
 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

White Paper

Cisco IOS EST Certificate Provisioning with the libEST CA Server

What You Will Learn
The recently created Enrollment over Secure Transport (EST) protocol aims to handle authentication and certificate

provisioning in a more robust manner. It offers a variety of advantages over its predecessor, the Simple Certificate

Enrollment Protocol, or SCEP. Because of its advantages, Cisco IOS® and Cisco IOS XE products offer EST client

functionality for secure certificate enrollment with EST-enabled certificate authorities (CAs). This document presents

sample configurations of how you can use Cisco IOS Software to enroll RSA and ECC certificates with the open-

source libEST’s CA.

Contents

Introduction ... 1

How to Enroll RSA and ECC Certificates ... 2

1. (Optional) Generate a TLS client certificate with OpenSSL ... 2

2. Set up libEST CA ... 5

3. Configure the router ... 8

4. Test IOS EST client with the CAs ... 10

Conclusion ... 11

References ... 11

Acknowledgments ... 11

Introduction

Certificates have been used for authentication for a long time. The 802.1AR standard of the Institute of Electrical and

Electronics Engineers (IEEE) uses them to prove the identity of a device. They are also widely used in Transport

Layer Security (TLS), VPNs, and many other areas that require authentication. The certificates are usually generated

by a trusted entity or certificate authority (CA), and they can be validated using a PKI root of trust and a certificate

chain. Thus, the certificate provisioning mechanism needs to be secure and flexible. Figure 1 shows a high-level

architecture of such a mechanism. A registration authority (RA) serves as an intermediary, authenticating the client

before getting a certificate for him from the CA.

http://www.ieee802.org/1/pages/802.1ar.html

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

The most recently defined protocol that provides certificate provisioning is Enrollment over Secure Transport , the

Internet Engineering Task Force’s RFC 7030. EST profiles certificate enrollment for clients using Certificate

Management over Cryptographic Message Syntax over a secure transport. According to the IETF, EST “describes a

simple, yet functional, certificate management protocol targeting Public Key Infrastructure (PKI) clients that need to

acquire client certificates and associated Certification Authority (CA) certificates. It also supports client-generated

public/private key pairs as well as key pairs generated by the CA.”

EST was a standardization effort that went through several iterations through the IETF. Multiple vendors and

independent parties in the standards community participated in the effort. EST has many advantages over its SCEP

predecessor. Support of elliptic curve cryptography (ECC), cryptographic algorithm agility, better authentication with

TLS, and simplicity are some of them. To prove the protocol’s value, Cisco itself has open-sourced libEST, an EST

library that offers client and server functionality, in order to promote its adoption and interoperability across vendors.

For more information on EST’s advantages over other protocols, readers should refer to the PKI: Simplify Certificate

Provisioning with EST whitepaper.

Figure 1: Common PKI Architecture with a Cisco Router or Virtual Router as the Client

Starting with releases 15.5(1)T and 3.14S, respectively, Cisco IOS and Cisco IOS XE Software includes EST client

functionality for EST enrollment with CAs or RAs that support EST.

In the following sections we show you how to set up and enroll a Cisco IOS product with the EST server that is

available in the open-source libEST library. We hope that this document will make it easier for adopters to move to a

more secure certificate enrollment protocol.

How to Enroll RSA and ECC Certificates
In our examples, we used a Cisco IOS router running 15.5(3)M1 and libEST 1.1.1. Any later Cisco IOS or IOS XE

release that supports EST should work as well. libEST was running on Ubuntu 14.04.3 with IP address 10.0.1.88. Any

Linux distribution would also work. We assume that libEST and its dependencies (OpenSSL) are preinstalled in

Ubuntu, and we do not go into details about installations in this document. For more information on installing libEST,

refer to the libEST client use whitepaper. The Cisco IOS router uses EST to enroll two locally generated key pairs,

one RSA and one ECC.

1. (Optional) Generate a TLS client certificate with OpenSSL

If the Cisco IOS release has a client certificate trust point that can be used for TLS client authentication, you can skip

this step. The Cisco IOS command show crypto pki trustpoints can help identify trust points that can be used

to authenticate to the server.

http://tools.ietf.org/html/rfc7030
http://www.ietf.org/
https://github.com/cisco/libest
http://www.cisco.com/web/about/doing_business/trust-center/docs/public-key-infrastructure-provisioning-with-est.pdf
http://www.cisco.com/web/about/doing_business/trust-center/docs/public-key-infrastructure-provisioning-with-est.pdf
https://github.com/cisco/libest
https://github.com/cisco/libest
https://www.cisco.com/web/about/doing_business/trust-center/docs/open-source-pki-est-client.pdf

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

EST runs over TLS. The protocol needs to authenticate the client before allowing an enrollment request. Cisco® routers

can use any certificate to authenticate themselves with the EST server as long as their root CA certificate is trusted at

the EST server. This includes secure unique device identifier (SUDI) or other client certificates.

Cisco has been adding a SUDI certificate (IEEE’s 802.1AR LDevID certificate equivalent) in its devices. A SUDI is

a manufacturer’s certificate and can be used to attest the authenticity of a device. More details about the Cisco IOS

SUDI certificate profile can be seen in the appendix of the ACT2 SUDI documentation. The Cisco root CAs that sign

the subCAs issuing the Cisco SUDI certificates are Cisco Root CA 2048 (crca2048), Cisco Root CA M2 (crcam2),

and Cisco ECC Root CA documented in the Cisco PKI. Here is a sample output from a Cisco 4451-X Integrated

Services Router’s SUDI certificate:

Router#show crypto pki certificates

Certificate

 Status: Available

 Certificate Serial Number (hex): 000000

 Certificate Usage: General Purpose

 Issuer:

 cn=ACT2 SUDI CA

 o=Cisco

 Subject:

 Name: ISR4451-X/K9

 Serial Number: PID:ISR4451-X/K9 SN: XXXXXXXXXXX

 cn=ISR4451-X/K9

 ou=ACT-2 Lite SUDI

 o=Cisco

 serialNumber=PID:ISR4451-X/K9 SN:XXXXXXXXXXX

 Validity Date:

 start date: 22:51:47 UTC Dec 21 2013

 end date: 22:51:47 UTC Dec 21 2023

 Associated Trustpoints: CISCO_IDEVID_SUDI

For our examples we are using privately generated RSA certificates because we have control of the libEST CA and

we can import the client certificate root CA in the server’s trust store so that it can authenticate the TLS client. Any

other RSA certificate (SUDI or pre-existing) in the router will do, as long as we have the root CA available to import

in libEST server’s certificate trust store. In a real-world scenario a SUDI certificate that comes preinstalled with the

router would be more practical. We are using a certificate we generate here only for demonstration purposes.

Generating ECDSA certificates for TLS client authentication in IOS is very similar with the exception that the key

and certificate request (CSR) is generated on the router and the certificate created externally. ECDSA specific details

are addressed in Sections 1.3 and 3.1.

We will generate the client certificate in the EST server, but any Linux OS with OpenSSL installed would suffice.

1.1 Prepare to sign the client CSR

Create a filename rootca_req.conf for the client certificate root CA certificate extensions that includes

 [req]

 distinguished_name = rootca_dn

 [rootca_dn]

http://www.ieee802.org/1/pages/802.1ar.html
http://www.cisco.com/security/pki/policies/ACT2_SUDI_CA_CPS.pdf
http://www.cisco.com/security/pki
http://www.cisco.com/security/pki

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

 organizationName = "O="

 commonName = "CN="

 [rootca_reqext]

 keyUsage = critical,digitalSignature,keyCertSign,cRLSign

Generate the RSA key, the certificate request (filling in the organization and common name for the CA), and the

certificate. That certificate is going to be the root CA certificate that will sign the client’s certificate.

openssl genrsa -out rootca.key 2048

openssl req -new -x509 -sha256 -days 3650 -extensions rootca_reqext -config

rootca_req.conf -key rootca.key -out rootca.crt

Then create the extensions profile tls_client_req.conf for the client certificate that includes

 [req]

 distinguished_name = tls_client_dn

 # The extensions to add to a certificate request

 x509_extensions = tls_client_reqex

 [tls_client_dn]

 O = "O="

 OU = "OU="

 CN = "CN="

 SN = "Serial="

 [tls_client_reqex]

 keyUsage = digitalSignature, keyEncipherment, dataEncipherment

1.2 Create the client CSR to be signed

Then generate the client RSA key, the certificate request (filling in the organization, organization unit, CN name, and

serial number for the router):

openssl genrsa -out tls_client.key 2048

openssl req -new -x509 -sha256 -days 365 -config tls_client_req.conf -key

tls_client.key -out tls_client.csr

1.3 Generate the client certificate

Then generate the client certificate and sign it with the root CA key from above:

echo 01 > rootca.srl

openssl x509 -req -sha256 -days 365 -extensions tls_client_reqex -extfile

tls_client_req.conf -in tls_client.csr -CA rootca.crt -CAkey rootca.key -out

tls_client.crt

openssl x509 -outform pem -in tls_client.crt -out tls_client.pem

This newly created certificate and key pair will be imported in the router in order to authenticate itself to the EST

server. The router requires the private key to have a passphrase. Let’s use the passphrase “luckydog” and encrypt the

private key:

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

openssl rsa -des3 -inform PEM -outform PEM -in tls_client.key -passout pass:luckydog

-out tls_client2.key

We have now generated the RSA certificate that the router will use to authenticate itself to the EST server.

Note on ECDSA certificates: Specifically for ECDSA client certificates, they are supported in IOS 15.6(1)T1 and

later and IOS XE 3.16.2S and later. At the time of this writing (April 2016), externally generated keys and ECDSA

certificates are not officially supported in IOS. Thus generating an ECDSA certificate that will be imported in the

router in order to be authenticated by the server will be a very similar process without having to manually create the

client CSR in Section 1.2. The CSR needs to be generated on the router as shown in Section 3.1. Then the CSR can

be put in a file which will be used to generate the certificate as explained in Section 1.3.

2. Set up libEST CA

We now want to configure and run the example EST server available in libEST. We are assuming that the libEST and

its dependencies (OpenSSL) are preinstalled in the Linux VM.

2.1 (Optional) Allow TLS 1.0 in the EST server. (Do this only for the Cisco IOS client in IOS and IOS XE versions

before 15.6(1)T1 and 3.16.2S respectively.)

Even though EST mandates TLS 1.1 or later, the Cisco IOS TLS client might be using TLS 1.0 by default in older

Cisco IOS releases (before 15.6(1)T1 and 3.16.2S). So we need allow TLS 1.0 in the libEST 1.1.1 server. Enabling

TLS 1.0 in the EST server is NOT recommended and should NOT take place if the router is running IOS

15.6(1)T1 and later or IOS XE 3.16.2S and later. It violates RFC 7030 and introduces security vulnerabilities. We

are only allowing it here to be able to interoperate with old Cisco IOS releases that did not support TLS 1.1 and later.

In the EST server example code file example/server/estserver.c, add the following line in the main function

while setting the est context around line 963:

 est_server_enable_tls10(ectx);

Alternatively, look for an estserver flag that enables TLS 1.0 (in newer libEST versions). If there is no estserver flag

to enable TLS 1.0 and the est_server_enable_tls10 is not defined, it can be defined in

src/est/est_server.c as

EST_ERROR est_server_enable_tls10 (EST_CTX *ctx)

{

 if (!ctx) {

 EST_LOG_ERR("Null context");

 return (EST_ERR_NO_CTX);

 }

 ctx->enable_tls10 = 1;

 return (EST_ERR_NONE);

}

The function definition EST_ERROR est_server_enable_tls10(EST_CTX *ctx); needs to be added in

src/est/est.h, and the variable enable_tls10 needs to be defined in the struct est_ctx in

src/est/est_locl.h. Finally, code

if (ectx->enable_tls10) {

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

 EST_LOG_INFO("Enabling TLS 1.0 support, not compliant with RFC 7030");

 SSL_CTX_set_options(ssl_ctx, SSL_OP_NO_SSLv2 |

 SSL_OP_NO_SSLv3 |

 SSL_OP_SINGLE_ECDH_USE |

 SSL_OP_NO_TICKET);

 } else {

 SSL_CTX_set_options(ssl_ctx, SSL_OP_NO_SSLv2 |

 SSL_OP_NO_SSLv3 |

 SSL_OP_NO_TLSv1 |

 SSL_OP_SINGLE_ECDH_USE |

 SSL_OP_NO_TICKET);

 }

needs to replace the SSL_CTX_set_options call around line 1336 in src/est/est_server_http.c.

Then compile and install libEST (make && make install). Now the EST server should be allowing TLS 1.0.

If you skipped the step above and in testing notice TLS error messages from the EST server, such as OSSL error:

140074427623168:error:1408A0C1:SSL routines:ssl3_get_client_hello:no shared

cipher:s3_srvr.c:1411:, then is a result of the Cisco IOS Software using TLS 1.0, which the server is not

permitting.

2.2 Create the CAs

Now let’s set up the CAs. We want to test both RSA and ECC certificate enrollment, so we will use the libEST’s

extCA as the ECC CA, and the estCA as the RSA CA. Readers should note that these are not hardened production

CAs. They are just example EST CAs that can be used for testing.

First, edit example/server/ESTcommon.sh

[…Text omitted …]

 EST_OPENSSLCMD_EXTCAECPARAMSFILE=$EST_OPENSSL_EXTCADIR/prime256v1.pem

 # if you want to use EC certificates set the ..._NEWKEY_PARAM like this:

 EST_OPENSSLCMD_EXTCANEWKEY_PARAM="-newkey ec:$EST_OPENSSLCMD_EXTCAECPARAMSFILE" #

Make sure this line is NOT commented out

 # EST_OPENSSLCMD_EXTCANEWKEY_PARAM=" " # Make sure this line is commented out

 […Text omitted …]

 # EST_OPENSSLCMD_CANEWKEY_PARAM="-newkey ec:$EST_OPENSSLCMD_CAECPARAMSFILE" # Make

sure this line is commented out

 EST_OPENSSLCMD_CANEWKEY_PARAM=" " # Make sure this line is NOT commented out

[…Text omitted …]

Then create the CAs:

./createCA

We will have two CAs, so we will run them on different ports. Let’s say the RSA CA (estCA) will run on port 8085,

and the ECC CA (extCA) on port 8086. Edit the example/server/runserverrsa.sh file and replace the

./estserver... line with

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

./estserver -c estCA/private/estservercertandkey.pem -k

estCA/private/estservercertandkey.pem -r estrealm -v -p 8085 -n

Create a new file example/server/runserverecc.sh file that includes

export EST_TRUSTED_CERTS=./trustedcerts.crt

export EST_CACERTS_RESP=./extCA/cacert.crt

export EST_OPENSSL_CACONFIG=./extExampleCA.cnf

./estserver -c estCA/private/estservercertandkey.pem -k

estCA/private/estservercertandkey.pem -r estrealm -v -p 8086 -o

(Note that –n or –o options would suffice for running the servers.)

We now need to import the TLS client certificate root in our trust store so that the server can authenticate the TLS

client certificate. Get the certificate from the previously created rootca.crt and put it in the

example/server/trustedcerts.crt. In real-world case, a SUDI or any other certificate would be used in the

router. The corresponding root CA certificate would need to go in the example/server/trustedcerts.crt trust

store. For SUDI, the root certificates are Cisco Root CA 2048 (crca2048), Cisco Root CA M2 (crcam2), and Cisco

ECC Root CA documented in the Cisco PKI.

2.3 Start the CAs

Then we can start the RSA and ECC EST CAs in the background. Readers should note that these are not hardened

production CAs. They are just example EST CAs that can be used for testing.

Set the LD_LIBRARY_PATH environment variable and start the CAs:

export LD_LIBRARY_PATH=/usr/local/openssl/lib:/usr/local/est/lib

./runserverrsa.sh & ./runserverecc.sh &

To check the processes and potentially stop the EST servers from running, you could use

ps -ef | grep runserver

ps -ef | grep estserver

2.4 (Optional) Test the CAs with libEST’s client to make sure they work

Now, optionally, we can use libEST’s client to make sure that the CAs on the local machine are operational. Let’s set

the environment variables:

export LD_LIBRARY_PATH=/usr/local/openssl/lib:/usr/local/est/lib

export EST_OPENSSL_CACERT=./cacerts

The cacerts file is the one that is in the example/server directory.

In libEST’s directory, let’s create two directories to store the enrolled certificates and run the client:

mkdir testrsa

mkdir testecc

./example/client/estclient -v -e -s 127.0.0.1 -p 8085 -u estuser -h estpwd -o ./testrsa

./example/client/estclient -v -e -s 127.0.0.1 -p 8086 -u estuser -h estpwd -o ./testecc

http://www.cisco.com/security/pki

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

The enrolled certificates should now be stored in the test directories. You can export the public key that is stored in

these directories in pkcs7 format using

openssl base64 -d -in cert-0-0.pkcs7 | openssl pkcs7 -inform DER -outform PEM -

print_certs -out cert.pem

If you want to verify that a private and a public key (in the certificate) in the test directories are from the same key

pair, you can compare the output of

openssl rsa -noout -modulus -in key-x-x.pem

openssl x509 -noout -modulus -in cert.pem

For more information on how to use the libEST client and its use, refer to the libEST client use whitepaper.

3. Configure the router

After creating and starting the two CAs, we are ready to set up the routers for EST enrollment.

3.1 (If needed) Import the TLS client certificate from Section 1 into the router

Let’s import the TLS RSA certificate that we created above. (If a SUDI or other certificate on the router is available,

you can skip this step.)

crypto pki trustpoint LDevID

 enrollment terminal pem

 crl optional

 exit

crypto pki import LDevID pem terminal pass luckydog

At this point the router will ask to import the (intermediate) CA certificate, the private key, and the client certificate.

For that we will use the rootca.crt, tls_client2.key and tls_client.pem we created above.

Note on ECDSA certificates: Specifically for ECDSA certificates, they are supported in IOS 15.6(1)T1 and later and

IOS XE 3.16.2S and later. At the time of this writing (April 2016), externally generated keys and ECDSA (as we did

above with RSA above) certificates are not officially supported. To import a PKI trust point for an ECDSA certificate,

the ECC key should have previously been generated on the router and a CSR be manually exported as shown below

crypto key generate ec keysize 384 label ecdsakey

crypto pki trustpoint LDevID

 eckeypair ecdsakey

 enrollment terminal pem

 ! --- More certificate options here like subject-name, fqdn etc

 exit

crypto pki enroll LDevID

[…Text omitted …]

Certificate Request follows:

-----BEGIN CERTIFICATE REQUEST-----

MIIB+jCCAWMCAQAwgZgxGzAZBgNVBAM […Text omitted …]

-----END CERTIFICATE REQUEST-----

https://www.cisco.com/web/about/doing_business/trust-center/docs/open-source-pki-est-client.pdf

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

---End - This line not part of the certificate request---

Redisplay enrollment request? [yes/no]: no

After the CSR printed out on the terminal is signed at the CA and the ECDSA certificate is generated (see Section 1),

you can import the intermediate CA certificate and the router TLS ECDSA certificate using

crypto ca authenticate LDevID

crypto pki import LDevID

3.2 Import the TLS / EST server certificate root CA into the router

Now we need to import the root CA of the TLS certificate that the EST server will use, so that the router can

authenticate the server:

crypto pki trustpoint TLS-root

 enrollment terminal PEM

 crl optional

 exit

crypto ca authenticate TLS-root

At this point the router will ask for the certificate. It can be retrieved from the EST server in

libEST/example/server/estCA/cacert.crt or libEST/example/server/extCA/cacert.crt.

3.3 Configure EST client on the router

Now we can configure the EST client on the router. First let’s create the RSA and ECC key pairs that we will get

signed:

crypto key generate rsa modulus 2048 label rsakey

crypto key generate ec keysize 256 label ecckey

Then we will create the enrollment profiles for the RSA and ECC CAs:

crypto pki profile enrollment testrsa-prof

 method-est

 enrollment url https://10.0.1.88:8085

 enrollment credential LDevID

crypto pki profile enrollment testecc-prof

 method-est

 enrollment url https://10.0.1.88:8086

 enrollment credential LDevID

Then let’s create the RSA and ECC trust points:

crypto pki trustpoint testrsa-ca

 usage ike

 subject-name CN=testrouter

 enrollment profile testrsa-prof

 revocation-check none

 rsakeypair rsakey

crypto pki trustpoint testecc-ca

 usage ike

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

 subject-name CN=testrouter

 enrollment profile testecc-prof

 revocation-check none

 eckeypair ecckey

The router is ready to enroll its certificate through the test CAs.

3.4 (Optional) Enable HTTP Basic Authentication

On top of TLS certificate client authentication, EST offers HTTP Basic and Digest Authentication. Cisco IOS

Software can support HTTP Basic Authentication that is performed after the certificate client authentication.

Certificate-less client authentication is not currently supported. To allow for HTTP Basic Authentication in Cisco IOS

Software, use this command:

ip http client connection forceclose

The enrollment profiles (testrsa-prof, testecc-prof) used above also should contain the authentication URL

and the username (estuser) and password (estpwd). For example:

crypto pki profile enrollment testrsa-prof

 method-est

 authentication url https://10.0.1.88:8085

 enrollment url https://estuser:estpwd@10.0.1.88:8085

 enrollment credential LDevID

Alternatively, the enrollment URL could remain https://10.0.1.88:8085, but then an HTTP client username

and password would need to be configured on the router:

ip http client username estuser

ip http client password estpwd

The libEST server by default supports TLS certificate client authentication and HTTP Basic and Digest

Authentication. So, finally the –o or –n option configured in scripts runserverrsa.sh and runserverecc.sh in

Section 2.2 need be removed and the server scripts restarted.

4. Test IOS EST client with the CAs

To complete the enrollment, first authenticate and then enroll the trust points in the router:

crypto pki authenticate testrsa-ca

crypto pki enroll testrsa-ca

crypto pki authenticate testecc-ca

crypto pki enroll testecc-ca

At this point the router should have received two certificates from the CA. To check the certificates provisioned you

can use the following commands:

show crypto pki certificate verbose testrsa-ca

show crypto pki certificate verbose testecc-ca

In the event that an enrollment fails, the administrator can stop an enrollment and clear the certificates to reauthenticate

and enroll using

https://10.0.1.88:8085/

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

no crypto pki enroll testrsa-ca

no crypto pki certificate chain testrsa-ca

For debugging purposes on the router, there are a number of available debugs, such as

debug crypto pki transactions

debug crypto pki messages

debug crypto pki validation

debug crypto pki callbacks

After completing all the above steps, you should have two certificates provisioned on the routers. One of them should

be RSA, and the other one ECC. These certificates can be used for authentication of various services like IKE (VPN)

or HTTPS.

Conclusion
EST is a more secure and flexible certificate provisioning protocol with many advantages over its predecessor, SCEP.

EST was standardized in 2013. Cisco IOS Software and Cisco IOS XE already support EST. In this document we saw

how to set it up to enroll with libEST’s EST server. Cisco IOS Software can be used with any CA or RA that supports

EST. Because of its advantages, we expect EST’s adoption among CAs and products to increase in various technology

verticals.

References
EST RFC 7030: http://tools.ietf.org/html/rfc7030

libEST: https://github.com/cisco/libest

Cisco IOS EST client support:

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/15-mt/sec-pki-15-mt-book/sec-est-

client-supp-pki.html

Cisco IOS XE EST client support:

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/xe-3s/sec-pki-xe-3s-book/sec-est-

client-supp-pki.html

Acknowledgments
Panos Kampanakis (panosk[at]cisco[dot]com)

Technical Marketing Engineer

Thanks to Peter Panburana and Mike Luken for their valuable feedback.

http://tools.ietf.org/html/rfc7030
https://github.com/cisco/libest
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/15-mt/sec-pki-15-mt-book/sec-est-client-supp-pki.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/15-mt/sec-pki-15-mt-book/sec-est-client-supp-pki.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/xe-3s/sec-pki-xe-3s-book/sec-est-client-supp-pki.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/xe-3s/sec-pki-xe-3s-book/sec-est-client-supp-pki.html

 Cisco IOS EST client with libEST CA server

© 2016 Cisco Systems, Inc. All rights reserved.

