
             Open Source Used In JVDI Client for Windows 14.0  1

 

 

 

 

 

Open Source Used In JVDI Client for
Windows 14.0

 

 

 

 

Cisco Systems, Inc.
www.cisco.com

 
Cisco has more than 200 offices worldwide.
Addresses, phone numbers, and fax numbers
are listed on the Cisco website at
www.cisco.com/go/offices.

 
Text Part Number: 78EE117C99-1129986855

www.cisco.com
www.cisco.com/go/offices.


             Open Source Used In JVDI Client for Windows 14.0  2

This document contains licenses and notices for open source software used in this product.

With respect to the free/open source software listed in this document, if you have any

questions or wish to receive a copy of any source code to which you may be entitled under

the applicable free/open source license(s) (such as the GNU Lesser/General Public License),

please contact us at external-opensource-requests@cisco.com.

 

In your requests please include the following reference number 78EE117C99-1129986855

 

 

Contents 

 

1.1 opus 1.0 

     1.1.1 Available under license 

1.2 nanopb 0.3.8 

     1.2.1 Available under license 

1.3 glib 2.66.4 

     1.3.1 Available under license 

1.4 boost 1.65.1 

     1.4.1 Available under license 

1.5 protobuf 3.7.1 

1.6 libsrtp 2.2.0 

     1.6.1 Available under license 

1.7 sipcc 12.8.0 

     1.7.1 Available under license 

1.8 expat 2.2.10 

     1.8.1 Available under license 

1.9 zlib 1.2.11 

     1.9.1 Available under license 

1.10 udt 1.0.3 

     1.10.1 Available under license 

1.11 c-ares 1.17.1 

     1.11.1 Available under license 

1.12 sqlite 3.33.0 

     1.12.1 Available under license 

1.13 pcre 8.44 

     1.13.1 Available under license 

1.14 json-cpp 1.9.4 



             Open Source Used In JVDI Client for Windows 14.0  3

     1.14.1 Available under license 

1.15 gstreamer 0.10.30.1 

     1.15.1 Available under license 

1.16 sql-cipher 4.4.1 

     1.16.1 Available under license 

1.17 curl 7.74.0 

     1.17.1 Available under license 

1.18 json-c 0.15 

     1.18.1 Available under license 

1.19 jansson 2.12 

     1.19.1 Available under license 

1.20 speexdsp 1.2.0 

     1.20.1 Available under license 

1.21 libjpeg 9d 

     1.21.1 Available under license 

1.22 apr 1.7.0 

     1.22.1 Available under license 

1.23 libxml 2.9.10 

     1.23.1 Available under license 

1.24 opencore-amr 0.1.5 

     1.24.1 Available under license 

1.25 zlib 1.2.3 

     1.25.1 Available under license 

 

1.1 opus 1.0 
1.1.1 Available under license : 

Copyright 2001-2011 Xiph.Org, Skype Limited, Octasic,

                   Jean-Marc Valin, Timothy B. Terriberry,

                   CSIRO, Gregory Maxwell, Mark Borgerding,

                   Erik de Castro Lopo

 

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

 

- Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

 

- Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

 



             Open Source Used In JVDI Client for Windows 14.0  4

- Neither the name of Internet Society, IETF or IETF Trust, nor the

names of specific contributors, may be used to endorse or promote

products derived from this software without specific prior written

permission.

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 

Opus is subject to the royalty-free patent licenses which are

specified at:

 

Xiph.Org Foundation:

https://datatracker.ietf.org/ipr/1524/

 

Microsoft Corporation:

https://datatracker.ietf.org/ipr/1914/

 

Broadcom Corporation:

https://datatracker.ietf.org/ipr/1526/

 

1.2 nanopb 0.3.8 
1.2.1 Available under license : 

Copyright (c) 2011 Petteri Aimonen <jpa at nanopb.mail.kapsi.fi>

 

This software is provided 'as-is', without any express or

implied warranty. In no event will the authors be held liable

for any damages arising from the use of this software.

 

Permission is granted to anyone to use this software for any

purpose, including commercial applications, and to alter it and

redistribute it freely, subject to the following restrictions:

 

1. The origin of this software must not be misrepresented; you

  must not claim that you wrote the original software. If you use

  this software in a product, an acknowledgment in the product

  documentation would be appreciated but is not required.

 



             Open Source Used In JVDI Client for Windows 14.0  5

2. Altered source versions must be plainly marked as such, and

  must not be misrepresented as being the original software.

 

3. This notice may not be removed or altered from any source

  distribution.

 

1.3 glib 2.66.4 
1.3.1 Available under license : 

This work may be reproduced and distributed in whole or in part, in

any medium, physical or electronic, so as long as this copyright

notice remains intact and unchanged on all copies.  Commercial

redistribution is permitted and encouraged, but you may not

redistribute, in whole or in part, under terms more restrictive than

those under which you received it. If you redistribute a modified or

translated version of this work, you must also make the source code to

the modified or translated version available in electronic form

without charge.  However, mere aggregation as part of a larger work

shall not count as a modification for this purpose.

 

All code examples in this work are placed into the public domain,

and may be used, modified and redistributed without restriction.

 

BECAUSE THIS WORK IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE WORK, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE WORK "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.  SHOULD THE WORK PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY REPAIR OR CORRECTION.

 

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE WORK AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

WORK, EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

PCRE LICENCE

 

Please see the file LICENCE in the PCRE distribution for licensing details.

 

End

                  GNU LESSER GENERAL PUBLIC LICENSE

                      Version 2.1, February 1999

 



             Open Source Used In JVDI Client for Windows 14.0  6

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

 

[This is the first released version of the Lesser GPL.  It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

 

                           Preamble

 

 The licenses for most software are designed to take away your

freedom to share and change it.  By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

 

 This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

Free Software Foundation and other authors who decide to use it.  You

can use it too, but we suggest you first think carefully about whether

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

 

 When we speak of free software, we are referring to freedom of use,

not price.  Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

it in new free programs; and that you are informed that you can do

these things.

 

 To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights.  These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

 

 For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you.  You must make sure that they, too, receive or can get the source

code.  If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it.  And you must show them these terms so they know their rights.

 

 We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

 



             Open Source Used In JVDI Client for Windows 14.0  7

 To protect each distributor, we want to make it very clear that

there is no warranty for the free library.  Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author's reputation will not be affected by problems that might be

introduced by others.

 

 Finally, software patents pose a constant threat to the existence of

any free program.  We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder.  Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

 

 Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License.  This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

is quite different from the ordinary General Public License.  We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

 

 When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library.  The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom.  The Lesser General

Public License permits more lax criteria for linking other code with

the library.

 

 We call this license the "Lesser" General Public License because it

does Less to protect the user's freedom than the ordinary General

Public License.  It also provides other free software developers Less

of an advantage over competing non-free programs.  These disadvantages

are the reason we use the ordinary General Public License for many

libraries.  However, the Lesser license provides advantages in certain

special circumstances.

 

 For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard.  To achieve this, non-free programs must be

allowed to use the library.  A more frequent case is that a free

library does the same job as widely used non-free libraries.  In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

 

 In other cases, permission to use a particular library in non-free

programs enables a greater number of people to use a large body of

free software.  For example, permission to use the GNU C Library in



             Open Source Used In JVDI Client for Windows 14.0  8

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

 

 Although the Lesser General Public License is Less protective of the

users' freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

that program using a modified version of the Library.

 

 The precise terms and conditions for copying, distribution and

modification follow.  Pay close attention to the difference between a

"work based on the library" and a "work that uses the library".  The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

 

                 GNU LESSER GENERAL PUBLIC LICENSE

  TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 

 0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

 

 A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

 

 The "Library", below, refers to any such software library or work

which has been distributed under these terms.  A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language.  (Hereinafter, translation is

included without limitation in the term "modification".)

 

 "Source code" for a work means the preferred form of the work for

making modifications to it.  For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

 

 Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope.  The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it).  Whether that is true depends on what the Library does



             Open Source Used In JVDI Client for Windows 14.0  9

and what the program that uses the Library does.

 

 1. You may copy and distribute verbatim copies of the Library's

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

 

 You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

 

 2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

 

   a) The modified work must itself be a software library.

 

   b) You must cause the files modified to carry prominent notices

   stating that you changed the files and the date of any change.

 

   c) You must cause the whole of the work to be licensed at no

   charge to all third parties under the terms of this License.

 

   d) If a facility in the modified Library refers to a function or a

   table of data to be supplied by an application program that uses

   the facility, other than as an argument passed when the facility

   is invoked, then you must make a good faith effort to ensure that,

   in the event an application does not supply such function or

   table, the facility still operates, and performs whatever part of

   its purpose remains meaningful.

 

   (For example, a function in a library to compute square roots has

   a purpose that is entirely well-defined independent of the

   application.  Therefore, Subsection 2d requires that any

   application-supplied function or table used by this function must

   be optional: if the application does not supply it, the square

   root function must still compute square roots.)

 

These requirements apply to the modified work as a whole.  If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works.  But when you

distribute the same sections as part of a whole which is a work based



             Open Source Used In JVDI Client for Windows 14.0  10

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

 

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.

 

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

 

 3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library.  To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License.  (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.)  Do not make any other change in

these notices.

 

 Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

 

 This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

 

 4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

 

 If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

 

 5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library".  Such a

work, in isolation, is not a derivative work of the Library, and



             Open Source Used In JVDI Client for Windows 14.0  11

therefore falls outside the scope of this License.

 

 However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

library".  The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

 

 When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library.  The

threshold for this to be true is not precisely defined by law.

 

 If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work.  (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

 

 Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

 

 6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer's own use and reverse

engineering for debugging such modifications.

 

 You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License.  You must supply a copy of this License.  If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License.  Also, you must do one

of these things:

 

   a) Accompany the work with the complete corresponding

   machine-readable source code for the Library including whatever

   changes were used in the work (which must be distributed under

   Sections 1 and 2 above); and, if the work is an executable linked

   with the Library, with the complete machine-readable "work that

   uses the Library", as object code and/or source code, so that the



             Open Source Used In JVDI Client for Windows 14.0  12

   user can modify the Library and then relink to produce a modified

   executable containing the modified Library.  (It is understood

   that the user who changes the contents of definitions files in the

   Library will not necessarily be able to recompile the application

   to use the modified definitions.)

 

   b) Use a suitable shared library mechanism for linking with the

   Library.  A suitable mechanism is one that (1) uses at run time a

   copy of the library already present on the user's computer system,

   rather than copying library functions into the executable, and (2)

   will operate properly with a modified version of the library, if

   the user installs one, as long as the modified version is

   interface-compatible with the version that the work was made with.

 

   c) Accompany the work with a written offer, valid for at

   least three years, to give the same user the materials

   specified in Subsection 6a, above, for a charge no more

   than the cost of performing this distribution.

 

   d) If distribution of the work is made by offering access to copy

   from a designated place, offer equivalent access to copy the above

   specified materials from the same place.

 

   e) Verify that the user has already received a copy of these

   materials or that you have already sent this user a copy.

 

 For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it.  However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

 

 It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system.  Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

 

 7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

 



             Open Source Used In JVDI Client for Windows 14.0  13

   a) Accompany the combined library with a copy of the same work

   based on the Library, uncombined with any other library

   facilities.  This must be distributed under the terms of the

   Sections above.

 

   b) Give prominent notice with the combined library of the fact

   that part of it is a work based on the Library, and explaining

   where to find the accompanying uncombined form of the same work.

 

 8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License.  Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License.  However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

 

 9. You are not required to accept this License, since you have not

signed it.  However, nothing else grants you permission to modify or

distribute the Library or its derivative works.  These actions are

prohibited by law if you do not accept this License.  Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

 

 10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions.  You may not impose any further

restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

 

 11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License.  If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all.  For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

 

If any portion of this section is held invalid or unenforceable under any



             Open Source Used In JVDI Client for Windows 14.0  14

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

 

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices.  Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

 

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

 

 12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded.  In such case, this License incorporates the limitation as if

written in the body of this License.

 

 13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

 

Each version is given a distinguishing version number.  If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation.  If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

 

 14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission.  For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this.  Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

 

                           NO WARRANTY



             Open Source Used In JVDI Client for Windows 14.0  15

 

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU.  SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

 

                    END OF TERMS AND CONDITIONS

 

          How to Apply These Terms to Your New Libraries

 

 If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that

everyone can redistribute and change.  You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

 

 To apply these terms, attach the following notices to the library.  It is

safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

 

   <one line to give the library's name and a brief idea of what it does.>

   Copyright (C) <year>  <name of author>

 

   This library is free software; you can redistribute it and/or

   modify it under the terms of the GNU Lesser General Public

   License as published by the Free Software Foundation; either

   version 2.1 of the License, or (at your option) any later version.

 

   This library is distributed in the hope that it will be useful,

   but WITHOUT ANY WARRANTY; without even the implied warranty of

   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU



             Open Source Used In JVDI Client for Windows 14.0  16

   Lesser General Public License for more details.

 

   You should have received a copy of the GNU Lesser General Public

   License along with this library; if not, write to the Free Software

   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

 

Also add information on how to contact you by electronic and paper mail.

 

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the library, if

necessary.  Here is a sample; alter the names:

 

 Yoyodyne, Inc., hereby disclaims all copyright interest in the

 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 

 <signature of Ty Coon>, 1 April 1990

 Ty Coon, President of Vice

 

That's all there is to it!

 

1.4 boost 1.65.1 
1.4.1 Available under license : 

Boost Software License - Version 1.0 - August 17th, 2003

 

Permission is hereby granted, free of charge, to any person or organization

obtaining a copy of the software and accompanying documentation covered by

this license (the "Software") to use, reproduce, display, distribute,

execute, and transmit the Software, and to prepare derivative works of the

Software, and to permit third-parties to whom the Software is furnished to

do so, all subject to the following:

 

The copyright notices in the Software and this entire statement, including

the above license grant, this restriction and the following disclaimer,

must be included in all copies of the Software, in whole or in part, and

all derivative works of the Software, unless such copies or derivative

works are solely in the form of machine-executable object code generated by

a source language processor.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT

SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.



             Open Source Used In JVDI Client for Windows 14.0  17

 

1.5 protobuf 3.7.1 

 

1.6 libsrtp 2.2.0 
1.6.1 Available under license : 

/*

*	

* Copyright (c) 2001-2017 Cisco Systems, Inc.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

*   Redistributions of source code must retain the above copyright

*   notice, this list of conditions and the following disclaimer.

*

*   Redistributions in binary form must reproduce the above

*   copyright notice, this list of conditions and the following

*   disclaimer in the documentation and/or other materials provided

*   with the distribution.

*

*   Neither the name of the Cisco Systems, Inc. nor the names of its

*   contributors may be used to endorse or promote products derived

*   from this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

*

*/

 



             Open Source Used In JVDI Client for Windows 14.0  18

1.7 sipcc 12.8.0 
1.7.1 Available under license : 

 

                                Apache License

                          Version 2.0, January 2004

                       http://www.apache.org/licenses/

 

  TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 

  1. Definitions.

 

     "License" shall mean the terms and conditions for use, reproduction,

     and distribution as defined by Sections 1 through 9 of this document.

 

     "Licensor" shall mean the copyright owner or entity authorized by

     the copyright owner that is granting the License.

 

     "Legal Entity" shall mean the union of the acting entity and all

     other entities that control, are controlled by, or are under common

     control with that entity. For the purposes of this definition,

     "control" means (i) the power, direct or indirect, to cause the

     direction or management of such entity, whether by contract or

     otherwise, or (ii) ownership of fifty percent (50%) or more of the

     outstanding shares, or (iii) beneficial ownership of such entity.

 

     "You" (or "Your") shall mean an individual or Legal Entity

     exercising permissions granted by this License.

 

     "Source" form shall mean the preferred form for making modifications,

     including but not limited to software source code, documentation

     source, and configuration files.

 

     "Object" form shall mean any form resulting from mechanical

     transformation or translation of a Source form, including but

     not limited to compiled object code, generated documentation,

     and conversions to other media types.

 

     "Work" shall mean the work of authorship, whether in Source or

     Object form, made available under the License, as indicated by a

     copyright notice that is included in or attached to the work

     (an example is provided in the Appendix below).

 

     "Derivative Works" shall mean any work, whether in Source or Object

     form, that is based on (or derived from) the Work and for which the

     editorial revisions, annotations, elaborations, or other modifications

     represent, as a whole, an original work of authorship. For the purposes



             Open Source Used In JVDI Client for Windows 14.0  19

     of this License, Derivative Works shall not include works that remain

     separable from, or merely link (or bind by name) to the interfaces of,

     the Work and Derivative Works thereof.

 

     "Contribution" shall mean any work of authorship, including

     the original version of the Work and any modifications or additions

     to that Work or Derivative Works thereof, that is intentionally

     submitted to Licensor for inclusion in the Work by the copyright owner

     or by an individual or Legal Entity authorized to submit on behalf of

     the copyright owner. For the purposes of this definition, "submitted"

     means any form of electronic, verbal, or written communication sent

     to the Licensor or its representatives, including but not limited to

     communication on electronic mailing lists, source code control systems,

     and issue tracking systems that are managed by, or on behalf of, the

     Licensor for the purpose of discussing and improving the Work, but

     excluding communication that is conspicuously marked or otherwise

     designated in writing by the copyright owner as "Not a Contribution."

 

     "Contributor" shall mean Licensor and any individual or Legal Entity

     on behalf of whom a Contribution has been received by Licensor and

     subsequently incorporated within the Work.

 

  2. Grant of Copyright License. Subject to the terms and conditions of

     this License, each Contributor hereby grants to You a perpetual,

     worldwide, non-exclusive, no-charge, royalty-free, irrevocable

     copyright license to reproduce, prepare Derivative Works of,

     publicly display, publicly perform, sublicense, and distribute the

     Work and such Derivative Works in Source or Object form.

 

  3. Grant of Patent License. Subject to the terms and conditions of

     this License, each Contributor hereby grants to You a perpetual,

     worldwide, non-exclusive, no-charge, royalty-free, irrevocable

     (except as stated in this section) patent license to make, have made,

     use, offer to sell, sell, import, and otherwise transfer the Work,

     where such license applies only to those patent claims licensable

     by such Contributor that are necessarily infringed by their

     Contribution(s) alone or by combination of their Contribution(s)

     with the Work to which such Contribution(s) was submitted. If You

     institute patent litigation against any entity (including a

     cross-claim or counterclaim in a lawsuit) alleging that the Work

     or a Contribution incorporated within the Work constitutes direct

     or contributory patent infringement, then any patent licenses

     granted to You under this License for that Work shall terminate

     as of the date such litigation is filed.

 

  4. Redistribution. You may reproduce and distribute copies of the

     Work or Derivative Works thereof in any medium, with or without

     modifications, and in Source or Object form, provided that You



             Open Source Used In JVDI Client for Windows 14.0  20

     meet the following conditions:

 

     (a) You must give any other recipients of the Work or

         Derivative Works a copy of this License; and

 

     (b) You must cause any modified files to carry prominent notices

         stating that You changed the files; and

 

     (c) You must retain, in the Source form of any Derivative Works

         that You distribute, all copyright, patent, trademark, and

         attribution notices from the Source form of the Work,

         excluding those notices that do not pertain to any part of

         the Derivative Works; and

 

     (d) If the Work includes a "NOTICE" text file as part of its

         distribution, then any Derivative Works that You distribute must

         include a readable copy of the attribution notices contained

         within such NOTICE file, excluding those notices that do not

         pertain to any part of the Derivative Works, in at least one

         of the following places: within a NOTICE text file distributed

         as part of the Derivative Works; within the Source form or

         documentation, if provided along with the Derivative Works; or,

         within a display generated by the Derivative Works, if and

         wherever such third-party notices normally appear. The contents

         of the NOTICE file are for informational purposes only and

         do not modify the License. You may add Your own attribution

         notices within Derivative Works that You distribute, alongside

         or as an addendum to the NOTICE text from the Work, provided

         that such additional attribution notices cannot be construed

         as modifying the License.

 

     You may add Your own copyright statement to Your modifications and

     may provide additional or different license terms and conditions

     for use, reproduction, or distribution of Your modifications, or

     for any such Derivative Works as a whole, provided Your use,

     reproduction, and distribution of the Work otherwise complies with

     the conditions stated in this License.

 

  5. Submission of Contributions. Unless You explicitly state otherwise,

     any Contribution intentionally submitted for inclusion in the Work

     by You to the Licensor shall be under the terms and conditions of

     this License, without any additional terms or conditions.

     Notwithstanding the above, nothing herein shall supersede or modify

     the terms of any separate license agreement you may have executed

     with Licensor regarding such Contributions.

 

  6. Trademarks. This License does not grant permission to use the trade

     names, trademarks, service marks, or product names of the Licensor,



             Open Source Used In JVDI Client for Windows 14.0  21

     except as required for reasonable and customary use in describing the

     origin of the Work and reproducing the content of the NOTICE file.

 

  7. Disclaimer of Warranty. Unless required by applicable law or

     agreed to in writing, Licensor provides the Work (and each

     Contributor provides its Contributions) on an "AS IS" BASIS,

     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

     implied, including, without limitation, any warranties or conditions

     of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

     PARTICULAR PURPOSE. You are solely responsible for determining the

     appropriateness of using or redistributing the Work and assume any

     risks associated with Your exercise of permissions under this License.

 

  8. Limitation of Liability. In no event and under no legal theory,

     whether in tort (including negligence), contract, or otherwise,

     unless required by applicable law (such as deliberate and grossly

     negligent acts) or agreed to in writing, shall any Contributor be

     liable to You for damages, including any direct, indirect, special,

     incidental, or consequential damages of any character arising as a

     result of this License or out of the use or inability to use the

     Work (including but not limited to damages for loss of goodwill,

     work stoppage, computer failure or malfunction, or any and all

     other commercial damages or losses), even if such Contributor

     has been advised of the possibility of such damages.

 

  9. Accepting Warranty or Additional Liability. While redistributing

     the Work or Derivative Works thereof, You may choose to offer,

     and charge a fee for, acceptance of support, warranty, indemnity,

     or other liability obligations and/or rights consistent with this

     License. However, in accepting such obligations, You may act only

     on Your own behalf and on Your sole responsibility, not on behalf

     of any other Contributor, and only if You agree to indemnify,

     defend, and hold each Contributor harmless for any liability

     incurred by, or claims asserted against, such Contributor by reason

     of your accepting any such warranty or additional liability.

 

  END OF TERMS AND CONDITIONS

 

  APPENDIX: How to apply the Apache License to your work.

 

     To apply the Apache License to your work, attach the following

     boilerplate notice, with the fields enclosed by brackets "[]"

     replaced with your own identifying information. (Don't include

     the brackets!)  The text should be enclosed in the appropriate

     comment syntax for the file format. We also recommend that a

     file or class name and description of purpose be included on the

     same "printed page" as the copyright notice for easier

     identification within third-party archives.



             Open Source Used In JVDI Client for Windows 14.0  22

 

  Copyright [2007] Neal Norwitz

  Portions Copyright [2007] Google Inc.

 

  Licensed under the Apache License, Version 2.0 (the "License");

  you may not use this file except in compliance with the License.

  You may obtain a copy of the License at

 

      http://www.apache.org/licenses/LICENSE-2.0

 

  Unless required by applicable law or agreed to in writing, software

  distributed under the License is distributed on an "AS IS" BASIS,

  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

  See the License for the specific language governing permissions and

  limitations under the License.

Copyright (c) 2015, NATTools

All rights reserved.

 

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

 

* Redistributions of source code must retain the above copyright notice, this

 list of conditions and the following disclaimer.

 

* Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# This file contains a list of people who've made non-trivial

# contribution to the Google C++ Mocking Framework project.  People

# who commit code to the project are encouraged to add their names

# here.  Please keep the list sorted by first names.

 

Benoit Sigoure <tsuna@google.com>

Bogdan Piloca <boo@google.com>

Chandler Carruth <chandlerc@google.com>

Dave MacLachlan <dmaclach@gmail.com>

David Anderson <danderson@google.com>



             Open Source Used In JVDI Client for Windows 14.0  23

Dean Sturtevant

Gene Volovich <gv@cite.com>

Hal Burch <gmock@hburch.com>

Jeffrey Yasskin <jyasskin@google.com>

Jim Keller <jimkeller@google.com>

Joe Walnes <joe@truemesh.com>

Jon Wray <jwray@google.com>

Keir Mierle <mierle@gmail.com>

Keith Ray <keith.ray@gmail.com>

Kostya Serebryany <kcc@google.com>

Lev Makhlis

Manuel Klimek <klimek@google.com>

Mario Tanev <radix@google.com>

Mark Paskin

Markus Heule <markus.heule@gmail.com>

Matthew Simmons <simmonmt@acm.org>

Mike Bland <mbland@google.com>

Neal Norwitz <nnorwitz@gmail.com>

Nermin Ozkiranartli <nermin@google.com>

Owen Carlsen <ocarlsen@google.com>

Paneendra Ba <paneendra@google.com>

Paul Menage <menage@google.com>

Piotr Kaminski <piotrk@google.com>

Russ Rufer <russ@pentad.com>

Sverre Sundsdal <sundsdal@gmail.com>

Takeshi Yoshino <tyoshino@google.com>

Vadim Berman <vadimb@google.com>

Vlad Losev <vladl@google.com>

Wolfgang Klier <wklier@google.com>

Zhanyong Wan <wan@google.com>

Copyright (c) 2015, NPPT

All rights reserved.

 

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

 

* Redistributions of source code must retain the above copyright notice, this

 list of conditions and the following disclaimer.

 

* Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL



             Open Source Used In JVDI Client for Windows 14.0  24

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2008, Google Inc.

All rights reserved.

 

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

 

   * Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

   * Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the

distribution.

   * Neither the name of Google Inc. nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# This file contains a list of people who've made non-trivial

# contribution to the Google C++ Testing Framework project.  People

# who commit code to the project are encouraged to add their names

# here.  Please keep the list sorted by first names.

 

Ajay Joshi <jaj@google.com>

Balzs Dn <balazs.dan@gmail.com>

Bharat Mediratta <bharat@menalto.com>

Chandler Carruth <chandlerc@google.com>

Chris Prince <cprince@google.com>

Chris Taylor <taylorc@google.com>

Dan Egnor <egnor@google.com>

Eric Roman <eroman@chromium.org>

Hady Zalek <hady.zalek@gmail.com>

Jeffrey Yasskin <jyasskin@google.com>



             Open Source Used In JVDI Client for Windows 14.0  25

Ji Sigursson <joi@google.com>

Keir Mierle <mierle@gmail.com>

Keith Ray <keith.ray@gmail.com>

Kenton Varda <kenton@google.com>

Manuel Klimek <klimek@google.com>

Markus Heule <markus.heule@gmail.com>

Mika Raento <mikie@iki.fi>

Mikls Fazekas <mfazekas@szemafor.com>

Pasi Valminen <pasi.valminen@gmail.com>

Patrick Hanna <phanna@google.com>

Patrick Riley <pfr@google.com>

Peter Kaminski <piotrk@google.com>

Preston Jackson <preston.a.jackson@gmail.com>

Rainer Klaffenboeck <rainer.klaffenboeck@dynatrace.com>

Russ Cox <rsc@google.com>

Russ Rufer <russ@pentad.com>

Sean Mcafee <eefacm@gmail.com>

Sigurur sgeirsson <siggi@google.com>

Tracy Bialik <tracy@pentad.com>

Vadim Berman <vadimb@google.com>

Vlad Losev <vladl@google.com>

Zhanyong Wan <wan@google.com>

 

1.8 expat 2.2.10 
1.8.1 Available under license : 

Copyright (c) 1998-2000 Thai Open Source Software Center Ltd and Clark Cooper

Copyright (c) 2001-2019 Expat maintainers

 

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

 

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



             Open Source Used In JVDI Client for Windows 14.0  26

 

1.9 zlib 1.2.11 
1.9.1 Available under license : 

Boost Software License - Version 1.0 - August 17th, 2003

 

Permission is hereby granted, free of charge, to any person or organization

obtaining a copy of the software and accompanying documentation covered by

this license (the "Software") to use, reproduce, display, distribute,

execute, and transmit the Software, and to prepare derivative works of the

Software, and to permit third-parties to whom the Software is furnished to

do so, all subject to the following:

 

The copyright notices in the Software and this entire statement, including

the above license grant, this restriction and the following disclaimer,

must be included in all copies of the Software, in whole or in part, and

all derivative works of the Software, unless such copies or derivative

works are solely in the form of machine-executable object code generated by

a source language processor.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT

SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

 

1.10 udt 1.0.3 
1.10.1 Available under license : 

No license file was found, but licenses were detected in source scan.

 

/*********************************************************************************

* Copyright (c) 2010 Forschungszentrum Juelich GmbH

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

* (1) Redistributions of source code must retain the above copyright notice,

* this list of conditions and the disclaimer at the end. Redistributions in

* binary form must reproduce the above copyright notice, this list of

* conditions and the following disclaimer in the documentation and/or other

* materials provided with the distribution.

*



             Open Source Used In JVDI Client for Windows 14.0  27

* (2) Neither the name of Forschungszentrum Juelich GmbH nor the names of its

* contributors may be used to endorse or promote products derived from this

* software without specific prior written permission.

*

* DISCLAIMER

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

* POSSIBILITY OF SUCH DAMAGE.

*********************************************************************************/

 

Found in path(s):

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/PacketUtil.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/Acknowledgement.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/TestServerSocket.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDPEndPoint.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/Shutdown.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTSession.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/ReceiveFile.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/receiver/ReceiverLossList.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTInputStream.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/TestSocket.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/sender/SenderLossList.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/UDTStatistics.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/PacketFactory.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTPacket.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/ConnectionHandshake.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/SendFile.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTServerSocket2.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/ControlInformation.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/receiver/PacketHistoryWindow.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/DataPacket.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/receiver/PacketPairWindow.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/receiver/AckHistoryEntry.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTReceiver.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/unicore/FufexSend.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/ControlPacket.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/unicore/FufexReceive.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/ClientSession.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/UserDefined.java



             Open Source Used In JVDI Client for Windows 14.0  28

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/MessageDropRequest.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/receiver/ReceiverLossListEntry.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/receiver/AckHistoryWindow.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/Acknowledgment2.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTSocket.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTClient.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTServerSocket.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/Util.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/Destination.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/ServerSession.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTSender.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/UDTThreadFactory.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-

jar/udt/packets/NegativeAcknowledgement.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/UDTOutputStream.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/util/CircularArray.java

* /opt/cola/permits/1129996060_1612418600.87/0/udt-1-0-3-sources-1-jar/udt/packets/KeepAlive.java

 

1.11 c-ares 1.17.1 
1.11.1 Available under license : 

# c-ares license

 

Copyright (c) 2007 - 2018, Daniel Stenberg with many contributors, see AUTHORS

file.

 

Copyright 1998 by the Massachusetts Institute of Technology.

 

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted, provided that

the above copyright notice appear in all copies and that both that copyright

notice and this permission notice appear in supporting documentation, and that

the name of M.I.T. not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission.

M.I.T. makes no representations about the suitability of this software for any

purpose.  It is provided "as is" without express or implied warranty.

 

1.12 sqlite 3.33.0 
1.12.1 Available under license : 

The author disclaims copyright to this source code.  In place of

a legal notice, here is a blessing:

 

   May you do good and not evil.

   May you find forgiveness for yourself and forgive others.

   May you share freely, never taking more than you give.



             Open Source Used In JVDI Client for Windows 14.0  29

 

1.13 pcre 8.44 
1.13.1 Available under license : 

PCRE LICENCE

 

Please see the file LICENCE in the PCRE distribution for licensing details.

 

End

PCRE LICENCE

------------

 

PCRE is a library of functions to support regular expressions whose syntax

and semantics are as close as possible to those of the Perl 5 language.

 

Release 8 of PCRE is distributed under the terms of the "BSD" licence, as

specified below. The documentation for PCRE, supplied in the "doc"

directory, is distributed under the same terms as the software itself. The data

in the testdata directory is not copyrighted and is in the public domain.

 

The basic library functions are written in C and are freestanding. Also

included in the distribution is a set of C++ wrapper functions, and a

just-in-time compiler that can be used to optimize pattern matching. These

are both optional features that can be omitted when the library is built.

 

 

THE BASIC LIBRARY FUNCTIONS

---------------------------

 

Written by:       Philip Hazel

Email local part: ph10

Email domain:     cam.ac.uk

 

University of Cambridge Computing Service,

Cambridge, England.

 

Copyright (c) 1997-2020 University of Cambridge

All rights reserved.

 

 

PCRE JUST-IN-TIME COMPILATION SUPPORT

-------------------------------------

 

Written by:       Zoltan Herczeg

Email local part: hzmester

Email domain:     freemail.hu

 



             Open Source Used In JVDI Client for Windows 14.0  30

Copyright(c) 2010-2020 Zoltan Herczeg

All rights reserved.

 

 

STACK-LESS JUST-IN-TIME COMPILER

--------------------------------

 

Written by:       Zoltan Herczeg

Email local part: hzmester

Email domain:     freemail.hu

 

Copyright(c) 2009-2020 Zoltan Herczeg

All rights reserved.

 

 

THE C++ WRAPPER FUNCTIONS

-------------------------

 

Contributed by:   Google Inc.

 

Copyright (c) 2007-2012, Google Inc.

All rights reserved.

 

 

THE "BSD" LICENCE

-----------------

 

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

 

   * Redistributions of source code must retain the above copyright notice,

     this list of conditions and the following disclaimer.

 

   * Redistributions in binary form must reproduce the above copyright

     notice, this list of conditions and the following disclaimer in the

     documentation and/or other materials provided with the distribution.

 

   * Neither the name of the University of Cambridge nor the name of Google

     Inc. nor the names of their contributors may be used to endorse or

     promote products derived from this software without specific prior

     written permission.

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF



             Open Source Used In JVDI Client for Windows 14.0  31

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

 

End

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

 

1. Redistributions of source code must retain the copyright

  notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the copyright

  notice, this list of conditions and the following disclaimer in the

  documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products

  derived from this software without specific prior written permission.

 

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 

1.14 json-cpp 1.9.4 
1.14.1 Available under license : 

The JsonCpp library's source code, including accompanying documentation,

tests and demonstration applications, are licensed under the following

conditions...

 

Baptiste Lepilleur and The JsonCpp Authors explicitly disclaim copyright in all

jurisdictions which recognize such a disclaimer. In such jurisdictions,

this software is released into the Public Domain.

 

In jurisdictions which do not recognize Public Domain property (e.g. Germany as of

2010), this software is Copyright (c) 2007-2010 by Baptiste Lepilleur and

The JsonCpp Authors, and is released under the terms of the MIT License (see below).

 

In jurisdictions which recognize Public Domain property, the user of this

software may choose to accept it either as 1) Public Domain, 2) under the



             Open Source Used In JVDI Client for Windows 14.0  32

conditions of the MIT License (see below), or 3) under the terms of dual

Public Domain/MIT License conditions described here, as they choose.

 

The MIT License is about as close to Public Domain as a license can get, and is

described in clear, concise terms at:

 

  http://en.wikipedia.org/wiki/MIT_License

 

The full text of the MIT License follows:

 

========================================================================

Copyright (c) 2007-2010 Baptiste Lepilleur and The JsonCpp Authors

 

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies

of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

 

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

========================================================================

(END LICENSE TEXT)

 

The MIT license is compatible with both the GPL and commercial

software, affording one all of the rights of Public Domain with the

minor nuisance of being required to keep the above copyright notice

and license text in the source code. Note also that by accepting the

Public Domain "license" you can re-license your copy using whatever

license you like.

 

1.15 gstreamer 0.10.30.1 



             Open Source Used In JVDI Client for Windows 14.0  33

1.15.1 Available under license : 
		  GNU LIBRARY GENERAL PUBLIC LICENSE

		       Version 2, June 1991

 

Copyright (C) 1991 Free Software Foundation, Inc.

                   51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

 

[This is the first released version of the library GPL.  It is

numbered 2 because it goes with version 2 of the ordinary GPL.]

 

			    Preamble

 

 The licenses for most software are designed to take away your

freedom to share and change it.  By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

 

 This license, the Library General Public License, applies to some

specially designated Free Software Foundation software, and to any

other libraries whose authors decide to use it.  You can use it for

your libraries, too.

 

 When we speak of free software, we are referring to freedom, not

price.  Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

 

 To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if

you distribute copies of the library, or if you modify it.

 

 For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you.  You must make sure that they, too, receive or can get the source

code.  If you link a program with the library, you must provide

complete object files to the recipients so that they can relink them

with the library, after making changes to the library and recompiling

it.  And you must show them these terms so they know their rights.

 

 Our method of protecting your rights has two steps: (1) copyright

the library, and (2) offer you this license which gives you legal

permission to copy, distribute and/or modify the library.

 



             Open Source Used In JVDI Client for Windows 14.0  34

 Also, for each distributor's protection, we want to make certain

that everyone understands that there is no warranty for this free

library.  If the library is modified by someone else and passed on, we

want its recipients to know that what they have is not the original

version, so that any problems introduced by others will not reflect on

the original authors' reputations.

 

 Finally, any free program is threatened constantly by software

patents.  We wish to avoid the danger that companies distributing free

software will individually obtain patent licenses, thus in effect

transforming the program into proprietary software.  To prevent this,

we have made it clear that any patent must be licensed for everyone's

free use or not licensed at all.

 

 Most GNU software, including some libraries, is covered by the ordinary

GNU General Public License, which was designed for utility programs.  This

license, the GNU Library General Public License, applies to certain

designated libraries.  This license is quite different from the ordinary

one; be sure to read it in full, and don't assume that anything in it is

the same as in the ordinary license.

 

 The reason we have a separate public license for some libraries is that

they blur the distinction we usually make between modifying or adding to a

program and simply using it.  Linking a program with a library, without

changing the library, is in some sense simply using the library, and is

analogous to running a utility program or application program.  However, in

a textual and legal sense, the linked executable is a combined work, a

derivative of the original library, and the ordinary General Public License

treats it as such.

 

 Because of this blurred distinction, using the ordinary General

Public License for libraries did not effectively promote software

sharing, because most developers did not use the libraries.  We

concluded that weaker conditions might promote sharing better.

 

 However, unrestricted linking of non-free programs would deprive the

users of those programs of all benefit from the free status of the

libraries themselves.  This Library General Public License is intended to

permit developers of non-free programs to use free libraries, while

preserving your freedom as a user of such programs to change the free

libraries that are incorporated in them.  (We have not seen how to achieve

this as regards changes in header files, but we have achieved it as regards

changes in the actual functions of the Library.)  The hope is that this

will lead to faster development of free libraries.

 

 The precise terms and conditions for copying, distribution and

modification follow.  Pay close attention to the difference between a

"work based on the library" and a "work that uses the library".  The



             Open Source Used In JVDI Client for Windows 14.0  35

former contains code derived from the library, while the latter only

works together with the library.

 

 Note that it is possible for a library to be covered by the ordinary

General Public License rather than by this special one.

 

		  GNU LIBRARY GENERAL PUBLIC LICENSE

  TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 

 0. This License Agreement applies to any software library which

contains a notice placed by the copyright holder or other authorized

party saying it may be distributed under the terms of this Library

General Public License (also called "this License").  Each licensee is

addressed as "you".

 

 A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

 

 The "Library", below, refers to any such software library or work

which has been distributed under these terms.  A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language.  (Hereinafter, translation is

included without limitation in the term "modification".)

 

 "Source code" for a work means the preferred form of the work for

making modifications to it.  For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

 

 Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope.  The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it).  Whether that is true depends on what the Library does

and what the program that uses the Library does.

 

 1. You may copy and distribute verbatim copies of the Library's

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.



             Open Source Used In JVDI Client for Windows 14.0  36

 

 You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

 

 2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

 

   a) The modified work must itself be a software library.

 

   b) You must cause the files modified to carry prominent notices

   stating that you changed the files and the date of any change.

 

   c) You must cause the whole of the work to be licensed at no

   charge to all third parties under the terms of this License.

 

   d) If a facility in the modified Library refers to a function or a

   table of data to be supplied by an application program that uses

   the facility, other than as an argument passed when the facility

   is invoked, then you must make a good faith effort to ensure that,

   in the event an application does not supply such function or

   table, the facility still operates, and performs whatever part of

   its purpose remains meaningful.

 

   (For example, a function in a library to compute square roots has

   a purpose that is entirely well-defined independent of the

   application.  Therefore, Subsection 2d requires that any

   application-supplied function or table used by this function must

   be optional: if the application does not supply it, the square

   root function must still compute square roots.)

 

These requirements apply to the modified work as a whole.  If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works.  But when you

distribute the same sections as part of a whole which is a work based

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

 

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.



             Open Source Used In JVDI Client for Windows 14.0  37

 

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

 

 3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library.  To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License.  (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.)  Do not make any other change in

these notices.

 

 Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

 

 This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

 

 4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

 

 If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

 

 5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library".  Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

 

 However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

library".  The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

 

 When a "work that uses the Library" uses material from a header file



             Open Source Used In JVDI Client for Windows 14.0  38

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library.  The

threshold for this to be true is not precisely defined by law.

 

 If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work.  (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

 

 Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

 

 6. As an exception to the Sections above, you may also compile or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer's own use and reverse

engineering for debugging such modifications.

 

 You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License.  You must supply a copy of this License.  If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License.  Also, you must do one

of these things:

 

   a) Accompany the work with the complete corresponding

   machine-readable source code for the Library including whatever

   changes were used in the work (which must be distributed under

   Sections 1 and 2 above); and, if the work is an executable linked

   with the Library, with the complete machine-readable "work that

   uses the Library", as object code and/or source code, so that the

   user can modify the Library and then relink to produce a modified

   executable containing the modified Library.  (It is understood

   that the user who changes the contents of definitions files in the

   Library will not necessarily be able to recompile the application

   to use the modified definitions.)

 

   b) Accompany the work with a written offer, valid for at

   least three years, to give the same user the materials

   specified in Subsection 6a, above, for a charge no more



             Open Source Used In JVDI Client for Windows 14.0  39

   than the cost of performing this distribution.

 

   c) If distribution of the work is made by offering access to copy

   from a designated place, offer equivalent access to copy the above

   specified materials from the same place.

 

   d) Verify that the user has already received a copy of these

   materials or that you have already sent this user a copy.

 

 For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it.  However, as a special exception,

the source code distributed need not include anything that is normally

distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

 

 It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system.  Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

 

 7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

 

   a) Accompany the combined library with a copy of the same work

   based on the Library, uncombined with any other library

   facilities.  This must be distributed under the terms of the

   Sections above.

 

   b) Give prominent notice with the combined library of the fact

   that part of it is a work based on the Library, and explaining

   where to find the accompanying uncombined form of the same work.

 

 8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License.  Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License.  However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

 



             Open Source Used In JVDI Client for Windows 14.0  40

 9. You are not required to accept this License, since you have not

signed it.  However, nothing else grants you permission to modify or

distribute the Library or its derivative works.  These actions are

prohibited by law if you do not accept this License.  Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

 

 10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions.  You may not impose any further

restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

 

 11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License.  If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all.  For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

 

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

 

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices.  Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

 

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

 



             Open Source Used In JVDI Client for Windows 14.0  41

 12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded.  In such case, this License incorporates the limitation as if

written in the body of this License.

 

 13. The Free Software Foundation may publish revised and/or new

versions of the Library General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

 

Each version is given a distinguishing version number.  If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation.  If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

 

 14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission.  For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this.  Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

 

			    NO WARRANTY

 

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU.  SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING



             Open Source Used In JVDI Client for Windows 14.0  42

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

 

		     END OF TERMS AND CONDITIONS

 

    Appendix: How to Apply These Terms to Your New Libraries

 

 If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that

everyone can redistribute and change.  You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

 

 To apply these terms, attach the following notices to the library.  It is

safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

 

   <one line to give the library's name and a brief idea of what it does.>

   Copyright (C) <year>  <name of author>

 

   This library is free software; you can redistribute it and/or

   modify it under the terms of the GNU Library General Public

   License as published by the Free Software Foundation; either

   version 2 of the License, or (at your option) any later version.

 

   This library is distributed in the hope that it will be useful,

   but WITHOUT ANY WARRANTY; without even the implied warranty of

   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU

   Library General Public License for more details.

 

   You should have received a copy of the GNU Library General Public

   License along with this library; if not, write to the Free

   Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

 

Also add information on how to contact you by electronic and paper mail.

 

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the library, if

necessary.  Here is a sample; alter the names:

 

 Yoyodyne, Inc., hereby disclaims all copyright interest in the

 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 

 <signature of Ty Coon>, 1 April 1990

 Ty Coon, President of Vice



             Open Source Used In JVDI Client for Windows 14.0  43

 

That's all there is to it!

 

1.16 sql-cipher 4.4.1 
1.16.1 Available under license : 

The author disclaims copyright to this source code.  In place of

a legal notice, here is a blessing:

 

 *   May you do good and not evil.

 *   May you find forgiveness for yourself and forgive others.

 *   May you share freely, never taking more than you give.

The author disclaims copyright to this source code.  In place of

a legal notice, here is a blessing:

 

   May you do good and not evil.

   May you find forgiveness for yourself and forgive others.

   May you share freely, never taking more than you give.

Copyright (c) 2008, ZETETIC LLC

All rights reserved.

 

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

   * Redistributions of source code must retain the above copyright

     notice, this list of conditions and the following disclaimer.

   * Redistributions in binary form must reproduce the above copyright

     notice, this list of conditions and the following disclaimer in the

     documentation and/or other materials provided with the distribution.

   * Neither the name of the ZETETIC LLC nor the

     names of its contributors may be used to endorse or promote products

     derived from this software without specific prior written permission.

 

THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 

1.17 curl 7.74.0 



             Open Source Used In JVDI Client for Windows 14.0  44

1.17.1 Available under license : 
COPYRIGHT AND PERMISSION NOTICE

 

Copyright (c) 1996 - 2020, Daniel Stenberg, <daniel@haxx.se>, and many

contributors, see the THANKS file.

 

All rights reserved.

 

Permission to use, copy, modify, and distribute this software for any purpose

with or without fee is hereby granted, provided that the above copyright

notice and this permission notice appear in all copies.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS IN THE SOFTWARE.

 

Except as contained in this notice, the name of a copyright holder shall not

be used in advertising or otherwise to promote the sale, use or other dealings

in this Software without prior written authorization of the copyright holder.

 

1.18 json-c 0.15 
1.18.1 Available under license : 

 

Copyright (c) 2009-2012 Eric Haszlakiewicz

 

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"),

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

 

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.



             Open Source Used In JVDI Client for Windows 14.0  45

 

----------------------------------------------------------------

 

Copyright (c) 2004, 2005 Metaparadigm Pte Ltd

 

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"),

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

 

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

 

1.19 jansson 2.12 
1.19.1 Available under license : 

Copyright (c) 2009-2018 Petri Lehtinen <petri@digip.org>

 

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

 

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

 



             Open Source Used In JVDI Client for Windows 14.0  46

1.20 speexdsp 1.2.0 
1.20.1 Available under license : 

Copyright 2002-2008 	Xiph.org Foundation

Copyright 2002-2008 	Jean-Marc Valin

Copyright 2005-2007	Analog Devices Inc.

Copyright 2005-2008	Commonwealth Scientific and Industrial Research

                       Organisation (CSIRO)

Copyright 1993, 2002, 2006 David Rowe

Copyright 2003 		EpicGames

Copyright 1992-1994	Jutta Degener, Carsten Bormann

 

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

 

- Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

 

- Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

 

- Neither the name of the Xiph.org Foundation nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 

1.21 libjpeg 9d 
1.21.1 Available under license : 

No license file was found, but licenses were detected in source scan.

 

/*

* jmemdos.c



             Open Source Used In JVDI Client for Windows 14.0  47

*

* Copyright (C) 1992-1997, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file provides an MS-DOS-compatible implementation of the system-

* dependent portion of the JPEG memory manager.  Temporary data can be

* stored in extended or expanded memory as well as in regular DOS files.

*

* If you use this file, you must be sure that NEED_FAR_POINTERS is defined

* if you compile in a small-data memory model; it should NOT be defined if

* you use a large-data memory model.  This file is not recommended if you

* are using a flat-memory-space 386 environment such as DJGCC or Watcom C.

* Also, this code will NOT work if struct fields are aligned on greater than

* 2-byte boundaries.

*

* Based on code contributed by Ge' Weijers.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemdos.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdmainct.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2002-2016 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the main buffer controller for decompression.

* The main buffer lies between the JPEG decompressor proper and the

* post-processor; it holds downsampled data in the JPEG colorspace.

*

* Note that this code is bypassed in raw-data mode, since the application

* supplies the equivalent of the main buffer in that case.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdmainct.c

No license file was found, but licenses were detected in source scan.

 

/*

* rdgif.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2019 by Guido Vollbeding.



             Open Source Used In JVDI Client for Windows 14.0  48

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to read input images in GIF format.

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume input from

* an ordinary stdio stream.  They further assume that reading begins

* at the start of the file; start_input may need work if the

* user interface has already read some data (e.g., to determine that

* the file is indeed GIF format).

*/

/*

* This code is loosely based on giftoppm from the PBMPLUS distribution

* of Feb. 1991.  That file contains the following copyright notice:

* +-------------------------------------------------------------------+

* | Copyright 1990, David Koblas.                                     |

* |   Permission to use, copy, modify, and distribute this software   |

* |   and its documentation for any purpose and without fee is hereby |

* |   granted, provided that the above copyright notice appear in all |

* |   copies and that both that copyright notice and this permission  |

* |   notice appear in supporting documentation.  This software is    |

* |   provided "as is" without express or implied warranty.           |

* +-------------------------------------------------------------------+

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdgif.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdarith.c

*

* Developed 1997-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains portable arithmetic entropy decoding routines for JPEG

* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).

*

* Both sequential and progressive modes are supported in this single module.

*

* Suspension is not currently supported in this module.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdarith.c



             Open Source Used In JVDI Client for Windows 14.0  49

No license file was found, but licenses were detected in source scan.

 

/*

* jdpostct.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the decompression postprocessing controller.

* This controller manages the upsampling, color conversion, and color

* quantization/reduction steps; specifically, it controls the buffering

* between upsample/color conversion and color quantization/reduction.

*

* If no color quantization/reduction is required, then this module has no

* work to do, and it just hands off to the upsample/color conversion code.

* An integrated upsample/convert/quantize process would replace this module

* entirely.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdpostct.c

No license file was found, but licenses were detected in source scan.

 

/*

* rdswitch.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2003-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to process some of cjpeg's more complicated

* command-line switches.  Switches processed here are:

*	-qtables file		Read quantization tables from text file

*	-scans file		Read scan script from text file

*	-quality N[,N,...]	Set quality ratings

*	-qslots N[,N,...]	Set component quantization table selectors

*	-sample HxV[,HxV,...]	Set component sampling factors

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdswitch.c

No license file was found, but licenses were detected in source scan.

 

IJG JPEG LIBRARY:  FILE LIST

 

Copyright (C) 1994-2019, Thomas G. Lane, Guido Vollbeding.



             Open Source Used In JVDI Client for Windows 14.0  50

This file is part of the Independent JPEG Group's software.

For conditions of distribution and use, see the accompanying README file.

 

 

Here is a road map to the files in the IJG JPEG distribution.  The

distribution includes the JPEG library proper, plus two application

programs ("cjpeg" and "djpeg") which use the library to convert JPEG

files to and from some other popular image formats.  A third application

"jpegtran" uses the library to do lossless conversion between different

variants of JPEG.  There are also two stand-alone applications,

"rdjpgcom" and "wrjpgcom".

 

 

THE JPEG LIBRARY

================

 

Include files:

 

jpeglib.h	JPEG library's exported data and function declarations.

jconfig.h	Configuration declarations.  Note: this file is not present

		in the distribution; it is generated during installation.

jmorecfg.h	Additional configuration declarations; need not be changed

		for a standard installation.

jerror.h	Declares JPEG library's error and trace message codes.

jinclude.h	Central include file used by all IJG .c files to reference

		system include files.

jpegint.h	JPEG library's internal data structures.

jdct.h		Private declarations for forward & reverse DCT subsystems.

jmemsys.h	Private declarations for memory management subsystem.

jversion.h	Version information.

 

Applications using the library should include jpeglib.h (which in turn

includes jconfig.h and jmorecfg.h).  Optionally, jerror.h may be included

if the application needs to reference individual JPEG error codes.  The

other include files are intended for internal use and would not normally

be included by an application program.  (cjpeg/djpeg/etc do use jinclude.h,

since its function is to improve portability of the whole IJG distribution.

Most other applications will directly include the system include files they

want, and hence won't need jinclude.h.)

 

 

C source code files:

 

These files contain most of the functions intended to be called directly by

an application program:

 

jcapimin.c	Application program interface: core routines for compression.

jcapistd.c	Application program interface: standard compression.



             Open Source Used In JVDI Client for Windows 14.0  51

jdapimin.c	Application program interface: core routines for decompression.

jdapistd.c	Application program interface: standard decompression.

jcomapi.c	Application program interface routines common to compression

		and decompression.

jcparam.c	Compression parameter setting helper routines.

jctrans.c	API and library routines for transcoding compression.

jdtrans.c	API and library routines for transcoding decompression.

 

Compression side of the library:

 

jcinit.c	Initialization: determines which other modules to use.

jcmaster.c	Master control: setup and inter-pass sequencing logic.

jcmainct.c	Main buffer controller (preprocessor => JPEG compressor).

jcprepct.c	Preprocessor buffer controller.

jccoefct.c	Buffer controller for DCT coefficient buffer.

jccolor.c	Color space conversion.

jcsample.c	Downsampling.

jcdctmgr.c	DCT manager (DCT implementation selection & control).

jfdctint.c	Forward DCT using slow-but-accurate integer method.

jfdctfst.c	Forward DCT using faster, less accurate integer method.

jfdctflt.c	Forward DCT using floating-point arithmetic.

jchuff.c	Huffman entropy coding.

jcarith.c	Arithmetic entropy coding.

jcmarker.c	JPEG marker writing.

jdatadst.c	Data destination managers for memory and stdio output.

 

Decompression side of the library:

 

jdmaster.c	Master control: determines which other modules to use.

jdinput.c	Input controller: controls input processing modules.

jdmainct.c	Main buffer controller (JPEG decompressor => postprocessor).

jdcoefct.c	Buffer controller for DCT coefficient buffer.

jdpostct.c	Postprocessor buffer controller.

jdmarker.c	JPEG marker reading.

jdhuff.c	Huffman entropy decoding.

jdarith.c	Arithmetic entropy decoding.

jddctmgr.c	IDCT manager (IDCT implementation selection & control).

jidctint.c	Inverse DCT using slow-but-accurate integer method.

jidctfst.c	Inverse DCT using faster, less accurate integer method.

jidctflt.c	Inverse DCT using floating-point arithmetic.

jdsample.c	Upsampling.

jdcolor.c	Color space conversion.

jdmerge.c	Merged upsampling/color conversion (faster, lower quality).

jquant1.c	One-pass color quantization using a fixed-spacing colormap.

jquant2.c	Two-pass color quantization using a custom-generated colormap.

		Also handles one-pass quantization to an externally given map.

jdatasrc.c	Data source managers for memory and stdio input.

 



             Open Source Used In JVDI Client for Windows 14.0  52

Support files for both compression and decompression:

 

jaricom.c	Tables for common use in arithmetic entropy encoding and

		decoding routines.

jerror.c	Standard error handling routines (application replaceable).

jmemmgr.c	System-independent (more or less) memory management code.

jutils.c	Miscellaneous utility routines.

 

jmemmgr.c relies on a system-dependent memory management module.  The IJG

distribution includes the following implementations of the system-dependent

module:

 

jmemnobs.c	"No backing store": assumes adequate virtual memory exists.

jmemansi.c	Makes temporary files with ANSI-standard routine tmpfile().

jmemname.c	Makes temporary files with program-generated file names.

jmemdos.c	Custom implementation for MS-DOS (16-bit environment only):

		can use extended and expanded memory as well as temp files.

jmemmac.c	Custom implementation for Apple Macintosh.

 

Exactly one of the system-dependent modules should be configured into an

installed JPEG library (see install.txt for hints about which one to use).

On unusual systems you may find it worthwhile to make a special

system-dependent memory manager.

 

 

Non-C source code files:

 

jmemdosa.asm	80x86 assembly code support for jmemdos.c; used only in

		MS-DOS-specific configurations of the JPEG library.

 

 

CJPEG/DJPEG/JPEGTRAN

====================

 

Include files:

 

cdjpeg.h	Declarations shared by cjpeg/djpeg/jpegtran modules.

cderror.h	Additional error and trace message codes for cjpeg et al.

transupp.h	Declarations for jpegtran support routines in transupp.c.

 

C source code files:

 

cjpeg.c		Main program for cjpeg.

djpeg.c		Main program for djpeg.

jpegtran.c	Main program for jpegtran.

cdjpeg.c	Utility routines used by all three programs.

rdcolmap.c	Code to read a colormap file for djpeg's "-map" switch.

rdswitch.c	Code to process some of cjpeg's more complex switches.



             Open Source Used In JVDI Client for Windows 14.0  53

		Also used by jpegtran.

transupp.c	Support code for jpegtran: lossless image manipulations.

 

Image file reader modules for cjpeg:

 

rdbmp.c		BMP file input.

rdgif.c		GIF file input.

rdppm.c		PPM/PGM file input.

rdrle.c		Utah RLE file input.

rdtarga.c	Targa file input.

 

Image file writer modules for djpeg:

 

wrbmp.c		BMP file output.

wrgif.c		GIF file output.

wrppm.c		PPM/PGM file output.

wrrle.c		Utah RLE file output.

wrtarga.c	Targa file output.

 

 

RDJPGCOM/WRJPGCOM

=================

 

C source code files:

 

rdjpgcom.c	Stand-alone rdjpgcom application.

wrjpgcom.c	Stand-alone wrjpgcom application.

 

These programs do not depend on the IJG library.  They do use

jconfig.h and jinclude.h, only to improve portability.

 

 

ADDITIONAL FILES

================

 

Documentation (see README for a guide to the documentation files):

 

README		Master documentation file.

*.txt		Other documentation files.

*.1		Documentation in Unix man page format.

change.log	Version-to-version change highlights.

example.c	Sample code for calling JPEG library.

 

Configuration/installation files and programs (see install.txt for more info):

 

configure	Unix shell script to perform automatic configuration.

configure.ac	Source file for use with Autoconf to generate configure.

ltmain.sh	Support scripts for configure (from GNU libtool).



             Open Source Used In JVDI Client for Windows 14.0  54

config.guess

config.sub

depcomp

missing

ar-lib

compile

install-sh	Install shell script for those Unix systems lacking one.

Makefile.in	Makefile input for configure.

Makefile.am	Source file for use with Automake to generate Makefile.in.

ckconfig.c	Program to generate jconfig.h on non-Unix systems.

jconfig.txt	Template for making jconfig.h by hand.

mak*.*		Sample makefiles for particular systems.

jconfig.*	Sample jconfig.h for particular systems.

libjpeg.map	Script to generate shared library with versioned symbols.

libjpeg.pc.in	libjpeg.pc pkg-config file input for configure.

aclocal.m4	M4 macro definitions for use with Autoconf.

 

Test files (see install.txt for test procedure):

 

test*.*		Source and comparison files for confidence test.

		These are binary image files, NOT text files.

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/filelist.txt

No license file was found, but licenses were detected in source scan.

 

/*

* jcmainct.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2003-2012 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the main buffer controller for compression.

* The main buffer lies between the pre-processor and the JPEG

* compressor proper; it holds downsampled data in the JPEG colorspace.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcmainct.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdct.h

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2002-2019 by Guido Vollbeding.



             Open Source Used In JVDI Client for Windows 14.0  55

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This include file contains common declarations for the forward and

* inverse DCT modules.  These declarations are private to the DCT managers

* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.

* The individual DCT algorithms are kept in separate files to ease

* machine-dependent tuning (e.g., assembly coding).

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdct.h

No license file was found, but licenses were detected in source scan.

 

/*

* jcmaster.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2003-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains master control logic for the JPEG compressor.

* These routines are concerned with parameter validation, initial setup,

* and inter-pass control (determining the number of passes and the work

* to be done in each pass).

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcmaster.c

No license file was found, but licenses were detected in source scan.

 

/*

* rdbmp.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2009-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to read input images in Microsoft "BMP"

* format (MS Windows 3.x, OS/2 1.x, and OS/2 2.x flavors).

* Currently, only 8-, 24-, and 32-bit images are supported, not 1-bit or

* 4-bit (feeding such low-depth images into JPEG would be silly anyway).

* Also, we don't support RLE-compressed files.

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume input from



             Open Source Used In JVDI Client for Windows 14.0  56

* an ordinary stdio stream.  They further assume that reading begins

* at the start of the file; start_input may need work if the

* user interface has already read some data (e.g., to determine that

* the file is indeed BMP format).

*

* This code contributed by James Arthur Boucher.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdbmp.c

No license file was found, but licenses were detected in source scan.

 

/*

* jmorecfg.h

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 1997-2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains additional configuration options that customize the

* JPEG software for special applications or support machine-dependent

* optimizations.  Most users will not need to touch this file.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmorecfg.h

No license file was found, but licenses were detected in source scan.

 

/*

* jccolor.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2011-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains input colorspace conversion routines.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jccolor.c

No license file was found, but licenses were detected in source scan.

 

/*

* jmemnobs.c

*

* Copyright (C) 1992-1996, Thomas G. Lane.



             Open Source Used In JVDI Client for Windows 14.0  57

* Modified 2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file provides a really simple implementation of the system-

* dependent portion of the JPEG memory manager.  This implementation

* assumes that no backing-store files are needed: all required space

* can be obtained from malloc().

* This is very portable in the sense that it'll compile on almost anything,

* but you'd better have lots of main memory (or virtual memory) if you want

* to process big images.

* Note that the max_memory_to_use option is respected by this implementation.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemnobs.c

No license file was found, but licenses were detected in source scan.

 

/*

* cdjpeg.h

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains common declarations for the sample applications

* cjpeg and djpeg.  It is NOT used by the core JPEG library.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/cdjpeg.h

No license file was found, but licenses were detected in source scan.

 

/*

* wrjpgcom.c

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 2015-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a very simple stand-alone application that inserts

* user-supplied text as a COM (comment) marker in a JFIF file.

* This may be useful as an example of the minimum logic needed to parse

* JPEG markers.

*/

 



             Open Source Used In JVDI Client for Windows 14.0  58

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/wrjpgcom.c

No license file was found, but licenses were detected in source scan.

 

/*

* ckconfig.c

*

* Copyright (C) 1991-1994, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/ckconfig.c

No license file was found, but licenses were detected in source scan.

 

/*

* jcdctmgr.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2003-2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the forward-DCT management logic.

* This code selects a particular DCT implementation to be used,

* and it performs related housekeeping chores including coefficient

* quantization.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcdctmgr.c

No license file was found, but licenses were detected in source scan.

 

/*

* jchuff.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2006-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains Huffman entropy encoding routines.

* Both sequential and progressive modes are supported in this single module.

*

* Much of the complexity here has to do with supporting output suspension.

* If the data destination module demands suspension, we want to be able to

* back up to the start of the current MCU.  To do this, we copy state



             Open Source Used In JVDI Client for Windows 14.0  59

* variables into local working storage, and update them back to the

* permanent JPEG objects only upon successful completion of an MCU.

*

* We do not support output suspension for the progressive JPEG mode, since

* the library currently does not allow multiple-scan files to be written

* with output suspension.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jchuff.c

No license file was found, but licenses were detected in source scan.

 

/*

* jerror.h

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 1997-2018 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file defines the error and message codes for the JPEG library.

* Edit this file to add new codes, or to translate the message strings to

* some other language.

* A set of error-reporting macros are defined too.  Some applications using

* the JPEG library may wish to include this file to get the error codes

* and/or the macros.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jerror.h

No license file was found, but licenses were detected in source scan.

 

/*

* cdjpeg.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains common support routines used by the IJG application

* programs (cjpeg, djpeg, jpegtran).

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/cdjpeg.c

No license file was found, but licenses were detected in source scan.

 

/*



             Open Source Used In JVDI Client for Windows 14.0  60

* transupp.h

*

* Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains declarations for image transformation routines and

* other utility code used by the jpegtran sample application.  These are

* NOT part of the core JPEG library.  But we keep these routines separate

* from jpegtran.c to ease the task of maintaining jpegtran-like programs

* that have other user interfaces.

*

* NOTE: all the routines declared here have very specific requirements

* about when they are to be executed during the reading and writing of the

* source and destination files.  See the comments in transupp.c, or see

* jpegtran.c for an example of correct usage.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/transupp.h

No license file was found, but licenses were detected in source scan.

 

/*

* wrrle.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2017-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to write output images in RLE format.

* The Utah Raster Toolkit library is required (version 3.1 or later).

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume output to

* an ordinary stdio stream.

*

* Based on code contributed by Mike Lijewski,

* with updates from Robert Hutchinson.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/wrrle.c

No license file was found, but licenses were detected in source scan.

 

/*

* rdcolmap.c

*



             Open Source Used In JVDI Client for Windows 14.0  61

* Copyright (C) 1994-1996, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file implements djpeg's "-map file" switch.  It reads a source image

* and constructs a colormap to be supplied to the JPEG decompressor.

*

* Currently, these file formats are supported for the map file:

*   GIF: the contents of the GIF's global colormap are used.

*   PPM (either text or raw flavor): the entire file is read and

*      each unique pixel value is entered in the map.

* Note that reading a large PPM file will be horrendously slow.

* Typically, a PPM-format map file should contain just one pixel

* of each desired color.  Such a file can be extracted from an

* ordinary image PPM file with ppmtomap(1).

*

* Rescaling a PPM that has a maxval unequal to MAXJSAMPLE is not

* currently implemented.

*/

/* Portions of this code are based on the PBMPLUS library, which is:

**

** Copyright (C) 1988 by Jef Poskanzer.

**

** Permission to use, copy, modify, and distribute this software and its

** documentation for any purpose and without fee is hereby granted, provided

** that the above copyright notice appear in all copies and that both that

** copyright notice and this permission notice appear in supporting

** documentation.  This software is provided "as is" without express or

** implied warranty.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdcolmap.c

No license file was found, but licenses were detected in source scan.

 

USING THE IJG JPEG LIBRARY

 

Copyright (C) 1994-2019, Thomas G. Lane, Guido Vollbeding.

This file is part of the Independent JPEG Group's software.

For conditions of distribution and use, see the accompanying README file.

 

 

This file describes how to use the IJG JPEG library within an application

program.  Read it if you want to write a program that uses the library.

 

The file example.c provides heavily commented skeleton code for calling the

JPEG library.  Also see jpeglib.h (the include file to be used by application

programs) for full details about data structures and function parameter lists.



             Open Source Used In JVDI Client for Windows 14.0  62

The library source code, of course, is the ultimate reference.

 

Note that there have been *major* changes from the application interface

presented by IJG version 4 and earlier versions.  The old design had several

inherent limitations, and it had accumulated a lot of cruft as we added

features while trying to minimize application-interface changes.  We have

sacrificed backward compatibility in the version 5 rewrite, but we think the

improvements justify this.

 

 

TABLE OF CONTENTS

-----------------

 

Overview:

	Functions provided by the library

	Outline of typical usage

Basic library usage:

	Data formats

	Compression details

	Decompression details

	Mechanics of usage: include files, linking, etc

Advanced features:

	Compression parameter selection

	Decompression parameter selection

	Special color spaces

	Error handling

	Compressed data handling (source and destination managers)

	I/O suspension

	Progressive JPEG support

	Buffered-image mode

	Abbreviated datastreams and multiple images

	Special markers

	Raw (downsampled) image data

	Really raw data: DCT coefficients

	Progress monitoring

	Memory management

	Memory usage

	Library compile-time options

	Portability considerations

	Notes for MS-DOS implementors

 

You should read at least the overview and basic usage sections before trying

to program with the library.  The sections on advanced features can be read

if and when you need them.

 

 

OVERVIEW

========



             Open Source Used In JVDI Client for Windows 14.0  63

 

Functions provided by the library

---------------------------------

 

The IJG JPEG library provides C code to read and write JPEG-compressed image

files.  The surrounding application program receives or supplies image data a

scanline at a time, using a straightforward uncompressed image format.  All

details of color conversion and other preprocessing/postprocessing can be

handled by the library.

 

The library includes a substantial amount of code that is not covered by the

JPEG standard but is necessary for typical applications of JPEG.  These

functions preprocess the image before JPEG compression or postprocess it after

decompression.  They include colorspace conversion, downsampling/upsampling,

and color quantization.  The application indirectly selects use of this code

by specifying the format in which it wishes to supply or receive image data.

For example, if colormapped output is requested, then the decompression

library automatically invokes color quantization.

 

A wide range of quality vs. speed tradeoffs are possible in JPEG processing,

and even more so in decompression postprocessing.  The decompression library

provides multiple implementations that cover most of the useful tradeoffs,

ranging from very-high-quality down to fast-preview operation.  On the

compression side we have generally not provided low-quality choices, since

compression is normally less time-critical.  It should be understood that the

low-quality modes may not meet the JPEG standard's accuracy requirements;

nonetheless, they are useful for viewers.

 

A word about functions *not* provided by the library.  We handle a subset of

the ISO JPEG standard; most baseline, extended-sequential, and progressive

JPEG processes are supported.  (Our subset includes all features now in common

use.)  Unsupported ISO options include:

	* Hierarchical storage

	* Lossless JPEG

	* DNL marker

	* Nonintegral subsampling ratios

We support 8-bit to 12-bit data precision, but this is a compile-time choice

rather than a run-time choice; hence it is difficult to use different

precisions in a single application.

 

By itself, the library handles only interchange JPEG datastreams --- in

particular the widely used JFIF file format.  The library can be used by

surrounding code to process interchange or abbreviated JPEG datastreams that

are embedded in more complex file formats.  (For example, this library is

used by the free LIBTIFF library to support JPEG compression in TIFF.)

 

 

Outline of typical usage



             Open Source Used In JVDI Client for Windows 14.0  64

------------------------

 

The rough outline of a JPEG compression operation is:

 

	Allocate and initialize a JPEG compression object

	Specify the destination for the compressed data (eg, a file)

	Set parameters for compression, including image size & colorspace

	jpeg_start_compress(...);

	while (scan lines remain to be written)

		jpeg_write_scanlines(...);

	jpeg_finish_compress(...);

	Release the JPEG compression object

 

A JPEG compression object holds parameters and working state for the JPEG

library.  We make creation/destruction of the object separate from starting

or finishing compression of an image; the same object can be re-used for a

series of image compression operations.  This makes it easy to re-use the

same parameter settings for a sequence of images.  Re-use of a JPEG object

also has important implications for processing abbreviated JPEG datastreams,

as discussed later.

 

The image data to be compressed is supplied to jpeg_write_scanlines() from

in-memory buffers.  If the application is doing file-to-file compression,

reading image data from the source file is the application's responsibility.

The library emits compressed data by calling a "data destination manager",

which typically will write the data into a file; but the application can

provide its own destination manager to do something else.

 

Similarly, the rough outline of a JPEG decompression operation is:

 

	Allocate and initialize a JPEG decompression object

	Specify the source of the compressed data (eg, a file)

	Call jpeg_read_header() to obtain image info

	Set parameters for decompression

	jpeg_start_decompress(...);

	while (scan lines remain to be read)

		jpeg_read_scanlines(...);

	jpeg_finish_decompress(...);

	Release the JPEG decompression object

 

This is comparable to the compression outline except that reading the

datastream header is a separate step.  This is helpful because information

about the image's size, colorspace, etc is available when the application

selects decompression parameters.  For example, the application can choose an

output scaling ratio that will fit the image into the available screen size.

 

The decompression library obtains compressed data by calling a data source

manager, which typically will read the data from a file; but other behaviors



             Open Source Used In JVDI Client for Windows 14.0  65

can be obtained with a custom source manager.  Decompressed data is delivered

into in-memory buffers passed to jpeg_read_scanlines().

 

It is possible to abort an incomplete compression or decompression operation

by calling jpeg_abort(); or, if you do not need to retain the JPEG object,

simply release it by calling jpeg_destroy().

 

JPEG compression and decompression objects are two separate struct types.

However, they share some common fields, and certain routines such as

jpeg_destroy() can work on either type of object.

 

The JPEG library has no static variables: all state is in the compression

or decompression object.  Therefore it is possible to process multiple

compression and decompression operations concurrently, using multiple JPEG

objects.

 

Both compression and decompression can be done in an incremental memory-to-

memory fashion, if suitable source/destination managers are used.  See the

section on "I/O suspension" for more details.

 

 

BASIC LIBRARY USAGE

===================

 

Data formats

------------

 

Before diving into procedural details, it is helpful to understand the

image data format that the JPEG library expects or returns.

 

The standard input image format is a rectangular array of pixels, with each

pixel having the same number of "component" or "sample" values (color

channels).  You must specify how many components there are and the colorspace

interpretation of the components.  Most applications will use RGB data

(three components per pixel) or grayscale data (one component per pixel).

PLEASE NOTE THAT RGB DATA IS THREE SAMPLES PER PIXEL, GRAYSCALE ONLY ONE.

A remarkable number of people manage to miss this, only to find that their

programs don't work with grayscale JPEG files.

 

There is no provision for colormapped input.  JPEG files are always full-color

or full grayscale (or sometimes another colorspace such as CMYK).  You can

feed in a colormapped image by expanding it to full-color format.  However

JPEG often doesn't work very well with source data that has been colormapped,

because of dithering noise.  This is discussed in more detail in the JPEG FAQ

and the other references mentioned in the README file.

 

Pixels are stored by scanlines, with each scanline running from left to

right.  The component values for each pixel are adjacent in the row; for



             Open Source Used In JVDI Client for Windows 14.0  66

example, R,G,B,R,G,B,R,G,B,... for 24-bit RGB color.  Each scanline is an

array of data type JSAMPLE --- which is typically "unsigned char", unless

you've changed jmorecfg.h.  (You can also change the RGB pixel layout, say

to B,G,R order, by modifying jmorecfg.h.  But see the restrictions listed in

that file before doing so.)

 

A 2-D array of pixels is formed by making a list of pointers to the starts of

scanlines; so the scanlines need not be physically adjacent in memory.  Even

if you process just one scanline at a time, you must make a one-element

pointer array to conform to this structure.  Pointers to JSAMPLE rows are of

type JSAMPROW, and the pointer to the pointer array is of type JSAMPARRAY.

 

The library accepts or supplies one or more complete scanlines per call.

It is not possible to process part of a row at a time.  Scanlines are always

processed top-to-bottom.  You can process an entire image in one call if you

have it all in memory, but usually it's simplest to process one scanline at

a time.

 

For best results, source data values should have the precision specified by

BITS_IN_JSAMPLE (normally 8 bits).  For instance, if you choose to compress

data that's only 6 bits/channel, you should left-justify each value in a

byte before passing it to the compressor.  If you need to compress data

that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 9 to 12.

(See "Library compile-time options", later.)

 

 

The data format returned by the decompressor is the same in all details,

except that colormapped output is supported.  (Again, a JPEG file is never

colormapped.  But you can ask the decompressor to perform on-the-fly color

quantization to deliver colormapped output.)  If you request colormapped

output then the returned data array contains a single JSAMPLE per pixel;

its value is an index into a color map.  The color map is represented as

a 2-D JSAMPARRAY in which each row holds the values of one color component,

that is, colormap[i][j] is the value of the i'th color component for pixel

value (map index) j.  Note that since the colormap indexes are stored in

JSAMPLEs, the maximum number of colors is limited by the size of JSAMPLE

(ie, at most 256 colors for an 8-bit JPEG library).

 

 

Compression details

-------------------

 

Here we revisit the JPEG compression outline given in the overview.

 

1. Allocate and initialize a JPEG compression object.

 

A JPEG compression object is a "struct jpeg_compress_struct".  (It also has

a bunch of subsidiary structures which are allocated via malloc(), but the



             Open Source Used In JVDI Client for Windows 14.0  67

application doesn't control those directly.)  This struct can be just a local

variable in the calling routine, if a single routine is going to execute the

whole JPEG compression sequence.  Otherwise it can be static or allocated

from malloc().

 

You will also need a structure representing a JPEG error handler.  The part

of this that the library cares about is a "struct jpeg_error_mgr".  If you

are providing your own error handler, you'll typically want to embed the

jpeg_error_mgr struct in a larger structure; this is discussed later under

"Error handling".  For now we'll assume you are just using the default error

handler.  The default error handler will print JPEG error/warning messages

on stderr, and it will call exit() if a fatal error occurs.

 

You must initialize the error handler structure, store a pointer to it into

the JPEG object's "err" field, and then call jpeg_create_compress() to

initialize the rest of the JPEG object.

 

Typical code for this step, if you are using the default error handler, is

 

	struct jpeg_compress_struct cinfo;

	struct jpeg_error_mgr jerr;

	...

	cinfo.err = jpeg_std_error(&jerr);

	jpeg_create_compress(&cinfo);

 

jpeg_create_compress allocates a small amount of memory, so it could fail

if you are out of memory.  In that case it will exit via the error handler;

that's why the error handler must be initialized first.

 

 

2. Specify the destination for the compressed data (eg, a file).

 

As previously mentioned, the JPEG library delivers compressed data to a

"data destination" module.  The library includes one data destination

module which knows how to write to a stdio stream.  You can use your own

destination module if you want to do something else, as discussed later.

 

If you use the standard destination module, you must open the target stdio

stream beforehand.  Typical code for this step looks like:

 

	FILE * outfile;

	...

	if ((outfile = fopen(filename, "wb")) == NULL) {

	    fprintf(stderr, "can't open %s\n", filename);

	    exit(1);

	}

	jpeg_stdio_dest(&cinfo, outfile);

 



             Open Source Used In JVDI Client for Windows 14.0  68

where the last line invokes the standard destination module.

 

WARNING: it is critical that the binary compressed data be delivered to the

output file unchanged.  On non-Unix systems the stdio library may perform

newline translation or otherwise corrupt binary data.  To suppress this

behavior, you may need to use a "b" option to fopen (as shown above), or use

setmode() or another routine to put the stdio stream in binary mode.  See

cjpeg.c and djpeg.c for code that has been found to work on many systems.

 

You can select the data destination after setting other parameters (step 3),

if that's more convenient.  You may not change the destination between

calling jpeg_start_compress() and jpeg_finish_compress().

 

 

3. Set parameters for compression, including image size & colorspace.

 

You must supply information about the source image by setting the following

fields in the JPEG object (cinfo structure):

 

	image_width		Width of image, in pixels

	image_height		Height of image, in pixels

	input_components	Number of color channels (samples per pixel)

	in_color_space		Color space of source image

 

The image dimensions are, hopefully, obvious.  JPEG supports image dimensions

of 1 to 64K pixels in either direction.  The input color space is typically

RGB or grayscale, and input_components is 3 or 1 accordingly.  (See "Special

color spaces", later, for more info.)  The in_color_space field must be

assigned one of the J_COLOR_SPACE enum constants, typically JCS_RGB or

JCS_GRAYSCALE.

 

JPEG has a large number of compression parameters that determine how the

image is encoded.  Most applications don't need or want to know about all

these parameters.  You can set all the parameters to reasonable defaults by

calling jpeg_set_defaults(); then, if there are particular values you want

to change, you can do so after that.  The "Compression parameter selection"

section tells about all the parameters.

 

You must set in_color_space correctly before calling jpeg_set_defaults(),

because the defaults depend on the source image colorspace.  However the

other three source image parameters need not be valid until you call

jpeg_start_compress().  There's no harm in calling jpeg_set_defaults() more

than once, if that happens to be convenient.

 

Typical code for a 24-bit RGB source image is

 

	cinfo.image_width = Width; 	/* image width and height, in pixels */

	cinfo.image_height = Height;



             Open Source Used In JVDI Client for Windows 14.0  69

	cinfo.input_components = 3;	/* # of color components per pixel */

	cinfo.in_color_space = JCS_RGB; /* colorspace of input image */

 

	jpeg_set_defaults(&cinfo);

	/* Make optional parameter settings here */

 

 

4. jpeg_start_compress(...);

 

After you have established the data destination and set all the necessary

source image info and other parameters, call jpeg_start_compress() to begin

a compression cycle.  This will initialize internal state, allocate working

storage, and emit the first few bytes of the JPEG datastream header.

 

Typical code:

 

	jpeg_start_compress(&cinfo, TRUE);

 

The "TRUE" parameter ensures that a complete JPEG interchange datastream

will be written.  This is appropriate in most cases.  If you think you might

want to use an abbreviated datastream, read the section on abbreviated

datastreams, below.

 

Once you have called jpeg_start_compress(), you may not alter any JPEG

parameters or other fields of the JPEG object until you have completed

the compression cycle.

 

 

5. while (scan lines remain to be written)

	jpeg_write_scanlines(...);

 

Now write all the required image data by calling jpeg_write_scanlines()

one or more times.  You can pass one or more scanlines in each call, up

to the total image height.  In most applications it is convenient to pass

just one or a few scanlines at a time.  The expected format for the passed

data is discussed under "Data formats", above.

 

Image data should be written in top-to-bottom scanline order.  The JPEG spec

contains some weasel wording about how top and bottom are application-defined

terms (a curious interpretation of the English language...) but if you want

your files to be compatible with everyone else's, you WILL use top-to-bottom

order.  If the source data must be read in bottom-to-top order, you can use

the JPEG library's virtual array mechanism to invert the data efficiently.

Examples of this can be found in the sample application cjpeg.

 

The library maintains a count of the number of scanlines written so far

in the next_scanline field of the JPEG object.  Usually you can just use

this variable as the loop counter, so that the loop test looks like



             Open Source Used In JVDI Client for Windows 14.0  70

"while (cinfo.next_scanline < cinfo.image_height)".

 

Code for this step depends heavily on the way that you store the source data.

example.c shows the following code for the case of a full-size 2-D source

array containing 3-byte RGB pixels:

 

	JSAMPROW row_pointer[1];	/* pointer to a single row */

	int row_stride;			/* physical row width in buffer */

 

	row_stride = image_width * 3;	/* JSAMPLEs per row in image_buffer */

 

	while (cinfo.next_scanline < cinfo.image_height) {

	    row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];

	    jpeg_write_scanlines(&cinfo, row_pointer, 1);

	}

 

jpeg_write_scanlines() returns the number of scanlines actually written.

This will normally be equal to the number passed in, so you can usually

ignore the return value.  It is different in just two cases:

 * If you try to write more scanlines than the declared image height,

   the additional scanlines are ignored.

 * If you use a suspending data destination manager, output buffer overrun

   will cause the compressor to return before accepting all the passed lines.

   This feature is discussed under "I/O suspension", below.  The normal

   stdio destination manager will NOT cause this to happen.

In any case, the return value is the same as the change in the value of

next_scanline.

 

 

6. jpeg_finish_compress(...);

 

After all the image data has been written, call jpeg_finish_compress() to

complete the compression cycle.  This step is ESSENTIAL to ensure that the

last bufferload of data is written to the data destination.

jpeg_finish_compress() also releases working memory associated with the JPEG

object.

 

Typical code:

 

	jpeg_finish_compress(&cinfo);

 

If using the stdio destination manager, don't forget to close the output

stdio stream (if necessary) afterwards.

 

If you have requested a multi-pass operating mode, such as Huffman code

optimization, jpeg_finish_compress() will perform the additional passes using

data buffered by the first pass.  In this case jpeg_finish_compress() may take

quite a while to complete.  With the default compression parameters, this will



             Open Source Used In JVDI Client for Windows 14.0  71

not happen.

 

It is an error to call jpeg_finish_compress() before writing the necessary

total number of scanlines.  If you wish to abort compression, call

jpeg_abort() as discussed below.

 

After completing a compression cycle, you may dispose of the JPEG object

as discussed next, or you may use it to compress another image.  In that case

return to step 2, 3, or 4 as appropriate.  If you do not change the

destination manager, the new datastream will be written to the same target.

If you do not change any JPEG parameters, the new datastream will be written

with the same parameters as before.  Note that you can change the input image

dimensions freely between cycles, but if you change the input colorspace, you

should call jpeg_set_defaults() to adjust for the new colorspace; and then

you'll need to repeat all of step 3.

 

 

7. Release the JPEG compression object.

 

When you are done with a JPEG compression object, destroy it by calling

jpeg_destroy_compress().  This will free all subsidiary memory (regardless of

the previous state of the object).  Or you can call jpeg_destroy(), which

works for either compression or decompression objects --- this may be more

convenient if you are sharing code between compression and decompression

cases.  (Actually, these routines are equivalent except for the declared type

of the passed pointer.  To avoid gripes from ANSI C compilers, jpeg_destroy()

should be passed a j_common_ptr.)

 

If you allocated the jpeg_compress_struct structure from malloc(), freeing

it is your responsibility --- jpeg_destroy() won't.  Ditto for the error

handler structure.

 

Typical code:

 

	jpeg_destroy_compress(&cinfo);

 

 

8. Aborting.

 

If you decide to abort a compression cycle before finishing, you can clean up

in either of two ways:

 

* If you don't need the JPEG object any more, just call

 jpeg_destroy_compress() or jpeg_destroy() to release memory.  This is

 legitimate at any point after calling jpeg_create_compress() --- in fact,

 it's safe even if jpeg_create_compress() fails.

 

* If you want to re-use the JPEG object, call jpeg_abort_compress(), or call



             Open Source Used In JVDI Client for Windows 14.0  72

 jpeg_abort() which works on both compression and decompression objects.

 This will return the object to an idle state, releasing any working memory.

 jpeg_abort() is allowed at any time after successful object creation.

 

Note that cleaning up the data destination, if required, is your

responsibility; neither of these routines will call term_destination().

(See "Compressed data handling", below, for more about that.)

 

jpeg_destroy() and jpeg_abort() are the only safe calls to make on a JPEG

object that has reported an error by calling error_exit (see "Error handling"

for more info).  The internal state of such an object is likely to be out of

whack.  Either of these two routines will return the object to a known state.

 

 

Decompression details

---------------------

 

Here we revisit the JPEG decompression outline given in the overview.

 

1. Allocate and initialize a JPEG decompression object.

 

This is just like initialization for compression, as discussed above,

except that the object is a "struct jpeg_decompress_struct" and you

call jpeg_create_decompress().  Error handling is exactly the same.

 

Typical code:

 

	struct jpeg_decompress_struct cinfo;

	struct jpeg_error_mgr jerr;

	...

	cinfo.err = jpeg_std_error(&jerr);

	jpeg_create_decompress(&cinfo);

 

(Both here and in the IJG code, we usually use variable name "cinfo" for

both compression and decompression objects.)

 

 

2. Specify the source of the compressed data (eg, a file).

 

As previously mentioned, the JPEG library reads compressed data from a "data

source" module.  The library includes one data source module which knows how

to read from a stdio stream.  You can use your own source module if you want

to do something else, as discussed later.

 

If you use the standard source module, you must open the source stdio stream

beforehand.  Typical code for this step looks like:

 

	FILE * infile;



             Open Source Used In JVDI Client for Windows 14.0  73

	...

	if ((infile = fopen(filename, "rb")) == NULL) {

	    fprintf(stderr, "can't open %s\n", filename);

	    exit(1);

	}

	jpeg_stdio_src(&cinfo, infile);

 

where the last line invokes the standard source module.

 

WARNING: it is critical that the binary compressed data be read unchanged.

On non-Unix systems the stdio library may perform newline translation or

otherwise corrupt binary data.  To suppress this behavior, you may need to use

a "b" option to fopen (as shown above), or use setmode() or another routine to

put the stdio stream in binary mode.  See cjpeg.c and djpeg.c for code that

has been found to work on many systems.

 

You may not change the data source between calling jpeg_read_header() and

jpeg_finish_decompress().  If you wish to read a series of JPEG images from

a single source file, you should repeat the jpeg_read_header() to

jpeg_finish_decompress() sequence without reinitializing either the JPEG

object or the data source module; this prevents buffered input data from

being discarded.

 

 

3. Call jpeg_read_header() to obtain image info.

 

Typical code for this step is just

 

	jpeg_read_header(&cinfo, TRUE);

 

This will read the source datastream header markers, up to the beginning

of the compressed data proper.  On return, the image dimensions and other

info have been stored in the JPEG object.  The application may wish to

consult this information before selecting decompression parameters.

 

More complex code is necessary if

 * A suspending data source is used --- in that case jpeg_read_header()

   may return before it has read all the header data.  See "I/O suspension",

   below.  The normal stdio source manager will NOT cause this to happen.

 * Abbreviated JPEG files are to be processed --- see the section on

   abbreviated datastreams.  Standard applications that deal only in

   interchange JPEG files need not be concerned with this case either.

 

It is permissible to stop at this point if you just wanted to find out the

image dimensions and other header info for a JPEG file.  In that case,

call jpeg_destroy() when you are done with the JPEG object, or call

jpeg_abort() to return it to an idle state before selecting a new data

source and reading another header.



             Open Source Used In JVDI Client for Windows 14.0  74

 

 

4. Set parameters for decompression.

 

jpeg_read_header() sets appropriate default decompression parameters based on

the properties of the image (in particular, its colorspace).  However, you

may well want to alter these defaults before beginning the decompression.

For example, the default is to produce full color output from a color file.

If you want colormapped output you must ask for it.  Other options allow the

returned image to be scaled and allow various speed/quality tradeoffs to be

selected.  "Decompression parameter selection", below, gives details.

 

If the defaults are appropriate, nothing need be done at this step.

 

Note that all default values are set by each call to jpeg_read_header().

If you reuse a decompression object, you cannot expect your parameter

settings to be preserved across cycles, as you can for compression.

You must set desired parameter values each time.

 

 

5. jpeg_start_decompress(...);

 

Once the parameter values are satisfactory, call jpeg_start_decompress() to

begin decompression.  This will initialize internal state, allocate working

memory, and prepare for returning data.

 

Typical code is just

 

	jpeg_start_decompress(&cinfo);

 

If you have requested a multi-pass operating mode, such as 2-pass color

quantization, jpeg_start_decompress() will do everything needed before data

output can begin.  In this case jpeg_start_decompress() may take quite a while

to complete.  With a single-scan (non progressive) JPEG file and default

decompression parameters, this will not happen; jpeg_start_decompress() will

return quickly.

 

After this call, the final output image dimensions, including any requested

scaling, are available in the JPEG object; so is the selected colormap, if

colormapped output has been requested.  Useful fields include

 

	output_width		image width and height, as scaled

	output_height

	out_color_components	# of color components in out_color_space

	output_components	# of color components returned per pixel

	colormap		the selected colormap, if any

	actual_number_of_colors		number of entries in colormap

 



             Open Source Used In JVDI Client for Windows 14.0  75

output_components is 1 (a colormap index) when quantizing colors; otherwise it

equals out_color_components.  It is the number of JSAMPLE values that will be

emitted per pixel in the output arrays.

 

Typically you will need to allocate data buffers to hold the incoming image.

You will need output_width * output_components JSAMPLEs per scanline in your

output buffer, and a total of output_height scanlines will be returned.

 

Note: if you are using the JPEG library's internal memory manager to allocate

data buffers (as djpeg does), then the manager's protocol requires that you

request large buffers *before* calling jpeg_start_decompress().  This is a

little tricky since the output_XXX fields are not normally valid then.  You

can make them valid by calling jpeg_calc_output_dimensions() after setting the

relevant parameters (scaling, output color space, and quantization flag).

 

 

6. while (scan lines remain to be read)

	jpeg_read_scanlines(...);

 

Now you can read the decompressed image data by calling jpeg_read_scanlines()

one or more times.  At each call, you pass in the maximum number of scanlines

to be read (ie, the height of your working buffer); jpeg_read_scanlines()

will return up to that many lines.  The return value is the number of lines

actually read.  The format of the returned data is discussed under "Data

formats", above.  Don't forget that grayscale and color JPEGs will return

different data formats!

 

Image data is returned in top-to-bottom scanline order.  If you must write

out the image in bottom-to-top order, you can use the JPEG library's virtual

array mechanism to invert the data efficiently.  Examples of this can be

found in the sample application djpeg.

 

The library maintains a count of the number of scanlines returned so far

in the output_scanline field of the JPEG object.  Usually you can just use

this variable as the loop counter, so that the loop test looks like

"while (cinfo.output_scanline < cinfo.output_height)".  (Note that the test

should NOT be against image_height, unless you never use scaling.  The

image_height field is the height of the original unscaled image.)

The return value always equals the change in the value of output_scanline.

 

If you don't use a suspending data source, it is safe to assume that

jpeg_read_scanlines() reads at least one scanline per call, until the

bottom of the image has been reached.

 

If you use a buffer larger than one scanline, it is NOT safe to assume that

jpeg_read_scanlines() fills it.  (The current implementation returns only a

few scanlines per call, no matter how large a buffer you pass.)  So you must

always provide a loop that calls jpeg_read_scanlines() repeatedly until the



             Open Source Used In JVDI Client for Windows 14.0  76

whole image has been read.

 

 

7. jpeg_finish_decompress(...);

 

After all the image data has been read, call jpeg_finish_decompress() to

complete the decompression cycle.  This causes working memory associated

with the JPEG object to be released.

 

Typical code:

 

	jpeg_finish_decompress(&cinfo);

 

If using the stdio source manager, don't forget to close the source stdio

stream if necessary.

 

It is an error to call jpeg_finish_decompress() before reading the correct

total number of scanlines.  If you wish to abort decompression, call

jpeg_abort() as discussed below.

 

After completing a decompression cycle, you may dispose of the JPEG object as

discussed next, or you may use it to decompress another image.  In that case

return to step 2 or 3 as appropriate.  If you do not change the source

manager, the next image will be read from the same source.

 

 

8. Release the JPEG decompression object.

 

When you are done with a JPEG decompression object, destroy it by calling

jpeg_destroy_decompress() or jpeg_destroy().  The previous discussion of

destroying compression objects applies here too.

 

Typical code:

 

	jpeg_destroy_decompress(&cinfo);

 

 

9. Aborting.

 

You can abort a decompression cycle by calling jpeg_destroy_decompress() or

jpeg_destroy() if you don't need the JPEG object any more, or

jpeg_abort_decompress() or jpeg_abort() if you want to reuse the object.

The previous discussion of aborting compression cycles applies here too.

 

 

Mechanics of usage: include files, linking, etc

-----------------------------------------------

 



             Open Source Used In JVDI Client for Windows 14.0  77

Applications using the JPEG library should include the header file jpeglib.h

to obtain declarations of data types and routines.  Before including

jpeglib.h, include system headers that define at least the typedefs FILE and

size_t.  On ANSI-conforming systems, including <stdio.h> is sufficient; on

older Unix systems, you may need <sys/types.h> to define size_t.

 

If the application needs to refer to individual JPEG library error codes, also

include jerror.h to define those symbols.

 

jpeglib.h indirectly includes the files jconfig.h and jmorecfg.h.  If you are

installing the JPEG header files in a system directory, you will want to

install all four files: jpeglib.h, jerror.h, jconfig.h, jmorecfg.h.

 

The most convenient way to include the JPEG code into your executable program

is to prepare a library file ("libjpeg.a", or a corresponding name on non-Unix

machines) and reference it at your link step.  If you use only half of the

library (only compression or only decompression), only that much code will be

included from the library, unless your linker is hopelessly brain-damaged.

The supplied makefiles build libjpeg.a automatically (see install.txt).

 

While you can build the JPEG library as a shared library if the whim strikes

you, we don't really recommend it.  The trouble with shared libraries is that

at some point you'll probably try to substitute a new version of the library

without recompiling the calling applications.  That generally doesn't work

because the parameter struct declarations usually change with each new

version.  In other words, the library's API is *not* guaranteed binary

compatible across versions; we only try to ensure source-code compatibility.

(In hindsight, it might have been smarter to hide the parameter structs from

applications and introduce a ton of access functions instead.  Too late now,

however.)

 

On some systems your application may need to set up a signal handler to ensure

that temporary files are deleted if the program is interrupted.  This is most

critical if you are on MS-DOS and use the jmemdos.c memory manager back end;

it will try to grab extended memory for temp files, and that space will NOT be

freed automatically.  See cjpeg.c or djpeg.c for an example signal handler.

 

It may be worth pointing out that the core JPEG library does not actually

require the stdio library: only the default source/destination managers and

error handler need it.  You can use the library in a stdio-less environment

if you replace those modules and use jmemnobs.c (or another memory manager of

your own devising).  More info about the minimum system library requirements

may be found in jinclude.h.

 

 

ADVANCED FEATURES

=================

 



             Open Source Used In JVDI Client for Windows 14.0  78

Compression parameter selection

-------------------------------

 

This section describes all the optional parameters you can set for JPEG

compression, as well as the "helper" routines provided to assist in this

task.  Proper setting of some parameters requires detailed understanding

of the JPEG standard; if you don't know what a parameter is for, it's best

not to mess with it!  See REFERENCES in the README file for pointers to

more info about JPEG.

 

It's a good idea to call jpeg_set_defaults() first, even if you plan to set

all the parameters; that way your code is more likely to work with future JPEG

libraries that have additional parameters.  For the same reason, we recommend

you use a helper routine where one is provided, in preference to twiddling

cinfo fields directly.

 

The helper routines are:

 

jpeg_set_defaults (j_compress_ptr cinfo)

	This routine sets all JPEG parameters to reasonable defaults, using

	only the input image's color space (field in_color_space, which must

	already be set in cinfo).  Many applications will only need to use

	this routine and perhaps jpeg_set_quality().

 

jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)

	Sets the JPEG file's colorspace (field jpeg_color_space) as specified,

	and sets other color-space-dependent parameters appropriately.  See

	"Special color spaces", below, before using this.  A large number of

	parameters, including all per-component parameters, are set by this

	routine; if you want to twiddle individual parameters you should call

	jpeg_set_colorspace() before rather than after.

 

jpeg_default_colorspace (j_compress_ptr cinfo)

	Selects an appropriate JPEG colorspace based on cinfo->in_color_space,

	and calls jpeg_set_colorspace().  This is actually a subroutine of

	jpeg_set_defaults().  It's broken out in case you want to change

	just the colorspace-dependent JPEG parameters.

 

jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)

	Constructs JPEG quantization tables appropriate for the indicated

	quality setting.  The quality value is expressed on the 0..100 scale

	recommended by IJG (cjpeg's "-quality" switch uses this routine).

	Note that the exact mapping from quality values to tables may change

	in future IJG releases as more is learned about DCT quantization.

	If the force_baseline parameter is TRUE, then the quantization table

	entries are constrained to the range 1..255 for full JPEG baseline

	compatibility.  In the current implementation, this only makes a

	difference for quality settings below 25, and it effectively prevents



             Open Source Used In JVDI Client for Windows 14.0  79

	very small/low quality files from being generated.  The IJG decoder

	is capable of reading the non-baseline files generated at low quality

	settings when force_baseline is FALSE, but other decoders may not be.

 

jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,

			 boolean force_baseline)

	Same as jpeg_set_quality() except that the generated tables are the

	sample tables given in the JPEC spec section K.1, multiplied by the

	specified scale factor (which is expressed as a percentage; thus

	scale_factor = 100 reproduces the spec's tables).  Note that larger

	scale factors give lower quality.  This entry point is useful for

	conforming to the Adobe PostScript DCT conventions, but we do not

	recommend linear scaling as a user-visible quality scale otherwise.

	force_baseline again constrains the computed table entries to 1..255.

 

int jpeg_quality_scaling (int quality)

	Converts a value on the IJG-recommended quality scale to a linear

	scaling percentage.  Note that this routine may change or go away

	in future releases --- IJG may choose to adopt a scaling method that

	can't be expressed as a simple scalar multiplier, in which case the

	premise of this routine collapses.  Caveat user.

 

jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)

	Set default quantization tables with linear q_scale_factor[] values

	(see below).

 

jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,

		      const unsigned int *basic_table,

		      int scale_factor, boolean force_baseline)

	Allows an arbitrary quantization table to be created.  which_tbl

	indicates which table slot to fill.  basic_table points to an array

	of 64 unsigned ints given in normal array order.  These values are

	multiplied by scale_factor/100 and then clamped to the range 1..65535

	(or to 1..255 if force_baseline is TRUE).

	CAUTION: prior to library version 6a, jpeg_add_quant_table expected

	the basic table to be given in JPEG zigzag order.  If you need to

	write code that works with either older or newer versions of this

	routine, you must check the library version number.  Something like

	"#if JPEG_LIB_VERSION >= 61" is the right test.

 

jpeg_simple_progression (j_compress_ptr cinfo)

	Generates a default scan script for writing a progressive-JPEG file.

	This is the recommended method of creating a progressive file,

	unless you want to make a custom scan sequence.  You must ensure that

	the JPEG color space is set correctly before calling this routine.

 

 

Compression parameters (cinfo fields) include:



             Open Source Used In JVDI Client for Windows 14.0  80

 

boolean arith_code

	If TRUE, use arithmetic coding.

	If FALSE, use Huffman coding.

 

int block_size

	Set DCT block size.  All N from 1 to 16 are possible.

	Default is 8 (baseline format).

	Larger values produce higher compression,

	smaller values produce higher quality.

	An exact DCT stage is possible with 1 or 2.

	With the default quality of 75 and default Luminance qtable

	the DCT+Quantization stage is lossless for value 1.

	Note that values other than 8 require a SmartScale capable decoder,

	introduced with IJG JPEG 8.  Setting the block_size parameter for

	compression works with version 8c and later.

 

J_DCT_METHOD dct_method

	Selects the algorithm used for the DCT step.  Choices are:

		JDCT_ISLOW: slow but accurate integer algorithm

		JDCT_IFAST: faster, less accurate integer method

		JDCT_FLOAT: floating-point method

		JDCT_DEFAULT: default method (normally JDCT_ISLOW)

		JDCT_FASTEST: fastest method (normally JDCT_IFAST)

	The FLOAT method is very slightly more accurate than the ISLOW method,

	but may give different results on different machines due to varying

	roundoff behavior.  The integer methods should give the same results

	on all machines.  On machines with sufficiently fast FP hardware, the

	floating-point method may also be the fastest.  The IFAST method is

	considerably less accurate than the other two; its use is not

	recommended if high quality is a concern.  JDCT_DEFAULT and

	JDCT_FASTEST are macros configurable by each installation.

 

unsigned int scale_num, scale_denom

	Scale the image by the fraction scale_num/scale_denom.  Default is

	1/1, or no scaling.  Currently, the supported scaling ratios are

	M/N with all N from 1 to 16, where M is the destination DCT size,

	which is 8 by default (see block_size parameter above).

	(The library design allows for arbitrary scaling ratios but this

	is not likely to be implemented any time soon.)

 

J_COLOR_SPACE jpeg_color_space

int num_components

	The JPEG color space and corresponding number of components; see

	"Special color spaces", below, for more info.  We recommend using

	jpeg_set_colorspace() if you want to change these.

 

J_COLOR_TRANSFORM color_transform



             Open Source Used In JVDI Client for Windows 14.0  81

	Internal color transform identifier, writes LSE marker if nonzero

	(requires decoder with inverse color transform support, introduced

	with IJG JPEG 9).

	Two values are currently possible: JCT_NONE and JCT_SUBTRACT_GREEN.

	Set this value for lossless RGB application *before* calling

	jpeg_set_colorspace(), because entropy table assignment in

	jpeg_set_colorspace() depends on color_transform.

 

boolean optimize_coding

	TRUE causes the compressor to compute optimal Huffman coding tables

	for the image.  This requires an extra pass over the data and

	therefore costs a good deal of space and time.  The default is

	FALSE, which tells the compressor to use the supplied or default

	Huffman tables.  In most cases optimal tables save only a few percent

	of file size compared to the default tables.  Note that when this is

	TRUE, you need not supply Huffman tables at all, and any you do

	supply will be overwritten.

 

unsigned int restart_interval

int restart_in_rows

	To emit restart markers in the JPEG file, set one of these nonzero.

	Set restart_interval to specify the exact interval in MCU blocks.

	Set restart_in_rows to specify the interval in MCU rows.  (If

	restart_in_rows is not 0, then restart_interval is set after the

	image width in MCUs is computed.)  Defaults are zero (no restarts).

	One restart marker per MCU row is often a good choice.

	NOTE: the overhead of restart markers is higher in grayscale JPEG

	files than in color files, and MUCH higher in progressive JPEGs.

	If you use restarts, you may want to use larger intervals in those

	cases.

 

const jpeg_scan_info * scan_info

int num_scans

	By default, scan_info is NULL; this causes the compressor to write a

	single-scan sequential JPEG file.  If not NULL, scan_info points to

	an array of scan definition records of length num_scans.  The

	compressor will then write a JPEG file having one scan for each scan

	definition record.  This is used to generate noninterleaved or

	progressive JPEG files.  The library checks that the scan array

	defines a valid JPEG scan sequence.  (jpeg_simple_progression creates

	a suitable scan definition array for progressive JPEG.)  This is

	discussed further under "Progressive JPEG support".

 

boolean do_fancy_downsampling

	If TRUE, use direct DCT scaling with DCT size > 8 for downsampling

	of chroma components.

	If FALSE, use only DCT size <= 8 and simple separate downsampling.

	Default is TRUE.



             Open Source Used In JVDI Client for Windows 14.0  82

	For better image stability in multiple generation compression cycles

	it is preferable that this value matches the corresponding

	do_fancy_upsampling value in decompression.

 

int smoothing_factor

	If non-zero, the input image is smoothed; the value should be 1 for

	minimal smoothing to 100 for maximum smoothing.  Consult jcsample.c

	for details of the smoothing algorithm.  The default is zero.

 

boolean write_JFIF_header

	If TRUE, a JFIF APP0 marker is emitted.  jpeg_set_defaults() and

	jpeg_set_colorspace() set this TRUE if a JFIF-legal JPEG color space

	(ie, YCbCr or grayscale) is selected, otherwise FALSE.

 

UINT8 JFIF_major_version

UINT8 JFIF_minor_version

	The version number to be written into the JFIF marker.

	jpeg_set_defaults() initializes the version to 1.01 (major=minor=1).

	You should set it to 1.02 (major=1, minor=2) if you plan to write

	any JFIF 1.02 extension markers.

 

UINT8 density_unit

UINT16 X_density

UINT16 Y_density

	The resolution information to be written into the JFIF marker;

	not used otherwise.  density_unit may be 0 for unknown,

	1 for dots/inch, or 2 for dots/cm.  The default values are 0,1,1

	indicating square pixels of unknown size.

 

boolean write_Adobe_marker

	If TRUE, an Adobe APP14 marker is emitted.  jpeg_set_defaults() and

	jpeg_set_colorspace() set this TRUE if JPEG color space RGB, CMYK,

	or YCCK is selected, otherwise FALSE.  It is generally a bad idea

	to set both write_JFIF_header and write_Adobe_marker.  In fact,

	you probably shouldn't change the default settings at all --- the

	default behavior ensures that the JPEG file's color space can be

	recognized by the decoder.

 

JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]

	Pointers to coefficient quantization tables, one per table slot,

	or NULL if no table is defined for a slot.  Usually these should

	be set via one of the above helper routines; jpeg_add_quant_table()

	is general enough to define any quantization table.  The other

	routines will set up table slot 0 for luminance quality and table

	slot 1 for chrominance.

 

int q_scale_factor[NUM_QUANT_TBLS]

	Linear quantization scaling factors (percentage, initialized 100)



             Open Source Used In JVDI Client for Windows 14.0  83

	for use with jpeg_default_qtables().

	See rdswitch.c and cjpeg.c for an example of usage.

	Note that the q_scale_factor[] fields are the "linear" scales, so you

	have to convert from user-defined ratings via jpeg_quality_scaling().

	Here is an example code which corresponds to cjpeg -quality 90,70:

 

		jpeg_set_defaults(cinfo);

 

		/* Set luminance quality 90. */

		cinfo->q_scale_factor[0] = jpeg_quality_scaling(90);

		/* Set chrominance quality 70. */

		cinfo->q_scale_factor[1] = jpeg_quality_scaling(70);

 

		jpeg_default_qtables(cinfo, force_baseline);

 

	CAUTION: You must also set 1x1 subsampling for efficient separate

	color quality selection, since the default value used by library

	is 2x2:

 

		cinfo->comp_info[0].v_samp_factor = 1;

		cinfo->comp_info[0].h_samp_factor = 1;

 

JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]

JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]

	Pointers to Huffman coding tables, one per table slot, or NULL if

	no table is defined for a slot.  Slots 0 and 1 are filled with the

	JPEG sample tables by jpeg_set_defaults().  If you need to allocate

	more table structures, jpeg_alloc_huff_table() may be used.

	Note that optimal Huffman tables can be computed for an image

	by setting optimize_coding, as discussed above; there's seldom

	any need to mess with providing your own Huffman tables.

 

 

The actual dimensions of the JPEG image that will be written to the file are

given by the following fields.  These are computed from the input image

dimensions and the compression parameters by jpeg_start_compress().  You can

also call jpeg_calc_jpeg_dimensions() to obtain the values that will result

from the current parameter settings.  This can be useful if you are trying

to pick a scaling ratio that will get close to a desired target size.

 

JDIMENSION jpeg_width		Actual dimensions of output image.

JDIMENSION jpeg_height

 

 

Per-component parameters are stored in the struct cinfo.comp_info[i] for

component number i.  Note that components here refer to components of the

JPEG color space, *not* the source image color space.  A suitably large

comp_info[] array is allocated by jpeg_set_defaults(); if you choose not



             Open Source Used In JVDI Client for Windows 14.0  84

to use that routine, it's up to you to allocate the array.

 

int component_id

	The one-byte identifier code to be recorded in the JPEG file for

	this component.  For the standard color spaces, we recommend you

	leave the default values alone.

 

int h_samp_factor

int v_samp_factor

	Horizontal and vertical sampling factors for the component; must

	be 1..4 according to the JPEG standard.  Note that larger sampling

	factors indicate a higher-resolution component; many people find

	this behavior quite unintuitive.  The default values are 2,2 for

	luminance components and 1,1 for chrominance components, except

	for grayscale where 1,1 is used.

 

int quant_tbl_no

	Quantization table number for component.  The default value is

	0 for luminance components and 1 for chrominance components.

 

int dc_tbl_no

int ac_tbl_no

	DC and AC entropy coding table numbers.  The default values are

	0 for luminance components and 1 for chrominance components.

 

int component_index

	Must equal the component's index in comp_info[].  (Beginning in

	release v6, the compressor library will fill this in automatically;

	you don't have to.)

 

 

Decompression parameter selection

---------------------------------

 

Decompression parameter selection is somewhat simpler than compression

parameter selection, since all of the JPEG internal parameters are

recorded in the source file and need not be supplied by the application.

(Unless you are working with abbreviated files, in which case see

"Abbreviated datastreams", below.)  Decompression parameters control

the postprocessing done on the image to deliver it in a format suitable

for the application's use.  Many of the parameters control speed/quality

tradeoffs, in which faster decompression may be obtained at the price of

a poorer-quality image.  The defaults select the highest quality (slowest)

processing.

 

The following fields in the JPEG object are set by jpeg_read_header() and

may be useful to the application in choosing decompression parameters:

 



             Open Source Used In JVDI Client for Windows 14.0  85

JDIMENSION image_width			Width and height of image

JDIMENSION image_height

int num_components			Number of color components

J_COLOR_SPACE jpeg_color_space		Colorspace of image

boolean saw_JFIF_marker			TRUE if a JFIF APP0 marker was seen

 UINT8 JFIF_major_version		Version information from JFIF marker

 UINT8 JFIF_minor_version

 UINT8 density_unit			Resolution data from JFIF marker

 UINT16 X_density

 UINT16 Y_density

boolean saw_Adobe_marker		TRUE if an Adobe APP14 marker was seen

 UINT8 Adobe_transform			Color transform code from Adobe marker

 

The JPEG color space, unfortunately, is something of a guess since the JPEG

standard proper does not provide a way to record it.  In practice most files

adhere to the JFIF or Adobe conventions, and the decoder will recognize these

correctly.  See "Special color spaces", below, for more info.

 

 

The decompression parameters that determine the basic properties of the

returned image are:

 

J_COLOR_SPACE out_color_space

	Output color space.  jpeg_read_header() sets an appropriate default

	based on jpeg_color_space; typically it will be RGB or grayscale.

	The application can change this field to request output in a different

	colorspace.  For example, set it to JCS_GRAYSCALE to get grayscale

	output from a color file.  (This is useful for previewing: grayscale

	output is faster than full color since the color components need not

	be processed.)  Note that not all possible color space transforms are

	currently implemented; you may need to extend jdcolor.c if you want an

	unusual conversion.

 

unsigned int scale_num, scale_denom

	Scale the image by the fraction scale_num/scale_denom.  Currently,

	the supported scaling ratios are M/N with all M from 1 to 16, where

	N is the source DCT size, which is 8 for baseline JPEG.  (The library

	design allows for arbitrary scaling ratios but this is not likely

	to be implemented any time soon.)  The values are initialized by

	jpeg_read_header() with the source DCT size.  For baseline JPEG

	this is 8/8.  If you change only the scale_num value while leaving

	the other unchanged, then this specifies the DCT scaled size to be

	applied on the given input.  For baseline JPEG this is equivalent

	to M/8 scaling, since the source DCT size for baseline JPEG is 8.

	Smaller scaling ratios permit significantly faster decoding since

	fewer pixels need be processed and a simpler IDCT method can be used.

 

boolean quantize_colors



             Open Source Used In JVDI Client for Windows 14.0  86

	If set TRUE, colormapped output will be delivered.  Default is FALSE,

	meaning that full-color output will be delivered.

 

The next three parameters are relevant only if quantize_colors is TRUE.

 

int desired_number_of_colors

	Maximum number of colors to use in generating a library-supplied color

	map (the actual number of colors is returned in a different field).

	Default 256.  Ignored when the application supplies its own color map.

 

boolean two_pass_quantize

	If TRUE, an extra pass over the image is made to select a custom color

	map for the image.  This usually looks a lot better than the one-size-

	fits-all colormap that is used otherwise.  Default is TRUE.  Ignored

	when the application supplies its own color map.

 

J_DITHER_MODE dither_mode

	Selects color dithering method.  Supported values are:

		JDITHER_NONE	no dithering: fast, very low quality

		JDITHER_ORDERED	ordered dither: moderate speed and quality

		JDITHER_FS	Floyd-Steinberg dither: slow, high quality

	Default is JDITHER_FS.  (At present, ordered dither is implemented

	only in the single-pass, standard-colormap case.  If you ask for

	ordered dither when two_pass_quantize is TRUE or when you supply

	an external color map, you'll get F-S dithering.)

 

When quantize_colors is TRUE, the target color map is described by the next

two fields.  colormap is set to NULL by jpeg_read_header().  The application

can supply a color map by setting colormap non-NULL and setting

actual_number_of_colors to the map size.  Otherwise, jpeg_start_decompress()

selects a suitable color map and sets these two fields itself.

[Implementation restriction: at present, an externally supplied colormap is

only accepted for 3-component output color spaces.]

 

JSAMPARRAY colormap

	The color map, represented as a 2-D pixel array of out_color_components

	rows and actual_number_of_colors columns.  Ignored if not quantizing.

	CAUTION: if the JPEG library creates its own colormap, the storage

	pointed to by this field is released by jpeg_finish_decompress().

	Copy the colormap somewhere else first, if you want to save it.

 

int actual_number_of_colors

	The number of colors in the color map.

 

Additional decompression parameters that the application may set include:

 

J_DCT_METHOD dct_method

	Selects the algorithm used for the DCT step.  Choices are the same



             Open Source Used In JVDI Client for Windows 14.0  87

	as described above for compression.

 

boolean do_fancy_upsampling

	If TRUE, use direct DCT scaling with DCT size > 8 for upsampling

	of chroma components.

	If FALSE, use only DCT size <= 8 and simple separate upsampling.

	Default is TRUE.

	For better image stability in multiple generation compression cycles

	it is preferable that this value matches the corresponding

	do_fancy_downsampling value in compression.

 

boolean do_block_smoothing

	If TRUE, interblock smoothing is applied in early stages of decoding

	progressive JPEG files; if FALSE, not.  Default is TRUE.  Early

	progression stages look "fuzzy" with smoothing, "blocky" without.

	In any case, block smoothing ceases to be applied after the first few

	AC coefficients are known to full accuracy, so it is relevant only

	when using buffered-image mode for progressive images.

 

boolean enable_1pass_quant

boolean enable_external_quant

boolean enable_2pass_quant

	These are significant only in buffered-image mode, which is

	described in its own section below.

 

 

The output image dimensions are given by the following fields.  These are

computed from the source image dimensions and the decompression parameters

by jpeg_start_decompress().  You can also call jpeg_calc_output_dimensions()

to obtain the values that will result from the current parameter settings.

This can be useful if you are trying to pick a scaling ratio that will get

close to a desired target size.  It's also important if you are using the

JPEG library's memory manager to allocate output buffer space, because you

are supposed to request such buffers *before* jpeg_start_decompress().

 

JDIMENSION output_width		Actual dimensions of output image.

JDIMENSION output_height

int out_color_components	Number of color components in out_color_space.

int output_components		Number of color components returned.

int rec_outbuf_height		Recommended height of scanline buffer.

 

When quantizing colors, output_components is 1, indicating a single color map

index per pixel.  Otherwise it equals out_color_components.  The output arrays

are required to be output_width * output_components JSAMPLEs wide.

 

rec_outbuf_height is the recommended minimum height (in scanlines) of the

buffer passed to jpeg_read_scanlines().  If the buffer is smaller, the

library will still work, but time will be wasted due to unnecessary data



             Open Source Used In JVDI Client for Windows 14.0  88

copying.  In high-quality modes, rec_outbuf_height is always 1, but some

faster, lower-quality modes set it to larger values (typically 2 to 4).

If you are going to ask for a high-speed processing mode, you may as well

go to the trouble of honoring rec_outbuf_height so as to avoid data copying.

(An output buffer larger than rec_outbuf_height lines is OK, but won't

provide any material speed improvement over that height.)

 

 

Special color spaces

--------------------

 

The JPEG standard itself is "color blind" and doesn't specify any particular

color space.  It is customary to convert color data to a luminance/chrominance

color space before compressing, since this permits greater compression.  The

existing JPEG file interchange format standards specify YCbCr or GRAYSCALE

data (JFIF version 1), GRAYSCALE, RGB, YCbCr, CMYK, or YCCK (Adobe), or BG_RGB

or BG_YCC (big gamut color spaces, JFIF version 2).  For special applications

such as multispectral images, other color spaces can be used,

but it must be understood that such files will be unportable.

 

The JPEG library can handle the most common colorspace conversions (namely

RGB <=> YCbCr and CMYK <=> YCCK).  It can also deal with data of an unknown

color space, passing it through without conversion.  If you deal extensively

with an unusual color space, you can easily extend the library to understand

additional color spaces and perform appropriate conversions.

 

For compression, the source data's color space is specified by field

in_color_space.  This is transformed to the JPEG file's color space given

by jpeg_color_space.  jpeg_set_defaults() chooses a reasonable JPEG color

space depending on in_color_space, but you can override this by calling

jpeg_set_colorspace().  Of course you must select a supported transformation.

jccolor.c currently supports the following transformations:

	RGB => YCbCr

	RGB => GRAYSCALE

	RGB => BG_YCC

	YCbCr => GRAYSCALE

	YCbCr => BG_YCC

	CMYK => YCCK

plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB,

BG_RGB => BG_RGB, YCbCr => YCbCr, BG_YCC => BG_YCC, CMYK => CMYK,

YCCK => YCCK, and UNKNOWN => UNKNOWN.

 

The file interchange format standards (JFIF and Adobe) specify APPn markers

that indicate the color space of the JPEG file.  It is important to ensure

that these are written correctly, or omitted if the JPEG file's color space

is not one of the ones supported by the interchange standards.

jpeg_set_colorspace() will set the compression parameters to include or omit

the APPn markers properly, so long as it is told the truth about the JPEG



             Open Source Used In JVDI Client for Windows 14.0  89

color space.  For example, if you are writing some random 3-component color

space without conversion, don't try to fake out the library by setting

in_color_space and jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN.

You may want to write an APPn marker of your own devising to identify

the colorspace --- see "Special markers", below.

 

When told that the color space is UNKNOWN, the library will default to using

luminance-quality compression parameters for all color components.  You may

well want to change these parameters.  See the source code for

jpeg_set_colorspace(), in jcparam.c, for details.

 

For decompression, the JPEG file's color space is given in jpeg_color_space,

and this is transformed to the output color space out_color_space.

jpeg_read_header's setting of jpeg_color_space can be relied on if the file

conforms to JFIF or Adobe conventions, but otherwise it is no better than a

guess.  If you know the JPEG file's color space for certain, you can override

jpeg_read_header's guess by setting jpeg_color_space.  jpeg_read_header also

selects a default output color space based on (its guess of) jpeg_color_space;

set out_color_space to override this.  Again, you must select a supported

transformation.  jdcolor.c currently supports

	YCbCr => RGB

	YCbCr => GRAYSCALE

	BG_YCC => RGB

	BG_YCC => GRAYSCALE

	RGB => GRAYSCALE

	GRAYSCALE => RGB

	YCCK => CMYK

as well as the null transforms.  (Since GRAYSCALE=>RGB is provided, an

application can force grayscale JPEGs to look like color JPEGs if it only

wants to handle one case.)

 

The two-pass color quantizer, jquant2.c, is specialized to handle RGB data

(it weights distances appropriately for RGB colors).  You'll need to modify

the code if you want to use it for non-RGB output color spaces.  Note that

jquant2.c is used to map to an application-supplied colormap as well as for

the normal two-pass colormap selection process.

 

CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG

files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect.

This is arguably a bug in Photoshop, but if you need to work with Photoshop

CMYK files, you will have to deal with it in your application.  We cannot

"fix" this in the library by inverting the data during the CMYK<=>YCCK

transform, because that would break other applications, notably Ghostscript.

Photoshop versions prior to 3.0 write EPS files containing JPEG-encoded CMYK

data in the same inverted-YCCK representation used in bare JPEG files, but

the surrounding PostScript code performs an inversion using the PS image

operator.  I am told that Photoshop 3.0 will write uninverted YCCK in

EPS/JPEG files, and will omit the PS-level inversion.  (But the data



             Open Source Used In JVDI Client for Windows 14.0  90

polarity used in bare JPEG files will not change in 3.0.)  In either case,

the JPEG library must not invert the data itself, or else Ghostscript would

read these EPS files incorrectly.

 

 

Error handling

--------------

 

When the default error handler is used, any error detected inside the JPEG

routines will cause a message to be printed on stderr, followed by exit().

You can supply your own error handling routines to override this behavior

and to control the treatment of nonfatal warnings and trace/debug messages.

The file example.c illustrates the most common case, which is to have the

application regain control after an error rather than exiting.

 

The JPEG library never writes any message directly; it always goes through

the error handling routines.  Three classes of messages are recognized:

 * Fatal errors: the library cannot continue.

 * Warnings: the library can continue, but the data is corrupt, and a

   damaged output image is likely to result.

 * Trace/informational messages.  These come with a trace level indicating

   the importance of the message; you can control the verbosity of the

   program by adjusting the maximum trace level that will be displayed.

 

You may, if you wish, simply replace the entire JPEG error handling module

(jerror.c) with your own code.  However, you can avoid code duplication by

only replacing some of the routines depending on the behavior you need.

This is accomplished by calling jpeg_std_error() as usual, but then overriding

some of the method pointers in the jpeg_error_mgr struct, as illustrated by

example.c.

 

All of the error handling routines will receive a pointer to the JPEG object

(a j_common_ptr which points to either a jpeg_compress_struct or a

jpeg_decompress_struct; if you need to tell which, test the is_decompressor

field).  This struct includes a pointer to the error manager struct in its

"err" field.  Frequently, custom error handler routines will need to access

additional data which is not known to the JPEG library or the standard error

handler.  The most convenient way to do this is to embed either the JPEG

object or the jpeg_error_mgr struct in a larger structure that contains

additional fields; then casting the passed pointer provides access to the

additional fields.  Again, see example.c for one way to do it.  (Beginning

with IJG version 6b, there is also a void pointer "client_data" in each

JPEG object, which the application can also use to find related data.

The library does not touch client_data at all.)

 

The individual methods that you might wish to override are:

 

error_exit (j_common_ptr cinfo)



             Open Source Used In JVDI Client for Windows 14.0  91

	Receives control for a fatal error.  Information sufficient to

	generate the error message has been stored in cinfo->err; call

	output_message to display it.  Control must NOT return to the caller;

	generally this routine will exit() or longjmp() somewhere.

	Typically you would override this routine to get rid of the exit()

	default behavior.  Note that if you continue processing, you should

	clean up the JPEG object with jpeg_abort() or jpeg_destroy().

 

output_message (j_common_ptr cinfo)

	Actual output of any JPEG message.  Override this to send messages

	somewhere other than stderr.  Note that this method does not know

	how to generate a message, only where to send it.

 

format_message (j_common_ptr cinfo, char * buffer)

	Constructs a readable error message string based on the error info

	stored in cinfo->err.  This method is called by output_message.  Few

	applications should need to override this method.  One possible

	reason for doing so is to implement dynamic switching of error message

	language.

 

emit_message (j_common_ptr cinfo, int msg_level)

	Decide whether or not to emit a warning or trace message; if so,

	calls output_message.  The main reason for overriding this method

	would be to abort on warnings.  msg_level is -1 for warnings,

	0 and up for trace messages.

 

Only error_exit() and emit_message() are called from the rest of the JPEG

library; the other two are internal to the error handler.

 

The actual message texts are stored in an array of strings which is pointed to

by the field err->jpeg_message_table.  The messages are numbered from 0 to

err->last_jpeg_message, and it is these code numbers that are used in the

JPEG library code.  You could replace the message texts (for instance, with

messages in French or German) by changing the message table pointer.  See

jerror.h for the default texts.  CAUTION: this table will almost certainly

change or grow from one library version to the next.

 

It may be useful for an application to add its own message texts that are

handled by the same mechanism.  The error handler supports a second "add-on"

message table for this purpose.  To define an addon table, set the pointer

err->addon_message_table and the message numbers err->first_addon_message and

err->last_addon_message.  If you number the addon messages beginning at 1000

or so, you won't have to worry about conflicts with the library's built-in

messages.  See the sample applications cjpeg/djpeg for an example of using

addon messages (the addon messages are defined in cderror.h).

 

Actual invocation of the error handler is done via macros defined in jerror.h:

	ERREXITn(...)	for fatal errors



             Open Source Used In JVDI Client for Windows 14.0  92

	WARNMSn(...)	for corrupt-data warnings

	TRACEMSn(...)	for trace and informational messages.

These macros store the message code and any additional parameters into the

error handler struct, then invoke the error_exit() or emit_message() method.

The variants of each macro are for varying numbers of additional parameters.

The additional parameters are inserted into the generated message using

standard printf() format codes.

 

See jerror.h and jerror.c for further details.

 

 

Compressed data handling (source and destination managers)

----------------------------------------------------------

 

The JPEG compression library sends its compressed data to a "destination

manager" module.  The default destination manager just writes the data to a

memory buffer or to a stdio stream, but you can provide your own manager to

do something else.  Similarly, the decompression library calls a "source

manager" to obtain the compressed data; you can provide your own source

manager if you want the data to come from somewhere other than a memory

buffer or a stdio stream.

 

In both cases, compressed data is processed a bufferload at a time: the

destination or source manager provides a work buffer, and the library invokes

the manager only when the buffer is filled or emptied.  (You could define a

one-character buffer to force the manager to be invoked for each byte, but

that would be rather inefficient.)  The buffer's size and location are

controlled by the manager, not by the library.  For example, the memory

source manager just makes the buffer pointer and length point to the original

data in memory.  In this case the buffer-reload procedure will be invoked

only if the decompressor ran off the end of the datastream, which would

indicate an erroneous datastream.

 

The work buffer is defined as an array of datatype JOCTET, which is generally

"char" or "unsigned char".  On a machine where char is not exactly 8 bits

wide, you must define JOCTET as a wider data type and then modify the data

source and destination modules to transcribe the work arrays into 8-bit units

on external storage.

 

A data destination manager struct contains a pointer and count defining the

next byte to write in the work buffer and the remaining free space:

 

	JOCTET * next_output_byte;  /* => next byte to write in buffer */

	size_t free_in_buffer;      /* # of byte spaces remaining in buffer */

 

The library increments the pointer and decrements the count until the buffer

is filled.  The manager's empty_output_buffer method must reset the pointer

and count.  The manager is expected to remember the buffer's starting address



             Open Source Used In JVDI Client for Windows 14.0  93

and total size in private fields not visible to the library.

 

A data destination manager provides three methods:

 

init_destination (j_compress_ptr cinfo)

	Initialize destination.  This is called by jpeg_start_compress()

	before any data is actually written.  It must initialize

	next_output_byte and free_in_buffer.  free_in_buffer must be

	initialized to a positive value.

 

empty_output_buffer (j_compress_ptr cinfo)

	This is called whenever the buffer has filled (free_in_buffer

	reaches zero).  In typical applications, it should write out the

	*entire* buffer (use the saved start address and buffer length;

	ignore the current state of next_output_byte and free_in_buffer).

	Then reset the pointer & count to the start of the buffer, and

	return TRUE indicating that the buffer has been dumped.

	free_in_buffer must be set to a positive value when TRUE is

	returned.  A FALSE return should only be used when I/O suspension is

	desired (this operating mode is discussed in the next section).

 

term_destination (j_compress_ptr cinfo)

	Terminate destination --- called by jpeg_finish_compress() after all

	data has been written.  In most applications, this must flush any

	data remaining in the buffer.  Use either next_output_byte or

	free_in_buffer to determine how much data is in the buffer.

 

term_destination() is NOT called by jpeg_abort() or jpeg_destroy().  If you

want the destination manager to be cleaned up during an abort, you must do it

yourself.

 

You will also need code to create a jpeg_destination_mgr struct, fill in its

method pointers, and insert a pointer to the struct into the "dest" field of

the JPEG compression object.  This can be done in-line in your setup code if

you like, but it's probably cleaner to provide a separate routine similar to

the jpeg_stdio_dest() or jpeg_mem_dest() routines of the supplied destination

managers.

 

Decompression source managers follow a parallel design, but with some

additional frammishes.  The source manager struct contains a pointer and count

defining the next byte to read from the work buffer and the number of bytes

remaining:

 

	const JOCTET * next_input_byte; /* => next byte to read from buffer */

	size_t bytes_in_buffer;         /* # of bytes remaining in buffer */

 

The library increments the pointer and decrements the count until the buffer

is emptied.  The manager's fill_input_buffer method must reset the pointer and



             Open Source Used In JVDI Client for Windows 14.0  94

count.  In most applications, the manager must remember the buffer's starting

address and total size in private fields not visible to the library.

 

A data source manager provides five methods:

 

init_source (j_decompress_ptr cinfo)

	Initialize source.  This is called by jpeg_read_header() before any

	data is actually read.  Unlike init_destination(), it may leave

	bytes_in_buffer set to 0 (in which case a fill_input_buffer() call

	will occur immediately).

 

fill_input_buffer (j_decompress_ptr cinfo)

	This is called whenever bytes_in_buffer has reached zero and more

	data is wanted.  In typical applications, it should read fresh data

	into the buffer (ignoring the current state of next_input_byte and

	bytes_in_buffer), reset the pointer & count to the start of the

	buffer, and return TRUE indicating that the buffer has been reloaded.

	It is not necessary to fill the buffer entirely, only to obtain at

	least one more byte.  bytes_in_buffer MUST be set to a positive value

	if TRUE is returned.  A FALSE return should only be used when I/O

	suspension is desired (this mode is discussed in the next section).

 

skip_input_data (j_decompress_ptr cinfo, long num_bytes)

	Skip num_bytes worth of data.  The buffer pointer and count should

	be advanced over num_bytes input bytes, refilling the buffer as

	needed.  This is used to skip over a potentially large amount of

	uninteresting data (such as an APPn marker).  In some applications

	it may be possible to optimize away the reading of the skipped data,

	but it's not clear that being smart is worth much trouble; large

	skips are uncommon.  bytes_in_buffer may be zero on return.

	A zero or negative skip count should be treated as a no-op.

 

resync_to_restart (j_decompress_ptr cinfo, int desired)

	This routine is called only when the decompressor has failed to find

	a restart (RSTn) marker where one is expected.  Its mission is to

	find a suitable point for resuming decompression.  For most

	applications, we recommend that you just use the default resync

	procedure, jpeg_resync_to_restart().  However, if you are able to back

	up in the input data stream, or if you have a-priori knowledge about

	the likely location of restart markers, you may be able to do better.

	Read the read_restart_marker() and jpeg_resync_to_restart() routines

	in jdmarker.c if you think you'd like to implement your own resync

	procedure.

 

term_source (j_decompress_ptr cinfo)

	Terminate source --- called by jpeg_finish_decompress() after all

	data has been read.  Often a no-op.

 



             Open Source Used In JVDI Client for Windows 14.0  95

For both fill_input_buffer() and skip_input_data(), there is no such thing

as an EOF return.  If the end of the file has been reached, the routine has

a choice of exiting via ERREXIT() or inserting fake data into the buffer.

In most cases, generating a warning message and inserting a fake EOI marker

is the best course of action --- this will allow the decompressor to output

however much of the image is there.  In pathological cases, the decompressor

may swallow the EOI and again demand data ... just keep feeding it fake EOIs.

jdatasrc.c illustrates the recommended error recovery behavior.

 

term_source() is NOT called by jpeg_abort() or jpeg_destroy().  If you want

the source manager to be cleaned up during an abort, you must do it yourself.

 

You will also need code to create a jpeg_source_mgr struct, fill in its method

pointers, and insert a pointer to the struct into the "src" field of the JPEG

decompression object.  This can be done in-line in your setup code if you

like, but it's probably cleaner to provide a separate routine similar to the

jpeg_stdio_src() or jpeg_mem_src() routines of the supplied source managers.

 

For more information, consult the memory and stdio source and destination

managers in jdatasrc.c and jdatadst.c.

 

 

I/O suspension

--------------

 

Some applications need to use the JPEG library as an incremental memory-to-

memory filter: when the compressed data buffer is filled or emptied, they want

control to return to the outer loop, rather than expecting that the buffer can

be emptied or reloaded within the data source/destination manager subroutine.

The library supports this need by providing an "I/O suspension" mode, which we

describe in this section.

 

The I/O suspension mode is not a panacea: nothing is guaranteed about the

maximum amount of time spent in any one call to the library, so it will not

eliminate response-time problems in single-threaded applications.  If you

need guaranteed response time, we suggest you "bite the bullet" and implement

a real multi-tasking capability.

 

To use I/O suspension, cooperation is needed between the calling application

and the data source or destination manager; you will always need a custom

source/destination manager.  (Please read the previous section if you haven't

already.)  The basic idea is that the empty_output_buffer() or

fill_input_buffer() routine is a no-op, merely returning FALSE to indicate

that it has done nothing.  Upon seeing this, the JPEG library suspends

operation and returns to its caller.  The surrounding application is

responsible for emptying or refilling the work buffer before calling the

JPEG library again.

 



             Open Source Used In JVDI Client for Windows 14.0  96

Compression suspension:

 

For compression suspension, use an empty_output_buffer() routine that returns

FALSE; typically it will not do anything else.  This will cause the

compressor to return to the caller of jpeg_write_scanlines(), with the return

value indicating that not all the supplied scanlines have been accepted.

The application must make more room in the output buffer, adjust the output

buffer pointer/count appropriately, and then call jpeg_write_scanlines()

again, pointing to the first unconsumed scanline.

 

When forced to suspend, the compressor will backtrack to a convenient stopping

point (usually the start of the current MCU); it will regenerate some output

data when restarted.  Therefore, although empty_output_buffer() is only

called when the buffer is filled, you should NOT write out the entire buffer

after a suspension.  Write only the data up to the current position of

next_output_byte/free_in_buffer.  The data beyond that point will be

regenerated after resumption.

 

Because of the backtracking behavior, a good-size output buffer is essential

for efficiency; you don't want the compressor to suspend often.  (In fact, an

overly small buffer could lead to infinite looping, if a single MCU required

more data than would fit in the buffer.)  We recommend a buffer of at least

several Kbytes.  You may want to insert explicit code to ensure that you don't

call jpeg_write_scanlines() unless there is a reasonable amount of space in

the output buffer; in other words, flush the buffer before trying to compress

more data.

 

The compressor does not allow suspension while it is trying to write JPEG

markers at the beginning and end of the file.  This means that:

 * At the beginning of a compression operation, there must be enough free

   space in the output buffer to hold the header markers (typically 600 or

   so bytes).  The recommended buffer size is bigger than this anyway, so

   this is not a problem as long as you start with an empty buffer.  However,

   this restriction might catch you if you insert large special markers, such

   as a JFIF thumbnail image, without flushing the buffer afterwards.

 * When you call jpeg_finish_compress(), there must be enough space in the

   output buffer to emit any buffered data and the final EOI marker.  In the

   current implementation, half a dozen bytes should suffice for this, but

   for safety's sake we recommend ensuring that at least 100 bytes are free

   before calling jpeg_finish_compress().

 

A more significant restriction is that jpeg_finish_compress() cannot suspend.

This means you cannot use suspension with multi-pass operating modes, namely

Huffman code optimization and multiple-scan output.  Those modes write the

whole file during jpeg_finish_compress(), which will certainly result in

buffer overrun.  (Note that this restriction applies only to compression,

not decompression.  The decompressor supports input suspension in all of its

operating modes.)



             Open Source Used In JVDI Client for Windows 14.0  97

 

Decompression suspension:

 

For decompression suspension, use a fill_input_buffer() routine that simply

returns FALSE (except perhaps during error recovery, as discussed below).

This will cause the decompressor to return to its caller with an indication

that suspension has occurred.  This can happen at four places:

 * jpeg_read_header(): will return JPEG_SUSPENDED.

 * jpeg_start_decompress(): will return FALSE, rather than its usual TRUE.

 * jpeg_read_scanlines(): will return the number of scanlines already

	completed (possibly 0).

 * jpeg_finish_decompress(): will return FALSE, rather than its usual TRUE.

The surrounding application must recognize these cases, load more data into

the input buffer, and repeat the call.  In the case of jpeg_read_scanlines(),

increment the passed pointers past any scanlines successfully read.

 

Just as with compression, the decompressor will typically backtrack to a

convenient restart point before suspending.  When fill_input_buffer() is

called, next_input_byte/bytes_in_buffer point to the current restart point,

which is where the decompressor will backtrack to if FALSE is returned.

The data beyond that position must NOT be discarded if you suspend; it needs

to be re-read upon resumption.  In most implementations, you'll need to shift

this data down to the start of your work buffer and then load more data after

it.  Again, this behavior means that a several-Kbyte work buffer is essential

for decent performance; furthermore, you should load a reasonable amount of

new data before resuming decompression.  (If you loaded, say, only one new

byte each time around, you could waste a LOT of cycles.)

 

The skip_input_data() source manager routine requires special care in a

suspension scenario.  This routine is NOT granted the ability to suspend the

decompressor; it can decrement bytes_in_buffer to zero, but no more.  If the

requested skip distance exceeds the amount of data currently in the input

buffer, then skip_input_data() must set bytes_in_buffer to zero and record the

additional skip distance somewhere else.  The decompressor will immediately

call fill_input_buffer(), which should return FALSE, which will cause a

suspension return.  The surrounding application must then arrange to discard

the recorded number of bytes before it resumes loading the input buffer.

(Yes, this design is rather baroque, but it avoids complexity in the far more

common case where a non-suspending source manager is used.)

 

If the input data has been exhausted, we recommend that you emit a warning

and insert dummy EOI markers just as a non-suspending data source manager

would do.  This can be handled either in the surrounding application logic or

within fill_input_buffer(); the latter is probably more efficient.  If

fill_input_buffer() knows that no more data is available, it can set the

pointer/count to point to a dummy EOI marker and then return TRUE just as

though it had read more data in a non-suspending situation.

 



             Open Source Used In JVDI Client for Windows 14.0  98

The decompressor does not attempt to suspend within standard JPEG markers;

instead it will backtrack to the start of the marker and reprocess the whole

marker next time.  Hence the input buffer must be large enough to hold the

longest standard marker in the file.  Standard JPEG markers should normally

not exceed a few hundred bytes each (DHT tables are typically the longest).

We recommend at least a 2K buffer for performance reasons, which is much

larger than any correct marker is likely to be.  For robustness against

damaged marker length counts, you may wish to insert a test in your

application for the case that the input buffer is completely full and yet

the decoder has suspended without consuming any data --- otherwise, if this

situation did occur, it would lead to an endless loop.  (The library can't

provide this test since it has no idea whether "the buffer is full", or

even whether there is a fixed-size input buffer.)

 

The input buffer would need to be 64K to allow for arbitrary COM or APPn

markers, but these are handled specially: they are either saved into allocated

memory, or skipped over by calling skip_input_data().  In the former case,

suspension is handled correctly, and in the latter case, the problem of

buffer overrun is placed on skip_input_data's shoulders, as explained above.

Note that if you provide your own marker handling routine for large markers,

you should consider how to deal with buffer overflow.

 

Multiple-buffer management:

 

In some applications it is desirable to store the compressed data in a linked

list of buffer areas, so as to avoid data copying.  This can be handled by

having empty_output_buffer() or fill_input_buffer() set the pointer and count

to reference the next available buffer; FALSE is returned only if no more

buffers are available.  Although seemingly straightforward, there is a

pitfall in this approach: the backtrack that occurs when FALSE is returned

could back up into an earlier buffer.  For example, when fill_input_buffer()

is called, the current pointer & count indicate the backtrack restart point.

Since fill_input_buffer() will set the pointer and count to refer to a new

buffer, the restart position must be saved somewhere else.  Suppose a second

call to fill_input_buffer() occurs in the same library call, and no

additional input data is available, so fill_input_buffer must return FALSE.

If the JPEG library has not moved the pointer/count forward in the current

buffer, then *the correct restart point is the saved position in the prior

buffer*.  Prior buffers may be discarded only after the library establishes

a restart point within a later buffer.  Similar remarks apply for output into

a chain of buffers.

 

The library will never attempt to backtrack over a skip_input_data() call,

so any skipped data can be permanently discarded.  You still have to deal

with the case of skipping not-yet-received data, however.

 

It's much simpler to use only a single buffer; when fill_input_buffer() is

called, move any unconsumed data (beyond the current pointer/count) down to



             Open Source Used In JVDI Client for Windows 14.0  99

the beginning of this buffer and then load new data into the remaining buffer

space.  This approach requires a little more data copying but is far easier

to get right.

 

 

Progressive JPEG support

------------------------

 

Progressive JPEG rearranges the stored data into a series of scans of

increasing quality.  In situations where a JPEG file is transmitted across a

slow communications link, a decoder can generate a low-quality image very

quickly from the first scan, then gradually improve the displayed quality as

more scans are received.  The final image after all scans are complete is

identical to that of a regular (sequential) JPEG file of the same quality

setting.  Progressive JPEG files are often slightly smaller than equivalent

sequential JPEG files, but the possibility of incremental display is the main

reason for using progressive JPEG.

 

The IJG encoder library generates progressive JPEG files when given a

suitable "scan script" defining how to divide the data into scans.

Creation of progressive JPEG files is otherwise transparent to the encoder.

Progressive JPEG files can also be read transparently by the decoder library.

If the decoding application simply uses the library as defined above, it

will receive a final decoded image without any indication that the file was

progressive.  Of course, this approach does not allow incremental display.

To perform incremental display, an application needs to use the decoder

library's "buffered-image" mode, in which it receives a decoded image

multiple times.

 

Each displayed scan requires about as much work to decode as a full JPEG

image of the same size, so the decoder must be fairly fast in relation to the

data transmission rate in order to make incremental display useful.  However,

it is possible to skip displaying the image and simply add the incoming bits

to the decoder's coefficient buffer.  This is fast because only Huffman

decoding need be done, not IDCT, upsampling, colorspace conversion, etc.

The IJG decoder library allows the application to switch dynamically between

displaying the image and simply absorbing the incoming bits.  A properly

coded application can automatically adapt the number of display passes to

suit the time available as the image is received.  Also, a final

higher-quality display cycle can be performed from the buffered data after

the end of the file is reached.

 

Progressive compression:

 

To create a progressive JPEG file (or a multiple-scan sequential JPEG file),

set the scan_info cinfo field to point to an array of scan descriptors, and

perform compression as usual.  Instead of constructing your own scan list,

you can call the jpeg_simple_progression() helper routine to create a



             Open Source Used In JVDI Client for Windows 14.0  100

recommended progression sequence; this method should be used by all

applications that don't want to get involved in the nitty-gritty of

progressive scan sequence design.  (If you want to provide user control of

scan sequences, you may wish to borrow the scan script reading code found

in rdswitch.c, so that you can read scan script files just like cjpeg's.)

When scan_info is not NULL, the compression library will store DCT'd data

into a buffer array as jpeg_write_scanlines() is called, and will emit all

the requested scans during jpeg_finish_compress().  This implies that

multiple-scan output cannot be created with a suspending data destination

manager, since jpeg_finish_compress() does not support suspension.  We

should also note that the compressor currently forces Huffman optimization

mode when creating a progressive JPEG file, because the default Huffman

tables are unsuitable for progressive files.

 

Progressive decompression:

 

When buffered-image mode is not used, the decoder library will read all of

a multi-scan file during jpeg_start_decompress(), so that it can provide a

final decoded image.  (Here "multi-scan" means either progressive or

multi-scan sequential.)  This makes multi-scan files transparent to the

decoding application.  However, existing applications that used suspending

input with version 5 of the IJG library will need to be modified to check

for a suspension return from jpeg_start_decompress().

 

To perform incremental display, an application must use the library's

buffered-image mode.  This is described in the next section.

 

 

Buffered-image mode

-------------------

 

In buffered-image mode, the library stores the partially decoded image in a

coefficient buffer, from which it can be read out as many times as desired.

This mode is typically used for incremental display of progressive JPEG files,

but it can be used with any JPEG file.  Each scan of a progressive JPEG file

adds more data (more detail) to the buffered image.  The application can

display in lockstep with the source file (one display pass per input scan),

or it can allow input processing to outrun display processing.  By making

input and display processing run independently, it is possible for the

application to adapt progressive display to a wide range of data transmission

rates.

 

The basic control flow for buffered-image decoding is

 

	jpeg_create_decompress()

	set data source

	jpeg_read_header()

	set overall decompression parameters



             Open Source Used In JVDI Client for Windows 14.0  101

	cinfo.buffered_image = TRUE;	/* select buffered-image mode */

	jpeg_start_decompress()

	for (each output pass) {

	    adjust output decompression parameters if required

	    jpeg_start_output()		/* start a new output pass */

	    for (all scanlines in image) {

	        jpeg_read_scanlines()

	        display scanlines

	    }

	    jpeg_finish_output()	/* terminate output pass */

	}

	jpeg_finish_decompress()

	jpeg_destroy_decompress()

 

This differs from ordinary unbuffered decoding in that there is an additional

level of looping.  The application can choose how many output passes to make

and how to display each pass.

 

The simplest approach to displaying progressive images is to do one display

pass for each scan appearing in the input file.  In this case the outer loop

condition is typically

	while (! jpeg_input_complete(&cinfo))

and the start-output call should read

	jpeg_start_output(&cinfo, cinfo.input_scan_number);

The second parameter to jpeg_start_output() indicates which scan of the input

file is to be displayed; the scans are numbered starting at 1 for this

purpose.  (You can use a loop counter starting at 1 if you like, but using

the library's input scan counter is easier.)  The library automatically reads

data as necessary to complete each requested scan, and jpeg_finish_output()

advances to the next scan or end-of-image marker (hence input_scan_number

will be incremented by the time control arrives back at jpeg_start_output()).

With this technique, data is read from the input file only as needed, and

input and output processing run in lockstep.

 

After reading the final scan and reaching the end of the input file, the

buffered image remains available; it can be read additional times by

repeating the jpeg_start_output()/jpeg_read_scanlines()/jpeg_finish_output()

sequence.  For example, a useful technique is to use fast one-pass color

quantization for display passes made while the image is arriving, followed by

a final display pass using two-pass quantization for highest quality.  This

is done by changing the library parameters before the final output pass.

Changing parameters between passes is discussed in detail below.

 

In general the last scan of a progressive file cannot be recognized as such

until after it is read, so a post-input display pass is the best approach if

you want special processing in the final pass.

 

When done with the image, be sure to call jpeg_finish_decompress() to release



             Open Source Used In JVDI Client for Windows 14.0  102

the buffered image (or just use jpeg_destroy_decompress()).

 

If input data arrives faster than it can be displayed, the application can

cause the library to decode input data in advance of what's needed to produce

output.  This is done by calling the routine jpeg_consume_input().

The return value is one of the following:

	JPEG_REACHED_SOS:    reached an SOS marker (the start of a new scan)

	JPEG_REACHED_EOI:    reached the EOI marker (end of image)

	JPEG_ROW_COMPLETED:  completed reading one MCU row of compressed data

	JPEG_SCAN_COMPLETED: completed reading last MCU row of current scan

	JPEG_SUSPENDED:      suspended before completing any of the above

(JPEG_SUSPENDED can occur only if a suspending data source is used.)  This

routine can be called at any time after initializing the JPEG object.  It

reads some additional data and returns when one of the indicated significant

events occurs.  (If called after the EOI marker is reached, it will

immediately return JPEG_REACHED_EOI without attempting to read more data.)

 

The library's output processing will automatically call jpeg_consume_input()

whenever the output processing overtakes the input; thus, simple lockstep

display requires no direct calls to jpeg_consume_input().  But by adding

calls to jpeg_consume_input(), you can absorb data in advance of what is

being displayed.  This has two benefits:

 * You can limit buildup of unprocessed data in your input buffer.

 * You can eliminate extra display passes by paying attention to the

   state of the library's input processing.

 

The first of these benefits only requires interspersing calls to

jpeg_consume_input() with your display operations and any other processing

you may be doing.  To avoid wasting cycles due to backtracking, it's best to

call jpeg_consume_input() only after a hundred or so new bytes have arrived.

This is discussed further under "I/O suspension", above.  (Note: the JPEG

library currently is not thread-safe.  You must not call jpeg_consume_input()

from one thread of control if a different library routine is working on the

same JPEG object in another thread.)

 

When input arrives fast enough that more than one new scan is available

before you start a new output pass, you may as well skip the output pass

corresponding to the completed scan.  This occurs for free if you pass

cinfo.input_scan_number as the target scan number to jpeg_start_output().

The input_scan_number field is simply the index of the scan currently being

consumed by the input processor.  You can ensure that this is up-to-date by

emptying the input buffer just before calling jpeg_start_output(): call

jpeg_consume_input() repeatedly until it returns JPEG_SUSPENDED or

JPEG_REACHED_EOI.

 

The target scan number passed to jpeg_start_output() is saved in the

cinfo.output_scan_number field.  The library's output processing calls

jpeg_consume_input() whenever the current input scan number and row within



             Open Source Used In JVDI Client for Windows 14.0  103

that scan is less than or equal to the current output scan number and row.

Thus, input processing can "get ahead" of the output processing but is not

allowed to "fall behind".  You can achieve several different effects by

manipulating this interlock rule.  For example, if you pass a target scan

number greater than the current input scan number, the output processor will

wait until that scan starts to arrive before producing any output.  (To avoid

an infinite loop, the target scan number is automatically reset to the last

scan number when the end of image is reached.  Thus, if you specify a large

target scan number, the library will just absorb the entire input file and

then perform an output pass.  This is effectively the same as what

jpeg_start_decompress() does when you don't select buffered-image mode.)

When you pass a target scan number equal to the current input scan number,

the image is displayed no faster than the current input scan arrives.  The

final possibility is to pass a target scan number less than the current input

scan number; this disables the input/output interlock and causes the output

processor to simply display whatever it finds in the image buffer, without

waiting for input.  (However, the library will not accept a target scan

number less than one, so you can't avoid waiting for the first scan.)

 

When data is arriving faster than the output display processing can advance

through the image, jpeg_consume_input() will store data into the buffered

image beyond the point at which the output processing is reading data out

again.  If the input arrives fast enough, it may "wrap around" the buffer to

the point where the input is more than one whole scan ahead of the output.

If the output processing simply proceeds through its display pass without

paying attention to the input, the effect seen on-screen is that the lower

part of the image is one or more scans better in quality than the upper part.

Then, when the next output scan is started, you have a choice of what target

scan number to use.  The recommended choice is to use the current input scan

number at that time, which implies that you've skipped the output scans

corresponding to the input scans that were completed while you processed the

previous output scan.  In this way, the decoder automatically adapts its

speed to the arriving data, by skipping output scans as necessary to keep up

with the arriving data.

 

When using this strategy, you'll want to be sure that you perform a final

output pass after receiving all the data; otherwise your last display may not

be full quality across the whole screen.  So the right outer loop logic is

something like this:

	do {

	    absorb any waiting input by calling jpeg_consume_input()

	    final_pass = jpeg_input_complete(&cinfo);

	    adjust output decompression parameters if required

	    jpeg_start_output(&cinfo, cinfo.input_scan_number);

	    ...

	    jpeg_finish_output()

	} while (! final_pass);

rather than quitting as soon as jpeg_input_complete() returns TRUE.  This



             Open Source Used In JVDI Client for Windows 14.0  104

arrangement makes it simple to use higher-quality decoding parameters

for the final pass.  But if you don't want to use special parameters for

the final pass, the right loop logic is like this:

	for (;;) {

	    absorb any waiting input by calling jpeg_consume_input()

	    jpeg_start_output(&cinfo, cinfo.input_scan_number);

	    ...

	    jpeg_finish_output()

	    if (jpeg_input_complete(&cinfo) &&

	        cinfo.input_scan_number == cinfo.output_scan_number)

	      break;

	}

In this case you don't need to know in advance whether an output pass is to

be the last one, so it's not necessary to have reached EOF before starting

the final output pass; rather, what you want to test is whether the output

pass was performed in sync with the final input scan.  This form of the loop

will avoid an extra output pass whenever the decoder is able (or nearly able)

to keep up with the incoming data.

 

When the data transmission speed is high, you might begin a display pass,

then find that much or all of the file has arrived before you can complete

the pass.  (You can detect this by noting the JPEG_REACHED_EOI return code

from jpeg_consume_input(), or equivalently by testing jpeg_input_complete().)

In this situation you may wish to abort the current display pass and start a

new one using the newly arrived information.  To do so, just call

jpeg_finish_output() and then start a new pass with jpeg_start_output().

 

A variant strategy is to abort and restart display if more than one complete

scan arrives during an output pass; this can be detected by noting

JPEG_REACHED_SOS returns and/or examining cinfo.input_scan_number.  This

idea should be employed with caution, however, since the display process

might never get to the bottom of the image before being aborted, resulting

in the lower part of the screen being several passes worse than the upper.

In most cases it's probably best to abort an output pass only if the whole

file has arrived and you want to begin the final output pass immediately.

 

When receiving data across a communication link, we recommend always using

the current input scan number for the output target scan number; if a

higher-quality final pass is to be done, it should be started (aborting any

incomplete output pass) as soon as the end of file is received.  However,

many other strategies are possible.  For example, the application can examine

the parameters of the current input scan and decide whether to display it or

not.  If the scan contains only chroma data, one might choose not to use it

as the target scan, expecting that the scan will be small and will arrive

quickly.  To skip to the next scan, call jpeg_consume_input() until it

returns JPEG_REACHED_SOS or JPEG_REACHED_EOI.  Or just use the next higher

number as the target scan for jpeg_start_output(); but that method doesn't

let you inspect the next scan's parameters before deciding to display it.



             Open Source Used In JVDI Client for Windows 14.0  105

 

 

In buffered-image mode, jpeg_start_decompress() never performs input and

thus never suspends.  An application that uses input suspension with

buffered-image mode must be prepared for suspension returns from these

routines:

* jpeg_start_output() performs input only if you request 2-pass quantization

 and the target scan isn't fully read yet.  (This is discussed below.)

* jpeg_read_scanlines(), as always, returns the number of scanlines that it

 was able to produce before suspending.

* jpeg_finish_output() will read any markers following the target scan,

 up to the end of the file or the SOS marker that begins another scan.

 (But it reads no input if jpeg_consume_input() has already reached the

 end of the file or a SOS marker beyond the target output scan.)

* jpeg_finish_decompress() will read until the end of file, and thus can

 suspend if the end hasn't already been reached (as can be tested by

 calling jpeg_input_complete()).

jpeg_start_output(), jpeg_finish_output(), and jpeg_finish_decompress()

all return TRUE if they completed their tasks, FALSE if they had to suspend.

In the event of a FALSE return, the application must load more input data

and repeat the call.  Applications that use non-suspending data sources need

not check the return values of these three routines.

 

 

It is possible to change decoding parameters between output passes in the

buffered-image mode.  The decoder library currently supports only very

limited changes of parameters.  ONLY THE FOLLOWING parameter changes are

allowed after jpeg_start_decompress() is called:

* dct_method can be changed before each call to jpeg_start_output().

 For example, one could use a fast DCT method for early scans, changing

 to a higher quality method for the final scan.

* dither_mode can be changed before each call to jpeg_start_output();

 of course this has no impact if not using color quantization.  Typically

 one would use ordered dither for initial passes, then switch to

 Floyd-Steinberg dither for the final pass.  Caution: changing dither mode

 can cause more memory to be allocated by the library.  Although the amount

 of memory involved is not large (a scanline or so), it may cause the

 initial max_memory_to_use specification to be exceeded, which in the worst

 case would result in an out-of-memory failure.

* do_block_smoothing can be changed before each call to jpeg_start_output().

 This setting is relevant only when decoding a progressive JPEG image.

 During the first DC-only scan, block smoothing provides a very "fuzzy" look

 instead of the very "blocky" look seen without it; which is better seems a

 matter of personal taste.  But block smoothing is nearly always a win

 during later stages, especially when decoding a successive-approximation

 image: smoothing helps to hide the slight blockiness that otherwise shows

 up on smooth gradients until the lowest coefficient bits are sent.

* Color quantization mode can be changed under the rules described below.



             Open Source Used In JVDI Client for Windows 14.0  106

 You *cannot* change between full-color and quantized output (because that

 would alter the required I/O buffer sizes), but you can change which

 quantization method is used.

 

When generating color-quantized output, changing quantization method is a

very useful way of switching between high-speed and high-quality display.

The library allows you to change among its three quantization methods:

1. Single-pass quantization to a fixed color cube.

  Selected by cinfo.two_pass_quantize = FALSE and cinfo.colormap = NULL.

2. Single-pass quantization to an application-supplied colormap.

  Selected by setting cinfo.colormap to point to the colormap (the value of

  two_pass_quantize is ignored); also set cinfo.actual_number_of_colors.

3. Two-pass quantization to a colormap chosen specifically for the image.

  Selected by cinfo.two_pass_quantize = TRUE and cinfo.colormap = NULL.

  (This is the default setting selected by jpeg_read_header, but it is

  probably NOT what you want for the first pass of progressive display!)

These methods offer successively better quality and lesser speed.  However,

only the first method is available for quantizing in non-RGB color spaces.

 

IMPORTANT: because the different quantizer methods have very different

working-storage requirements, the library requires you to indicate which

one(s) you intend to use before you call jpeg_start_decompress().  (If we did

not require this, the max_memory_to_use setting would be a complete fiction.)

You do this by setting one or more of these three cinfo fields to TRUE:

	enable_1pass_quant		Fixed color cube colormap

	enable_external_quant		Externally-supplied colormap

	enable_2pass_quant		Two-pass custom colormap

All three are initialized FALSE by jpeg_read_header().  But

jpeg_start_decompress() automatically sets TRUE the one selected by the

current two_pass_quantize and colormap settings, so you only need to set the

enable flags for any other quantization methods you plan to change to later.

 

After setting the enable flags correctly at jpeg_start_decompress() time, you

can change to any enabled quantization method by setting two_pass_quantize

and colormap properly just before calling jpeg_start_output().  The following

special rules apply:

1. You must explicitly set cinfo.colormap to NULL when switching to 1-pass

  or 2-pass mode from a different mode, or when you want the 2-pass

  quantizer to be re-run to generate a new colormap.

2. To switch to an external colormap, or to change to a different external

  colormap than was used on the prior pass, you must call

  jpeg_new_colormap() after setting cinfo.colormap.

NOTE: if you want to use the same colormap as was used in the prior pass,

you should not do either of these things.  This will save some nontrivial

switchover costs.

(These requirements exist because cinfo.colormap will always be non-NULL

after completing a prior output pass, since both the 1-pass and 2-pass

quantizers set it to point to their output colormaps.  Thus you have to



             Open Source Used In JVDI Client for Windows 14.0  107

do one of these two things to notify the library that something has changed.

Yup, it's a bit klugy, but it's necessary to do it this way for backwards

compatibility.)

 

Note that in buffered-image mode, the library generates any requested colormap

during jpeg_start_output(), not during jpeg_start_decompress().

 

When using two-pass quantization, jpeg_start_output() makes a pass over the

buffered image to determine the optimum color map; it therefore may take a

significant amount of time, whereas ordinarily it does little work.  The

progress monitor hook is called during this pass, if defined.  It is also

important to realize that if the specified target scan number is greater than

or equal to the current input scan number, jpeg_start_output() will attempt

to consume input as it makes this pass.  If you use a suspending data source,

you need to check for a FALSE return from jpeg_start_output() under these

conditions.  The combination of 2-pass quantization and a not-yet-fully-read

target scan is the only case in which jpeg_start_output() will consume input.

 

 

Application authors who support buffered-image mode may be tempted to use it

for all JPEG images, even single-scan ones.  This will work, but it is

inefficient: there is no need to create an image-sized coefficient buffer for

single-scan images.  Requesting buffered-image mode for such an image wastes

memory.  Worse, it can cost time on large images, since the buffered data has

to be swapped out or written to a temporary file.  If you are concerned about

maximum performance on baseline JPEG files, you should use buffered-image

mode only when the incoming file actually has multiple scans.  This can be

tested by calling jpeg_has_multiple_scans(), which will return a correct

result at any time after jpeg_read_header() completes.

 

It is also worth noting that when you use jpeg_consume_input() to let input

processing get ahead of output processing, the resulting pattern of access to

the coefficient buffer is quite nonsequential.  It's best to use the memory

manager jmemnobs.c if you can (ie, if you have enough real or virtual main

memory).  If not, at least make sure that max_memory_to_use is set as high as

possible.  If the JPEG memory manager has to use a temporary file, you will

probably see a lot of disk traffic and poor performance.  (This could be

improved with additional work on the memory manager, but we haven't gotten

around to it yet.)

 

In some applications it may be convenient to use jpeg_consume_input() for all

input processing, including reading the initial markers; that is, you may

wish to call jpeg_consume_input() instead of jpeg_read_header() during

startup.  This works, but note that you must check for JPEG_REACHED_SOS and

JPEG_REACHED_EOI return codes as the equivalent of jpeg_read_header's codes.

Once the first SOS marker has been reached, you must call

jpeg_start_decompress() before jpeg_consume_input() will consume more input;

it'll just keep returning JPEG_REACHED_SOS until you do.  If you read a



             Open Source Used In JVDI Client for Windows 14.0  108

tables-only file this way, jpeg_consume_input() will return JPEG_REACHED_EOI

without ever returning JPEG_REACHED_SOS; be sure to check for this case.

If this happens, the decompressor will not read any more input until you call

jpeg_abort() to reset it.  It is OK to call jpeg_consume_input() even when not

using buffered-image mode, but in that case it's basically a no-op after the

initial markers have been read: it will just return JPEG_SUSPENDED.

 

 

Abbreviated datastreams and multiple images

-------------------------------------------

 

A JPEG compression or decompression object can be reused to process multiple

images.  This saves a small amount of time per image by eliminating the

"create" and "destroy" operations, but that isn't the real purpose of the

feature.  Rather, reuse of an object provides support for abbreviated JPEG

datastreams.  Object reuse can also simplify processing a series of images in

a single input or output file.  This section explains these features.

 

A JPEG file normally contains several hundred bytes worth of quantization

and Huffman tables.  In a situation where many images will be stored or

transmitted with identical tables, this may represent an annoying overhead.

The JPEG standard therefore permits tables to be omitted.  The standard

defines three classes of JPEG datastreams:

 * "Interchange" datastreams contain an image and all tables needed to decode

    the image.  These are the usual kind of JPEG file.

 * "Abbreviated image" datastreams contain an image, but are missing some or

   all of the tables needed to decode that image.

 * "Abbreviated table specification" (henceforth "tables-only") datastreams

   contain only table specifications.

To decode an abbreviated image, it is necessary to load the missing table(s)

into the decoder beforehand.  This can be accomplished by reading a separate

tables-only file.  A variant scheme uses a series of images in which the first

image is an interchange (complete) datastream, while subsequent ones are

abbreviated and rely on the tables loaded by the first image.  It is assumed

that once the decoder has read a table, it will remember that table until a

new definition for the same table number is encountered.

 

It is the application designer's responsibility to figure out how to associate

the correct tables with an abbreviated image.  While abbreviated datastreams

can be useful in a closed environment, their use is strongly discouraged in

any situation where data exchange with other applications might be needed.

Caveat designer.

 

The JPEG library provides support for reading and writing any combination of

tables-only datastreams and abbreviated images.  In both compression and

decompression objects, a quantization or Huffman table will be retained for

the lifetime of the object, unless it is overwritten by a new table definition.

 



             Open Source Used In JVDI Client for Windows 14.0  109

 

To create abbreviated image datastreams, it is only necessary to tell the

compressor not to emit some or all of the tables it is using.  Each

quantization and Huffman table struct contains a boolean field "sent_table",

which normally is initialized to FALSE.  For each table used by the image, the

header-writing process emits the table and sets sent_table = TRUE unless it is

already TRUE.  (In normal usage, this prevents outputting the same table

definition multiple times, as would otherwise occur because the chroma

components typically share tables.)  Thus, setting this field to TRUE before

calling jpeg_start_compress() will prevent the table from being written at

all.

 

If you want to create a "pure" abbreviated image file containing no tables,

just call "jpeg_suppress_tables(&cinfo, TRUE)" after constructing all the

tables.  If you want to emit some but not all tables, you'll need to set the

individual sent_table fields directly.

 

To create an abbreviated image, you must also call jpeg_start_compress()

with a second parameter of FALSE, not TRUE.  Otherwise jpeg_start_compress()

will force all the sent_table fields to FALSE.  (This is a safety feature to

prevent abbreviated images from being created accidentally.)

 

To create a tables-only file, perform the same parameter setup that you

normally would, but instead of calling jpeg_start_compress() and so on, call

jpeg_write_tables(&cinfo).  This will write an abbreviated datastream

containing only SOI, DQT and/or DHT markers, and EOI.  All the quantization

and Huffman tables that are currently defined in the compression object will

be emitted unless their sent_tables flag is already TRUE, and then all the

sent_tables flags will be set TRUE.

 

A sure-fire way to create matching tables-only and abbreviated image files

is to proceed as follows:

 

	create JPEG compression object

	set JPEG parameters

	set destination to tables-only file

	jpeg_write_tables(&cinfo);

	set destination to image file

	jpeg_start_compress(&cinfo, FALSE);

	write data...

	jpeg_finish_compress(&cinfo);

 

Since the JPEG parameters are not altered between writing the table file and

the abbreviated image file, the same tables are sure to be used.  Of course,

you can repeat the jpeg_start_compress() ... jpeg_finish_compress() sequence

many times to produce many abbreviated image files matching the table file.

 

You cannot suppress output of the computed Huffman tables when Huffman



             Open Source Used In JVDI Client for Windows 14.0  110

optimization is selected.  (If you could, there'd be no way to decode the

image...)  Generally, you don't want to set optimize_coding = TRUE when

you are trying to produce abbreviated files.

 

In some cases you might want to compress an image using tables which are

not stored in the application, but are defined in an interchange or

tables-only file readable by the application.  This can be done by setting up

a JPEG decompression object to read the specification file, then copying the

tables into your compression object.  See jpeg_copy_critical_parameters()

for an example of copying quantization tables.

 

 

To read abbreviated image files, you simply need to load the proper tables

into the decompression object before trying to read the abbreviated image.

If the proper tables are stored in the application program, you can just

allocate the table structs and fill in their contents directly.  For example,

to load a fixed quantization table into table slot "n":

 

   if (cinfo.quant_tbl_ptrs[n] == NULL)

     cinfo.quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) &cinfo);

   quant_ptr = cinfo.quant_tbl_ptrs[n];	/* quant_ptr is JQUANT_TBL* */

   for (i = 0; i < 64; i++) {

     /* Qtable[] is desired quantization table, in natural array order */

     quant_ptr->quantval[i] = Qtable[i];

   }

 

Code to load a fixed Huffman table is typically (for AC table "n"):

 

   if (cinfo.ac_huff_tbl_ptrs[n] == NULL)

     cinfo.ac_huff_tbl_ptrs[n] = jpeg_alloc_huff_table((j_common_ptr) &cinfo);

   huff_ptr = cinfo.ac_huff_tbl_ptrs[n];	/* huff_ptr is JHUFF_TBL* */

   for (i = 1; i <= 16; i++) {

     /* counts[i] is number of Huffman codes of length i bits, i=1..16 */

     huff_ptr->bits[i] = counts[i];

   }

   for (i = 0; i < 256; i++) {

     /* symbols[] is the list of Huffman symbols, in code-length order */

     huff_ptr->huffval[i] = symbols[i];

   }

 

(Note that trying to set cinfo.quant_tbl_ptrs[n] to point directly at a

constant JQUANT_TBL object is not safe.  If the incoming file happened to

contain a quantization table definition, your master table would get

overwritten!  Instead allocate a working table copy and copy the master table

into it, as illustrated above.  Ditto for Huffman tables, of course.)

 

You might want to read the tables from a tables-only file, rather than

hard-wiring them into your application.  The jpeg_read_header() call is



             Open Source Used In JVDI Client for Windows 14.0  111

sufficient to read a tables-only file.  You must pass a second parameter of

FALSE to indicate that you do not require an image to be present.  Thus, the

typical scenario is

 

	create JPEG decompression object

	set source to tables-only file

	jpeg_read_header(&cinfo, FALSE);

	set source to abbreviated image file

	jpeg_read_header(&cinfo, TRUE);

	set decompression parameters

	jpeg_start_decompress(&cinfo);

	read data...

	jpeg_finish_decompress(&cinfo);

 

In some cases, you may want to read a file without knowing whether it contains

an image or just tables.  In that case, pass FALSE and check the return value

from jpeg_read_header(): it will be JPEG_HEADER_OK if an image was found,

JPEG_HEADER_TABLES_ONLY if only tables were found.  (A third return value,

JPEG_SUSPENDED, is possible when using a suspending data source manager.)

Note that jpeg_read_header() will not complain if you read an abbreviated

image for which you haven't loaded the missing tables; the missing-table check

occurs later, in jpeg_start_decompress().

 

 

It is possible to read a series of images from a single source file by

repeating the jpeg_read_header() ... jpeg_finish_decompress() sequence,

without releasing/recreating the JPEG object or the data source module.

(If you did reinitialize, any partial bufferload left in the data source

buffer at the end of one image would be discarded, causing you to lose the

start of the next image.)  When you use this method, stored tables are

automatically carried forward, so some of the images can be abbreviated images

that depend on tables from earlier images.

 

If you intend to write a series of images into a single destination file,

you might want to make a specialized data destination module that doesn't

flush the output buffer at term_destination() time.  This would speed things

up by some trifling amount.  Of course, you'd need to remember to flush the

buffer after the last image.  You can make the later images be abbreviated

ones by passing FALSE to jpeg_start_compress().

 

 

Special markers

---------------

 

Some applications may need to insert or extract special data in the JPEG

datastream.  The JPEG standard provides marker types "COM" (comment) and

"APP0" through "APP15" (application) to hold application-specific data.

Unfortunately, the use of these markers is not specified by the standard.



             Open Source Used In JVDI Client for Windows 14.0  112

COM markers are fairly widely used to hold user-supplied text.  The JFIF file

format spec uses APP0 markers with specified initial strings to hold certain

data.  Adobe applications use APP14 markers beginning with the string "Adobe"

for miscellaneous data.  Other APPn markers are rarely seen, but might

contain almost anything.

 

If you wish to store user-supplied text, we recommend you use COM markers

and place readable 7-bit ASCII text in them.  Newline conventions are not

standardized --- expect to find LF (Unix style), CR/LF (DOS style), or CR

(Mac style).  A robust COM reader should be able to cope with random binary

garbage, including nulls, since some applications generate COM markers

containing non-ASCII junk.  (But yours should not be one of them.)

 

For program-supplied data, use an APPn marker, and be sure to begin it with an

identifying string so that you can tell whether the marker is actually yours.

It's probably best to avoid using APP0 or APP14 for any private markers.

(NOTE: the upcoming SPIFF standard will use APP8 markers; we recommend you

not use APP8 markers for any private purposes, either.)

 

Keep in mind that at most 65533 bytes can be put into one marker, but you

can have as many markers as you like.

 

By default, the IJG compression library will write a JFIF APP0 marker if the

selected JPEG colorspace is grayscale or YCbCr, or an Adobe APP14 marker if

the selected colorspace is RGB, CMYK, or YCCK.  You can disable this, but

we don't recommend it.  The decompression library will recognize JFIF and

Adobe markers and will set the JPEG colorspace properly when one is found.

 

 

You can write special markers immediately following the datastream header by

calling jpeg_write_marker() after jpeg_start_compress() and before the first

call to jpeg_write_scanlines().  When you do this, the markers appear after

the SOI and the JFIF APP0 and Adobe APP14 markers (if written), but before

all else.  Specify the marker type parameter as "JPEG_COM" for COM or

"JPEG_APP0 + n" for APPn.  (Actually, jpeg_write_marker will let you write

any marker type, but we don't recommend writing any other kinds of marker.)

For example, to write a user comment string pointed to by comment_text:

	jpeg_write_marker(cinfo, JPEG_COM, comment_text, strlen(comment_text));

 

If it's not convenient to store all the marker data in memory at once,

you can instead call jpeg_write_m_header() followed by multiple calls to

jpeg_write_m_byte().  If you do it this way, it's your responsibility to

call jpeg_write_m_byte() exactly the number of times given in the length

parameter to jpeg_write_m_header().  (This method lets you empty the

output buffer partway through a marker, which might be important when

using a suspending data destination module.  In any case, if you are using

a suspending destination, you should flush its buffer after inserting

any special markers.  See "I/O suspension".)



             Open Source Used In JVDI Client for Windows 14.0  113

 

Or, if you prefer to synthesize the marker byte sequence yourself,

you can just cram it straight into the data destination module.

 

If you are writing JFIF 1.02 extension markers (thumbnail images), don't

forget to set cinfo.JFIF_minor_version = 2 so that the encoder will write the

correct JFIF version number in the JFIF header marker.  The library's default

is to write version 1.01, but that's wrong if you insert any 1.02 extension

markers.  (We could probably get away with just defaulting to 1.02, but there

used to be broken decoders that would complain about unknown minor version

numbers.  To reduce compatibility risks it's safest not to write 1.02 unless

you are actually using 1.02 extensions.)

 

 

When reading, two methods of handling special markers are available:

1. You can ask the library to save the contents of COM and/or APPn markers

into memory, and then examine them at your leisure afterwards.

2. You can supply your own routine to process COM and/or APPn markers

on-the-fly as they are read.

The first method is simpler to use, especially if you are using a suspending

data source; writing a marker processor that copes with input suspension is

not easy (consider what happens if the marker is longer than your available

input buffer).  However, the second method conserves memory since the marker

data need not be kept around after it's been processed.

 

For either method, you'd normally set up marker handling after creating a

decompression object and before calling jpeg_read_header(), because the

markers of interest will typically be near the head of the file and so will

be scanned by jpeg_read_header.  Once you've established a marker handling

method, it will be used for the life of that decompression object

(potentially many datastreams), unless you change it.  Marker handling is

determined separately for COM markers and for each APPn marker code.

 

 

To save the contents of special markers in memory, call

	jpeg_save_markers(cinfo, marker_code, length_limit)

where marker_code is the marker type to save, JPEG_COM or JPEG_APP0+n.

(To arrange to save all the special marker types, you need to call this

routine 17 times, for COM and APP0-APP15.)  If the incoming marker is longer

than length_limit data bytes, only length_limit bytes will be saved; this

parameter allows you to avoid chewing up memory when you only need to see the

first few bytes of a potentially large marker.  If you want to save all the

data, set length_limit to 0xFFFF; that is enough since marker lengths are only

16 bits.  As a special case, setting length_limit to 0 prevents that marker

type from being saved at all.  (That is the default behavior, in fact.)

 

After jpeg_read_header() completes, you can examine the special markers by

following the cinfo->marker_list pointer chain.  All the special markers in



             Open Source Used In JVDI Client for Windows 14.0  114

the file appear in this list, in order of their occurrence in the file (but

omitting any markers of types you didn't ask for).  Both the original data

length and the saved data length are recorded for each list entry; the latter

will not exceed length_limit for the particular marker type.  Note that these

lengths exclude the marker length word, whereas the stored representation

within the JPEG file includes it.  (Hence the maximum data length is really

only 65533.)

 

It is possible that additional special markers appear in the file beyond the

SOS marker at which jpeg_read_header stops; if so, the marker list will be

extended during reading of the rest of the file.  This is not expected to be

common, however.  If you are short on memory you may want to reset the length

limit to zero for all marker types after finishing jpeg_read_header, to

ensure that the max_memory_to_use setting cannot be exceeded due to addition

of later markers.

 

The marker list remains stored until you call jpeg_finish_decompress or

jpeg_abort, at which point the memory is freed and the list is set to empty.

(jpeg_destroy also releases the storage, of course.)

 

Note that the library is internally interested in APP0 and APP14 markers;

if you try to set a small nonzero length limit on these types, the library

will silently force the length up to the minimum it wants.  (But you can set

a zero length limit to prevent them from being saved at all.)  Also, in a

16-bit environment, the maximum length limit may be constrained to less than

65533 by malloc() limitations.  It is therefore best not to assume that the

effective length limit is exactly what you set it to be.

 

 

If you want to supply your own marker-reading routine, you do it by calling

jpeg_set_marker_processor().  A marker processor routine must have the

signature

	boolean jpeg_marker_parser_method (j_decompress_ptr cinfo)

Although the marker code is not explicitly passed, the routine can find it

in cinfo->unread_marker.  At the time of call, the marker proper has been

read from the data source module.  The processor routine is responsible for

reading the marker length word and the remaining parameter bytes, if any.

Return TRUE to indicate success.  (FALSE should be returned only if you are

using a suspending data source and it tells you to suspend.  See the standard

marker processors in jdmarker.c for appropriate coding methods if you need to

use a suspending data source.)

 

If you override the default APP0 or APP14 processors, it is up to you to

recognize JFIF and Adobe markers if you want colorspace recognition to occur

properly.  We recommend copying and extending the default processors if you

want to do that.  (A better idea is to save these marker types for later

examination by calling jpeg_save_markers(); that method doesn't interfere

with the library's own processing of these markers.)



             Open Source Used In JVDI Client for Windows 14.0  115

 

jpeg_set_marker_processor() and jpeg_save_markers() are mutually exclusive

--- if you call one it overrides any previous call to the other, for the

particular marker type specified.

 

A simple example of an external COM processor can be found in djpeg.c.

Also, see jpegtran.c for an example of using jpeg_save_markers.

 

 

Raw (downsampled) image data

----------------------------

 

Some applications need to supply already-downsampled image data to the JPEG

compressor, or to receive raw downsampled data from the decompressor.  The

library supports this requirement by allowing the application to write or

read raw data, bypassing the normal preprocessing or postprocessing steps.

The interface is different from the standard one and is somewhat harder to

use.  If your interest is merely in bypassing color conversion, we recommend

that you use the standard interface and simply set jpeg_color_space =

in_color_space (or jpeg_color_space = out_color_space for decompression).

The mechanism described in this section is necessary only to supply or

receive downsampled image data, in which not all components have the same

dimensions.

 

 

To compress raw data, you must supply the data in the colorspace to be used

in the JPEG file (please read the earlier section on Special color spaces)

and downsampled to the sampling factors specified in the JPEG parameters.

You must supply the data in the format used internally by the JPEG library,

namely a JSAMPIMAGE array.  This is an array of pointers to two-dimensional

arrays, each of type JSAMPARRAY.  Each 2-D array holds the values for one

color component.  This structure is necessary since the components are of

different sizes.  If the image dimensions are not a multiple of the MCU size,

you must also pad the data correctly (usually, this is done by replicating

the last column and/or row).  The data must be padded to a multiple of a DCT

block in each component: that is, each downsampled row must contain a

multiple of DCT_h_scaled_size valid samples, and there must be a multiple of

DCT_v_scaled_size sample rows for each component.  (For applications such as

conversion of digital TV images, the standard image size is usually a

multiple of the DCT block size, so that no padding need actually be done.)

 

The procedure for compression of raw data is basically the same as normal

compression, except that you call jpeg_write_raw_data() in place of

jpeg_write_scanlines().  Before calling jpeg_start_compress(), you must do

the following:

 * Set cinfo->raw_data_in to TRUE.  (It is set FALSE by jpeg_set_defaults().)

   This notifies the library that you will be supplying raw data.

 * Ensure jpeg_color_space is correct --- an explicit jpeg_set_colorspace()



             Open Source Used In JVDI Client for Windows 14.0  116

   call is a good idea.  Note that since color conversion is bypassed,

   in_color_space is ignored, except that jpeg_set_defaults() uses it to

   choose the default jpeg_color_space setting.

 * Ensure the sampling factors, cinfo->comp_info[i].h_samp_factor and

   cinfo->comp_info[i].v_samp_factor, are correct.  Since these indicate the

   dimensions of the data you are supplying, it's wise to set them

   explicitly, rather than assuming the library's defaults are what you want.

 

To pass raw data to the library, call jpeg_write_raw_data() in place of

jpeg_write_scanlines().  The two routines work similarly except that

jpeg_write_raw_data takes a JSAMPIMAGE data array rather than JSAMPARRAY.

The scanlines count passed to and returned from jpeg_write_raw_data is

measured in terms of the component with the largest v_samp_factor.

 

jpeg_write_raw_data() processes one MCU row per call, which is to say

v_samp_factor*min_DCT_v_scaled_size sample rows of each component.  The passed

num_lines value must be at least max_v_samp_factor*min_DCT_v_scaled_size, and

the return value will be exactly that amount (or possibly some multiple of

that amount, in future library versions).  This is true even on the last call

at the bottom of the image; don't forget to pad your data as necessary.

 

The required dimensions of the supplied data can be computed for each

component as

	cinfo->comp_info[i].width_in_blocks *

	cinfo->comp_info[i].DCT_h_scaled_size		samples per row

	cinfo->comp_info[i].height_in_blocks *

	cinfo->comp_info[i].DCT_v_scaled_size		rows in image

after jpeg_start_compress() has initialized those fields.  If the valid data

is smaller than this, it must be padded appropriately.  For some sampling

factors and image sizes, additional dummy DCT blocks are inserted to make

the image a multiple of the MCU dimensions.  The library creates such dummy

blocks itself; it does not read them from your supplied data.  Therefore you

need never pad by more than DCT_scaled_size samples.

An example may help here.  Assume 2h2v downsampling of YCbCr data, that is

	cinfo->comp_info[0].h_samp_factor = 2		for Y

	cinfo->comp_info[0].v_samp_factor = 2

	cinfo->comp_info[1].h_samp_factor = 1		for Cb

	cinfo->comp_info[1].v_samp_factor = 1

	cinfo->comp_info[2].h_samp_factor = 1		for Cr

	cinfo->comp_info[2].v_samp_factor = 1

and suppose that the nominal image dimensions (cinfo->image_width and

cinfo->image_height) are 101x101 pixels.  Then jpeg_start_compress() will

compute downsampled_width = 101 and width_in_blocks = 13 for Y,

downsampled_width = 51 and width_in_blocks = 7 for Cb and Cr (and the same

for the height fields).  You must pad the Y data to at least 13*8 = 104

columns and rows, the Cb/Cr data to at least 7*8 = 56 columns and rows.  The

MCU height is max_v_samp_factor = 2 DCT rows so you must pass at least 16

scanlines on each call to jpeg_write_raw_data(), which is to say 16 actual



             Open Source Used In JVDI Client for Windows 14.0  117

sample rows of Y and 8 each of Cb and Cr.  A total of 7 MCU rows are needed,

so you must pass a total of 7*16 = 112 "scanlines".  The last DCT block row

of Y data is dummy, so it doesn't matter what you pass for it in the data

arrays, but the scanlines count must total up to 112 so that all of the Cb

and Cr data gets passed.

 

Output suspension is supported with raw-data compression: if the data

destination module suspends, jpeg_write_raw_data() will return 0.

In this case the same data rows must be passed again on the next call.

 

 

Decompression with raw data output implies bypassing all postprocessing:

you cannot ask for color quantization, for instance.  More seriously, you

must deal with the color space and sampling factors present in the incoming

file.  If your application only handles, say, 2h1v YCbCr data, you must

check for and fail on other color spaces or other sampling factors.

The library will not convert to a different color space for you.

 

To obtain raw data output, set cinfo->raw_data_out = TRUE before

jpeg_start_decompress() (it is set FALSE by jpeg_read_header()).  Be sure to

verify that the color space and sampling factors are ones you can handle.

Then call jpeg_read_raw_data() in place of jpeg_read_scanlines().  The

decompression process is otherwise the same as usual.

 

jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a

buffer of at least max_v_samp_factor*min_DCT_v_scaled_size scanlines (scanline

counting is the same as for raw-data compression).  The buffer you pass must

be large enough to hold the actual data plus padding to DCT-block boundaries.

As with compression, any entirely dummy DCT blocks are not processed so you

need not allocate space for them, but the total scanline count includes them.

The above example of computing buffer dimensions for raw-data compression is

equally valid for decompression.

 

Input suspension is supported with raw-data decompression: if the data source

module suspends, jpeg_read_raw_data() will return 0.  You can also use

buffered-image mode to read raw data in multiple passes.

 

 

Really raw data: DCT coefficients

---------------------------------

 

It is possible to read or write the contents of a JPEG file as raw DCT

coefficients.  This facility is mainly intended for use in lossless

transcoding between different JPEG file formats.  Other possible applications

include lossless cropping of a JPEG image, lossless reassembly of a

multi-strip or multi-tile TIFF/JPEG file into a single JPEG datastream, etc.

 

To read the contents of a JPEG file as DCT coefficients, open the file and do



             Open Source Used In JVDI Client for Windows 14.0  118

jpeg_read_header() as usual.  But instead of calling jpeg_start_decompress()

and jpeg_read_scanlines(), call jpeg_read_coefficients().  This will read the

entire image into a set of virtual coefficient-block arrays, one array per

component.  The return value is a pointer to an array of virtual-array

descriptors.  Each virtual array can be accessed directly using the JPEG

memory manager's access_virt_barray method (see Memory management, below,

and also read structure.txt's discussion of virtual array handling).  Or,

for simple transcoding to a different JPEG file format, the array list can

just be handed directly to jpeg_write_coefficients().

 

Each block in the block arrays contains quantized coefficient values in

normal array order (not JPEG zigzag order).  The block arrays contain only

DCT blocks containing real data; any entirely-dummy blocks added to fill out

interleaved MCUs at the right or bottom edges of the image are discarded

during reading and are not stored in the block arrays.  (The size of each

block array can be determined from the width_in_blocks and height_in_blocks

fields of the component's comp_info entry.)  This is also the data format

expected by jpeg_write_coefficients().

 

When you are done using the virtual arrays, call jpeg_finish_decompress()

to release the array storage and return the decompression object to an idle

state; or just call jpeg_destroy() if you don't need to reuse the object.

 

If you use a suspending data source, jpeg_read_coefficients() will return

NULL if it is forced to suspend; a non-NULL return value indicates successful

completion.  You need not test for a NULL return value when using a

non-suspending data source.

 

It is also possible to call jpeg_read_coefficients() to obtain access to the

decoder's coefficient arrays during a normal decode cycle in buffered-image

mode.  This frammish might be useful for progressively displaying an incoming

image and then re-encoding it without loss.  To do this, decode in buffered-

image mode as discussed previously, then call jpeg_read_coefficients() after

the last jpeg_finish_output() call.  The arrays will be available for your use

until you call jpeg_finish_decompress().

 

 

To write the contents of a JPEG file as DCT coefficients, you must provide

the DCT coefficients stored in virtual block arrays.  You can either pass

block arrays read from an input JPEG file by jpeg_read_coefficients(), or

allocate virtual arrays from the JPEG compression object and fill them

yourself.  In either case, jpeg_write_coefficients() is substituted for

jpeg_start_compress() and jpeg_write_scanlines().  Thus the sequence is

 * Create compression object

 * Set all compression parameters as necessary

 * Request virtual arrays if needed

 * jpeg_write_coefficients()

 * jpeg_finish_compress()



             Open Source Used In JVDI Client for Windows 14.0  119

 * Destroy or re-use compression object

jpeg_write_coefficients() is passed a pointer to an array of virtual block

array descriptors; the number of arrays is equal to cinfo.num_components.

 

The virtual arrays need only have been requested, not realized, before

jpeg_write_coefficients() is called.  A side-effect of

jpeg_write_coefficients() is to realize any virtual arrays that have been

requested from the compression object's memory manager.  Thus, when obtaining

the virtual arrays from the compression object, you should fill the arrays

after calling jpeg_write_coefficients().  The data is actually written out

when you call jpeg_finish_compress(); jpeg_write_coefficients() only writes

the file header.

 

When writing raw DCT coefficients, it is crucial that the JPEG quantization

tables and sampling factors match the way the data was encoded, or the

resulting file will be invalid.  For transcoding from an existing JPEG file,

we recommend using jpeg_copy_critical_parameters().  This routine initializes

all the compression parameters to default values (like jpeg_set_defaults()),

then copies the critical information from a source decompression object.

The decompression object should have just been used to read the entire

JPEG input file --- that is, it should be awaiting jpeg_finish_decompress().

 

jpeg_write_coefficients() marks all tables stored in the compression object

as needing to be written to the output file (thus, it acts like

jpeg_start_compress(cinfo, TRUE)).  This is for safety's sake, to avoid

emitting abbreviated JPEG files by accident.  If you really want to emit an

abbreviated JPEG file, call jpeg_suppress_tables(), or set the tables'

individual sent_table flags, between calling jpeg_write_coefficients() and

jpeg_finish_compress().

 

 

Progress monitoring

-------------------

 

Some applications may need to regain control from the JPEG library every so

often.  The typical use of this feature is to produce a percent-done bar or

other progress display.  (For a simple example, see cjpeg.c or djpeg.c.)

Although you do get control back frequently during the data-transferring pass

(the jpeg_read_scanlines or jpeg_write_scanlines loop), any additional passes

will occur inside jpeg_finish_compress or jpeg_start_decompress; those

routines may take a long time to execute, and you don't get control back

until they are done.

 

You can define a progress-monitor routine which will be called periodically

by the library.  No guarantees are made about how often this call will occur,

so we don't recommend you use it for mouse tracking or anything like that.

At present, a call will occur once per MCU row, scanline, or sample row

group, whichever unit is convenient for the current processing mode; so the



             Open Source Used In JVDI Client for Windows 14.0  120

wider the image, the longer the time between calls.  During the data

transferring pass, only one call occurs per call of jpeg_read_scanlines or

jpeg_write_scanlines, so don't pass a large number of scanlines at once if

you want fine resolution in the progress count.  (If you really need to use

the callback mechanism for time-critical tasks like mouse tracking, you could

insert additional calls inside some of the library's inner loops.)

 

To establish a progress-monitor callback, create a struct jpeg_progress_mgr,

fill in its progress_monitor field with a pointer to your callback routine,

and set cinfo->progress to point to the struct.  The callback will be called

whenever cinfo->progress is non-NULL.  (This pointer is set to NULL by

jpeg_create_compress or jpeg_create_decompress; the library will not change

it thereafter.  So if you allocate dynamic storage for the progress struct,

make sure it will live as long as the JPEG object does.  Allocating from the

JPEG memory manager with lifetime JPOOL_PERMANENT will work nicely.)  You

can use the same callback routine for both compression and decompression.

 

The jpeg_progress_mgr struct contains four fields which are set by the library:

	long pass_counter;	/* work units completed in this pass */

	long pass_limit;	/* total number of work units in this pass */

	int completed_passes;	/* passes completed so far */

	int total_passes;	/* total number of passes expected */

During any one pass, pass_counter increases from 0 up to (not including)

pass_limit; the step size is usually but not necessarily 1.  The pass_limit

value may change from one pass to another.  The expected total number of

passes is in total_passes, and the number of passes already completed is in

completed_passes.  Thus the fraction of work completed may be estimated as

		completed_passes + (pass_counter/pass_limit)

		--------------------------------------------

				total_passes

ignoring the fact that the passes may not be equal amounts of work.

 

When decompressing, pass_limit can even change within a pass, because it

depends on the number of scans in the JPEG file, which isn't always known in

advance.  The computed fraction-of-work-done may jump suddenly (if the library

discovers it has overestimated the number of scans) or even decrease (in the

opposite case).  It is not wise to put great faith in the work estimate.

 

When using the decompressor's buffered-image mode, the progress monitor work

estimate is likely to be completely unhelpful, because the library has no way

to know how many output passes will be demanded of it.  Currently, the library

sets total_passes based on the assumption that there will be one more output

pass if the input file end hasn't yet been read (jpeg_input_complete() isn't

TRUE), but no more output passes if the file end has been reached when the

output pass is started.  This means that total_passes will rise as additional

output passes are requested.  If you have a way of determining the input file

size, estimating progress based on the fraction of the file that's been read

will probably be more useful than using the library's value.



             Open Source Used In JVDI Client for Windows 14.0  121

 

 

Memory management

-----------------

 

This section covers some key facts about the JPEG library's built-in memory

manager.  For more info, please read structure.txt's section about the memory

manager, and consult the source code if necessary.

 

All memory and temporary file allocation within the library is done via the

memory manager.  If necessary, you can replace the "back end" of the memory

manager to control allocation yourself (for example, if you don't want the

library to use malloc() and free() for some reason).

 

Some data is allocated "permanently" and will not be freed until the JPEG

object is destroyed.  Most data is allocated "per image" and is freed by

jpeg_finish_compress, jpeg_finish_decompress, or jpeg_abort.  You can call the

memory manager yourself to allocate structures that will automatically be

freed at these times.  Typical code for this is

 ptr = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, size);

Use JPOOL_PERMANENT to get storage that lasts as long as the JPEG object.

Use alloc_large instead of alloc_small for anything bigger than a few Kbytes.

There are also alloc_sarray and alloc_barray routines that automatically

build 2-D sample or block arrays.

 

The library's minimum space requirements to process an image depend on the

image's width, but not on its height, because the library ordinarily works

with "strip" buffers that are as wide as the image but just a few rows high.

Some operating modes (eg, two-pass color quantization) require full-image

buffers.  Such buffers are treated as "virtual arrays": only the current strip

need be in memory, and the rest can be swapped out to a temporary file.

 

If you use the simplest memory manager back end (jmemnobs.c), then no

temporary files are used; virtual arrays are simply malloc()'d.  Images bigger

than memory can be processed only if your system supports virtual memory.

The other memory manager back ends support temporary files of various flavors

and thus work in machines without virtual memory.  They may also be useful on

Unix machines if you need to process images that exceed available swap space.

 

When using temporary files, the library will make the in-memory buffers for

its virtual arrays just big enough to stay within a "maximum memory" setting.

Your application can set this limit by setting cinfo->mem->max_memory_to_use

after creating the JPEG object.  (Of course, there is still a minimum size for

the buffers, so the max-memory setting is effective only if it is bigger than

the minimum space needed.)  If you allocate any large structures yourself, you

must allocate them before jpeg_start_compress() or jpeg_start_decompress() in

order to have them counted against the max memory limit.  Also keep in mind

that space allocated with alloc_small() is ignored, on the assumption that



             Open Source Used In JVDI Client for Windows 14.0  122

it's too small to be worth worrying about; so a reasonable safety margin

should be left when setting max_memory_to_use.

 

If you use the jmemname.c or jmemdos.c memory manager back end, it is

important to clean up the JPEG object properly to ensure that the temporary

files get deleted.  (This is especially crucial with jmemdos.c, where the

"temporary files" may be extended-memory segments; if they are not freed,

DOS will require a reboot to recover the memory.)  Thus, with these memory

managers, it's a good idea to provide a signal handler that will trap any

early exit from your program.  The handler should call either jpeg_abort()

or jpeg_destroy() for any active JPEG objects.  A handler is not needed with

jmemnobs.c, and shouldn't be necessary with jmemansi.c or jmemmac.c either,

since the C library is supposed to take care of deleting files made with

tmpfile().

 

 

Memory usage

------------

 

Working memory requirements while performing compression or decompression

depend on image dimensions, image characteristics (such as colorspace and

JPEG process), and operating mode (application-selected options).

 

As of v6b, the decompressor requires:

1. About 24K in more-or-less-fixed-size data.  This varies a bit depending

   on operating mode and image characteristics (particularly color vs.

   grayscale), but it doesn't depend on image dimensions.

2. Strip buffers (of size proportional to the image width) for IDCT and

   upsampling results.  The worst case for commonly used sampling factors

   is about 34 bytes * width in pixels for a color image.  A grayscale image

   only needs about 8 bytes per pixel column.

3. A full-image DCT coefficient buffer is needed to decode a multi-scan JPEG

   file (including progressive JPEGs), or whenever you select buffered-image

   mode.  This takes 2 bytes/coefficient.  At typical 2x2 sampling, that's

   3 bytes per pixel for a color image.  Worst case (1x1 sampling) requires

   6 bytes/pixel.  For grayscale, figure 2 bytes/pixel.

4. To perform 2-pass color quantization, the decompressor also needs a

   128K color lookup table and a full-image pixel buffer (3 bytes/pixel).

This does not count any memory allocated by the application, such as a

buffer to hold the final output image.

 

The above figures are valid for 8-bit JPEG data precision and a machine with

32-bit ints.  For 9-bit to 12-bit JPEG data, double the size of the strip

buffers and quantization pixel buffer.  The "fixed-size" data will be

somewhat smaller with 16-bit ints, larger with 64-bit ints.  Also, CMYK

or other unusual color spaces will require different amounts of space.

 

The full-image coefficient and pixel buffers, if needed at all, do not



             Open Source Used In JVDI Client for Windows 14.0  123

have to be fully RAM resident; you can have the library use temporary

files instead when the total memory usage would exceed a limit you set.

(But if your OS supports virtual memory, it's probably better to just use

jmemnobs and let the OS do the swapping.)

 

The compressor's memory requirements are similar, except that it has no need

for color quantization.  Also, it needs a full-image DCT coefficient buffer

if Huffman-table optimization is asked for, even if progressive mode is not

requested.

 

If you need more detailed information about memory usage in a particular

situation, you can enable the MEM_STATS code in jmemmgr.c.

 

 

Library compile-time options

----------------------------

 

A number of compile-time options are available by modifying jmorecfg.h.

 

The IJG code currently supports 8-bit to 12-bit sample data precision by

defining BITS_IN_JSAMPLE as 8, 9, 10, 11, or 12.

Note that a value larger than 8 causes JSAMPLE to be larger than a char,

so it affects the surrounding application's image data.

The sample applications cjpeg and djpeg can support deeper than 8-bit data

only for PPM and GIF file formats; you must disable the other file formats

to compile a 9-bit to 12-bit cjpeg or djpeg.  (install.txt has more

information about that.)

Run-time selection and conversion of data precision are currently not

supported and may be added later.

Exception:  The transcoding part (jpegtran) supports all settings in a

single instance, since it operates on the level of DCT coefficients and

not sample values.

(If you need to include an 8-bit library and a 9-bit to 12-bit library for

compression or decompression in a single application, you could probably do

it by defining NEED_SHORT_EXTERNAL_NAMES for just one of the copies.  You'd

have to access the 8-bit and the 9-bit to 12-bit copies from separate

application source files.  This is untested ... if you try it, we'd like to

hear whether it works!)

 

Note that the standard Huffman tables are only valid for 8-bit data precision.

If you selected more than 8-bit data precision, cjpeg uses arithmetic coding

by default.  The Huffman encoder normally uses entropy optimization to

compute usable tables for higher precision.  Otherwise, you'll have to

supply different default Huffman tables.  You may also want to supply your

own DCT quantization tables; the existing quality-scaling code has been

developed for 8-bit use, and probably doesn't generate especially good tables

for 9-bit to 12-bit.

 



             Open Source Used In JVDI Client for Windows 14.0  124

The maximum number of components (color channels) in the image is determined

by MAX_COMPONENTS.  The JPEG standard allows up to 255 components, but we

expect that few applications will need more than four or so.

 

On machines with unusual data type sizes, you may be able to improve

performance or reduce memory space by tweaking the various typedefs in

jmorecfg.h.  In particular, on some RISC CPUs, access to arrays of "short"s

is quite slow; consider trading memory for speed by making JCOEF, INT16, and

UINT16 be "int" or "unsigned int".  UINT8 is also a candidate to become int.

You probably don't want to make JSAMPLE be int unless you have lots of memory

to burn.

 

You can reduce the size of the library by compiling out various optional

functions.  To do this, undefine xxx_SUPPORTED symbols as necessary.

 

You can also save a few K by not having text error messages in the library;

the standard error message table occupies about 5Kb.  This is particularly

reasonable for embedded applications where there's no good way to display

a message anyway.  To do this, remove the creation of the message table

(jpeg_std_message_table[]) from jerror.c, and alter format_message to do

something reasonable without it.  You could output the numeric value of the

message code number, for example.  If you do this, you can also save a couple

more K by modifying the TRACEMSn() macros in jerror.h to expand to nothing;

you don't need trace capability anyway, right?

 

 

Portability considerations

--------------------------

 

The JPEG library has been written to be extremely portable; the sample

applications cjpeg and djpeg are slightly less so.  This section summarizes

the design goals in this area.  (If you encounter any bugs that cause the

library to be less portable than is claimed here, we'd appreciate hearing

about them.)

 

The code works fine on ANSI C, C++, and pre-ANSI C compilers, using any of

the popular system include file setups, and some not-so-popular ones too.

See install.txt for configuration procedures.

 

The code is not dependent on the exact sizes of the C data types.  As

distributed, we make the assumptions that

	char	is at least 8 bits wide

	short	is at least 16 bits wide

	int	is at least 16 bits wide

	long	is at least 32 bits wide

(These are the minimum requirements of the ANSI C standard.)  Wider types will

work fine, although memory may be used inefficiently if char is much larger

than 8 bits or short is much bigger than 16 bits.  The code should work



             Open Source Used In JVDI Client for Windows 14.0  125

equally well with 16- or 32-bit ints.

 

In a system where these assumptions are not met, you may be able to make the

code work by modifying the typedefs in jmorecfg.h.  However, you will probably

have difficulty if int is less than 16 bits wide, since references to plain

int abound in the code.

 

char can be either signed or unsigned, although the code runs faster if an

unsigned char type is available.  If char is wider than 8 bits, you will need

to redefine JOCTET and/or provide custom data source/destination managers so

that JOCTET represents exactly 8 bits of data on external storage.

 

The JPEG library proper does not assume ASCII representation of characters.

But some of the image file I/O modules in cjpeg/djpeg do have ASCII

dependencies in file-header manipulation; so does cjpeg's select_file_type()

routine.

 

The JPEG library does not rely heavily on the C library.  In particular, C

stdio is used only by the data source/destination modules and the error

handler, all of which are application-replaceable.  (cjpeg/djpeg are more

heavily dependent on stdio.)  malloc and free are called only from the memory

manager "back end" module, so you can use a different memory allocator by

replacing that one file.

 

The code generally assumes that C names must be unique in the first 15

characters.  However, global function names can be made unique in the

first 6 characters by defining NEED_SHORT_EXTERNAL_NAMES.

 

More info about porting the code may be gleaned by reading jconfig.txt,

jmorecfg.h, and jinclude.h.

 

 

Notes for MS-DOS implementors

-----------------------------

 

The IJG code is designed to work efficiently in 80x86 "small" or "medium"

memory models (i.e., data pointers are 16 bits unless explicitly declared

"far"; code pointers can be either size).  You may be able to use small

model to compile cjpeg or djpeg by itself, but you will probably have to use

medium model for any larger application.  This won't make much difference in

performance.  You *will* take a noticeable performance hit if you use a

large-data memory model (perhaps 10%-25%), and you should avoid "huge" model

if at all possible.

 

The JPEG library typically needs 2Kb-3Kb of stack space.  It will also

malloc about 20K-30K of near heap space while executing (and lots of far

heap, but that doesn't count in this calculation).  This figure will vary

depending on selected operating mode, and to a lesser extent on image size.



             Open Source Used In JVDI Client for Windows 14.0  126

There is also about 5Kb-6Kb of constant data which will be allocated in the

near data segment (about 4Kb of this is the error message table).

Thus you have perhaps 20K available for other modules' static data and near

heap space before you need to go to a larger memory model.  The C library's

static data will account for several K of this, but that still leaves a good

deal for your needs.  (If you are tight on space, you could reduce the sizes

of the I/O buffers allocated by jdatasrc.c and jdatadst.c, say from 4K to

1K.  Another possibility is to move the error message table to far memory;

this should be doable with only localized hacking on jerror.c.)

 

About 2K of the near heap space is "permanent" memory that will not be

released until you destroy the JPEG object.  This is only an issue if you

save a JPEG object between compression or decompression operations.

 

Far data space may also be a tight resource when you are dealing with large

images.  The most memory-intensive case is decompression with two-pass color

quantization, or single-pass quantization to an externally supplied color

map.  This requires a 128Kb color lookup table plus strip buffers amounting

to about 40 bytes per column for typical sampling ratios (eg, about 25600

bytes for a 640-pixel-wide image).  You may not be able to process wide

images if you have large data structures of your own.

 

Of course, all of these concerns vanish if you use a 32-bit flat-memory-model

compiler, such as DJGPP or Watcom C.  We highly recommend flat model if you

can use it; the JPEG library is significantly faster in flat model.

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/libjpeg.txt

No license file was found, but licenses were detected in source scan.

 

/*

* jcprepct.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the compression preprocessing controller.

* This controller manages the color conversion, downsampling,

* and edge expansion steps.

*

* Most of the complexity here is associated with buffering input rows

* as required by the downsampler.  See the comments at the head of

* jcsample.c for the downsampler's needs.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcprepct.c



             Open Source Used In JVDI Client for Windows 14.0  127

No license file was found, but licenses were detected in source scan.

 

/*

* jccoefct.c

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 2003-2011 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the coefficient buffer controller for compression.

* This controller is the top level of the JPEG compressor proper.

* The coefficient buffer lies between forward-DCT and entropy encoding steps.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jccoefct.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdtrans.c

*

* Copyright (C) 1995-1997, Thomas G. Lane.

* Modified 2000-2009 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains library routines for transcoding decompression,

* that is, reading raw DCT coefficient arrays from an input JPEG file.

* The routines in jdapimin.c will also be needed by a transcoder.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdtrans.c

No license file was found, but licenses were detected in source scan.

 

/*

* jcparam.c

*

* Copyright (C) 1991-1998, Thomas G. Lane.

* Modified 2003-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains optional default-setting code for the JPEG compressor.

* Applications do not have to use this file, but those that don't use it

* must know a lot more about the innards of the JPEG code.

*/



             Open Source Used In JVDI Client for Windows 14.0  128

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcparam.c

No license file was found, but licenses were detected in source scan.

 

/*

* transupp.c

*

* Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains image transformation routines and other utility code

* used by the jpegtran sample application.  These are NOT part of the core

* JPEG library.  But we keep these routines separate from jpegtran.c to

* ease the task of maintaining jpegtran-like programs that have other user

* interfaces.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/transupp.c

No license file was found, but licenses were detected in source scan.

 

/*

* jquant2.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2011 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains 2-pass color quantization (color mapping) routines.

* These routines provide selection of a custom color map for an image,

* followed by mapping of the image to that color map, with optional

* Floyd-Steinberg dithering.

* It is also possible to use just the second pass to map to an arbitrary

* externally-given color map.

*

* Note: ordered dithering is not supported, since there isn't any fast

* way to compute intercolor distances; it's unclear that ordered dither's

* fundamental assumptions even hold with an irregularly spaced color map.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jquant2.c

No license file was found, but licenses were detected in source scan.

 

/*



             Open Source Used In JVDI Client for Windows 14.0  129

* jutils.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2009-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains tables and miscellaneous utility routines needed

* for both compression and decompression.

* Note we prefix all global names with "j" to minimize conflicts with

* a surrounding application.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jutils.c

No license file was found, but licenses were detected in source scan.

 

/*

* jidctflt.c

*

* Copyright (C) 1994-1998, Thomas G. Lane.

* Modified 2010-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a floating-point implementation of the

* inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine

* must also perform dequantization of the input coefficients.

*

* This implementation should be more accurate than either of the integer

* IDCT implementations.  However, it may not give the same results on all

* machines because of differences in roundoff behavior.  Speed will depend

* on the hardware's floating point capacity.

*

* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT

* on each row (or vice versa, but it's more convenient to emit a row at

* a time).  Direct algorithms are also available, but they are much more

* complex and seem not to be any faster when reduced to code.

*

* This implementation is based on Arai, Agui, and Nakajima's algorithm for

* scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in

* Japanese, but the algorithm is described in the Pennebaker & Mitchell

* JPEG textbook (see REFERENCES section in file README).  The following code

* is based directly on figure 4-8 in P&M.

* While an 8-point DCT cannot be done in less than 11 multiplies, it is

* possible to arrange the computation so that many of the multiplies are

* simple scalings of the final outputs.  These multiplies can then be

* folded into the multiplications or divisions by the JPEG quantization



             Open Source Used In JVDI Client for Windows 14.0  130

* table entries.  The AA&N method leaves only 5 multiplies and 29 adds

* to be done in the DCT itself.

* The primary disadvantage of this method is that with a fixed-point

* implementation, accuracy is lost due to imprecise representation of the

* scaled quantization values.  However, that problem does not arise if

* we use floating point arithmetic.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jidctflt.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdsample.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2002-2015 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains upsampling routines.

*

* Upsampling input data is counted in "row groups".  A row group

* is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)

* sample rows of each component.  Upsampling will normally produce

* max_v_samp_factor pixel rows from each row group (but this could vary

* if the upsampler is applying a scale factor of its own).

*

* An excellent reference for image resampling is

*   Digital Image Warping, George Wolberg, 1990.

*   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdsample.c

No license file was found, but licenses were detected in source scan.

 

/*

* jidctint.c

*

* Copyright (C) 1991-1998, Thomas G. Lane.

* Modification developed 2002-2018 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a slow-but-accurate integer implementation of the

* inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine

* must also perform dequantization of the input coefficients.



             Open Source Used In JVDI Client for Windows 14.0  131

*

* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT

* on each row (or vice versa, but it's more convenient to emit a row at

* a time).  Direct algorithms are also available, but they are much more

* complex and seem not to be any faster when reduced to code.

*

* This implementation is based on an algorithm described in

*   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT

*   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,

*   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.

* The primary algorithm described there uses 11 multiplies and 29 adds.

* We use their alternate method with 12 multiplies and 32 adds.

* The advantage of this method is that no data path contains more than one

* multiplication; this allows a very simple and accurate implementation in

* scaled fixed-point arithmetic, with a minimal number of shifts.

*

* We also provide IDCT routines with various output sample block sizes for

* direct resolution reduction or enlargement and for direct resolving the

* common 2x1 and 1x2 subsampling cases without additional resampling: NxN

* (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block.

*

* For N<8 we simply take the corresponding low-frequency coefficients of

* the 8x8 input DCT block and apply an NxN point IDCT on the sub-block

* to yield the downscaled outputs.

* This can be seen as direct low-pass downsampling from the DCT domain

* point of view rather than the usual spatial domain point of view,

* yielding significant computational savings and results at least

* as good as common bilinear (averaging) spatial downsampling.

*

* For N>8 we apply a partial NxN IDCT on the 8 input coefficients as

* lower frequencies and higher frequencies assumed to be zero.

* It turns out that the computational effort is similar to the 8x8 IDCT

* regarding the output size.

* Furthermore, the scaling and descaling is the same for all IDCT sizes.

*

* CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases

* since there would be too many additional constants to pre-calculate.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jidctint.c

No license file was found, but licenses were detected in source scan.

 

/*

* cjpeg.c

*

* Copyright (C) 1991-1998, Thomas G. Lane.

* Modified 2003-2013 by Guido Vollbeding.



             Open Source Used In JVDI Client for Windows 14.0  132

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a command-line user interface for the JPEG compressor.

* It should work on any system with Unix- or MS-DOS-style command lines.

*

* Two different command line styles are permitted, depending on the

* compile-time switch TWO_FILE_COMMANDLINE:

*	cjpeg [options]  inputfile outputfile

*	cjpeg [options]  [inputfile]

* In the second style, output is always to standard output, which you'd

* normally redirect to a file or pipe to some other program.  Input is

* either from a named file or from standard input (typically redirected).

* The second style is convenient on Unix but is unhelpful on systems that

* don't support pipes.  Also, you MUST use the first style if your system

* doesn't do binary I/O to stdin/stdout.

* To simplify script writing, the "-outfile" switch is provided.  The syntax

*	cjpeg [options]  -outfile outputfile  inputfile

* works regardless of which command line style is used.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/cjpeg.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdapimin.c

*

* Copyright (C) 1994-1998, Thomas G. Lane.

* Modified 2009-2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains application interface code for the decompression half

* of the JPEG library.  These are the "minimum" API routines that may be

* needed in either the normal full-decompression case or the

* transcoding-only case.

*

* Most of the routines intended to be called directly by an application

* are in this file or in jdapistd.c.  But also see jcomapi.c for routines

* shared by compression and decompression, and jdtrans.c for the transcoding

* case.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdapimin.c

No license file was found, but licenses were detected in source scan.

 



             Open Source Used In JVDI Client for Windows 14.0  133

/*

* jmemmgr.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2011-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the JPEG system-independent memory management

* routines.  This code is usable across a wide variety of machines; most

* of the system dependencies have been isolated in a separate file.

* The major functions provided here are:

*   * pool-based allocation and freeing of memory;

*   * policy decisions about how to divide available memory among the

*     virtual arrays;

*   * control logic for swapping virtual arrays between main memory and

*     backing storage.

* The separate system-dependent file provides the actual backing-storage

* access code, and it contains the policy decision about how much total

* main memory to use.

* This file is system-dependent in the sense that some of its functions

* are unnecessary in some systems.  For example, if there is enough virtual

* memory so that backing storage will never be used, much of the virtual

* array control logic could be removed.  (Of course, if you have that much

* memory then you shouldn't care about a little bit of unused code...)

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemmgr.c

No license file was found, but licenses were detected in source scan.

 

/*

* jctrans.c

*

* Copyright (C) 1995-1998, Thomas G. Lane.

* Modified 2000-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains library routines for transcoding compression,

* that is, writing raw DCT coefficient arrays to an output JPEG file.

* The routines in jcapimin.c will also be needed by a transcoder.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jctrans.c

No license file was found, but licenses were detected in source scan.

 



             Open Source Used In JVDI Client for Windows 14.0  134

/*

* jconfig.txt

*

* Copyright (C) 1991-1994, Thomas G. Lane.

* Modified 2009-2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file documents the configuration options that are required to

* customize the JPEG software for a particular system.

*

* The actual configuration options for a particular installation are stored

* in jconfig.h.  On many machines, jconfig.h can be generated automatically

* or copied from one of the "canned" jconfig files that we supply.  But if

* you need to generate a jconfig.h file by hand, this file tells you how.

*

* DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.

* EDIT A COPY NAMED JCONFIG.H.

*/

 

 

/*

* These symbols indicate the properties of your machine or compiler.

* #define the symbol if yes, #undef it if no.

*/

 

/* Does your compiler support function prototypes?

* (If not, you also need to use ansi2knr, see install.txt)

*/

#define HAVE_PROTOTYPES

 

/* Does your compiler support the declaration "unsigned char" ?

* How about "unsigned short" ?

*/

#define HAVE_UNSIGNED_CHAR

#define HAVE_UNSIGNED_SHORT

 

/* Define "void" as "char" if your compiler doesn't know about type void.

* NOTE: be sure to define void such that "void *" represents the most general

* pointer type, e.g., that returned by malloc().

*/

/* #define void char */

 

/* Define "const" as empty if your compiler doesn't know the "const" keyword.

*/

/* #define const */

 

/* Define this if an ordinary "char" type is unsigned.



             Open Source Used In JVDI Client for Windows 14.0  135

* If you're not sure, leaving it undefined will work at some cost in speed.

* If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.

*/

#undef CHAR_IS_UNSIGNED

 

/* Define this if your system has an ANSI-conforming <stddef.h> file.

*/

#define HAVE_STDDEF_H

 

/* Define this if your system has an ANSI-conforming <stdlib.h> file.

*/

#define HAVE_STDLIB_H

 

/* Define this if your system does not have an ANSI/SysV <string.h>,

* but does have a BSD-style <strings.h>.

*/

#undef NEED_BSD_STRINGS

 

/* Define this if your system does not provide typedef size_t in any of the

* ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in

* <sys/types.h> instead.

*/

#undef NEED_SYS_TYPES_H

 

/* For 80x86 machines, you need to define NEED_FAR_POINTERS,

* unless you are using a large-data memory model or 80386 flat-memory mode.

* On less brain-damaged CPUs this symbol must not be defined.

* (Defining this symbol causes large data structures to be referenced through

* "far" pointers and to be allocated with a special version of malloc.)

*/

#undef NEED_FAR_POINTERS

 

/* Define this if your linker needs global names to be unique in less

* than the first 15 characters.

*/

#undef NEED_SHORT_EXTERNAL_NAMES

 

/* Although a real ANSI C compiler can deal perfectly well with pointers to

* unspecified structures (see "incomplete types" in the spec), a few pre-ANSI

* and pseudo-ANSI compilers get confused.  To keep one of these bozos happy,

* define INCOMPLETE_TYPES_BROKEN.  This is not recommended unless you

* actually get "missing structure definition" warnings or errors while

* compiling the JPEG code.

*/

#undef INCOMPLETE_TYPES_BROKEN

 

/* Define "boolean" as unsigned char, not enum, on Windows systems.

*/



             Open Source Used In JVDI Client for Windows 14.0  136

#ifdef _WIN32

#ifndef __RPCNDR_H__		/* don't conflict if rpcndr.h already read */

typedef unsigned char boolean;

#endif

#ifndef FALSE			/* in case these macros already exist */

#define FALSE	0		/* values of boolean */

#endif

#ifndef TRUE

#define TRUE	1

#endif

#define HAVE_BOOLEAN		/* prevent jmorecfg.h from redefining it */

#endif

 

 

/*

* The following options affect code selection within the JPEG library,

* but they don't need to be visible to applications using the library.

* To minimize application namespace pollution, the symbols won't be

* defined unless JPEG_INTERNALS has been defined.

*/

 

#ifdef JPEG_INTERNALS

 

/* Define this if your compiler implements ">>" on signed values as a logical

* (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,

* which is the normal and rational definition.

*/

#undef RIGHT_SHIFT_IS_UNSIGNED

 

 

#endif /* JPEG_INTERNALS */

 

 

/*

* The remaining options do not affect the JPEG library proper,

* but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).

* Other applications can ignore these.

*/

 

#ifdef JPEG_CJPEG_DJPEG

 

/* These defines indicate which image (non-JPEG) file formats are allowed. */

 

#define BMP_SUPPORTED		/* BMP image file format */

#define GIF_SUPPORTED		/* GIF image file format */

#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */

#undef RLE_SUPPORTED		/* Utah RLE image file format */

#define TARGA_SUPPORTED		/* Targa image file format */



             Open Source Used In JVDI Client for Windows 14.0  137

 

/* Define this if you want to name both input and output files on the command

* line, rather than using stdout and optionally stdin.  You MUST do this if

* your system can't cope with binary I/O to stdin/stdout.  See comments at

* head of cjpeg.c or djpeg.c.

*/

#undef TWO_FILE_COMMANDLINE

 

/* Define this if your system needs explicit cleanup of temporary files.

* This is crucial under MS-DOS, where the temporary "files" may be areas

* of extended memory; on most other systems it's not as important.

*/

#undef NEED_SIGNAL_CATCHER

 

/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").

* This is necessary on systems that distinguish text files from binary files,

* and is harmless on most systems that don't.  If you have one of the rare

* systems that complains about the "b" spec, define this symbol.

*/

#undef DONT_USE_B_MODE

 

/* Define this if you want percent-done progress reports from cjpeg/djpeg.

*/

#undef PROGRESS_REPORT

 

 

#endif /* JPEG_CJPEG_DJPEG */

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jconfig.txt

No license file was found, but licenses were detected in source scan.

 

/*

* jcapimin.c

*

* Copyright (C) 1994-1998, Thomas G. Lane.

* Modified 2003-2010 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains application interface code for the compression half

* of the JPEG library.  These are the "minimum" API routines that may be

* needed in either the normal full-compression case or the transcoding-only

* case.

*

* Most of the routines intended to be called directly by an application

* are in this file or in jcapistd.c.  But also see jcparam.c for

* parameter-setup helper routines, jcomapi.c for routines shared by



             Open Source Used In JVDI Client for Windows 14.0  138

* compression and decompression, and jctrans.c for the transcoding case.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcapimin.c

No license file was found, but licenses were detected in source scan.

 

/*

* rdrle.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to read input images in Utah RLE format.

* The Utah Raster Toolkit library is required (version 3.1 or later).

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume input from

* an ordinary stdio stream.  They further assume that reading begins

* at the start of the file; start_input may need work if the

* user interface has already read some data (e.g., to determine that

* the file is indeed RLE format).

*

* Based on code contributed by Mike Lijewski,

* with updates from Robert Hutchinson.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdrle.c

No license file was found, but licenses were detected in source scan.

 

/*

* jddctmgr.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2002-2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains the inverse-DCT management logic.

* This code selects a particular IDCT implementation to be used,

* and it performs related housekeeping chores.  No code in this file

* is executed per IDCT step, only during output pass setup.

*

* Note that the IDCT routines are responsible for performing coefficient

* dequantization as well as the IDCT proper.  This module sets up the



             Open Source Used In JVDI Client for Windows 14.0  139

* dequantization multiplier table needed by the IDCT routine.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jddctmgr.c

No license file was found, but licenses were detected in source scan.

 

/*

* jmemmac.c

*

* Copyright (C) 1992-1997, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* jmemmac.c provides an Apple Macintosh implementation of the system-

* dependent portion of the JPEG memory manager.

*

* If you use jmemmac.c, then you must define USE_MAC_MEMMGR in the

* JPEG_INTERNALS part of jconfig.h.

*

* jmemmac.c uses the Macintosh toolbox routines NewPtr and DisposePtr

* instead of malloc and free.  It accurately determines the amount of

* memory available by using CompactMem.  Notice that if left to its

* own devices, this code can chew up all available space in the

* application's zone, with the exception of the rather small "slop"

* factor computed in jpeg_mem_available().  The application can ensure

* that more space is left over by reducing max_memory_to_use.

*

* Large images are swapped to disk using temporary files and System 7.0+'s

* temporary folder functionality.

*

* Note that jmemmac.c depends on two features of MacOS that were first

* introduced in System 7: FindFolder and the FSSpec-based calls.

* If your application uses jmemmac.c and is run under System 6 or earlier,

* and the jpeg library decides it needs a temporary file, it will abort,

* printing error messages about requiring System 7.  (If no temporary files

* are created, it will run fine.)

*

* If you want to use jmemmac.c in an application that might be used with

* System 6 or earlier, then you should remove dependencies on FindFolder

* and the FSSpec calls.  You will need to replace FindFolder with some

* other mechanism for finding a place to put temporary files, and you

* should replace the FSSpec calls with their HFS equivalents:

*

*     FSpDelete     ->  HDelete

*     FSpGetFInfo   ->  HGetFInfo

*     FSpCreate     ->  HCreate

*     FSpOpenDF     ->  HOpen      *** Note: not HOpenDF ***



             Open Source Used In JVDI Client for Windows 14.0  140

*     FSMakeFSSpec  ->  (fill in spec by hand.)

*

* (Use HOpen instead of HOpenDF.  HOpen is just a glue-interface to PBHOpen,

* which is on all HFS macs.  HOpenDF is a System 7 addition which avoids the

* ages-old problem of names starting with a period.)

*

* Contributed by Sam Bushell (jsam@iagu.on.net) and

* Dan Gildor (gyld@in-touch.com).

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemmac.c

No license file was found, but licenses were detected in source scan.

 

/*

* wrppm.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2009-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to write output images in PPM/PGM format.

* The extended 2-byte-per-sample raw PPM/PGM formats are supported.

* The PBMPLUS library is NOT required to compile this software

* (but it is highly useful as a set of PPM image manipulation programs).

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume output to

* an ordinary stdio stream.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/wrppm.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdatadst.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2009-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains compression data destination routines for the case of

* emitting JPEG data to memory or to a file (or any stdio stream).

* While these routines are sufficient for most applications,

* some will want to use a different destination manager.



             Open Source Used In JVDI Client for Windows 14.0  141

* IMPORTANT: we assume that fwrite() will correctly transcribe an array of

* JOCTETs into 8-bit-wide elements on external storage.  If char is wider

* than 8 bits on your machine, you may need to do some tweaking.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdatadst.c

No license file was found, but licenses were detected in source scan.

 

/*

* rdtarga.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2017-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to read input images in Targa format.

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume input from

* an ordinary stdio stream.  They further assume that reading begins

* at the start of the file; start_input may need work if the

* user interface has already read some data (e.g., to determine that

* the file is indeed Targa format).

*

* Based on code contributed by Lee Daniel Crocker.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdtarga.c

No license file was found, but licenses were detected in source scan.

 

/*

* jpeglib.h

*

* Copyright (C) 1991-1998, Thomas G. Lane.

* Modified 2002-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file defines the application interface for the JPEG library.

* Most applications using the library need only include this file,

* and perhaps jerror.h if they want to know the exact error codes.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jpeglib.h



             Open Source Used In JVDI Client for Windows 14.0  142

No license file was found, but licenses were detected in source scan.

 

/*

* rdjpgcom.c

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 2009 by Bill Allombert, Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a very simple stand-alone application that displays

* the text in COM (comment) markers in a JFIF file.

* This may be useful as an example of the minimum logic needed to parse

* JPEG markers.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdjpgcom.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdmarker.c

*

* Copyright (C) 1991-1998, Thomas G. Lane.

* Modified 2009-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to decode JPEG datastream markers.

* Most of the complexity arises from our desire to support input

* suspension: if not all of the data for a marker is available,

* we must exit back to the application.  On resumption, we reprocess

* the marker.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdmarker.c

No license file was found, but licenses were detected in source scan.

 

/*

* jaricom.c

*

* Developed 1997-2011 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains probability estimation tables for common use in

* arithmetic entropy encoding and decoding routines.



             Open Source Used In JVDI Client for Windows 14.0  143

*

* This data represents Table D.3 in the JPEG spec (D.2 in the draft),

* ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81, and Table 24

* in the JBIG spec, ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jaricom.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdcolor.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2011-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains output colorspace conversion routines.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdcolor.c

No license file was found, but licenses were detected in source scan.

 

/*

* jpegint.h

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 1997-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file provides common declarations for the various JPEG modules.

* These declarations are considered internal to the JPEG library; most

* applications using the library shouldn't need to include this file.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jpegint.h

No license file was found, but licenses were detected in source scan.

 

/*

* jquant1.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2011 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.



             Open Source Used In JVDI Client for Windows 14.0  144

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains 1-pass color quantization (color mapping) routines.

* These routines provide mapping to a fixed color map using equally spaced

* color values.  Optional Floyd-Steinberg or ordered dithering is available.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jquant1.c

No license file was found, but licenses were detected in source scan.

 

/*

* cderror.h

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 2009-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file defines the error and message codes for the cjpeg/djpeg

* applications.  These strings are not needed as part of the JPEG library

* proper.

* Edit this file to add new codes, or to translate the message strings to

* some other language.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/cderror.h

No license file was found, but licenses were detected in source scan.

 

/*

* jerror.c

*

* Copyright (C) 1991-1998, Thomas G. Lane.

* Modified 2012-2015 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains simple error-reporting and trace-message routines.

* These are suitable for Unix-like systems and others where writing to

* stderr is the right thing to do.  Many applications will want to replace

* some or all of these routines.

*

* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,

* you get a Windows-specific hack to display error messages in a dialog box.

* It ain't much, but it beats dropping error messages into the bit bucket,

* which is what happens to output to stderr under most Windows C compilers.

*



             Open Source Used In JVDI Client for Windows 14.0  145

* These routines are used by both the compression and decompression code.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jerror.c

No license file was found, but licenses were detected in source scan.

 

The Independent JPEG Group's JPEG software

==========================================

 

README for release 9d of 12-Jan-2020

====================================

 

This distribution contains the ninth public release of the Independent JPEG

Group's free JPEG software.  You are welcome to redistribute this software and

to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.

 

This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,

Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,

John Korejwa, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi,

Ge' Weijers, and other members of the Independent JPEG Group.

 

IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee

(previously known as JPEG, together with ITU-T SG16).

 

 

DOCUMENTATION ROADMAP

=====================

 

This file contains the following sections:

 

OVERVIEW            General description of JPEG and the IJG software.

LEGAL ISSUES        Copyright, lack of warranty, terms of distribution.

REFERENCES          Where to learn more about JPEG.

ARCHIVE LOCATIONS   Where to find newer versions of this software.

ACKNOWLEDGMENTS     Special thanks.

FILE FORMAT WARS    Software *not* to get.

TO DO               Plans for future IJG releases.

 

Other documentation files in the distribution are:

 

User documentation:

 install.txt       How to configure and install the IJG software.

 usage.txt         Usage instructions for cjpeg, djpeg, jpegtran,

                   rdjpgcom, and wrjpgcom.

 *.1               Unix-style man pages for programs (same info as usage.txt).

 wizard.txt        Advanced usage instructions for JPEG wizards only.

 change.log        Version-to-version change highlights.



             Open Source Used In JVDI Client for Windows 14.0  146

Programmer and internal documentation:

 libjpeg.txt       How to use the JPEG library in your own programs.

 example.c         Sample code for calling the JPEG library.

 structure.txt     Overview of the JPEG library's internal structure.

 filelist.txt      Road map of IJG files.

 coderules.txt     Coding style rules --- please read if you contribute code.

 

Please read at least the files install.txt and usage.txt.  Some information

can also be found in the JPEG FAQ (Frequently Asked Questions) article.  See

ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.

 

If you want to understand how the JPEG code works, we suggest reading one or

more of the REFERENCES, then looking at the documentation files (in roughly

the order listed) before diving into the code.

 

 

OVERVIEW

========

 

This package contains C software to implement JPEG image encoding, decoding,

and transcoding.  JPEG (pronounced "jay-peg") is a standardized compression

method for full-color and grayscale images.

 

This software implements JPEG baseline, extended-sequential, and progressive

compression processes.  Provision is made for supporting all variants of these

processes, although some uncommon parameter settings aren't implemented yet.

We have made no provision for supporting the hierarchical or lossless

processes defined in the standard.

 

We provide a set of library routines for reading and writing JPEG image files,

plus two sample applications "cjpeg" and "djpeg", which use the library to

perform conversion between JPEG and some other popular image file formats.

The library is intended to be reused in other applications.

 

In order to support file conversion and viewing software, we have included

considerable functionality beyond the bare JPEG coding/decoding capability;

for example, the color quantization modules are not strictly part of JPEG

decoding, but they are essential for output to colormapped file formats or

colormapped displays.  These extra functions can be compiled out of the

library if not required for a particular application.

 

We have also included "jpegtran", a utility for lossless transcoding between

different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple

applications for inserting and extracting textual comments in JFIF files.

 

The emphasis in designing this software has been on achieving portability and

flexibility, while also making it fast enough to be useful.  In particular,

the software is not intended to be read as a tutorial on JPEG.  (See the



             Open Source Used In JVDI Client for Windows 14.0  147

REFERENCES section for introductory material.)  Rather, it is intended to

be reliable, portable, industrial-strength code.  We do not claim to have

achieved that goal in every aspect of the software, but we strive for it.

 

We welcome the use of this software as a component of commercial products.

No royalty is required, but we do ask for an acknowledgement in product

documentation, as described under LEGAL ISSUES.

 

 

LEGAL ISSUES

============

 

In plain English:

 

1. We don't promise that this software works.  (But if you find any bugs,

  please let us know!)

2. You can use this software for whatever you want.  You don't have to pay us.

3. You may not pretend that you wrote this software.  If you use it in a

  program, you must acknowledge somewhere in your documentation that

  you've used the IJG code.

 

In legalese:

 

The authors make NO WARRANTY or representation, either express or implied,

with respect to this software, its quality, accuracy, merchantability, or

fitness for a particular purpose.  This software is provided "AS IS", and you,

its user, assume the entire risk as to its quality and accuracy.

 

This software is copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.

All Rights Reserved except as specified below.

 

Permission is hereby granted to use, copy, modify, and distribute this

software (or portions thereof) for any purpose, without fee, subject to these

conditions:

(1) If any part of the source code for this software is distributed, then this

README file must be included, with this copyright and no-warranty notice

unaltered; and any additions, deletions, or changes to the original files

must be clearly indicated in accompanying documentation.

(2) If only executable code is distributed, then the accompanying

documentation must state that "this software is based in part on the work of

the Independent JPEG Group".

(3) Permission for use of this software is granted only if the user accepts

full responsibility for any undesirable consequences; the authors accept

NO LIABILITY for damages of any kind.

 

These conditions apply to any software derived from or based on the IJG code,

not just to the unmodified library.  If you use our work, you ought to

acknowledge us.



             Open Source Used In JVDI Client for Windows 14.0  148

 

Permission is NOT granted for the use of any IJG author's name or company name

in advertising or publicity relating to this software or products derived from

it.  This software may be referred to only as "the Independent JPEG Group's

software".

 

We specifically permit and encourage the use of this software as the basis of

commercial products, provided that all warranty or liability claims are

assumed by the product vendor.

 

 

The Unix configuration script "configure" was produced with GNU Autoconf.

It is copyright by the Free Software Foundation but is freely distributable.

The same holds for its supporting scripts (config.guess, config.sub,

ltmain.sh).  Another support script, install-sh, is copyright by X Consortium

but is also freely distributable.

 

 

REFERENCES

==========

 

We recommend reading one or more of these references before trying to

understand the innards of the JPEG software.

 

The best short technical introduction to the JPEG compression algorithm is

	Wallace, Gregory K.  "The JPEG Still Picture Compression Standard",

	Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.

(Adjacent articles in that issue discuss MPEG motion picture compression,

applications of JPEG, and related topics.)  If you don't have the CACM issue

handy, a PDF file containing a revised version of Wallace's article is

available at http://www.ijg.org/files/Wallace.JPEG.pdf.  The file (actually

a preprint for an article that appeared in IEEE Trans. Consumer Electronics)

omits the sample images that appeared in CACM, but it includes corrections

and some added material.  Note: the Wallace article is copyright ACM and IEEE,

and it may not be used for commercial purposes.

 

A somewhat less technical, more leisurely introduction to JPEG can be found in

"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by

M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1.  This book provides

good explanations and example C code for a multitude of compression methods

including JPEG.  It is an excellent source if you are comfortable reading C

code but don't know much about data compression in general.  The book's JPEG

sample code is far from industrial-strength, but when you are ready to look

at a full implementation, you've got one here...

 

The best currently available description of JPEG is the textbook "JPEG Still

Image Data Compression Standard" by William B. Pennebaker and Joan L.

Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.



             Open Source Used In JVDI Client for Windows 14.0  149

Price US$59.95, 638 pp.  The book includes the complete text of the ISO JPEG

standards (DIS 10918-1 and draft DIS 10918-2).

Although this is by far the most detailed and comprehensive exposition of

JPEG publicly available, we point out that it is still missing an explanation

of the most essential properties and algorithms of the underlying DCT

technology.

If you think that you know about DCT-based JPEG after reading this book,

then you are in delusion.  The real fundamentals and corresponding potential

of DCT-based JPEG are not publicly known so far, and that is the reason for

all the mistaken developments taking place in the image coding domain.

 

The original JPEG standard is divided into two parts, Part 1 being the actual

specification, while Part 2 covers compliance testing methods.  Part 1 is

titled "Digital Compression and Coding of Continuous-tone Still Images,

Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS

10918-1, ITU-T T.81.  Part 2 is titled "Digital Compression and Coding of

Continuous-tone Still Images, Part 2: Compliance testing" and has document

numbers ISO/IEC IS 10918-2, ITU-T T.83.

IJG JPEG 8 introduced an implementation of the JPEG SmartScale extension

which is specified in two documents:  A contributed document at ITU and ISO

with title "ITU-T JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced

Image Coding", April 2006, Geneva, Switzerland.  The latest version of this

document is Revision 3.  And a contributed document ISO/IEC JTC1/SC29/WG1 N

5799 with title "Evolution of JPEG", June/July 2011, Berlin, Germany.

IJG JPEG 9 introduces a reversible color transform for improved lossless

compression which is described in a contributed document ISO/IEC JTC1/SC29/

WG1 N 6080 with title "JPEG 9 Lossless Coding", June/July 2012, Paris,

France.

 

The JPEG standard does not specify all details of an interchangeable file

format.  For the omitted details we follow the "JFIF" conventions, version 2.

JFIF version 1 has been adopted as Recommendation ITU-T T.871 (05/2011) :

Information technology - Digital compression and coding of continuous-tone

still images: JPEG File Interchange Format (JFIF).  It is available as a

free download in PDF file format from http://www.itu.int/rec/T-REC-T.871.

A PDF file of the older JFIF document is available at

http://www.w3.org/Graphics/JPEG/jfif3.pdf.

 

The TIFF 6.0 file format specification can be obtained by FTP from

ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz.  The JPEG incorporation scheme

found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.

IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).

Instead, we recommend the JPEG design proposed by TIFF Technical Note #2

(Compression tag 7).  Copies of this Note can be obtained from

http://www.ijg.org/files/.  It is expected that the next revision

of the TIFF spec will replace the 6.0 JPEG design with the Note's design.

Although IJG's own code does not support TIFF/JPEG, the free libtiff library

uses our library to implement TIFF/JPEG per the Note.



             Open Source Used In JVDI Client for Windows 14.0  150

 

 

ARCHIVE LOCATIONS

=================

 

The "official" archive site for this software is www.ijg.org.

The most recent released version can always be found there in

directory "files".  This particular version will be archived as

http://www.ijg.org/files/jpegsrc.v9d.tar.gz, and in Windows-compatible

"zip" archive format as http://www.ijg.org/files/jpegsr9d.zip.

 

The JPEG FAQ (Frequently Asked Questions) article is a source of some

general information about JPEG.

It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/

and other news.answers archive sites, including the official news.answers

archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.

If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu

with body

	send usenet/news.answers/jpeg-faq/part1

	send usenet/news.answers/jpeg-faq/part2

 

 

ACKNOWLEDGMENTS

===============

 

Thank to Juergen Bruder for providing me with a copy of the common DCT

algorithm article, only to find out that I had come to the same result

in a more direct and comprehensible way with a more generative approach.

 

Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the

ITU JPEG (Study Group 16) meeting in Geneva, Switzerland.

 

Thank to Thomas Wiegand and Gary Sullivan for inviting me to the

Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.

 

Thank to Thomas Richter and Daniel Lee for inviting me to the

ISO/IEC JTC1/SC29/WG1 (previously known as JPEG, together with ITU-T SG16)

meeting in Berlin, Germany.

 

Thank to John Korejwa and Massimo Ballerini for inviting me to

fruitful consultations in Boston, MA and Milan, Italy.

 

Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther

Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel

for corresponding business development.

 

Thank to Nico Zschach and Dirk Stelling of the technical support team

at the Digital Images company in Halle for providing me with extra



             Open Source Used In JVDI Client for Windows 14.0  151

equipment for configuration tests.

 

Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful

communication about JPEG configuration in Sigma Photo Pro software.

 

Thank to Andrew Finkenstadt for hosting the ijg.org site.

 

Thank to Thomas G. Lane for the original design and development of

this singular software package.

 

Thank to Lars Goehler, Andreas Heinecke, Sebastian Fuss, Yvonne Roebert,

Andrej Werner, and Ulf-Dietrich Braumann for support and public relations.

 

 

FILE FORMAT WARS

================

 

The ISO/IEC JTC1/SC29/WG1 standards committee (previously known as JPEG,

together with ITU-T SG16) currently promotes different formats containing

the name "JPEG" which is misleading because these formats are incompatible

with original DCT-based JPEG and are based on faulty technologies.

IJG therefore does not and will not support such momentary mistakes

(see REFERENCES).

There exist also distributions under the name "OpenJPEG" promoting such

kind of formats which is misleading because they don't support original

JPEG images.

We have no sympathy for the promotion of inferior formats.  Indeed, one of

the original reasons for developing this free software was to help force

convergence on common, interoperable format standards for JPEG files.

Don't use an incompatible file format!

(In any case, our decoder will remain capable of reading existing JPEG

image files indefinitely.)

 

The ISO committee pretends to be "responsible for the popular JPEG" in their

public reports which is not true because they don't respond to actual

requirements for the maintenance of the original JPEG specification.

Furthermore, the ISO committee pretends to "ensure interoperability" with

their standards which is not true because their "standards" support only

application-specific and proprietary use cases and contain mathematically

incorrect code.

 

There are currently different distributions in circulation containing the

name "libjpeg" which is misleading because they don't have the features and

are incompatible with formats supported by actual IJG libjpeg distributions.

One of those fakes is released by members of the ISO committee and just uses

the name of libjpeg for misdirection of people, similar to the abuse of the

name JPEG as described above, while having nothing in common with actual IJG

libjpeg distributions and containing mathematically incorrect code.



             Open Source Used In JVDI Client for Windows 14.0  152

The other one claims to be a "derivative" or "fork" of the original libjpeg,

but violates the license conditions as described under LEGAL ISSUES above

and violates basic C programming properties.

We have no sympathy for the release of misleading, incorrect and illegal

distributions derived from obsolete code bases.

Don't use an obsolete code base!

 

According to the UCC (Uniform Commercial Code) law, IJG has the lawful and

legal right to foreclose on certain standardization bodies and other

institutions or corporations that knowingly perform substantial and

systematic deceptive acts and practices, fraud, theft, and damaging of the

value of the people of this planet without their knowing, willing and

intentional consent.

The titles, ownership, and rights of these institutions and all their assets

are now duly secured and held in trust for the free people of this planet.

People of the planet, on every country, may have a financial interest in

the assets of these former principals, agents, and beneficiaries of the

foreclosed institutions and corporations.

IJG asserts what is: that each man, woman, and child has unalienable value

and rights granted and deposited in them by the Creator and not any one of

the people is subordinate to any artificial principality, corporate fiction

or the special interest of another without their appropriate knowing,

willing and intentional consent made by contract or accommodation agreement.

IJG expresses that which already was.

The people have already determined and demanded that public administration

entities, national governments, and their supporting judicial systems must

be fully transparent, accountable, and liable.

IJG has secured the value for all concerned free people of the planet.

 

A partial list of foreclosed institutions and corporations ("Hall of Shame")

is currently prepared and will be published later.

 

 

TO DO

=====

 

Version 9 is the second release of a new generation JPEG standard

to overcome the limitations of the original JPEG specification,

and is the first true source reference JPEG codec.

More features are being prepared for coming releases...

 

Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/README

No license file was found, but licenses were detected in source scan.

 

/*



             Open Source Used In JVDI Client for Windows 14.0  153

* jfdctflt.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2003-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a floating-point implementation of the

* forward DCT (Discrete Cosine Transform).

*

* This implementation should be more accurate than either of the integer

* DCT implementations.  However, it may not give the same results on all

* machines because of differences in roundoff behavior.  Speed will depend

* on the hardware's floating point capacity.

*

* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT

* on each column.  Direct algorithms are also available, but they are

* much more complex and seem not to be any faster when reduced to code.

*

* This implementation is based on Arai, Agui, and Nakajima's algorithm for

* scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in

* Japanese, but the algorithm is described in the Pennebaker & Mitchell

* JPEG textbook (see REFERENCES section in file README).  The following code

* is based directly on figure 4-8 in P&M.

* While an 8-point DCT cannot be done in less than 11 multiplies, it is

* possible to arrange the computation so that many of the multiplies are

* simple scalings of the final outputs.  These multiplies can then be

* folded into the multiplications or divisions by the JPEG quantization

* table entries.  The AA&N method leaves only 5 multiplies and 29 adds

* to be done in the DCT itself.

* The primary disadvantage of this method is that with a fixed-point

* implementation, accuracy is lost due to imprecise representation of the

* scaled quantization values.  However, that problem does not arise if

* we use floating point arithmetic.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jfdctflt.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdcoefct.c

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 2002-2011 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*



             Open Source Used In JVDI Client for Windows 14.0  154

* This file contains the coefficient buffer controller for decompression.

* This controller is the top level of the JPEG decompressor proper.

* The coefficient buffer lies between entropy decoding and inverse-DCT steps.

*

* In buffered-image mode, this controller is the interface between

* input-oriented processing and output-oriented processing.

* Also, the input side (only) is used when reading a file for transcoding.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdcoefct.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdapistd.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2002-2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains application interface code for the decompression half

* of the JPEG library.  These are the "standard" API routines that are

* used in the normal full-decompression case.  They are not used by a

* transcoding-only application.  Note that if an application links in

* jpeg_start_decompress, it will end up linking in the entire decompressor.

* We thus must separate this file from jdapimin.c to avoid linking the

* whole decompression library into a transcoder.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdapistd.c

No license file was found, but licenses were detected in source scan.

 

/*

* jfdctint.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modification developed 2003-2018 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a slow-but-accurate integer implementation of the

* forward DCT (Discrete Cosine Transform).

*

* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT

* on each column.  Direct algorithms are also available, but they are

* much more complex and seem not to be any faster when reduced to code.



             Open Source Used In JVDI Client for Windows 14.0  155

*

* This implementation is based on an algorithm described in

*   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT

*   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,

*   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.

* The primary algorithm described there uses 11 multiplies and 29 adds.

* We use their alternate method with 12 multiplies and 32 adds.

* The advantage of this method is that no data path contains more than one

* multiplication; this allows a very simple and accurate implementation in

* scaled fixed-point arithmetic, with a minimal number of shifts.

*

* We also provide FDCT routines with various input sample block sizes for

* direct resolution reduction or enlargement and for direct resolving the

* common 2x1 and 1x2 subsampling cases without additional resampling: NxN

* (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.

*

* For N<8 we fill the remaining block coefficients with zero.

* For N>8 we apply a partial N-point FDCT on the input samples, computing

* just the lower 8 frequency coefficients and discarding the rest.

*

* We must scale the output coefficients of the N-point FDCT appropriately

* to the standard 8-point FDCT level by 8/N per 1-D pass.  This scaling

* is folded into the constant multipliers (pass 2) and/or final/initial

* shifting.

*

* CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases

* since there would be too many additional constants to pre-calculate.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jfdctint.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdhuff.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2006-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains Huffman entropy decoding routines.

* Both sequential and progressive modes are supported in this single module.

*

* Much of the complexity here has to do with supporting input suspension.

* If the data source module demands suspension, we want to be able to back

* up to the start of the current MCU.  To do this, we copy state variables

* into local working storage, and update them back to the permanent



             Open Source Used In JVDI Client for Windows 14.0  156

* storage only upon successful completion of an MCU.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdhuff.c

No license file was found, but licenses were detected in source scan.

 

/*

* jfdctfst.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2003-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a fast, not so accurate integer implementation of the

* forward DCT (Discrete Cosine Transform).

*

* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT

* on each column.  Direct algorithms are also available, but they are

* much more complex and seem not to be any faster when reduced to code.

*

* This implementation is based on Arai, Agui, and Nakajima's algorithm for

* scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in

* Japanese, but the algorithm is described in the Pennebaker & Mitchell

* JPEG textbook (see REFERENCES section in file README).  The following code

* is based directly on figure 4-8 in P&M.

* While an 8-point DCT cannot be done in less than 11 multiplies, it is

* possible to arrange the computation so that many of the multiplies are

* simple scalings of the final outputs.  These multiplies can then be

* folded into the multiplications or divisions by the JPEG quantization

* table entries.  The AA&N method leaves only 5 multiplies and 29 adds

* to be done in the DCT itself.

* The primary disadvantage of this method is that with fixed-point math,

* accuracy is lost due to imprecise representation of the scaled

* quantization values.  The smaller the quantization table entry, the less

* precise the scaled value, so this implementation does worse with high-

* quality-setting files than with low-quality ones.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jfdctfst.c

No license file was found, but licenses were detected in source scan.

 

/*

* jidctfst.c

*

* Copyright (C) 1994-1998, Thomas G. Lane.



             Open Source Used In JVDI Client for Windows 14.0  157

* Modified 2015-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a fast, not so accurate integer implementation of the

* inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine

* must also perform dequantization of the input coefficients.

*

* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT

* on each row (or vice versa, but it's more convenient to emit a row at

* a time).  Direct algorithms are also available, but they are much more

* complex and seem not to be any faster when reduced to code.

*

* This implementation is based on Arai, Agui, and Nakajima's algorithm for

* scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in

* Japanese, but the algorithm is described in the Pennebaker & Mitchell

* JPEG textbook (see REFERENCES section in file README).  The following code

* is based directly on figure 4-8 in P&M.

* While an 8-point DCT cannot be done in less than 11 multiplies, it is

* possible to arrange the computation so that many of the multiplies are

* simple scalings of the final outputs.  These multiplies can then be

* folded into the multiplications or divisions by the JPEG quantization

* table entries.  The AA&N method leaves only 5 multiplies and 29 adds

* to be done in the DCT itself.

* The primary disadvantage of this method is that with fixed-point math,

* accuracy is lost due to imprecise representation of the scaled

* quantization values.  The smaller the quantization table entry, the less

* precise the scaled value, so this implementation does worse with high-

* quality-setting files than with low-quality ones.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jidctfst.c

No license file was found, but licenses were detected in source scan.

 

/*

* djpeg.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2009-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a command-line user interface for the JPEG decompressor.

* It should work on any system with Unix- or MS-DOS-style command lines.

*

* Two different command line styles are permitted, depending on the

* compile-time switch TWO_FILE_COMMANDLINE:



             Open Source Used In JVDI Client for Windows 14.0  158

*	djpeg [options]  inputfile outputfile

*	djpeg [options]  [inputfile]

* In the second style, output is always to standard output, which you'd

* normally redirect to a file or pipe to some other program.  Input is

* either from a named file or from standard input (typically redirected).

* The second style is convenient on Unix but is unhelpful on systems that

* don't support pipes.  Also, you MUST use the first style if your system

* doesn't do binary I/O to stdin/stdout.

* To simplify script writing, the "-outfile" switch is provided.  The syntax

*	djpeg [options]  -outfile outputfile  inputfile

* works regardless of which command line style is used.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/djpeg.c

No license file was found, but licenses were detected in source scan.

 

/*

* jcapistd.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains application interface code for the compression half

* of the JPEG library.  These are the "standard" API routines that are

* used in the normal full-compression case.  They are not used by a

* transcoding-only application.  Note that if an application links in

* jpeg_start_compress, it will end up linking in the entire compressor.

* We thus must separate this file from jcapimin.c to avoid linking the

* whole compression library into a transcoder.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcapistd.c

No license file was found, but licenses were detected in source scan.

 

/*

* wrtarga.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2015-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to write output images in Targa format.

*



             Open Source Used In JVDI Client for Windows 14.0  159

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume output to

* an ordinary stdio stream.

*

* Based on code contributed by Lee Daniel Crocker.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/wrtarga.c

No license file was found, but licenses were detected in source scan.

 

; For conditions of distribution and use, see the accompanying README file.

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemdosa.asm

No license file was found, but licenses were detected in source scan.

 

/*

* jcarith.c

*

* Developed 1997-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains portable arithmetic entropy encoding routines for JPEG

* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).

*

* Both sequential and progressive modes are supported in this single module.

*

* Suspension is not currently supported in this module.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcarith.c

No license file was found, but licenses were detected in source scan.

 

/*

* jdmerge.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2013-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains code for merged upsampling/color conversion.

*

* This file combines functions from jdsample.c and jdcolor.c;

* read those files first to understand what's going on.



             Open Source Used In JVDI Client for Windows 14.0  160

*

* When the chroma components are to be upsampled by simple replication

* (ie, box filtering), we can save some work in color conversion by

* calculating all the output pixels corresponding to a pair of chroma

* samples at one time.  In the conversion equations

*	R = Y           + K1 * Cr

*	G = Y + K2 * Cb + K3 * Cr

*	B = Y + K4 * Cb

* only the Y term varies among the group of pixels corresponding to a pair

* of chroma samples, so the rest of the terms can be calculated just once.

* At typical sampling ratios, this eliminates half or three-quarters of the

* multiplications needed for color conversion.

*

* This file currently provides implementations for the following cases:

*	YCC => RGB color conversion only (YCbCr or BG_YCC).

*	Sampling ratios of 2h1v or 2h2v.

*	No scaling needed at upsample time.

*	Corner-aligned (non-CCIR601) sampling alignment.

* Other special cases could be added, but in most applications these are

* the only common cases.  (For uncommon cases we fall back on the more

* general code in jdsample.c and jdcolor.c.)

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdmerge.c

No license file was found, but licenses were detected in source scan.

 

/*

* jpegtran.c

*

* Copyright (C) 1995-2019, Thomas G. Lane, Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a command-line user interface for JPEG transcoding.

* It is very similar to cjpeg.c, and partly to djpeg.c, but provides

* lossless transcoding between different JPEG file formats.  It also

* provides some lossless and sort-of-lossless transformations of JPEG data.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jpegtran.c

No license file was found, but licenses were detected in source scan.

 

IJG JPEG LIBRARY:  CODING RULES

 

Copyright (C) 1991-1996, Thomas G. Lane.

This file is part of the Independent JPEG Group's software.



             Open Source Used In JVDI Client for Windows 14.0  161

For conditions of distribution and use, see the accompanying README file.

 

 

Since numerous people will be contributing code and bug fixes, it's important

to establish a common coding style.  The goal of using similar coding styles

is much more important than the details of just what that style is.

 

In general we follow the recommendations of "Recommended C Style and Coding

Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and

Brader).  This document is available in the IJG FTP archive (see

jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl).

 

Block comments should be laid out thusly:

 

/*

*  Block comments in this style.

*/

 

We indent statements in K&R style, e.g.,

	if (test) {

	  then-part;

	} else {

	  else-part;

	}

with two spaces per indentation level.  (This indentation convention is

handled automatically by GNU Emacs and many other text editors.)

 

Multi-word names should be written in lower case with underscores, e.g.,

multi_word_name (not multiWordName).  Preprocessor symbols and enum constants

are similar but upper case (MULTI_WORD_NAME).  Names should be unique within

the first fifteen characters.  (On some older systems, global names must be

unique within six characters.  We accommodate this without cluttering the

source code by using macros to substitute shorter names.)

 

We use function prototypes everywhere; we rely on automatic source code

transformation to feed prototype-less C compilers.  Transformation is done

by the simple and portable tool 'ansi2knr.c' (courtesy of Ghostscript).

ansi2knr is not very bright, so it imposes a format requirement on function

declarations: the function name MUST BEGIN IN COLUMN 1.  Thus all functions

should be written in the following style:

 

LOCAL(int *)

function_name (int a, char *b)

{

   code...

}

 

Note that each function definition must begin with GLOBAL(type), LOCAL(type),



             Open Source Used In JVDI Client for Windows 14.0  162

or METHODDEF(type).  These macros expand to "static type" or just "type" as

appropriate.  They provide a readable indication of the routine's usage and

can readily be changed for special needs.  (For instance, special linkage

keywords can be inserted for use in Windows DLLs.)

 

ansi2knr does not transform method declarations (function pointers in

structs).  We handle these with a macro JMETHOD, defined as

	#ifdef HAVE_PROTOTYPES

	#define JMETHOD(type,methodname,arglist)  type (*methodname) arglist

	#else

	#define JMETHOD(type,methodname,arglist)  type (*methodname) ()

	#endif

which is used like this:

	struct function_pointers {

	  JMETHOD(void, init_entropy_encoder, (int somearg, jparms *jp));

	  JMETHOD(void, term_entropy_encoder, (void));

	};

Note the set of parentheses surrounding the parameter list.

 

A similar solution is used for forward and external function declarations

(see the EXTERN and JPP macros).

 

If the code is to work on non-ANSI compilers, we cannot rely on a prototype

declaration to coerce actual parameters into the right types.  Therefore, use

explicit casts on actual parameters whenever the actual parameter type is not

identical to the formal parameter.  Beware of implicit conversions to "int".

 

It seems there are some non-ANSI compilers in which the sizeof() operator

is defined to return int, yet size_t is defined as long.  Needless to say,

this is brain-damaged.  Always use the SIZEOF() macro in place of sizeof(),

so that the result is guaranteed to be of type size_t.

 

 

The JPEG library is intended to be used within larger programs.  Furthermore,

we want it to be reentrant so that it can be used by applications that process

multiple images concurrently.  The following rules support these requirements:

 

1. Avoid direct use of file I/O, "malloc", error report printouts, etc;

pass these through the common routines provided.

 

2. Minimize global namespace pollution.  Functions should be declared static

wherever possible.  (Note that our method-based calling conventions help this

a lot: in many modules only the initialization function will ever need to be

called directly, so only that function need be externally visible.)  All

global function names should begin with "jpeg_", and should have an

abbreviated name (unique in the first six characters) substituted by macro

when NEED_SHORT_EXTERNAL_NAMES is set.

 



             Open Source Used In JVDI Client for Windows 14.0  163

3. Don't use global variables; anything that must be used in another module

should be in the common data structures.

 

4. Don't use static variables except for read-only constant tables.  Variables

that should be private to a module can be placed into private structures (see

the system architecture document, structure.txt).

 

5. Source file names should begin with "j" for files that are part of the

library proper; source files that are not part of the library, such as cjpeg.c

and djpeg.c, do not begin with "j".  Keep source file names to eight

characters (plus ".c" or ".h", etc) to make life easy for MS-DOSers.  Keep

compression and decompression code in separate source files --- some

applications may want only one half of the library.

 

Note: these rules (particularly #4) are not followed religiously in the

modules that are used in cjpeg/djpeg but are not part of the JPEG library

proper.  Those modules are not really intended to be used in other

applications.

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/coderules.txt

No license file was found, but licenses were detected in source scan.

 

/*

* jdinput.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2002-2013 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains input control logic for the JPEG decompressor.

* These routines are concerned with controlling the decompressor's input

* processing (marker reading and coefficient decoding).  The actual input

* reading is done in jdmarker.c, jdhuff.c, and jdarith.c.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdinput.c

No license file was found, but licenses were detected in source scan.

 

/*

* jcmarker.c

*

* Copyright (C) 1991-1998, Thomas G. Lane.

* Modified 2003-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.



             Open Source Used In JVDI Client for Windows 14.0  164

*

* This file contains routines to write JPEG datastream markers.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcmarker.c

No license file was found, but licenses were detected in source scan.

 

/*

* jmemname.c

*

* Copyright (C) 1992-1997, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file provides a generic implementation of the system-dependent

* portion of the JPEG memory manager.  This implementation assumes that

* you must explicitly construct a name for each temp file.

* Also, the problem of determining the amount of memory available

* is shoved onto the user.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemname.c

No license file was found, but licenses were detected in source scan.

 

/*

* rdppm.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2009-2019 by Bill Allombert, Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to read input images in PPM/PGM format.

* The extended 2-byte-per-sample raw PPM/PGM formats are supported.

* The PBMPLUS library is NOT required to compile this software

* (but it is highly useful as a set of PPM image manipulation programs).

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume input from

* an ordinary stdio stream.  They further assume that reading begins

* at the start of the file; start_input may need work if the

* user interface has already read some data (e.g., to determine that

* the file is indeed PPM format).

*/

/* Portions of this code are based on the PBMPLUS library, which is:

**



             Open Source Used In JVDI Client for Windows 14.0  165

** Copyright (C) 1988 by Jef Poskanzer.

**

** Permission to use, copy, modify, and distribute this software and its

** documentation for any purpose and without fee is hereby granted, provided

** that the above copyright notice appear in all copies and that both that

** copyright notice and this permission notice appear in supporting

** documentation.  This software is provided "as is" without express or

** implied warranty.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/rdppm.c

No license file was found, but licenses were detected in source scan.

 

/*

* jinclude.h

*

* Copyright (C) 1991-1994, Thomas G. Lane.

* Modified 2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file exists to provide a single place to fix any problems with

* including the wrong system include files.  (Common problems are taken

* care of by the standard jconfig symbols, but on really weird systems

* you may have to edit this file.)

*

* NOTE: this file is NOT intended to be included by applications using the

* JPEG library.  Most applications need only include jpeglib.h.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jinclude.h

No license file was found, but licenses were detected in source scan.

 

/*

* wrgif.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* Modified 2015-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to write output images in GIF format.

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume output to

* an ordinary stdio stream.



             Open Source Used In JVDI Client for Windows 14.0  166

*/

/*

* This code is loosely based on ppmtogif from the PBMPLUS distribution

* of Feb. 1991.  That file contains the following copyright notice:

*    Based on GIFENCODE by David Rowley <mgardi@watdscu.waterloo.edu>.

*    Lempel-Ziv compression based on "compress" by Spencer W. Thomas et al.

*    Copyright (C) 1989 by Jef Poskanzer.

*    Permission to use, copy, modify, and distribute this software and its

*    documentation for any purpose and without fee is hereby granted, provided

*    that the above copyright notice appear in all copies and that both that

*    copyright notice and this permission notice appear in supporting

*    documentation.  This software is provided "as is" without express or

*    implied warranty.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/wrgif.c

No license file was found, but licenses were detected in source scan.

 

IJG JPEG LIBRARY:  SYSTEM ARCHITECTURE

 

Copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding.

This file is part of the Independent JPEG Group's software.

For conditions of distribution and use, see the accompanying README file.

 

 

This file provides an overview of the architecture of the IJG JPEG software;

that is, the functions of the various modules in the system and the interfaces

between modules.  For more precise details about any data structure or calling

convention, see the include files and comments in the source code.

 

We assume that the reader is already somewhat familiar with the JPEG standard.

The README file includes references for learning about JPEG.  The file

libjpeg.txt describes the library from the viewpoint of an application

programmer using the library; it's best to read that file before this one.

Also, the file coderules.txt describes the coding style conventions we use.

 

In this document, JPEG-specific terminology follows the JPEG standard:

 A "component" means a color channel, e.g., Red or Luminance.

 A "sample" is a single component value (i.e., one number in the image data).

 A "coefficient" is a frequency coefficient (a DCT transform output number).

 A "block" is an array of samples or coefficients.

 An "MCU" (minimum coded unit) is an interleaved set of blocks of size

	determined by the sampling factors, or a single block in a

	noninterleaved scan.

We do not use the terms "pixel" and "sample" interchangeably.  When we say

pixel, we mean an element of the full-size image, while a sample is an element

of the downsampled image.  Thus the number of samples may vary across



             Open Source Used In JVDI Client for Windows 14.0  167

components while the number of pixels does not.  (This terminology is not used

rigorously throughout the code, but it is used in places where confusion would

otherwise result.)

 

 

*** System features ***

 

The IJG distribution contains two parts:

 * A subroutine library for JPEG compression and decompression.

 * cjpeg/djpeg, two sample applications that use the library to transform

   JFIF JPEG files to and from several other image formats.

cjpeg/djpeg are of no great intellectual complexity: they merely add a simple

command-line user interface and I/O routines for several uncompressed image

formats.  This document concentrates on the library itself.

 

We desire the library to be capable of supporting all JPEG baseline, extended

sequential, and progressive DCT processes.  The library does not support the

hierarchical or lossless processes defined in the standard.

 

Within these limits, any set of compression parameters allowed by the JPEG

spec should be readable for decompression.  (We can be more restrictive about

what formats we can generate.)  Although the system design allows for all

parameter values, some uncommon settings are not yet implemented and may

never be; nonintegral sampling ratios are the prime example.  Furthermore,

we treat 8-bit vs. 12-bit data precision as a compile-time switch, not a

run-time option, because most machines can store 8-bit pixels much more

compactly than 12-bit.

 

By itself, the library handles only interchange JPEG datastreams --- in

particular the widely used JFIF file format.  The library can be used by

surrounding code to process interchange or abbreviated JPEG datastreams that

are embedded in more complex file formats.  (For example, libtiff uses this

library to implement JPEG compression within the TIFF file format.)

 

The library includes a substantial amount of code that is not covered by the

JPEG standard but is necessary for typical applications of JPEG.  These

functions preprocess the image before JPEG compression or postprocess it after

decompression.  They include colorspace conversion, downsampling/upsampling,

and color quantization.  This code can be omitted if not needed.

 

A wide range of quality vs. speed tradeoffs are possible in JPEG processing,

and even more so in decompression postprocessing.  The decompression library

provides multiple implementations that cover most of the useful tradeoffs,

ranging from very-high-quality down to fast-preview operation.  On the

compression side we have generally not provided low-quality choices, since

compression is normally less time-critical.  It should be understood that the

low-quality modes may not meet the JPEG standard's accuracy requirements;

nonetheless, they are useful for viewers.



             Open Source Used In JVDI Client for Windows 14.0  168

 

 

*** Portability issues ***

 

Portability is an essential requirement for the library.  The key portability

issues that show up at the level of system architecture are:

 

1.  Memory usage.  We want the code to be able to run on PC-class machines

with limited memory.  Images should therefore be processed sequentially (in

strips), to avoid holding the whole image in memory at once.  Where a

full-image buffer is necessary, we should be able to use either virtual memory

or temporary files.

 

2.  Near/far pointer distinction.  To run efficiently on 80x86 machines, the

code should distinguish "small" objects (kept in near data space) from

"large" ones (kept in far data space).  This is an annoying restriction, but

fortunately it does not impact code quality for less brain-damaged machines,

and the source code clutter turns out to be minimal with sufficient use of

pointer typedefs.

 

3. Data precision.  We assume that "char" is at least 8 bits, "short" and

"int" at least 16, "long" at least 32.  The code will work fine with larger

data sizes, although memory may be used inefficiently in some cases.  However,

the JPEG compressed datastream must ultimately appear on external storage as a

sequence of 8-bit bytes if it is to conform to the standard.  This may pose a

problem on machines where char is wider than 8 bits.  The library represents

compressed data as an array of values of typedef JOCTET.  If no data type

exactly 8 bits wide is available, custom data source and data destination

modules must be written to unpack and pack the chosen JOCTET datatype into

8-bit external representation.

 

 

*** System overview ***

 

The compressor and decompressor are each divided into two main sections:

the JPEG compressor or decompressor proper, and the preprocessing or

postprocessing functions.  The interface between these two sections is the

image data that the official JPEG spec regards as its input or output: this

data is in the colorspace to be used for compression, and it is downsampled

to the sampling factors to be used.  The preprocessing and postprocessing

steps are responsible for converting a normal image representation to or from

this form.  (Those few applications that want to deal with YCbCr downsampled

data can skip the preprocessing or postprocessing step.)

 

Looking more closely, the compressor library contains the following main

elements:

 

 Preprocessing:



             Open Source Used In JVDI Client for Windows 14.0  169

   * Color space conversion (e.g., RGB to YCbCr).

   * Edge expansion and downsampling.  Optionally, this step can do simple

     smoothing --- this is often helpful for low-quality source data.

 JPEG proper:

   * MCU assembly, DCT, quantization.

   * Entropy coding (sequential or progressive, Huffman or arithmetic).

 

In addition to these modules we need overall control, marker generation,

and support code (memory management & error handling).  There is also a

module responsible for physically writing the output data --- typically

this is just an interface to fwrite(), but some applications may need to

do something else with the data.

 

The decompressor library contains the following main elements:

 

 JPEG proper:

   * Entropy decoding (sequential or progressive, Huffman or arithmetic).

   * Dequantization, inverse DCT, MCU disassembly.

 Postprocessing:

   * Upsampling.  Optionally, this step may be able to do more general

     rescaling of the image.

   * Color space conversion (e.g., YCbCr to RGB).  This step may also

     provide gamma adjustment [ currently it does not ].

   * Optional color quantization (e.g., reduction to 256 colors).

   * Optional color precision reduction (e.g., 24-bit to 15-bit color).

     [This feature is not currently implemented.]

 

We also need overall control, marker parsing, and a data source module.

The support code (memory management & error handling) can be shared with

the compression half of the library.

 

There may be several implementations of each of these elements, particularly

in the decompressor, where a wide range of speed/quality tradeoffs is very

useful.  It must be understood that some of the best speedups involve

merging adjacent steps in the pipeline.  For example, upsampling, color space

conversion, and color quantization might all be done at once when using a

low-quality ordered-dither technique.  The system architecture is designed to

allow such merging where appropriate.

 

 

Note: it is convenient to regard edge expansion (padding to block boundaries)

as a preprocessing/postprocessing function, even though the JPEG spec includes

it in compression/decompression.  We do this because downsampling/upsampling

can be simplified a little if they work on padded data: it's not necessary to

have special cases at the right and bottom edges.  Therefore the interface

buffer is always an integral number of blocks wide and high, and we expect

compression preprocessing to pad the source data properly.  Padding will occur

only to the next block (block_size-sample) boundary.  In an interleaved-scan



             Open Source Used In JVDI Client for Windows 14.0  170

situation, additional dummy blocks may be used to fill out MCUs, but the MCU

assembly and disassembly logic will create or discard these blocks internally.

(This is advantageous for speed reasons, since we avoid DCTing the dummy

blocks.  It also permits a small reduction in file size, because the

compressor can choose dummy block contents so as to minimize their size

in compressed form.  Finally, it makes the interface buffer specification

independent of whether the file is actually interleaved or not.)

Applications that wish to deal directly with the downsampled data must

provide similar buffering and padding for odd-sized images.

 

 

*** Poor man's object-oriented programming ***

 

It should be clear by now that we have a lot of quasi-independent processing

steps, many of which have several possible behaviors.  To avoid cluttering the

code with lots of switch statements, we use a simple form of object-style

programming to separate out the different possibilities.

 

For example, two different color quantization algorithms could be implemented

as two separate modules that present the same external interface; at runtime,

the calling code will access the proper module indirectly through an "object".

 

We can get the limited features we need while staying within portable C.

The basic tool is a function pointer.  An "object" is just a struct

containing one or more function pointer fields, each of which corresponds to

a method name in real object-oriented languages.  During initialization we

fill in the function pointers with references to whichever module we have

determined we need to use in this run.  Then invocation of the module is done

by indirecting through a function pointer; on most machines this is no more

expensive than a switch statement, which would be the only other way of

making the required run-time choice.  The really significant benefit, of

course, is keeping the source code clean and well structured.

 

We can also arrange to have private storage that varies between different

implementations of the same kind of object.  We do this by making all the

module-specific object structs be separately allocated entities, which will

be accessed via pointers in the master compression or decompression struct.

The "public" fields or methods for a given kind of object are specified by

a commonly known struct.  But a module's initialization code can allocate

a larger struct that contains the common struct as its first member, plus

additional private fields.  With appropriate pointer casting, the module's

internal functions can access these private fields.  (For a simple example,

see jdatadst.c, which implements the external interface specified by struct

jpeg_destination_mgr, but adds extra fields.)

 

(Of course this would all be a lot easier if we were using C++, but we are

not yet prepared to assume that everyone has a C++ compiler.)

 



             Open Source Used In JVDI Client for Windows 14.0  171

An important benefit of this scheme is that it is easy to provide multiple

versions of any method, each tuned to a particular case.  While a lot of

precalculation might be done to select an optimal implementation of a method,

the cost per invocation is constant.  For example, the upsampling step might

have a "generic" method, plus one or more "hardwired" methods for the most

popular sampling factors; the hardwired methods would be faster because they'd

use straight-line code instead of for-loops.  The cost to determine which

method to use is paid only once, at startup, and the selection criteria are

hidden from the callers of the method.

 

This plan differs a little bit from usual object-oriented structures, in that

only one instance of each object class will exist during execution.  The

reason for having the class structure is that on different runs we may create

different instances (choose to execute different modules).  You can think of

the term "method" as denoting the common interface presented by a particular

set of interchangeable functions, and "object" as denoting a group of related

methods, or the total shared interface behavior of a group of modules.

 

 

*** Overall control structure ***

 

We previously mentioned the need for overall control logic in the compression

and decompression libraries.  In IJG implementations prior to v5, overall

control was mostly provided by "pipeline control" modules, which proved to be

large, unwieldy, and hard to understand.  To improve the situation, the

control logic has been subdivided into multiple modules.  The control modules

consist of:

 

1. Master control for module selection and initialization.  This has two

responsibilities:

 

  1A.  Startup initialization at the beginning of image processing.

       The individual processing modules to be used in this run are selected

       and given initialization calls.

 

  1B.  Per-pass control.  This determines how many passes will be performed

       and calls each active processing module to configure itself

       appropriately at the beginning of each pass.  End-of-pass processing,

	where necessary, is also invoked from the master control module.

 

  Method selection is partially distributed, in that a particular processing

  module may contain several possible implementations of a particular method,

  which it will select among when given its initialization call.  The master

  control code need only be concerned with decisions that affect more than

  one module.

 

2. Data buffering control.  A separate control module exists for each

  inter-processing-step data buffer.  This module is responsible for



             Open Source Used In JVDI Client for Windows 14.0  172

  invoking the processing steps that write or read that data buffer.

 

Each buffer controller sees the world as follows:

 

input data => processing step A => buffer => processing step B => output data

                     |              |               |

             ------------------ controller ------------------

 

The controller knows the dataflow requirements of steps A and B: how much data

they want to accept in one chunk and how much they output in one chunk.  Its

function is to manage its buffer and call A and B at the proper times.

 

A data buffer control module may itself be viewed as a processing step by a

higher-level control module; thus the control modules form a binary tree with

elementary processing steps at the leaves of the tree.

 

The control modules are objects.  A considerable amount of flexibility can

be had by replacing implementations of a control module.  For example:

* Merging of adjacent steps in the pipeline is done by replacing a control

 module and its pair of processing-step modules with a single processing-

 step module.  (Hence the possible merges are determined by the tree of

 control modules.)

* In some processing modes, a given interstep buffer need only be a "strip"

 buffer large enough to accommodate the desired data chunk sizes.  In other

 modes, a full-image buffer is needed and several passes are required.

 The control module determines which kind of buffer is used and manipulates

 virtual array buffers as needed.  One or both processing steps may be

 unaware of the multi-pass behavior.

 

In theory, we might be able to make all of the data buffer controllers

interchangeable and provide just one set of implementations for all.  In

practice, each one contains considerable special-case processing for its

particular job.  The buffer controller concept should be regarded as an

overall system structuring principle, not as a complete description of the

task performed by any one controller.

 

 

*** Compression object structure ***

 

Here is a sketch of the logical structure of the JPEG compression library:

 

                                                |-- Colorspace conversion

                 |-- Preprocessing controller --|

                 |                              |-- Downsampling

Main controller --|

                 |                            |-- Forward DCT, quantize

                 |-- Coefficient controller --|

                                              |-- Entropy encoding



             Open Source Used In JVDI Client for Windows 14.0  173

 

This sketch also describes the flow of control (subroutine calls) during

typical image data processing.  Each of the components shown in the diagram is

an "object" which may have several different implementations available.  One

or more source code files contain the actual implementation(s) of each object.

 

The objects shown above are:

 

* Main controller: buffer controller for the subsampled-data buffer, which

 holds the preprocessed input data.  This controller invokes preprocessing to

 fill the subsampled-data buffer, and JPEG compression to empty it.  There is

 usually no need for a full-image buffer here; a strip buffer is adequate.

 

* Preprocessing controller: buffer controller for the downsampling input data

 buffer, which lies between colorspace conversion and downsampling.  Note

 that a unified conversion/downsampling module would probably replace this

 controller entirely.

 

* Colorspace conversion: converts application image data into the desired

 JPEG color space; also changes the data from pixel-interleaved layout to

 separate component planes.  Processes one pixel row at a time.

 

* Downsampling: performs reduction of chroma components as required.

 Optionally may perform pixel-level smoothing as well.  Processes a "row

 group" at a time, where a row group is defined as Vmax pixel rows of each

 component before downsampling, and Vk sample rows afterwards (remember Vk

 differs across components).  Some downsampling or smoothing algorithms may

 require context rows above and below the current row group; the

 preprocessing controller is responsible for supplying these rows via proper

 buffering.  The downsampler is responsible for edge expansion at the right

 edge (i.e., extending each sample row to a multiple of block_size samples);

 but the preprocessing controller is responsible for vertical edge expansion

 (i.e., duplicating the bottom sample row as needed to make a multiple of

 block_size rows).

 

* Coefficient controller: buffer controller for the DCT-coefficient data.

 This controller handles MCU assembly, including insertion of dummy DCT

 blocks when needed at the right or bottom edge.  When performing

 Huffman-code optimization or emitting a multiscan JPEG file, this

 controller is responsible for buffering the full image.  The equivalent of

 one fully interleaved MCU row of subsampled data is processed per call,

 even when the JPEG file is noninterleaved.

 

* Forward DCT and quantization: Perform DCT, quantize, and emit coefficients.

 Works on one or more DCT blocks at a time.  (Note: the coefficients are now

 emitted in normal array order, which the entropy encoder is expected to

 convert to zigzag order as necessary.  Prior versions of the IJG code did

 the conversion to zigzag order within the quantization step.)



             Open Source Used In JVDI Client for Windows 14.0  174

 

* Entropy encoding: Perform Huffman or arithmetic entropy coding and emit the

 coded data to the data destination module.  Works on one MCU per call.

 For progressive JPEG, the same DCT blocks are fed to the entropy coder

 during each pass, and the coder must emit the appropriate subset of

 coefficients.

 

In addition to the above objects, the compression library includes these

objects:

 

* Master control: determines the number of passes required, controls overall

 and per-pass initialization of the other modules.

 

* Marker writing: generates JPEG markers (except for RSTn, which is emitted

 by the entropy encoder when needed).

 

* Data destination manager: writes the output JPEG datastream to its final

 destination (e.g., a file).  The destination manager supplied with the

 library knows how to write to a stdio stream or to a memory buffer;

 for other behaviors, the surrounding application may provide its own

 destination manager.

 

* Memory manager: allocates and releases memory, controls virtual arrays

 (with backing store management, where required).

 

* Error handler: performs formatting and output of error and trace messages;

 determines handling of nonfatal errors.  The surrounding application may

 override some or all of this object's methods to change error handling.

 

* Progress monitor: supports output of "percent-done" progress reports.

 This object represents an optional callback to the surrounding application:

 if wanted, it must be supplied by the application.

 

The error handler, destination manager, and progress monitor objects are

defined as separate objects in order to simplify application-specific

customization of the JPEG library.  A surrounding application may override

individual methods or supply its own all-new implementation of one of these

objects.  The object interfaces for these objects are therefore treated as

part of the application interface of the library, whereas the other objects

are internal to the library.

 

The error handler and memory manager are shared by JPEG compression and

decompression; the progress monitor, if used, may be shared as well.

 

 

*** Decompression object structure ***

 

Here is a sketch of the logical structure of the JPEG decompression library:



             Open Source Used In JVDI Client for Windows 14.0  175

 

                                              |-- Entropy decoding

                 |-- Coefficient controller --|

                 |                            |-- Dequantize, Inverse DCT

Main controller --|

                 |                               |-- Upsampling

                 |-- Postprocessing controller --|   |-- Colorspace conversion

                                                 |-- Color quantization

                                                 |-- Color precision reduction

 

As before, this diagram also represents typical control flow.  The objects

shown are:

 

* Main controller: buffer controller for the subsampled-data buffer, which

 holds the output of JPEG decompression proper.  This controller's primary

 task is to feed the postprocessing procedure.  Some upsampling algorithms

 may require context rows above and below the current row group; when this

 is true, the main controller is responsible for managing its buffer so as

 to make context rows available.  In the current design, the main buffer is

 always a strip buffer; a full-image buffer is never required.

 

* Coefficient controller: buffer controller for the DCT-coefficient data.

 This controller handles MCU disassembly, including deletion of any dummy

 DCT blocks at the right or bottom edge.  When reading a multiscan JPEG

 file, this controller is responsible for buffering the full image.

 (Buffering DCT coefficients, rather than samples, is necessary to support

 progressive JPEG.)  The equivalent of one fully interleaved MCU row of

 subsampled data is processed per call, even when the source JPEG file is

 noninterleaved.

 

* Entropy decoding: Read coded data from the data source module and perform

 Huffman or arithmetic entropy decoding.  Works on one MCU per call.

 For progressive JPEG decoding, the coefficient controller supplies the prior

 coefficients of each MCU (initially all zeroes), which the entropy decoder

 modifies in each scan.

 

* Dequantization and inverse DCT: like it says.  Note that the coefficients

 buffered by the coefficient controller have NOT been dequantized; we

 merge dequantization and inverse DCT into a single step for speed reasons.

 When scaled-down output is asked for, simplified DCT algorithms may be used

 that need fewer coefficients and emit fewer samples per DCT block, not the

 full 8x8.  Works on one DCT block at a time.

 

* Postprocessing controller: buffer controller for the color quantization

 input buffer, when quantization is in use.  (Without quantization, this

 controller just calls the upsampler.)  For two-pass quantization, this

 controller is responsible for buffering the full-image data.

 



             Open Source Used In JVDI Client for Windows 14.0  176

* Upsampling: restores chroma components to full size.  (May support more

 general output rescaling, too.  Note that if undersized DCT outputs have

 been emitted by the DCT module, this module must adjust so that properly

 sized outputs are created.)  Works on one row group at a time.  This module

 also calls the color conversion module, so its top level is effectively a

 buffer controller for the upsampling->color conversion buffer.  However, in

 all but the highest-quality operating modes, upsampling and color

 conversion are likely to be merged into a single step.

 

* Colorspace conversion: convert from JPEG color space to output color space,

 and change data layout from separate component planes to pixel-interleaved.

 Works on one pixel row at a time.

 

* Color quantization: reduce the data to colormapped form, using either an

 externally specified colormap or an internally generated one.  This module

 is not used for full-color output.  Works on one pixel row at a time; may

 require two passes to generate a color map.  Note that the output will

 always be a single component representing colormap indexes.  In the current

 design, the output values are JSAMPLEs, so an 8-bit compilation cannot

 quantize to more than 256 colors.  This is unlikely to be a problem in

 practice.

 

* Color reduction: this module handles color precision reduction, e.g.,

 generating 15-bit color (5 bits/primary) from JPEG's 24-bit output.

 Not quite clear yet how this should be handled... should we merge it with

 colorspace conversion???

 

Note that some high-speed operating modes might condense the entire

postprocessing sequence to a single module (upsample, color convert, and

quantize in one step).

 

In addition to the above objects, the decompression library includes these

objects:

 

* Master control: determines the number of passes required, controls overall

 and per-pass initialization of the other modules.  This is subdivided into

 input and output control: jdinput.c controls only input-side processing,

 while jdmaster.c handles overall initialization and output-side control.

 

* Marker reading: decodes JPEG markers (except for RSTn).

 

* Data source manager: supplies the input JPEG datastream.  The source

 manager supplied with the library knows how to read from a stdio stream

 or from a memory buffer;  for other behaviors, the surrounding application

 may provide its own source manager.

 

* Memory manager: same as for compression library.

 



             Open Source Used In JVDI Client for Windows 14.0  177

* Error handler: same as for compression library.

 

* Progress monitor: same as for compression library.

 

As with compression, the data source manager, error handler, and progress

monitor are candidates for replacement by a surrounding application.

 

 

*** Decompression input and output separation ***

 

To support efficient incremental display of progressive JPEG files, the

decompressor is divided into two sections that can run independently:

 

1. Data input includes marker parsing, entropy decoding, and input into the

  coefficient controller's DCT coefficient buffer.  Note that this

  processing is relatively cheap and fast.

 

2. Data output reads from the DCT coefficient buffer and performs the IDCT

  and all postprocessing steps.

 

For a progressive JPEG file, the data input processing is allowed to get

arbitrarily far ahead of the data output processing.  (This occurs only

if the application calls jpeg_consume_input(); otherwise input and output

run in lockstep, since the input section is called only when the output

section needs more data.)  In this way the application can avoid making

extra display passes when data is arriving faster than the display pass

can run.  Furthermore, it is possible to abort an output pass without

losing anything, since the coefficient buffer is read-only as far as the

output section is concerned.  See libjpeg.txt for more detail.

 

A full-image coefficient array is only created if the JPEG file has multiple

scans (or if the application specifies buffered-image mode anyway).  When

reading a single-scan file, the coefficient controller normally creates only

a one-MCU buffer, so input and output processing must run in lockstep in this

case.  jpeg_consume_input() is effectively a no-op in this situation.

 

The main impact of dividing the decompressor in this fashion is that we must

be very careful with shared variables in the cinfo data structure.  Each

variable that can change during the course of decompression must be

classified as belonging to data input or data output, and each section must

look only at its own variables.  For example, the data output section may not

depend on any of the variables that describe the current scan in the JPEG

file, because these may change as the data input section advances into a new

scan.

 

The progress monitor is (somewhat arbitrarily) defined to treat input of the

file as one pass when buffered-image mode is not used, and to ignore data

input work completely when buffered-image mode is used.  Note that the



             Open Source Used In JVDI Client for Windows 14.0  178

library has no reliable way to predict the number of passes when dealing

with a progressive JPEG file, nor can it predict the number of output passes

in buffered-image mode.  So the work estimate is inherently bogus anyway.

 

No comparable division is currently made in the compression library, because

there isn't any real need for it.

 

 

*** Data formats ***

 

Arrays of pixel sample values use the following data structure:

 

   typedef something JSAMPLE;		a pixel component value, 0..MAXJSAMPLE

   typedef JSAMPLE *JSAMPROW;		ptr to a row of samples

   typedef JSAMPROW *JSAMPARRAY;	ptr to a list of rows

   typedef JSAMPARRAY *JSAMPIMAGE;	ptr to a list of color-component arrays

 

The basic element type JSAMPLE will typically be one of unsigned char,

(signed) char, or short.  Short will be used if samples wider than 8 bits are

to be supported (this is a compile-time option).  Otherwise, unsigned char is

used if possible.  If the compiler only supports signed chars, then it is

necessary to mask off the value when reading.  Thus, all reads of JSAMPLE

values must be coded as "GETJSAMPLE(value)", where the macro will be defined

as "((value) & 0xFF)" on signed-char machines and "((int) (value))" elsewhere.

 

With these conventions, JSAMPLE values can be assumed to be >= 0.  This helps

simplify correct rounding during downsampling, etc.  The JPEG standard's

specification that sample values run from -128..127 is accommodated by

subtracting 128 from the sample value in the DCT step.  Similarly, during

decompression the output of the IDCT step will be immediately shifted back to

0..255.  (NB: different values are required when 12-bit samples are in use.

The code is written in terms of MAXJSAMPLE and CENTERJSAMPLE, which will be

defined as 255 and 128 respectively in an 8-bit implementation, and as 4095

and 2048 in a 12-bit implementation.)

 

We use a pointer per row, rather than a two-dimensional JSAMPLE array.  This

choice costs only a small amount of memory and has several benefits:

* Code using the data structure doesn't need to know the allocated width of

 the rows.  This simplifies edge expansion/compression, since we can work

 in an array that's wider than the logical picture width.

* Indexing doesn't require multiplication; this is a performance win on many

 machines.

* Arrays with more than 64K total elements can be supported even on machines

 where malloc() cannot allocate chunks larger than 64K.

* The rows forming a component array may be allocated at different times

 without extra copying.  This trick allows some speedups in smoothing steps

 that need access to the previous and next rows.

 



             Open Source Used In JVDI Client for Windows 14.0  179

Note that each color component is stored in a separate array; we don't use the

traditional layout in which the components of a pixel are stored together.

This simplifies coding of modules that work on each component independently,

because they don't need to know how many components there are.  Furthermore,

we can read or write each component to a temporary file independently, which

is helpful when dealing with noninterleaved JPEG files.

 

In general, a specific sample value is accessed by code such as

	GETJSAMPLE(image[colorcomponent][row][col])

where col is measured from the image left edge, but row is measured from the

first sample row currently in memory.  Either of the first two indexings can

be precomputed by copying the relevant pointer.

 

 

Since most image-processing applications prefer to work on images in which

the components of a pixel are stored together, the data passed to or from the

surrounding application uses the traditional convention: a single pixel is

represented by N consecutive JSAMPLE values, and an image row is an array of

(# of color components)*(image width) JSAMPLEs.  One or more rows of data can

be represented by a pointer of type JSAMPARRAY in this scheme.  This scheme is

converted to component-wise storage inside the JPEG library.  (Applications

that want to skip JPEG preprocessing or postprocessing will have to contend

with component-wise storage.)

 

 

Arrays of DCT-coefficient values use the following data structure:

 

   typedef short JCOEF;		a 16-bit signed integer

   typedef JCOEF JBLOCK[DCTSIZE2];	an 8x8 block of coefficients

   typedef JBLOCK *JBLOCKROW;		ptr to one horizontal row of 8x8 blocks

   typedef JBLOCKROW *JBLOCKARRAY;	ptr to a list of such rows

   typedef JBLOCKARRAY *JBLOCKIMAGE;	ptr to a list of color component arrays

 

The underlying type is at least a 16-bit signed integer; while "short" is big

enough on all machines of interest, on some machines it is preferable to use

"int" for speed reasons, despite the storage cost.  Coefficients are grouped

into 8x8 blocks (but we always use #defines DCTSIZE and DCTSIZE2 rather than

"8" and "64").

 

The contents of a coefficient block may be in either "natural" or zigzagged

order, and may be true values or divided by the quantization coefficients,

depending on where the block is in the processing pipeline.  In the current

library, coefficient blocks are kept in natural order everywhere; the entropy

codecs zigzag or dezigzag the data as it is written or read.  The blocks

contain quantized coefficients everywhere outside the DCT/IDCT subsystems.

(This latter decision may need to be revisited to support variable

quantization a la JPEG Part 3.)

 



             Open Source Used In JVDI Client for Windows 14.0  180

Notice that the allocation unit is now a row of 8x8 coefficient blocks,

corresponding to block_size rows of samples.  Otherwise the structure

is much the same as for samples, and for the same reasons.

 

On machines where malloc() can't handle a request bigger than 64Kb, this data

structure limits us to rows of less than 512 JBLOCKs, or a picture width of

4000+ pixels.  This seems an acceptable restriction.

 

 

On 80x86 machines, the bottom-level pointer types (JSAMPROW and JBLOCKROW)

must be declared as "far" pointers, but the upper levels can be "near"

(implying that the pointer lists are allocated in the DS segment).

We use a #define symbol FAR, which expands to the "far" keyword when

compiling on 80x86 machines and to nothing elsewhere.

 

 

*** Suspendable processing ***

 

In some applications it is desirable to use the JPEG library as an

incremental, memory-to-memory filter.  In this situation the data source or

destination may be a limited-size buffer, and we can't rely on being able to

empty or refill the buffer at arbitrary times.  Instead the application would

like to have control return from the library at buffer overflow/underrun, and

then resume compression or decompression at a later time.

 

This scenario is supported for simple cases.  (For anything more complex, we

recommend that the application "bite the bullet" and develop real multitasking

capability.)  The libjpeg.txt file goes into more detail about the usage and

limitations of this capability; here we address the implications for library

structure.

 

The essence of the problem is that the entropy codec (coder or decoder) must

be prepared to stop at arbitrary times.  In turn, the controllers that call

the entropy codec must be able to stop before having produced or consumed all

the data that they normally would handle in one call.  That part is reasonably

straightforward: we make the controller call interfaces include "progress

counters" which indicate the number of data chunks successfully processed, and

we require callers to test the counter rather than just assume all of the data

was processed.

 

Rather than trying to restart at an arbitrary point, the current Huffman

codecs are designed to restart at the beginning of the current MCU after a

suspension due to buffer overflow/underrun.  At the start of each call, the

codec's internal state is loaded from permanent storage (in the JPEG object

structures) into local variables.  On successful completion of the MCU, the

permanent state is updated.  (This copying is not very expensive, and may even

lead to *improved* performance if the local variables can be registerized.)

If a suspension occurs, the codec simply returns without updating the state,



             Open Source Used In JVDI Client for Windows 14.0  181

thus effectively reverting to the start of the MCU.  Note that this implies

leaving some data unprocessed in the source/destination buffer (ie, the

compressed partial MCU).  The data source/destination module interfaces are

specified so as to make this possible.  This also implies that the data buffer

must be large enough to hold a worst-case compressed MCU; a couple thousand

bytes should be enough.

 

In a successive-approximation AC refinement scan, the progressive Huffman

decoder has to be able to undo assignments of newly nonzero coefficients if it

suspends before the MCU is complete, since decoding requires distinguishing

previously-zero and previously-nonzero coefficients.  This is a bit tedious

but probably won't have much effect on performance.  Other variants of Huffman

decoding need not worry about this, since they will just store the same values

again if forced to repeat the MCU.

 

This approach would probably not work for an arithmetic codec, since its

modifiable state is quite large and couldn't be copied cheaply.  Instead it

would have to suspend and resume exactly at the point of the buffer end.

 

The JPEG marker reader is designed to cope with suspension at an arbitrary

point.  It does so by backing up to the start of the marker parameter segment,

so the data buffer must be big enough to hold the largest marker of interest.

Again, a couple KB should be adequate.  (A special "skip" convention is used

to bypass COM and APPn markers, so these can be larger than the buffer size

without causing problems; otherwise a 64K buffer would be needed in the worst

case.)

 

The JPEG marker writer currently does *not* cope with suspension.

We feel that this is not necessary; it is much easier simply to require

the application to ensure there is enough buffer space before starting.  (An

empty 2K buffer is more than sufficient for the header markers; and ensuring

there are a dozen or two bytes available before calling jpeg_finish_compress()

will suffice for the trailer.)  This would not work for writing multi-scan

JPEG files, but we simply do not intend to support that capability with

suspension.

 

 

*** Memory manager services ***

 

The JPEG library's memory manager controls allocation and deallocation of

memory, and it manages large "virtual" data arrays on machines where the

operating system does not provide virtual memory.  Note that the same

memory manager serves both compression and decompression operations.

 

In all cases, allocated objects are tied to a particular compression or

decompression master record, and they will be released when that master

record is destroyed.

 



             Open Source Used In JVDI Client for Windows 14.0  182

The memory manager does not provide explicit deallocation of objects.

Instead, objects are created in "pools" of free storage, and a whole pool

can be freed at once.  This approach helps prevent storage-leak bugs, and

it speeds up operations whenever malloc/free are slow (as they often are).

The pools can be regarded as lifetime identifiers for objects.  Two

pools/lifetimes are defined:

 * JPOOL_PERMANENT	lasts until master record is destroyed

 * JPOOL_IMAGE		lasts until done with image (JPEG datastream)

Permanent lifetime is used for parameters and tables that should be carried

across from one datastream to another; this includes all application-visible

parameters.  Image lifetime is used for everything else.  (A third lifetime,

JPOOL_PASS = one processing pass, was originally planned.  However it was

dropped as not being worthwhile.  The actual usage patterns are such that the

peak memory usage would be about the same anyway; and having per-pass storage

substantially complicates the virtual memory allocation rules --- see below.)

 

The memory manager deals with three kinds of object:

1. "Small" objects.  Typically these require no more than 10K-20K total.

2. "Large" objects.  These may require tens to hundreds of K depending on

  image size.  Semantically they behave the same as small objects, but we

  distinguish them for two reasons:

    * On MS-DOS machines, large objects are referenced by FAR pointers,

      small objects by NEAR pointers.

    * Pool allocation heuristics may differ for large and small objects.

  Note that individual "large" objects cannot exceed the size allowed by

  type size_t, which may be 64K or less on some machines.

3. "Virtual" objects.  These are large 2-D arrays of JSAMPLEs or JBLOCKs

  (typically large enough for the entire image being processed).  The

  memory manager provides stripwise access to these arrays.  On machines

  without virtual memory, the rest of the array may be swapped out to a

  temporary file.

 

(Note: JSAMPARRAY and JBLOCKARRAY data structures are a combination of large

objects for the data proper and small objects for the row pointers.  For

convenience and speed, the memory manager provides single routines to create

these structures.  Similarly, virtual arrays include a small control block

and a JSAMPARRAY or JBLOCKARRAY working buffer, all created with one call.)

 

In the present implementation, virtual arrays are only permitted to have image

lifespan.  (Permanent lifespan would not be reasonable, and pass lifespan is

not very useful since a virtual array's raison d'etre is to store data for

multiple passes through the image.)  We also expect that only "small" objects

will be given permanent lifespan, though this restriction is not required by

the memory manager.

 

In a non-virtual-memory machine, some performance benefit can be gained by

making the in-memory buffers for virtual arrays be as large as possible.

(For small images, the buffers might fit entirely in memory, so blind



             Open Source Used In JVDI Client for Windows 14.0  183

swapping would be very wasteful.)  The memory manager will adjust the height

of the buffers to fit within a prespecified maximum memory usage.  In order

to do this in a reasonably optimal fashion, the manager needs to allocate all

of the virtual arrays at once.  Therefore, there isn't a one-step allocation

routine for virtual arrays; instead, there is a "request" routine that simply

allocates the control block, and a "realize" routine (called just once) that

determines space allocation and creates all of the actual buffers.  The

realize routine must allow for space occupied by non-virtual large objects.

(We don't bother to factor in the space needed for small objects, on the

grounds that it isn't worth the trouble.)

 

To support all this, we establish the following protocol for doing business

with the memory manager:

 1. Modules must request virtual arrays (which may have only image lifespan)

    during the initial setup phase, i.e., in their jinit_xxx routines.

 2. All "large" objects (including JSAMPARRAYs and JBLOCKARRAYs) must also be

    allocated during initial setup.

 3. realize_virt_arrays will be called at the completion of initial setup.

    The above conventions ensure that sufficient information is available

    for it to choose a good size for virtual array buffers.

Small objects of any lifespan may be allocated at any time.  We expect that

the total space used for small objects will be small enough to be negligible

in the realize_virt_arrays computation.

 

In a virtual-memory machine, we simply pretend that the available space is

infinite, thus causing realize_virt_arrays to decide that it can allocate all

the virtual arrays as full-size in-memory buffers.  The overhead of the

virtual-array access protocol is very small when no swapping occurs.

 

A virtual array can be specified to be "pre-zeroed"; when this flag is set,

never-yet-written sections of the array are set to zero before being made

available to the caller.  If this flag is not set, never-written sections

of the array contain garbage.  (This feature exists primarily because the

equivalent logic would otherwise be needed in jdcoefct.c for progressive

JPEG mode; we may as well make it available for possible other uses.)

 

The first write pass on a virtual array is required to occur in top-to-bottom

order; read passes, as well as any write passes after the first one, may

access the array in any order.  This restriction exists partly to simplify

the virtual array control logic, and partly because some file systems may not

support seeking beyond the current end-of-file in a temporary file.  The main

implication of this restriction is that rearrangement of rows (such as

converting top-to-bottom data order to bottom-to-top) must be handled while

reading data out of the virtual array, not while putting it in.

 

 

*** Memory manager internal structure ***

 



             Open Source Used In JVDI Client for Windows 14.0  184

To isolate system dependencies as much as possible, we have broken the

memory manager into two parts.  There is a reasonably system-independent

"front end" (jmemmgr.c) and a "back end" that contains only the code

likely to change across systems.  All of the memory management methods

outlined above are implemented by the front end.  The back end provides

the following routines for use by the front end (none of these routines

are known to the rest of the JPEG code):

 

jpeg_mem_init, jpeg_mem_term	system-dependent initialization/shutdown

 

jpeg_get_small, jpeg_free_small	interface to malloc and free library routines

				(or their equivalents)

 

jpeg_get_large, jpeg_free_large	interface to FAR malloc/free in MSDOS machines;

				else usually the same as

				jpeg_get_small/jpeg_free_small

 

jpeg_mem_available		estimate available memory

 

jpeg_open_backing_store		create a backing-store object

 

read_backing_store,		manipulate a backing-store object

write_backing_store,

close_backing_store

 

On some systems there will be more than one type of backing-store object

(specifically, in MS-DOS a backing store file might be an area of extended

memory as well as a disk file).  jpeg_open_backing_store is responsible for

choosing how to implement a given object.  The read/write/close routines

are method pointers in the structure that describes a given object; this

lets them be different for different object types.

 

It may be necessary to ensure that backing store objects are explicitly

released upon abnormal program termination.  For example, MS-DOS won't free

extended memory by itself.  To support this, we will expect the main program

or surrounding application to arrange to call self_destruct (typically via

jpeg_destroy) upon abnormal termination.  This may require a SIGINT signal

handler or equivalent.  We don't want to have the back end module install its

own signal handler, because that would pre-empt the surrounding application's

ability to control signal handling.

 

The IJG distribution includes several memory manager back end implementations.

Usually the same back end should be suitable for all applications on a given

system, but it is possible for an application to supply its own back end at

need.

 

 

*** Implications of DNL marker ***



             Open Source Used In JVDI Client for Windows 14.0  185

 

Some JPEG files may use a DNL marker to postpone definition of the image

height (this would be useful for a fax-like scanner's output, for instance).

In these files the SOF marker claims the image height is 0, and you only

find out the true image height at the end of the first scan.

 

We could read these files as follows:

1. Upon seeing zero image height, replace it by 65535 (the maximum allowed).

2. When the DNL is found, update the image height in the global image

  descriptor.

This implies that control modules must avoid making copies of the image

height, and must re-test for termination after each MCU row.  This would

be easy enough to do.

 

In cases where image-size data structures are allocated, this approach will

result in very inefficient use of virtual memory or much-larger-than-necessary

temporary files.  This seems acceptable for something that probably won't be a

mainstream usage.  People might have to forgo use of memory-hogging options

(such as two-pass color quantization or noninterleaved JPEG files) if they

want efficient conversion of such files.  (One could improve efficiency by

demanding a user-supplied upper bound for the height, less than 65536; in most

cases it could be much less.)

 

The standard also permits the SOF marker to overestimate the image height,

with a DNL to give the true, smaller height at the end of the first scan.

This would solve the space problems if the overestimate wasn't too great.

However, it implies that you don't even know whether DNL will be used.

 

This leads to a couple of very serious objections:

1. Testing for a DNL marker must occur in the inner loop of the decompressor's

  Huffman decoder; this implies a speed penalty whether the feature is used

  or not.

2. There is no way to hide the last-minute change in image height from an

  application using the decoder.  Thus *every* application using the IJG

  library would suffer a complexity penalty whether it cared about DNL or

  not.

We currently do not support DNL because of these problems.

 

A different approach is to insist that DNL-using files be preprocessed by a

separate program that reads ahead to the DNL, then goes back and fixes the SOF

marker.  This is a much simpler solution and is probably far more efficient.

Even if one wants piped input, buffering the first scan of the JPEG file needs

a lot smaller temp file than is implied by the maximum-height method.  For

this approach we'd simply treat DNL as a no-op in the decompressor (at most,

check that it matches the SOF image height).

 

We will not worry about making the compressor capable of outputting DNL.

Something similar to the first scheme above could be applied if anyone ever



             Open Source Used In JVDI Client for Windows 14.0  186

wants to make that work.

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/structure.txt

No license file was found, but licenses were detected in source scan.

 

/*

* jdmaster.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2002-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains master control logic for the JPEG decompressor.

* These routines are concerned with selecting the modules to be executed

* and with determining the number of passes and the work to be done in each

* pass.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdmaster.c

No license file was found, but licenses were detected in source scan.

 

/*

* wrbmp.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2017-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains routines to write output images in Microsoft "BMP"

* format (MS Windows 3.x and OS/2 1.x flavors).

* Either 8-bit colormapped or 24-bit full-color format can be written.

* No compression is supported.

*

* These routines may need modification for non-Unix environments or

* specialized applications.  As they stand, they assume output to

* an ordinary stdio stream.

*

* This code contributed by James Arthur Boucher.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/wrbmp.c

No license file was found, but licenses were detected in source scan.

 



             Open Source Used In JVDI Client for Windows 14.0  187

/*

* jdatasrc.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* Modified 2009-2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains decompression data source routines for the case of

* reading JPEG data from memory or from a file (or any stdio stream).

* While these routines are sufficient for most applications,

* some will want to use a different source manager.

* IMPORTANT: we assume that fread() will correctly transcribe an array of

* JOCTETs from 8-bit-wide elements on external storage.  If char is wider

* than 8 bits on your machine, you may need to do some tweaking.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jdatasrc.c

No license file was found, but licenses were detected in source scan.

 

/*

* jcinit.c

*

* Copyright (C) 1991-1997, Thomas G. Lane.

* Modified 2003-2017 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains initialization logic for the JPEG compressor.

* This routine is in charge of selecting the modules to be executed and

* making an initialization call to each one.

*

* Logically, this code belongs in jcmaster.c.  It's split out because

* linking this routine implies linking the entire compression library.

* For a transcoding-only application, we want to be able to use jcmaster.c

* without linking in the whole library.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcinit.c

No license file was found, but licenses were detected in source scan.

 

/*

* jmemsys.h

*

* Copyright (C) 1992-1997, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.



             Open Source Used In JVDI Client for Windows 14.0  188

* For conditions of distribution and use, see the accompanying README file.

*

* This include file defines the interface between the system-independent

* and system-dependent portions of the JPEG memory manager.  No other

* modules need include it.  (The system-independent portion is jmemmgr.c;

* there are several different versions of the system-dependent portion.)

*

* This file works as-is for the system-dependent memory managers supplied

* in the IJG distribution.  You may need to modify it if you write a

* custom memory manager.  If system-dependent changes are needed in

* this file, the best method is to #ifdef them based on a configuration

* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR

* and USE_MAC_MEMMGR.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemsys.h

No license file was found, but licenses were detected in source scan.

 

/*

* jcsample.c

*

* Copyright (C) 1991-1996, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains downsampling routines.

*

* Downsampling input data is counted in "row groups".  A row group

* is defined to be max_v_samp_factor pixel rows of each component,

* from which the downsampler produces v_samp_factor sample rows.

* A single row group is processed in each call to the downsampler module.

*

* The downsampler is responsible for edge-expansion of its output data

* to fill an integral number of DCT blocks horizontally.  The source buffer

* may be modified if it is helpful for this purpose (the source buffer is

* allocated wide enough to correspond to the desired output width).

* The caller (the prep controller) is responsible for vertical padding.

*

* The downsampler may request "context rows" by setting need_context_rows

* during startup.  In this case, the input arrays will contain at least

* one row group's worth of pixels above and below the passed-in data;

* the caller will create dummy rows at image top and bottom by replicating

* the first or last real pixel row.

*

* An excellent reference for image resampling is

*   Digital Image Warping, George Wolberg, 1990.

*   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.



             Open Source Used In JVDI Client for Windows 14.0  189

*

* The downsampling algorithm used here is a simple average of the source

* pixels covered by the output pixel.  The hi-falutin sampling literature

* refers to this as a "box filter".  In general the characteristics of a box

* filter are not very good, but for the specific cases we normally use (1:1

* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not

* nearly so bad.  If you intend to use other sampling ratios, you'd be well

* advised to improve this code.

*

* A simple input-smoothing capability is provided.  This is mainly intended

* for cleaning up color-dithered GIF input files (if you find it inadequate,

* we suggest using an external filtering program such as pnmconvol).  When

* enabled, each input pixel P is replaced by a weighted sum of itself and its

* eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,

* where SF = (smoothing_factor / 1024).

* Currently, smoothing is only supported for 2h2v sampling factors.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcsample.c

No license file was found, but licenses were detected in source scan.

 

/*

* jversion.h

*

* Copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains software version identification.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jversion.h

No license file was found, but licenses were detected in source scan.

 

/*

* jcomapi.c

*

* Copyright (C) 1994-1997, Thomas G. Lane.

* Modified 2019 by Guido Vollbeding.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains application interface routines that are used for both

* compression and decompression.

*/

 



             Open Source Used In JVDI Client for Windows 14.0  190

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jcomapi.c

No license file was found, but licenses were detected in source scan.

 

/*

* jmemansi.c

*

* Copyright (C) 1992-1996, Thomas G. Lane.

* This file is part of the Independent JPEG Group's software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file provides a simple generic implementation of the system-

* dependent portion of the JPEG memory manager.  This implementation

* assumes that you have the ANSI-standard library routine tmpfile().

* Also, the problem of determining the amount of memory available

* is shoved onto the user.

*/

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/jmemansi.c

No license file was found, but licenses were detected in source scan.

 

INSTALLATION INSTRUCTIONS for the Independent JPEG Group's JPEG software

 

Copyright (C) 1991-2019, Thomas G. Lane, Guido Vollbeding.

This file is part of the Independent JPEG Group's software.

For conditions of distribution and use, see the accompanying README file.

 

 

This file explains how to configure and install the IJG software.  We have

tried to make this software extremely portable and flexible, so that it can be

adapted to almost any environment.  The downside of this decision is that the

installation process is complicated.  We have provided shortcuts to simplify

the task on common systems.  But in any case, you will need at least a little

familiarity with C programming and program build procedures for your system.

 

If you are only using this software as part of a larger program, the larger

program's installation procedure may take care of configuring the IJG code.

For example, Ghostscript's installation script will configure the IJG code.

You don't need to read this file if you just want to compile Ghostscript.

 

If you are on a Unix machine, you may not need to read this file at all.

Try doing

	./configure

	make

	make test

If that doesn't complain, do

	make install



             Open Source Used In JVDI Client for Windows 14.0  191

(better do "make -n install" first to see if the makefile will put the files

where you want them).  Read further if you run into snags or want to customize

the code for your system.

 

 

TABLE OF CONTENTS

-----------------

 

Before you start

Configuring the software:

	using the automatic "configure" script

	using one of the supplied jconfig and makefile files

	by hand

Building the software

Testing the software

Installing the software

Optional stuff

Optimization

Hints for specific systems

 

 

BEFORE YOU START

================

 

Before installing the software you must unpack the distributed source code.

Since you are reading this file, you have probably already succeeded in this

task.  However, there is a potential for error if you needed to convert the

files to the local standard text file format (for example, if you are on

MS-DOS you may have converted LF end-of-line to CR/LF).  You must apply

such conversion to all the files EXCEPT those whose names begin with "test".

The test files contain binary data; if you change them in any way then the

self-test will give bad results.

 

Please check the last section of this file to see if there are hints for the

specific machine or compiler you are using.

 

 

CONFIGURING THE SOFTWARE

========================

 

To configure the IJG code for your system, you need to create two files:

 * jconfig.h: contains values for system-dependent #define symbols.

 * Makefile: controls the compilation process.

(On a non-Unix machine, you may create "project files" or some other

substitute for a Makefile.  jconfig.h is needed in any environment.)

 

We provide three different ways to generate these files:

 * On a Unix system, you can just run the "configure" script.



             Open Source Used In JVDI Client for Windows 14.0  192

 * We provide sample jconfig files and makefiles for popular machines;

   if your machine matches one of the samples, just copy the right sample

   files to jconfig.h and Makefile.

 * If all else fails, read the instructions below and make your own files.

 

 

Configuring the software using the automatic "configure" script

---------------------------------------------------------------

 

If you are on a Unix machine, you can just type

	./configure

and let the configure script construct appropriate configuration files.

If you're using "csh" on an old version of System V, you might need to type

	sh configure

instead to prevent csh from trying to execute configure itself.

Expect configure to run for a few minutes, particularly on slower machines;

it works by compiling a series of test programs.

 

Configure was created with GNU Autoconf and it follows the usual conventions

for GNU configure scripts.  It makes a few assumptions that you may want to

override.  You can do this by providing optional switches to configure:

 

* Configure will build both static and shared libraries, if possible.

If you want to build libjpeg only as a static library, say

	./configure --disable-shared

If you want to build libjpeg only as a shared library, say

	./configure --disable-static

Configure uses GNU libtool to take care of system-dependent shared library

building methods.

 

* Configure will use gcc (GNU C compiler) if it's available, otherwise cc.

To force a particular compiler to be selected, use the CC option, for example

	./configure CC='cc'

The same method can be used to include any unusual compiler switches.

For example, on HP-UX you probably want to say

	./configure CC='cc -Aa'

to get HP's compiler to run in ANSI mode.

 

* The default CFLAGS setting is "-g" for non-gcc compilers, "-g -O2" for gcc.

You can override this by saying, for example,

	./configure CFLAGS='-O2'

if you want to compile without debugging support.

 

* Configure will set up the makefile so that "make install" will install files

into /usr/local/bin, /usr/local/man, etc.  You can specify an installation

prefix other than "/usr/local" by giving configure the option "--prefix=PATH".

 

* If you don't have a lot of swap space, you may need to enable the IJG



             Open Source Used In JVDI Client for Windows 14.0  193

software's internal virtual memory mechanism.  To do this, give the option

"--enable-maxmem=N" where N is the default maxmemory limit in megabytes.

This is discussed in more detail under "Selecting a memory manager", below.

You probably don't need to worry about this on reasonably-sized Unix machines,

unless you plan to process very large images.

 

Configure has some other features that are useful if you are cross-compiling

or working in a network of multiple machine types; but if you need those

features, you probably already know how to use them.

 

 

Configuring the software using one of the supplied jconfig and makefile files

-----------------------------------------------------------------------------

 

If you have one of these systems, you can just use the provided configuration

files:

 

Makefile	jconfig file	System and/or compiler

 

makefile.manx	jconfig.manx	Amiga, Manx Aztec C

makefile.sas	jconfig.sas	Amiga, SAS C

makeproj.mac	jconfig.mac	Apple Macintosh, Metrowerks CodeWarrior

mak*jpeg.st	jconfig.st	Atari ST/STE/TT, Pure C or Turbo C

makefile.bcc	jconfig.bcc	MS-DOS or OS/2, Borland C

makefile.dj	jconfig.dj	MS-DOS, DJGPP (Delorie's port of GNU C)

makefile.mc6	jconfig.mc6	MS-DOS, Microsoft C (16-bit only)

makefile.wat	jconfig.wat	MS-DOS, OS/2, or Windows NT, Watcom C

makefile.vc	jconfig.vc	Windows, MS Visual C++

makefile.vs	jconfig.vc	Windows, MS Visual C++ 6 Developer Studio

make*.vc6

makefile.vs	jconfig.vc	Windows, Visual Studio 2019 (v16)

make*.v16

makefile.b32	jconfig.vc	Windows, Borland C++ 32-bit (bcc32)

makefile.mms	jconfig.vms	Digital VMS, with MMS software

makefile.vms	jconfig.vms	Digital VMS, without MMS software

 

Copy the proper jconfig file to jconfig.h and the makefile to Makefile (or

whatever your system uses as the standard makefile name).  For more info see

the appropriate system-specific hints section near the end of this file.

 

 

Configuring the software by hand

--------------------------------

 

First, generate a jconfig.h file.  If you are moderately familiar with C,

the comments in jconfig.txt should be enough information to do this; just

copy jconfig.txt to jconfig.h and edit it appropriately.  Otherwise, you may

prefer to use the ckconfig.c program.  You will need to compile and execute



             Open Source Used In JVDI Client for Windows 14.0  194

ckconfig.c by hand --- we hope you know at least enough to do that.

ckconfig.c may not compile the first try (in fact, the whole idea is for it

to fail if anything is going to).  If you get compile errors, fix them by

editing ckconfig.c according to the directions given in ckconfig.c.  Once

you get it to run, it will write a suitable jconfig.h file, and will also

print out some advice about which makefile to use.

 

You may also want to look at the canned jconfig files, if there is one for a

system similar to yours.

 

Second, select a makefile and copy it to Makefile (or whatever your system

uses as the standard makefile name).  The most generic makefiles we provide

are

	makefile.ansi:	if your C compiler supports function prototypes

	makefile.unix:	if not.

(You have function prototypes if ckconfig.c put "#define HAVE_PROTOTYPES"

in jconfig.h.)  You may want to start from one of the other makefiles if

there is one for a system similar to yours.

 

Look over the selected Makefile and adjust options as needed.  In particular

you may want to change the CC and CFLAGS definitions.  For instance, if you

are using GCC, set CC=gcc.  If you had to use any compiler switches to get

ckconfig.c to work, make sure the same switches are in CFLAGS.

 

If you are on a system that doesn't use makefiles, you'll need to set up

project files (or whatever you do use) to compile all the source files and

link them into executable files cjpeg, djpeg, jpegtran, rdjpgcom, and wrjpgcom.

See the file lists in any of the makefiles to find out which files go into

each program.  Note that the provided makefiles all make a "library" file

libjpeg first, but you don't have to do that if you don't want to; the file

lists identify which source files are actually needed for compression,

decompression, or both.  As a last resort, you can make a batch script that

just compiles everything and links it all together; makefile.vms is an example

of this (it's for VMS systems that have no make-like utility).

 

Here are comments about some specific configuration decisions you'll

need to make:

 

Command line style

------------------

 

These programs can use a Unix-like command line style which supports

redirection and piping, like this:

	cjpeg inputfile >outputfile

	cjpeg <inputfile >outputfile

	source program | cjpeg >outputfile

The simpler "two file" command line style is just

	cjpeg inputfile outputfile



             Open Source Used In JVDI Client for Windows 14.0  195

You may prefer the two-file style, particularly if you don't have pipes.

 

You MUST use two-file style on any system that doesn't cope well with binary

data fed through stdin/stdout; this is true for some MS-DOS compilers, for

example.  If you're not on a Unix system, it's safest to assume you need

two-file style.  (But if your compiler provides either the Posix-standard

fdopen() library routine or a Microsoft-compatible setmode() routine, you

can safely use the Unix command line style, by defining USE_FDOPEN or

USE_SETMODE respectively.)

 

To use the two-file style, make jconfig.h say "#define TWO_FILE_COMMANDLINE".

 

Selecting a memory manager

--------------------------

 

The IJG code is capable of working on images that are too big to fit in main

memory; data is swapped out to temporary files as necessary.  However, the

code to do this is rather system-dependent.  We provide five different

memory managers:

 

* jmemansi.c	This version uses the ANSI-standard library routine tmpfile(),

		which not all non-ANSI systems have.  On some systems

		tmpfile() may put the temporary file in a non-optimal

		location; if you don't like what it does, use jmemname.c.

 

* jmemname.c	This version creates named temporary files.  For anything

		except a Unix machine, you'll need to configure the

		select_file_name() routine appropriately; see the comments

		near the head of jmemname.c.  If you use this version, define

		NEED_SIGNAL_CATCHER in jconfig.h to make sure the temp files

		are removed if the program is aborted.

 

* jmemnobs.c	(That stands for No Backing Store :-).)  This will compile on

		almost any system, but it assumes you have enough main memory

		or virtual memory to hold the biggest images you work with.

 

* jmemdos.c	This should be used with most 16-bit MS-DOS compilers.

		See the system-specific notes about MS-DOS for more info.

		IMPORTANT: if you use this, define USE_MSDOS_MEMMGR in

		jconfig.h, and include the assembly file jmemdosa.asm in the

		programs.  The supplied makefiles and jconfig files for

		16-bit MS-DOS compilers already do both.

 

* jmemmac.c	Custom version for Apple Macintosh; see the system-specific

		notes for Macintosh for more info.

 

To use a particular memory manager, change the SYSDEPMEM variable in your

makefile to equal the corresponding object file name (for example, jmemansi.o



             Open Source Used In JVDI Client for Windows 14.0  196

or jmemansi.obj for jmemansi.c).

 

If you have plenty of (real or virtual) main memory, just use jmemnobs.c.

"Plenty" means about ten bytes for every pixel in the largest images

you plan to process, so a lot of systems don't meet this criterion.

If yours doesn't, try jmemansi.c first.  If that doesn't compile, you'll have

to use jmemname.c; be sure to adjust select_file_name() for local conditions.

You may also need to change unlink() to remove() in close_backing_store().

 

Except with jmemnobs.c or jmemmac.c, you need to adjust the DEFAULT_MAX_MEM

setting to a reasonable value for your system (either by adding a #define for

DEFAULT_MAX_MEM to jconfig.h, or by adding a -D switch to the Makefile).

This value limits the amount of data space the program will attempt to

allocate.  Code and static data space isn't counted, so the actual memory

needs for cjpeg or djpeg are typically 100 to 150Kb more than the max-memory

setting.  Larger max-memory settings reduce the amount of I/O needed to

process a large image, but too large a value can result in "insufficient

memory" failures.  On most Unix machines (and other systems with virtual

memory), just set DEFAULT_MAX_MEM to several million and forget it.  At the

other end of the spectrum, for MS-DOS machines you probably can't go much

above 300K to 400K.  (On MS-DOS the value refers to conventional memory only.

Extended/expanded memory is handled separately by jmemdos.c.)

 

 

BUILDING THE SOFTWARE

=====================

 

Now you should be able to compile the software.  Just say "make" (or

whatever's necessary to start the compilation).  Have a cup of coffee.

 

Here are some things that could go wrong:

 

If your compiler complains about undefined structures, you should be able to

shut it up by putting "#define INCOMPLETE_TYPES_BROKEN" in jconfig.h.

 

If you have trouble with missing system include files or inclusion of the

wrong ones, read jinclude.h.  This shouldn't happen if you used configure

or ckconfig.c to set up jconfig.h.

 

There are a fair number of routines that do not use all of their parameters;

some compilers will issue warnings about this, which you can ignore.  There

are also a few configuration checks that may give "unreachable code" warnings.

Any other warning deserves investigation.

 

If you don't have a getenv() library routine, define NO_GETENV.

 

Also see the system-specific hints, below.

 



             Open Source Used In JVDI Client for Windows 14.0  197

 

TESTING THE SOFTWARE

====================

 

As a quick test of functionality we've included a small sample image in

several forms:

	testorig.jpg	Starting point for the djpeg tests.

	testimg.ppm	The output of djpeg testorig.jpg

	testimg.bmp	The output of djpeg -bmp -colors 256 testorig.jpg

	testimg.jpg	The output of cjpeg testimg.ppm

	testprog.jpg	Progressive-mode equivalent of testorig.jpg.

	testimgp.jpg	The output of cjpeg -progressive -optimize testimg.ppm

(The first- and second-generation .jpg files aren't identical since the

default compression parameters are lossy.)  If you can generate duplicates

of the testimg* files then you probably have working programs.

 

With most of the makefiles, "make test" will perform the necessary

comparisons.

 

If you're using a makefile that doesn't provide the test option, run djpeg

and cjpeg by hand and compare the output files to testimg* with whatever

binary file comparison tool you have.  The files should be bit-for-bit

identical.

 

If the programs complain "MAX_ALLOC_CHUNK is wrong, please fix", then you

need to reduce MAX_ALLOC_CHUNK to a value that fits in type size_t.

Try adding "#define MAX_ALLOC_CHUNK 65520L" to jconfig.h.  A less likely

configuration error is "ALIGN_TYPE is wrong, please fix": defining ALIGN_TYPE

as long should take care of that one.

 

If the cjpeg test run fails with "Missing Huffman code table entry", it's a

good bet that you needed to define RIGHT_SHIFT_IS_UNSIGNED.  Go back to the

configuration step and run ckconfig.c.  (This is a good plan for any other

test failure, too.)

 

If you are using Unix (one-file) command line style on a non-Unix system,

it's a good idea to check that binary I/O through stdin/stdout actually

works.  You should get the same results from "djpeg <testorig.jpg >out.ppm"

as from "djpeg -outfile out.ppm testorig.jpg".  Note that the makefiles all

use the latter style and therefore do not exercise stdin/stdout!  If this

check fails, try recompiling with USE_SETMODE or USE_FDOPEN defined.

If it still doesn't work, better use two-file style.

 

If you chose a memory manager other than jmemnobs.c, you should test that

temporary-file usage works.  Try "djpeg -bmp -colors 256 -max 0 testorig.jpg"

and make sure its output matches testimg.bmp.  If you have any really large

images handy, try compressing them with -optimize and/or decompressing with

-colors 256 to make sure your DEFAULT_MAX_MEM setting is not too large.



             Open Source Used In JVDI Client for Windows 14.0  198

 

NOTE: this is far from an exhaustive test of the JPEG software; some modules,

such as 1-pass color quantization, are not exercised at all.  It's just a

quick test to give you some confidence that you haven't missed something

major.

 

 

INSTALLING THE SOFTWARE

=======================

 

Once you're done with the above steps, you can install the software by

copying the executable files (cjpeg, djpeg, jpegtran, rdjpgcom, and wrjpgcom)

to wherever you normally install programs.  On Unix systems, you'll also want

to put the man pages (cjpeg.1, djpeg.1, jpegtran.1, rdjpgcom.1, wrjpgcom.1)

in the man-page directory.  The pre-fab makefiles don't support this step

since there's such a wide variety of installation procedures on different

systems.

 

If you generated a Makefile with the "configure" script, you can just say

	make install

to install the programs and their man pages into the standard places.

(You'll probably need to be root to do this.)  We recommend first saying

	make -n install

to see where configure thought the files should go.  You may need to edit

the Makefile, particularly if your system's conventions for man page

filenames don't match what configure expects.

 

If you want to install the IJG library itself, for use in compiling other

programs besides ours, then you need to put the four include files

	jpeglib.h jerror.h jconfig.h jmorecfg.h

into your include-file directory, and put the library file libjpeg.a

(extension may vary depending on system) wherever library files go.

If you generated a Makefile with "configure", it will do what it thinks

is the right thing if you say

	make install-lib

 

 

OPTIONAL STUFF

==============

 

Progress monitor:

 

If you like, you can #define PROGRESS_REPORT (in jconfig.h) to enable display

of percent-done progress reports.  The routine provided in cdjpeg.c merely

prints percentages to stderr, but you can customize it to do something

fancier.

 

Utah RLE file format support:



             Open Source Used In JVDI Client for Windows 14.0  199

 

We distribute the software with support for RLE image files (Utah Raster

Toolkit format) disabled, because the RLE support won't compile without the

Utah library.  If you have URT version 3.1 or later, you can enable RLE

support as follows:

	1.  #define RLE_SUPPORTED in jconfig.h.

	2.  Add a -I option to CFLAGS in the Makefile for the directory

	    containing the URT .h files (typically the "include"

	    subdirectory of the URT distribution).

	3.  Add -L... -lrle to LDLIBS in the Makefile, where ... specifies

	    the directory containing the URT "librle.a" file (typically the

	    "lib" subdirectory of the URT distribution).

 

Support for 9-bit to 12-bit deep pixel data:

 

The IJG code currently allows 8, 9, 10, 11, or 12 bits sample data precision.

(For color, this means 8 to 12 bits per channel, of course.)  If you need to

work with deeper than 8-bit data, you can compile the IJG code for 9-bit to

12-bit operation.

To do so:

 1. In jmorecfg.h, define BITS_IN_JSAMPLE as 9, 10, 11, or 12 rather than 8.

 2. In jconfig.h, undefine BMP_SUPPORTED, RLE_SUPPORTED, and TARGA_SUPPORTED,

    because the code for those formats doesn't handle deeper than 8-bit data

    and won't even compile.  (The PPM code does work, as explained below.

    The GIF code works too; it scales 8-bit GIF data to and from 12-bit

    depth automatically.)

 3. Compile.  Don't expect "make test" to pass, since the supplied test

    files are for 8-bit data.

 

Currently, 9-bit to 12-bit support does not work on 16-bit-int machines.

 

Run-time selection and conversion of data precision are currently not

supported and may be added later.

Exception:  The transcoding part (jpegtran) supports all settings in a

single instance, since it operates on the level of DCT coefficients and

not sample values.

 

The PPM reader (rdppm.c) can read deeper than 8-bit data from either

text-format or binary-format PPM and PGM files.  Binary-format PPM/PGM files

which have a maxval greater than 255 are assumed to use 2 bytes per sample,

MSB first (big-endian order).  As of early 1995, 2-byte binary format is not

officially supported by the PBMPLUS library, but it is expected that a

future release of PBMPLUS will support it.  Note that the PPM reader will

read files of any maxval regardless of the BITS_IN_JSAMPLE setting; incoming

data is automatically rescaled to maxval=MAXJSAMPLE as appropriate for the

cjpeg bit depth.

 

The PPM writer (wrppm.c) will normally write 2-byte binary PPM or PGM



             Open Source Used In JVDI Client for Windows 14.0  200

format, maxval=MAXJSAMPLE, when compiled with BITS_IN_JSAMPLE>8.  Since this

format is not yet widely supported, you can disable it by compiling wrppm.c

with PPM_NORAWWORD defined; then the data is scaled down to 8 bits to make a

standard 1-byte/sample PPM or PGM file.  (Yes, this means still another copy

of djpeg to keep around.  But hopefully you won't need it for very long.

Poskanzer's supposed to get that new PBMPLUS release out Real Soon Now.)

 

Of course, if you are working with 9-bit to 12-bit data, you probably have

it stored in some other, nonstandard format.  In that case you'll probably

want to write your own I/O modules to read and write your format.

 

Note:

The standard Huffman tables are only valid for 8-bit data precision.  If

you selected more than 8-bit data precision, cjpeg uses arithmetic coding

by default.  The Huffman encoder normally uses entropy optimization to

compute usable tables for higher precision.  Otherwise, you'll have to

supply different default Huffman tables.

 

Removing code:

 

If you need to make a smaller version of the JPEG software, some optional

functions can be removed at compile time.  See the xxx_SUPPORTED #defines in

jconfig.h and jmorecfg.h.  If at all possible, we recommend that you leave in

decoder support for all valid JPEG files, to ensure that you can read anyone's

output.  Taking out support for image file formats that you don't use is the

most painless way to make the programs smaller.  Another possibility is to

remove some of the DCT methods: in particular, the "IFAST" method may not be

enough faster than the others to be worth keeping on your machine.  (If you

do remove ISLOW or IFAST, be sure to redefine JDCT_DEFAULT or JDCT_FASTEST

to a supported method, by adding a #define in jconfig.h.)

 

 

OPTIMIZATION

============

 

Unless you own a Cray, you'll probably be interested in making the JPEG

software go as fast as possible.  This section covers some machine-dependent

optimizations you may want to try.  We suggest that before trying any of

this, you first get the basic installation to pass the self-test step.

Repeat the self-test after any optimization to make sure that you haven't

broken anything.

 

The integer DCT routines perform a lot of multiplications.  These

multiplications must yield 32-bit results, but none of their input values

are more than 16 bits wide.  On many machines, notably the 680x0 and 80x86

CPUs, a 16x16=>32 bit multiply instruction is faster than a full 32x32=>32

bit multiply.  Unfortunately there is no portable way to specify such a

multiplication in C, but some compilers can generate one when you use the



             Open Source Used In JVDI Client for Windows 14.0  201

right combination of casts.  See the MULTIPLYxxx macro definitions in

jdct.h.  If your compiler makes "int" be 32 bits and "short" be 16 bits,

defining SHORTxSHORT_32 is fairly likely to work.  When experimenting with

alternate definitions, be sure to test not only whether the code still works

(use the self-test), but also whether it is actually faster --- on some

compilers, alternate definitions may compute the right answer, yet be slower

than the default.  Timing cjpeg on a large PGM (grayscale) input file is the

best way to check this, as the DCT will be the largest fraction of the runtime

in that mode.  (Note: some of the distributed compiler-specific jconfig files

already contain #define switches to select appropriate MULTIPLYxxx

definitions.)

 

If your machine has sufficiently fast floating point hardware, you may find

that the float DCT method is faster than the integer DCT methods, even

after tweaking the integer multiply macros.  In that case you may want to

make the float DCT be the default method.  (The only objection to this is

that float DCT results may vary slightly across machines.)  To do that, add

"#define JDCT_DEFAULT JDCT_FLOAT" to jconfig.h.  Even if you don't change

the default, you should redefine JDCT_FASTEST, which is the method selected

by djpeg's -fast switch.  Don't forget to update the documentation files

(usage.txt and/or cjpeg.1, djpeg.1) to agree with what you've done.

 

If access to "short" arrays is slow on your machine, it may be a win to

define type JCOEF as int rather than short.  This will cost a good deal of

memory though, particularly in some multi-pass modes, so don't do it unless

you have memory to burn and short is REALLY slow.

 

If your compiler can compile function calls in-line, make sure the INLINE

macro in jmorecfg.h is defined as the keyword that marks a function

inline-able.  Some compilers have a switch that tells the compiler to inline

any function it thinks is profitable (e.g., -finline-functions for gcc).

Enabling such a switch is likely to make the compiled code bigger but faster.

 

In general, it's worth trying the maximum optimization level of your compiler,

and experimenting with any optional optimizations such as loop unrolling.

(Unfortunately, far too many compilers have optimizer bugs ... be prepared to

back off if the code fails self-test.)  If you do any experimentation along

these lines, please report the optimal settings to jpeg-info@jpegclub.org so

we can mention them in future releases.  Be sure to specify your machine and

compiler version.

 

 

HINTS FOR SPECIFIC SYSTEMS

==========================

 

We welcome reports on changes needed for systems not mentioned here.  Submit

'em to jpeg-info@jpegclub.org.  Also, if configure or ckconfig.c is wrong

about how to configure the JPEG software for your system, please let us know.



             Open Source Used In JVDI Client for Windows 14.0  202

 

 

Acorn RISC OS:

 

(Thanks to Simon Middleton for these hints on compiling with Desktop C.)

After renaming the files according to Acorn conventions, take a copy of

makefile.ansi, change all occurrences of 'libjpeg.a' to 'libjpeg.o' and

change these definitions as indicated:

 

CFLAGS= -throwback -IC: -Wn

LDLIBS=C:o.Stubs

SYSDEPMEM=jmemansi.o

LN=Link

AR=LibFile -c -o

 

Also add a new line '.c.o:; $(cc) $< $(cflags) -c -o $@'.  Remove the

lines '$(RM) libjpeg.o' and '$(AR2) libjpeg.o' and the 'jconfig.h'

dependency section.

 

Copy jconfig.txt to jconfig.h.  Edit jconfig.h to define TWO_FILE_COMMANDLINE

and CHAR_IS_UNSIGNED.

 

Run the makefile using !AMU not !Make.  If you want to use the 'clean' and

'test' makefile entries then you will have to fiddle with the syntax a bit

and rename the test files.

 

 

Amiga:

 

SAS C 6.50 reportedly is too buggy to compile the IJG code properly.

A patch to update to 6.51 is available from SAS or AmiNet FTP sites.

 

The supplied config files are set up to use jmemname.c as the memory

manager, with temporary files being created on the device named by

"JPEGTMP:".

 

 

Atari ST/STE/TT:

 

Copy the project files makcjpeg.st, makdjpeg.st, maktjpeg.st, and makljpeg.st

to cjpeg.prj, djpeg.prj, jpegtran.prj, and libjpeg.prj respectively.  The

project files should work as-is with Pure C.  For Turbo C, change library

filenames "pc..." to "tc..." in each project file.  Note that libjpeg.prj

selects jmemansi.c as the recommended memory manager.  You'll probably want to

adjust the DEFAULT_MAX_MEM setting --- you want it to be a couple hundred K

less than your normal free memory.  Put "#define DEFAULT_MAX_MEM nnnn" into

jconfig.h to do this.

 



             Open Source Used In JVDI Client for Windows 14.0  203

To use the 68881/68882 coprocessor for the floating point DCT, add the

compiler option "-8" to the project files and replace pcfltlib.lib with

pc881lib.lib in cjpeg.prj and djpeg.prj.  Or if you don't have a

coprocessor, you may prefer to remove the float DCT code by undefining

DCT_FLOAT_SUPPORTED in jmorecfg.h (since without a coprocessor, the float

code will be too slow to be useful).  In that case, you can delete

pcfltlib.lib from the project files.

 

Note that you must make libjpeg.lib before making cjpeg.ttp, djpeg.ttp,

or jpegtran.ttp.  You'll have to perform the self-test by hand.

 

We haven't bothered to include project files for rdjpgcom and wrjpgcom.

Those source files should just be compiled by themselves; they don't

depend on the JPEG library.  You can use the default.prj project file

of the Pure C distribution to make the programs.

 

There is a bug in some older versions of the Turbo C library which causes the

space used by temporary files created with "tmpfile()" not to be freed after

an abnormal program exit.  If you check your disk afterwards, you will find

cluster chains that are allocated but not used by a file.  This should not

happen in cjpeg/djpeg/jpegtran, since we enable a signal catcher to explicitly

close temp files before exiting.  But if you use the JPEG library with your

own code, be sure to supply a signal catcher, or else use a different

system-dependent memory manager.

 

 

Cray:

 

Should you be so fortunate as to be running JPEG on a Cray YMP, there is a

compiler bug in old versions of Cray's Standard C (prior to 3.1).  If you

still have an old compiler, you'll need to insert a line reading

"#pragma novector" just before the loop	

   for (i = 1; i <= (int) htbl->bits[l]; i++)

     huffsize[p++] = (char) l;

in fix_huff_tbl (in V5beta1, line 204 of jchuff.c and line 176 of jdhuff.c).

[This bug may or may not still occur with the current IJG code, but it's

probably a dead issue anyway...]

 

 

HP-UX:

 

If you have HP-UX 7.05 or later with the "software development" C compiler,

you should run the compiler in ANSI mode.  If using the configure script,

say

	./configure CC='cc -Aa'

(or -Ae if you prefer).  If configuring by hand, use makefile.ansi and add

"-Aa" to the CFLAGS line in the makefile.

 



             Open Source Used In JVDI Client for Windows 14.0  204

If you have a pre-7.05 system, or if you are using the non-ANSI C compiler

delivered with a minimum HP-UX system, then you must use makefile.unix

(and do NOT add -Aa); or just run configure without the CC option.

 

On HP 9000 series 800 machines, the HP C compiler is buggy in revisions prior

to A.08.07.  If you get complaints about "not a typedef name", you'll have to

use makefile.unix, or run configure without the CC option.

 

 

Macintosh, generic comments:

 

The supplied user-interface files (cjpeg.c, djpeg.c, etc) are set up to

provide a Unix-style command line interface.  You can use this interface on

the Mac by means of the ccommand() library routine provided by Metrowerks

CodeWarrior or Think C.  This is only appropriate for testing the library,

however; to make a user-friendly equivalent of cjpeg/djpeg you'd really want

to develop a Mac-style user interface.  There isn't a complete example

available at the moment, but there are some helpful starting points:

1. Sam Bushell's free "To JPEG" applet provides drag-and-drop conversion to

JPEG under System 7 and later.  This only illustrates how to use the

compression half of the library, but it does a very nice job of that part.

The CodeWarrior source code is available from http://www.pobox.com/~jsam.

2. Jim Brunner prepared a Mac-style user interface for both compression and

decompression.  Unfortunately, it hasn't been updated since IJG v4, and

the library's API has changed considerably since then.  Still it may be of

some help, particularly as a guide to compiling the IJG code under Think C.

Jim's code is available from the Info-Mac archives, at sumex-aim.stanford.edu

or mirrors thereof; see file /info-mac/dev/src/jpeg-convert-c.hqx.

 

jmemmac.c is the recommended memory manager back end for Macintosh.  It uses

NewPtr/DisposePtr instead of malloc/free, and has a Mac-specific

implementation of jpeg_mem_available().  It also creates temporary files that

follow Mac conventions.  (That part of the code relies on System-7-or-later OS

functions.  See the comments in jmemmac.c if you need to run it on System 6.)

NOTE that USE_MAC_MEMMGR must be defined in jconfig.h to use jmemmac.c.

 

You can also use jmemnobs.c, if you don't care about handling images larger

than available memory.  If you use any memory manager back end other than

jmemmac.c, we recommend replacing "malloc" and "free" by "NewPtr" and

"DisposePtr", because Mac C libraries often have peculiar implementations of

malloc/free.  (For instance, free() may not return the freed space to the

Mac Memory Manager.  This is undesirable for the IJG code because jmemmgr.c

already clumps space requests.)

 

 

Macintosh, Metrowerks CodeWarrior:

 

The Unix-command-line-style interface can be used by defining USE_CCOMMAND.



             Open Source Used In JVDI Client for Windows 14.0  205

You'll also need to define TWO_FILE_COMMANDLINE to avoid stdin/stdout.

This means that when using the cjpeg/djpeg programs, you'll have to type the

input and output file names in the "Arguments" text-edit box, rather than

using the file radio buttons.  (Perhaps USE_FDOPEN or USE_SETMODE would

eliminate the problem, but I haven't heard from anyone who's tried it.)

 

On 680x0 Macs, Metrowerks defines type "double" as a 10-byte IEEE extended

float.  jmemmgr.c won't like this: it wants sizeof(ALIGN_TYPE) to be a power

of 2.  Add "#define ALIGN_TYPE long" to jconfig.h to eliminate the complaint.

 

The supplied configuration file jconfig.mac can be used for your jconfig.h;

it includes all the recommended symbol definitions.  If you have AppleScript

installed, you can run the supplied script makeproj.mac to create CodeWarrior

project files for the library and the testbed applications, then build the

library and applications.  (Thanks to Dan Sears and Don Agro for this nifty

hack, which saves us from trying to maintain CodeWarrior project files as part

of the IJG distribution...)

 

 

Macintosh, Think C:

 

The documentation in Jim Brunner's "JPEG Convert" source code (see above)

includes detailed build instructions for Think C; it's probably somewhat

out of date for the current release, but may be helpful.

 

If you want to build the minimal command line version, proceed as follows.

You'll have to prepare project files for the programs; we don't include any

in the distribution since they are not text files.  Use the file lists in

any of the supplied makefiles as a guide.  Also add the ANSI and Unix C

libraries in a separate segment.  You may need to divide the JPEG files into

more than one segment; we recommend dividing compression and decompression

modules.  Define USE_CCOMMAND in jconfig.h so that the ccommand() routine is

called.  You must also define TWO_FILE_COMMANDLINE because stdin/stdout

don't handle binary data correctly.

 

On 680x0 Macs, Think C defines type "double" as a 12-byte IEEE extended float.

jmemmgr.c won't like this: it wants sizeof(ALIGN_TYPE) to be a power of 2.

Add "#define ALIGN_TYPE long" to jconfig.h to eliminate the complaint.

 

jconfig.mac should work as a jconfig.h configuration file for Think C,

but the makeproj.mac AppleScript script is specific to CodeWarrior.  Sorry.

 

 

MIPS R3000:

 

MIPS's cc version 1.31 has a rather nasty optimization bug.  Don't use -O

if you have that compiler version.  (Use "cc -V" to check the version.)

Note that the R3000 chip is found in workstations from DEC and others.



             Open Source Used In JVDI Client for Windows 14.0  206

 

 

MS-DOS, generic comments for 16-bit compilers:

 

The IJG code is designed to work well in 80x86 "small" or "medium" memory

models (i.e., data pointers are 16 bits unless explicitly declared "far";

code pointers can be either size).  You may be able to use small model to

compile cjpeg or djpeg by itself, but you will probably have to use medium

model for any larger application.  This won't make much difference in

performance.  You *will* take a noticeable performance hit if you use a

large-data memory model, and you should avoid "huge" model if at all

possible.  Be sure that NEED_FAR_POINTERS is defined in jconfig.h if you use

a small-data memory model; be sure it is NOT defined if you use a large-data

model.  (The supplied makefiles and jconfig files for Borland and Microsoft C

compile in medium model and define NEED_FAR_POINTERS.)

 

The DOS-specific memory manager, jmemdos.c, should be used if possible.

It needs some assembly-code routines which are in jmemdosa.asm; make sure

your makefile assembles that file and includes it in the library.  If you

don't have a suitable assembler, you can get pre-assembled object files for

jmemdosa by FTP from ftp.uu.net:/graphics/jpeg/jdosaobj.zip.  (DOS-oriented

distributions of the IJG source code often include these object files.)

 

When using jmemdos.c, jconfig.h must define USE_MSDOS_MEMMGR and must set

MAX_ALLOC_CHUNK to less than 64K (65520L is a typical value).  If your

C library's far-heap malloc() can't allocate blocks that large, reduce

MAX_ALLOC_CHUNK to whatever it can handle.

 

If you can't use jmemdos.c for some reason --- for example, because you

don't have an assembler to assemble jmemdosa.asm --- you'll have to fall

back to jmemansi.c or jmemname.c.  You'll probably still need to set

MAX_ALLOC_CHUNK in jconfig.h, because most DOS C libraries won't malloc()

more than 64K at a time.  IMPORTANT: if you use jmemansi.c or jmemname.c,

you will have to compile in a large-data memory model in order to get the

right stdio library.  Too bad.

 

wrjpgcom needs to be compiled in large model, because it malloc()s a 64KB

work area to hold the comment text.  If your C library's malloc can't

handle that, reduce MAX_COM_LENGTH as necessary in wrjpgcom.c.

 

Most MS-DOS compilers treat stdin/stdout as text files, so you must use

two-file command line style.  But if your compiler has either fdopen() or

setmode(), you can use one-file style if you like.  To do this, define

USE_SETMODE or USE_FDOPEN so that stdin/stdout will be set to binary mode.

(USE_SETMODE seems to work with more DOS compilers than USE_FDOPEN.)  You

should test that I/O through stdin/stdout produces the same results as I/O

to explicitly named files... the "make test" procedures in the supplied

makefiles do NOT use stdin/stdout.



             Open Source Used In JVDI Client for Windows 14.0  207

 

 

MS-DOS, generic comments for 32-bit compilers:

 

None of the above comments about memory models apply if you are using a

32-bit flat-memory-space environment, such as DJGPP or Watcom C.  (And you

should use one if you have it, as performance will be much better than

8086-compatible code!)  For flat-memory-space compilers, do NOT define

NEED_FAR_POINTERS, and do NOT use jmemdos.c.  Use jmemnobs.c if the

environment supplies adequate virtual memory, otherwise use jmemansi.c or

jmemname.c.

 

You'll still need to be careful about binary I/O through stdin/stdout.

See the last paragraph of the previous section.

 

 

MS-DOS, Borland C:

 

Be sure to convert all the source files to DOS text format (CR/LF newlines).

Although Borland C will often work OK with unmodified Unix (LF newlines)

source files, sometimes it will give bogus compile errors.

"Illegal character '#'" is the most common such error.  (This is true with

Borland C 3.1, but perhaps is fixed in newer releases.)

 

If you want one-file command line style, just undefine TWO_FILE_COMMANDLINE.

jconfig.bcc already includes #define USE_SETMODE to make this work.

(fdopen does not work correctly.)

 

 

MS-DOS, Microsoft C:

 

makefile.mc6 works with Microsoft C, DOS Visual C++, etc.  It should only

be used if you want to build a 16-bit (small or medium memory model) program.

 

If you want one-file command line style, just undefine TWO_FILE_COMMANDLINE.

jconfig.mc6 already includes #define USE_SETMODE to make this work.

(fdopen does not work correctly.)

 

Note that this makefile assumes that the working copy of itself is called

"makefile".  If you want to call it something else, say "makefile.mak",

be sure to adjust the dependency line that reads "$(RFILE) : makefile".

Otherwise the make will fail because it doesn't know how to create "makefile".

Worse, some releases of Microsoft's make utilities give an incorrect error

message in this situation.

 

Old versions of MS C fail with an "out of macro expansion space" error

because they can't cope with the macro TRACEMS8 (defined in jerror.h).

If this happens to you, the easiest solution is to change TRACEMS8 to



             Open Source Used In JVDI Client for Windows 14.0  208

expand to nothing.  You'll lose the ability to dump out JPEG coefficient

tables with djpeg -debug -debug, but at least you can compile.

 

Original MS C 6.0 is very buggy; it compiles incorrect code unless you turn

off optimization entirely (remove -O from CFLAGS).  6.00A is better, but it

still generates bad code if you enable loop optimizations (-Ol or -Ox).

 

MS C 8.0 crashes when compiling jquant1.c with optimization switch /Oo ...

which is on by default.  To work around this bug, compile that one file

with /Oo-.

 

 

Microsoft Windows (all versions), generic comments:

 

Some Windows system include files define typedef boolean as "unsigned char".

The IJG code also defines typedef boolean, but we make it an "enum" by default.

This doesn't affect the IJG programs because we don't import those Windows

include files.  But if you use the JPEG library in your own program, and some

of your program's files import one definition of boolean while some import the

other, you can get all sorts of mysterious problems.  A good preventive step

is to make the IJG library use "unsigned char" for boolean.  To do that,

add something like this to your jconfig.h file:

	/* Define "boolean" as unsigned char, not enum, per Windows custom */

	#ifndef __RPCNDR_H__	/* don't conflict if rpcndr.h already read */

	typedef unsigned char boolean;

	#endif

	#ifndef FALSE		/* in case these macros already exist */

	#define FALSE	0	/* values of boolean */

	#endif

	#ifndef TRUE

	#define TRUE	1

	#endif

	#define HAVE_BOOLEAN	/* prevent jmorecfg.h from redefining it */

(This is already in jconfig.vc, by the way.)

 

windef.h contains the declarations

	#define far

	#define FAR far

Since jmorecfg.h tries to define FAR as empty, you may get a compiler

warning if you include both jpeglib.h and windef.h (which windows.h

includes).  To suppress the warning, you can put "#ifndef FAR"/"#endif"

around the line "#define FAR" in jmorecfg.h.

(Something like this is already in jmorecfg.h, by the way.)

 

When using the library in a Windows application, you will almost certainly

want to modify or replace the error handler module jerror.c, since our

default error handler does a couple of inappropriate things:

 1. it tries to write error and warning messages on stderr;



             Open Source Used In JVDI Client for Windows 14.0  209

 2. in event of a fatal error, it exits by calling exit().

 

A simple stopgap solution for problem 1 is to replace the line

	fprintf(stderr, "%s\n", buffer);

(in output_message in jerror.c) with

	MessageBox(GetActiveWindow(),buffer,"JPEG Error",MB_OK|MB_ICONERROR);

It's highly recommended that you at least do that much, since otherwise

error messages will disappear into nowhere.  (Beginning with IJG v6b, this

code is already present in jerror.c; just define USE_WINDOWS_MESSAGEBOX in

jconfig.h to enable it.)

 

The proper solution for problem 2 is to return control to your calling

application after a library error.  This can be done with the setjmp/longjmp

technique discussed in libjpeg.txt and illustrated in example.c.  (NOTE:

some older Windows C compilers provide versions of setjmp/longjmp that

don't actually work under Windows.  You may need to use the Windows system

functions Catch and Throw instead.)

 

The recommended memory manager under Windows is jmemnobs.c; in other words,

let Windows do any virtual memory management needed.  You should NOT use

jmemdos.c nor jmemdosa.asm under Windows.

 

For Windows 3.1, we recommend compiling in medium or large memory model;

for newer Windows versions, use a 32-bit flat memory model.  (See the MS-DOS

sections above for more info about memory models.)  In the 16-bit memory

models only, you'll need to put

	#define MAX_ALLOC_CHUNK 65520L	/* Maximum request to malloc() */

into jconfig.h to limit allocation chunks to 64Kb.  (Without that, you'd

have to use huge memory model, which slows things down unnecessarily.)

jmemnobs.c works without modification in large or flat memory models, but to

use medium model, you need to modify its jpeg_get_large and jpeg_free_large

routines to allocate far memory.  In any case, you might like to replace

its calls to malloc and free with direct calls on Windows memory allocation

functions.

 

You may also want to modify jdatasrc.c and jdatadst.c to use Windows file

operations rather than fread/fwrite.  This is only necessary if your C

compiler doesn't provide a competent implementation of C stdio functions.

 

You might want to tweak the RGB_xxx macros in jmorecfg.h so that the library

will accept or deliver color pixels in BGR sample order, not RGB; BGR order

is usually more convenient under Windows.  Note that this change will break

the sample applications cjpeg/djpeg, but the library itself works fine.

 

 

Many people want to convert the IJG library into a DLL.  This is reasonably

straightforward, but watch out for the following:

 



             Open Source Used In JVDI Client for Windows 14.0  210

 1. Don't try to compile as a DLL in small or medium memory model; use

large model, or even better, 32-bit flat model.  Many places in the IJG code

assume the address of a local variable is an ordinary (not FAR) pointer;

that isn't true in a medium-model DLL.

 

 2. Microsoft C cannot pass file pointers between applications and DLLs.

(See Microsoft Knowledge Base, PSS ID Number Q50336.)  So jdatasrc.c and

jdatadst.c don't work if you open a file in your application and then pass

the pointer to the DLL.  One workaround is to make jdatasrc.c/jdatadst.c

part of your main application rather than part of the DLL.

 

 3. You'll probably need to modify the macros GLOBAL() and EXTERN() to

attach suitable linkage keywords to the exported routine names.  Similarly,

you'll want to modify METHODDEF() and JMETHOD() to ensure function pointers

are declared in a way that lets application routines be called back through

the function pointers.  These macros are in jmorecfg.h.  Typical definitions

for a 16-bit DLL are:

	#define GLOBAL(type)		type _far _pascal _loadds _export

	#define EXTERN(type)		extern type _far _pascal _loadds

	#define METHODDEF(type)		static type _far _pascal

	#define JMETHOD(type,methodname,arglist)  \

		type (_far _pascal *methodname) arglist

For a 32-bit DLL you may want something like

	#define GLOBAL(type)		__declspec(dllexport) type

	#define EXTERN(type)		extern __declspec(dllexport) type

Although not all the GLOBAL routines are actually intended to be called by

the application, the performance cost of making them all DLL entry points is

negligible.

 

The unmodified IJG library presents a very C-specific application interface,

so the resulting DLL is only usable from C or C++ applications.  There has

been some talk of writing wrapper code that would present a simpler interface

usable from other languages, such as Visual Basic.  This is on our to-do list

but hasn't been very high priority --- any volunteers out there?

 

 

Microsoft Windows, Borland C:

 

The provided jconfig.bcc should work OK in a 32-bit Windows environment,

but you'll need to tweak it in a 16-bit environment (you'd need to define

NEED_FAR_POINTERS and MAX_ALLOC_CHUNK).  Beware that makefile.bcc will need

alteration if you want to use it for Windows --- in particular, you should

use jmemnobs.c not jmemdos.c under Windows.

 

Borland C++ 4.5 fails with an internal compiler error when trying to compile

jdmerge.c in 32-bit mode.  If enough people complain, perhaps Borland will fix

it.  In the meantime, the simplest known workaround is to add a redundant

definition of the variable range_limit in h2v1_merged_upsample(), at the head



             Open Source Used In JVDI Client for Windows 14.0  211

of the block that handles odd image width (about line 268 in v6 jdmerge.c):

 /* If image width is odd, do the last output column separately */

 if (cinfo->output_width & 1) {

   register JSAMPLE * range_limit = cinfo->sample_range_limit; /* ADD THIS */

   cb = GETJSAMPLE(*inptr1);

Pretty bizarre, especially since the very similar routine h2v2_merged_upsample

doesn't trigger the bug.

Recent reports suggest that this bug does not occur with "bcc32a" (the

Pentium-optimized version of the compiler).

 

Another report from a user of Borland C 4.5 was that incorrect code (leading

to a color shift in processed images) was produced if any of the following

optimization switch combinations were used:

	-Ot -Og

	-Ot -Op

	-Ot -Om

So try backing off on optimization if you see such a problem.  (Are there

several different releases all numbered "4.5"??)

 

 

Microsoft Windows, Microsoft Visual C++:

 

jconfig.vc should work OK with any Microsoft compiler for a 32-bit memory

model.  makefile.vc is intended for command-line use.  (If you are using

the Developer Studio environment, you may prefer the DevStudio project

files; see below.)

 

IJG JPEG 7 adds extern "C" to jpeglib.h.  This avoids the need to put

extern "C" { ... } around #include "jpeglib.h" in your C++ application.

You can also force VC++ to treat the library as C++ code by renaming

all the *.c files to *.cpp (and adjusting the makefile to match).

In this case you also need to define the symbol DONT_USE_EXTERN_C in

the configuration to prevent jpeglib.h from using extern "C".

 

 

Microsoft Windows, Microsoft Visual C++ 6 Developer Studio:

 

We include makefiles that should work as project files in Developer Studio

6.0 or later.  There is a library makefile that builds the IJG library as

a static Win32 library, and application makefiles that build the sample

applications as Win32 console applications.  (Even if you only want the

library, we recommend building the applications so that you can run the

self-test.)

 

To use:

1. Open the command prompt, change to the source directory and execute

  the command line

	NMAKE /f makefile.vs setup-vc6



             Open Source Used In JVDI Client for Windows 14.0  212

  If you get an error message saying that the "NMAKE" command could

  not be found, execute the command

	"%ProgramFiles%\Microsoft Visual Studio\VC98\Bin\VCVARS32"

  to set the environment for using Microsoft Visual C++ tools,

  and repeat the NMAKE call.

  This will move jconfig.vc to jconfig.h and makefiles to project files.

  (Note that the renaming is critical!)

  Alternatively you can use

	NMAKE /f makefile.vs setupcopy-vc6

  This will create renamed copies of the files, which allows to repeat

  the setup later.

2. Open the workspace file jpeg.dsw, build the library project.

  (If you are using Developer Studio more recent than 6.0, you'll

  probably get a message saying that the project files are being updated.)

3. Open the workspace file apps.dsw, build the application projects.

4. To perform the self-test, execute the command line

	NMAKE /f makefile.vs test-build

5. Move the application .exe files from the Release folder to an

  appropriate location on your path.

 

 

Microsoft Windows, Visual Studio 2019 (v16):

 

We include makefiles that should work as project files in Visual Studio

2019 (v16) or later.  There is a library makefile that builds the IJG

library as a static Win32/x64 library, and application makefiles that

build the sample applications as Win32/x64 console applications.  (Even

if you only want the library, we recommend building the applications so

that you can run the self-test.)

 

To use:

1. Open the Developer Command Prompt for VS 2019, change to the source

  directory and execute the command line

	NMAKE /f makefile.vs setup-v16

  This will move jconfig.vc to jconfig.h and makefiles to project files.

  (Note that the renaming is critical!)

  Alternatively you can use

	NMAKE /f makefile.vs setupcopy-v16

  This will create renamed copies of the files, which allows to repeat

  the setup later.

2. Open the solution file jpeg.sln, build the library project.

    a) If you are using Visual Studio more recent than

	2019 (v16), you'll probably get a message saying

	that the project files are being updated.

    b) If necessary, open the project properties and

	adapt the Windows Target Platform Version in

	the Configuration Properties, General section;

	we support the latest version at the time of release.



             Open Source Used In JVDI Client for Windows 14.0  213

    c) If you want to build x64 code, change the platform setting from

	Win32 to x64.  You can build Win32 and x64 versions side by side.

3. Open the solution file apps.sln, build the application projects.

4. To perform the self-test, execute the command line

	NMAKE /f makefile.vs test-32

  for the Win32 build, or on a 64-bit system

	NMAKE /f makefile.vs test-64

  for the x64 build.

5. Move the application .exe files from the Release folder to an

  appropriate location on your path.

 

 

OS/2, Borland C++:

 

Watch out for optimization bugs in older Borland compilers; you may need

to back off the optimization switch settings.  See the comments in

makefile.bcc.

 

 

SGI:

 

On some SGI systems, you may need to set "AR2= ar -ts" in the Makefile.

If you are using configure, you can do this by saying

	./configure RANLIB='ar -ts'

This change is not needed on all SGIs.  Use it only if the make fails at the

stage of linking the completed programs.

 

On the MIPS R4000 architecture (Indy, etc.), the compiler option "-mips2"

reportedly speeds up the float DCT method substantially, enough to make it

faster than the default int method (but still slower than the fast int

method).  If you use -mips2, you may want to alter the default DCT method to

be float.  To do this, put "#define JDCT_DEFAULT JDCT_FLOAT" in jconfig.h.

 

 

VMS:

 

On an Alpha/VMS system with MMS, be sure to use the "/Marco=Alpha=1"

qualifier with MMS when building the JPEG package.

 

VAX/VMS v5.5-1 may have problems with the test step of the build procedure

reporting differences when it compares the original and test images.  If the

error points to the last block of the files, it is most likely bogus and may

be safely ignored.  It seems to be because the files are Stream_LF and

Backup/Compare has difficulty with the (presumably) null padded files.

This problem was not observed on VAX/VMS v6.1 or AXP/VMS v6.1.

 

Found in path(s):

* /opt/cola/permits/1103550007_1605777850.47/0/jpegsrc-v9d-tar-gz/jpeg-9d/install.txt



             Open Source Used In JVDI Client for Windows 14.0  214

 

1.22 apr 1.7.0 
1.22.1 Available under license : 

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

 

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 

1. Definitions.

 

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1

through 9 of this document.

 

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

 

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are

under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or

indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of

fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

 

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

 

"Source" form shall mean the preferred form for making modifications, including but not limited to software source

code, documentation source, and configuration files.

 

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form,

including but not limited to compiled object code, generated documentation, and conversions to other media types.

 

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as

indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix

below).

 

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the

Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,

an original work of authorship. For the purposes of this License, Derivative Works shall not include works that

remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works

thereof.

 

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications

or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the

Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright

owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written

communication sent to the Licensor or its representatives, including but not limited to communication on electronic

mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the

Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously



             Open Source Used In JVDI Client for Windows 14.0  215

marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

 

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been

received by Licensor and subsequently incorporated within the Work.

 

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to

You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce,

prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such

Derivative Works in Source or Object form.

 

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to

You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section)

patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such

license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was

submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit)

alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent

infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date

such litigation is filed.

 

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any

medium, with or without modifications, and in Source or Object form, provided that You meet the following

conditions:

 

You must give any other recipients of the Work or Derivative Works a copy of this License; and 

 

You must cause any modified files to carry prominent notices stating that You changed the files; and 

 

You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of

the Derivative Works; and 

 

If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute

must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices

that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text

file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the

Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices

normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the

License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an

addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed

as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license

terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works

as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions

stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for

inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any

additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of



             Open Source Used In JVDI Client for Windows 14.0  216

any separate license agreement you may have executed with Licensor regarding such Contributions.

 

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product

names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and

reproducing the content of the NOTICE file.

 

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work

(and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or

conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR

PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and

assume any risks associated with Your exercise of permissions under this License.

 

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or

otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,

shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or

consequential damages of any character arising as a result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or

any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of

such damages.

 

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may

choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or

rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf

and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend,

and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by

reason of your accepting any such warranty or additional liability.

 

END OF TERMS AND CONDITIONS

 

APPENDIX: How to apply the Apache License to your work

 

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by

brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be

enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and

description of purpose be included on the same "printed page" as the copyright notice for easier identification within

third-party archives.

 

 

  Copyright [yyyy] [name of copyright owner]

 

  Licensed under the Apache License, Version 2.0 (the "License");

  you may not use this file except in compliance with the License.

  You may obtain a copy of the License at

 

      http://www.apache.org/licenses/LICENSE-2.0

 

  Unless required by applicable law or agreed to in writing, software



             Open Source Used In JVDI Client for Windows 14.0  217

  distributed under the License is distributed on an "AS IS" BASIS,

  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

  See the License for the specific language governing permissions and

  limitations under the License.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.23 libxml 2.9.10 
1.23.1 Available under license : 

Except where otherwise noted in the source code (e.g. the files hash.c,

list.c and the trio files, which are covered by a similar licence but

with different Copyright notices) all the files are:

 

Copyright (C) 1998-2012 Daniel Veillard.  All Rights Reserved.

 

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is fur-

nished to do so, subject to the following conditions:

 

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN



             Open Source Used In JVDI Client for Windows 14.0  218

THE SOFTWARE.

 

1.24 opencore-amr 0.1.5 
1.24.1 Available under license : 

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

 

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 

1. Definitions.

 

"License" shall mean the terms and conditions for use, reproduction, and

distribution as defined by Sections 1 through 9 of this document.

 

"Licensor" shall mean the copyright owner or entity authorized by the

copyright owner that is granting the License.

 

"Legal Entity" shall mean the union of the acting entity and all other

entities that control, are controlled by, or are under common control with

that entity. For the purposes of this definition, "control" means (i) the

power, direct or indirect, to cause the direction or management of such

entity, whether by contract or otherwise, or (ii) ownership of fifty

percent (50%) or more of the outstanding shares, or (iii) beneficial

ownership of such entity.

 

"You" (or "Your") shall mean an individual or Legal Entity exercising

permissions granted by this License.

 

"Source" form shall mean the preferred form for making modifications,

including but not limited to software source code, documentation source,

and configuration files.

 

"Object" form shall mean any form resulting from mechanical transformation

or translation of a Source form, including but not limited to compiled

object code, generated documentation, and conversions to other media types.

 

"Work" shall mean the work of authorship, whether in Source or Object form,

made available under the License, as indicated by a copyright notice that

is included in or attached to the work (an example is provided in the

Appendix below).

 

"Derivative Works" shall mean any work, whether in Source or Object form,

that is based on (or derived from) the Work and for which the editorial

revisions, annotations, elaborations, or other modifications represent, as

a whole, an original work of authorship. For the purposes of this License,



             Open Source Used In JVDI Client for Windows 14.0  219

Derivative Works shall not include works that remain separable from, or

merely link (or bind by name) to the interfaces of, the Work and Derivative

Works thereof.

 

"Contribution" shall mean any work of authorship, including the original

version of the Work and any modifications or additions to that Work or

Derivative Works thereof, that is intentionally submitted to Licensor for

inclusion in the Work by the copyright owner or by an individual or Legal

Entity authorized to submit on behalf of the copyright owner. For the

purposes of this definition, "submitted" means any form of electronic,

verbal, or written communication sent to the Licensor or its

representatives, including but not limited to communication on electronic

mailing lists, source code control systems, and issue tracking systems that

are managed by, or on behalf of, the Licensor for the purpose of discussing

and improving the Work, but excluding communication that is conspicuously

marked or otherwise designated in writing by the copyright owner as "Not a

Contribution."

 

"Contributor" shall mean Licensor and any individual or Legal Entity on

behalf of whom a Contribution has been received by Licensor and

subsequently incorporated within the Work.

 

2. Grant of Copyright License. Subject to the terms and conditions of this

License, each Contributor hereby grants to You a perpetual, worldwide,

non-exclusive, no-charge, royalty-free, irrevocable copyright license to

reproduce, prepare Derivative Works of, publicly display, publicly perform,

sublicense, and distribute the Work and such Derivative Works in Source or

Object form.

 

3. Grant of Patent License. Subject to the terms and conditions of this

License, each Contributor hereby grants to You a perpetual, worldwide,

non-exclusive, no-charge, royalty-free, irrevocable (except as stated in

this section) patent license to make, have made, use, offer to sell, sell,

import, and otherwise transfer the Work, where such license applies only to

those patent claims licensable by such Contributor that are necessarily

infringed by their Contribution(s) alone or by combination of their

Contribution(s) with the Work to which such Contribution(s) was submitted.

If You institute patent litigation against any entity (including a

cross-claim or counterclaim in a lawsuit) alleging that the Work or a

Contribution incorporated within the Work constitutes direct or

contributory patent infringement, then any patent licenses granted to You

under this License for that Work shall terminate as of the date such

litigation is filed.

 

4. Redistribution. You may reproduce and distribute copies of the Work or

Derivative Works thereof in any medium, with or without modifications, and

in Source or Object form, provided that You meet the following conditions:

 



             Open Source Used In JVDI Client for Windows 14.0  220

  1. You must give any other recipients of the Work or Derivative Works a

copy of this License; and

 

  2. You must cause any modified files to carry prominent notices stating

that You changed the files; and

 

  3. You must retain, in the Source form of any Derivative Works that You

distribute, all copyright, patent, trademark, and attribution notices from

the Source form of the Work, excluding those notices that do not pertain to

any part of the Derivative Works; and

 

  4. If the Work includes a "NOTICE" text file as part of its

distribution, then any Derivative Works that You distribute must include a

readable copy of the attribution notices contained within such NOTICE file,

excluding those notices that do not pertain to any part of the Derivative

Works, in at least one of the following places: within a NOTICE text file

distributed as part of the Derivative Works; within the Source form or

documentation, if provided along with the Derivative Works; or, within a

display generated by the Derivative Works, if and wherever such third-party

notices normally appear. The contents of the NOTICE file are for

informational purposes only and do not modify the License. You may add Your

own attribution notices within Derivative Works that You distribute,

alongside or as an addendum to the NOTICE text from the Work, provided that

such additional attribution notices cannot be construed as modifying the

License.

 

You may add Your own copyright statement to Your modifications and may

provide additional or different license terms and conditions for use,

reproduction, or distribution of Your modifications, or for any such

Derivative Works as a whole, provided Your use, reproduction, and

distribution of the Work otherwise complies with the conditions stated in

this License.

 

5. Submission of Contributions. Unless You explicitly state otherwise, any

Contribution intentionally submitted for inclusion in the Work by You to

the Licensor shall be under the terms and conditions of this License,

without any additional terms or conditions. Notwithstanding the above,

nothing herein shall supersede or modify the terms of any separate license

agreement you may have executed with Licensor regarding such Contributions.

 

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor, except

as required for reasonable and customary use in describing the origin of

the Work and reproducing the content of the NOTICE file.

 

7. Disclaimer of Warranty. Unless required by applicable law or agreed to

in writing, Licensor provides the Work (and each Contributor provides its

Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY



             Open Source Used In JVDI Client for Windows 14.0  221

KIND, either express or implied, including, without limitation, any

warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or

FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for

determining the appropriateness of using or redistributing the Work and

assume any risks associated with Your exercise of permissions under this

License.

 

8. Limitation of Liability. In no event and under no legal theory, whether

in tort (including negligence), contract, or otherwise, unless required by

applicable law (such as deliberate and grossly negligent acts) or agreed to

in writing, shall any Contributor be liable to You for damages, including

any direct, indirect, special, incidental, or consequential damages of any

character arising as a result of this License or out of the use or

inability to use the Work (including but not limited to damages for loss of

goodwill, work stoppage, computer failure or malfunction, or any and all

other commercial damages or losses), even if such Contributor has been

advised of the possibility of such damages.

 

9. Accepting Warranty or Additional Liability. While redistributing the

Work or Derivative Works thereof, You may choose to offer, and charge a fee

for, acceptance of support, warranty, indemnity, or other liability

obligations and/or rights consistent with this License. However, in

accepting such obligations, You may act only on Your own behalf and on Your

sole responsibility, not on behalf of any other Contributor, and only if

You agree to indemnify, defend, and hold each Contributor harmless for any

liability incurred by, or claims asserted against, such Contributor by

reason of your accepting any such warranty or additional liability.

 

END OF TERMS AND CONDITIONS

 

APPENDIX: How to apply the Apache License to your work

 

To apply the Apache License to your work, attach the following boilerplate

notice, with the fields enclosed by brackets "[]" replaced with your own

identifying information. (Don't include the brackets!) The text should be

enclosed in the appropriate comment syntax for the file format. We also

recommend that a file or class name and description of purpose be included

on the same "printed page" as the copyright notice for easier

identification within third-party archives.

 

Copyright [yyyy] [name of copyright owner]

 

Licensed under the Apache License, Version 2.0 (the "License"); you may

not use this file except in compliance with the License. You may obtain a

copy of the License at

 

http://www.apache.org/licenses/LICENSE-2.0

 



             Open Source Used In JVDI Client for Windows 14.0  222

Unless required by applicable

law or agreed to in writing, software distributed under the License is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, either express or implied. See the License for the specific language

governing permissions and limitations under the License.

/* ------------------------------------------------------------------

* Copyright (C) 2009 PacketVideo

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

*      http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

* express or implied.

* See the License for the specific language governing permissions

* and limitations under the License.

* -------------------------------------------------------------------

*/

 

Portions of the PacketVideo supplied code contain contributions which may be

covered by the following copyright statements:

 

 

/*     -------------------------------------------------------------------       *

*                    MPEG-4 Simple Profile Video Decoder

*     -------------------------------------------------------------------       *

*

* This software module was originally developed and/or edited by

*

*   Paulo Nunes (IST / ACTS-MoMuSyS)

*   Robert Danielsen (Telenor / ACTS-MoMuSyS)

*   Luis Ducla-Soares (IST / ACTS-MoMuSys).

*   Cor Quist (KPN / ACTS-MoMuSys).

*   Minhua Zhou (HHI / ACTS-MoMuSys).

*

* in the course of development of the MPEG-4 Video (ISO/IEC 14496-2) standard.

* This software module is an implementation of a part of one or more MPEG-4

* Video (ISO/IEC 14496-2) tools as specified by the MPEG-4 Video (ISO/IEC

* 14496-2) standard.

*

* ISO/IEC gives users of the MPEG-4 Video (ISO/IEC 14496-2) standard free

* license to this software module or modifications thereof for use in hardware

* or software products claiming conformance to the MPEG-4 Video (ISO/IEC

* 14496-2) standard.



             Open Source Used In JVDI Client for Windows 14.0  223

*

* Those intending to use this software module in hardware or software products

* are advised that its use may infringe existing patents. The original

* developer of this software module and his/her company, the subsequent

* editors and their companies, and ISO/IEC have no liability for use of this

* software module or modifications thereof in an implementation. Copyright is

* not released for non MPEG-4 Video (ISO/IEC 14496-2) Standard conforming

* products.

*

* ACTS-MoMuSys partners retain full right to use the code for his/her own

* purpose, assign or donate the code to a third party and to inhibit third

* parties from using the code for non MPEG-4 Video (ISO/IEC 14496-2) Standard

* conforming products. This copyright notice must be included in all copies or

* derivative works.

*

* Copyright (c) 1996, 1997

*

*****************************************************************************/

 

 

 

/****************************************************************************

 

SC 29 Software Copyright Licencing Disclaimer:

 

This software module was originally developed by

 Coding Technologies

 

and edited by

 -

 

in the course of development of the ISO/IEC 13818-7 and ISO/IEC 14496-3

standards for reference purposes and its performance may not have been

optimized. This software module is an implementation of one or more tools as

specified by the ISO/IEC 13818-7 and ISO/IEC 14496-3 standards.

ISO/IEC gives users free license to this software module or modifications

thereof for use in products claiming conformance to audiovisual and

image-coding related ITU Recommendations and/or ISO/IEC International

Standards. ISO/IEC gives users the same free license to this software module or

modifications thereof for research purposes and further ISO/IEC standardisation.

Those intending to use this software module in products are advised that its

use may infringe existing patents. ISO/IEC have no liability for use of this

software module or modifications thereof. Copyright is not released for

products that do not conform to audiovisual and image-coding related ITU

Recommendations and/or ISO/IEC International Standards.

The original developer retains full right to modify and use the code for its

own purpose, assign or donate the code to a third party and to inhibit third

parties from using the code for products that do not conform to audiovisual and



             Open Source Used In JVDI Client for Windows 14.0  224

image-coding related ITU Recommendations and/or ISO/IEC International Standards.

This copyright notice must be included in all copies or derivative works.

Copyright (c) ISO/IEC 2003.

 

*******************************************************************************/

 

 

/**************************************************************************

 

This software module was originally developed by

 

Mikko Suonio (Nokia)

 

in the course of development of the MPEG-2 NBC/MPEG-4 Audio standard

ISO/IEC 13818-7, 14496-1,2 and 3. This software module is an

implementation of a part of one or more MPEG-2 NBC/MPEG-4 Audio tools

as specified by the MPEG-2 NBC/MPEG-4 Audio standard. ISO/IEC gives

users of the MPEG-2 NBC/MPEG-4 Audio standards free license to this

software module or modifications thereof for use in hardware or

software products claiming conformance to the MPEG-2 NBC/ MPEG-4 Audio

standards. Those intending to use this software module in hardware or

software products are advised that this use may infringe existing

patents. The original developer of this software module and his/her

company, the subsequent editors and their companies, and ISO/IEC have

no liability for use of this software module or modifications thereof

in an implementation. Copyright is not released for non MPEG-2

NBC/MPEG-4 Audio conforming products. The original developer retains

full right to use the code for his/her own purpose, assign or donate

the code to a third party and to inhibit third party from using the

code for non MPEG-2 NBC/MPEG-4 Audio conforming products. This

copyright notice must be included in all copies or derivative works.

 

Copyright (c) 1997.

 

***************************************************************************/

 

 

/**************************************************************************

 

This software module was originally developed by

Nokia in the course of development of the MPEG-2 AAC/MPEG-4

Audio standard ISO/IEC13818-7, 14496-1, 2 and 3.

This software module is an implementation of a part

of one or more MPEG-2 AAC/MPEG-4 Audio tools as specified by the

MPEG-2 aac/MPEG-4 Audio standard. ISO/IEC  gives users of the

MPEG-2aac/MPEG-4 Audio standards free license to this software module

or modifications thereof for use in hardware or software products

claiming conformance to the MPEG-2 aac/MPEG-4 Audio  standards. Those



             Open Source Used In JVDI Client for Windows 14.0  225

intending to use this software module in hardware or software products

are advised that this use may infringe existing patents. The original

developer of this software module, the subsequent

editors and their companies, and ISO/IEC have no liability for use of

this software module or modifications thereof in an

implementation. Copyright is not released for non MPEG-2 aac/MPEG-4

Audio conforming products. The original developer retains full right to

use the code for the developer's own purpose, assign or donate the code to a

third party and to inhibit third party from using the code for non

MPEG-2 aac/MPEG-4 Audio conforming products. This copyright notice

must be included in all copies or derivative works.

Copyright (c)1997. 

 

***************************************************************************/

 

 

------------------------------------------------------------------------------

 

MPEG-2 NBC Audio Decoder

  "This software module was originally developed by AT&T, Dolby

  Laboratories, Fraunhofer Gesellschaft IIS in the course of development

  of the MPEG-2 NBC/MPEG-4 Audio standard ISO/IEC 13818-7, 14496-1,2 and

  3. This software module is an implementation of a part of one or more

  MPEG-2 NBC/MPEG-4 Audio tools as specified by the MPEG-2 NBC/MPEG-4

  Audio standard. ISO/IEC gives users of the MPEG-2 NBC/MPEG-4 Audio

  standards free license to this software module or modifications thereof

  for use in hardware or software products claiming conformance to the

  MPEG-2 NBC/MPEG-4 Audio  standards. Those intending to use this software

  module in hardware or software products are advised that this use may

  infringe existing patents. The original developer of this software

  module and his/her company, the subsequent editors and their companies,

  and ISO/IEC have no liability for use of this software module or

  modifications thereof in an implementation. Copyright is not released

  for non MPEG-2 NBC/MPEG-4 Audio conforming products.The original

  developer retains full right to use the code for his/her own purpose,

  assign or donate the code to a third party and to inhibit third party

  from using the code for non MPEG-2 NBC/MPEG-4 Audio conforming products.

  This copyright notice must be included in all copies or derivative

  works."

  Copyright(c)1996.

 

------------------------------------------------------------------------------

 

 

/*

* snprintf.c - a portable implementation of snprintf

*

* AUTHOR



             Open Source Used In JVDI Client for Windows 14.0  226

*   Mark Martinec <mark.martinec@ijs.si>, April 1999.

*

*   Copyright 1999, Mark Martinec. All rights reserved.

*

* TERMS AND CONDITIONS

*   This program is free software; you can redistribute it and/or modify

*   it under the terms of the "Frontier Artistic License" which comes

*   with this Kit.

*

*   This program is distributed in the hope that it will be useful,

*   but WITHOUT ANY WARRANTY; without even the implied warranty

*   of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

*   See the Frontier Artistic License for more details.

*

*

*/

 

The "Frontier Artistic License" may be found at

http://www.spinwardstars.com/frontier/fal.html

 

 

/*---------------------------------------------------------------------------*/

 

/*

* Copyright (c) 2005 The Khronos Group Inc.

*

* Permission is hereby granted, free of charge, to any person obtaining

* a copy of this software and associated documentation files (the

* "Software"), to deal in the Software without restriction, including

* without limitation the rights to use, copy, modify, merge, publish,

* distribute, sublicense, and/or sell copies of the Software, and to

* permit persons to whom the Software is furnished to do so, subject

* to the following conditions:

* The above copyright notice and this permission notice shall be included

* in all copies or substantial portions of the Software.

*

* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*

*/

 

/*---------------------------------------------------------------------------*/

 



             Open Source Used In JVDI Client for Windows 14.0  227

/**@@@+++@@@@******************************************************************

**

** Microsoft Windows Media

** Copyright (C) Microsoft Corporation. All rights reserved.

**

***@@@---@@@@******************************************************************

*/

 

 

-------------------------------------------------------------------------------

Portions of this file are derived from the following 3GPP standard:

 

   3GPP TS 26.073

   ANSI-C code for the Adaptive Multi-Rate (AMR) speech codec

   Available from http://www.3gpp.org

 

(C) 2004, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC)

Permission to distribute, modify and use this file under the standard license

terms listed above has been obtained from the copyright holder.

-------------------------------------------------------------------------------

 

 

-------------------------------------------------------------------------------

Portions of this file are derived from the following 3GPP standard:

 

   3GPP TS 26.173

   ANSI-C code for the Adaptive Multi-Rate - Wideband (AMR-WB) speech codec

   Available from http://www.3gpp.org

 

(C) 2007, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC)

Permission to distribute, modify and use this file under the standard license

terms listed above has been obtained from the copyright holder.

-------------------------------------------------------------------------------

 

1.25 zlib 1.2.3 
1.25.1 Available under license : 

/* match.s -- Pentium-optimized version of longest_match()

* Written for zlib 1.1.2

* Copyright (C) 1998 Brian Raiter <breadbox@muppetlabs.com>

*

* This is free software; you can redistribute it and/or modify it

* under the terms of the GNU General Public License.

*/

/* zlib.h -- interface of the 'zlib' general purpose compression library

 version 1.1.4, March 11th, 2002

 



             Open Source Used In JVDI Client for Windows 14.0  228

 Copyright (C) 1995-2002 Jean-loup Gailly and Mark Adler

 

 This software is provided 'as-is', without any express or implied

 warranty.  In no event will the authors be held liable for any damages

 arising from the use of this software.

 

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 

 1. The origin of this software must not be misrepresented; you must not

    claim that you wrote the original software. If you use this software

    in a product, an acknowledgment in the product documentation would be

    appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

    misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

 

 Jean-loup Gailly        Mark Adler

 jloup@gzip.org          madler@alumni.caltech.edu

 

 

 The data format used by the zlib library is described by RFCs (Request for

 Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt

 (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).

*/

 
 

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries.To view a list of Cisco trademarks, go to

this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a

partnership relationship between Cisco and any other company. (1110R)

 
©2021 Cisco Systems, Inc. All rights reserved.

 


