CRS Script Note: Acct_code_call_out.aef
Version: 1

Release Date: Aug 16, 2004
Introduction
The purpose of this document is to describe the structure and intended use or uses of the accompanying script.

License & Copyright Information
This script is offered “AS-IS”. While the script is functional in its delivered form, has been tested, and can be used as is, CISCO DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, relating to the script. You may use this script at your own risk, provided you agree that Cisco shall have no liability for damages of any kind, including, but not limited to direct, incidental or consequential damages, relating to your use of the script. You and you alone are responsible for final deliverables to your customers.
Obtaining Technical Assistance

Technical assistance is not available for this individual script. It is intended to be a sample that can be easily modified to suit a particular need, as well as provide a visual “how to” for CRS Application developers.

Should you require assistance in the development of your own script, there are several avenues available to you. First, you may solicit aid from the CRS support mailer alias, ask-icd-ivr-support@external.cisco.com.

If the issue is with your CRS system as a whole (e.g.: Subsystems out of service, CRS installation issues, etc) and you have a valid support contract, please open a TAC case by calling 800-553-2447. For faster assistance, please open a case on the web at http://tools.cisco.com/ServiceRequestTool/create/launch.do by clicking the “Create a new TAC Service Request” link.

Assumptions
The reader of this document and user of its accompanying CRS Application Editor script file (.aef) is assumed to be familiar with the CRS product suite and the Application Editor. It is assumed that the reader understands the configuration requirements necessary to utilize the script as explained in this document.
Script Details
Purpose

This script is an example of how to allow users to call into the system, enter an account code and external telephone number, and be connected to that number after parsing the code. This is similar to a “calling card” interface, however this script does not include any facilities to track usage (minutes used, etc.).

Instructions for Use

This script can be used as a primary script, or it could be called as a subflow. However, due to the script containing a Redirect step, keep in mind that the contact will no longer be active once the script completes as a subflow.

Detailed Script Description
This section details each step of the script. The Start, End and Annotate steps will not be described, as they are self-explanatory. The following two images illustrate the entire script and the Variable pane from the CRS Application Editor and can be useful for reference purposes.

Figure 1 – Acct_code_call_out.aef Nodes
[image: image1.png]/-y Statt

%5 Accept contact ~Trggering Contact-)
, Get Contact Info (contact: -Triggering Contact-)
== Get Digit Stingleontact; ~Triggering Contact-- resuit digit sting: number)
59 Successhl
D paree_diis

67 umber_lengh = rumbet ength)

O locator_ID = rumber.substing(03)

O star is = numbernderDI(™)

Q7 account_code = number.substing(3 et is

= Setlengh_code_and_rumber = rumber ength - star_is 1
=02 If {length_code_and_number ==14) Then

code = number substingetaris +1 stris +5)
OF Gesiation_rumber < et subsinglsta_ i + 5

& Fake
£ =2 If (engih_code_and_number

£ Tue
’07 4 code = rumber. substingstar_fs +1 ta_is +)
O destination_rumber = rumber.substinglstar_s +)
& Fabe
* @7 Int_loc = number indexi{ 011"
OF 3. 4_code = rumber.substinglstar_s + 11 loc)
festination_number = number.substringlInt_loc |
== Setdestination_rumber = LD_Code + destnaton_ number
== Set acclcode._full - locaton |D + accounl_code + ™ +_3_4_code
#) set SessionInfo (session: session_id]
=] Call Redirect (contact: ~Triggering Contact--, estension: destination_number)
B suomst
) Set Contact Info (contact: ~Triggering Contact-)
fa End
A Busy
U vl

% Unsuccessh

&4 Tineout
07 umber_lengh = rumbet ength)

= f{rumberlengi>0) Then
=4 Tue
) Goloparse_diis
A Fake

At Unsuccesshl

O Faied

&) Play Prompt (contact: ~Triggering Contact-, prompt: prompt2)
78’ Terminate cortact -Triggering Contact-)

A End

3) Then

Figure 2 – Acct_code_call_out.aef Variables

[image: image2.emf]

[image: image3.emf]

[image: image4.emf]

[image: image5.png]Narne_ | Tpe | Vale | Attibute |

Frompil Frompt PlAdWeloome wav] Parameler
acelcod_ful Sting

prompt2 Frompt Pladiweloome wav] Parameler
Pumber Sting

LD_Code Sting Ferameter
sesson_id Session rul

Pumber_length Inegsr 0

staris Ineger 0

lacalon_ID Sting

accourt_code Sting

3.4_code Sting

fergth_code_and_number Integer 0

destnaton_rimber Sting

In_oc Inegsr 0

fetries Integer 0

Step Descriptions:

Accept

Get Contact Info

This step is used to capture the Session identifier for the active Session and write it to the Session variable “session_id”. This will be used later to capture data for the active call in the database for reporting purposes.

Get Digit String

This step captures a multi-part entry from the caller, separated by an asterisk “*”. The result is written to the “number” String variable. Because we want to capture any entries in this step, we have all keypad entries selected on the Filter tab of the step Properties. We are also using one of the built-in system prompts, “AAWelcome.wav”, as our prompt for this step. It would be recommended to record custom prompts for this script. It is for this purpose that the “Prompt1” Prompt variable is used with the Parameter Attribute set. This allows this variable to be set at the time the application is loaded.

Successful

Label – parse_digits

This Label step will be used as the return point in the event that there is a timeout in the Get Digit String step. This is part of how the script handles variable length input from the caller.

Execute Java Method – length()

This step uses the built-in “public int length()” function to read the length of the string collected in the Get Digit String step and write it to the “number_length” Integer variable.

Execute Java Method – substring(int,int)

This step uses the built-in “public String substring(int,int)” function to extract the first 3 characters of the number variable (position 0 to position 3). This becomes our “location_ID” String variable.

Execute Java Method – indexOf(String)

This step uses the built-in “public int indexOf(String)” function to return the position of the asterisk in the number variable and write the value to the “star_is” Integer variable.

Execute Java Method – substring(int,int)

This step uses the built-in “public String substring(int,int)” function to extract from position 3 in the number variable to the asterisk position, which we have stored in the star_is variable. This section of the number variable becomes our “account_code” String variable.

Set

This step sets the “length_code_and_number” Integer variable to the result of the expression “number_length - star_is – 1”. This gives us the length of the number to be dialed.

If

This first If step checks to see whether the number to be dialed is preceded by a 4 digit code. It does this by simply checking the length of the length_code_and_number variable to see if it is 14 characters long.

True

Execute Java Method – substring(int,int)

This step sets the “_3_4_code” String variable to the value of position “star_is + 1” to position “star_is + 5” of the number variable.

Execute Java Method – substring(int,int)

This step sets the “destination_number” String variable to the value of the number variable starting at position “star_is + 5” through the end of the String.

False

If

This If expression checks for a 3 digit account code.
True

Execute Java Method – substring(int,int)

This step sets the “_3_4_code” String variable to the value of position “star_is + 1” to position “star_is + 4” of the number variable.

Execute Java Method – substring(int,int)

This step sets the “destination_number” String variable to the value of the number variable starting at position “star_is + 4” through the end of the String.

False

Execute Java Method – indexOf(String)

This step sets the “Intl_loc” Integer variable to the position value at the end of the string “011” – this is the starting point for the destination number after the international dial code.

Execute Java Method – substring(int,int)

This step sets the “_3_4_code” String variable to the value of position “star_is + 1” to position “Intl_loc” of the number variable.

Execute Java Method – substring(int,int)

This step sets the “destination_number” String variable to the value of the number variable starting at position “Intl_loc” through the end of the String.

Set

This step prepends the outside line or “LD_code” String variable, which is set to “9” as commonly used, to the original destination_number variable. This now makes the destination_number a dialable string. The LD_code variable has the Parameter Attribute set, which means it can be modified to suit the specific environment at the time the application is loaded.

Set

This second Set step prepares the “acctcode_full” String variable to the concatenation of 4 String variables: location_ID, account_code, “*”, and _3_4_code. This creates a single variable that contains all the information about the caller-entered data from the original Get Digit String step.

Set Session Info

This step keys off the session_id variable used to store the actual Session value for the active contact. We use this to write information to the call detail database, which we perform by adding the _ccdrVar1 Attribute in the Context tab of the Properties window, and assigning to it the value contained in the acctcode_full variable. The _ccdrVar1 is one of the 5 assignable fields in the database that allows us to store information for a particular contact, which can then be extracted with either an ad hoc query or a custom report.

Call Redirect

This step actually “places” the call to the destination_number by redirecting the contact to that number.

Successful

Set Contact Info

This step is used to explicitly mark the contact as “Handled”, since it would otherwise be reported as “Abandoned”.

End

Busy

No action taken.
Invalid

No action taken.

Unsuccessful

No action taken.

Timeout

This is the timeout leg of our original Get Digit String step. We use this output to take particular action in this script in the event of a timeout of the caller entering input. We need to do this since our input can be variable length (caller may not enter 35 characters as expected by the Get Digit String Step, but that may not be a failure)

Execute Java Method – length()

This step uses the “public int length()” to store the length of the current String variable “number” that is being populated by the Get Digit String step. The length value is stored in the “number_length” Integer variable.

If

This step simply checks to see if the length of the caller’s entry is greater than 0 characters.

True

Goto – parse_digits

If the entry is not a zero length string, then we assume the caller has finished entering a valid code and number, and jump back to the parse_digits Label step.

False

No action taken

Unsuccessful

This is the last output of our Get Digit String step. No action is taken off this particular output.

Label – Failed

This Label step is here for the purpose of identifying the point where the script has failed. It is not used by any Goto step.

Play Prompt

This step plays a prompt to the caller indicating the failure of their entry. Again, the script uses the system prompt “AAWelcome.wav”, which is the same as is used for the Get Digit String step. Custom prompts were not recorded for the purposes of this or any scripts in the repository, so it is assumed that the user will create a customized prompt for both cases. Again, the “Prompt2” Prompt variable is a Parameter and can be set at the time the application is loaded.

Terminate

This step disconnects the active call.

End

CRS Script Note: Acct_code_call_out.aef

