
NX-API CLI

This chapter contains the following topics:

• About NX-API CLI, on page 1
• Using NX-API CLI, on page 2
• JSON and XML Structured Output, on page 16

About NX-API CLI
NX-API CLI is an enhancement to the Cisco Nexus 3400-S platform switch CLI system, which supports
XML output. NX-API CLI also supports JSON output format for specific commands.

On switches, command-line interfaces (CLIs) are run only on the device. NX-API CLI improves the accessibility
of these CLIs by making them available outside of the switch by using HTTP or HTTPS. You can use this
extension to the existing Cisco NX-OS CLI system on the switch. NX-API CLI supports show commands,
configurations, and Linux Bash.

NX-API CLI supports JSON-RPC.

Transport
NX-API uses HTTP or HTTPS as its transport. CLIs are encoded into the HTTP or HTTPS POST body.

The NX-API feature is enabled by default on HTTPS port 443. HTTP port 80 is disabled.

NX-API is also supported through UNIX Domain Sockets for applications running natively on the host or
within Guest Shell.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all its children processes, are
under Linux cgroup protection which caps the CPU and memory usage. If the Nginx memory usage exceeds
the cgroup limitations, the Nginx process is restarted and restored.

Message Format
NX-API is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API also
supports JSON output format for specific commands.

NX-API CLI
1

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON.

Note

Security
• NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

• NX-API does not support insecure HTTP by default.

• NX-API does not support weak TLSv1 protocol by default.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.Note

NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Note

Using NX-API CLI
The commands, command type, and output type for the switches are entered using NX-API. NX-API encodes
the CLIs into the body of an HTTP or HTTPS POST request. The response to the request is returned in XML
or JSON output format.

NX-API CLI
2

NX-API CLI
Security

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 15.Note

NX-API CLI is enabled by default for local access. The remote HTTP access is disabled by default.

The following example shows how to configure and launch the NX-API CLI:

• Enable the management interface.
switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 192.0.20.123/24
switch(config)# vrf context managment
switch(config)# ip route 10.0.113.1/0 1.2.3.1

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",

NX-API CLI
3

NX-API CLI
Using NX-API CLI

"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

Response:
{

"ins_api": {
"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

There is a known issue where an attempt to delete a user might fail. The result is an error similar to the
following appearing approximately every 12 hours:
user delete failed for username:userdel: user username is currently logged in - securityd

This issue might occur in a scenario where you try to delete a user who is still logged into a switch through
NX-API. Enter the following command in this case to try to log the user out first:
switch(config)# clear user username

Then try to delete the user again. If the issue persists after attempting this workaround, contact Cisco TAC
for further assistance.

Note

Escalate Privileges to Root on NX-API
For NX-API, the privileges of an Admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an Admin user can escalate privileges to root.

• Escalation to root is password-protected.

The following examples show how an Admin escalates privileges to root and how to verify the escalation.
After becoming root, the whoami command shows you as Admin; however, the Admin account has all the
root privileges.

First example:

NX-API CLI
4

NX-API CLI
Escalate Privileges to Root on NX-API

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Second example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Sample NX-API Scripts
The sample scripts demonstrate how a script is used with NX-API.

• Cable Checker (check_cable.py)

• Cable Checker Blueprint (connectivity.json)

• Using NX-API over UDS (rest_client.py)

NX-API CLI
5

NX-API CLI
Sample NX-API Scripts

NX-API Management Commands
The following table shows the CLI commands that can manage and enable through the NX-API.

Table 1: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP or HTTPS.no nxapi {http | https}

Displays port information.show nxapi

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of an HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of an HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Enables a certificate.nxapi certificate enable

Weak ciphers are disabled by default. Running this command
changes the default behavior and enables the weak ciphers for
NGINX. The no form of the command changes it to the default
(by default, the weak ciphers are disabled).

nxapi ssl-ciphers weak

TLS1.0 is disabled by default. Running this command enables
the TLS versions that are specified in the string, including the
TLS1.0 that was disabled by default, if necessary. The no form
of the command changes it to the default (by default, only TLS1.1
and TLS1.2 are enabled).

nxapi ssl-protocols {TLSv1.0 TLSv1.1
TLSv1.2}

Specifies the default VRF, management VRF, or named VRF.nxapi use-vrf vrf

Implements any access restrictions and can be run in management
VRF.

You must enable feature bash-shell and then run the
command from Bash Shell. For more information on
Bash Shell, see the chapter on Bash.

Note

Iptables is a command-line firewall utility that uses policy chains
to allow or block traffic and almost always comes pre-installed
on any Linux distribution.

ip netns exec management iptables

NX-API CLI
6

NX-API CLI
NX-API Management Commands

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

In some situations, you can get an error message saying that the certificate is invalid:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
Nginx certificate invalid.
switch(config)#

This error can occur if the key file is encrypted. In that case, you must decrypt the key file before you can
install it. You might have to go into Guest Shell to decrypt the key file, as shown in the following example:
switch(config)# guestshell
[b3456@guestshell ~]$
[b3456@guestshell bootflash]$ /bin/openssl rsa -in certfilename.net.pem -out clearkey.pem

Enter pass phrase for certfilename.net.pem:
writing RSA key
[b3456@guestshell bootflash]$
[b3456@guestshell bootflash]$ exit
switch(config)#

See the Guest Shell chapter in this document for more information on Guest Shell.

If this was the reason for the issue, you should now be able to successfully install the certificate:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Working with Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid time outs with an error code 500, prepend
interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands, where each
; is surrounded with single blank characters.

Following are several examples of interactive commands that use terminal dont-ask to avoid timing out with
an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API CLI
7

NX-API CLI
Working with Interactive Commands Using NX-API

NX-API Request Elements
NX-API sends request elements to the device in XML format or JSON format. The HTTP header of the request
must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Table 2: NX-API Request Elements for XML or JSON Format

DescriptionNX-API Request Element

Specifies the NX-API version.version

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_array

CLI show commands that expect structured output. Only for
show commands. Similar to cli_show, but with
cli_show_array, data is returned as a list of one element, or
an array, within square brackets [].

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the current
user's authority.

• The pipe operation is supported in the output when
the message type is ASCII. If the output is in XML
format, the pipe operation is not supported.

• A maximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

NX-API CLI
8

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Note Do not chunk output.0

Chunk output.1

Only show commands support chunking.When a series
of show commands are entered, only the first command
is chunked and returned.

The output message format is XML. (XML is the
default.) Special characters, such as < or >, are converted
to form a valid XML message (< is converted into <
> is converted into >).

You can use XML SAX to parse the chunked output.

Note

When chunking is enabled, themessage format is limited
to XML. JSON output format is not supported when
chunking is enabled.

Note

chunk

Valid only for configuration CLIs, not for show commands.
Specifies the configuration rollback options. Specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores and continues with other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

The rollback element is available in the cli_conf mode
when the input request format is XML or JSON.

Note

rollback

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

sid

NX-API CLI
9

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated with
" ; ". (The ; must be surrounded with single blank
characters.)

Prepend commands with terminal dont-ask to avoid
timing out with an error code 500. For example:
terminal dont-ask ; cli_conf ; interface Eth4/1
; no shut ; switchport

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

The available output message formats are the following:

Note Specifies output in XML format.xml

Specifies output in JSON format.json

The Cisco NX-OS CLI supports XML output, which
means that the JSON output is converted from XML.
The conversion is processed on the switch.

To manage the computational overhead, the JSON
output is determined by the amount of output. If the
output exceeds 1 MB, the output is returned in XML
format. When the output is chunked, only XML output
is supported.

The content-type header in the HTTP/HTTPS headers
indicate the type of response format (XML or JSON).

Note

output_format

When JSON-RPC is the input request format, use the NX-API elements that are listed in the following table
to specify a CLI command:

NX-API CLI
10

NX-API CLI
NX-API Request Elements

Table 3: NX-API Request Elements for JSON-RPC Format

DescriptionNX-API Request Element

A string specifying the version of the JSON-RPC protocol.

Version must be 2.0.

jsonrpc

A string containing the name of the method to be invoked.

NX-API supports either:

• cli ̶ show or configuration commands

• cli_ascii ̶ show or configuration commands; output without
formatting

• cli_array ̶ only for show commands; similar to cli, but with
cli_array, data is returned as a list of one element, or an array,
within square brackets, [].

method

A structured value that holds the parameter values used during the
invocation of a method.

It must contain the following:

• cmd ̶ CLI command

• version ̶ NX-API request version identifier

params

Valid only for configuration CLIs, not for show commands.
Configuration rollback options. You can specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores the failed CLI and continues with
other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

rollback

An optional identifier established by the client that must contain a
string, number, or null value, if it is specified. The value should
not be null and numbers contain no fractional parts. If a user does
not specify the id parameter, the server assumes that the request is
simply a notification, resulting in a no response, for example, id :
1

id

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

NX-API CLI
11

NX-API CLI
NX-API Response Elements

Table 4: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message that is associated with the returned error code.msg

Restricting Access to NX-API
There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method
that you use depends on whether you have configured a VRF for NX-API communication using the nxapi
use-vrf <vrf-name> CLI command.

Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured a VRF for NX-API
communication. For information about configuring ACLs, see the Cisco Nexus 3400-S NX-OS Security
Configuration Guide.

If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS
access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable,
on page 13.

NX-API CLI
12

NX-API CLI
Restricting Access to NX-API

Updating an iptable
An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF is configured for NX-API
communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP and
HTTPS access to an existing iptable.

Procedure

Step 1 To create a rule that blocks HTTP access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP

Step 2 To create a rule that blocks HTTPS access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

Step 3 To verify the applied rules:
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 4 To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j
DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 5 To remove and verify previously applied rules:

This example removes the first rule from INPUT.

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)

NX-API CLI
13

NX-API CLI
Updating an iptable

target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

What to do next

The rules in iptables are not persistent across reloads when you modify them in the Bash shell. To make the
rules persistent, see Making an Iptable Persistent Across Reloads, on page 14.

Making an Iptable Persistent Across Reloads
The rules in iptables are not persistent across reloads when you modify them in the Bash shell. This section
explains how to make a modified iptable persistent across a reload.

Before you begin

You have modified an iptable.

Procedure

Step 1 Create a file called iptables_init.log in the /etc directory with full permissions:
bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log

Step 2 Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands:

#!/bin/sh

BEGIN INIT INFO

Provides: iptables_init

Required-Start:

Required-Stop:

Default-Start: 2 3 4 5

Default-Stop:

Short-Description: init for iptables

Description: sets config for iptables

during boot time

END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
start_script() {

ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables
echo "iptables init script executed" > /etc/iptables_init.log

NX-API CLI
14

NX-API CLI
Making an Iptable Persistent Across Reloads

}
case "$1" in
start)
start_script
;;
stop)
;;

restart)
sleep 1
$0 start
;;

*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1

esac
exit 0

Step 3 Set the appropriate permissions to the startup script:
bash-4.3# chmod 777 /etc/init.d/iptables_int

Step 4 Set the iptables_int startup script to on with the chkconfig utility:
bash-4.3# chkconfig iptables_init on

The iptables_init startup script now executes each time that you perform a reload, making the iptable rules
persistent.

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 5: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Input Bash command error.400BASH_CMD_ERR

Chunking only allowed to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

Request message is invalid.400IN_MSG_ERR

NX-API CLI
15

NX-API CLI
Table of NX-API Response Codes

No input command.400NO_INPUT_CMD_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Backend processing error.500BACKEND_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

JSON and XML Structured Output
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

NX-API CLI
16

NX-API CLI
JSON and XML Structured Output

• XML
• JSON
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read.

Converting the standard NX-OS output to JSON, JSON Pretty, or XML format occurs on the NX-OS CLI by
"piping" the output to a JSON or XML interpreter. For example, you can issue the show ip access command
with the logical pipe (|) and specify JSON, JSON Pretty, or XML, and the NX-OS command output will be
properly structured and encoded in that format. This feature enables programmatic parsing of the data and
supports streaming data from the switch through software streaming telemetry. Most commands in Cisco
NX-OS support JSON, JSON Pretty, and XML output.

Selected examples of this feature follow.

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard that is designed for human-readable data and is an alternative
to XML. JSON originally evolved from JavaScript, but it is a language-independent data format. Command
output from NX-OS supports JSON and JSON Pretty format.

The switch supports JSON CLI Execution.

Nearly all modern programming languages support two primary Data Structures in some way. These Data
Structures are:

• Ordered List :: Array

• Unordered List (Name/Value pair) :: Objects

Also, through the Cisco NX-OS Sandbox, you can access JSON or XML output for a show command.

CLI Execution
switch-1# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SPARSHA-SAVBU-F10", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco WS-C2960
S-48TS-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "BLR-VXLAN-NPT-CR-178(FOC1745R01W)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
switch-1#

Examples of XML and JSON Output
This section documents selected examples of NX-OS commands that are displayed as XML and JSON output.

This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"

NX-API CLI
17

NX-API CLI
About JSON (JavaScript Object Notation)

}
switch(config)#

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in XML format:

NX-API CLI
18

NX-API CLI
Examples of XML and JSON Output

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

NX-API CLI
19

NX-API CLI
Examples of XML and JSON Output

NX-API CLI
20

NX-API CLI
Examples of XML and JSON Output

	NX-API CLI
	About NX-API CLI
	Transport
	Message Format
	Security

	Using NX-API CLI
	Escalate Privileges to Root on NX-API
	Sample NX-API Scripts
	NX-API Management Commands
	Working with Interactive Commands Using NX-API
	NX-API Request Elements
	NX-API Response Elements
	Restricting Access to NX-API
	Updating an iptable
	Making an Iptable Persistent Across Reloads

	Table of NX-API Response Codes

	JSON and XML Structured Output
	About JSON (JavaScript Object Notation)
	Examples of XML and JSON Output

