Traffic shaping is a quality of service (QoS) mechanism that is used to manage the network traffic by shaping the traffic to a specified rate. Traffic shaping enables the network administrator to:

- Control access to the available bandwidth.
- Ensure that the traffic conforms to the policies.
- Regulate the flow of traffic to avoid congestion that can occur when the transmitted traffic exceeds the access speed of its remote target interface.

Traffic shaping uses queues to constrain data bursts, limit peak data rate, and smooth jitters so that traffic will fit within the promised envelope. Traffic shaping limits the throughput by buffering excess traffic instead of dropping packets.

ATM VP/VC hierarchical shaping provides two levels of traffic shaping--per-VC and per-VP--to control or modify the flow of traffic on an interface. The shaping function also ensures that the traffic from one VC does not adversely impact another VC, thus preventing the loss of data. The traffic is shaped first at the VC level and then at the VP level.

- Finding Feature Information, page 1
- Restrictions for ATM Hierarchical Shaping, page 2
- Information About ATM Hierarchical Shaping, page 2
- How to Configure ATM Hierarchical Shaping, page 2
- Configuration Examples for ATM Hierarchical Shaping, page 5
- Additional References, page 6
- Feature Information for ATM Hierarchical Shaping, page 7

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for ATM Hierarchical Shaping

All virtual channels (VCs) within a given virtual path (VP) must belong to the same ATM service category.

Information About ATM Hierarchical Shaping

- ATM Hierarchical Shaping, page 2

ATM Hierarchical Shaping

If a service (or an application) wants to use an ATM network to transport a particular kind of traffic, it must first inform the network about what kind of traffic is to be transported, and the performance requirements of that traffic. The ATM service categories provide a method to relate traffic characteristics and QoS requirements to network behavior. Hierarchical shaping requires that all VCs belonging to a given VP have the same ATM service category. This hierarchy ensures that packets are shaped first at the VC level and then at the VP level. At the interface level, the priority is based on the ATM service category. The service category is determined by the first PVC that is configured under a VP. The priority is in the following order:

1. Constant Bit Rate (CBR)
2. Unspecified Bit Rate (UBR)
3. Variable Bit Rate Non Real-Time (VBR-nRT)
4. Real-time Variable Bit Rate (VBR-RT)

If no service category is specified at the VC level, the default is unshaped UBR. The ATM Hierarchical Shaping feature is supported for the following ATM traffic service categories:

- VBR-nRT
- UBR

For VBR-nRT traffic the output sustainable cell rate (SCR) value that is configured will be taken into account for VC shaping. For UBR traffic, the output peak cell rate (PCR) value that is configured will be taken into account for VC shaping.

The ATM Hierarchical Shaping feature supports over-subscription. Over-subscription occurs when the sum of the configured rate of UBR and VBR PVCs exceeds the line rate.

How to Configure ATM Hierarchical Shaping

- Configuring ATM Hierarchical Shaping, page 2

Configuring ATM Hierarchical Shaping

Perform this task to configure ATM hierarchical shaping.
SUMMARY STEPS

1. enable
2. configure terminal
3. `interface atm interface-number [subinterface-number { mpls | multipoint | point-to-point }]`
4. `atm pvp vpi [peak-rate]`
5. `pvc vpi / vci`
6. `exit`
7. `range [range-name] pvc [start-vpi / start-vc i] [end-vpi / end-vc i]`
8. `ubr output-pcr`
9. `exit`
10. `atm pvp vpi [peak-rate]`
11. `pvc vpi / vci`
12. `vbr-nrt output-pcr output-scr [output-maxburstsize]`
13. `create on-demand`
14. `end`
15. `show atm pvc`
16. `show atm vp`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:**
Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**
Router# configure terminal | |
| **Step 3** `interface atm interface-number [subinterface-number { mpls | multipoint | point-to-point }]` | Configure an ATM interface and enters subinterface configuration mode. |
| **Example:**
Router(config)# interface atm 0/3/2.1 multipoint | |
How to Configure ATM Hierarchical Shaping

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>atm pvp vpi [peak-rate]</td>
<td>Creates a permanent virtual path (PVP) used to multiplex (or bundle) one or more VCs.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-subif)# atm pvp 2</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>pvc vpi /vci</td>
<td>Creates or assigns a name to an ATM PVC and enters ATM virtual circuit configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-subif)# pvc 2/200</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
<td>Exits ATM virtual circuit configuration mode and returns to subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-vc)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>range [range-name] pvc [start-vpi /start-vci] [end-vpi /end-vci]</td>
<td>Defines a range of ATM PVCs.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-subif)# range range1 pvc 2/100 2/102</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>ubr output-pcr</td>
<td>Configures UBR QoS and specifies the output PCR for an ATM PVC, PVC range, switched virtual circuit (SVC), VC class, or VC bundle member.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-vc)# ubr 4000</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
<td>Exits ATM virtual circuit configuration mode and returns to subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-vc)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>atm pvp vpi [peak-rate]</td>
<td>Creates a PVP used to multiplex (or bundle) one or more VCs.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-subif)# atm pvp 3</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Step 11 pvc vpi/vci</td>
<td>Creates or assigns a name to an ATM PVC and enters ATM virtual circuit configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-subif)# pvc 3/150</td>
<td></td>
</tr>
<tr>
<td>Step 12 vbr-nrt output-pcr output-scr [output-maxburstsize]</td>
<td>Configures the VBR-nRT QoS and specifies output PCR, output SCR, and output maximum burst cell size for an ATM PVC, PVC range, SVC, VC class, or VC bundle member.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-vc)# vbr-nrt 1000 1000</td>
<td></td>
</tr>
<tr>
<td>Step 13 create on-demand</td>
<td>Configures ATM PVC autoproduction, which enables a PVC or range of PVCs to be created automatically on demand.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-vc)# create on-demand</td>
<td></td>
</tr>
<tr>
<td>Step 14 end</td>
<td>Exits ATM virtual circuit configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-vc)# end</td>
<td></td>
</tr>
<tr>
<td>Step 15 show atm pvc</td>
<td>(Optional) Displays the statistics for all VPs on an interface or for a specific VP.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show atm pvc</td>
<td></td>
</tr>
<tr>
<td>Step 16 show atm vp</td>
<td>(Optional) Displays all ATM PVCs and traffic information.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show atm vp</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for ATM Hierarchical Shaping

- Example Configuring ATM Hierarchical Shaping, page 6
Example Configuring ATM Hierarchical Shaping

The following example shows how to configure ATM hierarchical shaping:

```
enable
configure terminal
interface atm 0/3/2.1 multipoint
   atm pvp 2
   pvc 2/200
   exit
range range1 pvc 2/100 2/102
   ubr 4000
   exit
atm pvp 3
   pvc 3/100
   vbr-nrt 1000 1000
   create on-demand
exit
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>ATM commands</td>
<td>Cisco IOS Asynchronous Transfer Mode Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. --</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for ATM Hierarchical Shaping

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM Hierarchical Shaping--ATM VC into VP Shaping</td>
<td>Cisco IOS XE Release 3.3S</td>
<td>ATM VP/VC hierarchical shaping provides two levels of traffic shaping--per-VC and per-VP--to control or modify the flow of traffic on an interface. The shaping function also ensures that traffic from one VC does not adversely impact another VC, thus preventing loss of data. The traffic is shaped first at the VC level and then at the VP level.</td>
</tr>
</tbody>
</table>