CRS Script Note: CRS_Park.aef
Version: 1

Release Date: Aug. 16, 2004
Introduction
The purpose of this document is to describe the structure and intended use or uses of the accompanying script.

License & Copyright Information
This script is offered “AS-IS”. While the script is functional in its delivered form, has been tested, and can be used as is, CISCO DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, relating to the script. You may use this script at your own risk, provided you agree that Cisco shall have no liability for damages of any kind, including, but not limited to direct, incidental or consequential damages, relating to your use of the script. You and you alone are responsible for final deliverables to your customers.
Obtaining Technical Assistance

Technical assistance is not available for this individual script. It is intended to be a sample that can be easily modified to suit a particular need, as well as provide a visual “how to” for CRS Application developers.

Should you require assistance in the development of your own script, there are several avenues available to you. First, you may solicit aid from the CRS support mailer alias, ask-icd-ivr-support@external.cisco.com.

If the issue is with your CRS system as a whole (e.g.: Subsystems out of service, CRS installation issues, etc) and you have a valid support contract, please open a TAC case by calling 800-553-2447. For faster assistance, please open a case on the web at http://tools.cisco.com/ServiceRequestTool/create/launch.do by clicking the “Create a new TAC Service Request” link.

Assumptions
The reader of this document and user of its accompanying CRS Application Editor script file (.aef) is assumed to be familiar with the CRS product suite and the Application Editor. It is assumed that the reader understands the configuration requirements necessary to utilize the script as explained in this document.
Script Details
Purpose

This script, used in conjunction with the “CRS_Pickup.aef” script, is an example of how to use CRS to create a call park and pickup service, similar to what is available in some telephony installations.
Detailed Script Description
This section details each step of the script. The Start, End and Annotate steps will not be described, as they are self-explanatory. The following two images illustrate the entire script and the Variable pane from the CRS Application Editor and can be useful for reference purposes.

Figure 1 – CRS_Park.aef Steps
[image: image1.png]
Figure 2 – CRS_Park.aef Variables

[image: image2.emf]

[image: image3.emf]

[image: image4.emf]

[image: image5.png]
Step Descriptions:

Start

Annotate

This step describes the overall function of this script, as well as the corresponding CRS_Pickup.aef script. The contents are as follows:

This script involves 3 elements:

CRS_Park.aef
CRS_Pick.aef
CRSPark.jar
The jar file should be present in class path. The 2 scripts must be uploaded and an App configured for each one.

Overview:

Caller is transferred to RP for CRS_Park app. The transferring party will hear the park lot and a beep. At the beep, they speak the party they want paged then enter #. The number configured in page_Access will then be called and the desired party will be asked to pick up a call on slot x. The paged party then calls the RP for CRS_Pick and enters the page slot.

The app will hang up on them, then redirect the caller to them. NOTE: The hold_Delay_In_MS will deterine how long the caller will be held, without being picked, before they are transferred to requeue_On_Timeout_Dest.

Accept

Create Java Object

This step creates a new Java object using our custom class com.cisco.crs.CRSPark().

Execute Java Method – getNumber()

This step uses the getNumber() method of our custom class to get a slot number to park our call at. The value is stored in the “slot_ID” String variable.

Create Generated Prompt

This step generates a prompt for our slot number, which will be used to make the announcement for the recipient of the parked call. The value is stored in the “slot_Prompt” Prompt variable.

Play Prompt

This step plays out the slot_Prompt to the caller.

Recording

This step now prompts the caller to record the name of the desired recipient.

Successful

Write Document

This step is used to store the recording to a local WAVE file. The default path in this script is

“C:\Program Files\wfavvid\prompts\user\en_US\temp.wav”

Unsuccessful

No action taken, proceeds to the next step below.

Call Hold

This step places the call on hold using CallManager facilities, which includes Music On Hold (MOH), if present.

Place Call

This step is used to place the “paging” call to notify the recipient that a call is “parked” and waiting for them to retrieve it. The call is placed to the number specified in the “page_Access” String variable, which is a Parameter that can be set at the time the Application is loaded.

Successful

Delay

This step introduces a 1 second delay in script processing.

Create Container Prompt

This step creates the entire paging prompt, which is a combination of the “page_Announce” Prompt variable, the recorded_Desired_Party Document variable (which stores the recorded wav file location), and the slot_Prompt. Those prompts are then stored in the “full_Page” Prompt variable.

Play Prompt

This step plays out the full_Page prompt.

Terminate

This step terminates the outgoing call created by the Place Call step.

No Answer

No action taken, proceeds to the next step below.

Busy

No action taken, proceeds to the next step below.

Invalid

No action taken, proceeds to the next step below.

NoResource

No action taken, proceeds to the next step below.

Unsuccessful

No action taken, proceeds to the next step below.

Execute Java Method – park(long)

This step uses the method “park(long)” from our custom Java class to park the call for a specified number of seconds. The script uses the “hold_delay_in_MS” Long variable, which is set to 120000 (2 minutes). This variable is a Parameter, and can be set at the time the Application is loaded.

If

This step checks to be sure the “retrieval_Dest” String variable is not empty.

True

Call Unhold

This step retrieves the call from the Hold state in CallManager.

Call Redirect

This step redirects the call to the retrieval_Dest.

Successful

No action taken, proceeds to the next step below.

Busy

No action taken, proceeds to the next step below.

Invalid

No action taken, proceeds to the next step below.

Unsuccessful

No action taken, proceeds to the next step below.

False

Call Unhold

This step retrieves the call from the Hold state in CallManager.

Call Redirect

Since the If statement failed, our retrieval_Dest is empty. We instead redirect the call to a default extension specified in the “requeue_on_Timeout_Dest” String variable, which is a Parameter.

Successful

No action taken, proceeds to the next step below.

Busy

No action taken, proceeds to the next step below.

Invalid

No action taken, proceeds to the next step below.

Unsuccessful

No action taken, proceeds to the next step below.

Execute Java Method – release()

This step uses the release() method of our custom class to release the parked call record.

End

CRS Script Note: CRS_Park.aef

