
Embedded Syslog Manager (ESM)

Last Updated: September 26, 2011

The Embedded Syslog Manager (ESM) feature provides a programmable framework that allows you to
filter, escalate, correlate, route, and customize system logging messages prior to delivery by the Cisco IOS
system message logger.

• Finding Feature Information, page 1
• Restrictions for Embedded Syslog Manager, page 1
• Information About the Embedded Syslog Manager, page 2
• How to Use the Embedded Syslog Manager, page 4
• Configuration Examples for the Embedded Syslog Manager, page 14
• Additional References, page 22
• Feature Information for Embedded Syslog Manager, page 24
• Glossary, page 25

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest feature
information and caveats, see the release notes for your platform and software release. To find information
about the features documented in this module, and to see a list of the releases in which each feature is
supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Embedded Syslog Manager
Embedded Syslog Manager (ESM) depends on the Tcl 8.3.4 Cisco IOS subsystem, as ESM filters are
written in Tool Command Language (Tcl). ESM is only available in images that support Tcl version 8.3.4
or later. Support for Tcl 8.3.4 is introduced in Cisco IOS Release 12.3(2)T.

ESM filters are written in Tcl. This document assumes the reader is familiar with Tcl programming.

ESM filtering cannot be applied to SNMP “history” logging. In other words, ESM filtering will not be
applied to messages logged using the logging history and snmp-server enable traps syslog commands.

Americas Headquarters:
Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

http://www.cisco.com/go/cfn

Currently, the ESM filters do not support the debug messages. For example, if debug messages for IP
packets are enabled (with the debug ip packet command) and an ESM filter is used on the debug
messages, the filter will not work.

Information About the Embedded Syslog Manager
• Cisco IOS System Message Logging, page 2

• System Logging Message Formatting, page 2

• Embedded Syslog Manager, page 3

• Syslog Filter Modules, page 3

Cisco IOS System Message Logging
The Cisco IOS system message logging (syslog) process allows the system to report and save important
error and notification messages, either locally or to a remote logging server. These syslog messages include
messages in a standardized format (called system logging messages, system error messages, or simply
system messages). These messages are generated during network operation to assist users and Cisco TAC
engineers with identifying the type and severity of a problem, or to aid users in monitoring router activity.
System logging messages can be sent to console connections, monitor (TTY) connections, the system
buffer, or to remote hosts.

With the introduction of the Embedded Syslog Manager, system messages can be logged independently as
standard messages, XML-formatted messages, or ESM filtered messages. These outputs can be sent to any
of the traditional syslog targets. For example, you could enable standard logging to the console connection,
XML-formatted message logging to the buffer, and ESM filtered message logging to the monitor.
Similarly, each type of output could be sent to different remote hosts. A benefit of separate logging
processes is that if, for example, there is some problem with the ESM filter modules, standard logging will
not be affected.

System Logging Message Formatting
System logging messages are displayed in the following format:

%<facility>-<severity>-<mnemonic>: <message-text>

For example:

%LINK-5-CHANGED: Interface Serial3/3, changed state to administratively down

Usually, these messages are preceded by additional text, such as the timestamp and error sequence number:

<sequence-number>: <timestamp>:%<facility>-<severity>-<mnemonic>: <message-text>

For example:

000013: Mar 18 14:52:10.039:%LINK-5-CHANGED: Interface Serial3/3, changed state
to administratively down

Cisco IOS System Message Logging
 Information About the Embedded Syslog Manager

2

Note The timestamp format used in system logging messages is determined by the service timestamps global
configuration mode command. The service sequence-numbers global configuration command enables or
disables the leading sequence number. An asterisk (*) before the time indicates that the time may be
incorrect because the system clock has not synchronized to a reliable time source.

Embedded Syslog Manager
The Embedded Syslog Manager (ESM) is a feature integrated in Cisco IOS software that allows complete
control over system message logging at the source. ESM provides a programmatic interface to allow you to
write custom filters that meet your specific needs in dealing with system logging. Benefits of this feature
include:

• Customization--Fully customizable processing of system logging messages, with support for multiple,
interfacing syslog collectors.

• Severity escalation for key messages--The ability to configure your own severity levels for syslog
messages instead of using the system-defined severity levels.

• Specific message targeting--The ability to route specific messages or message types, based on type of
facility or type of severity, to different syslog collectors.

• SMTP-base e-mail alerts--Capability for notifications using TCP to external servers, such as TCP-
based syslog collectors or Simple Mail Transfer Protocol (SMTP) servers.

• Message Limiting--The ability to limit and manage syslog “message storms” by correlating device-
level events.

The ESM is not a replacement for the current UDP-based syslog mechanism; instead, it is an optional
subsystem that can operate in parallel with the current system logging process. For example, you can
continue to have the original syslog message stream collected by server A, while the filtered, correlated, or
otherwise customized ESM logging stream is sent to server B. All of the current targets for syslog
messages (console, monitor, buffer, and syslog host list) can be configured to receive either the original
syslog stream or the ESM stream. The ESM stream can be further divided into user-defined streams and
routed to collectors accordingly.

Syslog Filter Modules
To process system logging messages, the ESM uses syslog filter modules. Syslog filter modules are merely
scripts written in the Tcl script language stored in local system memory or on a remote file server. The
ESM is customizable because you can write and reference your own scripts.

Syslog filter modules can be written and stored as plain-text files or as precompiled files. Tcl script pre-
compiling can be done with tools such as TclPro. Precompiled scripts allow a measure of security and
managed consistency because they cannot be edited.

Note As Tcl script modules contain executable commands, you should manage the security of these files in the
same way you manage configuration files.

 Embedded Syslog Manager
Information About the Embedded Syslog Manager

 3

How to Use the Embedded Syslog Manager
• Writing ESM Syslog Filter Modules, page 4

• Configuring the Embedded Syslog Manager, page 11

Writing ESM Syslog Filter Modules
Before referencing syslog filter modules in the ESM configuration, you must write or obtain the modules
you wish to apply to system logging messages. Syslog filter modules can be stored in local system memory,
or on a remote file server. To write syslog filter modules, you should understand the following concepts:

• The ESM Filter Process, page 4

• Syslog Filter Module Input, page 4

• Normal ESM Filter Processing, page 8

• Background ESM Filter Processing, page 10

• What to Do Next, page 11

The ESM Filter Process
When ESM is enabled, all system logging messages are processed through the referenced syslog filter
modules. Syslog filter modules are processed in their order in the filter chain. The position of a syslog filter
module in the filter chain is determined by the position tag applied in the logging filter global
configuration mode command. If a position is not specified, the modules are processed in the order in
which they were added to the configuration.

The output of each filter module is used as the input for the next filter module in the chain. In other words,
the Tcl global variable containing the original syslog message (::orig_msg) is set to the return value of each
filter before calling the next filter in the chain. Thus, if a filter returns NULL, no message will be sent out
to the ESM stream. Once all filters have processed the message, the message is enqueued for distribution
by the logger.

The console, buffer, monitor, and syslog hosts can be configured to receive a particular message stream
(normal, XML, or ESM). The syslog hosts can be further restricted to receive user-defined numbered
streams. Each target examines each message and accepts or rejects the message based on its stream tag.
ESM filters can change the destination stream by altering the messages’ stream tag by changing the Tcl
global variable “::stream.”

Syslog Filter Module Input
When ESM is enabled, system logging messages are sent to the logging process. Each of the data elements
in the system logging message, as well as the formatted syslog message as a whole, are recorded as Tcl
global variables. The data elements format for the syslog message are as follows:

<sequence-number>: <timestamp>:%<facility>-<severity>-<mnemonic>: <message-text>

The message-text will often contain message-arguments.

When messages are received on a syslog host a “syslog-count” number is also added:

<syslog-count>: <sequence-number>: <timestamp>:%<facility>-<severity>-<mnemonic>: <message-text>

Writing ESM Syslog Filter Modules
 How to Use the Embedded Syslog Manager

4

For example:

24:000024:02:18:37:%SYS-5-CONFIG_I:Configured from console by console

The table below lists the Tcl script input variables used in syslog filter modules. The syslog message data
that the filter must operate on are passed as Tcl global namespace variables. Therefore, variables should be
prefixed by a double-colon within the script module.

Table 1 Valid Variables for Syslog Filter Modules

Variable Name Definition

::orig_msg Full original system logging message as formatted
by the system.

• If the filter module is just making decisions on
whether to send a message or not, return either
NULL or the value of this variable
($::orig_msg).

::hostname The router’s hostname.

• The hostname can be added to the beginning of
syslog messages sent to remote hosts using the
logging origin-id hostname global
configuration mode command.

::buginfseq The error message sequence number.

• The service sequence-numbers global
configuration command enables or disables the
leading sequence number.

::timestamp The timestamp on the system logging message.

• The timestamp format used in system logging
messages is determined by the service
timestamps global configuration mode
command.

::facility The name of the system facility that generated the
message.

• The FACILITY is a code consisting of two or
more uppercase letters that indicate the facility
to which the message refers. A facility can be a
hardware device, a protocol, or a module of the
system software. Common examples include
SYS, LINK, LINEPROTO, and so on.

 Writing ESM Syslog Filter Modules
Syslog Filter Module Input

 5

Variable Name Definition

::severity The severity value.

• The SEVERITY is a single-digit code from 0
to 7 that reflects the severity of the condition.
The lower the number, the more serious the
message.

• The syslog filter module should change this
variable if the severity is to be escalated.

::mnemonic The message mnemonic.

• The MNEMONIC is a code (usually an
abbreviated description) that uniquely
identifies the type of error or event. Common
examples include CONFIG_I, UPDOWN, and
so on.

::format_string The message-text string.

• The format string is used to create the original
message. The message text will often contain
arguments; for example, in the message
“Configured from %s by %s,” %s indicates the
message arguments.

• The message-text string is the message form
that can be passed to the Tcl format command.

::msg_args The message-text arguments.

• The msg_args variable is the list containing the
arguments for the format_string.

• For example, in the system logging message
“2w0d: %SYS-5-CONFIG_I: Configured from
console by console.” the format_string is
“Configured from %s by %s.” and the
msg_args are “console, console.”

::process The process name and interrupt level string.

• Some system messages describe internal errors
and contain trace back information. The
following sample output shows the format for
process and interrupt level (ipl) information:

-Process= "Net Background", ipl= 2, pid= 82

Writing ESM Syslog Filter Modules
 Syslog Filter Module Input

6

Variable Name Definition

::pid The process ID (PID).

• Some system messages include the process ID
of the triggering process. The following
sample output shows the format for process ID
(pid) information:

-Process= "Net Background", ipl= 2, pid=
12345

::traceback The traceback string.

• Some system messages describe internal errors
and contain traceback information. This
information, when included, will typically
appear at the end of an error message. The
following sample output shows the format for
traceback information:

Apr 23 07:14:02: %ATMPA-3-CMDFAIL:
ATM2/1/0 Command Failed
at ../src-rsp/rsp_vip _atmdx.c - line 113,
arg 32784
-Process= "Net Background", ipl= 2, pid= 82
-Traceback= 602D12AC 602CED14 60050B6C
602CFF74

::syslog_facility The syslog facility number used in the PRI portion
of the syslog message sent to external syslog
collectors (syslog hosts).

• The syslog facility is given as a number, from
0 to 184.

• The default is 184 (local7), but the value can
be changed with the logging facility global
configuration command.

::clear Contains the string “- event cleared” or “NULL.”

::version The Cisco IOS software version, in the format
“SYS_MAJORVERSION.
SYS_MINORVERSION.”

::module_position The position of this syslog filter module in the filter
chain. The filter chain starts at one (1).

• The value of this argument is determined by
the order in which the scripts are referenced by
the logging filter global configuration mode
command.

 Writing ESM Syslog Filter Modules
Syslog Filter Module Input

 7

Variable Name Definition

::stream The ESM message stream number.

• The stream number will always be set to 2
(filtered stream) prior to the first filter being
executed.

• Syslog filter modules can change this value to
a user-defined stream number in order to route
the message to particular syslog collectors.

• Stream numbers are allocated as follows:

◦ Stream 0: Default (standard) syslog
stream

◦ Stream 1: XML tagged syslog stream
◦ Stream 2: Default filtered syslog stream
◦ Streams 3-9: Reserved
◦ Streams 10-65536: User defined

::cli_args The list of optional arguments specified during the
filter configuration.

A Tcl list containing any optional filter arguments
specified when the filter was configured. This is the
list of strings specified after the args keyword when
the filter was configured with the logging filter
command.

::msg_part The message part.

If an oversized syslog message has been split into
multiple messages, this variable contains a number
representing the message part (starting with 0).

::truncate The incomplete message.

If an oversized syslog message has been split into
multiple messages, this variable will be nonzero if
this message is incomplete (truncated).

::sev_prefix The severity prefix string.

Contains the optional severity prefix string.

::msg_prefix The message prefix string.

Contains the optional message prefix string.

::fac_prefix The optional facility prefix string.

Contains the optional facility prefix string.

Normal ESM Filter Processing

Writing ESM Syslog Filter Modules
 Normal ESM Filter Processing

8

Each time a system logging message is generated, the syslog filter modules are called in a series. This
series is determined by the ::module_position variable, which in turn is typically the order in which the
modules are referenced in the system configuration (the order in which they are configured).

The output of one filter module becomes the input to the next. Because the input to the filters are the Tcl
global namespace variables (as listed in Normal ESM Filter Processing, page 8), each filter can change any
or all of these variables depending upon the purpose of the filter.

The only Tcl global variables that are automatically updated by the ESM framework between subsequent
filter executions are the ::orig_msg and ::cli_args variables. The framework automatically sets the value
of ::orig_msg to the return value of the filter module. Thus a filter that is designed to alter or filter the
original message must not manually set the value for the ::orig_msg variable; the filter only needs to return
the desired value. For example, the following one-line ESM filter

return “This is my new syslog message.”

would ignore any message passed to it, and always change the output to the constant string “This is my new
syslog message.” If the module was the last filter in the chain, all ESM targets would receive this string as
the final syslog message.

The one-line ESM filter

return “”

would block all syslog messages to the ESM stream. For example, the line

return $::orig_msg

would do nothing but pass the message along to the next filter in the chain. Thus, an ESM filter designed to
suppress unwanted messages would look something like this:

if { [my_procedure_to_check_this_message] == 1 } {
 return $::orig_msg
} else {
 return “”
}

Depending upon their design, some filters may not use the ::orig_msg variable at all, but rather reconstruct
a syslog message from its data elements (using ::format_string, ::msg_args, ::timestamp, and so on). For
example, an XML tagging filter will tag the individual data elements, and disregard the original formatted
message. It is important for such modules to check the ::orig_msg variable at the beginning of the Tcl
script, so that if previous filter indicated that the message should not be sent out (::orig_msg is NULL), it
would not bother to process the message, but simply return NULL also.

Cisco IOS commands can also be added to syslog filter modules using the exec and config Tcl commands.
For example, if you wanted to add the source IP address to the syslog messages, and syslog messages were
configured to be sent from the Ethernet 2/0 interface (using the logging source-interface command) you
could issue the show interface Ethernet 2/0 command during the module initialization by using the exec
Tcl command within the script:

set source_ip_string [exec show ip int E2/0 | inc Internet]
puts $source_ip_string
" Internet address is 10.4.2.63/24"

The script should then pass the output of that command to the syslog message. For further information on
scripting within Cisco IOS software, see the “Cisco IOS Scripting with Tcl” feature module on Cisco.com.

 Writing ESM Syslog Filter Modules
Normal ESM Filter Processing

 9

Background ESM Filter Processing
In Tcl it is possible to queue commands for processing in the future by using the after Tcl command. The
most common use of this command is to correlate (gather and summarize) events over a fixed interval of
time, called the “correlation window.” Once the window of interest expires, the filter will need to “wake
up,” and calculate or summarize the events that occurred during the window, and often send out a new
syslog message to report the events. This background process is handled by the ESM Event Loop process,
which allows the Tcl interpreter to execute queued commands after a certain amount of time has passed.

If your syslog filter module needs to take advantage of correlation windows, it must use the after Tcl
command to call a summary procedure once the correlation window expires (see examples in the
Configuration Examples for the Embedded Syslog Manager, page 14). Because there is no normal filter
chain processing when background processes are run, in order to produce output these filters must make
use of one of two ESM Tcl extensions: errmsg or esm_errmsg.

During background processing, the commands that have been enqueued by the after command are not run
in the context of the filter chain (as in normal processing), but rather are autonomous procedures that are
executed in series by the Tcl interpreter. Thus, these background procedures should not operate on the
normal Tcl global namespace variables (except for setting the global namespace variables for the next filter
when using esm_errmsg), but should operate on variables stored in their own namespace. If these variables
are declared outside of a procedure definition, they will be persistent from call to call.

The purpose of the errmsg Tcl command is to create a new message and send it out for distribution,
bypassing any other syslog filter modules. The syntax of the errmsg command is:

errmsg <severity> <stream> <message_string>

The purpose of the esm_errmsg Tcl command is to create a new message, process it with any syslog filter
modules below it in the filter chain, and then send it out for distribution. The syntax of the esm_errmsg
command is:

esm_errmsg <module_position>

The key difference between the errmsg() Tcl function and the esm_errmsg() Tcl function is that errmsg
ignores the filters and directly queues a message for distribution, while esm_errmsgwill send a syslog
message down the chain of filters.

In the following example, a new syslog message is created and sent out tagged as Alert severity 1 to the
configured ESM logging targets (stream 2). One can assume the purpose of this filter would be to suppress
the individual SYS-5-CONFIG messages over a thirty minute correlation window, and send out a summary
message at the end of the window.

errmsg 1 2 “*Jan 24 09:34:02.539: %SYS-1-CONFIG_I: There have been 12
configuration changes to the router between Jan 24 09:04:02.539 and Jan 24
09:34:01.324”

In order to use esm_errmsg, because the remaining filters below this one will be called, this background
process must populate the needed Tcl global namespace variables prior to calling esm_errmsg. Passing
the ::module_position tells the ESM framework which filter to start with. Thus, filters using the
esm_errmsg command should store their ::module_position (passed in the global namespace variables
during normal processing) in their own namespace variable for use in background processing. Here is an
example:

proc ::my_filter_namespace::my_summary_procedure{}
{
 set ::orig_msg “*Jan 24 09:34:02.539: %SYS-1-CONFIG_I: There have been 12
configuration changes to the router between Jan 24 09:04:02.539 and Jan 24

Writing ESM Syslog Filter Modules
 Background ESM Filter Processing

10

09:34:01.324”
 set ::timestamp “*Jan 24 09:34:02.539”
 set ::severity 1
 set ::stream 2
 set ::traceback “”
 set ::pid “”
 set ::process “”
 set ::format_string “There have been %d configuration changes to the router
between %s and %s”
 set ::msg_args {12 “Jan 24 09:04:01.539” “Jan 24 09:34:01.324”}
 esm_errmsg $::my_filter_namespace::my_module_position
}

The benefit of setting all the global namespace variables for the esm_errmsg command is that your filters
will be modular, and it will not matter what order they are used in the ESM framework. For example, if you
wish all of the messages destined for the ESM targets to suffixed with the message originator’s hostname,
you could write a one-line “hostname” filter and place it at the bottom of the filter chain:

return “$::orig_msg -- $::hostname”

In this example, if any of your filters generate new messages during background processing and they use
esm_errmsg instead of errmsg, these messages will be clearly suffixed with the hostname.

What to Do Next
After creating your syslog filter module, you should store the file in a location accessible to the router. You
can copy the file to local system memory, or store it on a network file server.

Configuring the Embedded Syslog Manager
To configure the ESM, specify one or more filters to be applied to generated syslog messages, and specify
the syslog message target.

One or more syslog filter modules must be available to the router.

SUMMARY STEPS

1. enable

2. configure terminal

3. logging filter filter-url [position] [args filter-arguments]

4. Repeat Step 3 for each syslog filter module that should be applied to system logging output.

5. Do one of the following:

• logging [console | buffered | monitor] filtered [level]
•
• or
• logging host {ip-address | host-name} filtered [stream stream-id]
•

6. Repeat Step 5 for each desired system logging destination.

7. logging source-interface type number

8. logging origin-id {hostname | ip | string user-defined-id}

9. end

10. show logging

 Configuring the Embedded Syslog Manager
What to Do Next

 11

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 logging filter filter-url [position] [args
filter-arguments]

Example:

Router(config)# logging filter
slot0:/escalate.tcl 1 args
CONFIG_I 1

Specifies one or more syslog filter modules to be applied to generated system
logging messages.

• Repeat this command for each syslog filter module that should be used.
• The filter-url argument is the Cisco IOS File System location of the syslog

filter module (script). The location can be in local memory, or a remote
server using tftp:, ftp:, or rcp:.

• The optional position argument specifies the order in which the syslog
filter modules should be executed. If this argument is omitted, the specified
module will be positioned as the last module in the chain.

• Filters can be re-ordered on the fly by re-entering the logging filter
command and specifying a different position.

• The optional args filter-arguments syntax can be added to pass arguments
to the specified filter. Multiple arguments can be specified. The number
and type of arguments should be defined in the syslog filter module. For
example, if the syslog filter module is designed to accept a specific e-mail
address as an argument, you could pass the e-mail address using the args
user@host.com syntax.Multiple arguments are typically delimited by
spaces.

• To remove a module from the list of modules to be executed, use the no
form of this command.

Step 4 Repeat Step 3 for each syslog filter
module that should be applied to
system logging output.

--

Configuring the Embedded Syslog Manager
 What to Do Next

12

Command or Action Purpose

Step 5 Do one of the following:

• logging [console | buffered |
monitor] filtered [level]

•
• or
• logging host {ip-address | host-

name} filtered [stream stream-
id]

•

Example:

Router(config)# logging console
filtered informational

Example:

Example:

Router(config)# logging host
209.165.200.225 filtered stream
20

Specifies the target for ESM filtered syslog output.

• ESM filtered syslog messages can be sent to the console, a monitor (TTY
and Telnet connections), the system buffer, or to remote hosts.

• The optional level argument limits the sending of messages to those at or
numerically lower than the specified value. For example, if level 1 is
specified, only messages at level 1 (alerts) or level 0 (emergencies) will be
sent to the specified target. The level can be specified as a keyword or
number.

• When logging to the console, monitor connection, or system buffer, the
severity threshold specified by the level argument takes precedence over
the ESM filtering. In other words, even if the ESM filters return a message
to be delivered to ESM targets, if the severity doesn’t meet the configured
threshold (is numerically higher than the level value), it will not be
delivered.

• When logging to remote hosts, the stream tag allows you to specify a
destination based on the type of message. The stream stream-id syntax
allows you to configure the ESM to send only messages that have a
specified stream value to a certain host.

• The stream value is applied to messages by the configured syslog filter
modules. For example, all Severity 5 messages could have a stream tag of
“20” applied. You can then specify that all messages with a stream tag of
“20” be sent to the host at 209.165.200.225.:

Step 6 Repeat Step 5 for each desired system
logging destination.

• By issuing the logging host command multiple times, you can specify
different targets for different system logging streams.

• Similarly, you can configure messages at different severity levels to be sent
to the console, monitor connection, or system buffer. For example, you
may want to display only very important messages to the screen (using a
monitor or console connection) at your network operations center (NOC).

Step 7 logging source-interface type number

Example:

Router(config)# logging source-
interface ethernet 0

(Optional) Specifies the source interface for syslog messages sent to remote
syslog hosts.

• Normally, a syslog messages sent to remote hosts will use whatever
interface is available at the time of the message generation. This command
forces the router to send syslog messages to remote hosts only from the
specified interface.

 Configuring the Embedded Syslog Manager
What to Do Next

 13

Command or Action Purpose

Step 8 logging origin-id {hostname | ip |
string user-defined-id}

Example:

Router(config)# logging origin-
id string “Domain 2, Router 5”

Example:

(Optional) Allows you to add an origin identifier to syslog messages sent to
remote hosts.

• The origin identifier is added to the beginning of all syslog messages sent
to remote hosts. The identifier can be the hostname, the IP address, or any
text that you specify.

• The origin identifier is useful for identifying the source of system logging
messages in cases where you send syslog output from multiple devices to a
single syslog host.

Step 9 end

Example:

Router(config)# end

Ends your current configuration session and returns the CLI to privileged EXEC
mode.

Step 10 show logging

Example:

Router# show logging

Example:

Example:

(Optional) Displays the status of system logging, including the status of ESM
filtered logging.

• If filtered logging to the buffer is enabled, this command also shows the
data stored in the buffer.

• The order in which syslog filter modules are listed in the output of this
command is the order in which the filter modules are executed.

Configuration Examples for the Embedded Syslog Manager
• Configuring the Embedded Syslog Manager Example, page 14
• Syslog Filter Module Example, page 15

Configuring the Embedded Syslog Manager Example
In the following example, ESM filter logging is enabled for the console connection, standard logging is
enabled for the monitor connection and for the buffer, and XML-formatted logging is enabled for the host
at 209.165.200.225:

Router(config)# logging filter tftp://209.165.200.225/ESM/escalate.tcl
Router(config)# logging filter slot0:/email.tcl user@example.com
Router(config)# logging filter slot0:/email_guts.tcl

Configuring the Embedded Syslog Manager Example
 Configuration Examples for the Embedded Syslog Manager

14

Router(config)# logging console filtered
Router(config)# logging monitor 4
Router(config)# logging buffered debugging
Router(config)# logging host 209.165.200.225 xml
Router(config)# end
Router# show logging
Syslog logging: enabled (0 messages dropped, 8 messages rate-limited,
 0 flushes, 0 overruns, xml disabled, filtering enabled)
 Console logging: level debugging, 21 messages logged, xml disabled,
 filtering enabled
 Monitor logging: level warnings , 0 messages logged, xml disabled,
 filtering disabled
 Buffer logging: level debugging, 30 messages logged, xml disabled,
 filtering disabled
 Logging Exception size (8192 bytes)
 Count and timestamp logging messages: disabled

Filter modules:
 tftp://209.165.200.225/ESM/escalate.tcl
 slot0:/email.tcl user@example.com

 Trap logging: level informational, 0 message lines logged
 Logging to 209.165.200.225, 0 message lines logged, xml enabled,
 filtering disabled

Log Buffer (8192 bytes):

*Jan 24 09:34:28.431: %SYS-5-CONFIG_I: Configured from console by console
*Jan 24 09:34:51.555: %SYS-5-CONFIG_I: Configured from console by console
*Jan 24 09:49:44.295: %SYS-5-CONFIG_I: Configured from console by console
Router#

Syslog Filter Module Example
Syslog Script Modules are Tcl scripts. The following examples are provided to assist you in developing
your own Syslog Script Modules.

Note These script modules are provided as examples only, and are not supported by Cisco Systems, Inc. No
guarantees, expressed or implied, are provided for the functionality or impact of these scripts.

This appendix contains the following syslog filter module examples:

• Severity Escalation Example, page 15
• Message Counting Example, page 16
• XML Tagging Example, page 19
• SMTP-based E-mail Alert Example, page 20
• Stream Example, page 21
• Source IP Tagging Example, page 22

Severity Escalation Example
This ESM syslog filter module example watches for a single mnemonic (supplied via the first CLI
argument) and escalates the severity of the message to that specified by the second CLI argument.

===
Embedded Syslog Manager || ||
|| ||
Severity Escalation Filter |||| ||||
..:||||||:..:||||||:..

 Syslog Filter Module Example
Severity Escalation Example

 15

C i s c o S y s t e m s
==
#
Usage: Set CLI Args to "mnemonic new_severity"
#
Namespace: global
Check for null message
if { [string length $::orig_msg] == 0} {
 return ""
}

if { [info exists ::cli_args] } {
 set args [split $::cli_args]
 if { [string compare -nocase [lindex $args 0] $::mnemonic] == 0 } {
 set ::severity [lindex $args 1]
 set sev_index [string first [lindex $args 0] $::orig_msg]
 if { $sev_index >= 2 } {
 incr sev_index -2
 return [string replace $::orig_msg $sev_index $sev_index \
 [lindex $args 1]]
 }
 }
}
return $::orig_msg

Message Counting Example
This ESM syslog filter module example is divided into two files for readability. The first file allows the
user to configure those messages that they wish to count and how often to summarize (correlation window)
by populating the msg_to_watch array. The actual procedures are in the counting_guts.tcl file. Note the use
of the separate namespace “counting” to avoid conflict with other ESM filters that may also perform
background processing.

===
Embedded Syslog Manager || ||
|| ||
Message Counting Filter |||| ||||
..:||||||:..:||||||:..

C i s c o S y s t e m s

==

#
Usage:
1) Define the location for the counting_guts.tcl script
#
2) Define message categories to count and how often to dump them (sec)
by populating the "msg_to_watch" array below.
Here we define category as facility-severity-mnemonic
Change dump time to 0 to disable counting for that category
#
Namespace: counting
namespace eval ::counting {
 set sub_script_url tftp://123.123.123.123/ESM/counting_guts.tcl
 array set msg_to_watch {
 SYS-5-CONFIG_I 5
 }
======================= End User Setup ==============================
Initialize processes for counting
 if { [info exists init] == 0 } {
 source $sub_script_url
 set position $module_position
 }
Process the message
process_category
} ;# end namespace counting

Syslog Filter Module Example
 Message Counting Example

16

Message Counting Support Module (counting_guts.tcl)

===
Embedded Syslog Manager || ||
|| ||
Message Counting Support Module |||| ||||
..:||||||:..:||||||:..
(No User Modification) ------------------------
C i s c o S y s t e m s

==

namespace eval ::counting {

namespace variables

array set cat_msg_sev {}
array set cat_msg_traceback {}
array set cat_msg_pid {}
array set cat_msg_proc {}
array set cat_msg_ts {}
array set cat_msg_buginfseq {}
array set cat_msg_name {}
array set cat_msg_fac {}
array set cat_msg_format {}
array set cat_msg_args {}
array set cat_msg_count {}
array set cat_msg_dump_ts {}

Should I count this message ?
 proc query_category {cat} {
 variable msg_to_watch
 if { [info exists msg_to_watch($cat)] } {
 return $msg_to_watch($cat)
 } else {
 return 0
 }
 }
 proc clear_category {index} {
 variable cat_msg_sev
 variable cat_msg_traceback
 variable cat_msg_pid
 variable cat_msg_proc
 variable cat_msg_ts
 variable cat_msg_buginfseq
 variable cat_msg_name
 variable cat_msg_fac
 variable cat_msg_format
 variable cat_msg_args
 variable cat_msg_count
 variable cat_msg_dump_ts
 unset cat_msg_sev($index) cat_msg_traceback($index) cat_msg_pid($index)\
 cat_msg_proc($index) cat_msg_ts($index) \
 cat_msg_buginfseq($index) cat_msg_name($index) \
 cat_msg_fac($index) cat_msg_format($index) cat_msg_args($index)\
 cat_msg_count($index) cat_msg_dump_ts($index)
 }
send out the counted messages
 proc dump_category {category} {
 variable cat_msg_sev
 variable cat_msg_traceback
 variable cat_msg_pid
 variable cat_msg_proc
 variable cat_msg_ts
 variable cat_msg_buginfseq
 variable cat_msg_name
 variable cat_msg_fac
 variable cat_msg_format
 variable cat_msg_args
 variable cat_msg_count

 Syslog Filter Module Example
Message Counting Example

 17

 variable cat_msg_dump_ts
 variable poll_interval
 set dump_timestamp [cisco_service_timestamp]
foreach index [array names cat_msg_count $category] {
 set fsm "$cat_msg_fac($index)-$cat_msg_sev($index)-$cat_msg_name($index)"
 set ::orig_msg \
 [format "%s%s: %%%s: %s %s %s %s - (%d occurence(s) between %s and %s)"\
 $cat_msg_buginfseq($index)\
 $dump_timestamp\
 $fsm \
 [uplevel 1 [linsert $cat_msg_args($index) 0 ::format
$cat_msg_format($index)]] \
 $cat_msg_pid($index) \
 $cat_msg_proc($index) \
 $cat_msg_traceback($index) \
 $cat_msg_count($index) \
 $cat_msg_ts($index) \
 $dump_timestamp]
Prepare for remaining ESM filters
 set ::severity $cat_msg_sev($index)
 set ::traceback $cat_msg_traceback($index)
 set ::pid $cat_msg_pid($index)
 set ::process $cat_msg_proc($index)
 set ::timestamp $cat_msg_ts($index)
 set ::buginfseq $cat_msg_buginfseq($index)
 set ::mnemonic $cat_msg_name($index)
 set ::facility $cat_msg_fac($index)
 set ::format_string $cat_msg_format($index)
 set ::msg_args [split $cat_msg_args($index)]
 esm_errmsg $counting::position
 clear_category $index
 }
 }
See if this message already has come through since the last dump.
If so, increment the count, otherwise store it.
 proc process_category {} {
 variable cat_msg_sev
 variable cat_msg_traceback
 variable cat_msg_pid
 variable cat_msg_proc
 variable cat_msg_ts
 variable cat_msg_buginfseq
 variable cat_msg_name
 variable cat_msg_fac
 variable cat_msg_format
 variable cat_msg_args
 variable cat_msg_count
 variable cat_msg_dump_ts
 if { [string length $::orig_msg] == 0} {
 return ""
 }
 set category "$::facility-$::severity-$::mnemonic"
 set correlation_window [expr [query_category $category] * 1000]
 if { $correlation_window == 0 } {
 return $::orig_msg
 }
 set message_args [join $::msg_args]
 set index "$category,[lindex $::msg_args 0]"
 if { [info exists cat_msg_count($index)] } {
 incr cat_msg_count($index)
 } else {
 set cat_msg_sev($index) $::severity
 set cat_msg_traceback($index) $::traceback
 set cat_msg_pid($index) $::pid
 set cat_msg_proc($index) $::process
 set cat_msg_ts($index) $::timestamp
 set cat_msg_buginfseq($index) $::buginfseq
 set cat_msg_name($index) $::mnemonic
 set cat_msg_fac($index) $::facility
 set cat_msg_format($index) $::format_string
 set cat_msg_args($index) $message_args
 set cat_msg_count($index) 1
 set cat_msg_dump_ts($index) [clock seconds]

Syslog Filter Module Example
 Message Counting Example

18

 catch [after $correlation_window counting::dump_category $index]
 }
 return ""
 }
Initialized
set init 1
} ;#end namespace counting

XML Tagging Example
This ESM syslog filter module applies user-defined XML tags to syslog messages.

===
Embedded Syslog Manager || ||
|| ||
XML Tagging Filter |||| ||||
..:||||||:..:||||||:..

C i s c o S y s t e m s
===
#
Usage: Define desired tags below.
#
Namespace: xml
Check for null message
 if { [string length $::orig_msg] == 0} {
 return ""
 }
namespace eval xml {
define tags
set MSG_OPEN "<ios-log-msg>"
set MSG_CLOSE "</ios-log-msg>"
set FAC_OPEN "<facility>"
set FAC_CLOSE "</facility>"
set SEV_OPEN "<severity>"
set SEV_CLOSE "</severity>"
set MNE_OPEN "<msg-id>"
set MNE_CLOSE "</msg-id>"
set SEQ_OPEN "<seq>"
set SEQ_CLOSE "</seq>"
set TIME_OPEN "<time>"
set TIME_CLOSE "</time>"
set ARGS_OPEN "<args>"
set ARGS_CLOSE "</args>"
set ARG_ID_OPEN "<arg id="
set ARG_ID_CLOSE "</arg>"
set PROC_OPEN "<proc>"
set PROC_CLOSE "</proc>"
set PID_OPEN "<pid>"
set PID_CLOSE "</pid>"
set TRACE_OPEN "<trace>"
set TRACE_CLOSE "</trace>"
======================= End User Setup ==============================
clear result
set result ""
message opening, facility, severity, and name
append result $MSG_OPEN $FAC_OPEN $::facility $FAC_CLOSE $SEV_OPEN $::severity
$SEV_CLOSE $MNE_OPEN $::mnemonic $MNE_CLOSE
buginf sequence numbers
if { [string length $::buginfseq] > 0 } {
 append result $SEQ_OPEN $::buginfseq $SEQ_CLOSE
}
timestamps
if { [string length $::timestamp] > 0 } {
 append result $TIME_OPEN $::timestamp $TIME_CLOSE
}
message args
if { [info exists ::msg_args] } {
 if { [llength ::msg_args] > 0 } {
 set i 0
 append result $ARGS_OPEN

 Syslog Filter Module Example
XML Tagging Example

 19

 foreach arg $::msg_args {
 append result $ARG_ID_OPEN $i ">" $arg $ARG_ID_CLOSE
 incr i
 }
 append result $ARGS_CLOSE
 }
}
traceback
if { [string length $::traceback] > 0 } {
 append result $TRACE_OPEN $::traceback $TRACE_CLOSE
}
process
if { [string length $::process] > 0 } {
 append result $PROC_OPEN $::process $PROC_CLOSE
}
pid
if { [string length $::pid] > 0 } {
 append result $PID_OPEN $::pid $PID_CLOSE
}
message close
append result $MSG_CLOSE
return "$result"
} ;# end namespace xml

SMTP-based E-mail Alert Example
This ESM syslog filter module example watches for configuration messages and sends them to the e-mail
address supplied as a CLI argument. This filter is divided into two files. The first file implements the filter,
and the second file implements the SMTP client.

===
Embedded Syslog Manager || ||
|| ||
Email Filter |||| ||||
(Configuration Change Warning) ..:||||||:..:||||||:..

C i s c o S y s t e m s
===
Usage: Provide email address as CLI argument. Set email server IP in
email_guts.tcl
#
Namespace: email
if { [info exists email::init] == 0 } {
 source tftp://123.123.123.123/ESM/email_guts.tcl
}
Check for null message
if { [string length $::orig_msg] == 0} {
 return ""
 }
if { [info exists ::msg_args] } {
 if { [string compare -nocase CONFIG_I $::mnemonic] == 0 } {
 email::sendmessage $::cli_args $::mnemonic \
 [string trim $::orig_msg]
 }
}
return $::orig_msg

E-mail Support Module (email_guts.tcl)

===
Embedded Syslog Manager || ||
|| ||
Email Support Module |||| ||||
..:||||||:..:||||||:..

C i s c o S y s t e m s
===
#
Usage: Set email host IP, from, and friendly strings below.

Syslog Filter Module Example
 SMTP-based E-mail Alert Example

20

#
namespace eval email {
 set sendmail(smtphost) 64.102.17.214
 set sendmail(from) $::hostname
 set sendmail(friendly) $::hostname
 proc sendmessage {toList subject body} {
 variable sendmail
 set smtphost $sendmail(smtphost)
 set from $sendmail(from)
 set friendly $sendmail(friendly)
 set sockid [socket $smtphost 25]
DEBUG
set status [catch {
 puts $sockid "HELO $smtphost"
 flush $sockid
 set result [gets $sockid]
 puts $sockid "MAIL From:<$from>"
 flush $sockid
 set result [gets $sockid]
 foreach to $toList {
 puts $sockid "RCPT To:<$to>"
 flush $sockid
 }
 set result [gets $sockid]
 puts $sockid "DATA "
 flush $sockid
 set result [gets $sockid]
 puts $sockid "From: $friendly <$from>"
 foreach to $toList {
 puts $sockid "To:<$to>"
 }
 puts $sockid "Subject: $subject"
 puts $sockid "\n"
 foreach line [split $body "\n"] {
 puts $sockid " $line"
 }
 puts $sockid "."
 puts $sockid "QUIT"
 flush $sockid
 set result [gets $sockid]
} result]
 catch {close $sockid }
 if {$status} then {
 return -code error $result
 }
}
} ;# end namespace email
set email::init 1

Stream Example
This ESM syslog filter module example watches for a given facility (first CLI argument) and routes these
messages to a given stream (second CLI argument).

===
Embedded Syslog Manager || ||
|| ||
Stream Filter (Facility) |||| ||||
..:||||||:..:||||||:..

C i s c o S y s t e m s
===
Usage: Provide facility and stream as CLI arguments.
#
Namespace: global
Check for null message
======================= End User Setup ==============================
set args [split $::cli_args]
if { [info exists ::msg_args] } {
 if { $::facility == [lindex $args 0] } {
 set ::stream [lindex $args 1]

 Syslog Filter Module Example
Stream Example

 21

 }
}
return $::orig_msg}

Source IP Tagging Example
The logging source-interface CLI command can be used to specify a source IP address in all syslog
packets sent from the router. The following syslog filter module example demonstrates the use of show CLI
commands (show running-config and show ip interface in this case) within a filter module to add the
source IP address to syslog messages. The scriptlooks for the local namespace variable “source_ip::init”
first. If the variable is not defined in the first syslog message processed, the filter will run the show
commands and use regular expressions to get the source-interface and then its IP address.

Note that in this script, the show commands are only run once. If the source-interface or its IP address were
to be changed, the filter would have to be re-initialized to pick up the new information. (You could have the
show commands run on every syslog message, but this would not scale very well.)

===
Embedded Syslog Manager || ||
|| ||
Source IP Module |||| ||||
..:||||||:..:||||||:..

C i s c o S y s t e m s
===
Usage: Adds Logging Source Interface IP address to all messages.
#
Namespace:source_ip
#
======================= End User Setup ==============================
namespace eval ::source_ip {
 if { [info exists init] == 0 } {
 if { [catch {regexp {^logging source-interface (.*$)} [exec show
run | inc logging source-interface] match source_int}]} {
 set suffix "No source interface specified"
 } elseif { [catch {regexp {Internet address is (.*)/.*$} [exec
show ip int $source_int | inc Internet] match ip_addr}]} {
 set suffix "No IP address configured for source interface"
 } else {
 set suffix $ip_addr
 }
 set init 1
 }

 if { [string length $::orig_msg] == 0} {
 return ""
 }
 return "$::orig_msg - $suffix"
} ;# end namespace source_ip

Additional References
The following sections provide references related to the Embedded Syslog Manager feature.

Related Documents

Related Topic Document Title

System Message Logging Troubleshooting and Fault Management module

Syslog Filter Module Example
 Source IP Tagging Example

22

Related Topic Document Title

XML Formatted System Message Logging XML Interface to Syslog Messages module

Tcl 8.3.4 Support in Cisco IOS Software Cisco IOS Scripting with Tcl module

Network Management commands (including
logging commands): complete command syntax,
defaults, command mode, command history, usage
guidelines, and examples

Cisco IOS Network Management Command
Reference

Standards

Standard Title

No new or modified standards are supported, and
support for existing standards has not been
modified.

--

MIBs

MIB MIBs Link

No new or modified standards are supported, and
support for existing standards has not been
modified.

To locate and download MIBs for selected
platforms, Cisco IOS releases, and feature sets, use
Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

RFCs1 Title

RFC-3164 The BSD Syslog Protocol

• This RFC is informational only. The Cisco
implementation of syslog does not claim full
compliance with the protocol guidelines
mentioned in this RFC.

1 Not all supported RFCs are listed.

 Syslog Filter Module Example
Additional References

 23

http://www.cisco.com/go/mibs

Technical Assistance

Description Link

The Cisco Support website provides extensive
online resources, including documentation and tools
for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about
your products, you can subscribe to various
services, such as the Product Alert Tool (accessed
from Field Notices), the Cisco Technical Services
Newsletter, and Really Simple Syndication (RSS)
Feeds.

Access to most tools on the Cisco Support website
requires a Cisco.com user ID and password.

http://www.cisco.com/techsupport

Feature Information for Embedded Syslog Manager
The following table provides release information about the feature or features described in this module.
This table lists only the software release that introduced support for a given feature in a given software
release train. Unless noted otherwise, subsequent releases of that software release train also support that
feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2 Feature Information for Embedded Syslog Manager

Feature Name Releases Feature Information

Embedded Syslog Manager 12.3(2)T 12.3(2)XE 12.2(25)S
12.2(33)SRC 12.2(33)SB
12.2(33)SXI

The Embedded Syslog Manager
(ESM) feature provides a
programmable framework that
allows you to filter, escalate,
correlate, route, and customize
system logging messages prior to
delivery by the Cisco IOS system
message logger.

The following commands were
introduced or modified: logging
buffered filtered, logging
console filtered, logging filter,
logging host, logging monitor
filtered, logging origin-id, show
logging.

Syslog Filter Module Example
 Feature Information for Embedded Syslog Manager

24

http://www.cisco.com/public/support/tac/home.shtml
http://www.cisco.com/go/cfn

Glossary

Note Refer to the Internetworking Terms and Acronyms for terms not included in this glossary.

console --In the context of this feature, specifies the connection (CTY or console line) to the console port
of the router. Typically, this is a terminal attached directly to the console port, or a PC with a terminal
emulation program. Corresponds to the show terminal command.

monitor --In the context of this feature, specifies the TTY (TeleTYpe terminal) line connection at a line
port. In other words, the “monitor” keyword corresponds to a terminal line connection or a Telnet (terminal
emulation) connection. TTY lines (also called ports) communicate with peripheral devices such as
terminals, modems, and serial printers. An example of a TTY connection is a PC with a terminal emulation
program connected to the device using a dial-up modem.

SEMs --Abbreviation for system error messages. “System error messages” is the term formerly used for
messages generated by the system logging (syslog) process. Syslog messages use a standardized format,
and come in 8 severity levels, from “emergencies” (level 0) to “debugging” (level 7). The term “system
error message” is actually misleading, as these messages can include notifications of router activity beyond
“errors” (such as informational notices).

syslog --Abbreviation for the system message logging process in Cisco IOS software. Also used to identify
the messages generated, as in “syslog messages.” Technically, the term “syslog” refers only to the process
of logging messages to a remote host or hosts, but is commonly used to refer to all Cisco IOS system
logging processes.

trap --A trigger in the system software for sending error messages. In the context of this feature, “trap
logging” means logging messages to a remote host. The remote host is actually a syslog host from the
perspective of the device sending the trap messages, but because the receiving device typically provides
collected syslog data to other devices, the receiving device is also referred to as a “syslog server.”

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other
countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party
trademarks mentioned are the property of their respective owners. The use of the word partner does not
imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP
addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2011 Cisco Systems, Inc. All rights reserved.

 Syslog Filter Module Example
Glossary

 25

http://docwiki.cisco.com/wiki/Category:Internetworking_Terms_and_Acronyms_(ITA)
http://www.cisco.com/go/trademarks

	Embedded Syslog Manager (ESM)
	Finding Feature Information
	Restrictions for Embedded Syslog Manager
	Information About the Embedded Syslog Manager
	Cisco IOS System Message Logging
	System Logging Message Formatting
	Embedded Syslog Manager
	Syslog Filter Modules

	How to Use the Embedded Syslog Manager
	Writing ESM Syslog Filter Modules
	The ESM Filter Process
	Syslog Filter Module Input
	Normal ESM Filter Processing
	Background ESM Filter Processing
	What to Do Next

	Configuring the Embedded Syslog Manager

	Configuration Examples for the Embedded Syslog Manager
	Configuring the Embedded Syslog Manager Example
	Syslog Filter Module Example
	Severity Escalation Example
	Message Counting Example
	XML Tagging Example
	SMTP-based E-mail Alert Example
	Stream Example
	Source IP Tagging Example

	Additional References
	Feature Information for Embedded Syslog Manager
	Glossary

