
Configure Nexus 9000 as a Traffic Generator with
SCAPY

Contents

Introduction
Prerequisites
Requirements
Components Used
Installation
Create a Packet
Send Traffic
Verify

Introduction

This document describes Scapy, a Python packet manipulation tool for N9K switches to create and
manipulate packets with ease.

Prerequisites

Download Scapy to the switch bootflash.

To download Scapy, use the link from GitHub GitHub-SCAPY

Requirements

Cisco recommends that you have knowledge of these topics:

Nexus 9000/3000 Switch.•

Components Used

N9K-C9396PX •

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, ensure
that you understand the potential impact of any command.

Installation

https://github.com/p4lang/scapy-vxlan

Download and extract the Scapy code to your switch boot flash; FTP, SFTP, or SCP are available.

Enable the feature, in this case, SCP.

switch(config)# feature scp-server
switch(config)# sh feature | i scp
scpServer 1 enabled

Copy the file to the switch from the laptop.

scp scapy-vxlan-master.zip admin@10.88.164.13:/

Once the image is in the boot flash, it needs to be decompressed. It needs to enable feature bash and unzip it
from bash.

switch(config)# feature bash
switch(config)# run bash
bash-4.3$ sudo su -
root@switch#cd /bootflash
root@switch#unzip scapy-vxlan-master.zip

Once decompressed, the files can be located with the dir command on the boot flash, the compressed and
uncompressed.

switch# dir bootflash: | i i scapy
 4096 Jul 09 18:00:01 2019 scapy-vxlan-master/
 1134096 Jul 19 23:35:26 2023 scapy-vxlan-master.zip

Now Scapy is available.

Notice that you need to call the program with root privileges and you also need to navigate to the Scapy
directory.

switch(config)# run bash
Enter configuration commands, one per line. End with CNTL/Z.
bash-4.2$ sudo su -
root@switch#cd /
root@switch#cd bootflash/scapy-vxlan-master <<< Move to the scapy folder scapy-vxlan-master
root@switch#python <<< Run python once located inside the folder

Python 2.7.2 (default, Mar 9 2015, 15:52:40)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from scapy.all import * <<< Import libraries from scapy
>>>

Create a Packet

This is an example of how to create a basic IP packet to illustrate the procedure to generate traffic using
Scapy.

Create l2 source and destination mac addresses.
>>> l2=Ether()
>>> l2.src='00:aa:12:34:12:34'
>>> l2.src='00:ff:aa:bb:cc:11'

Create l3 source and destination IP addresses.
>>> l3=IP()
>>> l3.src='10.1.1.1'
>>> l3.dst='10.2.2.2'

Another capability is to send a packet from a pcap file previously captured. This is achieved with the
command rdpcap.

The output of that command is a Python list containing all the packets captured in your pcap file. In this
example, traffic.pcap contains 10 packets and those packets are being assigned to the list created as pkts.

>>> pkts = rdpcap('bootflash/traffic.pcap')
>>> len(pkts)
10
>>> type(pkts)
<class 'scapy.plist.PacketList'>

Note: The pcap file needs to be stored in the boot flash of the switch.

Send Traffic

Once the packet is created, we use the command sendp to start sending our packet over the specified
interface.

>>> packet = l2/l3. << packet now have the values for source and destination declared on creating a packet.

>>> sendp(packet, iface='Eth1-1'). << Sending the packet through interface eth1/1
.
Sent 1 packets.

You can then iterate through the list of packets to send the traffic over the interface you specify.

>>> while True:
... for i in range(len(pkts)): <<< It goes through the list pkts with 10 packets and send 1 by 1
... sendp(pkts[i], iface='Eth1-1')
...
.
Sent 1 packets.
.
Sent 1 packets.

Note: Only switch ports mode access are available to be used. Otherwise, it displays an error.

Example of the error:

>>> sendp(l2/l3, iface='Eth1-6')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "scapy/sendrecv.py", line 335, in sendp
socket = socket or conf.L2socket(iface=iface, *args, **kargs)
File "scapy/arch/linux.py", line 477, in __init__
set_promisc(self.ins, self.iface)
File "scapy/arch/linux.py", line 165, in set_promisc
mreq = struct.pack("IHH8s", get_if_index(iff), PACKET_MR_PROMISC, 0, b"")
File "scapy/arch/linux.py", line 380, in get_if_index
return int(struct.unpack("I", get_if(iff, SIOCGIFINDEX)[16:20])[0])
File "scapy/arch/common.py", line 59, in get_if
ifreq = ioctl(sck, cmd, struct.pack("16s16x", iff.encode("utf8")))
IOError: [Errno 19] No such device

Ensure the interface is usable, run the ifconfig command, the interface must be listed in there.

bash-4.3$ ifconfig | grep Eth
Eth1-1 Link encap:Ethernet HWaddr 00:a2:ee:74:4b:88
Eth1-2 Link encap:Ethernet HWaddr 00:a2:ee:74:4b:89
Eth1-5 Link encap:Ethernet HWaddr 00:a2:ee:74:4b:8c
Eth1-6 Link encap:Ethernet HWaddr 00:a2:ee:74:4b:8d
Eth1-8 Link encap:Ethernet HWaddr 00:a2:ee:74:4b:8f
Eth1-11 Link encap:Ethernet HWaddr 00:a2:ee:74:4b:c1
...

Verify

 You can use the command to check any given packet.

>>> pkts[5].show()
###[Ethernet]###
 dst = 01:00:0c:cc:cc:cd
 src=58:97:bd:00:a4:f2
 type = 0x8100
###[802.1Q]###
 prio = 6
 id = 0
 vlan = 104
 type = 0x32
###[LLC]###
 dsap = 0xaa
 ssap = 0xaa
 ctrl = 3
###[SNAP]###
 OUI = 0xc
 code = 0x10b
###[Spanning Tree Protocol]###
 proto = 0
 version = 2
 bpdutype = 2
 bpduflags = 60
 rootid = 32872
 rootmac = 58:97:bd:00:a4:f1
 pathcost = 0
 bridgeid = 32872
 bridgemac = 58:97:bd:00:a4:f1
 portid = 32769
 age = 0.0
 maxage = 20.0
 hellotime = 2.0
 fwddelay = 15.0
###[Raw]###
 load = '\x00\x00\x00\x00\x02\x00h'

