Driving Extreme Concurrency with Intel® Transactional Synchronization Extensions
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 2012 Intel Corporation. All rights reserved. Intel, Intel Xeon, the Intel Xeon logo and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
Legal Disclaimers - Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems available for purchase.

Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the baseline platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the performance improvements reported.
Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company's expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions; customer acceptance of Intel's and competitors' products; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Form 10-Q, Form 10-K and earnings release.
Concurrency Challenge
Concurrency Challenge

• More and more cores are added into a single system
• more cores = better performance?
 - multi-threaded code is difficult to write and difficult to test
 - Even multi-threaded enterprise applications do not *automatically* run faster on multi-core servers

If software not optimized, more cores lead to worse performance
Difficulty of Software Development

- Identify concurrency (algorithmic, manual...)
- Manage concurrency (locks, ...)

Correctness ↔ Performance

Hard to Write Fast and Correct Multi-Threaded Code
Need for Synchronization

Sophia wants $50 from A
- $A == 100, A set to 50

Peter wants $60 from A
- $A == 100, A set to 40

A should be -10

Sophia wants $50 from A
- Sophia locks table
- $A == 100, A set to 50

Peter wants $60 from A
- Peter waits till lock release
- $A == 50, Insufficient funds

Peter and Sophia saw $A == 100. Locks prevent such data races
Lock Granularity Optimization

Coarse grain locking (lock per table)

Sophia withdraws $20 from A
• Sophia locks table
Peter wants $30 from B
• Waits for Sophia to free table

Fine grain locking (lock per element)

Sophia withdraws $20 from A
• Sophia locks A
Peter wants $30 from B
• Peter locks B

Such Tuning is Time Consuming and Error Prone
Complexity of Fine Grain Locking

Sophia transfers $20 from A to B
 • Sophia locks A and locks B
Performs transfer
 • Sophia unlocks A and unlocks B

Sophia transfers $20 from A to B
 • Locks A
Peter transfers $50 from B to A
 • Locks B
 • Cannot lock A

Expensive and Difficult to Debug Millions of Lines of Code
Opportunity with TSX
What We Really Want...

Developer uses coarse grain lock
Hardware elides the lock to expose concurrency in program
• Sophia and Peter don’t wait
• Hardware automatically detects real data conflicts

Lock Elision: Fine Grain Behavior at Coarse Grain Effort
TSX Benefit: High Concurrency

- **Exposes Concurrency & Eliminates Unnecessary Communication**

 - Lock transfer latencies
 - Serialized execution

 - Concurrent execution
 - No lock transfer latencies

 - Reducing lock instruction latencies insufficient
Fine-grain locking is not silver bullet
- A real-world application with fine grain lock on a 8-socket machine: significant performance regression was fixed with lock affinity

For large machines, lock affinity more important than lock granularity

Removes Ping-Pong effect on locks in large machines
Let The CPU Handle the Locks

Hardware does the work of figuring out concurrency
 • Fine grain performance at coarse grain effort

Intel® TSX ‡ : Instruction set extensions for IA
 • Transactionally execute lock-protected critical sections
 • Execute without acquiring lock → expose hidden concurrency
 • Hardware manages transactional updates – All or None

Intel® Architecture Instruction Set Extensions Programming Reference
 • https://software.intel.com/sites/default/files/m/9/2/3/41604

‡ Intel® Transactional Synchronization Extensions (Intel® TSX), available on next generation Intel® microarchitecture (Haswell)
Summary
Intel® TSX Summary

• Improve existing synchronization and software scalability
• Reduce time-to-market for multi-threaded software
• Think about how Intel TSX can help your customers and other novel usages
Thank You