

VMWare Horizon View Scalability Testing on Cisco UCS HXAF220C-M5SX 3-Node Cluster

First Published: 2018-08-27 **Last Modified:** 2018-08-31

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387) Fax: 408 527-0883 © 2018 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1

VMWare Horizon View VDI Scalability Testing on Cisco HXAF220c-M5SX 3-Node Cluster 1

Overview 1

CHAPTER 2

Test Topology and Environment Matrix 5

Test Topology 5

Environment Matrix 6

CHAPTER 3

Design and Implementation 9

Design and Implementation 9

Login VSI Workload Details 9

CHAPTER 4

VMWare Horizon View Scalability Testing on Cisco UCS HXAF220c M5SX 3-Node Cluster 11

Windows 10 x64 Performance in Japanese Environment without VMware OSOT 11

Windows 10 x64 Performance in Japanese Environment with VMWare OSOT 17

Related Documentation 24

Contents

VMWare Horizon View VDI Scalability Testing on Cisco HXAF220c-M5SX 3-Node Cluster

• Overview, on page 1

Overview

When deploying your virtual desktop solution, choosing server hardware that is powerful enough across the compute and memory dimensions to support a large number of virtual desktops is crucial. The more virtual desktops per server you can support, the fewer servers you need to buy to provide virtual desktops to support your desired number of users.

Cisco UCS FI 6332-16UP is the ideal solution for customers who need fewer servers but still want the comprehensive management capabilities provided by Cisco UCS Manager. Cisco UCS FI 6332-16UP delivers server, storage and 40-Gigabit networking in an easy-to-deploy, compact form factor.

To find the virtual desktop capacity of Cisco HXAF220c-M5SX 3-Node cluster integrated with UCS FI 6332-16UP Login VSI is used. The LoginVSI workload we used to perform a range of tasks to simulate typical workloads. The benchmark results show the maximum number of virtual desktops supported in the 3-Node Cluster by measuring response times throughout the test.

We set out to examine such a virtual desktop solution that consisted of the following components:

- Cisco UCS FI 6332-16UP
- Cisco HXAF220c-M5SX with Intel(R) Xeon(R) Gold 6134M processor
- Cisco-HXDP-Installer
- HX-VMware-ESXi Cisco Custom image
- VMware Horizon View virtual desktop linked clone pool consisting of Windows 10 VMs
- All VMs are provisioned on 3-Node cluster datastore

VMware OSOT

OSOT performs a full scan of your desktop image and advises you on optimizations that you can apply. The list is very extensive and if you want an even faster desktop than the default templates can offer you then why not use one of Login VSI's.

VMware OSOT performs the below

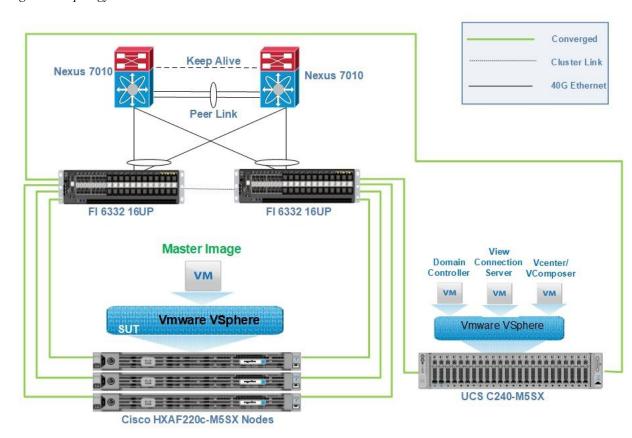
- Apply HKCU Settings to Registry
- Apply HKLM Settings
- Disable Features
- Disable Scheduled Tasks
- Disable Services
- Disable Startup Run
- Improving Login Times
- Remove Apps
- Visual Effects

Acronyms

Acronym	Description
ADDC	Active Directory Domain Controller
BIOS	Basic Input Output System
CPU	Central Processing Unit
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name System
FI	Fabric Interconnect
GB	Giga Byte
HD	High Definition
HDD	Hard Disk Drive
HXDP	HyperFlex Data Platform
IO	Input Output
IOPS	Input Output Per Second
mbps	Mega Byte Per Second
MLOM	Modular LAN On Motherboard
MS	Microsoft
NTP	Network Time Protocol
OS	Operating System
OSOT	Operating System Optimization Tool
RAM	Random Access Memory
SQL	Sturctured Query Language
SUT	Server Under Test
ТВ	Tera Byte

Acronym	Description	
UCS	Unified Computing System	
UCSM	Unified Computing System Manager	
vCPU	Virtual Central Processing Unit	
VDI	Virtual Desktop Infrastructure	
VIC	Virtual Interface Card	
VM	Virtual Machine	
VSI	Virtual Session Index	

Overview



Test Topology and Environment Matrix

- Test Topology, on page 5
- Environment Matrix, on page 6

Test Topology

Figure 1: Topology in use

Environment Matrix

Infra Components

Components	Version		
Server	UCS C240-M5SX		
UCSM	3.2(3e)		
Cisco-HXDP-Installer	3.0(1d) - 29754		
os			
Hypervisor	VMWare ESXi 6.5 U1-5969303		
Windows Server OS	Windows Server 2016 x64 (Japanese)		
Database			
MS SQL Server	Microsoft SQL Server 2014 SP1		
Virtual Desktop Delivery Component			
VMWare Horizon View Composer	7.5.1-8971623		
VMWare Horizon View Connection Server	7.5.1-9122465		
VMWare vCenter Server	VMware-VIM-all-6.5 U2b-8815520		
VDI Scalability Measuring Tool			
Login VSI	4.1.32		

SUT Components

Component	Version/ Type	
HyperFlex System	Cisco HXAF220c-M5SX Node	
UCSM	3.2(3e)	
CPUs	·	
Vendor	Intel ® Corporation	
Name	Intel(R) Xeon(R) Gold 6134M	
CPU Cores	16 CPUs x 3.2 GHz	
Processor Sockets	2	
Cores per Socket	16	
Logical Processors	32	
Firmware		
VIC	4.2(3b)	
BIOS Settings	C220M5.3.1.3c.0.0307181404	
Memory		

Component	Version/ Type		
RAM Per Node	512 GB		
Туре	DDR4		
Speed (MHz)	2666		
Number of RAM Modules loaded	16		
Per RAM Capacity (GB)	32		
Vendor	Micron		
Rank	Dual		
Cluster Configuration			
Total No.of Nodes	3		
Total Memory Capacity	1.5 TB		
Total CPU Capacity	153.22 GHz		
Total Storage Capacity	9.6 TB		
Hypervisor	Hypervisor		
OS	HX-VMWare ESXi 6.5 U2		
Build Number	8294253		
Adapters			
VIC	UCS VIC 1387		

Virtual Machine Image Attributes- SUT

Attribute	Version/ Type	
Desktop OS	Windows 10 Enterprise (Japanese)	
Version	1803	
Build Number	12613166	
Hardware	VMWare Virtual Hardware Version 13	
vCPU	2	
Memory	4 GB	
Video RAM	4 MB (default)	
NIC	1	
Virtual Network Adapter	E1000 Adapter	
Virtual SCSI Controller	LSI Logic SAS	
Virtual Disk	32 GB (Thin Provision)	

Attribute	Version/ Type	
Applications	LoginVSI 4.1.32 Application	
	Adobe Acrobat 11	
	Adobe Flash Player 11	
	• Doro PDF 1.82	
	MS Internet Explorer 11	
	MS Office 2016 Professional Plus	
	• 1080p and 720p HD Videos	
VMWare Tools	10305 (10.2.1)	
VMWare View Agent	7.5.1-9182637	

Design and Implementation

- Design and Implementation, on page 9
- Login VSI Workload Details, on page 9

Design and Implementation

- ADDC deployed as VM and DNS, DHCP, NTP are configured as integrated services with the ADDC.
- VMWare vCenter and View Connection Server are deployed as VMs.
- VMWare View Composer and MS SQL are deployed in a VM
- 3-Node Cluster setup is formed through HXDP.
- Datastore is created and mounted across the 3-Node Cluster using HXConnect.
- VM Master Image is deployed under the 3 node cluster Datastore.
- LoginVSI Launchers are deployed as VMs to incrementally login the Users Virtual desktop sessions (created from master image) and begin the workload (Light, Medium, Heavy).

Login VSI Workload Details

Login VSI helps to test and compare the performance of different software and hardware solutions in VDI environment. Login VSI used to measure the maximum capacity of current infrastructure in a quick and easy way. The simulated users work with the same applications as your average employee such as Word, Excel, Outlook and Internet Explorer and can easily add our own custom applications to the tests.

Light Workload

The light workload runs fewer applications and starts/stops them less frequently. This results in lower CPU, Memory and IO usage.

The Light workload is mostly around Excel actions and Internet explorer actions and it is more diverse and focused more than two applications.

Each cycle will open

· MS Outlook and browse mails

- Adobe reader to open pdf files
- Copy and zip actions
- Word to open and edit the documents

Medium Workload

Medium workload is the default workload in Login VSI. The standard Login VSI medium workload designed to run on 2vCPU's per desktop VM. This workload emulates a medium knowledge worker using Office, IE, PDF and Java/ FreeMind.

Once a session has been started the workload will repeat (loop) every 48 minutes. The loop is divided in 4 segments, each consecutive Login VSI user logon will start a different segments. This ensures that all elements in the workload are equally used throughout the test.

During each loop, the response time is measured every 3-4 minutes. The medium workload opens up to 5 applications simultaneously. The keyboard type rate is 160 ms for each character. Approximately 2 minutes of ideal time is included in simulate real-world users.

Each loop will open and use:

- Outlook, browse messages.
- Internet Explorer, browsing different web pages and a YouTube style video(720p Movie Trailer) is opened 3 times in every loop.
- Word, one instance to measure response time, one instance to review and edit the document.
- Doro PDF Printer & Acrobat reader, the word document is printed and reviewed to PDF.
- Excel, a very large randomized sheet is opened.

Heavy Workload

The heavy workload is based on the medium workload except that the heavy workload:

- Begins by opening 4 instance of internet explorer. These instances stay open throughout the workload loop.
- Begins by opening 2 instances of Adobe Reader. These instances stay open throughout the workload loop.
- There are more PDF Printer actions in the workload.
- 1080p videos are watched.
- Increased the time the workload plays the flash game.
- The ideal time is reduced to 2 minutes.

VMWare Horizon View Scalability Testing on Cisco UCS HXAF220c M5SX 3-Node Cluster

- Windows 10 x64 Performance in Japanese Environment without VMware OSOT, on page 11
- Windows 10 x64 Performance in Japanese Environment with VMWare OSOT, on page 17
- Related Documentation, on page 24

Windows 10x64 Performance in Japanese Environment without VMware OSOT

Light Workload Result, on page 11

Medium Workload Result, on page 13

Heavy Workload Result, on page 15

VSIMax Results on HXAF220C M5SX 3-Node Cluster

Type of workload	VSIMax Value
Light	171
Medium	161
Heavy	144

Light Workload Result

Desktop OS	No.of Launched Sessions	No. of Active Sessions	VSIMax
Japanese	200	183	171

Login VSIMax

Figure 2:

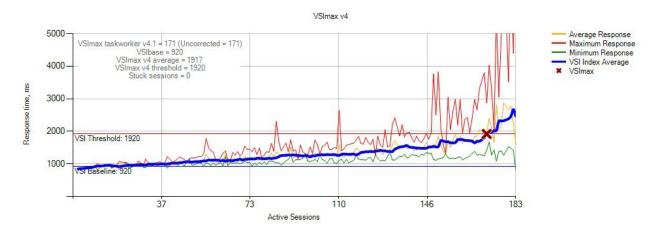


Figure 2: Average virtual desktop response times at various number of virtual desktops on the **Cisco HXAF220c M5SX 3-Node Cluster**

Figure 3:

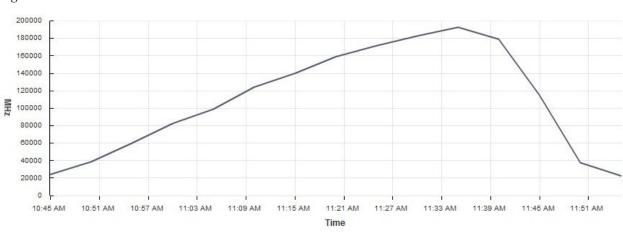


Figure 3: CPU Utilization throughtout the test

Figure 4:

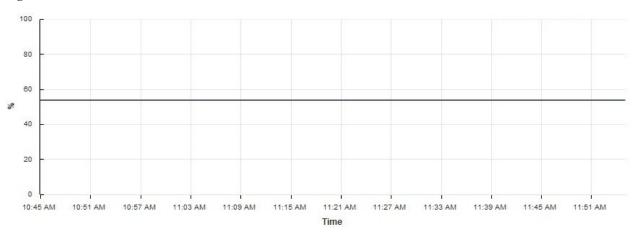


Figure 4: Memory usage throughout the test

Figure 5:

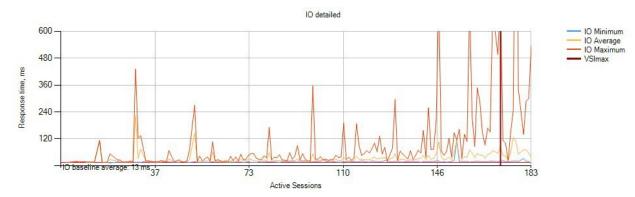


Figure 5: IO throughtout the test

IOPS, Throughput and Latency throughout the test

Figure 6:

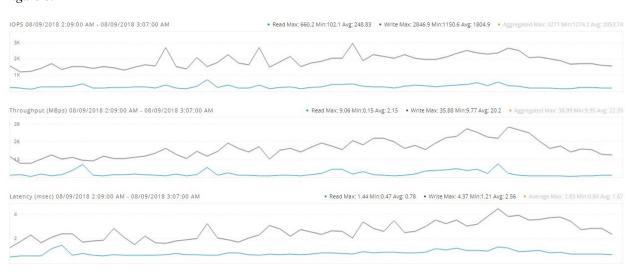


Figure 6: IOPS, Throughput and Latency throughout the test

Medium Workload Result

Desktop OS	No.of Launched Sessions	No. of Active Sessions	VSIMax
Japanese	170	166	161

Login VSIMax

Figure 7:

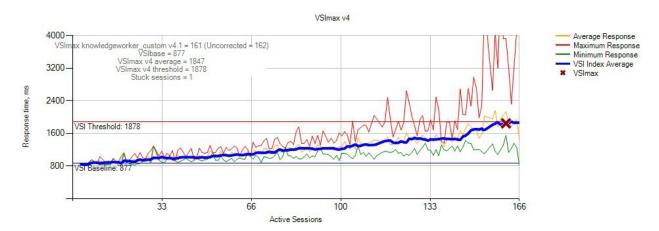


Figure 7: Average virtual desktop response times at various number of virtual desktops on the **Cisco HXAF220C M5SX 3-Node Cluster**

Figure 8:

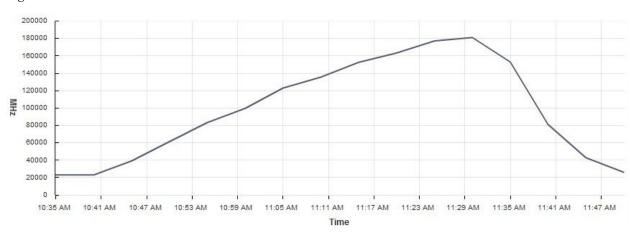


Figure 8: CPU Utilization throughtout the test

Figure 9:

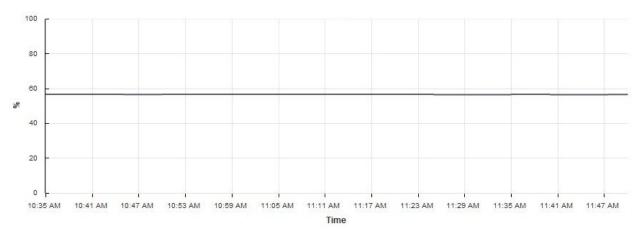


Figure 9: Memory usage throughout the test

Figure 10:

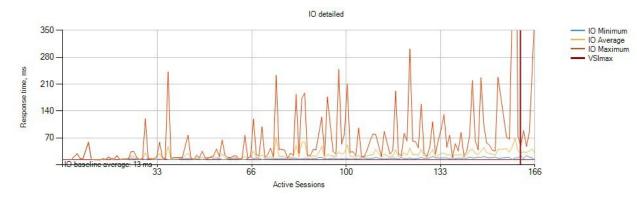


Figure 10: IO throughtout the test

IOPS, Throughput and Latency throughout the test

Figure 11:

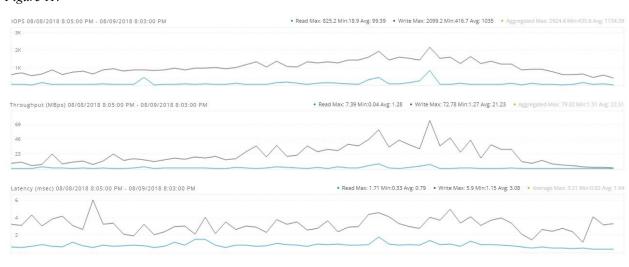


Figure 11: IOPS, Throughput and Latency throughout the test

Heavy Workload Result

Desktop OS	No.of Launched Sessions	No. of Active Sessions	VSIMax
Japanese	160	158	144

Login VSIMax

Figure 12:

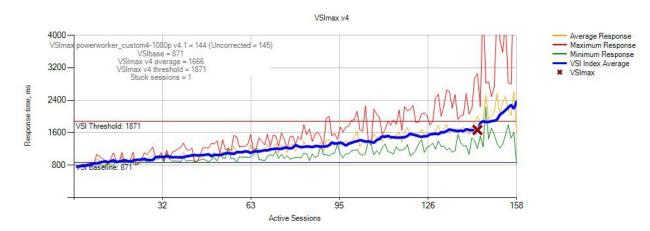


Figure 12: Average virtual desktop response times at various number of virtual desktops on the Cisco HXAF220C M5SX 3-Node Cluster

Figure 13:

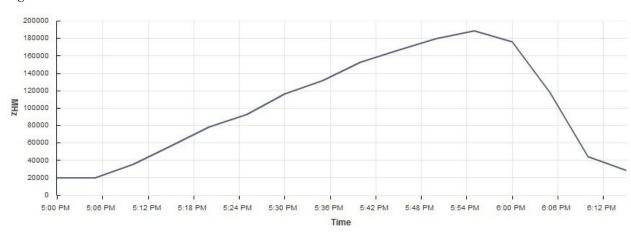


Figure 13: CPU Utilization throughtout the test

Figure 14:

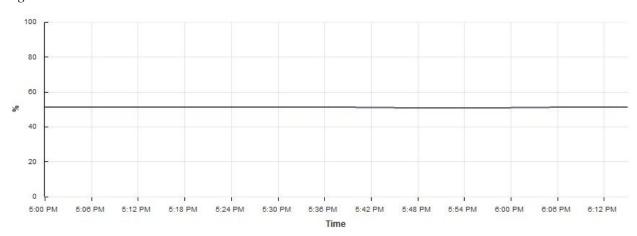


Figure 14: Memory usage throughout the test

Figure 15:

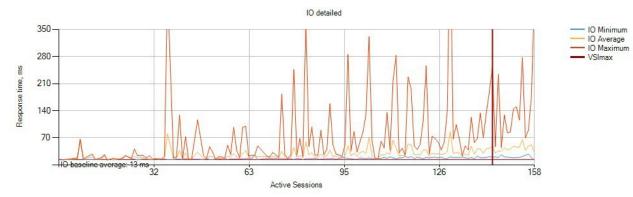


Figure 15: IO throughtout the test

IOPS, Throughput and Latency throughout the test

Figure 16:

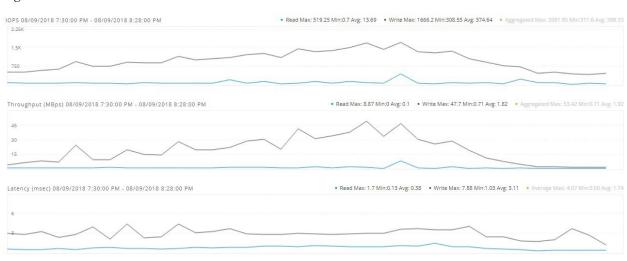


Figure 16: IOPS, Throughput and Latency throughout the test

Windows 10 x64 Performance in Japanese Environment with VMWare OSOT

Light Workload Result, on page 18

Medium Workload Result, on page 20

Heavy Workload Result, on page 22

VSIMax Results on HXAF220C M5SX 3-Node Cluster

Type of workload	VSIMax Value
Light	189
Medium	179
Heavy	153

Light Workload Result

Desktop OS	No.of Launched Sessions	No. of Active Sessions	VSIMax
Japanese	200	193	189

Login VSIMax

Figure 17:

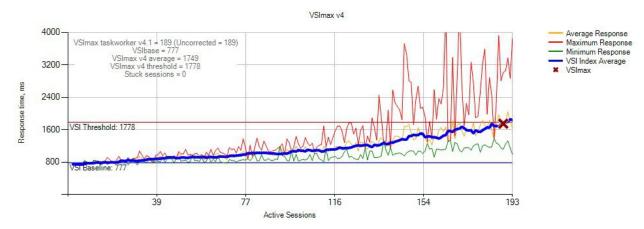


Figure 17: Average virtual desktop response times at various number of virtual desktops on the Cisco HXAF220C M5SX 3-Node Cluster

Figure 18:

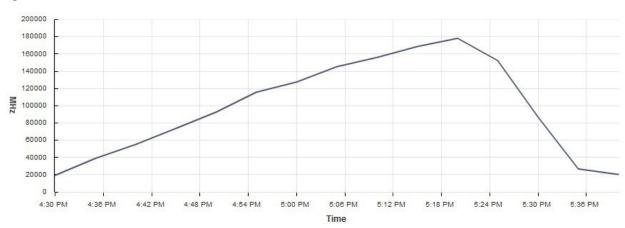


Figure 18: CPU Utilization throughtout the test

Figure 19:

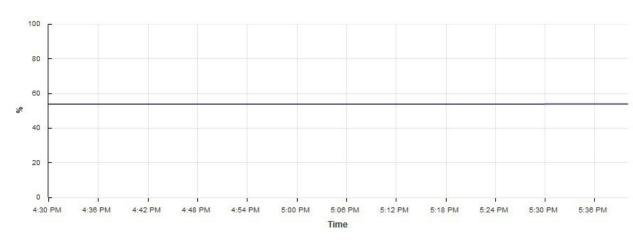


Figure 19: Memory usage throughout the test

Figure 20:

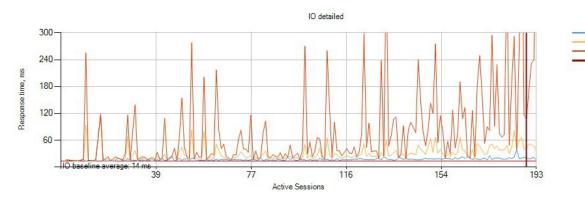
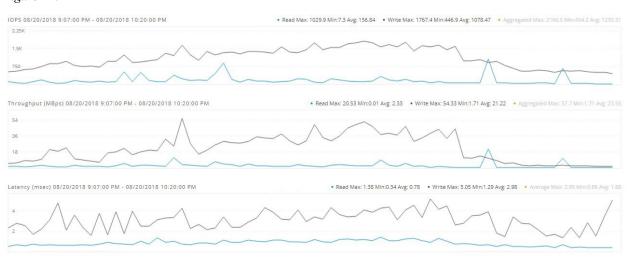



Figure 20: IO throughtout the test

IOPS, Throughput and Latency throughout the test

Figure 21:

IO Minimum IO Average IO Maximum

Figure 21: IOPS, Throughput and Latency throughout the test

Medium Workload Result

Desktop OS	No.of Launched Sessions	No. of Active Sessions	VSIMax
Japanese	190	186	179

Login VSIMax

Figure 22:

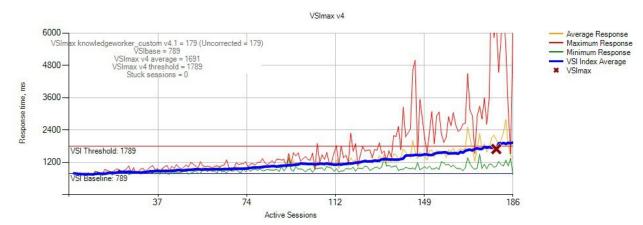


Figure 22: Average virtual desktop response times at various number of virtual desktops on the Cisco HXAF220C M5SX 3-Node Cluster

Figure 23:

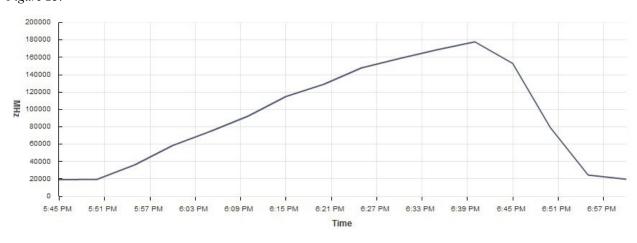


Figure 23: CPU Utilization throughtout the test

Figure 24:

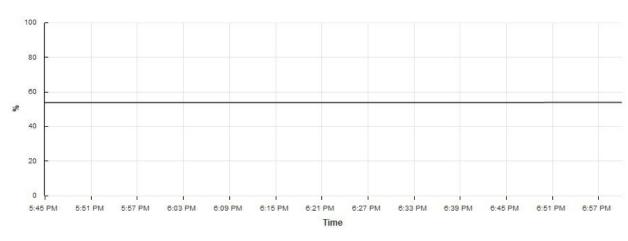


Figure 24: Memory usage throughout the test

Figure 25:

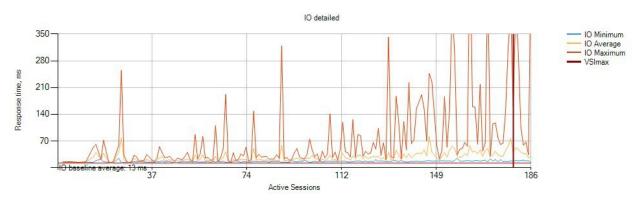


Figure 25: IO throughtout the test

IOPS, Throughput and Latency throughout the test

Figure 26:

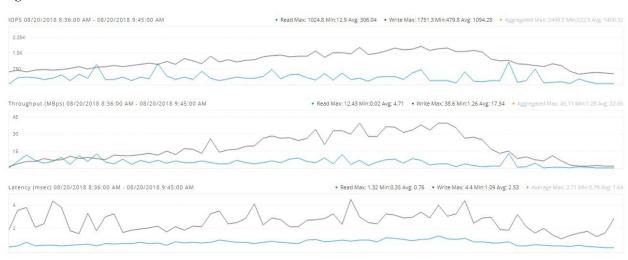


Figure 26: IOPS, Throughput and Latency throughout the test

Heavy Workload Result

Desktop OS	No.of Launched Sessions	No. of Active Sessions	VSIMax
Japanese	160	157	153

Login VSIMax

Figure 27:

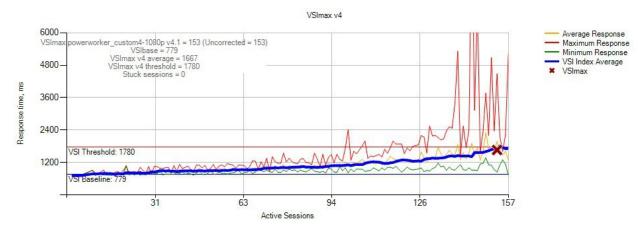


Figure 27: Average virtual desktop response times at various number of virtual desktops on the Cisco HXAF220C M5SX 3-Node Cluster

Figure 28:

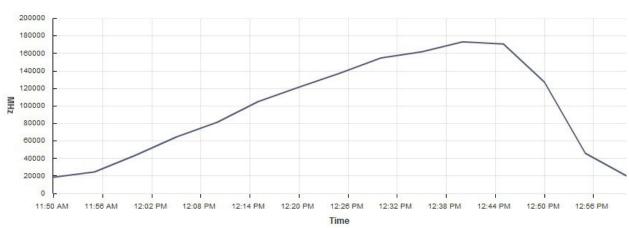


Figure 28: CPU Utilization throughtout the test

Figure 29:

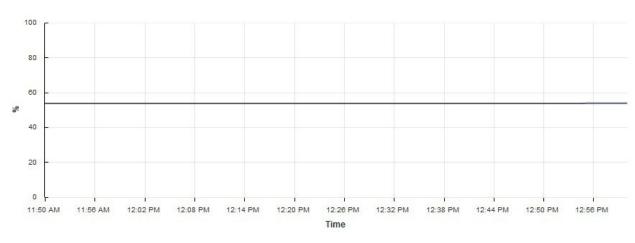


Figure 29: Memory usage throughout the test

Figure 30:

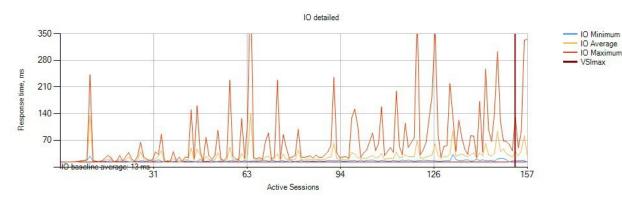


Figure 30: IO throughtout the test

IOPS, Throughput and Latency throughout the test

Figure 31:

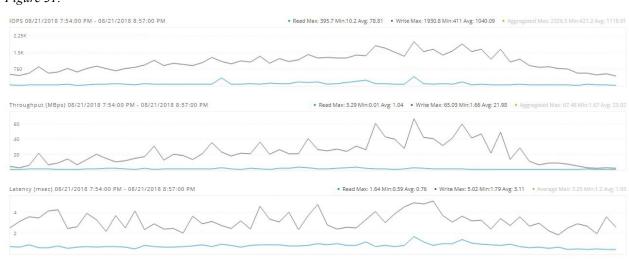


Figure 31: IOPS, Throughput and Latency throughout the test

Related Documentation

Cisco HyperFlex

https://www.cisco.com/c/dam/en/us/products/collateral/hyperconverged-infrastructure/hyperflex-hx-series/hxaf-220c-m5-specsheet.pdf

Software Downloads

https://software.cisco.com/download/home/286305544/type/286305994/release/3.0%25281d%2529

LoginVSI

https://www.loginvsi.com/documentation/index.php?title=Main_Page

VMWare Horizon View

https://docs.vmware.com/en/VMware-Horizon-7/7.5/rn/horizon-75-view-release-notes.html

VMWare OSOT

https://www.loginvsi.com/blog/846-optimizing-desktop-images-with-vmware-osot