
Troubleshoot with the IOS-XE Datapath
Packet Trace Feature

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Reference Topology
Packet Tracing in Use
Quick Start Guide
Enable Platform Conditional Debugs
Enable Packet Trace
Egress Condition Limitation with Packet Traces
Display the Packet Trace Results
FIA Trace
Display the Packet Trace Results
Check the FIA Associated with an Interface
Dump the Traced Packets
Drop Trace
Example Drop Trace Scenario
Inject and Punt Traces
IOSd Drop Tracing
IOSd Egress Path Tracing
LFTS packet tracing
Packet trace pattern matching based on User Defined Filter (ASR1000 platform only)
Packet Trace Examples
Packet Trace Example - NAT
Packet Trace Example - VPN
Performance Impact

Introduction

This document describes how to perform datapath packet tracing for Cisco IOS-XE® software via
the Packet Trace feature.

Prerequisites

Requirements

Cisco recommends that you have knowledge of this information:

The packet-trace feature is available in Cisco IOS-XE version 3.10 and later releases on the QFP
(Quantum Flow Processor) based routing platforms, which include the ASR1000, ISR4000,
ISR1000, Catalyst 1000, Catalyst 8000, CSR1000v, and Catalyst 8000v series routers. This
feature is not supported on the ASR900 series aggregation services routers or the Catalyst series
switches that run Cisco IOS-XE software.

Note: The packet-trace feature does not work on the dedicated management interface,
GigabitEthernet0 on the ASR1000 series routers, since packets forwarded on that interface are
not process by the QFP.

Components Used

The information in this document is based on these software and hardware versions:

Cisco IOS-XE Software Release 3.10S (15.3(3)S) and later●

ASR1000 series router●

The information in this document was created from the devices in a specific lab environment. All of
the devices used in this document started with a cleared (default) configuration. If your network is
live, ensure that you understand the potential impact of any command.

Background Information

In order to identify issues such as misconfiguration, capacity overload, or even the ordinary
software bug while troubleshooting, it is necessary to understand what happens to a packet within
a system. The Cisco IOS-XE Packet Trace feature addresses this need. It provides a field-safe
method that is used for accounting and in order to capture the per-packet process details based
on a class of user-defined conditions.

Reference Topology

This diagram illustrates the topology that is used for the examples that are described in this
document:

Packet Tracing in Use

In order to illustrate the use of the packet trace feature, the example that is used throughout this
section describes a trace of the Internet Control Message Protocol (ICMP) traffic from the local
workstation 172.16.10.2 (behind the ASR1K) to the remote host 172.16.20.2 in the ingress
direction on interface GigabitEthernet0/0/1 on the ASR1K.

You can trace packets on the ASR1K with these two steps:

Enable the platform conditional debugs in order to select the packets or traffic that you want
to trace on the ASR1K.

1.

Enable the platform packet trace with either the path-trace or Feature Invocation Array (FIA)
trace option.

2.

Quick Start Guide

Here is a quick start guide if you are already familiar with the contents of this document, and want
a section for a quick look at the CLI. These are only a few examples to illustrate the use of the
tool. Refer to the later sections that discuss the syntaxes in detail, and ensure you use the
configuration that is appropriate to your requirement.

Configure platform conditions:

debug platform condition ipv4 10.0.0.1/32 both --> matches in and out packets with source

or destination as 10.0.0.1/32

debug platform condition ipv4 access-list 198 egress --> (Ensure access-list 198 is

defined prior to configuring this command) - matches egress packets corresponding

to access-list 198

debug platform condition interface gig 0/0/0 ingress --> matches all ingress packets

on interface gig 0/0/0

debug platform condition mpls 10 1 ingress --> matches MPLS packets with top ingress

label 10

debug platform condition ingress --> matches all ingress packets on all interfaces

(use cautiously)

After a platform condition is configured, start platform conditions with this CLI command:

debug platform condition start

1.

Configure packet trace:

debug platform packet-trace packet 1024 -> basic path-trace, and automatically stops

tracing packets after 1024 packets. You can use "circular" option if needed debug platform

packet-trace packet 1024 fia-trace -> enables detailed fia trace, stops

tracing packets after 1024 packets debug platform packet-trace drop [code <dropcode>] ->

if you want to trace/capture only

packets that are dropped. Refer to Drop Trace section for more details.

2.

Note: In earlier Cisco IOS-XE 3.x releases, the command debug platform packet-trace
enable is also required to start the packet-trace feature. This is no longer required in Cisco IOS-
XE 16.x releases.

Enter this command in order to clear the trace buffer and reset packet-trace:

clear platform packet-trace statistics --> clear the packet trace buffer

The command to clear both platform conditions and the packet trace configuration is:

clear platform condition all --> clears both platform conditions and the packet trace

configuration

Show Commands

Verify the platform condition and packet trace configuration after you apply the previous
commands in order to ensure you have what you need.

show platform conditions --> shows the platform conditions configured

show platform packet-trace configuration --> shows the packet-trace configurations

show debugging --> this can show both platform conditions and platform packet-trace configured

Here are the commands to check the traced/captured packets:

show platform packet-trace statistics --> statistics of packets traced

show platform packet-trace summary --> summary of all the packets traced, with input and

output interfaces, processing result and reason. show platform packet-trace packet 12 -> Display

path trace of FIA trace details for the 12th packet in the trace buffer

Enable Platform Conditional Debugs

The Packet Trace feature relies on the conditional debug infrastructure in order to determine the
packets to be traced. The conditional debug infrastructure provides the ability to filter traffic based
on:

Protocol●

IP address and mask●

Access Control List (ACL)●

Interface ●

Traffic direction (ingress or egress)●

These conditions define where and when the filters are applied to a packet.

For the traffic that is used in this example, enable platform conditional debugs in the ingress
direction for ICMP packets from 172.16.10.2 to 172.16.20.2. In other words, select the traffic that
you want to trace. There are various options that you can use in order to select this traffic.

ASR1000#debug platform condition ?

egress Egress only debug

feature For a specific feature

ingress Ingress only debug

interface Set interface for conditional debug

ipv4 Debug IPv4 conditions

ipv6 Debug IPv6 conditions

start Start conditional debug

stop Stop conditional debug

In this example, an access-list is used in order to define the condition, as shown here:

ASR1000#show access-list 150

Extended IP access list 150

10 permit icmp host 172.16.10.2 host 172.16.20.2

ASR1000#debug platform condition interface gig 0/0/1 ipv4

 access-list 150 ingress

In order to begin conditional debugging, enter this command:

ASR1000#debug platform condition start

Note: In order to stop or disable the conditional debugging infrastructure, enter the debug
platform condition stop command.

In order to view the conditional debug filters that are configured, enter this command:

ASR1000#show platform conditions

Conditional Debug Global State: Start

Conditions Direction

--|---------

GigabitEthernet0/0/1 & IPV4 ACL [150] ingress

Feature Condition Format Value

-----------------------|-----------------------|--------------------------------

ASR1000#

In summary, this configuration has been applied thus far:

access-list 150 permit icmp host 172.16.10.2 host 172.16.20.2

debug platform condition interface gig 0/0/1 ipv4 access-list 150 ingress

debug platform condition start

Enable Packet Trace

Note: This section describes the packet and copy options in detail, and the other options are
described later in the document.

Packet traces are supported on both the physical and the logical interfaces, such as Tunnel or
Virtual-access interfaces.

Here is the packet trace CLI syntax:

ASR1000#debug platform packet-trace ?

copy Copy packet data

drop Trace drops only

inject Trace injects only

packet Packet count

punt Trace punts only

debug platform packet-trace packet <pkt-size/pkt-num> [fia-trace | summary-only]

 [circular] [data-size <data-size>]

Here are descriptions for the keywords of this command:

pkt-num - The Packet Number specifies the maximum number of packets that are maintained
at one time.

●

summary-only - This specifies that only the summary data is captured. The default is to
capture both summary data and feature-path data.

●

fia-trace - This optionally performs an FIA trace in addition to the path data information.●

data-size - This allows you to specify the size of the path data buffer, from 2,048 to 16,384
bytes. The default is 2,048 bytes.

●

debug platform packet-trace copy packet {in | out | both} [L2 | L3 | L4]

 [size <num-bytes>]

Here are descriptions for the keywords of this command:

in/out - This specifies the direction of the packet flow to be copied - ingress and/or egress.●

L2/L3/L4 - This allows you to specify the location that the copy of the packet starts. Layer 2
(L2) is the default location.

●

size - This allows you to specify the maximum number of octets that are copied. The default is
64 octets.

●

For this example, this is the command used in order to enable packet trace for the traffic that is
selected with the conditional debug infrastructure:

ASR1000#debug platform packet-trace packet 16

In order to review the packet trace configuration, enter this command:

ASR1000#show platform packet-trace configuration

debug platform packet-trace packet 16 data-size 2048

You can also enter the show debugging command in order to view both the platform conditional
debugs and the packet trace configurations:

ASR1000# show debugging

IOSXE Conditional Debug Configs:

Conditional Debug Global State: Start

Conditions

Direction

--|---------

GigabitEthernet0/0/1 & IPV4 ACL [150] ingress

...

IOSXE Packet Tracing Configs:

Feature Condition Format Value

-----------------------|-----------------------|--------------------------------

Feature Type Submode Level

-------|--------------|--|----------

IOSXE Packet Tracing Configs:

debug platform packet-trace packet 16 data-size 2048

Note: Enter the clear platform condition all command in order to clear all of the platform debug
conditions and the packet trace configurations and data.

In summary, this configuration data has been used thus far in order to enable packet-trace:

debug platform packet-trace packet 16

Egress Condition Limitation with Packet Traces

The conditions define the conditional filters and when they are applied to a packet. For example,
debug platform condition interface g0/0/0 egress means that a packet is identified as a match
when it reaches the output FIA on interface g0/0/0, so any packet processing that takes place from
ingress until that point is missed.

Note: Cisco highly recommends that you use ingress conditions for packet traces in order to
get the most complete and meaningful data possible. The egress conditions can be used, but
be aware of the limitations.

Display the Packet Trace Results

Note: This section assumes that path-trace is enabled.

Three specific levels of inspection are provided by the packet trace:

Accounting●

Per-packet summary●

Per-packet path data●

When five ICMP request packets are sent from 172.16.10.2 to 172.16.20.2, these commands can
be used in order to view the packet trace results:

ASR1000#show platform packet-trace statistics

Packets Traced: 5

Ingress 5

Inject 0

Forward 5

Punt 0

Drop 0

Consume 0

ASR1000#show platform packet-trace summary

Pkt Input Output State Reason

0 Gi0/0/1 Gi0/0/0 FWD

1 Gi0/0/1 Gi0/0/0 FWD

2 Gi0/0/1 Gi0/0/0 FWD

3 Gi0/0/1 Gi0/0/0 FWD

4 Gi0/0/1 Gi0/0/0 FWD

ASR1000#show platform packet-trace packet 0

Packet: 0 CBUG ID: 4

Summary

Input : GigabitEthernet0/0/1

Output : GigabitEthernet0/0/0

State : FWD

Timestamp

 Start : 1819281992118 ns (05/17/2014 06:42:01.207240 UTC)

 Stop : 1819282095121 ns (05/17/2014 06:42:01.207343 UTC)

Path Trace

Feature: IPV4

Source : 172.16.10.2

Destination : 172.16.20.2

Protocol : 1 (ICMP)

ASR1000#

Note: The third command provides an example that illustrates how to view the packet trace for
each packet. In this example, the first packet traced is shown.

From these outputs, you can see that five packets are traced and that you can view the input
interface, the output interface, the state, and the path trace.

State Remark
FWD The packet is scheduled/queued for delivery, to be forwarded to next hop via an egress interface.
PUNT The packet is punted from the Forwarding Processor (FP) to the Route Processor (RP) (control plane).

DROP
The packet is dropped on the FP. Run FIA trace, use global drop counters, or use datapath debugs in
order to find more details for drop reasons.

CONS
The packet is consumed during a packet process, such as during the ICMP ping request or the crypto
packets.

The ingress and inject counters in the packet trace statistics output correspond to the packets
that enter via an external interface and packets that are seen as injected from the control plane,
respectively.

FIA Trace

The FIA holds the list of features that are executed sequentially by the Packet Processor Engines
(PPE) in the Quantum Flow Processor (QFP) when a packet is forwarded either ingress or egress.
The features are based on the configuration data that is applied on the machine. Thus, a FIA trace
helps to understand the flow of the packet through the system as the packet is processed.

You must apply this configuration data in order to enable packet trace with FIA:

ASR1000#debug platform packet-trace packet 16 fia-trace

Display the Packet Trace Results

Note: This section assumes that FIA trace is enabled. Also, when you add or modify the current
packet trace commands, the buffered packet trace details are cleared, so you must send some
traffic again so that you can trace it.

Send five ICMP packets from 172.16.10.2 to 172.16.20.2 after you enter the command that is
used in order to enable the FIA trace, as described in the previous section.

ASR1000#show platform packet-trace summary

Pkt Input Output State Reason

0 Gi0/0/1 Gi0/0/0 FWD

1 Gi0/0/1 Gi0/0/0 FWD

2 Gi0/0/1 Gi0/0/0 FWD

3 Gi0/0/1 Gi0/0/0 FWD

4 Gi0/0/1 Gi0/0/0 FWD

ASR1000#show platform packet-trace packet 0

Packet: 0 CBUG ID: 9

Summary

 Input : GigabitEthernet0/0/1

 Output : GigabitEthernet0/0/0

 State : FWD

 Timestamp

 Start : 1819281992118 ns (05/17/2014 06:42:01.207240 UTC)

 Stop : 1819282095121 ns (05/17/2014 06:42:01.207343 UTC)

Path Trace

 Feature: IPV4

 Source : 172.16.10.2

 Destination : 172.16.20.2

 Protocol : 1 (ICMP)

 Feature: FIA_TRACE

 Entry : 0x8059dbe8 - DEBUG_COND_INPUT_PKT

 Timestamp : 3685243309297

 Feature: FIA_TRACE

 Entry : 0x82011a00 - IPV4_INPUT_DST_LOOKUP_CONSUME

 Timestamp : 3685243311450

 Feature: FIA_TRACE

 Entry : 0x82000170 - IPV4_INPUT_FOR_US_MARTIAN

 Timestamp : 3685243312427

 Feature: FIA_TRACE

 Entry : 0x82004b68 - IPV4_OUTPUT_LOOKUP_PROCESS

 Timestamp : 3685243313230

 Feature: FIA_TRACE

 Entry : 0x8034f210 - IPV4_INPUT_IPOPTIONS_PROCESS

 Timestamp : 3685243315033

 Feature: FIA_TRACE

 Entry : 0x82013200 - IPV4_OUTPUT_GOTO_OUTPUT_FEATURE

 Timestamp : 3685243315787

 Feature: FIA_TRACE

 Entry : 0x80321450 - IPV4_VFR_REFRAG

 Timestamp : 3685243316980

 Feature: FIA_TRACE

 Entry : 0x82014700 - IPV6_INPUT_L2_REWRITE

 Timestamp : 3685243317713

 Feature: FIA_TRACE

 Entry : 0x82000080 - IPV4_OUTPUT_FRAG

 Timestamp : 3685243319223

 Feature: FIA_TRACE

 Entry : 0x8200e500 - IPV4_OUTPUT_DROP_POLICY

 Timestamp : 3685243319950

 Feature: FIA_TRACE

 Entry : 0x8059aff4 - PACTRAC_OUTPUT_STATS

 Timestamp : 3685243323603

 Feature: FIA_TRACE

 Entry : 0x82016100 - MARMOT_SPA_D_TRANSMIT_PKT

 Timestamp : 3685243326183

ASR1000#

Check the FIA Associated with an Interface

When you enable the platform conditional debugs, conditional debugging is added to the FIA as a
feature. Based on the feature order of processing on the interface, the conditional filter needs to
be set accordingly, for example, whether the pre- or post-NAT address must be used in the
conditional filter.

This output shows the order of the features in the FIA for the platform conditional debugging that is
enabled in the ingress direction:

ASR1000#show platform hardware qfp active interface if-name GigabitEthernet 0/0/1

General interface information

Interface Name: GigabitEthernet0/0/1

Interface state: VALID

Platform interface handle: 10

QFP interface handle: 8

Rx uidb: 1021

Tx uidb: 131064

Channel: 16

Interface Relationships

BGPPA/QPPB interface configuration information

Ingress: BGPPA/QPPB not configured. flags: 0000

Egress : BGPPA not configured. flags: 0000

ipv4_input enabled.

ipv4_output enabled.

layer2_input enabled.

layer2_output enabled.

ess_ac_input enabled.

Features Bound to Interface:

2 GIC FIA state

48 PUNT INJECT DB

39 SPA/Marmot server

40 ethernet

1 IFM

31 icmp_svr

33 ipfrag_svr

34 ipreass_svr

36 ipvfr_svr

37 ipv6vfr_svr

12 CPP IPSEC

Protocol 0 - ipv4_input

FIA handle - CP:0x108d99cc DP:0x8070f400

IPV4_INPUT_DST_LOOKUP_ISSUE (M)

IPV4_INPUT_ARL_SANITY (M)

 CBUG_INPUT_FIA

 DEBUG_COND_INPUT_PKT

IPV4_INPUT_DST_LOOKUP_CONSUME (M)

IPV4_INPUT_FOR_US_MARTIAN (M)

IPV4_INPUT_IPSEC_CLASSIFY

IPV4_INPUT_IPSEC_COPROC_PROCESS

IPV4_INPUT_IPSEC_RERUN_JUMP

IPV4_INPUT_LOOKUP_PROCESS (M)

IPV4_INPUT_IPOPTIONS_PROCESS (M)

IPV4_INPUT_GOTO_OUTPUT_FEATURE (M)

Protocol 1 - ipv4_output

FIA handle - CP:0x108d9a34 DP:0x8070eb00

IPV4_OUTPUT_VFR

MC_OUTPUT_GEN_RECYCLE (D)

IPV4_VFR_REFRAG (M)

IPV4_OUTPUT_IPSEC_CLASSIFY

IPV4_OUTPUT_IPSEC_COPROC_PROCESS

IPV4_OUTPUT_IPSEC_RERUN_JUMP

IPV4_OUTPUT_L2_REWRITE (M)

IPV4_OUTPUT_FRAG (M)

IPV4_OUTPUT_DROP_POLICY (M)

PACTRAC_OUTPUT_STATS

MARMOT_SPA_D_TRANSMIT_PKT

DEF_IF_DROP_FIA (M)

Protocol 8 - layer2_input

FIA handle - CP:0x108d9bd4 DP:0x8070c700

LAYER2_INPUT_SIA (M)

CBUG_INPUT_FIA

DEBUG_COND_INPUT_PKT

LAYER2_INPUT_LOOKUP_PROCESS (M)

LAYER2_INPUT_GOTO_OUTPUT_FEATURE (M)

Protocol 9 - layer2_output

FIA handle - CP:0x108d9658 DP:0x80714080

LAYER2_OUTPUT_SERVICEWIRE (M)

LAYER2_OUTPUT_DROP_POLICY (M)

PACTRAC_OUTPUT_STATS

MARMOT_SPA_D_TRANSMIT_PKT

DEF_IF_DROP_FIA (M)

Protocol 14 - ess_ac_input

FIA handle - CP:0x108d9ba0 DP:0x8070cb80

PPPOE_GET_SESSION

ESS_ENTER_SWITCHING

PPPOE_HANDLE_UNCLASSIFIED_SESSION

DEF_IF_DROP_FIA (M)

QfpEth Physical Information

DPS Addr: 0x11215eb8

Submap Table Addr: 0x00000000

VLAN Ethertype: 0x8100

QOS Mode: Per Link

ASR1000#

Note: The CBUG_INPUT_FIA and the DEBUG_COND_INPUT_PKT correspond to the
conditional debug features that are configured on the router.

Dump the Traced Packets

You can copy and dump the packets as they are traced, as this section describes. This example
shows how to copy a maximum of 2,048 bytes of the packets in the ingress direction (172.16.10.2
to 172.16.20.2).

Here is the additional command that is needed:

ASR1000#debug platform packet-trace copy packet input size 2048

Note: The size of the packet that is copied is in the range of 16 to 2,048 bytes.

Enter this command in order to dump the copied packets:

ASR1000#show platform packet-trace packet 0

Packet: 0 CBUG ID: 14

Summary

Input : GigabitEthernet0/0/1

Output : GigabitEthernet0/0/0

State : FWD

Timestamp

 Start : 1819281992118 ns (05/17/2014 06:40:01.207240 UTC)

 Stop : 1819282095121 ns (05/17/2014 06:40:01.207343 UTC)

Path Trace

Feature: IPV4

Source : 172.16.10.2

Destination : 172.16.20.2

Protocol : 1 (ICMP)

Feature: FIA_TRACE

Entry : 0x8059dbe8 - DEBUG_COND_INPUT_PKT

Timestamp : 4458180580929

<some content excluded>

Feature: FIA_TRACE

Entry : 0x82016100 - MARMOT_SPA_D_TRANSMIT_PKT

Timestamp : 4458180593896

Packet Copy In

a4934c8e 33020023 33231379 08004500 00640160 0000ff01 5f16ac10 0201ac10

01010800 1fd40024 00000000 000184d0 d980abcd abcdabcd abcdabcd abcdabcd

abcdabcd abcdabcd abcdabcd abcdabcd abcdabcd abcdabcd abcdabcd abcdabcd

abcdabcd abcdabcd abcdabcd abcdabcd abcd

ASR1000#

Drop Trace

Drop trace is available in Cisco IOS-XE Software Release 3.11 and later. It enables packet trace
only for dropped packets. Here are some highlights of the feature:

It optionally allows you to specify the retention of packets for a specific drop code.●

It can be used without global or interface conditions in order to capture drop events.●

A drop event capture means that only the drop itself is traced, not the life of the packet.
However, it still allows you to capture summary data, tuple data, and the packet in order to
help refine conditions or provide clues to the next debug step.

●

Here is the command syntax that is used in order to enable drop-type packet traces:

debug platform packet-trace drop [code <code-num>]

The drop code is the same as the drop ID, as reported in the show platform hardware qfp active
statistics drop detail command output:

ASR1000#show platform hardware qfp active statistics drop detail

--

 ID Global Drop Stats Packets Octets

--

 60 IpTtlExceeded 3 126

 8 Ipv4Acl 32 3432

Example Drop Trace Scenario

Apply this ACL on the Gig 0/0/0 interface of the ASR1K in order to drop traffic from 172.16.10.2 to
172.16.20.2:

access-list 199 deny ip host 172.16.10.2 host 172.16.20.2

access-list 199 permit ip any any

interface Gig 0/0/0

ip access-group 199 out

With the ACL in place, which drops the traffic from the local host to the remote host, apply this
drop-trace configuration:

debug platform condition interface Gig 0/0/1 ingress

debug platform condition start

debug platform packet-trace packet 1024 fia-trace

debug platform packet-trace drop

Send five ICMP request packets from 172.16.10.2 to 172.16.20.2. The drop trace captures these
packets that are dropped by the ACL, as shown:

ASR1000#show platform packet-trace statistics

Packets Summary

Matched 5

Traced 5

Packets Received

Ingress 5

Inject 0

Packets Processed

Forward 0

Punt 0

Drop 5

Count Code Cause

5 8 Ipv4Acl

Consume 0

ASR1000#show platform packet-trace summary

Pkt Input Output State Reason

0 Gi0/0/1 Gi0/0/0 DROP 8 (Ipv4Acl)

1 Gi0/0/1 Gi0/0/0 DROP 8 (Ipv4Acl)

2 Gi0/0/1 Gi0/0/0 DROP 8 (Ipv4Acl)

3 Gi0/0/1 Gi0/0/0 DROP 8 (Ipv4Acl)

4 Gi0/0/1 Gi0/0/0 DROP 8 (Ipv4Acl)

ASR1K#debug platform condition stop

ASR1K#show platform packet-trace packet 0

Packet: 0 CBUG ID: 140

Summary

Input : GigabitEthernet0/0/1

Output : GigabitEthernet0/0/0

State : DROP 8 (Ipv4Acl)

Timestamp

Start : 1819281992118 ns (05/17/2014 06:42:01.207240 UTC)

Stop : 1819282095121 ns (05/17/2014 06:42:01.207343 UTC)

Path Trace

Feature: IPV4

Source : 172.16.10.2

Destination : 172.16.20.2

Protocol : 1 (ICMP)

Feature: FIA_TRACE

Entry : 0x806c7eac - DEBUG_COND_INPUT_PKT

Lapsed time: 1031 ns

Feature: FIA_TRACE

Entry : 0x82011c00 - IPV4_INPUT_DST_LOOKUP_CONSUME

Lapsed time: 657 ns

Feature: FIA_TRACE

Entry : 0x806a2698 - IPV4_INPUT_ACL

Lapsed time: 2773 ns

Feature: FIA_TRACE

Entry : 0x82000170 - IPV4_INPUT_FOR_US_MARTIAN

Lapsed time: 1013 ns

Feature: FIA_TRACE

Entry : 0x82004500 - IPV4_OUTPUT_LOOKUP_PROCESS

Lapsed time: 2951 ns

Feature: FIA_TRACE

Entry : 0x8041771c - IPV4_INPUT_IPOPTIONS_PROCESS

Lapsed time: 373 ns

Feature: FIA_TRACE

Entry : 0x82013400 - MPLS_INPUT_GOTO_OUTPUT_FEATURE

Lapsed time: 2097 ns

Feature: FIA_TRACE

Entry : 0x803c60b8 - IPV4_MC_OUTPUT_VFR_REFRAG

Lapsed time: 373 ns

Feature: FIA_TRACE

Entry : 0x806db148 - OUTPUT_DROP

Lapsed time: 1297 ns

Feature: FIA_TRACE

Entry : 0x806a0c98 - IPV4_OUTPUT_ACL

Lapsed time: 78382 ns

ASR1000#

Inject and Punt Traces

The inject and punt packet trace feature was added in Cisco IOS-XE Software Release 3.12 and
later in order to trace punt (packets that are received on the FP that are punted to the control
plane) and inject (packets that are injected to the FP from the control plane) packets.

Note: The punt trace can work without the global or interface conditions, just like a drop trace.
However, the conditions must be defined for an inject trace to work.

Here is an example of a punt and inject packet trace when you ping from the ASR1K to an adjacent
router:

 ASR1000#debug platform condition ipv4 172.16.10.2/32 both

ASR1000#debug platform condition start

ASR1000#debug platform packet-trace punt

ASR1000#debug platform packet-trace inject

ASR1000#debug platform packet-trace packet 16

ASR1000#

ASR1000#ping 172.16.10.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.16.10.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 14/14/15 ms

ASR1000#

Now you can verify the punt and inject trace results:

ASR1000#show platform packet-trace summary

Pkt Input Output State Reason

0 INJ.2 Gi0/0/1 FWD

1 Gi0/0/1 internal0/0/rp:0 PUNT 11 (For-us data)

2 INJ.2 Gi0/0/1 FWD

3 Gi0/0/1 internal0/0/rp:0 PUNT 11 (For-us data)

4 INJ.2 Gi0/0/1 FWD

5 Gi0/0/1 internal0/0/rp:0 PUNT 11 (For-us data)

6 INJ.2 Gi0/0/1 FWD

7 Gi0/0/1 internal0/0/rp:0 PUNT 11 (For-us data)

8 INJ.2 Gi0/0/1 FWD

9 Gi0/0/1 internal0/0/rp:0 PUNT 11 (For-us data)

ASR1000#show platform packet-trace packet 0

Packet: 0 CBUG ID: 120

Summary

Input : INJ.2

Output : GigabitEthernet0/0/1

State : FWD

Timestamp

Start : 115612780360228 ns (05/29/2014 15:02:55.467987 UTC)

Stop : 115612780380931 ns (05/29/2014 15:02:55.468008 UTC)

Path Trace

Feature: IPV4

Source : 172.16.10.1

Destination : 172.16.10.2

Protocol : 1 (ICMP)

ASR1000#

ASR1000#show platform packet-trace packet 1

Packet: 1 CBUG ID: 121

Summary

Input : GigabitEthernet0/0/1

Output : internal0/0/rp:0

State : PUNT 11 (For-us data)

Timestamp

Start : 115612781060418 ns (05/29/2014 15:02:55.468687 UTC)

Stop : 115612781120041 ns (05/29/2014 15:02:55.468747 UTC)

Path Trace

Feature: IPV4

Source : 172.16.10.2

Destination : 172.16.10.1

Protocol : 1 (ICMP)

Packet Trace Enhancement with IOSd and LFTS Punt/Inject Trace and UDF Matching (New
In 17.3.1)

The packet trace feature is further enhanced to provide additional trace information for packets
originated or destined to IOSd or other BinOS processes in Cisco IOS-XE release 17.3.1.

IOSd Drop Tracing

With this enhancement, packet tracing is extended into IOSd, and can provide information about
any packet drops inside of IOSd, which are usually reported in the show ip traffic output. There is
no additional configuration required to enable IOSd drop tracing. Here is an example of a UDP
packet dropped by IOSd due to bad checksum error:

Router#debug platform condition ipv4 10.118.74.53/32 both

Router#debug platform condition start

Router#debug platform packet-trace packet 200

Packet count rounded up from 200 to 256

Router#

Router#show plat pack pa 0

Packet: 0 CBUG ID: 674

Summary

 Input : GigabitEthernet1

 Output : internal0/0/rp:0

 State : PUNT 11 (For-us data)

 Timestamp

 Start : 17756544435656 ns (06/29/2020 18:19:17.326313 UTC)

 Stop : 17756544469451 ns (06/29/2020 18:19:17.326346 UTC)

Path Trace

 Feature: IPV4(Input)

 Input : GigabitEthernet1

 Output : <unknown>

 Source : 10.118.74.53

 Destination : 172.18.124.38

 Protocol : 17 (UDP)

 SrcPort : 2640

 DstPort : 500

IOSd Path Flow: Packet: 0 CBUG ID: 674

 Feature: INFRA

 Pkt Direction: IN

 Packet Rcvd From DATAPLANE

 Feature: IP

 Pkt Direction: IN

 Packet Enqueued in IP layer

 Source : 10.118.74.53

 Destination : 172.18.124.38

 Interface : GigabitEthernet1

 Feature: IP

 Pkt Direction: IN

 FORWARDED To transport layer

 Source : 10.118.74.53

 Destination : 172.18.124.38

 Interface : GigabitEthernet1

 Feature: UDP

 Pkt Direction: IN

 DROPPED

UDP: Checksum error: dropping

Source : 10.118.74.53(2640)

Destination : 172.18.124.38(500)

IOSd Egress Path Tracing

Packet trace is enhanced to show the path trace and protocol processing information as the
packet is originated from IOSd and sent in the egress direction towards the network. There is no
additional configuration required to capture the IOSd egress path trace information. Here is an
example of egress path tracing for an SSH packet egressing the router:

Router#show platform packet-trace packet 2

Packet: 2 CBUG ID: 2

IOSd Path Flow:

 Feature: TCP

 Pkt Direction: OUTtcp0: O SYNRCVD 172.18.124.38:22 172.18.124.55:52774 seq 3052140910 OPTS 4

ACK 2346709419 SYN WIN 4128

 Feature: TCP

 Pkt Direction: OUT

 FORWARDED

TCP: Connection is in SYNRCVD state

ACK : 2346709419

SEQ : 3052140910

Source : 172.18.124.38(22)

Destination : 172.18.124.55(52774)

 Feature: IP

 Pkt Direction: OUTRoute out the generated packet.srcaddr: 172.18.124.38, dstaddr:

172.18.124.55

 Feature: IP

 Pkt Direction: OUTInject and forward successful srcaddr: 172.18.124.38, dstaddr: 172.18.124.55

 Feature: TCP

 Pkt Direction: OUTtcp0: O SYNRCVD 172.18.124.38:22 172.18.124.55:52774 seq 3052140910 OPTS 4

ACK 2346709419 SYN WIN 4128

Summary

 Input : INJ.2

 Output : GigabitEthernet1

 State : FWD

 Timestamp

 Start : 490928006866 ns (06/29/2020 13:31:30.807879 UTC)

 Stop : 490928038567 ns (06/29/2020 13:31:30.807911 UTC)

Path Trace

 Feature: IPV4(Input)

 Input : internal0/0/rp:0

 Output : <unknown>

 Source : 172.18.124.38

 Destination : 172.18.124.55

 Protocol : 6 (TCP)

 SrcPort : 22

 DstPort : 52774

 Feature: IPSec

 Result : IPSEC_RESULT_DENY

 Action : SEND_CLEAR

 SA Handle : 0

 Peer Addr : 172.18.124.55

 Local Addr: 172.18.124.38

LFTS packet tracing

LFTS (Linux Forwarding Transport Service) is a transport mechanism to forward packets punted
from the CPP into applications other than IOSd. LFTS packet tracing enhancement added tracing
information for such packets in the path trace output. There is no additional configuration required
to obtain the LFTS tracing information. Here is an example output of LFTS tracing for punted
packet to the NETCONF application:

Router#show plat packet-trace pac 0

Packet: 0 CBUG ID: 461

Summary

 Input : GigabitEthernet1

 Output : internal0/0/rp:0

 State : PUNT 11 (For-us data)

 Timestamp

 Start : 647999618975 ns (06/30/2020 02:18:06.752776 UTC)

 Stop : 647999649168 ns (06/30/2020 02:18:06.752806 UTC)

Path Trace

 Feature: IPV4(Input)

 Input : GigabitEthernet1

 Output : <unknown>

 Source : 10.118.74.53

 Destination : 172.18.124.38

 Protocol : 6 (TCP)

 SrcPort : 65365

 DstPort : 830

LFTS Path Flow: Packet: 0 CBUG ID: 461

 Feature: LFTS

 Pkt Direction: IN

 Punt Cause : 11

 subCause : 0

Packet trace pattern matching based on User Defined Filter (ASR1000 platform only)

In Cisco IOS-XE release17.3.1, a new packet matching mechanism is also added to the ASR1000
product families to match on arbitrary field in a packet based on the User Defined Filter (UDF)
infrastructure. This allows flexible packet matching based on fields that is not part of the standard
L2/L3/L4 header structure. The next example shows a UDF definition that matches on 2 bytes of
user defined pattern of 0x4D2 that starts from an offset of 26 bytes from the L3 outer protocol
header.

udf grekey header outer l3 26 2

ip access-list extended match-grekey

 10 permit ip any any udf grekey 0x4D2 0xFFFF

debug plat condition ipv4 access-list match-grekey both

debug plat condition start

debug plat packet-trace pack 100

Packet Trace Examples

This section provides some examples where the packet trace feature is useful for troubleshooting
purposes.

Packet Trace Example - NAT

With this example, an interface source Network Address Translation (NAT) is configured on the
WAN interface of an ASR1K (Gig0/0/0) for the local subnet (172.16.10.0/24).

Here is the platform condition and packet trace configuration that is used in order to trace the
traffic from 172.16.10.2 to 172.16.20.2, which becomes translated (NAT) on the Gig0/0/0 interface:

debug platform condition interface Gig 0/0/1 ingress

debug platform condition start

debug platform packet-trace packet 1024 fia-trace

When five ICMP packets are sent from 172.16.10.2 to 172.16.20.2 with an interface source NAT
configuration, these are the packet trace results:

ASR1000#show platform packet-trace summary

Pkt Input Output State Reason

0 Gi0/0/1 Gi0/0/0 FWD

1 Gi0/0/1 Gi0/0/0 FWD

2 Gi0/0/1 Gi0/0/0 FWD

3 Gi0/0/1 Gi0/0/0 FWD

4 Gi0/0/1 Gi0/0/0 FWD

ASR1000#show platform packet-trace statistics

Packets Summary

Matched 5

Traced 5

Packets Received

Ingress 5

Inject 0

Packets Processed

Forward 5

Punt 0

Drop 0

Consume 0

ASR1000#show platform packet-trace packet 0

Packet: 0 CBUG ID: 146

Summary

Input : GigabitEthernet0/0/1

Output : GigabitEthernet0/0/0

State : FWD

Timestamp

Start : 3010217805313 ns (05/17/2014 07:01:52.227836 UTC)

Stop : 3010217892847 ns (05/17/2014 07:01:52.227923 UTC)

Path Trace

Feature: IPV4

Source : 172.16.10.2

Destination : 172.16.20.2

Protocol : 1 (ICMP)

Feature: FIA_TRACE

Entry : 0x806c7eac - DEBUG_COND_INPUT_PKT

Lapsed time: 1031 ns

Feature: FIA_TRACE

Entry : 0x82011c00 - IPV4_INPUT_DST_LOOKUP_CONSUME

Lapsed time: 462 ns

Feature: FIA_TRACE

Entry : 0x82000170 - IPV4_INPUT_FOR_US_MARTIAN

Lapsed time: 355 ns

Feature: FIA_TRACE

Entry : 0x803c6af4 - IPV4_INPUT_VFR

Lapsed time: 266 ns

Feature: FIA_TRACE

Entry : 0x82004500 - IPV4_OUTPUT_LOOKUP_PROCESS

Lapsed time: 942 ns

Feature: FIA_TRACE

Entry : 0x8041771c - IPV4_INPUT_IPOPTIONS_PROCESS

Lapsed time: 88 ns

Feature: FIA_TRACE

Entry : 0x82013400 - MPLS_INPUT_GOTO_OUTPUT_FEATURE

Lapsed time: 568 ns

Feature: FIA_TRACE

Entry : 0x803c6900 - IPV4_OUTPUT_VFR

Lapsed time: 266 ns

Feature: NAT

Direction : IN to OUT

Action : Translate Source

Old Address : 172.16.10.2 00028

New Address : 192.168.10.1 00002

Feature: FIA_TRACE

Entry : 0x8031c248 - IPV4_NAT_OUTPUT_FIA

Lapsed time: 55697 ns

Feature: FIA_TRACE

Entry : 0x801424f8 - IPV4_OUTPUT_THREAT_DEFENSE

Lapsed time: 693 ns

Feature: FIA_TRACE

Entry : 0x803c60b8 - IPV4_MC_OUTPUT_VFR_REFRAG

Lapsed time: 88 ns

Feature: FIA_TRACE

Entry : 0x82014900 - IPV6_INPUT_L2_REWRITE

Lapsed time: 444 ns

Feature: FIA_TRACE

Entry : 0x82000080 - IPV4_OUTPUT_FRAG

Lapsed time: 88 ns

Feature: FIA_TRACE

Entry : 0x8200e600 - IPV4_OUTPUT_DROP_POLICY

Lapsed time: 1457 ns

Feature: FIA_TRACE

Entry : 0x82017980 - MARMOT_SPA_D_TRANSMIT_PKT

Lapsed time: 7431 ns

ASR1000#

Packet Trace Example - VPN

With this example, a site-to-site VPN tunnel is used between the ASR1K and the Cisco IOS router
in order to protect the traffic that flows between 172.16.10.0/24 and 172.16.20.0/24 (local and
remote subnets).

Here is the platform condition and packet trace configuration that is used in order to trace the VPN
traffic that flows from 172.16.10.2 to 172.16.20.2 on the Gig 0/0/1 interface:

debug platform condition interface Gig 0/0/1 ingress

debug platform condition start

debug platform packet-trace packet 1024 fia-trace

When five ICMP packets are sent from 172.16.10.2 to 172.16.20.2, which are encrypted by the
VPN tunnel between the ASR1K and the Cisco IOS router in this example, these are the packet
trace outputs:

Note: The packet traces show the QFP Security Association (SA) handle in the trace that is
used in order to encrypt the packet, which is useful when you troubleshoot IPsec VPN issues in
order to verify that the correct SA is used for encryption.

ASR1000#show platform packet-trace summary

Pkt Input Output State Reason

0 Gi0/0/1 Gi0/0/0 FWD

1 Gi0/0/1 Gi0/0/0 FWD

2 Gi0/0/1 Gi0/0/0 FWD

3 Gi0/0/1 Gi0/0/0 FWD

4 Gi0/0/1 Gi0/0/0 FWD

ASR1000#show platform packet-trace packet 0

Packet: 0 CBUG ID: 211

Summary

Input : GigabitEthernet0/0/1

Output : GigabitEthernet0/0/0

State : FWD

Timestamp

Start : 4636921551459 ns (05/17/2014 07:28:59.211375 UTC)

Stop : 4636921668739 ns (05/17/2014 07:28:59.211493 UTC)

Path Trace

Feature: IPV4

Source : 172.16.10.2

Destination : 172.16.20.2

Protocol : 1 (ICMP)

Feature: FIA_TRACE

Entry : 0x806c7eac - DEBUG_COND_INPUT_PKT

Lapsed time: 622 ns

Feature: FIA_TRACE

Entry : 0x82011c00 - IPV4_INPUT_DST_LOOKUP_CONSUME

Lapsed time: 462 ns

Feature: FIA_TRACE

Entry : 0x82000170 - IPV4_INPUT_FOR_US_MARTIAN

Lapsed time: 320 ns

Feature: FIA_TRACE

Entry : 0x82004500 - IPV4_OUTPUT_LOOKUP_PROCESS

Lapsed time: 1102 ns

Feature: FIA_TRACE

Entry : 0x8041771c - IPV4_INPUT_IPOPTIONS_PROCESS

Lapsed time: 88 ns

Feature: FIA_TRACE

Entry : 0x82013400 - MPLS_INPUT_GOTO_OUTPUT_FEATURE

Lapsed time: 586 ns

Feature: FIA_TRACE

Entry : 0x803c6900 - IPV4_OUTPUT_VFR

Lapsed time: 266 ns

Feature: FIA_TRACE

Entry : 0x80757914 - MC_OUTPUT_GEN_RECYCLE

Lapsed time: 195 ns

Feature: FIA_TRACE

Entry : 0x803c60b8 - IPV4_MC_OUTPUT_VFR_REFRAG

Lapsed time: 88 ns

Feature: IPSec

Result : IPSEC_RESULT_SA

Action : ENCRYPT

SA Handle : 6

Peer Addr : 192.168.20.1

Local Addr: 192.168.10.1

Feature: FIA_TRACE

Entry : 0x8043caec - IPV4_OUTPUT_IPSEC_CLASSIFY

Lapsed time: 9528 ns

Feature: FIA_TRACE

Entry : 0x8043915c - IPV4_OUTPUT_IPSEC_DOUBLE_ACL

Lapsed time: 355 ns

Feature: FIA_TRACE

Entry : 0x8043b45c - IPV4_IPSEC_FEATURE_RETURN

Lapsed time: 657 ns

Feature: FIA_TRACE

Entry : 0x8043ae28 - IPV4_OUTPUT_IPSEC_RERUN_JUMP

Lapsed time: 888 ns

Feature: FIA_TRACE

Entry : 0x80436f10 - IPV4_OUTPUT_IPSEC_POST_PROCESS

Lapsed time: 2186 ns

Feature: FIA_TRACE

Entry : 0x8043b45c - IPV4_IPSEC_FEATURE_RETURN

Lapsed time: 675 ns

Feature: FIA_TRACE

Entry : 0x82014900 - IPV6_INPUT_L2_REWRITE

Lapsed time: 1902 ns

Feature: FIA_TRACE

Entry : 0x82000080 - IPV4_OUTPUT_FRAG

Lapsed time: 71 ns

Feature: FIA_TRACE

Entry : 0x8200e600 - IPV4_OUTPUT_DROP_POLICY

Lapsed time: 1582 ns

Feature: FIA_TRACE

Entry : 0x82017980 - MARMOT_SPA_D_TRANSMIT_PKT

Lapsed time: 3964 ns

ASR1000#

Performance Impact

Packet trace buffers consume QFP DRAM, so be mindful of the amount of memory that a
configuration requires and the amount of memory that is available.

The performance impact varies, dependent upon the packet trace options that are enabled. The
packet trace only affects the forwarding performance of the packets that are traced, such as those
packets that match the user-configured conditions. The more granular and detailed information
that you configure the packet trace to capture, the greater it can impact resources.

As with any troubleshooting, it is best to take an iterative approach and only enable the more-
detailed trace options when a debug situation warrants it.

The QFP DRAM usage can be estimated with this formula:

memory needed = (stats overhead) + num of pkts * (summary size + path data size + copy
size)

Note: Where the stats overhead and summary size are fixed at 2 KB and 128 B, respectively,
the path data size and copy size are user-configurable.

Related Information

Cisco ASR1000 Series Aggregation Series Routers Software Configuration Guide -
Packet Trace

●

Packet Drops on Cisco ASR1000 Series Service Routers●

Cisco Technical Support & Downloads●

https://www.cisco.com/c/en/us/support/docs/routers/asr-1000-series-aggregation-services-routers/110531-asr-packet-drop.html?referring_site=smartnavRD?referring_site=smartnavRD
https://www.cisco.com/c/en/us/support/index.html?referring_site=bodynav

	Troubleshoot with the IOS-XE Datapath Packet Trace Feature
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Reference Topology
	Packet Tracing in Use
	Quick Start Guide
	Enable Platform Conditional Debugs
	Enable Packet Trace
	Egress Condition Limitation with Packet Traces

	Display the Packet Trace Results
	FIA Trace
	Display the Packet Trace Results
	Check the FIA Associated with an Interface

	Dump the Traced Packets
	Drop Trace
	Example Drop Trace Scenario

	Inject and Punt Traces
	IOSd Drop Tracing
	IOSd Egress Path Tracing
	LFTS packet tracing
	Packet trace pattern matching based on User Defined Filter (ASR1000 platform only)

	Packet Trace Examples
	Packet Trace Example - NAT
	Packet Trace Example - VPN

	Performance Impact
	Related Information

