfaces.                                                       |
| IPv6 ServicesRFC 4293 IP-MIB<br>(IPv6 only) and RFC 4292 IP-<br>FORWARD-MIB (IPv6 only) | 12.2(33)SB 12.2(58)SE<br>12.2(54)SG 12.2(33)SRC<br>12.2(50)SY 15.1(3)T                 | IP-FORWARD-MIB and IP-MIB<br>were updated to RFC 4292 and<br>RFC 4293 standards,<br>respectively.                                                                                                                                                        |
| IPv6 Support for TCL                                                                    | 12.2(33)SRC 12.2(50)SY<br>12.4(20)T                                                    | IPv6 supports TCL.                                                                                                                                                                                                                                       |
| IPv6 Support in SOAP                                                                    | 12.2(33)SB 12.2(33)SRC<br>12.2(50)SY 12.4(20)T                                         | SOAP is a protocol intended for<br>exchanging structured<br>information in a decentralized,<br>distributed environment.                                                                                                                                  |
| SNMP over IPv6                                                                          | 12.0(27)S 12.2(33)SRB<br>12.2(33)SXI 12.3(14)T 12.4<br>12.4(2)T                        | SNMP can be configured over<br>IPv6 transport so that an IPv6<br>host can perform SNMP queries<br>and receive SNMP notifications<br>from a device running Cisco IOS<br>IPv6.                                                                             |

| Feature Name                                | Releases                                                                                       | Feature Information                                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SNMPv3 - 3DES and AES<br>Encryption Support | 12.2(33)SB 12.2(33)SRB<br>12.2(33)SXI 12.4(2)T                                                 | SNMP for IPv6 supports 3DES and AES encryption.                                                                                                                                                                                                                                                                                                                              |  |  |
| SSH over an IPv6 Transport                  | 12.0(22)S 12.2(8)T 12.2(14)S<br>12.2(28)SB 12.2(33)SRA 12.3<br>12.3(2)T 12.4 12.4(2)T 15.0(1)S | SSH in IPv6 functions the same<br>and offers the same benefits as<br>SSH in IPv4the SSH Server<br>feature enables an SSH client to<br>make a secure, encrypted<br>connection to a Cisco router and<br>the SSH Client feature enables a<br>Cisco router to make a secure,<br>encrypted connection to another<br>Cisco router or to any other<br>device running an SSH server. |  |  |
| Telnet Access over IPv6                     | 12.0(22)S 12.2(2)T 12.2(14)S<br>12.2(28)SB 12.3 12.3(2)T 12.4<br>12.4(2)T                      | The Telnet client and server in<br>the Cisco IOS software support<br>IPv6 connections. A user can<br>establish a Telnet session directly<br>to the router using an IPv6 Telnet<br>client, or an IPv6 Telnet<br>connection can be initiated from<br>the router.                                                                                                               |  |  |
| TFTP File Downloading for IPv6              | 12.0(22)S 12.2(2)T 12.2(14)S<br>12.2(28)SB 12.3 12.3(2)T 12.4<br>12.4(2)T                      | IPv6 supports TFTP file downloading and uploading.                                                                                                                                                                                                                                                                                                                           |  |  |

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2011 Cisco Systems, Inc. All rights reserved.

ſ