IP Multicast: Multicast Optimization Configuration Guide, Cisco IOS XE Release 3S (Cisco ASR 1000)
Multicast Subsecond Convergence
Downloads: This chapterpdf (PDF - 129.0KB) The complete bookPDF (PDF - 937.0KB) | The complete bookePub (ePub - 943.0KB) | Feedback

Multicast Subsecond Convergence

Multicast Subsecond Convergence

Last Updated: August 24, 2012

The Multicast Subsecond Convergence feature comprises a comprehensive set of features and protocol enhancements that provide for improved scalability and convergence in multicast-based services. This feature set provides for the ability to scale to larger services levels and to recover multicast forwarding after service failure in subsecond time frames.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Multicast Subsecond Convergence

Service providers must have a multicast-enabled core in order to use the Cisco Multicast Subsecond Convergence feature.

Restrictions for Multicast Subsecond Convergence

Devices that use the subsecond designated router (DR) failover enhancement must be able to process hello interval information arriving in milliseconds. Devices that are congested or do not have enough CPU cycles to process the hello interval can assume that the Protocol Independent Multicast (PIM) neighbor is disconnected, although this may not be the case.

Information About Multicast Subsecond Convergence

Benefits of Multicast Subsecond Convergence

  • The scalability components improve on the efficiency of handling increases (or decreases) in service users (receivers) and service load (sources or content).
  • New algorithms and processes (such as aggregated join messages, which deliver up to 1000 individual messages in a single packet) reduce the time to reach convergence by a factor of 10.
  • Multicast subsecond convergence improves service availability for large multicast networks.
  • Multicast users such as financial services firms and brokerages receive better quality of service (QoS), because multicast functionality is restored in a fraction of the time previously required.

Multicast Subsecond Convergence Scalability Enhancements

The Multicast Subsecond Convergence feature provides scalability enhancements that improve on the efficiency of handling increases (or decreases) in service users (receivers) and service load (sources or content). Scalability enhancements in this release include the following:

  • Improved Internet Group Management Protocol (IGMP) and PIM state maintenance through new timer management techniques
  • Improved scaling of the Multicast Source Discovery Protocol (MSDP) Source-Active (SA) cache

The scalability enhancements provide the following benefits:

  • Increased potential PIM multicast route (mroute), IGMP, and MSDP SA cache state capacity
  • Decreased CPU usage

PIM Router Query Messages

Multicast subsecond convergence allows you to send PIM router query messages (PIM hellos) every few milliseconds. The PIM hello message is used to locate neighboring PIM devices. Before the introduction of this feature, the device could send the PIM hellos only every few seconds. By enabling a device to send PIM hello messages more often, this feature allows the device to discover unresponsive neighbors more quickly. As a result, the device can implement failover or recovery procedures more efficiently.

Reverse Path Forwarding

Unicast Reverse Path Forwarding (RPF) helps to mitigate problems caused by the introduction of malformed or forged IP source addresses into a network by discarding IP packets that lack a verifiable IP source address. Malformed or forged source addresses can indicate denial-of-service (DoS) attacks based on source IP address spoofing.

RPF uses access control lists (ACLs) in determining whether to drop or forward data packets that have malformed or forged IP source addresses. An option in the ACL commands allows system administrators to log information about dropped or forwarded packets. Logging information about forged packets can help in uncovering information about possible network attacks.

Per-interface statistics can help system administrators quickly discover the interface serving as the entry point for an attack on the network.

RPF Checks

PIM is designed to forward IP multicast traffic using the standard unicast routing table. PIM uses the unicast routing table to decide if the source of the IP multicast packet has arrived on the optimal path from the source. This process, the RPF check, is protocol-independent because it is based on the contents of the unicast routing table and not on any particular routing protocol.

Triggered RPF Checks

Multicast subsecond convergence provides the ability to trigger a check of RPF changes for mroute states. This check is triggered by unicast routing changes. By performing a triggered RPF check, users can set the periodic RPF check to a relatively high value (for example, 10 seconds) and still fail over quickly.

The triggered RPF check enhancement reduces the time needed for service to be restored after disruption, such as for single service events (for example, in a situation with one source and one receiver) or as the service scales along any parameter (for example, many sources, many receivers, and many interfaces). This enhancement decreases in time-to-converge PIM (mroute), IGMP, and MSDP (SA cache) states.

Topology Changes and Multicast Routing Recovery

The Multicast Subsecond Convergence feature set enhances both enterprise and service provider network backbones by providing almost instantaneous recovery of multicast paths after unicast routing recovery.

Because PIM relies on the unicast routing table to calculate its RPF when a change in the network topology occurs, unicast protocols first need to calculate options for the best paths for traffic, and then multicast can determine the best path.

Multicast subsecond convergence allows multicast protocol calculations to finish almost immediately after the unicast calculations are completed. As a result, multicast traffic forwarding is restored substantially faster after a topology change.

How to Configure Multicast Subsecond Convergence

Modifying the PIM Router Query Message Interval

Perform this task to modify the PIM router query message interval.

SUMMARY STEPS

1.    enable

2.    configure terminal

3.    interface type slot / subslot / port

4.    ip pim query-interval period [msec]


DETAILED STEPS
  Command or Action Purpose
Step 1
enable


Example:

Device> enable

 

Enables privileged EXEC mode.

  • Enter your password if prompted.
 
Step 2
configure terminal


Example:

Device# configure terminal

 

Enters global configuration mode.

 
Step 3
interface type slot / subslot / port


Example:

Device(config)# interface gigabitethernet 1/0/0

 

Specifies the interface and enters interface configuration mode.

 
Step 4
ip pim query-interval period [msec]


Example:

Device(config-if)# ip pim query-interval 45

 

Configures the frequency at which multicast routers send PIM router query messages.

 

What to Do Next

Proceed to the Verifying Multicast Subsecond Convergence Configurations to display and verify information about the Multicast Subsecond Convergence feature.

Verifying Multicast Subsecond Convergence Configurations

Perform this task to display detailed information about and to verify information regarding the Multicast Subsecond Convergence feature.

SUMMARY STEPS

1.    enable

2.    show ip pim interface type number

3.    show ip pim neighbor


DETAILED STEPS
Step 1   enable


Example:
Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.
Step 2   show ip pim interface type number

Use this command to display information about interfaces configured for PIM.

The following is sample output from the show ip pim interface command:



Example:
Device# show ip pim interface GigabitEthernet 1/0/0
Address          Interface                Ver/   Nbr    Query  DR     DR
                                          Mode   Count  Intvl  Prior
172.16.1.4       GigabitEthernet1/0/0     v2/S   1      100 ms 1      172.16.1.4
Step 3   show ip pim neighbor

Use this command to display the PIM neighbors discovered by the Cisco IOS XE software.

The following is sample output from the show ip pim neighbor command:



Example:
Device# show ip pim neighbor
PIM Neighbor Table
Neighbor          Interface                Uptime/Expires    Ver   DR
Address                                                            Prio/Mode
172.16.1.3        GigabitEthernet1/0/0     00:03:41/250 msec v2    1 / S

Configuration Examples for Multicast Subsecond Convergence

Modifying the PIM Router Query Message Interval Example

In the following example, the ip pim query-interval command has been set to 100 milliseconds. This command does not show up in show running-config command output unless the interval value has been configured to be the nondefault value.

!
interface gigabitethernet0/0/1
 ip address 172.16.2.1 255.255.255.0
ip pim query-interval 100 msec 
ip pim sparse-mode

Additional References

Related Documents

Related Topic

Document Title

Cisco IOS commands

Cisco IOS Master Commands List, All Releases

Cisco IOS IP SLAs commands

Cisco IOS IP Multicast Command Reference

MIBs

MIB

MIBs Link

No new or modified MIBs are supported by this feature, and support for existing standards has not been modified by this feature.

To locate and download MIBs for selected platforms, Cisco IOS XE releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

Technical Assistance

Description

Link

The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

http://www.cisco.com/cisco/web/support/index.html

Feature Information for Multicast Subsecond Convergence

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for Multicast Subsecond Convergence

Feature Name

Releases

Feature Information

Multicast Subsecond Convergence

Cisco IOS XE Release 2.1

The Multicast Subsecond Convergence feature comprises a comprehensive set of features and protocol enhancements that provide for improved scalability and convergence in multicast-based services. This feature set provides for the ability to scale to larger services levels and to recover multicast forwarding after service failure in subsecond time frames.

The following commands were introduced or modified:

  • debug ip mrouting
  • debug ip pim
  • ip pim query-interval
  • show ip pim interface
  • show ip pim neighbor

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.