
NX-API CLI

• About NX-API CLI, on page 1
• Using NX-API CLI, on page 2
• XML and JSON Supported Commands, on page 18

About NX-API CLI
On switches, command-line interfaces (CLIs) are run only on the switch. NX-API CLI improves the accessibility
of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You can use this
extension to the existing Cisco NX-OS CLI system on the switch. NX-API CLI supports show commands,
configurations, and Linux Bash.

NX-API CLI supports JSON-RPC.

The NX-API CLI also supports JSON/CLI Execution in Cisco Nexus switches.

Transport
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all of its children processes, are
under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage
exceeds the cgroup limitations, the Nginx process is restarted and restored.

For the 7.x release, the Nginx process continues to run even after NX-API is disabled using the “no feature
NXAPI” command. This is required for other management-related processes. In the 6.x release, all processes
were killed when you ran the “no feature NXAPI” command, so this is a change in behavior in the 7.x release.

Note

NX-API CLI
1

Message Format

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON.

Note

Security
NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.Note

NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Note

Using NX-API CLI
The commands, command type, and output type for the switches are entered using NX-API by encoding the
CLIs into the body of a HTTP/HTTPs POST. The response to the request is returned in XML or JSON output
format.

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 16.Note

NX-API CLI
2

NX-API CLI
Message Format

You must enable NX-API with the feature manager CLI command on the device. By default, NX-API is
disabled.

The following example shows how to configure and launch the NX-API CLI:

• Enable the management interface.
switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 192.0.20.123/24
switch(config)# vrf context managment
switch(config)# ip route 10.0.113.1/0 1.2.3.1

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}

NX-API CLI
3

NX-API CLI
Using NX-API CLI

}

Response:
{

"ins_api": {
"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

Escalate Privileges to Root on NX-API
For NX-API, the privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an admin user can escalate privileges to root.

• Escalation to root is password protected.

The following examples show how an admin escalates privileges to root and how to verify the escalation.
Note that after becoming root, the whoami command shows you as admin; however, the admin account has
all the root privileges.

First example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

NX-API CLI
4

NX-API CLI
Escalate Privileges to Root on NX-API

</ins_api>

Second example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

NX-API Management Commands
You can enable and manage NX-API with the CLI commands listed in the following table.

Table 1: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP/HTTPS.no nxapi {http | https}

Displays port and certificate information.

The "show nxapi" command doesn't display
certificate/config information for network-operator
role.

Note

show nxapi

NX-API CLI
5

NX-API CLI
NX-API Management Commands

DescriptionNX-API Management Command

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Installs NX-API certificates with encrypted private keys:

The passphrase for decrypting the encrypted private
key is pass123!.

Note

Example:
nxapi certificate httpskey keyfile bootflash:encr-cc.pem
password pass123!

nxapi certificatehttpskey keyfile
filename password passphrase

Enables a certificate.nxapi certificate enable

NX-API CLI
6

NX-API CLI
NX-API Management Commands

DescriptionNX-API Management Command

This CLI provides a secure way of authenticating to the device
by using Secure Unique Device Identifier (SUDI).

The SUDI based authentication in nginx will be used by the
CISCO SUDI compliant controllers.

SUDI is an IEEE 802.1AR-compliant secure device identity in
an X.509v3 certificate which maintains the product identifier and
serial number of Cisco devices. The identity is implemented at
manufacturing and is chained to a publicly identifiable root
certificate authority.

WhenNX-API comes upwith the SUDI certificate,
it is not accessible by any third-party applications
like browser, curl, and so on.

Note

"nxapi certificate sudi" will overwrite the custom
certificate/key if configured, and there is no way to
get the custom certificate/key back.

Note

"nxapi certificate sudi" and "nxapi certificate
trustpoint" and "nxapi certificate enable" are
mutually exclusive , and configuring one will delete
the other configuration.

Note

NX-API do not support SUDI certificate-based
client certificate authentication. If client certificate
authentication is needed, then Identity certificate
need to be used.

Note

As NX-API certificate CLI is not present in show
run output, CR/Rollback case currently does not go
back to the custom certificate once it is overwritten
with "nxapi certificate sudi" options.

Note

nxapi certificate sudi

Specifies the default VRF, management VRF, or named VRF.nxapi use-vrf vrf

Implements any access restrictions and can be run in management
VRF.

You must enable feature bash-shell and then run
the command from Bash Shell. For more
information on Bash Shell, see the chapter on Bash.

Note

Iptables is a command-line firewall utility that uses policy chains
to allow or block traffic and almost always comes pre-installed
on any Linux distribution.

For more information about making iptables
persistent across reloads when they are modified in
a bash-shell, see Making an Iptable Persistent
Across Reloads, on page 14.

Note

ip netns exec management iptables

NX-API CLI
7

NX-API CLI
NX-API Management Commands

DescriptionNX-API Management Command

Starting with Release 9.3(5), you can configure the amount of
time before an idle NX-API session is invalidated. The time can
be 1 - 1440 minutes. The default time is 10 minutes. Return to
the default value by using the no form of the command: no nxapi
idle-timeout <timeout>

nxapi idle-timeout <timeout>

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

You must configure the certificate and key before enabling the certificate.Note

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

The following is an example of how to install an encrypted NXAPI server certificate:
switch(config)# nxapi certificate httpscrt certfile bootflash:certificate.crt
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key password pass123!

switch(config)#nxapi certificate enable
switch(config)#

In some situations, you might get an error message saying that the key file is encrypted:

switch(config)# nxapi certificate httpscrt certfile bootflash:certificate.crt
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
ERROR: Unable to load private key!
Check keyfile or provide pwd if key is encrypted, using 'nxapi certificate httpskey keyfile
<keyfile> password <passphrase>'.

In this case, the passphrase of the encrypted key file must be specified using nxapi certificatehttpskey keyfile
filename password passphrase.

If this was the reason for the issue, you should now be able to successfully install the certificate:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key password pass123!
switch(config)# nxapi certificate enable
switch(config)#

Working With Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid timing out with an error code 500,
prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands,
where each ; is surrounded with single blank characters.

NX-API CLI
8

NX-API CLI
Working With Interactive Commands Using NX-API

Following are several examples of interactive commands where terminal dont-ask is used to avoid timing
out with an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API Request Elements
NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Table 2: NX-API Request Elements for XML or JSON Format

DescriptionNX-API Request Element

Specifies the NX-API version.version

NX-API CLI
9

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the
current user's authority.

• The pipe operation is supported in the output
when the message type is ASCII. If the output
is in XML format, the pipe operation is not
supported.

• Amaximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

NX-API CLI
10

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Do not chunk output.0

Chunk output.1

Note • Only show commands support chunking. When
a series of show commands are entered, only the
first command is chunked and returned.

• The output message format options are XML or
JSON.

• For the XML output message format , special
characters, such as < or >, are converted to form
a valid XML message (< is converted into <
> is converted into >).

You can use XML SAX to parse the chunked
output.

• When the output message format is JSON, the
chunks are concatenated to create a valid JSON
object.

When chunking is enabled, the maximum message
size supported is currently 200MB of chunked output.

Note

chunk

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

NX-OS release 9.3(1) introduces the sid option clear. When a new
chunk request is initiated with the sid set to clear, all current chunk
requests are discarded or abandoned.

When you receive response code 429: Max number of concurrent

chunk request is 2, use sid clear to abandon the current chunk
requests. After using sid clear, subsequent response codes operate
as usual per the rest of the request.

sid

NX-API CLI
11

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated
with " ; ". (The ; must be surrounded with single blank
characters.)

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

The available output message formats are the following:

Specifies output in XML format.xml

Specifies output in JSON format.json

output_format

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Table 3: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

NX-API CLI
12

NX-API CLI
NX-API Response Elements

DescriptionNX-API Response Element

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

Restricting Access to NX-API
There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method
that you use depends on whether you have configured a VRF for NX-API communication using the nxapi
use-vrf <vrf-name> CLI command.

Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured NXAPI to use a
specific VRF. For information about configuring ACLs, see the Cisco Nexus Series NX-OS Security
Configuration Guide for your switch family.

If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS
access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable,
on page 13.

Updating an iptable
An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF has been configured for
NX-API communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP
and HTTPS access to an existing iptable.

Procedure

Step 1 To create a rule that blocks HTTP access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP

Step 2 To create a rule that blocks HTTPS access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

Step 3 To verify the applied rules:
bash-4.3# ip netns exec management iptables -L

NX-API CLI
13

NX-API CLI
Restricting Access to NX-API

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 4 To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j
DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 5 To remove and verify previously applied rules:

This example removes the first rule from INPUT.

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

What to do next

The rules in iptables are not persistent across reloads when they are modified in a bash-shell. To make the
rules persistent, see Making an Iptable Persistent Across Reloads, on page 14.

Making an Iptable Persistent Across Reloads
The rules in iptables are not persistent across reloads when they are modified in a bash-shell. This section
explains how to make a modified iptable persistent across a reload.

NX-API CLI
14

NX-API CLI
Making an Iptable Persistent Across Reloads

Before you begin

You have modified an iptable.

Procedure

Step 1 Create a file called iptables_init.log in the /etc directory with full permissions:
bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log

Step 2 Create the /etc/sys/iptables file where your iptables changes will be saved:
bash-4.3# ip netns exec management iptables-save > /etc/sysconfig/iptables

Step 3 Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands:

#!/bin/sh

BEGIN INIT INFO

Provides: iptables_init

Required-Start:

Required-Stop:

Default-Start: 2 3 4 5

Default-Stop:

Short-Description: init for iptables

Description: sets config for iptables

during boot time

END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
start_script() {

ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables
echo "iptables init script executed" > /etc/iptables_init.log

}
case "$1" in
start)
start_script
;;
stop)
;;

restart)
sleep 1
$0 start
;;

*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1

esac
exit 0

NX-API CLI
15

NX-API CLI
Making an Iptable Persistent Across Reloads

Step 4 Set the appropriate permissions to the startup script:
bash-4.3# chmod 777 /etc/init.d/iptables_int

Step 5 Set the iptables_int startup script to on with the chkconfig utility:
bash-4.3# chkconfig iptables_init on

The iptables_init startup script will now execute each time that you perform a reload, making the iptable rules
persistent.

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 4: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Input Bash command error.400BASH_CMD_ERR

Chunking only allowed to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

The eoc value is not allowed as session Id in the
request.

400EOC_NOT_ALLOWED_ERR

Request message is invalid.400IN_MSG_ERR

Message version mismatch.400MSG_VER_MISMATCH

No input command.400NO_INPUT_CMD_ERR

Invalid character that is entered as a session ID.400SID_NOT_ALLOWED_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

NX-API CLI
16

NX-API CLI
Table of NX-API Response Codes

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Response size stopped processing because it
exceeded the maximum message size. The
maximum is 200 MB.

413RESP_SIZE_LARGE_ERR

Maximum number of concurrent chunk requests
is exceeded. The maximum is 2.

429EXCEED_MAX_INFLIGHT_CHUNK_REQ_ERR

Requested object does not exist.432OBJ_NOT_EXIST

Backend processing error.500BACKEND_ERR

Error deleting a checkpoint.500DELETE_CHECKPOINT_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

Error executing a rollback.500ROLLBACK_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

Volatile memory is full. Free up memory space
and retry.

500VOLATILE_FULL

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

Response chunking allowed only in show

commands.
501CHUNK_ONLY_ALLOWED_IN_SHOW_ERR

Timeout while generating chunk response.501CHUNK_TIMEOUT

CLI command not supported.501CLI_CMD_NOT_SUPPORTED_ERR

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Malformed XML output.501MALFORMED_XML

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Output redirection is not supported.501OUTPUT_REDIRECT_NOT_SUPPORTED_ERR

NX-API CLI
17

NX-API CLI
Table of NX-API Response Codes

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Pipe is not allowed for this input type.501PIPE_NOT_ALLOWED_IN_INPUT

Response is greater than the allowed maximum.
The maximum is 10 MB. Use XML or JSON
output with chunking enabled.

501RESP_BIG_USE_CHUNK_ERR

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

XML and JSON Supported Commands
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

• XML
• JSON
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read
• Introduced in NX-OS release 9.3(1), JSON Native and JSON Pretty Native displays JSON output faster
and more efficiently by bypassing an extra layer of command interpretation. JSON Native and JSON
Pretty Native preserve the data type in the output. They display integers as integers instead of converting
them to a string for output.

Converting the standard NX-OS output to JSON, JSON Pretty, or XML format occurs on the NX-OS CLI by
"piping" the output to a JSON or XML interpreter. For example, you can issue the show ip access command
with the logical pipe (|) and specify JSON, JSON Pretty, JSON Native, JSON Native Pretty, or XML, and
the NX-OS command output will be properly structured and encoded in that format. This feature enables
programmatic parsing of the data and supports streaming data from the switch through software streaming
telemetry. Most commands in Cisco NX-OS support JSON, JSON Pretty, and XML output.

Selected examples of this feature follow.

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard designed for human-readable data and is an alternative to
XML. JSONwas originally designed from JavaScript, but it is language-independent data format. JSON Pretty
format, as well as JSON Native and JSON Pretty Native, is also supported.

The two primary Data Structures that are supported in some way by nearly all modern programming languages
are as follows:

• Ordered List :: Array
• Unordered List (Name/Value pair) :: Objects

JSON /XML output for a show command can also be accessed via sandbox.

NX-API CLI
18

NX-API CLI
XML and JSON Supported Commands

CLI Execution
BLR-VXLAN-NPT-CR-179# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SPARSHA-SAVBU-F10", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco WS-C2960
S-48TS-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "BLR-VXLAN-NPT-CR-178(FOC1745R01W)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
BLR-VXLAN-NPT-CR-179#

Examples of XML and JSON Output
This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"
}
switch(config)#

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>

NX-API CLI
19

NX-API CLI
Examples of XML and JSON Output

<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers configured on the switch in XML format:

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display the switch's redundancy information in JSON Pretty Native format.
switch-1# show system redundancy status | json-pretty native
{

"rdn_mode_admin": "HA",
"rdn_mode_oper": "None",

NX-API CLI
20

NX-API CLI
Examples of XML and JSON Output

"this_sup": "(sup-1)",
"this_sup_rdn_state": "Active, SC not present",
"this_sup_sup_state": "Active",
"this_sup_internal_state": "Active with no standby",
"other_sup": "(sup-1)",
"other_sup_rdn_state": "Not present"

}
switch-1#

The following example shows how to display the switch's OSPF routing parameters in JSON Native format.
switch-1# show ip ospf | json native
{"TABLE_ctx":{"ROW_ctx":[{"ptag":"Blah","instance_number":4,"cname":"default","
rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr
_grace_period":"PT60S","gr_state":"inactive","gr_last_status":"None","support_t
os0_only":"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false"
,"admin_dist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S"
,"spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_
time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"m
ax_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cn
t":0,"asopaque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_
nssa":0,"act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa
":0,"no_discard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"100","ins
tance_number":3,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":
"true","gr_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive"
,"gr_last_status":"None","support_tos0_only":"true","support_opaque_lsa":"true"
,"is_abr":"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_
time":"PT0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0
S","lsa_hold_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_
aging_pace":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"
asext_lsa_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"
area_normal":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal"
:0,"act_area_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_
rt_int":"false"},{"ptag":"111","instance_number":1,"cname":"default","rid":"0.0
.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr_grace_pe
riod":"PT60S","gr_state":"inactive","gr_last_status":"None","support_tos0_only"
:"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false","admin_d
ist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S","spf_max
_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_time":"PT
5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"max_metric
_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cnt":0,"aso
paque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_nssa":0,"
act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa":0,"no_d
iscard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"112","instance_num
ber":2,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","g
r_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive","gr_last
_status":"None","support_tos0_only":"true","support_opaque_lsa":"true","is_abr"
:"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_time":"PT
0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_h
old_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pac
e":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa
_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"area_norm
al":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal":0,"act_a
rea_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_rt_int":"
false"}]}}
switch-1#

The following example shows how to display OSPF routing parameters in JSON Pretty Native format.
switch-1# show ip ospf | json-pretty native
{

"TABLE_ctx": {
"ROW_ctx": [{

"ptag": "Blah",
"instance_number": 4,

NX-API CLI
21

NX-API CLI
Examples of XML and JSON Output

"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",
"gr_state": "inactive",
"gr_last_status": "None",
"support_tos0_only": "true",
"support_opaque_lsa": "true",
"is_abr": "false",
"is_asbr": "false",
"admin_dist": 110,
"ref_bw": 40000,
"spf_start_time": "PT0S",
"spf_hold_time": "PT1S",
"spf_max_time": "PT5S",
"lsa_start_time": "PT0S",
"lsa_hold_time": "PT5S",
"lsa_max_time": "PT5S",
"min_lsa_arr_time": "PT1S",
"lsa_aging_pace": 10,
"spf_max_paths": 8,
"max_metric_adver": "false",
"asext_lsa_cnt": 0,
"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,
"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}, {
"ptag": "100",
"instance_number": 3,
"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",
"gr_state": "inactive",

... content deleted for brevity ...

"max_metric_adver": "false",
"asext_lsa_cnt": 0,
"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,

NX-API CLI
22

NX-API CLI
Examples of XML and JSON Output

"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}]
}

}
switch-1#

NX-API CLI
23

NX-API CLI
Examples of XML and JSON Output

NX-API CLI
24

NX-API CLI
Examples of XML and JSON Output

	NX-API CLI
	About NX-API CLI
	Transport
	Message Format
	Security

	Using NX-API CLI
	Escalate Privileges to Root on NX-API
	NX-API Management Commands
	Working With Interactive Commands Using NX-API
	NX-API Request Elements
	NX-API Response Elements
	Restricting Access to NX-API
	Updating an iptable
	Making an Iptable Persistent Across Reloads

	Table of NX-API Response Codes

	XML and JSON Supported Commands
	About JSON (JavaScript Object Notation)
	Examples of XML and JSON Output

