Advanced Queuing Application

Application Overview:

The Advanced Queuing Application will utilize the advanced capabilities of scripting for calls that waiting in a queue. The application demonstrates offering advance options to the callers while they are waiting in a queue. In this application, the callers will be prompted with a menu after they got in to the queue. The menu options include leaving a message or leaving message and callback number to the next available agent in addition to waiting for the next available agent in the queue.
Note:
This application / script was built using UCCX version 7.0(1). It should be backward compatible with UCCX 5.x; however it has not been tested.

Note: This document uses CRS and CCX terms interchangeably. CRS is a term that is used in prior to version 7.x to refer to the platform. In version 7.x, CCX is used to refer to both the product and platform.

With this script we are going to cover the following options:

1. “Recording” step for collecting voice input

2. “Place Call” step for calling another number
3. “Call Redirect” step for redirecting a call

Operation Overview:

This application is typically the second level of interface with your clients’ customers after they interface with the main auto attendant and get transferred to a queue. It should be thoroughly tested from end to end. As mentioned before, when designing a call flow it is best to document each step with the customer using a program such as Microsoft’s Visio. This documentation allows your customer to better understand each step and to make sure the script is meeting all of their requirements. When a partner is designing the call flow, it allows you to get a sign-off on the call flow to help alleviate changes.
The call flow documented in Figure 6.1 (page 3) will be used as a guide that will be configured throughout this section.

[image: image105.png]
Figure 6.1

Files Involved:

Table 6.1 shows the list of the files and their descriptions used with this application.
	Table 6.1

	File Name
	Description

	BaseLineAdvQueuing.aef
	Main script file that handles the queuing

	BaseLineMesageCallback.aef
	Script that handled the callback feature

Example Prompts:

When designing your call flow, document each point where a prompt is needed. Label each prompt with a four digit prompt number that you will use within your scripting. In Figure 6.1 there are seventeen prompts that will need to be recorded. Table 6.2 (Pgs 4 & 5) shows the names of prompts and a sample verbiage for each prompts based on the call flow.

	Table 6.2

	Prompt Name
	Sample verbiage

	1161.wav
	Thank you for calling the Cisco Systems

	1162.wav
	All of our agents are taking care of other customers. Please stay on the line and the next available agent will be with you shortly.

	1163.wav
	Thank you for waiting. To leave a voice mail, please press one, to have us call you back, please press two. Please stay on the line, the next available agent will be with you shortly. Your position in the queue is

	1164.wav
	Please record your message and press the # key when finished

	1165.wav
	Your message has been forwarded

	1166.wav
	Please press any key to listen to the recorded message

	1167.wav
	Please press one to repeat the recorded message, press two to finish this call

	1168.wav
	Please enter the phone number where you wish to receive your return call and press the pound key

	1169.wav
	You entered

	1170.wav
	If this is correct please press one; if you want to re-enter the callback number, please press two.

	1171.wav
	Please leave a short message and press the # key

	1172.wav
	Thank you. Your callback has been scheduled

	1173.wav
	Please press any key to listen to the callback message

	1174.wav
	Please press one to repeat the callback message, press two to connect to the customer

	1175.wav
	The number was busy. Please try again later. The dialed number was

	1176.wav
	The number was invalid. The dialed number was

	1177.wav
	The system was unsuccessful to dial the number. The dialed number was

Technical Overview:

At the end of this document is a complete script layout along with a description for each step and its functionality. A list of all the variables used in this script along with their values is listed below the script layout.
Launching the CRS Editor
1. Launch the CRS Editor program by Clicking on your Windows “Start” button and then highlight “Programs” then “Cisco CRS Developer” and then “Cisco CRS Editor”. The Figure 6.2 shows the login screen.
[image: image1.emf]WELOME PROMT

Cisco Systems

Prompt

1161

Customer

Dial 3011

Partner

Support

Queue

Select

Resource

Agent

12

ABC

3

DEF

45

JKL

6

MNOGHI

78

TUV

9

WXYZPQRS

*

0

OPER

#

7960

CISCO IP PHONE

i

messagesdirectories

settingsservices

YES

CONNECT

To

RESOURCES

NO

Queue

Prompt 1

Queue Prompt 2

Menu

1) Leave a Message

2) Callback

Position in Queue

YES

NO

Delay

(10s)

Prompt

1162

Prompt

1164

Prompt

1163

Record Your

Message

Enter

Callback

Number

1

2

Play

Confirmation

Prompt

1165

Disconnect

The Call

With

Customer

Confirm

Callback

Number

Prompt

1169

1170

Prompt

1168

YES

NO

Record

Callback

Message

Prompt

1174

Prompt

1171

Play

Confirmation

Prompt

1172

Disconnect

The Call

With

Customer

Dial 3012

Select

Resource

Agent

12

ABC

3

DEF

45

JKL

6

MNOGHI

78

TUV

9

WXYZPQRS

*

0

OPER

#

7960

CISCO IP PHONE

i

messagesdirectories

settingsservices

YES

CONNECT

To

RESOURCES

NO

YES

NO

No Selection

Partner

Support

Queue

Any Key To

Listen

To Recorded

Message

Prompt

1166

Play

Recorded

Message

Menu

1) Replay

2) Quit

1

2

Prompt

1167

Disconnect

The Call

Dial 3013

Select

Resource

CONNECT

To

RESOURCES

NO

YES

NO

Partner

Support

Queue

Agent

12

ABC

3

DEF

45

JKL

6

MNOGHI

78

TUV

9

WXYZPQRS

*

0

OPER

#

7960

CISCO IP PHONE

i

messagesdirectories

settingsservices

YES

Any Key To

Listen To

Callback

Message

Prompt

1173

Play

Callback

Message

Connect To

The

Customer

Menu

1) Replay

2) Connect To

Customer

1

2

If Busy

If Invalid

If Unsuccessful

Prompt

1175

Prompt

1176

Prompt

1177

Figure 6.2
2. Login to the CRS Editor with your user ID (that has Administrator rights to the UCCX Administration web site) password and UCCX Server name or IP Address. (Note: If you login anonymously you will not be able to load your scripts directly to the repository or run a script in Debug – Reactive Script mode. (Great Troubleshooting Tool!)
Editing the Advance Queuing Application Scripts
BaseLineAdvQueueing.aef script
Once the CRS Editor loads, click on “File” and “Open” and browse to the directory that has the script “BaseLineAdvQueuing.aef”. The Figure 6.3 shows the CRS Editor and the script opened in the editor.

[image: image2.png]
Figure 6.3
To expand all the branches of the script, click on any step and right click your mouse. Choose “Expand All” to see all the steps as it is shown in Figure 8.4.

[image: image3.png]
Figure 6.4
Call Center – Select Resource & Queuing

1. The “Select Resource” step is used to queue a call to a specific set of agents and optionally to connect the call to the agent the system chooses. The “Select Resource” step is shown in Figure 6.5 (Page7). The description of the fields in “General” tab and values used in this script are Table 6.3.
	Table 6.3

	Select Resource Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step interfacing with
	default

	Routing Target Type
	Indicates the routing method used.

Contact Service Queue: Calls will be routed to an available agent in the specified CSQ

Resource: Calls will be routed to the specified agent. Select this option for Agent Based Routing feature.
	Contact Service Queue

	CSQ Target
	Identifies which CSQ is targeted
	“CSQ” variable

	Connect
	Yes: the system will connect the call to the available resource as soon as it becomes available.

No: the system will select the resource but not connect until the “Connect” step is executed later in the script.
	No

	Timeout
	The length of time, in seconds, before the contact is retrieved back into the queue.

Note: This value must be lower than the Call Forward No Answer timeout in the Cisco Unified Communications Manager.
	10 (default)

It’s disabled if the “Connect” is set to “No”

	Resource Selected
	The variable that identifies the target Resource
	“selectedResource” variable

[image: image4.png]
Figure 6.5
2. The “Select Resource” step has two branches. If an agent is available it will go to the first branch which is “Selected”.
3. The “Connect” step is the first step under “Selected” branch since the “Connect” setting was set to “No” on the “Select Resource” step. The “Connect” step is shown in Figure 6.6 (pg 8). The description of the fields in “General” tab and values used in this script are in Table 6.4.

	Table 6.4

	Connect Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step interfacing with
	default

	Resource Selected
	The variable that identifies the target Resource
	“selectedResource” variable

	Timeout
	The length of time, in seconds, before the contact is retrieved back into the queue.
	10 (default)

[image: image5.png]
Figure 6.6
4. If no agents are available, the “Select Resource” step will send the call to “Queued” branch. Here we can define what type of call treatment the caller will be provided. The screenshot of the script that has the “Queued” branch is shown in Figure 6.7 below.
[image: image6.png]
Figure 6.7
5. In this script we are playing an initial prompt and then putting the caller on hold for 30 seconds where they will hear the “Music on Hold” (MOH) configured in the Call Manager. The MOH that is assigned to the CTI ports determines what the callers will hear in queue. Once the 30 seconds expire the caller is taken off hold.

6. The script then uses a “Get Reporting Statistic” step to find the callers position in queue and assign it to the variable “positioningQueue”. The description of the fields in the “General” tab and the values used in this script are in Table 6.5.The “Get Reporting Statistic” step is shown in Figure 6.8.
	Table 6.5

	Get Reporting Statistics Step - General Tab

	Property
	Description
	Value

	Reporting Object
	Type of report:
- Outbound Campaign

- Overall Cisco Unified CCX

- Resource Cisco Unified CCX

- CSQ IPCC Express
	CSQ IPCC Express

	Field
	Specific statistic to retrieve from the report. The list is based on the Reporting Object selected
	Position in Queue

	Row Identifier
	Value or the name of variable identifying the CSQ or Resource. Only applicable to CSQ IPCC Express or Resource Cisco Unified CCX reports.
	“CSQ” variable

	Contact
	Contact (trigger event) the step is interfacing with.
	Default

	Result Statistics
	Variable that will contain the resulting statistic value.
	“positionInQueue” variable

[image: image7.png]
Figure 6.8

7. The script then uses the “Create Generated Prompt” to create a prompt with the value stored in the variable “positionInQueue”. The description of the fields in the “General” tab and the values used in this script are in Table 6.6. The “Create Generated Prompt” step is shown in Figure 6.9. (pg 11)
	Table 6.6

	Create Generated Prompt Step - General Tab

	Property
	Description
	Value

	Generator Type
	The type of information generated
	number

	Constructor Type
	Indicates the constructor type that corresponds to the generator type
	(number)

	Arguments
	Names and their values.
	Number: “positionInQueue” variable

	Override Language
	Language in which the prompt is played back. Used only if the resulting prompt is played in a different language than the one defined by the contact in which that prompt is played back.
	blank

	Output Prompt
	Variable indicating where the prompt object resulting from this step is stored.
	“positionPrompt” variable

[image: image8.png]
Figure 6.9
8. The next step is the “Create Container Prompt” step, which take the prompt stored in the variable “pQueueSecond” (Prompt 1163) and the newly created prompt from the position in queue and concatenates them together. The description of the fields in the “General” tab and the values used in this script are in Table 6.7. The “Create Container Prompt” step is shown in Figure 6.10 seen on page 12.
	Table 6.7

	Create Container Prompt Step - General Tab

	Property
	Description
	Value

	Type
	Concatenated, Escalating, or Random prompt.
	Concatenation

	Prompts
	List of prompts to be combined into the container prompt
	“pQueueSecond” variable

“positionPrompt” variable

	Override Language
	Variable or expression indicating language in which the prompts are played back.
	blank

	Output Prompt
	Script variable that holds the combined prompt generated by the Create Container Prompt step
	“prompt” variable

[image: image9.png]
Figure 6.10
9. The result is another prompt that is in the variable “prompt”
Menu
This menu uses Menu step to allow callers to choose one of the menu options. The options are leaving a message to the next available agent, leaving a callback number and a message for the next available agent to have automatic callback to the customer, or staying on the line for the next available agent.
1. First step in this section is the “Menu” step. The “General” tab of the “Menu” step is shown in Figure 6.11 on page 13. The description of the fields in the “General” tab and the values used in this script are in Table 6.8.
	Table 6.8

	Menu Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with.
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step
No: the step must complete before any other process can be executed
	Yes

[image: image10.png]
Figure 6.11
2. The “Prompt” tab of the “Menu” step is shown in Figure 6.12 on page 14. The description of the fields in the “Prompt” tab and the values used in this script are in Table 6.9.
	Table 6.9

	Menu Step - Prompt Tab

	Property
	Description
	Value

	Prompt
	Contact (trigger event) the step is interfacing with.
	“prompt” variable

	Barge In
	Yes: the caller can interrupt the prompt

No: caller is required to hear the whole prompt
	Yes

	Continue On Prompt Error
	Yes: the step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller

No: an exception results which can then be handled in the script.
	Yes

[image: image11.png]
Figure 6.12
3. The “Input” tab of the “Menu” step is shown in Figure 6.13 on page 15. The description of the fields in the “Input” tab and the values used in this script are in Table 6.10.
	Table 6.10

	Menu Step - Input Tab

	Property
	Description
	Value

	Timeout
	A variable or expression indicating the amount of time the system waits for input from the caller. When this timer expires, the system either replays the prompt or plays the system prompt asking if the caller is still there.
	3

	Maximum Retries
	Indicates the number of times a new entry can be entered after a timeout or invalid key
	0
(No retry)

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input.

No: the system does not erase previously entered input before capturing caller input
	No

[image: image12.png]
Figure 6.13
4. The “Filter” tab of the “Menu” step is shown in Figure 6.14 and 6.15 seen on page 16. The description of the fields in the “Filter” tab and the values used in this script are in Table 6.11.
	Table 6.11

	Menu Step - Filter Tab

	Property
	Description
	Value

	Options
	The connections list box and the number key pad to map an option name to a digit.
	“LeaveMessage” maps to 1

“Callback” maps to 2

	Add and Modify buttons
	Used to add or modify a Connection Name for the option
	NA

	Delete button
	Used to remove an Output Option Name
	NA

When the options are created, “Menu” step will have branches created with the same names.

[image: image13.png]
Figure 6.14
 [image: image14.png]
Figure 6.15
5. The “LeaveMessage or “Callback” branch will execute if the caller presses 1 or 2, respectively.
6. The other branches of the “Menu” step are “Timeout” and “Unsuccessful” branches. If the maximum number of retries is reached, the “Menu” step takes either the “Timeout” or “Unsuccessful” branch, depending on the reason for the latest failure. The only step in these branches is the “Goto” step to the “QueueLoop” label to make the caller to continue to wait in the queue.

Leave Message Branch
This branch asks the caller to record a message, plays a confirmation message, and hangs up the call with the caller. Then the system places a call to the call center and gets an available agent on the line. The agent listens to the message that the caller left as much as he or she wants and hangs up the call.
1. The “Recording” step is the first step in the Leave Message branch. The “Recording” step is used to record audio input from the caller. It returns the input as a Document object that can later be uploaded, saved to disk or to a database, e-mailed, or used in the script. All recordings are encoded using G711 u-law and G729 format. This step asks caller to say his or her message to be recorded. The caller presses # (pound) key to stop the recording.
2. The “General” tab of the “Recording” step is shown in Figure 6.16 below. The description of the fields in the “General” tab and the values used in this script are in Table 6.12.
	Table 6.12

	Recording Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with.
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step
No: the step must complete before any other process can be executed
	No

	Result Document
	Variable indicating where the resulting audio document is saved.
	“recordedMessage” variable

[image: image15.png]
Figure 6.16
3. The “Prompts” tab of the “Recording” step is shown in Figure 6.17 seen below. The description of the fields in the “Prompts” tab and the values used in this script are in Table 6.13.
	Table 6.13

	Recording Step - Prompts Tab

	Property
	Description
	Value

	Prompt
	the name of the wav file or a variable of the prompt to be played to the caller
	“pRecordYourMessage” variable (Prompt 1164).

	Start Tone
	Tone that indicates the recording is about to begin.
	default

	Barge In
	Yes: the caller can press any digits before they hear the rest of the prompt
No: the caller is required to hear the whole prompt
	Yes

	Continue On Prompt Error
	Yes: the step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller

No: an exception results which can then be handled in the script.
	Yes

[image: image16.png]
Figure 6.17
4. The “Input” tab of the “Recording” step is shown in Figure 6.18 seen on page 19. The description of the fields in the “Input” tab and the values used in this script are in Table 6.14.
	Table 6.14

	Recording Step - Input Tab

	Property
	Description
	Value

	Maximum Retries
	Indicates the number of times the recording can be re-attempted after the cancel key has been detected. After the maximum number of retries is reached, the step continues on the Unsuccessful output branch. A "0" value means that no retry is allowed; in this case, the script must handle the retry scenario.
	3

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input

No: the system does not erase previously entered input before capturing caller input
	Yes

[image: image17.png]
Figure 6.18
5. The “Filter” tab of the “Recording” step is shown in Figure 6.19 on page 20. The description of the fields in the “Filter” tab and the values used in this script are in Table 6.15.
	Table 6.15

	Recording Step - Filter Tab

	Property
	Description
	Value

	Duration
	Variable or expression indicating the maximum length of time allotted for recording
	30

	Terminating Digit
	Value indicating the key used to indicate the end of caller input
	#

	Cancel Digit
	Value indicating the key the caller presses to start over
	*

[image: image18.png]
Figure 6.19
6. If “Recording” step unsuccessfully ends, call goes back to the “QueueLoop” label where the caller is placed on hold and then it repeats the process until an agent becomes available.
7. If the “Recording” step is successful, it gets in to the “Successful” branch.
8. The first step in “Successful” branch is the “Play Prompt” step that is used to play the confirmation prompt.

9. The “General” tab of the “Play Prompt” step is shown in Figure 6.20 seen on page 21. The description of the fields in the “General” tab and the values used in this script are in Table 6.16.
	Table 6.16

	Play Prompt Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step
No: the step must complete before any other process can be executed
	Yes

[image: image19.png]
Figure 6.20
10. The “Prompt” tab of the “Play Prompt” step is shown in Figure 6.22 seen on page 23. The description of the fields in the “Prompt” tab and the values used in this script are in Table 6.17.
	Table 6.17

	Play Prompt Step - Prompt Tab

	Property
	Description
	Value

	Prompt
	the name of the wav file or a variable of the prompt to be played to the caller
	 “pMessageConfirm“ variable (Prompt 1165)

	Barge In
	Yes: the caller can interrupt the prompt

No: the caller is required to hear the whole prompt
	Yes

	Continue On Prompt Error
	Yes: the step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller

No: an exception results which can then be handled in the script.
	Yes

[image: image20.png]
Figure 6.21
11. The “Input” tab of the “Play Prompt” step is shown in Figure 6.22 seen on page 23. The description of the fields in the “Input” tab and the values used in this script are in Table 6.18.
	Table 6.18

	Play Prompt Step - Input Tab

	Property
	Description
	Value

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input

No: the system does not erase previously entered input before capturing caller input
	 Yes

[image: image21.png]
Figure 6.22

12. The next step is the “Terminate” step where the call with the caller is terminated. The “Terminate” step is shown below in Figure 6.23. The description of the field in the “General” tab and the values used in this script are in Table 6.19.
	Table 6.19

	Terminate Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with
	default

[image: image22.png]
Figure 6.23
13. In the next step, the system places a call using the “Place Call” step to a number to create a behind-the-scene call on behalf of the caller, so an available agent gets the call and listens to the caller’s message.
14. The “Place Call” step is shown in Figure 6.24. The description of the fields in the “General” tab and the values used in the scripts are in Table 6.20.
	Table 6.20

	Place Call Step - General Tab

	Property
	Description
	Value

	Destination
	The destination number of the outbound call.
	“extensionOutCallMessage” variable

	Timeout
	The time, in seconds, before a Ring No Answer condition stops the script from waiting for the remote side to answer and returns through the Ring-No-Answer output branch.
	10 (default)

	Call Control Group
	Value that stores the identifying number of the call group with which the outbound call is associated.
	0

	Dialog Groups
	An ordered list of dialog group identifiers where the first one has priority and the other dialog groups fall back in the specified order.
	0

	Call Contact
	The name of the variable that stores the call that is created when the step succeeds.
	“outboundCallContact” variable

[image: image23.png]
Figure 6.24
15. The number in “Destination” setting of the “Place Call” step is coming from the “extensionOutCallMessage” variable. This variable is a parameter that can be changed from the application page for the “BaseLineAdvQueuing.aef” in CRS Administration site. This number has to be the trigger number of BaseLineMessageCallback.aef application. The role of the “BaseLineMessageCallback.aef” script/application is to find an available agent for the behind-the-scene call. A detailed description of the “BaseLineMessageCallback.aef” is given later in this document.
16. If the “Place Call” step is successful, the call goes to the “Successful” branch.
17. The other branches of “Place Call” step are “NoAnswer”, “Busy”, “Invalid”, “NoResource”, and “Unsuccessful”. The “NoAnswer” branch is executed when the Ring No Answer timeout limit was reached. The “Busy” branch is executed when the line was busy. The “Invalid” branch is executed when the extension was invalid. The “NoResource” branch is executed when the call was not attempted because no resource was available to make the call. The “Unsuccessful” branch is executed when the call was failed because of an internal system error. Branches other than “Successful”, ends the script by using the “Goto” step to the “END” label without getting an agent listening the caller’s message.
18. In the “Successful” branch of the “Place Call” step, the script waits until the placed call gets connected to an agent and expects the agent to press any key to listen to the message the caller left.

19. The next step is “Get Digit String” step that is used to capture either a DTMF or spoken digit string if you have an ASR from the caller in response to the prompt. The step is going to prompt the agent to press a key. Once the agent presses a key, the agent will be able to listen to the message.
20. The “General“ tab of the “Get Digit String” step is shown in Figure 6.25 on page 26. The description of the fields in the “General” tab and the values used in the scripts are in Table 6.21.
	Table 6.21

	Get Digit String Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the script is interfacing with.
	“outboundCallContact” variable

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step

No: the step must complete before any other process can be executed
	Yes

	Result Digit String
	variable to store the digits entered by the caller
	strAnyDigit

[image: image24.png]
Figure 6.25
21. The “Prompt" tab of the “Get Digit String” step is shown in Figure 6.26. The description of the fields in the “Prompt” tab and the values used in the scripts are in Table 6.22.
	Table 6.22

	Get Digit String Step - Prompt Tab

	Property
	Description
	Value

	Prompt
	name of the wav file or a variable to be played
	“pListenRecordedMessage” variable (Prompt 1166)

	Barge In
	Yes: the caller can interrupt the prompt

No: the caller is required to hear the whole prompt
	Yes

	Continue On Prompt Error
	Yes: the step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller
No: An exception results, which can then be handled in the script
	Yes

[image: image25.png]
Figure 6.26
22. The “Input" tab of the “Get Digit String” step is shown in Figure 6.27 on page 28. The description of the fields in the “Input” tab and the values used in the scripts are in Table 6.23.
	Table 6.23

	Get Digit String Step - Input Tab

	Property
	Description
	Value

	Initial Timeout
	The amount of time the system waits for input from the caller
	3

	Interdigit Timeout
	Indicates the amount of time that the system waits for the caller to enter the next digit, after receiving initial input from the caller
	3

	Maximum Retries
	Indicates the number of times a new entry can be entered after a timeout or invalid key. A 0 value means that no retry is allowed; in this case, the script must handle the retry scenario.
	0

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input

No: the system does not erase previously entered input before capturing caller input
	No

	Clear Input Buffer On Retry
	Yes: clears the DTMF buffer before each retry

No: the DTMF buffer is not cleared after a retry.
	Yes

[image: image26.png]
Figure 6.27
23. The “Filter" tab of the “Get Digit String” step is shown in Figure 6.28 on page 29. The description of the fields in the “Filter” tab and the values used in the scripts are in Table 6.24.
	Table 6.24

	Get Digit String Step - Filter Tab

	Property
	Description
	Value

	Input Length
	Determines the maximum amount of digits the script accepts
	1 (agent needs to press any key)

	Digit Filter
	Specifies the digits that you want to accept from the caller
	0-9, *, and #

	Terminating Digit
	Indicates the button used to indicate the end of caller input (DTMF only). The terminating key overrides the “Maximum Input Length” to terminate input.
	None

	Cancel Digit
	indicates the button the caller presses to start their entry over
	None

[image: image27.png]
Figure 6.28

24. The “Get Digit String” step has three branches. The first branch is “Successful” indicating the caller entry was valid against the Filtered rules. The second and third branches are “Timeout” and “Unsuccessful” respectively. If the agent does not press any keys or input does not match the Filter rules, the script uses “Goto” step to the “WaitForAgentMessage” label to ask the agent to press any key again.
25. In the “Successful” branch of the “Get Digit String” step, the “Play Prompt” step is used to play the message left by the caller to the agent. Table 6.25 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 6.29, 6.30, and 6.31. (Pages 30 and 31)
	Table 6.25

	Play Prompt Step
	

	Setting
	Value

	Contact
	“outboundCallContact” variable

	Interruptible
	Yes

	Prompt
	“recordedMessage“ variable

	Barge In
	Yes

	Continue On Prompt Error
	Yes

	Flush Input Buffer
	Yes

[image: image28.png]
Figure 6.29
[image: image29.png]
Figure 6.30
[image: image30.png]
Figure 6.31
26. The next step is “Menu” step to ask if he/she wants to listen to the prompt again or end the call. The options are playing the message again or ending the call. Table 6.26 shows the settings and the values used in “Menu” step. All of the tabs in the “Menu” step are shown in Figure 6.32, 6.33, 6.34, 6.35, and 6.36. (Pgs 32-34)
	Table 6.26

	Menu Step
	

	Setting
	Value

	Contact
	“outboundCallContact” variable

	Interruptible
	Yes

	Prompt
	“pRepeatRecordedMessage“ variable (Prompt 1167)

	Barge In
	Yes

	Timeout
	3

	Maximum Retries
	0

	Flush Input Buffer
	No

	Options
	“PlayAgain” maps to 1

“Quit” maps to 2

[image: image31.png]
Figure 6.32
[image: image32.png]
Figure 6.33
[image: image33.png]
Figure 6.34
[image: image34.png]
Figure 6.35
[image: image35.png]
Figure 6.36
27. “PlayAgain” branch of the “Menu” step is executed If agent chooses option 1 to listen to the message again. The only step in this branch is “Goto” step to the “PlayRecordedMessage” label.
28. “Quit” branch of the “Menu” step is executed If the agent chooses option 2 to end the call.

29. The “Terminate” step is the first step in the “Quit” branch is. This step finishes the call. The “Terminate” step is shown in Figure 6.37, on page 35. Table 6.27 shows the setting and the value used in “Terminate” step.

	Table 6.27

	Terminate Step
	

	Setting
	Value

	Contact
	“outboundCallContact” variable

[image: image36.png]
Figure 6.37
30. The next step in this branch is “Goto” step to the “END” label to end the script.
31. The other branches of the “Menu” step are “Timeout” and “Unsuccessful” branches. If the maximum number of retries is reached, the “Menu” step takes either the “Timeout” or “Unsuccessful” branch, depending on the reason for the latest failure.
Callback Branch
This branch asks the caller to enter a callback number and record a message, plays a confirmation message, and hangs up the call with the caller. Then the system places a call to the call center and gets an available agent on the line. The agent listens the message that caller left as much as he or she wants and presses a key to have the system call back the caller from the number the caller left initially.

1. The “Get Digit String” step is used to capture either a DTMF or spoken digit string (if you have an ASR) from the caller in response to the prompt. For this step we are going to prompt the caller to enter their ten digit callback number. Once they enter their callback number we are going to convert their entry to a wav file and play it back for confirmation.
2. Table 6.28 shows the settings and the values used in “Get Digit String” step. All of the tabs in the “Menu” step are shown in Figure 6.38, 6.39, 6.40, and 6.41. (Pages 36-38)
	Table 6.28

	Get Digit String Step
	

	Setting
	Value

	Contact
	“outboundCallContact” variable

	Interruptible
	Yes

	Result Digit String
	“callbackNumber” variable

	Prompt
	“pEnterCallbackNumber“ variable (Prompt 1168)

	Barge In
	Yes

	Continue On Prompt Error
	Yes

	Initial Timeout
	5

	Interdigit Timeout
	3

	Maximum Retries
	3

	Flush Input Buffer
	No

	Clear Input Buffer On Retry
	Yes

	Input Length
	10

	Digits Filter
	0-9

	Terminating Digit
	#

	Cancel Digit
	*

[image: image37.png]
Figure 6.38
[image: image38.png]
Figure 6.39
[image: image39.png]
Figure 6.40
[image: image40.png]
Figure 6.41
3. The “Get Digit String” step has three branches. The first branch is “Successful” branch indicating the caller entry was valid against the Filtered rules. The second and third branches are “Timeout” and “Unsuccessful” respectively. If the caller does not press any keys or input does not match the Filter rules, the script uses “Goto” step to the “EnterCallbackNumber” Label to ask the caller to enter the callback number again.
4. The “Successful” branch gets executed if the caller’s input was successful.

5. The “Create Generated Prompt” step is the first step in the “Successful” branch to convert the entered callback number to a prompt. It creates prompt phrases from variables whose values may be determined based on run-time script information. Table 6.29 shows the settings and the values used in “Get Digit String” step. The “Create Generated Prompt” step is shown in Figure 6.42.
	Table 6.29

	Create Generated Prompt Step
	

	Setting
	Value

	Generator Type
	Telephone number

	Constructor Type
	(Number)

	Arguments
	number: “callbackNumber” variable

	Override Language
	Blank

	Output Prompt
	“pCallbackNumber” variable

[image: image41.png]
Figure 6.42
6. The next step is the “Explicit Confirmation”. This step is used to confirm an explicit response to a prompt. The Explicit Confirmation step is defined with a default grammar that accepts either DTMF which uses a 1 for yes and 2 for no or if you have an ASR it will accept the spoken words yes or no based on grammar language installed.
7. The “General” tab of the “Explicit Confirmation” step is shown in Figure 6.43 on page 40. The description of the fields in the “General” tab and the values used in this script are in Table 6.30.
	Table 6.30

	Explicit Confirmation Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with.
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step
No: the step must complete before any other process can be executed
	Yes

[image: image42.png]
Figure 6.43
8. The “Prompts” tab of the “Explicit Confirmation” step is shown in Figure 6.44 on page 41. The description of the fields in the “Prompts” tab and the values used in this script are in Table 6.31.
	Table 6.31

	Explicit Confirmation Step - Prompts Tab

	Property
	Description
	Value

	Initial Prompt
	The prompt(s) that will be played to the caller
	“pYouEntered” variable (Prompt 1169)

“pCallbackNumber” variable (generated)

“pConfirmation” variable (Prompt 1170)

	Error Prompt
	Indicates the prompt to be played in the event of an input error
	Blank

	Timeout Prompt
	Indicates the prompt to be played in the event of a timeout
	Blank

	Barge In
	Yes: the caller can press a digit before they hear the whole prompt

No: the caller has to hear the whole prompt
	Yes

	Continue on Prompt Errors
	Yes: The step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller.

No: an exception result, which can then be handled in the script.
	Yes

[image: image43.png]
Figure 6.44
9. The “Input” tab of the “Explicit Confirmation” step is shown in Figure 6.45 on page 42. The description of the fields in the “Input” tab and the values used in this script are in Table 6.32.
	Table 6.32

	Explicit Confirmation Step - Input Tab

	Property
	Description
	Value

	Timeout
	The amount of time the system waits for input from the caller
	5

	Maximum Retries
	Indicates the number of times a new entry can be entered after a timeout or invalid key
	0

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input.

No: the system does not erase previously entered input before capturing caller input
	Yes

[image: image44.png]
Figure 6.45
10. The “Filter” tab of the “Explicit Confirmation” step is shown in Figure 6.46 on page 43. The description of the fields in the “Filter” tab and the values used in this script are in Table 6.33.
	Table 6.33

	Explicit Confirmation Step - Input Tab

	Property
	Description
	Value

	Grammar
	Variable or expression indicating the optional grammar expression to be used for recognizing Yes or No. If supplied, the grammar will override the system default grammar.
	Blank

[image: image45.png]
Figure 6.46
11. The “Explicit Confirmation” step has four branches. The first branch is “Yes” indicating the caller pressed 1 or said “Yes”. The second branch is “No” indicating the caller pressed 2 or said “No”. The third and fourth branches are “Timeout” and “Unsuccessful” branches. These branches indicate that the caller’s does press any keys or presses an invalid option.
12. The only step in the “Timeout” and “Unsuccessful” branches is “Goto” step to take the caller to the “ConfirmCallbackNumber” label, so the system asks the caller to confirm the callback number entry again.
13. The only step in the “No” branch is “Goto” step to take the caller to the “EnterCallbackNumber” label, so the caller can re-enter the callback number.
14. In the “Yes” branch, the first step is the “Set” step. It is used to set a value of a variable to a value or a value of another variable.
15. The “Set” step is shown in Figure 6.47 on page 44. The description of the fields in the step and the values used in this script are in Table 6.34.
	Table 6.34

	Set Step - Global Tab

	Property
	Description
	Value

	Variable
	Variable for which the value will be set.
	“callbackNumberEntered” variable

	Value
	Value for the specified variable.
	“callbackNumber” variable

[image: image46.png]
Figure 6.47
16. The next step is “Recording” step to ask the caller to record a message for the agent.
17. Table 6.35 shows the settings and the values used in “Recording” step. All of the tabs in the “Recording” step are shown in Figure 6.48, 6.49, and 6.50. (Pages 45 & 46)
	Table 6.35

	Recording Step

	Property
	Value

	Contact
	default

	Interruptible
	No

	Result Document
	“recordedMessage” variable

	Prompt
	pRecordCallbackMessage” variable (Prompt 1171)

	Start Tone
	default

	Barge In
	Yes

	Continue on Prompt Errors
	Yes

	Duration
	30

	Terminating Digit
	#

	Cancel Digit
	*

[image: image47.png]
Figure 6.48
[image: image48.png]
Figure 6.49
[image: image49.png]
Figure 6.50
18. The next step is “Get Contact Info” step to get a particular type of object and store it in script variables to be used in the rest of the steps in the script.
19. The “Get Contact Info” step is shown in Figure 6.51 on page 47. The description of the fields in the step and the values used in this script are in Table 6.36.
	Table 6.36

	Get Contact Info - Global Tab

	Property
	Description
	Value

	Contact
	contact (trigger event) the step is interfacing with
	default

	Attributes
	Attributes and values of contact information types
	Active: “isSessionActive” variable

[image: image50.png]
Figure 6.51
20. The next step is the “If” step that causes the script to go to one of two branches based on the evaluation of a specified Boolean expression. The “Condition” setting is the Boolean expression that gets evaluated.
21. The “If” step is used to check if the call is still active or not. Based on the evaluation, the step executes the “True” branch or the “False” branch. The “condition” setting is set to “isSessionActive” variable. If the value of the “isSessionActive” variable equals to “True”, the script executes the “True” branch of the “If” step. Otherwise, it executes the “False” branch of the step. The screenshot of this “If” step is shown in Figure 6.52.
[image: image51.png]
Figure 6.52
22. The only step in the “False” branch of the “If” Step is the “Goto” step to take the caller to the “PlaceCallCallback” Label.
23. The “Play Prompt” step is the first step in the “True” branch of the “If” step. This step plays a confirmation prompt to the caller.
24. Table 6.37 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown below in Figure 6.53.

	Table 6.37

	Play Prompt Step

	Property
	Value

	Prompt
	“pCallbackConfirm” variable (Prompt 1172)

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image52.png]
Figure 6.53
25. The next step is “Terminate” step to end the call with the caller.

26. The last step in the “True” branch of the “If” step is the “Goto” step to take the caller to the “PlaceCallCallback” Label.
27. In the next step, the system places a call using the “Place Call” step to a number to create a behind-the-scene call on behalf of the caller, so an available agent gets the call, listens to the caller’s message, and initiates the callback to the caller.
28. Table 6.38 shows the settings and the values used in “Place Call” step. All of the tabs in the “Place Call” step are shown in Figure 6.54 on page 49.
	Table 6.38

	Place Call Step

	Property
	Value

	Destination
	“extensionOutCallCallback” variable

	Timeout
	10

	Call Control Group ID
	0

	Dialog Groups
	0

	Call Contact
	“ outboundCallContact” variable

[image: image53.png]
Figure 6.54
29. The number in “Destination” setting of the “Place Call” step is coming from the “extensionOutCallCallback” variable. This variable is a parameter that can be changed from the application page for the “BaseLineAdvQueuing.aef” in CRS Administration site. This number has to be the trigger number of BaseLineMessageCallback.aef application. The role of the “BaseLineMessageCallback.aef” script/application is to find an available agent for the behind-the-scene call. A detailed description of the “BaseLineMessageCallback.aef” is given later in this document.
30. If the “Place Call” step is successful, the call goes to the “Successful” branch.

31. The other branches of “Place Call” step are “NoAnswer”, “Busy”, “Invalid”, “NoResource”, and “Unsuccessful”. The “NoAnswer” branch is executed when the Ring No Answer timeout limit was reached. The “Busy” branch is executed when the line was busy. The “Invalid” branch is executed when the extension was invalid. The “NoResource” branch is executed when the call was not attempted because no resource was available to make the call. The “Unsuccessful” branch is executed when the call was failed because of an internal system error. Branches other than “Successful”, ends the script by using the “Goto” step to the “END” label without getting an agent listening the caller’s message.
32. In the “Successful” branch of the “Place Call” step, the script waits until the placed call gets connected to an agent and expects the agent to press any key to listen to the message the caller left.

33. The next step is “Get Digit String” step. The step is going to prompt the agent to press a key. Once the agent presses a key, the agent will be able to listen to the caller’s message and initiate the callback to the caller.

34. Table 6.39 shows the settings and the values used in “Get Digit String” step. All of the tabs in the “Get Digit String” step are shown in Figure 6.55, 6.56, and 6.57 on pages 50 and 51.
	Table 6.39

	Get Digit String Step

	Property
	Value

	Contact
	“outboundCallContact” variable

	Interruptible
	Yes

	Result Digit String
	“strAnyDigit” variable

	Prompt
	“pListenRecordedMessage” variable (Prompt 1173)

	Barge In
	Yes

	Continue On Prompt Error
	Yes

	Input Length
	1

	Digits Filter
	0-9, #, *

	Terminating Digit
	None

	Cancel Digit
	None

[image: image54.png]
Figure 6.55
[image: image55.png]
Figure 6.56
[image: image56.png]
Figure 6.57
35. The “Get Digit String” step has three branches. The first branch is “Successful” indicating the caller entry was valid against the Filtered rules. The second and third branches are “Timeout” and “Unsuccessful” respectively. If the caller does not press any keys or input does not match the Filter rules, the script uses “Goto” step to the “WaitForAgentCallback” label to ask the agent to press any key again.
36. In the “Successful” branch of the “Get Digit String” step, the “Play Prompt” step is used to play the message left by the caller to the agent.

37. Table 6.40 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 6.58 and 6.59 on page 52 and 53.
	Table 6.40

	Play Prompt Step

	Property
	Value

	Contact
	“outboundCallContact” variable

	Interruptible
	Yes

	Prompt
	“recordedMessage” variable

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image57.png]
Figure 6.58
[image: image58.png]
Figure 6.59
38. The next step is “Menu” step to ask if the agent wants to listen to the message again or calling back the customer. The options are playing the message again or calling back the customer.

39. Table 6.41 shows the settings and the values used in “Menu” step. All of the tabs in the “Menu” step are shown in Figure 6.60, 6.61, 6.63, 6.63, and 6.64 on pages 54 - 56.

	Table 6.41

	Menu Step
	

	Setting
	Value

	Contact
	“outboundCallContact” variable

	Interruptible
	Yes

	Prompt
	“pRepeatCallbackMessage“ variable (Prompt 1174)

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

	Timeout
	3

	Maximum Retries
	0

	Flush Input Buffer
	No

	Options
	“PlayAgain” maps to 1

“ConnectToCustomer” maps to 2

[image: image59.png]
Figure 6.60
[image: image60.png]
Figure 6.61
[image: image61.png]
Figure 6.62
[image: image62.png]
Figure 6.63
[image: image63.png]
Figure 6.64
40. The “PlayAgain” branch of the “Menu” step is executed if agent chooses option 1 to listen to the message again. The only step in this branch is “Goto” step to the “PlayCallbackMessage” label.

41. The “ConnectToCustomer” branch of the “Menu” step is executed if the agent chooses option 2 to call back the caller. The only step in this branch is “Goto” step to the “ConnectToCustomer” label.
42. The other branches of the “Menu” step are “Timeout” and “Unsuccessful” branches. If the maximum number of retries is reached, the “Menu” step takes either the “Timeout” or “Unsuccessful” branch, depending on the reason for the latest failure. The only step in these branches is the “Goto” step to the “PlayCallbackMessgaeAgain” label to play the prompt to ask the caller to select one of the options.
43. After the “ConnectToCustomer” label, there are some “If” steps to make sure the callback number that caller entered can be dialed by the system. The script has variables as parameters that determine setting like dial-out digit and the local area code the system is in. Table 6.42 shows variables and values used to determine the number to dial for callback

	Table 6.42

	Variable
	Value

	digitForDialTone
	9

	localAreaCode
	513

Using the parameters and entered callback number, Next “If” steps will make the “callbackNumber” a number that can be dialed by the system.
44. The next step is “If” step to check if the length of the value of the “callbackNumber“ variable equals to ten by using following expression

callbackNumber.length() == 10

If true, this indicates that the caller entered ten-digit callback number that includes area code. The screenshot of this “If” step is shown in Figure 6.65

[image: image64.png]
Figure 6.65
45. In the “True” branch of the “If” step, Another “If” step is used to check if the first three digit of the ten-digit callback number equals to the value of the “localAreaCode” variable by using the following expression

callbackNumber.substring(0,3) == localAreaCode

 If true, it indicates that the number that caller entered is a local number. If false, it indicates the number that caller entered is a long distance number. The screenshot of this “If” step is shown in Figure 6.66.
[image: image65.png]
Figure 6.66
46. In the “True” branch of the insider “If” step, the value of the “callbackNumber” variable is re-set to the concatenation of the value of the “digitForDialTone” variable and the value of the “callbackNumber” variable starting from the 4th character. In other words, the statement drops the 3-digit area code in front of the callback number entered initially and puts the value in the “digitForDialTone” variable in front of it. The “Set” step is shown in the Figure 6.67 on page 59. Table 6.43 demonstrates an example.
	Table 6.43

	callbackNumber
	1234567890

	digitForDialTone
	9

	localAreaCode
	123

	New callbackNumber
	94567890

[image: image66.png]
Figure 6.67
47. In the “False” branch of the insider “If” step, the value of the “callbackNumber” variable is re-set to the concatenation of the value of the “digitForDialTone” variable, “1”, and the value of the “callbackNumber” variable. In other words, the statement adds the value in the “digitForDialTone” variable and “1” in front of the value of the “callbackNumber” variable. The “Set” step is shown in the Figure 6.68 on page 60. Table 6.44 demonstrates an example.
	Table 6.44

	callbackNumber
	4567890123

	digitForDialTone
	9

	localAreaCode
	123

	New callbackNumber
	914567890123

[image: image67.png]
Figure 6.68
48. The next step is “If” step to check if the length of the value of the “callbackNumber“ variable equals to seven by using following expression.
callbackNumber.length() == 7

If true, this indicates that the caller entered seven-digit callback number that does not include area code. The screenshot of this “If” step is shown in Figure 6.69.
[image: image68.png]
Figure 6.69
49. In the “True” branch of the “If” step, the value of the “callbackNumber” variable is re-set to the concentration of the value of the “digitForDialTone” variable, and the value of the “callbackNumber” variable. In other words, the statement adds the value in the “digitForDialTone” variable in front of the value of the “callbackNumber” variable. The “Set” step is shown in the Figure 6.70. Table 6.45 demonstrates an example.
	Table 6.45

	callbackNumber
	7890123

	digitForDialTone
	9

	localAreaCode
	123

	New callbackNumber
	97890123

[image: image69.png]
Figure 6.70
50. The next step is the “Call Redirect” step that redirects a call to another extension or number. It is used to transfer the call between the system and the agent to the caller at the callback number entered. The “Call Redirect” step is shown in Figure 6.71 on page 62. The description of the fields in the “General” tab and the values used in this script are in Table 6.46.
	Table 6.46

	General Tab

	Property
	Description
	Value

	Call Contact
	Contact (trigger event) the step is interfacing with.
	“outboundCallContact” variable

	Destination
	The variable that holds the extension where the call is to be redirected.
	“callbackNumber” variable

	Called Address
	Reset To: script resets the original destination of the call to the redirected destination

Preserve: the script preserves the original call destination even after the Call Redirect step executes and the information associated with the call gives no indication that the Route point or CTI port was ever involved with the call.
	default

[image: image70.png]
Figure 6.71
51. The “CallRedirect” step has four braches as shown in Table 6.47.
	Table 6.47

	Branches
	When executed

	Successful
	The call is ringing at the specified extension

	Busy
	The specified extension is busy and the call cannot be transferred

	Invalid
	The specified extension does not exist

	Unsuccessful
	The redirect step fails internally

52. In the “Successful” branch of the “Call Redirect” step, since the agent is redirected to the callback number that caller entered and it’s ringing, “Goto” step to the “END” label is used to end the script.

53. In the “Busy” branch, since the number the caller entered is busy, the agent was not able to connect to the caller. The system prompts the agent with the reason and the number it tried to dial and ends the script.
54. The first step in the “Busy” branch is “Create Generated Prompt” step. It is used to convert the entered callback number to a prompt. It creates prompt phrases from variables whose values may be determined based on run-time script information.
55. Table 6.48 shows the settings and the values used in “Create Generated Prompt” step. All of the tabs in the “Create Generated Prompt” step are shown in Figure 6.72.

	Table 6.48

	Create Generated Prompt Step

	Setting
	Value

	Generator Type
	Telephone Number

	Constructor Type
	(number)

	Arguments
	number: “callbackNumberEntered” variable

	Override Language
	Blank

	Output Prompt
	pCallbackNumber

[image: image71.png]
Figure 6.72
56. The next step is “Play Prompt” step to play a prompt to the agent. Table 6.49 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 6.73 and 6.74 on page 64.

	Table 6.49

	Play Prompt Step
	

	Setting
	Value

	Contact
	“outboundCallContact” variable

	Interruptible
	Yes

	Prompt
	“pBusyMessage” variable (Prompt 1175)

“pCallbackNumber” variable

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image72.png]
Figure 6.73
[image: image73.png]
Figure 6.74
57. The next step is “Terminate” step to end the call that was placed by the system and was connected to the agent. The “Contact” setting is set to the “outboundCallContact” variable. The screenshot of the “Terminate’ step is shown in Figure 6.75 on page 65.
[image: image74.png]
Figure 6.75
58. The last step in “Busy” branch is the “Goto” step to the “END” label to end the script.

59. The “Invalid” and “Unsuccessful” branches of the “Call Redirect” step are identical to the “Busy” branch except the variable names of the prompts are different.

60. The “Play Prompt” step in the “Invalid” branch is using “pInvalidMessage” variable (Prompt 1176). The screenshot of the different tab of the “Play Prompt” step is shown in Figure 6.76.
[image: image75.png]

Figure 6.76
61. The “Play Prompt” step in the “Unsuccessful” branch is using “pUnsuccessfulMessage” variable (Prompt 1177). The screenshot of the different tab of the “Play Prompt” step is shown in Figure 6.77.
[image: image76.png]
Figure 6.77
BaseLineMessageCallback.aef script

62. Once the CRS Editor loads, click on “File” and “Open” and browse to the directory that has the script “BaseLineMessage.aef”. The Figure 6.78 shows the CRS editor and the script opened in the editor.

[image: image77.png]
Figure 6.78
63. To expand all the branches of the script, click on any step and right click your mouse. Choose “Expand All” to see all the steps as it’s shown in Figure 6.79.
[image: image78.png]
Figure 6.79
1. When a call placed in to “BaseLineMessage.aef” script/application, the script accepts the call and starts looking for an available agent.
2. The “Select Resource” step is used to queue a call to a specific set of agents and optionally to connect the call to the agent the system chooses. Table 6.50 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 6.80.
	Table 6.50

	Select Resource Step
	

	Setting
	Value

	Contact
	default

	Routing Target Type
	Contact Service Queue

	CSQ Target
	“CSQ” variable

	Connect
	No

	Timeout
	NA

	Resource Selected
	“selectedResource” variable

[image: image79.png]
Figure 6.80
3. The “Select Resource” step has two branches. If an agent is available it will go to the first branch which is “Selected”.
4. The “Connect” Step in the first step under the “Selected” branch since the “Connect” was set to “No” on the “Select Resource” step. Table 6.51 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 6.81 seen below.
	Table 6.51

	Connect Step
	

	Setting
	Value

	Contact
	default

	Resource Selected
	“selectedResource” variable

	Timeout
	10

[image: image80.png]
Figure 6.81
5. If no agents are available, the “Select Resource” step will send the call to “Queued” branch. In this branch, type of call treatment the caller will get can be provided.
6. In the “Queued”, the only step is “Delay” step. The “Timeout” setting is set to 30 second. The call is in a loop until an agent becomes available to take the call. Unlike a usual “Queued” branch, The Queued branch in this script has only a delay step because caller that is calling this scrip/application is the system that is calling from another script to make a behind-the-scene call. So there is no need for interaction with a caller.
Validating the Scripts
1. The first step that always needs to be done before you upload a script is to validate the script to make sure it has no syntax errors. To validate the script, from the Menu choose “Tools” and then “Validate” the script as shown below in Figure 6.82.
[image: image81.png]
Figure 6.82
2. If there are no syntax errors you will receive a message the “Script validation succeeded” as shown in Figure 6.83 on page 70. Click “OK” to continue” If your script does not validate the bottom right side of the CRS Editor will show you each error. You can then click on each error and it will take you directly
3. to the step that is causing the problem. (Note: If you upload a script that has an error it will possibly put the UCXX Engine subsystem “Unified CM Telephony Subsystem” in Partial Service.)
[image: image101.png]
Figure 6.83
Saving the Scripts
There are two different ways to save the changes to a script and upload it to the repository. We will cover both options.

Saving the Scripts - Option 1
1. This option requires that you authenticated to the UCXX Server when you launched the CRS Editor. To save the changes made to this script Click on “File” and then “Save As”. When the “Save As” window appears as shown in Figure 6.84, click on the “Script Repository” on the upper left side of the window. You will then see the “Default [default] directory option in the window.

[image: image82.png]
Figure 6.84
2. Double click on the “Default” directory” and you will see all the scripts that are uploaded into the repository in that directory as shown in Figure 6.85 on page 71. If the Script has already been uploaded you can click on “save” and replace the current file. If the script has not been uploaded before you can click on save, it will create the new script in the repository.
[image: image83.png]
Figure 6.85
3. Once the file has been uploaded to the repository, launch the UCXX AppAdmin web page. Choose “Applications” from the Menu and choose “Script Management”. Find the BaseLineAdvQueuing.aef name and click on the “Refresh” icon [image: image84.png] as shown in Figure 6.86.
[image: image85.png]
Figure 6.86
4. Once the script has been refreshed the application also has to be refreshed for it to use the new script. If the application is already configured choose “Applications” from the Menu and “Application Management”. Locate your application and click on the “Refresh” icon [image: image86.png] as shown in Figure 6.87.
[image: image87.png]
Figure 6.87
5. Follow the step 1 - 4 to save the BaseLineMessageCallback.aef.

Saving the Script - Option 2
1. This option does not require that you authenticated to the UCCX Server. To save the changes made to this script, Click on “File” and then “Save As” and save it to any directory that you will have access to when you run the UCCX Administration web page.

2. Once the file has been saved, launch the UCCX Administration web page and choose “Applications” from the Menu and choose “Script Management”.

3. If the script is already uploaded to the repository find the BaseLineAdvQueuing.aef script and click up the Upload icon. [image: image88.png] If this is a new application skip to “Creating a New Application”.
4. The script uploading window will open as shown in Figure 6.88 on page 73. Click on “Browse” and locate your new script that you just saved. Once you have selected your script click on “Upload” to save the script to the repository.

[image: image89.png]
Figure 6.88
5. After the Script is uploaded click on “Refresh the Script” as shown in Figure 6.89 and then update the repository.
[image: image90.png]
Figure 6.89
6. The window in Figure 6.90 appears. (Pg 74) If the Application is already setup Click on “Yes” to refresh the script and application. If the application is not configured click on “No” to only refresh the script.
[image: image102.png]
Figure 6.90
7. Follow the step 1 - 6 to save the BaseLineMessageCallback.aef.
Creating a New Application
To create a new application launch the UCCX Administration web page and choose “Applications” from the Menu and choose “Application Management”.

1. Click on “Add a New Application”

2. Click on “Next” for a “Cisco Script Application” type.

3. Fill in the form with the information in Table 6.52. The screenshot of the form is shown in Figure 6.91 on page 75.
	Table 6.52

	Field
	Description

	Name
	Application name

	ID
	Assigned by the system

	Maximum Number of Sessions
	Calls that you want this application to handle simultaneously.

	Script
	Select the scrip

	Description
	Enter description for the application

	Enabled
	Default value is set to “Enable”. When you change this parameter the application will not operate.

	Default Script
	The default value is set to “System Default”. You do not need to change this unless your application requires a backup script in case of an error on the configured script.

[image: image103.png]
Figure 6.91
4. Once all your changes have been made click on the “Add” button.
5. Once the application is added click on “Add new trigger”. Click on “Next” to add a “Unified CM Telephony Trigger” type. (The other type of trigger you can activate is a script from a HTTP trigger.)

6. Fill in the information on the Unified CM Telephony Trigger Configuration form as necessary. The form is shown in Figure 6.92 on page 76.
7. Click on “Add” to save the Trigger.

[image: image91.png]
Figure 6.92
8. The Figure 6.93 (Pg 77) shows the application with the trigger and some of the parameter values filled in.

[image: image92.png]
Figure 6.93
9. Follow the step 1 - 8 to create applications for the BaseLineMessageCallback.aef

10. Create two triggers for the application that uses BaseLineMessageCallback.aef script.
11. The first “Directory Number” for the trigger of BaseLineMessageCallback.aef application has to be entered in to “extensionOutCallMessage” variable field on application page for the BaseLineAdvQueuing.aef application (see above page).
12. The second “Directory Number” for the trigger of BaseLineMessageCallback.aef application has to be entered in to “extensionOutCallCallback” variable field on application page for the BaseLineAdvQueuing.aef application (see above page).
13. On application page for the BaseLineAdvQueuing.aef application, change the values in the “localAreaCode” variable field and the “digitForDialTone” variable fields.
APPENDIX
Install CRS Editor

1. If you have not installed the CRS Editor login to the UCCX admin web site
(http://x.x.x.x/appadmin)
2. Choose “Tools” from the main menu and Click on “Plug-ins” as shown in Figure 6.94.
[image: image104.png]Figure 6.94
3. Click on “Cisco CRS Editor” and choose “Open” to install the Editor.

Script Layout
On the next page are the complete layouts for the “BaseLineAdvQueuing.aef” (Figure 6.95 on pgs 79 - 83) script and “BaseLineMessageCallback.aef” (Figure 6.96 pg 84) script. Comments have been added to each step to define the functionality for that step.

BaseLineAdvQueuing.aef Layout
[image: image93.png]
[image: image94.png]
[image: image95.png]
[image: image96.png]
[image: image97.png]
Figure 6.95
BaseLineMessageCallback.aef Layout
[image: image98.png]
Figure 6.96
Variable Layouts
The list of all variables and variable parameters are listed below.
BaseLineAdvQueuing.aef Variable Layout
[image: image99.png]
Figure 6.97
BaseLineMessageCallback.aef Variable Layout
[image: image100.png]
Figure 6.98

PAGE
10
Version 4.2

_1295078141.vsd
text

