HTTP Trigger Application

Application Overview:

The HTTP Trigger Application will utilize the advanced capabilities of scripting for callback requests that are initiated from a web form on the company web site. Once the request is initiated the customer gets a confirmation page about the request. The customer also gets a call from the system that places him/her in the queue to talk to the next available agent. Meanwhile, the system finds an agent to connect to the customer. When the agent gets connected with customer, the agent will see the customer information in the embedded browser within the Cisco Agent Desktop application.
Note:
This application / script was built using UCCX version 7.0(1). It should be backward compatible with UCCX 5.x; however it has not been tested.

Note: This document uses CRS and CCX terms interchangeably. CRS is a term that is used in prior to version 7.x to refer to the platform. In version 7.x, CCX is used to refer to both the product and platform.
With this script we are going to cover the following options:

1. “Get HTTP Contact Info” step for getting parameters from HTTP request
2. “HTTP Redirect” step for responding the customer web request
3. “Place Call” step for calling another number
4. “Call Redirect” step for redirecting a call

Operation Overview:

This application is typically the first level of interface with your clients’ customers when they interface the company web site. It should be thoroughly tested from end to end. As mentioned before, when designing a call flow it is best to document each step with the customer using a program such as Microsoft’s Visio. This documentation allows your customer to better understand each step and to make sure the script is meeting all of their requirements. For a partner who is designing the call flow, it allows you to get a sign-off on the call flow to help alleviate changes.
The call flow documented in Figure 8.1 will be used as a guide that will be configured throughout this document.
[image: image97.png]
Figure 8.1
Files and Folders Involved:
Table 8.1 shows the list of the files and their descriptions used with this application.
	Table 8.1

	File or Folder Name
	Description

	BaseLineHTTPTrigger.aef
	Main script file that handles HTTP trigger application

	BaseLineHTTPCallback.aef
	Script that handled the callback feature

	BaseLineHoliday.aef
	Script that checks if the day is a holiday

	Holidays.xml
	The xml file that has the list of the holidays

	CurrentState.xml
	The xml file that stores the current state of the system; automatic, manually open, or manually closed

	ScreenPop (Folder)
	The files that are used as a sample web site that interfaces to the sample database

Example Prompts:
When designing your call flow, document each point where a prompt is needed. Label each prompt with a four digit prompt number that you will use within your scripting. In Figure 8.1, there is one prompt that will need to be recorded. The Table 8.2 shows the names of prompts and a sample verbiage for each prompts based on the call flow.
	Table 8.2

	Prompt Name
	Sample verbiage

	1196.wav
	Thank you for scheduling a callback. Please stay on the line for the next available agent.

Technical Overview:

At the end of this document is a complete script layout along with a description for each step and its functionality. A list of all the variables used in this script along with their values is listed below the script layout.

Launching the CRS Editor
1. Launch the CRS Editor program by Clicking on your Windows “Start” button and then highlight “Programs” then “Cisco CRS Developer” and then “Cisco CRS Editor”. The Figure 8.2 shows the login screen.
[image: image1.png]
Figure 8.2
2. Login to the CRS Editor with your user ID (that has Administrator rights to the UCCX Administration web site) password and UCCX Server name or IP Address. (Note: If you login anonymously you will not be able to load your scripts directly to the repository or run a script in Debug – Reactive Script mode (Great Troubleshooting Tool!).)
Editing the HTTP Trigger Application Scripts
BaseLineHTTPTrigger.aef script
Once the CRS Editor loads, click on “File” then “Open” and browse to the directory that has the script “BaseLineHTTPTrigger.aef”. The Figure 8.3 shows the CRS Editor and the script opened in the editor.
[image: image2.png]
Figure 8.3
To expand all the branches of the script, click on any step and right click your mouse. Choose “Expand All” to see all the steps as it is shown in Figure 8.4. on page 5.
[image: image3.png]
Figure 8.4

Submitting the callback request
The customer goes to the web site and submits a form to request a callback. The sample web site is included this package and the instructions for how to set it up is explained later in this document. Figure 8.5 shows the web site.
[image: image4.png]
Figure 8.5
Getting HTTP request
1. The first step used in the script is “Get HTTP Contact Info” to get the http parameters that are passed with the HTTP request.
2. In the “General” tab of the step is shown in Figure 8.6. The description of the fields in the “General” tab and values used in this script are in Table 8.3.
	Table 8.3

	Get GTTP Contact Info Step - General Tab

	Property
	Description
	Value

	HTTP Contact
	Contact (trigger event) the step is interfacing with.
	default

[image: image5.png]
Figure 8.6

3. In the “Headers” tab, The “Header” setting displays the HTTP headers that are mapped to local variables. HTTP headers contain general information such as the type of browser or the version of HTTP used. Each header provides one value, which is identified by the header name. As an example, you may use information from HTTP headers in advanced scripts to customize the behavior of your script for different HTTP versions or for different browser types. The “Headers” tab is shown in Figure 8.7 on page 7. The description of the four types of headers HTTP provided is in Table 8.4 continued on page 7.
	Table 8.4

	Headers
	Descriptions

	General
	Used by both servers and clients (browsers).

	Server
	Used only by servers

	Request
	Used only by clients (browsers). Common HTTP Request Headers include:

- Accept: Preferred media type.

- Authorization: Client user name and password.

- From: E-mail address of the client.

- Host: Host name and port number of the server receiving the original request

- Referrer: URL of the source document.

- User-Agent: Browser type.

	Entity
	Used by servers and by clients using POST or PUT methods.

The description of the fields in the “Headers” tab is in Table 8.5.
	Table 8.5

	Get GTTP Contact Info Step - Headers Tab

	Property
	Description

	Headers
	The “Names” and “Variables” columns are the names of the headers and the corresponding variables that map to the headers.

	Add and Modify buttons
	Used to access the Header dialog box where the name of a header and name of the variable that maps to the header are defined.

	Delete button
	Used to remove HTTP Header information by highlighting a value in the list and clicking the button.

[image: image6.png]
Figure 8.7

4. In the “Parameters” tab of the step, the “Parameters” setting is used to map the parameters for your script to variables you have defined in the Cisco CRS Editor. When you fill in an HTML form, the values are passed as parameters to the web server. The “Get Http Contact Info” step reads the values of these parameters from the HTTP request and updates the current values of the local variables in your application. The Get Http Contact Info step reads values from both the GET and POST methods. The ‘Parameters” tab is shown in figure 8.8. The description of the fields in the “Parameters” tab is in Table 8.6.
	Table 8.6

	Get GTTP Contact Info Step - Parameters Tab

	Property
	Description

	Parameters
	The “Names” and “Variables” columns are the names of the parameters and the corresponding variables that map to the parameters.

	Add and Modify buttons
	Used to access the Parameters dialog box where name of the HTTP parameter and the string variable to be mapped to the parameter are entered.

	Delete button
	Used to remove Parameter information by highlighting a value in the list and clicking the button.

[image: image7.png]
Figure 8.8
5. The parameters and the variables used in this script are in Table 8.7.
	Table 8.7

	Parameter Name
	Variable Name

	callback
	callbackNumber

	firstname
	firstName

	accountNumber
	accountNumber

	lastname
	lastName

6. In the “Cookies” tab of the step, the “Cookies” setting is used to map information from a local variable to a cookie. A cookie is information maintained by the browser that is typically sent by an HTTP server. The information in cookies can improve performance and convenience when a user repeatedly accesses the same web page. Most cookies store authentication or identifying information. Once the server authenticates a browser, it can send authentication credentials or other user identifiers to the browser cookie. The user can then access the web page without further authentication or identification. Another use for cookies is to store a mapping identifier to a session object so you can, on subsequent requests, retrieve the original session object associated with the previous HTTP request and re-associate it to the new HTTP Contact. The “Cookies” tab is shown in Figure 8.9. The description of the fields in the “Cookies” tab is in T.
	Table 8.8

	Get GTTP Contact Info Step - Cookies Tab

	Property
	Description

	Cookies
	The ‘Names” and “Variable” column are the names of cookies and the variables to which they are mapped.

	Add and Modify buttons
	Used to access the Cookie dialog box where name of the Cookie and the string variable to be mapped to the cookie are entered.

	Delete button
	Used to remove Cookie information by highlighting a value in the list and clicking the button.

[image: image8.png]
Figure 8.9

7. The “CGI Variables” tab of the step is used to map information from CGI environment variables to local variables. The “CGI Variables” tab is shown in Figure 8.10 on page 10. The description of the fields in the “CGI Variables” tab is in Table 8.9.
	Table 8.9

	Get GTTP Contact Info Step - CGI Variables Tab

	Property
	Description

	CGI Variables
	The “Name” and “Variables” column ate the names of CGI Environment variables and corresponding local variables to which they are mapped.

	Set button
	used to map a variable. To set a variable, select a Name and click “Set” button. Choose a value from the variable drop-down list and then click “OK” button. The variable name appears in the variable column next to the Name you selected.

	Clear button
	Used to remove Environment information, highlight a value in the list and click on “Clear” button.

[image: image9.png]
Figure 8.10

8. Table 8.10 has the description of the Environment variables in “CGI Variables” tab.

	Table 8.10

	Name
	Description

	AUTH_TYPE
	The protocol-specific authentication method used to validate the user when the server supports user authentication and the script requires authentication.

	CONTENT_LENGTH
	The content length of the data as specified by the client.

	CONTENT_TYPE
	The content type of the data for queries such as HTTP GET and HTTP POST that have attached information.

	PATH_INFO
	Extra path information as given by the client. Scripts can be accessed by a virtual pathname, followed by extra information at the end of the path. The extra information is sent as PATH_INFO. The server decodes this information if it comes from a URL before it is passed to the script.

	PATH_TRANSLATED
	Translated version of PATH_INFO, with any associated virtual-to-physical mapping.

	QUERY_STRING
	The information that follows the question mark (?) in the URL that references this script.

This information is the query information. Do not decode it. Always set this variable when there is query information, regardless of command line decoding.

	REMOTE_ADDR
	The IP address of the remote host making the request.

	REMOTE_HOST
	The hostname making the request.

If the server does not have this information, it will instead set REMOTE_ADDR.

	REMOTE_USER
	The authenticated user name when the server supports user authentication and the script requires authentication.

	REQUEST_METHOD
	The method of the request that was made, such as GET or POST.

	SCRIPT_NAME
	A virtual path to the script being executed, used for self-referencing URLs.

	SERVER_NAME
	The server's hostname, DNS1 alias, or IP address as it would appear in a self-referencing URL.

	SERVER_PORT
	The TCP port number of the request.

	SERVER_PROTOCOL
	The name and revision of the information protocol of the request, in the format: protocol/revision.

State of the Call Center – Holiday - Business Days & Hours
1. The next steps check the state of the call center. The date is also checked if it is a holiday or not. The day of the week and time of the day checks are done for business hour controls.

2. If the state of the call center is “Manually Closed”, the script runs the “Goto” step to the “Closed” label.
3. If the state of the call center is “Manually Open”, the script runs the “Goto” step to the “Welcome” label.
4. If the state of the call center is “Automatic”, the script runs the “Goto” step to the “CheckHoliday” label.
5. If it’s a holiday, the script runs the “Goto” step to the “Closed” label.

6. If the Day of the Week and Time of the Day setting falls out of the business hours, the script runs the “Goto” step to the “Closed” label. Otherwise, the script runs the “Goto” step to the “Welcome” label.
Placing A Call

1. The system places a call using the “Place Call” step to a number to create a behind-the-scene call on behalf of the caller, so an available agent gets the call, listens to the caller’s message, and initiates the callback to the caller. The “Place Call” step is shown in Figure 8.11The description of the fields in the “General” tab and the values used in the scripts are in Table 8.11. (See page 12)
	Table 8.11

	Place Call Step - General Tab

	Property
	Description
	Value

	Destination
	The destination number of the outbound call.
	“extensionOutCallHTTP” variable

	Timeout
	The time, in seconds, before a Ring No Answer condition stops the script from waiting for the remote side to answer and returns through the Ring-No-Answer output branch.
	10 (default)

	Call Control Group
	Value that stores the identifying number of the call group with which the outbound call is associated.
	1

	Dialog Groups
	An ordered list of dialog group identifiers where the first one has priority and the other dialog groups fall back in the specified order.
	1

	Call Contact
	The name of the variable that stores the call that is created when the step succeeds.
	“outboundCallContact” variable

[image: image10.png]
Figure 8.11
2. The number in “Destination” setting of the “Place Call” step is coming from the “extensionOutCallHTTP” variable. This variable is a parameter that can be changed from the application page for the “BaseLineHTTPTrigger.aef” in CRS Administration site. This number has to be the trigger number of BaseLineHTTPCallback.aef application. The role of the “BaseLineHTTPCallback.aef” script/application is to find an available agent for the behind-the-scene call. A detailed description of the “BaseLineHTTPCallback.aef” is given later in this document.
3. If the “Place Call” step is successful, the call goes to the “Successful” branch.

4. The other branches of “Place Call” step are “NoAnswer”, “Busy”, “Invalid”, “NoResource”, and “Unsuccessful”. The “NoAnswer” branch is executed when the Ring No Answer timeout limit was reached. The “Busy” branch is executed when the line was busy. The “Invalid” branch is executed when the extension was invalid. The “NoResource” branch is executed when the call was not attempted because no resource was available to make the call. The “Unsuccessful” branch is executed when the call was failed because of an internal system error. Branches other than “Successful”, ends the script by using the “Goto” step to the “Error” label without getting an agent listening the caller’s message.
5. In the “Successful” branch of the “Place Call” step, the script waits until the placed call gets connected to an agent and expects the agent to press any key to listen to the message the caller left.
6. In the “Successful” branch of the “Place Call” step, the first step is the “Set Enterprise Call Info” step. The “Set Enterprise Call Info” step can send data from one part of the system to another.
7. The “General” tab of the “Set Enterprise Call Info” step is used to set call data in predefined Call Variables. There are ten (10) “Call Variables” that can be used to pass data into the db_cra database. The variables defined in the “General” tab are stored in the Cisco Agent Desktop call record fields. They can be found in the ContactCallDetail table and can be used in reporting using the Historical Report Tool. This step should be placed script before the call gets connected to an agent. This means the step in the script should be placed before the Select Resource Step or in the Selected/Queued branch of the Select Resource step. The “General” tab is shown in Figure 8.12 on page 14. The description of the fields in the “General” tab is in Table 8.12.
	Table 8.12

	Set Enterprise Call Info Step- General Tab

	Property
	Description

	Contact
	Contact (trigger event) the step is interfacing with.

	Fields
	Values: An expression or variable from the drop-down list, or an expression which will be the value to which you set the enterprise call variable
Names: The name of the enterprise call variable you want to set.
Token: The token (index) number of the enterprise call variable. Leave the default value if you do not want to use a token.

	Add and Modify buttons
	Used to access the Add Field dialog box. Use that dialog to add or modify the mapping of enterprise call variables to local call variables.

	Delete button
	Used to remove the mapping of an enterprise call variable to a local call variable.

8. Table 8.13 shows the Call Variable and local variable mapping that is used in the script. This information will be passed to the Cisco Agent Desktop based on the default layout that is chosen.

	Table 8.13

	Values (Variables)
	Names
	Tokens

	firstName
	-- CallPeripheralVariable8 --
	-- All -- (default)

	callbackNumber
	-- CallPeripheralVariable9 --
	-- All -- (default)

	accountNumber
	-- CalPeripheralVariable10 --
	-- All -- (default)

	lastName
	-- CallPeripheralVariable3 --
	-- All -- (default)

[image: image11.png]
Figure 8.12
9. Next, there are some “If” steps to make sure the callback number that caller submitted thorough the web request can be dialed by the system. The script has variables as parameters that determine setting like dial-out digit and the local area code the system is in. Table 8.14 shows variables and values used to determine the number to dial for callback
	Table 8.14

	Variable
	Value

	digitForDialTone
	9

	localAreaCode
	513

Using the local variables shown table above and entered callback number, Next “If” steps will make the “callbackNumber” a number that can be dialed by the system.
10. The next step is the “If” step. This step checks if the length of the value of the “callbackNumber” variable equals to ten using the following expression:

callbackNumber.length() == 10

If true, this indicates that the caller entered ten-digit callback number that includes area code. The screenshot of this “If” step is shown in Figure 8.13
[image: image12.png]
Figure 8.13
11. In the “True” branch of the “If” step, another “If” step is used to check if the first three digit of the ten-digit callback number equals to the value of the “localAreaCode” variable by using the following expression;

callbackNumber.substring(0,3) == localAreaCode

If true, it indicates that the number that caller entered is a local number. If false, it indicates the number that caller entered is a long distance number. The screenshot of this “If” step is shown in Figure 8.14

[image: image13.png]
Figure 8.14
12. In the “True” branch of the insider “If” step; the “Set” step is used. The value of the “callbackNumber” variable is re-set to the concentration of the value of the “digitForDialTone” variable and the value of the “callbackNumber” variable starting from the 4th character. In other words, the statement drops the 3-digit area code in front of the callback number entered initially and puts the value in the “digitForDialTone” variable in front of it. The “Set” step is shown in the Figure 8.15. Table 8.15 demonstrates an example.
	Table 8.15

	callbackNumber
	1234567890

	digitForDialTone
	9

	localAreaCode
	123

	New callbackNumber
	94567890

[image: image14.png]
Figure 8.15
13. In the “False” branch of the insider “If” step; the “Set” step is used. The value of the “callbackNumber” variable is re-set to the concentration of the value of the “digitForDialTone” variable, “1”, and the value of the “callbackNumber” variable. In other words, the statement adds the value in the “digitForDialTone” variable and “1” in front of the value of the “callbackNumber” variable. The “Set” step is shown in the Figure 8.16. Table 8.16 demonstrates an example.
	Table 8.16

	callbackNumber
	4567890123

	digitForDialTone
	9

	localAreaCode
	123

	New callbackNumber
	914567890123

[image: image15.png]
Figure 8.16
14. The next step is “If” step. This step checks if the length of the value of the “callbackNumber” variable equals to seven by using following expression

callbackNumber.length() == 7

If true, this indicates that the caller entered seven-digit callback number that does not include area code. The screenshot of this “If” step is shown in Figure 8.17
[image: image16.png]
Figure 8.17
15. In the “True” branch of the “If” step; the “Set” step is used. The value of the “callbackNumber” variable is re-set to the concentration of the value of the “digitForDialTone” variable, and the value of the “callbackNumber” variable. In other words, the statement adds the value in the “digitForDialTone” variable in front of the value of the “callbackNumber” variable. The “Set” step is shown in the Figure 8.18. Table 8.17 demonstrates an example.
	Table 8.17

	callbackNumber
	7890123

	digitForDialTone
	9

	localAreaCode
	123

	New callbackNumber
	97890123

[image: image17.png]
Figure 8.18
16. The next step is “Call Redirect” step that redirects a call to another extension or number. It is used to transfer the call between the system and the agent to the caller at the callback number entered. The “Call Redirect” step is shown in Figure 8.19. The description of the fields in the “General” tab and the values used in this script are in Table 8.18.
	Table 8.18

	Call Redirect Step - General Tab

	Property
	Description
	Value

	Call Contact
	Contact (trigger event) the step is interfacing with.
	“outboundCallContact” variable

	Destination
	The variable that holds the extension where the call is to be redirected.
	“callbackNumber” variable

	Called Address
	Reset To: script resets the original destination of the call to the redirected destination

Preserve: the script preserves the original call destination even after the Call Redirect step executes and the information associated with the call gives no indication that the Route point or CTI port was ever involved with the call.
	default

[image: image18.png]
Figure 8.19
17. The “CallRedirect” step has four braches as shown in Table 8.19.
	Table 8.19

	Branches
	When executed

	Successful
	The call is ringing at the specified extension

	Busy
	The specified extension is busy and the call cannot be transferred

	Invalid
	The specified extension does not exist

	Unsuccessful
	The redirect step fails internally

18. In the “Busy”, “Invalid”, and “Unsuccessful” branches, the fist step is “Set Contact Info” step to set the “Handled” attribute of the contact to “Marked”. The “Set Contact Info” step is shown in Figure 8.20 on page 21.
[image: image19.png]
Figure 8.20
19. After the “Set Contact Info” step in the “Busy”, “Invalid”, and “Unsuccessful” branches, the script runs the “Goto” step to the “Error” label is used to end the script.

20. In the “Successful” branch of the “Call Redirect” step, the first step is the “Get Reporting Statistics” step to find the callers expected wait time in the queue and assign it to the variable “expectedWaitSecond”. The description of the fields in the “General” tab and the values used in this script are in Table 8.20. The “Get Reporting Statistic” step is shown in Figure 8.21 on page 21.
	Table 8.20

	Get Reporting Statistics Step - General Tab

	Property
	Description
	Value

	Reporting Object
	Type of report:
- Outbound Campaign

- Overall Cisco Unified CCX

- Resource Cisco Unified CCX

- CSQ IPCC Express
	CSQ IPCC Express

	Field
	Specific statistic to retrieve from the report. The list is based on the Reporting Object selected
	Expected Wait Time

	Row Identifier
	Value or the name of variable identifying the CSQ or Resource. Only applicable to CSQ IPCC Express or Resource Cisco Unified CCX reports.
	“CSQ” variable

	Contact
	Contact (trigger event) the step is interfacing with.
	“outboundCallContact” variable

	Result Statistics
	Variable that will contain the resulting statistic value.
	“expectedWaitSecond” variable

[image: image20.png]
Figure 8.21
21. The next step is the “If” step to check if the value of the “expectedWaitSecond” variable is smaller than ten by using the following expression;
expectedWaitSecond < 10

The “If” step is shown in Figure 8.22
[image: image21.png]
Figure 8.22
22. In the “True” branch of the “If” step, the “Set” step is used to set the value of the “expectedWaitSecondString” variable to “10”. The “Set” step is shown in Figure 8.23.
[image: image22.png]
Figure 8.23
23. In the “False” branch of the “If” step, the “Set” step is used to convert the value of the “expectedWaitSecond” variable to a string and save it to the “expectedWaitSecondString” variable. The “Set” step is shown in Figure 8.24.
[image: image23.png]
Figure 8.24
24. The next step is the “Get Reporting Statistics” step to find the callers position in the queue and assign it to the “positionInQueue” variable. Table 8.21 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 8.25.
	Table 8.21

	Get Reporting Statistics Step
	

	Setting
	Value

	Report Object
	CSQ IPCC Express

	Field
	Position In Queue

	Row Identifier
	“CSQ” variable

	Contact
	“outboundCallContact” variable

	Result Statistics
	“positionInQueue” variable

[image: image24.png]
Figure 8.25
25. The next step is the “If” step. This checks if the value of the “positionInQueue” variable is greater than zero by using the following expression.
positionInQueue > 0
The “If” step is shown in Figure 8.26 on the following page.
[image: image25.png]
Figure 8.26
26. In the “True” branch of the “If” step, the “Set” step is used to decrease the value of the “positionInQueue” variable by 1. The “Set” step is shown in Figure 8.27.
[image: image26.png]
Figure 8.27
27. In the “False” branch of the “If” step, the “Set” step is used to set the value of the “positionInQueue” variable zero. The “Set” step is shown in Figure 8.28 on page 26.
[image: image27.png]
Figure 8.28
28. The Next step is the “Set” step to set the value of the “webResponseURL” variable to the full URL address of the response page for the customer. The value that is assigned to the variable is the following:
webConfirmationURL + "?WaitingCall=" + positionInQueue + "&WaitingSecond=" + expectedWaitSecondString + "&callbackNumber=" + callbackNumberEntered

This takes the value of the variables and concentrates them together to create full URL of the response page.

The “webConfirmationURL” is a variable to be changed in the application setting and points to the confirmation page for the web callback application on the web server. Detailed instruction about setting up screen-pop internal web site is in Appendix section.

In general the value of the “webConfirmationURL” is “http://<WebServerIPOrAddress>/webCallbackConfirm.asp”

The “Set” step is shown in Figure 8.29 on page 27.
[image: image28.png]
Figure 8.29
29. The next step is the “HTTP Redirect” step to send the response page to the customer. Using this step puts Http Contact into a final state when the response is returned back to the browser. So the script cannot attempt to send another response back because one has already been sent. The “HTTP Redirect” step is shown in Figure 8.30 on page 28. The description of the fields in the “General” tab and the values used in this script are in Table 8.22.
	Table 8.22

	HTTP Redirect Step - General Tab

	Property
	Description
	Value

	HTTP Contact
	Contact (trigger event) the step is interfacing with.
	default

	URL
	The variable containing or an expression resolving to a URL to which the browser is redirected.
	“webResponseURL” variable

[image: image29.png]
Figure 8.30
30. The next step is the “Set Contact Info” step to set the “Handled” attribute of the contact to “Marked”. The “Set Contact Info” step is shown in Figure 8.31.
[image: image30.png]
Figure 8.31
31. The script runs the “Goto” step to the “End” label finish the script.
32. Under the “Error” label, the first step is the “Set” step to set the value of the “webResponseURL” variable to the URL address of the closed response page for the customer. The value of the “webResponseURL” variable is set to the value of the “webErrorURL” variable.

The “webErrorURL” is a variable to be changed in the Application setting and points to the closed page for the web callback application on the web server. Detailed instruction about setting up screen-pop internal web site is in Appendix section.

In general the value of the “webErrorURL” is “http://<WebServerIPOrAddress>/webCallbackError.asp”

The “Set” step is shown in Figure 8.32.

[image: image31.png]
Figure 8.32
33. The next step is “HTTP Redirect” step to send the response page to the customer. Using this step puts Http Contact into a final state when the response is returned back to the browser. So the script cannot attempt to send another response back because one has already been sent. The “HTTP Redirect” step is shown in Figure 8.33. The values used in the “General” tab in this script are in Table 8.23.
	Table 8.23

	HTTP Redirect Step - General Tab

	Property
	Value

	HTTP Contact
	default

	URL
	“webResponseURL” variable

[image: image32.png]
Figure 8.33
34. The script runs the “Goto” step to the “End” label finish the script.
35. Under the “Closed” label, the first step is the “Set” step to set the value of the “webResponseURL” variable to the URL address of the closed response page for the customer. The value of the “webResponseURL” variable is set to the value of the “webClosedURL” variable.

The “webClosedURL” is a variable to be changed in the Application setting and points to the closed page for the web callback application on the web server. Detailed instruction about setting up screen-pop internal web site is in Appendix section. In general the value of the “webClosedURL” is “http://<WebServerIPOrAddress>/webCallbackClosed.asp”
The “Set” step is shown in Figure 8.34 on page 31.

[image: image33.png]
Figure 8.34
36. The next step is “HTTP Redirect” step to send the response page to the customer. Using this step puts Http Contact into a final state when the response is returned back to the browser. So the script cannot attempt to send another response back because one has already been sent. The “HTTP Redirect step is shown in Figure 8.35, page 32. The values used in the “General” tab in this script are in Table 8.24.
	Table 8.24

	HTTP Redirect Step - General Tab

	Property
	Value

	HTTP Contact
	default

	URL
	“webResponseURL” variable

[image: image34.png]
Figure 8.35
37. The script runs the “Goto” step to the “End” label finish the script.
BaseLineHTTPCallback.aef script

On the CRS Editor, click on “File” then “Open” and browse to the directory that has the script “BaseLineHTTPCallback.aef”. The Figure 8.36 shows the CRS Editor and the script opened in the editor.
[image: image35.png]
Figure 8.36
To expand all the branches of the script, click on any step and right click your mouse. Choose “Expand All” to see all the steps as it’s shown in Figure 8.37 on page 33.
[image: image36.png]
Figure 8.37
1. When a call placed in to “BaseLineHTTPCallback.aef” script/application, the script accepts the call and starts looking for an available agent.
2. The next step is the “Set” step to set the value of the “Layout” variable to “BaseLine” value. The “Set” step is shown in Figure 8.38.
[image: image37.png]
Figure 8.38
3. The next step is the “Set Enterprise Call Info” step to assign the “Layout” variable to one of the ECC variables in the “Expanded Call Variables” tab. The “Set Enterprise Call Info” step is shown in Figure 8.39.
[image: image38.png]Figure 8.39
4. The “Select Resource” step is used to queue a call to a specific set of agents and optionally to connect the call to the agent the system chooses. The “Select Resource” step is shown in Figure 8.40 on page 35. The description of the fields in “General” tab and values used in this script are in Table 8.25.
	Table 8.25

	Select Resource Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step interfacing with
	default

	Routing Target Type
	Indicates the routing method used.

Contact Service Queue: Calls will be routed to an available agent in the specified CSQ

Resource: Calls will be routed to the specified agent. Select this option for Agent Based Routing feature.
	Contact Service Queue

	CSQ Target
	Identifies which CSQ is targeted
	“CSQ” variable

	Connect
	Yes: the system will connect the call to the available resource as soon as it becomes available.

No: the system will select the resource but not connect until the “Connect” step is executed later in the script.
	No

	Timeout
	The length of time, in seconds, before the contact is retrieved back into the queue.

Note: This value must be lower than the Call Forward No Answer timeout in the Cisco Unified Communications Manager.
	10 (default)

It’s disabled if the “Connect” is set to “No”

	Resource Selected
	The variable that identifies the target Resource
	“selectedResource” variable

[image: image39.png]
Figure 8.40
5. The “Select Resource” step has two branches. If an agent is available it will go to the first branch which is “Selected”.
6. The “Connect” Step in the first step under “Selected” branch since the “Connect” was set to “No” on the “Select Resource” step. The “Connect” step is shown in Figure 8.41 on page 36. The description of the fields in “General” tab and values used in this script are in Table 8.26.
	Table 8.26

	Connect Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step interfacing with
	default

	Resource Selected
	The variable that identifies the target Resource
	“selectedResource” variable

	Timeout
	The length of time, in seconds, before the contact is retrieved back into the queue.
	10 (default)

[image: image40.png]
Figure 8.41
7. If no agents are available, the “Select Resource” step will send the call to “Queued” branch. In this branch, the type of call treatment that the caller will get can be provided.
8. In the “Queued” branch, the caller is put on hold for 3 seconds where they will hear the “Music on Hold” (MOH) configured in the Call Manager. The MOH that is assigned to the CTI ports determines what the callers will hear in queue. Once the 30 seconds expire the caller is taken off hold. The caller here is the system that placed a call on behalf of the customer who initiated the call. Script is designed to reach both parties, the agent and the customer, simultaneously. So by the time the music on hold plays, the customer may be on the line already.

9. The next step is “Play Prompt” step to play a prompt to the customer, if he/she is already called back before an available agent found. The “Prompt” setting is set to “pQueuePrompt” variable. The “Play Prompt” step is shown in Figure 8.42 on page 37.
[image: image41.png]
Figure 8.42
10. Next, the caller is put on hold for 10 seconds.

11. The call is in a loop until an agent becomes available to take the call.
Call Center – Desktop Administrator - Setting Enterprise Data - Layouts
1. To modify and configure the “Enterprise Data”, launch the “Cisco Desktop Administration” web interface from the following URL:

http://x.x.x.x:6293/teamadmin/main.cda
Note: x.x.x.x is the IP address of the UCC Express server.

The “Cisco Desktop Administration” web site is shown in Figure 8.43.
[image: image42.png]
Figure 8.43
2. The username is “admin”. The password is blank unless it was changed before.

3. Once logged in, expand “Service Configuration”, and then expand “Enterprise Data”. Click on “Fields” to see the list of “Enterprise Data” fields configured as shown in Figure 8.44.
[image: image43.png]
Figure 8.44
4. When the “Enterprise Data” displays in the “Cisco Agent Desktop” application, it uses the “Display Name” defined in the “Cisco Desktop Administrator”. To change the display name of an “Enterprise Data”, click on the “Field Name” of the variable, type in your new “Display Name” and click on “Save” button as it is shown in Figure 8.45, 8.46, 8.47, and 8.48 on pages 39 and 40. Table 8.27 shows the call variables and their display names used in this script.

	Table 8.27

	Call Variable
	Display Name

	Call Variable 10
	Account Number

	Call Variable 8
	First Name

	Call Variable 3
	Last Name

	Call Variable 9
	Callback Number

[image: image44.png]
Figure 8.45
[image: image45.png]
Figure 8.46
[image: image46.png]
Figure 8.47
[image: image47.png]
Figure 8.48
5. The script also uses ECC variables that have to be configured unless they are one of the default ECC variables. Since the “user.layout” variable is a system default, it doesn’t have to be configured.

6. To create ECC variables, Click on “Add New” button in the “Fields” page as shown in Figure 8.49.
[image: image48.png]
Figure 8.49
7. Enter the information and click on the “Save” button as shown Figure 8.50, 8.51, 8.52 shown on pages 41 and 42.. Table 8.28 shows the ECC variables and their attributes used in this script.
	Table 8.28

	Field Name
	Display Name
	Default
	Filed Index

	CheckingBalance
	Checking Balance
	No
	1

	SavingBalance
	Saving Balance
	No
	2

	TotalBalance
	Total Balance
	No
	3

	user.layout
	Layout
	Yes
	252

[image: image49.png]
Figure 8.50
[image: image50.png]
Figure 8.51
[image: image51.png]
Figure 8.52
8. To configure a layout, Expand “services Configuration” and then expand the “Enterprise Data”. Click on the “Layout List” link. The page will display the default layouts already created in the system. Click on the “Add New” button to create a new layout that the script is using as shown in Figure 8.53.
[image: image52.png]
Figure 8.53
9. Enter the layout name “BaseLine” to the field called “Layout Name”. Select the “Enterprise Data” fields from “Available” list box and move them over to the “Selected” list box. Click on the “Save” button as shown in Figure 8.54 on page 43.
[image: image53.png]
Figure 8.54
Call Center – Desktop Administrator – Setting up Work Flows

To be able to set up work flow for this application, please make sure the sample screen-pop internal website is created and working properly. The instructions about setting up screen-pop internal web site are in the appendix section. Rest of the section will assume that you are able to launch the web site and retrieve account information with it without any problem.

The work flow takes the account number from the caller and launches internal web site that displays the account information for that account number using the built in browser within the Cisco Agent Desktop.
1. Work Flows / Screen-Pops are designed at a team level in the UCCX. The work flows can be setup on five different agent events. Typically the “Ringing” and/or “Answer” event is chosen when setting up work flows.

2. To setup a work flow in the Desktop Administrator, expand “Call Center 1”, expand “Work Flow Configuration”, expand “Work Flow Groups”, expand “default”, expand “CAD Agent”, and click on “Voice Contact Work flows”. Select “default” from the list and click on the “Edit” button. For this application the “Ringing” event was chosen. This assumes that the agents are set up to be in the “default” work flow group in the Cisco Desktop Administrator Web Interface. The screenshot is shown in Figure 8.55 on page 44.
[image: image54.png]
Figure 8.55
3. To create a new rule for that event click on “New” button. The “New Name” input box will appear as shown in Figure 8.56. Enter a name for the rule.
[image: image92.png]
Figure 8.56
4. To create new actions for that rule, highlight your new rule and click on “Add” under the “Actions (of current Rule)”. Table 8.29 shows possible actions types.
	Table 8.29

	Action Type
	Description

	Run Macro Action
	Plays back a recorded sequence of keystrokes

	Call Control Actions
	Answer, drop, call, conference, or transfer a call, or input touch tones during a call

	HTTP Action
	Enables the Agent Desktop and CAD-BE integrated browser to interact with a web application

	Launch External Application Action
	Start a third-party application

	Agent State Action
	Set an agent state

	Utility Action
	Run a utility, such as start and stop recording or sending a predefined, high-priority chat message to a supervisor

	Delay Action
	Inserts delay time in series of actions

	Agent Notification Action
	Displays a custom message popup window on the agent’s desktop when a certain event occurs

	Set Enterprise Data Action
	Automatically changes an enterprise data field in Agent Desktop to a selected desktop variable or static text

	IPC Action
	Passes enterprise data or user-defined data from the agent desktop to a custom third-party application

	Timer Action
	Triggers actions after a specified time has elapsed

5. To create the new action, select the “HTTP Action” tab and click on “New” as shown in Figure 8.57.

[image: image55.png]
Figure 8.57
6. In the “URL” section, enter the information that is described in the table below. The screenshot of the “HTTP Action Setup” is shown in Figure 8.58. The description of the fields in “URL” section and the values used in the script are shown in Table 8.30.
	Table 8.30

	URL

	Property
	Description
	Value

	Action Name
	Name of the Action
	BaseLineAccountLookup

	Protocol
	Select HTTP or HTTPS as a protocol
	http

	Method
	Select GET or POST
	GET

	Host
	Host name or IP address of the website. Do not include the HTTP or HTTPS prefix
	y.y.y.y (web server IP address) For detailed information, please refer to the appendix section.

	Port
	The port number that the host is listening on. For HTTP, the default is 80; for HTTPS, the default is 443.
	80

	Path
	Enter the path portion of the URL. Do not include a leading slash.
	Search.asp

[image: image56.png]
Figure 8.58
7. In the “Request Data” section click on “Add” to enter the Enterprise Data that will be passed to the URL. The “HTTP Request Data Dialog” box opens as shown in Figure 8.59. The description of the fields in “Request Data” section and the values used in the script are shown in Table 8.31.
	Table 8.31

	Request Data

	Property
	Description
	Value

	Name (Value Name)
	Enter a name for the value.
	accountNumber

	Value
	Select the name of the Enterprise Data field
	Select *Account Number

	Value Type
	
	Select “DataField”

	Test Data
	Enter a valid value in order to test the logic using the “Preview” and “Test” buttons
	11501

[image: image57.png]
Figure 8.59
8. Click “OK” to save the new HTTP Action and click “OK” to save the new Action.
9. To enable the new rule, click on the first “Edit” button in the “Current Rule Conditions” section in Figure 8.59. The “Data Field Condition” window appears as shown in Figure 8.60 on page 48. The description of the fields in “Data Field Condition” window and the values used in the script are shown in Table 8.32.
	Table 8.32

	Data Field Condition

	Property
	Description
	Value

	Data Field
	Enterprise Data field that is going to be used for the condition
	Select *Layout

	Enable Condition
	Enables the condition
	Check the box

	Date Field Filter
	Gives different option for filtering
	Select “Is in the List” filter

	Add and Delete buttons
	Used to add or delete items to the list
	Add “BaseLine” to the list

[image: image58.png]
Figure 8.60
10. Click on “Add” button to enter an item to the “List”. The “Enter List Item” window appears as shown in Figure 8.61. In this application, the only item in the “List” is “BaseLine”.
[image: image59.png]
Figure 8.61
11. Click the “OK” button to close the “Data Field Condition” window and then click on the “Enable Rule” check box, and then click on the “Apply” button to save as shown in Figure 8.54. This completes the work in the Desktop Administrator Tool.
12. Screenshot of CAD with Account information screen-pop web site and enterprise data is shown in Figure 8.62.
[image: image60.png] Figure 8.62
Validating the Scripts
1. The first step that always needs to be done before you upload a script is to validate the script to make sure it has no syntax errors. From the Menu on CRS Script Editor, choose “Tools” menu and then click “Validate” to validate the script as shown in Figure 8.63.
[image: image61.png]
Figure 8.63
2. If there are no syntax errors you will receive a message “Script validation succeeded” as shown in Figure 8.64. Click “OK” to continue” If your script does not validate the bottom right side of the CRS Editor will show you each error. You can then click on each error and it will take you directly to the step that is causing the problem. (Note: If you upload a script that has an error it will possibly put the UCXX Engine subsystem “Unified CM Telephony Subsystem” in Partial Service.)
[image: image93.png]
Figure 8.64
Saving the Scripts
There are two different ways to save the changes to a script and upload it to the repository. We will cover both options.

Saving the Scripts - Option 1
1. This option requires that you authenticated to the UCXX Server when you launched the CRS Editor. To save the changes made to this script Click on “File” and then “Save As”. When the “Save As” window appears as shown in Figure 8.65, click on the “Script Repository” on the upper left side of the window. You will then see the “Default [default] directory option in the window.

[image: image62.png]
Figure 8.65
2. Double click on the “Default” directory” and you will see all the scripts that are uploaded into the repository in that directory as shown in Figure 8.66. If the Script has already been uploaded you can click on “save” and replace the current file. If the script has not been uploaded before you can click on save, it will create the new script in the repository.
[image: image63.png]
Figure 8.66
3. Once the file has been uploaded to the repository, launch the UCXX AppAdmin web page. Choose “Applications” from the Menu and choose “Script Management”. Find the BaseLineHTTPTrigger.aef name and click on the “Refresh” icon [image: image64.png] as shown in Figure 8.67.
[image: image65.png]
Figure 8.67
4. Once the script has been refreshed the application also has to be refreshed for it to use the new script. If the application is already configured choose “Applications” from the Menu and “Application Management”. Locate your application and click on the “Refresh” icon [image: image66.png] as shown in Figure 8.68.
[image: image67.png]
Figure 8.68
5. Follow the step 1 - 4 to save the BaseLineHTTPCallback.aef script.

Saving the Script - Option 2
1. This option does not require that you authenticated to the UCCX Server. To save the changes made to this script, Click on “File” and then “Save As” and save it to any directory that you will have access to when you run the UCCX Administration web page.

2. Once the file has been saved, launch the UCCX Administration web page and choose “Applications” from the Menu and choose “Script Management”.

3. If the script is already uploaded to the repository find the BaseLineHTTPTrigger.aef script and click up the Upload icon[image: image68.png]. If this is a new application skip to “Creating a New Application”.
4. The script uploading window will open as shown in Figure 8.69. Click on “Browse” and locate your new script that you just saved. Once you have selected your script click on “Upload” to save the script to the repository.

[image: image69.png]
Figure 8.69
5. After the Script is uploaded click on “Refresh the Script” as shown in Figure 8.70 and then update the repository.
[image: image70.png]
Figure 8.70
6. The window in Figure 8.71 appears. If the Application is already setup Click on “Yes” to refresh the script and application. If the application is not configured click on “No” to only refresh the script.

[image: image94.png]Figure 8.71
7. Follow the step 1 - 6 to save the BaseLineHTTPCallback.aef script.

Creating a New Application
To create a new application launch the UCCX Administration web page and choose “Applications” from the Menu and choose “Application Management”.

1. Click on “Add a New Application” to create an application for the “BaseLineHTTPTrigger.aef” script
2. Click on “Next” for a “Cisco Script Application” type.

3. Fill in the form with the information in Table 8.33. The screenshot of the form is shown in Figure 8.72 on page 55.
	Table 8.33

	Field
	Description

	Name
	Application name

	ID
	Assigned by the system

	Maximum Number of Sessions
	Calls that you want this application to handle simultaneously.

	Script
	Select the scrip

	Description
	Enter description for the application

	Enabled
	Default value is set to “Enable”. When you change this parameter the application will not operate.

	Default Script
	The default value is set to “System Default”. You do not need to change this unless your application requires a backup script in case of an error on the configured script.

[image: image95.png]Figure 8.72
4. Once all your changes have been made click on the “Add” button.
5. Once the application is added click on “Add new trigger”. Click on “Next” to add a “Cisco HTTP Trigger” type. The “HTTP Trigger Configuration” window opens as shown in figure 8.73. Fill in the “HTTP Trigger Configuration” form with the information in Table 8.34.
	Table 8.34

	Field
	Description
	Value

	URL
	The URL to trigger the application
	baseline

	Maximum Number of Sessions
	Number of simultaneous sessions
	1

The URL value is going to be used later when the web site for the Customer interface is set up.
[image: image71.png]
Figure 8.73
6. Click on “Add” to save the Trigger.
7. Figure 8.74, on page 57 shows the application with the trigger and some of the parameter values filled in.
[image: image72.png]
Figure 8.74
8. Change the parameters as necessary on the Application Page shown in Figure 8.74. The description of the parameters and the values used in the script is in Table 8.35.
	Table 8.35

	Parameter
	Description
	Value Used

	extensionOutCallHTTP
	The trigger of BaseLineHTTPCallback.aef application
	3014

	localAreaCode
	The local area code that server is set up
	513

	digitForDialTone
	The digit for out-dial
	9

	webConfirmationURL
	The confirmation page URL. The detailed instruction about setting up screen-pop internal site is in the Appendix.
	

	webclosedURL
	The closed page URL. The detailed instruction about setting up screen-pop internal site is in the Appendix.
	

	webErrorURL
	The error page URL. The detailed instruction about setting up screen-pop internal site is in the Appendix.
	

9. Click on “Add a New Application” to create an application for the “BaseLineHTTPCallback.aef” script

10. Click on “Next” for a “Cisco Script Application” type.

11. Fill in the form with information for creating the application. Please refer the previous steps about the fields on the form. The screenshot of the form is shown in Figure 8.75.

[image: image73.png]
Figure 8.75
12. Once all your changes have been made click on the “Add” button.

13. Once the application is added click on “Add new trigger”. Click on “Next” to add a “Unified CM Telephony Trigger” type. (The other type of trigger you can activate is a script from a HTTP trigger.)

14. Fill in the information on the Unified CM Telephony Trigger Configuration form as necessary. Click on “Add” to save the Trigger. The form is shown in Figure 8.76.
[image: image74.png]
Figure 8.76
15. The Figure 8.77 shows the application with the trigger and some of the parameter values filled in.

[image: image75.png]
Figure 8.77
APPENDIX
Install CRS Editor

1. If you have not installed the CRS Editor login to the UCCX admin web site
http://x.x.x.x/appadmin
2. Choose “Tools” from the main menu and Click on “Plug-ins” as shown in Figure 8.78 on page 61.

[image: image96.png]
Figure 8.78
3. Click on “Cisco CRS Editor” and choose “Open” to install the Editor.

Setting Up and Configuring the Database

This script uses a small database to show how to integrate a UCCX script with database using screen-pop once the call is connected to an agent. To have the script work properly, a database has to be set up at a location other than UCCX server and configured on the UCCX server.

The UCCX system is compatible with ODBC compliant databases such as Microsoft SQL server 2000 or 2005 and Oracle. The rest of this section is written for a Microsoft SQL database server.

We recommend that you have your local database admin to complete the following steps 1 through 3.

1. Locate a database server and create the sample database using the following SQL script. The SQL Script is also in the database.sql file. If the database server is Microsoft SQL 2000 server, you can use “Query Analyzer” application to execute the script. If the database server is Microsoft 2005 server, you can use “SQL Server Management Studio” application to execute the scripts
2. The SQL script is going to create a database and a table. Then add sample records to the table to be used in this script. The name of the database is “BaseLine” and the name of the table is “Customers”.
Note: Please verify that your current Database Server does not have database with the name “BaseLine”. The following script will automatically delete existing “BaseLine” database and recreate a database with the same name.
----------------------------Begin-----------------------------

IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'BaseLine')

DROP DATABASE [BaseLine]

GO

CREATE DATABASE BaseLine

GO

USE BaseLine

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Customers]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[Customers]

GO

CREATE TABLE [dbo].[Customers] (

[strAccountNumber] [varchar] (12) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strFirstName] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strLastName] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strAddress] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strCity] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strState] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strZipCode] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strPhone] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strEmailAddress] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[moneyCheckingBalance] [real] NULL ,

[moneySavingBalance] [real] NULL ,

[moneyTotalBalance] [real] NULL ,

[moneyFees] [real] NULL ,

[strPIN] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]

GO

INSERT INTO Customers VALUES ('11501','Thomas','Smith','1550 Main Street','Metropolis','ST','12341','(555)555-5550','thomas.smith@cisco.com',871.23,7129.75,8000.98,11.75,'1111')

INSERT INTO Customers VALUES ('11502','Elizabeth','Jones','6551 Elm Street','Metropolis','ST','12342','(555)555-5551','elizabeth.jones@cisco.com',10489.34,38691.64,49180.98,23.25,'2222')

INSERT INTO Customers VALUES ('11503','Mark','Johnson','7125 North Avenue','Metropolis','ST','12343','(555)555-5552','mark.johnson@cisco.com',553.33,551.65,1104.98,24.5,'3333')

INSERT INTO Customers VALUES ('11504','Susan','Brown','3939 Spring Avenue','Anytown','ST','12344','(555)555-5553','susan.brown@cisco.com',7217.85,1328.68,8546.53,5.75
,'4444')

INSERT INTO Customers VALUES ('11505','Mike','Davis','5501 West 1st Street','Anytown','ST','12345','(555)555-5554','mike.davis@cisco.com',9591.12,35875.14,45466.26,23.25,'5555')

INSERT INTO Customers VALUES ('11506','Karen','Jackson','135 Park Street','Anytown','ST','12346','(555)555-5555','karen.jackson@cisco.com',2178.23,3975.12,6153.35,9.25,'6666')

INSERT INTO Customers VALUES ('11507','John','Anderson','4737 Oak Street','Suburbia','ST','12347','(555)555-5556','john.anderson@cisco.com',4689.14,6580.36,11269.5,13.75,'7777')

INSERT INTO Customers VALUES ('11508','Lisa','Miller','6235 Willow Road','Suburbia','ST','12348','(555)555-5557','lisa.miller@cisco.com',18975.35,525.14,19500.49,48.25,'8888')

INSERT INTO Customers VALUES ('11509','James','Wilson','1725 Cherry Road','Suburbia','ST','12349','(555)555-5558','james.wilson@cisco.com',8597.51,14586.37,23183.88,25.25,'9999')

----------------------------End-----------------------------

3. Obtain user name and password information of a user who has read and write permissions to the database.

4. Once the database and the table are created, A ODBC Data Source Name (DSN) has to be configured in the UCCX server. The DSN informs Microsoft Windows about how to connect the application server to an enterprise database.

5. On the UCCX server, Go to Start > Programs > Administrative Tools > Data Sources (ODBC) to launch the ODBC Data Source Administrator window.

6. Click on “System DSN” tab as shown in Figure 8.79.
[image: image76.png]
Figure 8.79
7. Click on “Add” button. The “Create New Data Source” window is displayed as shown in the Figure 8.80.

8. Select the driver for which you want to set up a data source. For our script, select “SQL Server” and click on “Finish” button.

[image: image77.png]
Figure 8.80
9. The “Create a New Data Source to SQL Server” window is displayed as shown in Figure 8.81.
10. Type “BaseLine” as the name for the new data source in the Name field. Note that the Name entered here will be used in the Data Source Name field in the Customer Response Applications (CRA) Administration web interface.

11. Type an appropriate description in the Description field.

12. Select the host name or IP address from the database server list. If the list does not show the database server, type the IP address or host name.

[image: image78.png]
Figure 8.81
13. Click the “Next” button. “Microsoft SQL Server DSN Configuration” window is displayed as shown in Figure 8.82.

14. Select Windows NT or SQL Server as the authentication method depending on the user information you get from the database administrator.

[image: image79.png]
Figure 8.82
15. Type a user name in the Login ID field and a password in the Password field.

16. Click the “Next” button to select the name of the default database to connect. Select the “BaseLine” database as shown in Figure 8.83.

[image: image80.png]
Figure 8.83
17. Click the “Next” button and then the “Finish” button to complete the DSN configuration and to test connectivity to the selected data sources as shown in Figure 8.84.

[image: image81.png]
Figure 8.84
Setting Up Screen-Pop Internal Web Site

When a call gets connected to an agent, a screen-pop will appear in the embedded browser of the Cisco Agent Desktop application. For this script, the screen-pop is a web site that shows account information of the customer based on the account number entered. To enable this feature, the web site has to be created in a web server. In this script, the web server is also used for the web site that the customer submits the callback request. The web callback page from the web site is shown in Figure 8.85.
[image: image82.png]
Figure 8.85
1. Use a server that has the Internet Information Services (IIS) installed on it or find a server that you can install IIS.

2. An ODBC connection to the database has to be configured on the web server if it’s not done so already. You can follow the steps described in setting up and configuring database section in Appendix to create the DSN to the database server that hosts “BaseLine” database.

3. Copy the web site files in “ScreenPop” folder to the “C:\inetpub\wwwroot” folder on the server.

4. After installing the IIS, if the server is Windows 2003 or above, make sure that “Active Server Pages” are permitted on the server. Go to the ”Computer Management”, expand “Services and Applications”, expand “IIS”, and then click on “Web Service Extensions. Select “Active Server Pages” from the list and click on “Allow” button as shown in Figure 8.86.
[image: image83.png]
Figure 8.86
5. Expand the “Web Sites”, and right click on the “Default Web Site” and click on the “Properties”

6. Go to “Home Directory” tab, end select “Scripts Only” option for the “Execute permissions” setting.

7. Go to “Directory Security Tab”, under “Authentication and access control” section Click on the “Edit” button. In the user name and password fields, Enter a username and password that has administrative rights in the server, such as Administrator user. The screenshot of this step is in Figure 8.87 on page 68.
[image: image84.png]
Figure 8.87
8. At this point, you should be able to launch browser and go to the web site. The URL to the web site would be:

http://y.y.y.y/index.asp
9. If you are able to see the home page, click on the “Account Login” link to test the database connection. Enter an account number (11501-11509) and click on the “Enter” button. If you see the account information, the connection is established.

10. Open the “webCallback.asp” file in text editor. Find the line that has following text in it.
http://UCCXSERVER:8080/baseline
11. In this text, replace the “UCCXSERVER” text with the IP address of the UCCX server as shown in Figure 8.88 on page 69.
[image: image85.png]
Figure 8.88
12. Make sure the “baseline” at the end of the text matches with the “URL” of the HTTP trigger is created in the previous section.
Script Layouts
The following pages have the complete layouts for the “BaseLineHTTPTrigger.aef” (Figure 8.87) script and “BaseLineHTTPCallback.aef” (Figure 8.88) script. Comments have been added to each step to define the functionality for that step.
BaseLineHTTPTrigger.aef Layout
[image: image86.png]
[image: image87.png]
[image: image88.png]
Figure 8.89
BaseLineHTTPCallback.aef Layout

[image: image89.png]
Figure 8.90
Variable Layouts
The list of all variables and variable parameters are listed below.
BaseLineHTTPTrigger.aef Variable Layout
[image: image90.png]
 Figure 8.91
BaseLineHTTPCallback.aef Layout
[image: image91.png]
Figure 8.92

PAGE
1
Version 4.2

