

MVPN mLDP Partitioned MDT

The MVPN mLDP partitioned MDT feature uses Upstream Multicast Hop-Provider Multicast Service Interface (UMS-PMSI), a subset of provider edge routers (PEs) to transmit data to other PEs; similar to the usage of multiple selective-PMSI (S-PMSI) by data multicast distribution tree (MDT). In the partitioned MDT approach, egress PE routers that have interested receivers for traffic from a particular ingress PE joins a point-to-point (P2P) connection rooted at that ingress PE. This makes the number of ingress PE routers in a network to be low resulting in a limited number of trees in the core.

- Finding Feature Information, page 1
- Information About MVPN mLDP Partitioned MDT, page 1
- How to Configure MVPN mLDP Partitioned MDT, page 3
- Configuration Examples for MVPN mLDP Partitioned MDT, page 5
- Additional References for MVPN mLDP Partitioned MDT, page 5
- Feature Information for MVPN mLDP Partitioned MDT, page 6

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About MVPN mLDP Partitioned MDT

Overview of MVPN mLDP Partitioned MDT

MVPN allows a service provider to configure and support multicast traffic in an MPLS VPN environment. This type supports routing and forwarding of multicast packets for each individual VPN routing and forwarding

(VRF) instance, and it also provides a mechanism to transport VPN multicast packets across the service provider backbone. In the MLDP case, the regular label switch path forwarding is used, so core does not need to run PIM protocol. In this scenario, the c-packets are encapsulated in the MPLS labels and forwarding is based on the MPLS Label Switched Paths (LSPs).

The MVPN mLDP service allows you to build a Protocol Independent Multicast (PIM) domain that has sources and receivers located in different sites.

To provide Layer 3 multicast services to customers with multiple distributed sites, service providers look for a secure and scalable mechanism to transmit customer multicast traffic across the provider network. Multicast VPN (MVPN) provides such services over a shared service provider backbone, using native multicast technology similar to BGP/MPLS VPN.

MVPN emulates MPLS VPN technology in its adoption of the multicast domain (MD) concept, in which provider edge (PE) routers establish virtual PIM neighbor connections with other PE routers that are connected to the same customer VPN. These PE routers thereby form a secure, virtual multicast domain over the provider network. Multicast traffic is then transmitted across the core network from one site to another, as if the traffic were going through a dedicated provider network.

Separate multicast routing and forwarding tables are maintained for each VPN routing and forwarding (VRF) instance, with traffic being sent through VPN tunnels across the service provider backbone.

In the Rosen MVPN mLDP solution, a multipoint-to-multipoint (MP2MP) default MDT is setup to carry control plane and data traffic. A disadvantage with this solution is that all PE routers that are part of the MVPN need to join this default MDT tree. Setting up a MP2MP tree between all PE routers of a MVPN is equivalent to creating N P2MP trees rooted at each PE (Where N is the number of PE routers). In an Inter-AS (Option A) solution this problem is exacerbated since all PE routers across all AS'es need to join the default MDT. Another disadvantage of this solution is that any packet sent through a default MDT reaches all the PE routers even if there is no requirement.

In the partitioned MDT approach, only those egress PE routers that receive traffic requests from a particular ingress PE join the PMSI configured at that ingress PE. This makes the number of ingress PE routers in a network to be low resulting in a limited number of trees in the core.

How to Configure MVPN mLDP Partitioned MDT

Configuring MVPN mLDP Partitioned MDT

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip multicast-routing vrf vrf-name
- 4. ip vrf vrf-name
- 5. rd route-distinguisher
- **6. route target export** *route-target-ext-community*
- 7. route target import route-target-ext-community
- 8. mdt strict-rpf interface
- 9. mdt partitioned mldp p2mp
- 10. mdt auto-discovery mldp [inter-as]
- **11.** exit
- 12. show ip pim mdt
- 13. show ip pim vrf mdt [send | receive]
- 14. show ip multicast mpls vif

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	ip multicast-routing vrf vrf-name	Enables IP multicast routing for the MVPN VRF specified for the <i>vrf-name</i> argument.
	Example:	
	Device(config)# ip multicast-routing vrf VRF	

	Command or Action	Purpose
Step 4	ip vrf vrf-name	Defines a VRF instance and enters VRF configuration mode
	Example:	
	Device(config-vrf)# ip vrf VRF	
Step 5	rd route-distinguisher	Creates a route distinguisher (RD) (in order to make the VRF functional).
	Example: Device(config-vrf)# rd 50:11	 Creates the routing and forwarding tables, associates the RD with the VRF instance, and specifies the default RD for a VPN.
Step 6	route target export route-target-ext-community	Creates an export route target extended community for the specified VRF.
	Example:	
	Device(config-vrf)# route target export 100:100	
Step 7	route target import route-target-ext-community	Creates an import route target extended community for the specified VRF.
	Example:	
	Device(config-vrf)# route target import 100:100	
Step 8	mdt strict-rpf interface	Creates per-PE LSPVIF interface to implement strict-RPF check.
	Example:	
	Device(config-vrf)# mdt strict-rpf interface	
Step 9	mdt partitioned mldp p2mp	Configures partitioned MDT.
	Example:	 If both IPv4 and IPv6 address-families need to be configured for partitioned MDT, configure this command under both the VRF address-family
	Device(config-vrf) # mdt partitioned mldp p2mp	sub-modes.
Step 10	mdt auto-discovery mldp [inter-as]	Enables inter-AS operation with BGP A-D.
	Example:	
	Device(config-vrf)# mdt auto-discovery mldp inter-as	
Step 11	exit	Exits the VRF configuration mode and returns to privileged EXEC mode.
	Example:	
	Device(config-vrf)# exit	

	Command or Action	Purpose	
Step 12	show ip pim mdt	Displays information on wildcard S-PMSI A-D route.	
	Example:		
	Device# show ip pim mdt		
Step 13	show ip pim vrf mdt [send receive]	Displays information on wildcard S-PMSI A-D route along with MDT group mappings received from other PE routers	
	Example:	or the MDT groups that are currently in use.	
	Device# show ip pim vrf mdt send		
Step 14	show ip multicast mpls vif	Displays the LSPVIFs created for all the PEs.	
	Example:		
	Device# end		

Configuration Examples for MVPN mLDP Partitioned MDT

Example: MVPN mLDP Partitioned MDT

```
ip multicast-routing vrf VRF
  ip vrf VRF
  rd 50:11
  route target export 100:100
  route target import 100:100
  mdt strict-rpf interface
  mdt partitioned mldp p2mp
  mdt auto-discovery mldp inter-as
!
```

Additional References for MVPN mLDP Partitioned MDT

Related Documents

Related Topic	Document Title	
Cisco IOS commands	Cisco IOS Master Commands List, All Releases	
IP multicast commands	Cisco IP Multicast Command Reference	

Related Topic	Document Title	
Configuring Multicast VPN Inter-AS Support	IP Multicast: MVPN Configuration Guide	
Configuring MLDP-based MVPN	IP Multicast: LSM Configuration Guide	

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	

Feature Information for MVPN mLDP Partitioned MDT

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for MVPN mLDP Partitioned MDT

deleases	Feature Information
Cisco IOS XE Release 3.10S	In the partitioned MDT approach, only those egress PE routers that receive traffic requests from a particular ingress PE join a S-PMSI configured at that ingress PE. Typically the number of ingress PE routers in a network is low resulting in a limited number of trees in the core. No commands were introduced or modified.