Ultra-M: Match the Virtual IP (VIP) address to the floating IP address

Contents

Introduction Prerequisites Requirements Components Used Abbreviations Problem Solution

Introduction

This document describes how to match the Virtual IP address to the floating IP addresses in the Ultra-M solution.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics

- Ultra-M base architecture
- STAROs

Components Used

The information in this document is based on Ultra 5.1.x release.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Abbreviations

These abbreviations are used.

- VNF Virtual Network Function
- OSPD OpenStack Platform Director
- CF Control Function
- SF Service Function
- ESC Elastic Service Controller
- VIM Virtual Infrastructure

	Manager
VM	Virtual Machine
EM	Element Manager
UAS	Ultra Automation Services
UUID	Universally Unique IDentifier

Problem

In Ultra-M setup, when you do nova list, you get a lot of VMs that are created along with internal networks that are not necessarily (by default) reachable from the OSPD or external network.

Solution

To be able to figure out what is the IP you can contact for ESC, UAS (AutoVNF or Auto-IT-VNF, which depends upon the version or to that meter, anything that has floating IP address assigned as this varies per release) you can use this procedure:

Step 1. Do neutron port-list | grep vip

neutron port-list | grep vip

```
| 749699c4-daae-4ecc-9f1e-20f455e47e25 | tb3-bxb-vnf1-autovnf-uas-vip | fa:16:3e:b0:20:ff |
{"subnet_id": "deb106d0-3fc0-4e3c-895f-104955b0d8b2", "ip_address": "172.x.y.100"} |
| 8169725a-b968-4b6f-80b3-f16a39b5ebb0 | tb3-bxb-vnf1-vnfm-ESC-vip | fa:16:3e:03:92:ae |
{"subnet_id": "deb106d0-3fc0-4e3c-895f-104955b0d8b2", "ip_address": "172.x.y.105"} |
| f18b0121-47ac-4d5a-9283-bfb099cab23d | auto-it-vnf-ISO-590-uas-vip | fa:16:3e:72:ab:2b |
{"subnet_id": "f1e3ca42-f3ed-4595-8959-3251042722d7", "ip_address": "173.x.y.10"} |
```

From this, you see:

AutoVNF UAS: 172.x.y.100

ESC: 172.x.y.105

Auto-IT-VNF UAS: 172.x.y.10

Step 2. Look at the corresponding floating IP address assigned to these.

[stack@bxb-undercloud-pod3 ~]\$ neutron floating ip list

(neutron) floatingip-list

```
+----+
----+
| id | fixed_ip_address | floating_ip_address | port_id |
+-----+
| 04369b3e-d6b6-490a-becb-bc645b215b5e | 172.x.y.100 | 10.a.b.189 | 749699c4-daae-4ecc-9f1e-
20f455e47e25 |
| 244ff3a4-9d2f-45e3-8ed4-0b0f2d3347af | 172.x.y.103 | 10.a.b.190 | 8ee48e89-285a-462c-b5b1-
```

(neutron)

From this output, you can see the IP addresses that can be used to contact for specific functions:

AutoVNF UAS: 10.a.b.189

-----+

ESC: 10.a.b.191

Auto-IT-VNF UAS: 10.a.b.188

This range is normally reachable from OSPD or external network.

BJB had timeout connecting to BDB backend. Ensure that you are connected to the Cisco Internal Network.[close]