
Configuring TCP Authentication Option

This document describes how to configure TCP authentication option on Cisco NX-OS devices.

• About TCP Authentication Option, on page 1
• TCP-AO Key Chain, on page 1
• TCP-AO Key Rollover, on page 3
• Guidelines and Limitations, on page 4
• Configure TCP Key Chain and Keys, on page 4
• Verifying the TCP Keychain, on page 7
• Configuration Example for TCP Keychain, on page 8

About TCP Authentication Option
With TCPAuthenticationOption (TCP-AO), defined in RFC 5925, you can protect long-lived TCP connections
against replays using stronger Message Authentication Codes (MACs).

TCP-AO is the proposed replacement for TCP MD5, defined in RFC 2385. Unlike TCP MD5, TCP-AO is
resistant to collision attacks and provides algorithmic agility and support for key management.

TCP-AO has the following distinct features:

• TCP-AO supports the use of stronger Message Authentication Codes (MACs) to enhance the security
of long-lived TCP connections.

• TCP-AO protects against replays for long-lived TCP connections, and coordinates key changes between
endpoints by providing a more explicit key management.

TCP-AO deprecates TCPMD5 however to support legacy TCP peers, NXOS and BGPwill continue to support
TCP-MD5 for legacy peers. However, a configuration in which one of the devices is configured with the TCP
MD5 option and the other with the TCP-AO option is not supported.

TCP-AO Key Chain
TCP-AO is based on traffic keys and Message Authentication Codes (MACs) generated using the keys and
a MAC algorithm. The traffic keys are derived from master keys that you can configure in a TCP-AO key
chain. Use the key chain key-chain-name tcp command in the global configuration mode to create a TCP-AO

Configuring TCP Authentication Option
1

key chain and configure keys in the chain. The TCP-AO key chain must be configured on both the peers
communicating via a TCP connection.

Keys in a TCP-AO key chain have the following configurable properties:

DescriptionConfigurable Property

Key identifier of the TCP-AO option of the outgoing segment.

The send identifier configured on a router must match the receive identifier
configured on the peer.

send-id

Key identifier compared with the TCP-AO key identifier of the incoming segment
during authentication.

The receive identifier configured on a router must match the send identifier
configured on the peer.

recv-id

The MAC algorithm to be used to create MACs for outgoing segments. The
algorithm can be one of the following:

• AES-128-CMAC authentication algorithm

• HMAC-SHA-1 authentication algorithm

• HMAC-SHA-256 authentication algorithm.

cryptographic-algorithm

This flag indicates whether TCP options other than TCP-AOwill be used to calculate
MACs.

With this flag enabled, the contents of all options along with a zero-filled
authentication option, is used to calculate the MAC.

When the flag is disabled, all options other than TCP-AO are excluded from MAC
calculations.

This flag is disabled by default.

The configuration of this flag is overridden by the application
configuration when the application configuration is available.

Note

include-tcp-options

This configuration determines the time for which a key is valid and can be used for
TCP-AO-based authentication of TCP segments. When the lifetime of key elapses
and the key expires, the next key with the youngest lifetime is selected.

send-lifetime

The key string is a pre-shared master key configured on both peers and is used to
derive the traffic keys.

key-string

TCP-AO Format

+------------+------------+------------+------------+
| Kind=29 | Length | KeyID | RNextKeyID |
+------------+------------+------------+------------+
| MAC ...
+-----------------------------------...

...-----------------+

Configuring TCP Authentication Option
2

Configuring TCP Authentication Option
TCP-AO Key Chain

... MAC (con't) |

...-----------------+

The fields of the TLV format are as follows:

• Kind: Indicates TCP-AO with a value of 29.

• Length: Indicates the length of the TCP-AO sequence.

• KeyID: The send identifier of the MKT that was used to generate the traffic keys.

• RNextKeyID: The receive identifier of theMKT that is ready to be used to authenticate received segments.

• MAC: The MAC computed for the TCP segment data and the prefixed pseudo header.

Master Key Tuples

Traffic keys are the keying material used to compute the message authentication codes of individual TCP
segments.

Master Key Tuples (MKTs) enable you to derive unique traffic keys, and to include the keying material
required to generate those traffic keys. MKTs indicate the parameters under which the traffic keys are
configured. The parameters include whether TCP options are authenticated, and indicators of the algorithms
used for traffic key derivation and MAC calculation.

EachMKT has two identifiers, namely SendID and aRecvID . The SendID identifier is inserted as the KeyID
identifier of the TCPAO option of the outgoing segments.TheRecvID is matched against the TCPAOKeyID
of the incoming segments.

TCP-AO Key Rollover
TCP-AO keys are valid for a defined duration configured using the send-lifetime. If send-lifetime is not
configured the key is considered inactive. Key rollover is initiated based on the send lifetimes of keys.

TCP-AO coordinates use of newMKTs using the RNextKeyID and KeyID field on the TCP-AO option field.
For hitless key rollovers, new and old keys in keychain configurations need to have at least 15 minutes of
overlap. This is required so that the TCP-AO has enough time to coordinates use of new MKT.

When key rollover is initiated, one of the peer routers, say Router A, indicates that the rollover is necessary.
To indicate that the rollover is necessary, Router A sets the RNextKeyID to the receive identifier (recv-id) of
the new MKT to be used. On receiving the TCP segment, the peer router, say Router B, looks up the send
identifier (send-id) in its database to find the MKT indicated by the RNextKeyID in the TCP-AO payload. If
the key is available and valid, Router B sets the current key to the new MKT. After Router B has rolled over,
Router A also sets the current key to the new Primary Key Tuples.

Key rollover is initiated with overlapping send-lifetimes and send-lifetime expiry

If you do not configure a new key that can be activated before the expiry of the current key, the key may time
out and expire. Such an expiry can cause retransmissions with the peer router rejecting segments authenticated
with the expired key. The connection may fail due to Retransmission Time Out (RTO). When new valid keys
are configured, a new connection is established.

Configuring TCP Authentication Option
3

Configuring TCP Authentication Option
TCP-AO Key Rollover

Guidelines and Limitations
• The send-id and recv-id of each key in the key chain must be unique. Because send-id and recv-id must
be chosen from the range 0 to 255, the TCP-AO key chain can have a maximum of 256 keys.

• Only one keychain can be associated with an application connection. Rollover is always performed within
the keys in this keychain.

• If the key in use expires, expect segment loss until a new key that has a valid lifetime is configured on
each side and keys rollover.

• All the following configurations must be done for a TCP-AO keychain key to be considered active:
send-id, recv-id, key-string, send-lifetime and cryptographic-algorithm.

• Keychain infra picks up youngest key based on send-lifetime configuration. Or whichever key was
configured last if same send-lifetime is configured for two keys. Ideally, we should not do that.

• User MUST configure minimum 15 minutes overlapping time between the two overlapping keys.

• Modifying the configuration of a key in use such as key-string, send-id, recv-id, cryptographic-algorithm
or send-lifetime will result in TCP connection flap.

• A keychain's configuration type must match the type it has been linked to within the client protocol. If
an attempt is made to mismatch these types, a syslog message is generated to notify the user. For example:
It is not supported if a keychain named keychain_abc is configured as aMacsec keychain but is associated
as a TCP keychain with BGP. Similarly, the case where the keychain is first associated with the client
(a process known as forward-referencing) and then configured as a different keychain type, is also not
supported.

Configure TCP Key Chain and Keys
Before you begin

• Ensure that the key-string, send-lifetimes, cryptographic-algorithm, and ids of keys match on both peers.

• Ensure that the send-id on a router matches the recv-id on the peer router. We recommend using the same
id for both the parameters unless there is a need to use separate key spaces.

• The send-id and recv-id of a key cannot be reused for another key in the same key chain.

• The key-string is encrypted and stored in Type-6 format if AES password encryption feature is enabled
and primary key configured otherwise it will be stored in Type-7 encrypted format.

• For more details, see Configuring a Primary Key and Enabling the AES Password Encryption Feature

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

Configuring TCP Authentication Option
4

Configuring TCP Authentication Option
Guidelines and Limitations

cisco-nexus-9000-series-nx-os-security-configuration-guide-release-104x_chapter20.pdf#nameddest=unique_662

PurposeCommand or Action
switch# configure terminal

Enters keychain configuration mode for the
keychain that you specified.

key chain name tcp

Example:

Step 2

switch(config)# key chain bgp-keys tcp

Enters key configuration mode for the key that
you specified. The key-ID argument must be a
whole number between 0 and 65535.

key key-ID

Example:
switch(config-tcpkeychain)# key 13

Step 3

Specifies the send identifier for the key. The
send-ID must be in the range from 0 to 255 and
unique value per key chain.

send-id send-ID

Example:
switch(config-tcpkeychain-tcpkey)#
send-id 2

Step 4

Specifies the recieve identifier for the key. The
recv-ID must be in the range from 0 to 255 and
unique value per key chain.

recv-id recv-ID

Example:
switch(config-tcpkeychain-tcpkey)#
recv-id 2

Step 5

Configures the text string for the key. The
text-string argument is alphanumeric,
case-sensitive, and supports special characters.

key-string [encryption-type] text-string

Example:
switch(config-tcpkeychain-tcpkey)#
key-string 0 AS3cureStr1ng

Step 6

The encryption-type argument can be one of
the following values:

• 0—The text-string argument that you enter
is unencrypted text. This is the default.

• 6—Beginningwith CiscoNX-OSRelease
10.3(3)F, the Cisco proprietary (Type-6
encrypted) method is supported on Cisco
Nexus 9000 Series platform switches.

• 7—The text-string argument that you enter
is encrypted. The encryption method is a
Cisco proprietary method. This option is
useful when you are entering a text string
based on the encrypted output of a show
key chain command that you ran on
another Cisco NX-OS device.

The key-string command has limitations on
using the following special characters in the
text-string:

Configuring TCP Authentication Option
5

Configuring TCP Authentication Option
Configure TCP Key Chain and Keys

PurposeCommand or Action

CommentsDescriptionSpecial
Character

Unsupported at start
of key-string

Vertical bar
or pipe

|

Unsupported at start
of key-string

Greater than>

Unsupported start or
end of a key-string

Backslash\

Unsupported at start
of key-string

Left
parenthesis

(

Unsupported at start
of key-string

Apostrophe'

Unsupported at start
of key-string

Quotation
mark

"

Supported. However,
press Ctrl-V before
entering a question
mark (?).

Question
mark

?

For more information on the special characters
usage in commands, see Understanding the
Command-Line Interface section.

Specifies the algorithm to be used to compute
MACs for TCP segments. You can configure
only one cryptographic algorithm per key.

[no] cryptographic-algorithm
{HMAC-SHA-1 | HMAC-SHA-256 |
AES-128-CMAC }

Example:

Step 7

switch(config-tcpkeychain-tcpkey)#
cryptographic-algorithm HMAC-SHA-1

Configures a send lifetime for the key. By
default, the device treats the start-time and

send-lifetime [local] start-time duration
[duration-value | infinite | end-time]

Step 8

end-time arguments as UTC. If you specify the
Example:

local keyword, the device treats these times as
local times.switch(config-tcpkeychain-tcpkey)#

send-lifetime local 01:01:01 Jan 01 2023
01:01:01 Jan 10 2023 The start-time argument is the time of day and

date that the key becomes active.

You can specify the end of the send lifetime
with one of the following options:

• duration duration-value —The length of
the lifetime in seconds. The maximum
length is 2147483646 seconds
(approximately 68 years).

Configuring TCP Authentication Option
6

Configuring TCP Authentication Option
Configure TCP Key Chain and Keys

https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/104x/configuration/fundamentals/cisco-nexus-9000-series-nx-os-fundamentals-configuration-guide-release-104x/m-understanding-the-cli.html#con_1172254
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/104x/configuration/fundamentals/cisco-nexus-9000-series-nx-os-fundamentals-configuration-guide-release-104x/m-understanding-the-cli.html#con_1172254

PurposeCommand or Action

• infinite—The send lifetime of the key
never expires.

• end-time —The end-time argument is the
time of day and date that the key becomes
inactive.

An option for user to specify if the ‘TCP option
headers (other than TCP AO option) needs to

(Optional) include-tcp-options

Example:

Step 9

be included while computing the ‘MAC’ digest
of the packets.switch(config-tcpkeychain-tcpkey)#

include-tcp-options

Verifying the TCP Keychain
PurposeCommand

Displays the keychains configured on the device.show key chain [name] [detail]

switch# show key chain
Key-Chain bgp_keys tcp
Key 2 -- text 7 "070e234f"
send-id 2
recv-id 2
cryptographic-algorithm AES_128_CMAC
send lifetime UTC (08:17:00 May 29 2023)-(08:21:00 May 29 2023)
include-tcp-options

Key 3 -- text 7 "070c2058"
send-id 3
recv-id 4
cryptographic-algorithm HMAC-SHA-1
send lifetime UTC (08:20:00 May 29 2023)-(always valid) [active]
include-tcp-options

Key 12 -- text ""
send lifetime UTC (08:20:00 May 29 2023)-(always valid)

[active] indicates that the key is valid and active otherwise the key is inactive. In the above example only key
3 is active and usable.

Note

The show key chain detail command will explicitly display inactive key. In case of type6 encryption the show
key chain detail commandwill display if the type6 key-string is decryptable or not. It will also display youngest
active send key that client is currently using to authenticate its packets.
switch# show key chain detail
Key-Chain bgp_keys tcp
Key 1 -- text 6 "JDYk9k4kmaciqaH6Eu2+9C0tmCRl9k7JAMYs/fXGbW1lmHP88PAA=="
Type6 Decryptable: yes
send-id 1
recv-id 1
cryptographic-algorithm HMAC-SHA-1
send lifetime local (18:15:42 May 15 2023)-(always valid) [active]
include-tcp-options
accept-ao-mismatch

Configuring TCP Authentication Option
7

Configuring TCP Authentication Option
Verifying the TCP Keychain

Key 2 -- text 6 "JDYkB+Fs8u3ujRDpFSu4tH6H7iTS45JJA6sKeGsBD0L3HjGDeg9AA=="
Type6 Decryptable: yes
send-id 2
recv-id 2
cryptographic-algorithm AES_128_CMAC
send lifetime local (17:10:47 May 15 2023)-(18:15:42 May 15 2023) [inactive]

youngest active send key: 1

Configuration Example for TCP Keychain
This example shows how to configure a TCP keychain named bgp_keys. Each key text string is encrypted.
The keys have overlapping lifetime configurations:

key chain bgp_keys tcp
key 1
send-id 1
recv-id 1
key-string 7 070e234f
send-lifetime 01:00:00 Oct 10 2023 01:00:00 Oct 11 2023
cryptographic-algorithm AES-128-CMAC

key 2
send-id 2
recv-id 2
key-string 7 075e731f
send-lifetime 00:45:00 Oct 11 2023 01:00:00 Oct 12 2023
cryptographic-algorithm HMAC-SHA-256
include-tcp-options

Configuring TCP Authentication Option
8

Configuring TCP Authentication Option
Configuration Example for TCP Keychain

	Configuring TCP Authentication Option
	About TCP Authentication Option
	TCP-AO Key Chain
	TCP-AO Key Rollover
	Guidelines and Limitations
	Configure TCP Key Chain and Keys
	Verifying the TCP Keychain
	Configuration Example for TCP Keychain

