
Build and Deploy a Docker IOx Package for
the IR1101 ARM Architecture

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Configure
Part 1. Build the IOx Package for IR1101
1. Install and Prepare IOx Client on the Linux Host
2. Install and Prepare the Docker Environment on the Linux Build Machine
3. Install the QEMU User Emulation Packages
4. Test if an aarch64/ARV64v8 Container Runs on x86 Linux Machine
5. Prepare Files to Build the Docker Webserver Container
6. Build the Docker Container
 7. Build the IOx Package
Part 2. Configure the IR1101 for IOx
1. Enable the Webinterface, IOx and Local Manager
2. Configure IOx Networking
Part 3. Access Local Manager and Deploy the IOx Application
Verify
Troubleshoot

Introduction

This document describes how to prepare, build and deploy a Docker based IOx package for the
IR1101 ARM-based Internet of Things (IoT) gateway.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

Linux●

Containers●

IOx●

Components Used

The information in this document is based on these software and hardware versions:

IR1101 that is reachable over Secure Shell (SSH)
IP address configuredAccess to the device with a privilege 15 user

●

Linux host (a minimal Debian 9 (stretch) installation is used for this article)●

IOx client installation files which can be downloaded
from: https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=28630
6762

●

The information in this document was created from the devices in a specific lab environment. All of
the devices used in this document started with a cleared (default) configuration. If your network is
live, make sure that you understand the potential impact of any command.

Background Information

The IR1101 is a bit different in comparison with most other IOx platforms as these are mainly x86
based. The IR1101 is based on the ARM64v8 architecture so you cannot deploy containers or IOx
packages built for x86 on the platform directly. This document starts from scratch and prepares the
environment for building ARM64v8-based Docker containers and explains how to build, package
and deploy them on the IR1101 with the use of an x86 PC.

As an example, a very small Python script that is a simple webserver is used and a Docker
container is built around to eventually package it to run on the IR1101. The only thing the
webserver will do is to listen on a predefined port (9000) and to return a simple pagev when it
receives a GET request. This allows you to test the capability to run your own code and allows to
test the network access to the IOx application once it starts to run.

The package will be built by the Docker tools, with the use of Alpine Linux. Alpine Linux is a small
Linux image (around 5MB), which is often used as a base for Docker containers.

As most of the Desktop/Laptop/VMs around are all x86 based, you need to emulate the ARM64v8
architecture on the x86 based machine where the container is built. You can do this easily with the
use of Quick Emulator (QEMU) user emulation. This allows execution of executables in a non-
native architecture just as it would run on it's native architecture.

Configure

Part 1. Build the IOx Package for IR1101

1. Install and Prepare IOx Client on the Linux Host

You need ioxclient in order to package the Docker container as an IOx package once it's built, so
let's prepare this first.

First copy or download the ioxclient package. It is available
from: https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=28630676
2.

jedepuyd@deb9:~$ scp jedepuyd@192.168.56.101:/home/jedepuyd/ioxclient_1.7.0.0_linux_amd64.tar.gz

.

jedepuyd@192.168.56.101's password:

ioxclient_1.7.0.0_linux_amd64.tar.gz 100% 4798KB 75.2MB/s 00:00

https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762
https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762
https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762
https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762

Extract the package:

jedepuyd@deb9:~$ tar -xvzf ioxclient_1.7.0.0_linux_amd64.tar.gz

ioxclient_1.7.0.0_linux_amd64/ioxclient

ioxclient_1.7.0.0_linux_amd64/README.md

Add the path to the PATH variable in order to have it available without the use of the full location.
If you reboot the machine or switch users, then don't forget to repeat this step:

jedepuyd@deb9:~$ export PATH=$PATH:/home/jedepuyd/ioxclient_1.7.0.0_linux_amd64/

Launch ioxclient for the first time in order to create a mandatory profile. As you will only use
ioxclient to package the Docker container, the values can be left as default:

jedepuyd@deb9:~$ ioxclient -v

ioxclient version 1.7.0.0

jedepuyd@deb9:~/iox_aarch64_webserver$ ioxclient profiles reset

Active Profile : default

Your current config details will be lost. Continue (y/N) ? : y

Current config backed up at /tmp/ioxclient731611124

Config data deleted.

jedepuyd@deb9:~/iox_aarch64_webserver$ ioxclient -v

Config file not found : /home/jedepuyd/.ioxclientcfg.yaml

Creating one time configuration..

Your / your organization's name :

Your / your organization's URL :

Your IOx platform's IP address[127.0.0.1] :

Your IOx platform's port number[8443] :

Authorized user name[root] :

Password for root :

Local repository path on IOx platform[/software/downloads]:

URL Scheme (http/https) [https]:

API Prefix[/iox/api/v2/hosting/]:

Your IOx platform's SSH Port[2222]:

Your RSA key, for signing packages, in PEM format[]:

Your x.509 certificate in PEM format[]:

Activating Profile default

Saving current configuration

ioxclient version 1.7.0.0

2. Install and Prepare the Docker Environment on the Linux Build Machine

This Docker is used to build a container from the Alpine base image and to include the necessary
files for the use case. The given steps are based on the official installation guides from Docker
Community Edition (CE) for Debian: https://docs.docker.com/install/linux/docker-ce/debian/

Update the package lists on your machine:

jedepuyd@deb9:~$ sudo apt-get update

...

Reading package lists... Done

Install the dependencies in order to use the Docker repo:

jedepuyd@deb9:~$ sudo apt-get install apt-transport-https ca-certificates curl gnupg2 software-

properties-common

Reading package lists... Done

https://docs.docker.com/install/linux/docker-ce/debian/

Building dependency tree

...

Processing triggers for dbus (1.10.26-0+deb9u1) ...

Add the Docker GNU Privacy Guard (GPG) key as a valid GPG key:

jedepuyd@deb9:~$ curl -fsSL https://download.docker.com/linux/debian/gpg | sudo apt-key add -

OK

Verify the fingerprint of the installed GPG key:

jedepuyd@deb9:~$ sudo apt-key fingerprint 0EBFCD88

pub rsa4096 2017-02-22 [SCEA]

 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

uid [unknown] Docker Release (CE deb) <docker@docker.com>

sub rsa4096 2017-02-22 [S]

Add the Docker stable repo:

jedepuyd@deb9:~$ sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/debian $(lsb_release -cs) stable"

Update the package lists again as you add the Docker repo:

jedepuyd@deb9:~$ sudo apt-get update

...

Reading package lists... Done

Install Docker:

jedepuyd@deb9:~$ sudo apt-get install docker-ce docker-ce-cli containerd.io

Reading package lists... Done

Building dependency tree

...

Processing triggers for systemd (232-25+deb9u9) ...

In order to be able to access/run Docker as a regular user, add this user to the Docker group and
refresh group membership:

jedepuyd@deb9:~$ sudo usermod -a -G docker jedepuyd

jedepuyd@deb9:~$ newgrp docker

3. Install the QEMU User Emulation Packages

After you have installed Docker, you need to install the QEMU user emulators. Use the statically
linked QEMU emulator from within the Docker container so you can run the container for
ARM64v8 on our x86-based Linux machine, although the target container will be designed for the
ARM64v8 architecture.

Install the packages:

jedepuyd@deb9:~$ sudo apt-get install qemu-user qemu-user-static

Reading package lists... Done

Building dependency tree

...

Processing triggers for man-db (2.7.6.1-2) ...

After the installation, here are the statically linked QEMU emulators available in /usr/bin:

jedepuyd@deb9:~$ ls -al /usr/bin/qemu-*static

-rwxr-xr-x 1 root root 3468784 Nov 8 16:41 /usr/bin/qemu-aarch64-static

-rwxr-xr-x 1 root root 2791408 Nov 8 16:41 /usr/bin/qemu-alpha-static

-rwxr-xr-x 1 root root 3399344 Nov 8 16:41 /usr/bin/qemu-armeb-static

-rwxr-xr-x 1 root root 3391152 Nov 8 16:41 /usr/bin/qemu-arm-static

-rwxr-xr-x 1 root root 2800400 Nov 8 16:41 /usr/bin/qemu-cris-static

...

The first one in the list, is the one you need: aarch64 is the arch-name for ARM64v8 for Linux.

4. Test if an aarch64/ARV64v8 Container Runs on x86 Linux Machine

Now that you have Docker and the necessary QEMU binaries installed, you can test if you are
able to run a Docker container built for ARM64v8 on the x86 machine:

jedepuyd@deb9:~$ docker run -v /usr/bin/qemu-aarch64-static:/usr/bin/qemu-aarch64-static --rm -

ti arm64v8/alpine:3.7

Unable to find image 'arm64v8/alpine:3.7' locally

3.7: Pulling from arm64v8/alpine

40223db5366f: Pull complete

Digest: sha256:a50c0cd3b41129046184591963a7a76822777736258e5ade8445b07c88bfdcc3

Status: Downloaded newer image for arm64v8/alpine:3.7

/ # uname -a

Linux 1dbba69b60c5 4.9.0-8-amd64 #1 SMP Debian 4.9.144-3.1 (2019-02-19) aarch64 Linux

As you can see in the output, arm64v8 Alpine container is obtained and made to run with access
to the emulator.

If you request the architecture of the container, you can see that the code is compiled for aarch64.
Exactly as the target arch for the container should be for IR1101.

5. Prepare Files to Build the Docker Webserver Container

Now that all preparation is done, you can go ahead and create the necessary files for the
webserver container that needs to be run on IR1101.

First file is webserver.py, the Python script which you want to run in the container. As this is just
an example, obviously, you will replace this with the actual code in order to run in your IOx
application:

jedepuyd@deb9:~$ mkdir iox_aarch64_webserver

jedepuyd@deb9:~$ cd iox_aarch64_webserver

jedepuyd@deb9:~/iox_aarch64_webserver$ vi webserver.py

jedepuyd@deb9:~/iox_aarch64_webserver$ cat webserver.py

#!/usr/bin/env python

from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer

import SocketServer

import os

class S(BaseHTTPRequestHandler):

 def _set_headers(self):

 self.send_response(200)

 self.send_header('Content-type', 'text/html')

 self.end_headers()

 def do_GET(self):

 self._set_headers()

 self.wfile.write("<html><body><h1>IOX python webserver on arm64v8</h1></body></html>")

 logf.write('Got GET\n')

 logf.flush()

def run(server_class=HTTPServer, handler_class=S, port=9000):

 server_address = ('', port)

 httpd = server_class(server_address, handler_class)

 print 'Starting webserver...'

 logf.write('Starting webserver....\n')

 logf.flush()

 httpd.serve_forever()

if __name__ == "__main__":

 log_file_dir = os.getenv("CAF_APP_LOG_DIR", "/tmp")

 log_file_path = os.path.join(log_file_dir, "webserver.log")

 logf = open(log_file_path, 'w')

 run()

 logf.close()

This code contains the logic in order to write to a logfile, which will be available for consultation
from Local Manager.

Second file that is needed is the Dockerfile. This defines how the container is built:

jedepuyd@deb9:~/iox_aarch64_webserver$ vi Dockerfile

jedepuyd@deb9:~/iox_aarch64_webserver$ cat Dockerfile

FROM arm64v8/alpine:3.7

COPY qemu-aarch64-static /usr/bin

RUN apk add --no-cache python

COPY webserver.py /webserver.py

The Dockerfile defines how the container will be built. Start from the Apline base image for
ARM64v8, copy the emulator in the container, run the apk in order to add the Python package and
copy the webserver script into the container.

Last preparation which is needed before you can build the container is to copy qemu-aarch64-
static to the directory from where you will build the container:

jedepuyd@deb9:~/iox_aarch64_webserver$ cp /usr/bin/qemu-aarch64-static .

6. Build the Docker Container

Now that all the preparation is done, you can build the container with the use of the Dockerfile:

jedepuyd@deb9:~/iox_aarch64_webserver$ docker build -t iox_aarch64_webserver .

Sending build context to Docker daemon 3.473MB

Step 1/4 : FROM arm64v8/alpine:3.7

 ---> e013d5426294

Step 2/4 : COPY qemu-aarch64-static /usr/bin

 ---> addf4e1cc965

Step 3/4 : RUN apk add --no-cache python

 ---> Running in ff3768926645

fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/aarch64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/aarch64/APKINDEX.tar.gz

(1/10) Installing libbz2 (1.0.6-r6)

(2/10) Installing expat (2.2.5-r0)

(3/10) Installing libffi (3.2.1-r4)

(4/10) Installing gdbm (1.13-r1)

(5/10) Installing ncurses-terminfo-base (6.0_p20171125-r1)

(6/10) Installing ncurses-terminfo (6.0_p20171125-r1)

(7/10) Installing ncurses-libs (6.0_p20171125-r1)

(8/10) Installing readline (7.0.003-r0)

(9/10) Installing sqlite-libs (3.25.3-r0)

(10/10) Installing python2 (2.7.15-r2)

Executing busybox-1.27.2-r11.trigger

OK: 51 MiB in 23 packages

Removing intermediate container ff3768926645

 ---> eda469dab9c6

Step 4/4 : COPY webserver.py /webserver.py

 ---> ccf7ee7227c9

Successfully built ccf7ee7227c9

Successfully tagged iox_aarch64_webserver:latest

As a test, run the container which you just built and check if the script works:

jedepuyd@deb9:~/iox_aarch64_webserver$ docker run -ti iox_aarch64_webserver

/ # uname -a

Linux dae047f1a6b2 4.9.0-8-amd64 #1 SMP Debian 4.9.144-3.1 (2019-02-19) aarch64 Linux

/ # python webserver.py &

/ # Starting webserver...

/ # netstat -tlpn

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:9000 0.0.0.0:* LISTEN 13/qemu-aarch64-

sta

/ # exit

As you can see in this output, the architecture of the container is the targetted aarch64. And after
you start the script, you see it's listening for requests on port 9000.

 7. Build the IOx Package

The container is ready to be packaged. Before you can ask ioxclient to do this, you first need to
create the package descriptor: package.yaml.

This file describes how the package should look like, how many resources it needs to run and
what to start.

jedepuyd@deb9:~/iox_aarch64_webserver$ vi package.yaml

jedepuyd@deb9:~/iox_aarch64_webserver$ cat package.yaml

descriptor-schema-version: "2.7"

info:

 name: "iox_aarch64_webserver"

 description: "simple docker webserver for arm64v8"

 version: "1.0"

 author-link: "http://www.cisco.com"

 author-name: "Jens Depuydt"

app:

 cpuarch: "aarch64"

 type: "docker"

 resources:

 profile: c1.tiny

 network:

 -

 interface-name: eth0

 ports:

 tcp: ["9000"]

 startup:

 rootfs: rootfs.tar

 target: ["python","/webserver.py"]

As you can see, the CPU architecture is set to aarch64. In order to gain access to TCP port 9000,
use rootfs.tar as the rootfs and on start, you can run python/webserver.py.

Last thing to do before you can package is to extract the rootfs.tar from the Docker container:

jedepuyd@deb9:~/iox_aarch64_webserver$ docker save -o rootfs.tar iox_aarch64_webserver

At this point, you can use ioxclient in order to build the IOx package for IR1101:

jedepuyd@deb9:~/iox_aarch64_webserver$ ioxclient package .

Currently active profile : default

Command Name: package

No rsa key and/or certificate files provided to sign the package

Checking if package descriptor file is present..

Validating descriptor file /home/jedepuyd/iox_aarch64_webserver/package.yaml with package schema

definitions

Parsing descriptor file..

Found schema version 2.7

Loading schema file for version 2.7

Validating package descriptor file..

File /home/jedepuyd/iox_aarch64_webserver/package.yaml is valid under schema version 2.7

Created Staging directory at : /tmp/017226485

Copying contents to staging directory

Creating an inner envelope for application artifacts

Generated /tmp/017226485/artifacts.tar.gz

Calculating SHA1 checksum for package contents..

Updated package metadata file : /tmp/017226485/.package.metadata

Root Directory : /tmp/017226485

Output file: /tmp/475248592

Path: .package.metadata

SHA1 : 95abe28fc05395fc5f71f7c28f59eceb1495bf9b

Path: artifacts.tar.gz

SHA1 : bdf5596a0747eae51bb0a1d2870fd09a5a16a098

Path: package.yaml

SHA1 : e65a6fcbe96725dd5a09b60036448106acc0c138

Generated package manifest at package.mf

Generating IOx Package..

Package generated at /home/jedepuyd/iox_aarch64_webserver/package.tar

Right now, there is a package in order to deploy on the IR1101 ready as package.tar. The next
part explains how to prepare the device for deployment.

Part 2. Configure the IR1101 for IOx

1. Enable the Webinterface, IOx and Local Manager

Local Manager is a GUI in order to deploy, activate, start, manage and troubleshoot IOx
applications. For IR1101, it is embedded in the regular management web interface. So, you need

to enable that first.

Perform these steps on the IR1101 in order to enable IOx and the web interface.

BRU_IR1101_20#conf t

Enter configuration commands, one per line. End with CNTL/Z.

BRU_IR1101_20(config)#iox

BRU_IR1101_20(config)#ip http server

BRU_IR1101_20(config)#ip http secure-server

BRU_IR1101_20(config)#ip http authentication local

BRU_IR1101_20(config)#username admin privilege 15 password 0 cisco

The last line adds a user with privilege 15 permissions. This user will have access to the web
interface and IOx local manager.

2. Configure IOx Networking

Before you access the web interface, let's add the required configuration for the IOx networking.
Background information can be found in the IR1101 documentation for
IOx: https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR
1101config/b_IR1101config_chapter_010001.html

In short, the IOx applications can communicate with the outside world with the use of the
VirtualPortGroup0 interface (comparable with the Gi2 on IR809 and Gi5 on IR829 interfaces).

BRU_IR1101_20(config)#interface VirtualPortGroup0

BRU_IR1101_20(config-if)# ip address 192.168.1.1 255.255.255.0

BRU_IR1101_20(config-if)# ip nat inside

BRU_IR1101_20(config-if)# ip virtual-reassembly

BRU_IR1101_20(config-if)#exit

As you configure the VirtualPortGroup0 interface as Network Address Translation (NAT) inside,
you need to add the ip nat outside statement on the Gi 0/0/0 interface in order to allow
communication to and from the IOx applications with the use of NAT:

BRU_IR1101_20(config)#interface gigabitEthernet 0/0/0

BRU_IR1101_20(config-if)#ip nat outside

BRU_IR1101_20(config-if)#ip virtual-reassembly

In order to allow access to port 9000 for the container, which you can give 192.168.1.15, you need
to add a port forward:

BRU_IR1101_20(config)#$ip nat inside source static tcp 192.168.1.15 9000 interface

GigabitEthernet0/0/0 9000

For this guide, use statically configured IPs per IOx application. If you want to dynamically assign
IP addresses to the applications, you will need to add the configuration for a DHCP server in the
subnet of VirtualPortGroup0.

Part 3. Access Local Manager and Deploy the IOx Application

After you add these lines to the configuration, you can access the IR1101 with the use of the web
interface. Navigate to the Gi 0/0/0 IP address with the use of your browser as shown in the image.

https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR1101config/b_IR1101config_chapter_010001.html
https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR1101config/b_IR1101config_chapter_010001.html

Use the privilege 15 account created in Step 1. in order to login to the web interface and navigate
to Configuration - IOx as shown in the image.

In the IOx Local Manager login, use the same account to continue as shown in the image.

Click Add New, select a name for the IOx application and choose the package.tar which was built
in Part 1 as shown in the image.

Once the package is uploaded, you can activate it as shown in the image.

In the Resources tab, open the interface setting in order to specify the fixed IP that you want to
assign to the app as shown in the image.

Click OK, then Activate. Once the action completes, navigate back to the main Local Manager
page (Applications button on the top menu), then start the application as shown in the image.

After you go through these steps, your application should run and be available through port 9000

with the use of the Gi 0/0/0 interface of the IR1101.

Verify

Use this section in order to confirm that your configuration works properly.

In order to verify, you can access the IP address of the Gi 0/0/0 interface on the IR1101 with the
use of port 9000.

If all goes well, you should see this as follows, as it was created in the Python script.

Troubleshoot

This section provides information you can use in order to troubleshoot your configuration.

In order to troubleshoot, you can check the logfile which you create in the Python script with the
use of a local manager.

Navigate to Applications, click Manage on the iox_web aplication, then select the Logs tab as
shown in the image.

	Build and Deploy a Docker IOx Package for the IR1101 ARM Architecture
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Configure
	Part 1. Build the IOx Package for IR1101
	1. Install and Prepare IOx Client on the Linux Host
	2. Install and Prepare the Docker Environment on the Linux Build Machine
	3. Install the QEMU User Emulation Packages
	4. Test if an aarch64/ARV64v8 Container Runs on x86 Linux Machine
	5. Prepare Files to Build the Docker Webserver Container
	6. Build the Docker Container
	 7. Build the IOx Package
	Part 2. Configure the IR1101 for IOx
	1. Enable the Webinterface, IOx and Local Manager
	2. Configure IOx Networking
	Part 3. Access Local Manager and Deploy the IOx Application

	Verify
	Troubleshoot

