Database Application
Application Overview:

The Database Application will utilize the advanced capabilities of scripting for calls that interact with a database along with self service. The application demonstrates collecting account information from the caller, making database queries for the caller input, offering self service interactions, and talking to a live agent if desired.

In this application, the callers will be prompted to enter an account number. Then the script will make a database query to get the bank account information such as checking and savings account balances for the user. A menu options will be played to the customer for self service, including getting balances from account and transferring funds from one account to another. In addition, the caller will have option to talk to the next available agent.
Note:
This application / script was built using UCCX version 7.0(1). It should be backward compatible with UCCX 5.x; however it has not been tested.

Note: This document uses CRS and CCX terms interchangeably. CRS is a term that is used in prior to version 7.x to refer to the platform. In version 7.x, CCX is used to refer to both the product and platform.

With this script we are going to cover the following options:

1. “DB Read” step for accessing to a database and making a query
2. “DB Get” step for parsing data from a result of a query
3. Using the Desktop Administrator

a. Adding a Layout

b. Define Custom Variable

c. Setup Call Flows to enable screen-pops

4. Assigning variable to Extended Variable for screen-pops and custom variable reports

Operation Overview:

This application is typically the second level of interface with your clients’ customers after they interface with the main auto attendant and get transferred to a queue. It should be thoroughly tested from end to end. As mentioned before, when designing a call flow it is best to document each step with the customer using a program such as Microsoft’s Visio. This documentation allows your customer to better understand each step and to make sure the script is meeting all of their requirements. For a partner who is designing the call flow, it allows you to get a sign-off on the call flow to help alleviate changes.
The call flow documented in Figure 7.1 will be used as a guide that will be configured throughout this section. (See the page 2)

[image: image124.png]
Figure 7.1
Files and Folders Involved:

Table 7.1 shows the list of the files and their descriptions used with this application.

	Table 7.1

	File or Folder Name
	Description

	BaseLineDatabase.aef
	Main script file that handles database integration

	database.sql
	The SQLfile that has commands to create the sample database and tables.

	ScreenPop (Folder)
	The files that are used as a sample web site that interfaces to the sample database

Example Prompts:

When designing your call flow, document each point where a prompt is needed. Label each prompt with a four digit prompt number that you will use within your scripting. In Figure 7.1 there are seventeen prompts that will need to be recorded. Table 7.2 shows the names of prompts and a sample verbiage for each prompts based on the call flow.

	Table 7.2

	File Name
	Sample context

	1181.wav
	Thank you for calling Cisco Systems

	1182.wav
	Please Enter you five digit account number

	1183.wav
	You entered

	1184.wav
	If this is correct please press one; if you want to re-enter the account number, please press two.

	1185.wav
	The account Number you entered is not a valid number. The Valid numbers are between 11501 to 11509. Please enter your account number again.

	1186.wav
	For Checking Balance please press one; for savings balance, please press two; for total balance please press three; to transfer funds from checking to savings, please press four; to transfer funds from savings to checking, please press five; for a customer service representative, please press 0.

	1187.wav
	Your checking balance is

	1188.wav
	Your savings balance is

	1189.wav
	Your total balance is

	1190.wav
	Please enter the amount of funds you want to transfer and press the pound key. Please use the star key for a decimal.

	1191.wav
	If this is correct please press one; if you want to re-enter the amount of funds, please press two.

	1192.wav
	Your transfer transaction has been completed.

	1193.wav
	We’re Sorry. There are not enough funds in this account to transfer. Please enter a smaller amount.

	1194.wav
	All of our agents are taking care of other customers. Please stay on the line and the next available agent will be with you shortly.

	1195.wav
	Thank you for waiting. Please stay on the line. The next available agent will be with you shortly. Your position in the queue is

Technical Overview:

At the end of this section is a complete script layout along with a description for each step and its functionality. A list of all the variables used in this script along with their values is listed below the script layout.

Launching the CRS Editor
1. Launch the CRS Editor program by Clicking on your Windows “Start” button and then highlight “Programs” then “Cisco CRS Developer” and then “Cisco CRS Editor”. The Figure 7.2 shows the login screen.
[image: image1.emf]WELCOME PROMT

Cisco Systems

Prompt

1181

Customer

Dial 3015

Partner

Support

Queue

Select

Resource

Agent

12

ABC

3

DEF

45

JKL

6

MNOGHI

78

TUV

9

WXYZPQRS

*

0

OPER

#

7960

CISCO IP PHONE

i

messagesdirectories

settingsservices

YES

CONNECT

To

RESOURCES

NO

Queue

Prompt 1

YES

NO

Delay

(10s)

Prompt

1194

Confirm

Account

Number

Enter

Account

Number

Prompt

1182

Prompt

1183

1184

NO

YES

Database

Query

For The

Account

Number

Error

Queue Prompt2

Position in Que

Re Enter

Account

Number

No Data

Prompt

1185

Main Menu

1) Checking Account Balance

2) Savings Account Balance

3) Total Balance

4) Transfer Fund From Checking To Savings

5) Transfer Fund From Savings To Checking

0) Customer Service (Call Center)

0

Play the Checking

Balance

Prompt

1186

Play the Savings

Balance

Play the Total

Balance

Enter Fund Amount

Prompt

1187

Prompt

1188

Prompt

1189

Enter Fund Amount

Confirm Fund Amount

Prompt

1190

Prompt

1191

Check Fund

Availability

NO

YES

NO

Make The Transaction

Prompt

1190

Confirm Fund Amount

Prompt

1191

Check Fund

Availability

NO

YES

NO

Make The Transaction

12

3

45

Confirm TransactionConfirm Transaction

Prompt

1192

Prompt

1192

Not Enough Fund

Prompt

1193

Not Enough Fund

Prompt

1193

Prompt

1195

CTI

Account

Number

Figure 7.2

2. Login to the CRS Editor with your user ID (that has Administrator rights to the UCCX Administration web site) password and UCCX Server name or IP Address. (Note: If you login anonymously you will not be able to load your scripts directly to the repository or run a script in Debug – Reactive Script mode (Great Troubleshooting Tool!).)
Editing the Advanced Queuing Application Scripts
BaseLineDatabase.aef script
Once the CRS Editor loads, click on “File” and “Open” and browse to the directory that has the script “BaseLineDatabase.aef”. The Figure 7.3 shows the CRS Editor and the script opened in the editor.
[image: image2.png]
Figure 7.3

To expand all the branches of the script, click on any step and right click your mouse. Choose “Expand All” to see all the steps as it is shown in Figure 7.4.
[image: image3.png]
Figure 7.4

Collecting Information

1. The “Get Digit String” step is used to capture either a DTMF or spoken digit string if you have an ASR from the caller in response to the prompt. For this step we are going to prompt the caller to enter their five-digit account number. Once they enter their account number we are going to convert their entry to a wav file and play it back for confirmation.
2. The “General" tab of the “Get Digit String” step is shown in Figure 7.5. The description of the fields in the “General” tab and the values used in the scripts are in Table 7.3.
	Table 7.3

	Get Digit String Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the script is interfacing with.
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step

No: the step must complete before any other process can be executed
	Yes

	Result Digit String
	variable to store the digits entered by the caller
	“accountNumber” variable

[image: image4.png]
Figure 7.5
3. The “Prompt" tab of the “Get Digit String” step is shown in Figure 7.6. The description of the fields in the “Prompt” tab and the values used in the scripts are in Table 7.4.
	Table 7.4

	Get Digit String Step - Prompt Tab

	Property
	Description
	Value

	Prompt
	name of the wav file or a variable to be played
	“pEnterAccountNumber” variable (Prompt 1182)

	Barge In
	Yes: the caller can interrupt the prompt

No: the caller is required to hear the whole prompt
	Yes

	Continue On Prompt Error
	Yes: the step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller
No: An exception results, which can then be handled in the script
	Yes

[image: image5.png]
Figure 7.6

4. The “Input“ tab of the “Get Digit String” step is shown in Figure 7.7. The description of the fields in the “Input” tab and the values used in the scripts are in Table 7.5.
	Table 7.5

	Get Digit String Step - Input Tab

	Property
	Description
	Value

	Initial Timeout
	The amount of time the system waits for input from the caller
	5

	Interdigit Timeout
	Indicates the amount of time that the system waits for the caller to enter the next digit, after receiving initial input from the caller
	3

	Maximum Retries
	Indicates the number of times a new entry can be entered after a timeout or invalid key. A 0 value means that no retry is allowed; in this case, the script must handle the retry scenario.
	0

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input

No: the system does not erase previously entered input before capturing caller input
	No

	Clear Input Buffer On Retry
	Yes: clears the DTMF buffer before each retry

No: the DTMF buffer is not cleared after a retry.
	Yes

[image: image6.png]
Figure 7.7

1. The “Filter“ tab of the “Get Digit String” step is shown in Figure 7.8. The description of the fields in the “Filter” tab and the values used in the scripts are in Table 7.6.
	Table 7.6

	Get Digit String Step - Filter Tab

	Property
	Description
	Value

	Input Length
	Determines the maximum amount of digits the script accepts
	5 (account number length)

	Digit Filter
	Specifies the digits that you want to accept from the caller
	0-9

	Terminating Digit
	Indicates the button used to indicate the end of caller input (DTMF only). The terminating key overrides the “Maximum Input Length” to terminate input.
	#

	Cancel Digit
	indicates the button the caller presses to start their entry over
	*

[image: image7.png]
Figure 7.8

5. The “Get Digit String” step has three branches. The first branch is “Successful” branch indicating the caller entry was valid against the Filtered rules. The second and third branches are “Timeout” and “Unsuccessful” respectively. If the caller does not press any keys or input does not match the Filter rules, the script uses “Goto” step to the “GetAccountNumber” Label to ask the caller to enter the account number again.
6. The “Successful” branch gets executed if the caller’s input was successful.

7. The “Create Generate Prompt” step is the first step in the “Successful” branch to convert the entered account number to a prompt. It creates prompt phrases from variables whose values may be determined based on run-time script information. The description of the fields in the “General” tab and the values used in this script are in Table 7.7. The “Create Generated Prompt” step is shown in Figure 7.9.
	Table 7.7

	Create Generated Prompt Step - General Tab

	Property
	Description
	Value

	Generator Type
	The type of information generated
	spelling

	Constructor Type
	Indicates the constructor type that corresponds to the generator type
	(string)

	Arguments
	Names and their values.
	string: “accountNumber” variable

	Override Language
	Language in which the prompt is played back. Used only if the resulting prompt is played in a different language than the one defined by the contact in which that prompt is played back.
	blank

	Output Prompt
	Variable indicating where the prompt object resulting from this step is stored.
	“pEnteredAccountNumber” variable

[image: image8.png]
Figure 7.9

8. The next step is the “Explicit Confirmation”. This step is used to confirm an explicit response to a prompt. The Explicit Confirmation step is defined with a default grammar that accepts either DTMF which uses a 1 for yes and 2 for no or if you have an ASR it will accept the spoken words yes or no based on grammar language installed.
9. The “General” tab of the “Explicit Confirmation” step is shown in Figure 7.10. The description of the fields in the “General” tab and the values used in this script are in Table 7.8.
	Table 7.8

	Explicit Confirmation Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with.
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step
No: the step must complete before any other process can be executed
	Yes

[image: image9.png]
Figure 7.10

10. The “Prompts” tab of the “Explicit Confirmation” step is shown in Figure 7.11. The description of the fields in the “Prompts” tab and the values used in this script are in Table 7.9.
	Table 7.9

	Explicit Confirmation Step - Prompts Tab

	Property
	Description
	Value

	Initial Prompt
	The prompt(s) that will be played to the caller
	“pYouEntered” variable (Prompt 1183)

“pEnteredAccountNumber” variable (generated)

“pConfirmation” variable (Prompt 1184)

	Error Prompt
	Indicates the prompt to be played in the event of an input error
	Blank

	Timeout Prompt
	Indicates the prompt to be played in the event of a timeout
	Blank

	Barge In
	Yes: the caller can press a digit before they hear the whole prompt

No: the caller has to hear the whole prompt
	Yes

	Continue on Prompt Errors
	Yes: The step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller.

No: an exception result, which can then be handled in the script.
	Yes

[image: image10.png]
Figure 7.11

11. The “Input” tab of the “Explicit Confirmation” step is shown in Figure 7.12. The description of the fields in the “Input” tab and the values used in this script are in Table 7.10.
	Table 7.10

	Explicit Confirmation Step - Input Tab

	Property
	Description
	Value

	Timeout
	The amount of time the system waits for input from the caller
	5

	Maximum Retries
	Indicates the number of times a new entry can be entered after a timeout or invalid key
	0

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input.

No: the system does not erase previously entered input before capturing caller input
	Yes

[image: image11.png]
Figure 7.12

12. The “Filter” tab of the “Explicit Confirmation” step is shown in Figure 7.13. The description of the fields in the “Filter” tab and the values used in this script are in Table 7.11.
	Table 7.11

	Explicit Confirmation Step - Input Tab

	Property
	Description
	Value

	Grammar
	Variable or expression indicating the optional grammar expression to be used for recognizing Yes or No. If supplied, the grammar will override the system default grammar.
	Blank

[image: image12.png]
Figure 7.13

13. The “Explicit Confirmation” step has four branches. The first branch is “Yes” indicating the caller pressed 1 or said “Yes”. The second branch is “No” indicating the caller pressed 2 or said “No”. The third and fourth branches are “Timeout” and “Unsuccessful” branches. These branched indicate that the caller’s does press any keys or presses an invalid option.
14. The only step in the “Timeout” and “Unsuccessful” branches is “Goto” step to take the caller to the “ConfirmAccountNumber” Label, so the system asks the caller to confirm the account number entry again.
15. The only step in the “No” branch is “Goto” step to take the caller to the “GetAccountNumber” Label, so the caller can re-enter the account number.
16. The only step in the “Yes” branch is “Goto” step to take the caller to the “GetCustomerInfo” Label, so the script can make database query to get the caller info.
Query Database for Customer Information

To be able to use the steps related to the database, please make sure the sample database is created and the connection settings are made. The instructions about setting up and configuring database are in the appendix section. Rest of the section will assume that you are able to connect to the database without any problem.
1. The first step in this section is “DB Read” step that chooses a database and enter SQL statements required to obtain the data you need for the script. “DB Get” step is used after a “DB Read” step to assign the results of your query to specific variables. The DB Read step is not interruptible by external events.
2. The “General” tab of the “DB Read” step is shown in Figure 7.14. The description of the fields in the “General” tab and the values used in this script are in Table 7.12.
	Table 7.12

	DB Read Step - General Tab

	Property
	Description
	Value

	DB Resource Name
	The name identifying this database query. The same DB Resource Name is used in the accompanying DB Get and DB Release steps.
	“AccountInfo”

	Data Source Name
	The variable indicating database that is going to be accessed. This list contains the DSNs you identified in the CRS Administration Database web page. Please refer to the appendix to set up the database to use in the steps.
	“BaseLine”

	Timeout (in sec)
	Interval that prevents the script waiting indefinitely when database is unavailable. If the value for the timeout interval is 0, an indefinite wait occurs.
	7

	Refresh Database Schema button
	Refreshes the “Data Source Name” setting drop-down list from the Cisco CRS engine
	NA

[image: image13.png]
Figure 7.14

3. The “Field Selection” tab of the “DB Read” step is shown in Figure 7.15. The description of the fields in the “Field Selection” tab and the values used in this script are in Table 7.13.

	Table 7.13

	DB Read Step - Field Selection Tab

	Property
	Description
	Value

	Text Area
	Enter SQL command that you want to be executed, using standard SQL syntax into the multiline textbox. The SQL statements SELECT count(*) and SELECT min(*) are not supported. In addition, join queries that retrieve columns with the same name from different tables cannot be created. For example, you cannot create "select a.x, b.x from a,b" and "select a.x as y from a". Similarly, you cannot make aliases of column names.

Notice that to pass a variable to the SQL command from the script requires “$” sign in front of the name of the variable name in WHERE statement.
	SELECT strFirstName, strLastName,

moneyCheckingBalance, moneySavingBalance,

moneyTotalBalance, moneyFees

FROM Customers

WHERE strAccountNumber = $accountNumber

	Test button
	Tests the query and connectivity to an active Cisco CRS engine. To test the SQL statement, a connection to an active Cisco CRS Engine has to be established.
	NA

	Number of rows returned
	Display only field that gets populated when the “Test” button is clicked. This value determines whether or not the query is working correctly. If a variable is used in the SQL command, this field may show a “0”.
	NA

	Show All Fields (Select Table/View)
	Displays fields defined in a particular table in this database.

	NA

[image: image14.png]
Figure 7.15

4. The “DB Read” step has three branches. The “Successful” branch executes if the step successfully executes. The “Connection Not Available” step executes when the “DB Read” step can not make a connection to the specified database. The “SQL Error” step executes when the “DB Read” step encounters a SQL command error.
5. The only step in both the “Connection Not Available” branch and the “SQL Error” branch is “Goto” step to take the caller to the “ToCallCenter” label, so the caller will be taken into the queue to talk to the next available agent because of the database connection problem.
6. The first step in the “Successful” branch is “DB Get” step that is used to assign specific variables to the results of the Structured Query Language (SQL) query that is defined in the DB Read step. Before you can use a DB Get step, you must use a DB Read step to define the SQL statements and identify the target database. Each time the script executes the DB Get step, the script retrieves one row of the results returned by the DB Read step and places them in the variables you assign. To move to the next row in the result, you must execute the DB Get step again.
7. The “General” tab of the “DB Get” step is shown in Figure 7.16. The description of the fields in the “General” tab and the values used in this script are in Table 7.14, seen on pages 14 and 15.
	Table 7.14

	DB Get Step - General Tab

	Property
	Description
	Value

	DB Resource Name
	Select variable indicating the name of query defined by a “DB Read” step. Specific query can be selected when the script has multiple DB Read steps open at the same time.
	“AccountInfo”

	Data Source Name
	is the name of the database selected on the CRS Administration Database web page. The “Refresh Database Schema” button
	“BaseLine”

	Refresh Database Schema button
	Updates the CRS Editor with the fields defined in the selected database.
	NA

[image: image15.png]
Figure 7.16

8. The “Field Selection” tab of the “DB Get” step is shown in Figure 7.17. The description of the fields in the “Field Selection” tab and the values used in this script are in Table 7.15.
	Table 7.15

	DB Get Step - Field Selection Tab

	Property
	Description
	Value

	Table/View
	The variable indicating the name of the table from the database selected on the General tab. The “Field Name” column is the name of the field in the selected database.

Field Name: column is the name of the field in the selected database.

Data Field: column is display only column that shows data type of the variable.

Local Variable: column is the variable that stores the value of the associated field.
	Look at the Table 7.16 below

	Add and Modify button
	Used to open “Add Database Field” dialog box to add or modify settings in the field-variable mapping window.
	Check Figure 7.18

	Delete button
	Used to remove database field information by highlighting a value in the list and clicking the button.

	NA

Table 7.16 shows the fields and variables are mapped in the script:

	Table 7.16

	Field Name
	Data Type
	Local Variable

	strFirstName
	Java.lang.String
	customerFirstName

	strLastName
	Java.lang.String
	customerLastName

	moneyCheckingBalance
	Java.lang.Float
	customerCheckingBalance

	moneySavingBalance
	Java.lang.Float
	customerSavingBalance

	moneyTotalBalance
	Java.lang.Float
	customerTotalBalance

	moneyFees
	Java.lang.Float
	customerFees

[image: image16.png]
Figure 7.17

[image: image17.png]
Figure 7.18

9. The “DB Get” step has three branches. The “Successful” branch is executed when the “DB Get” step successfully retrieved data. The “No Data” branch is executed when the “DB Get” step did not retrieve any data. The “SQL Error” branch is executed when there was an error in the SQL command.
10. The first step in the “SQL Error” branch is the “DB Release” step to close a SQL query and release the allocated resources.
11. The “General” tab of the “DB Release” step is shown in Figure 7.19. The description of the fields in the “General” tab and the values used in this script are in Table 7.17.
	Table 7.17

	DB Release Step - General Tab

	Property
	Description
	Value

	DB Resource Name
	Name of the DB Resource for which you want to release resources.
	“AccountInfo”

	Refresh Database Schema button
	Click this button to update the DB Resource Name drop-down list.
	NA

[image: image18.png]
Figure 7.19

12. The second step is the “Goto” step to take the caller to the “ToCallCenter” label, so the caller will be taken into the queue to talk to the next available agent because of the database connection problem.
13. The first step in the “No Data” is the “DB Release” step to close a SQL query and release the allocated resources. Table 7.18 shows the settings and the values used in “DB Release” step.
	Table 7.18

	DB Release Step

	Property
	Value

	DB Resource Name
	“AccountInfo”

14. The next step is “Play Prompt” step that prompts the caller the account number was invalid.
15. The “General” tab of the “Play Prompt” step is shown in Figure 7.20. The description of the fields in the “General” tab and the values used in this script are in Table 7.19.
	Table 7.19

	Play Prompt Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step

No: the step must complete before any other process can be executed
	Yes

[image: image19.png]
Figure 7.20

16. The “Prompt” tab of the “Play Prompt” step is shown in Figure 7.21. The description of the fields in the “Prompt” tab and the values used in this script are in Table 7.20.
	Table 7.20

	Play Prompt Step - Prompt Tab

	Property
	Description
	Value

	Prompt
	the name of the wav file or a variable of the prompt to be played to the caller
	“pReEnterAccountNumber“ variable (Prompt 1185)

	Barge In
	Yes: the caller can interrupt the prompt

No: the caller is required to hear the whole prompt
	Yes

	Continue On Prompt Error
	Yes: the step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller

No: an exception results which can then be handled in the script.
	Yes

[image: image20.png]
Figure 7.21
17. The “Input” tab of the “Play Prompt” step is shown in Figure 7.22. The description of the fields in the “Input” tab and the values used in this script are in Table 7.21.
	Table 7.21

	Play Prompt Step - Input Tab

	Property
	Description
	Value

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input

No: the system does not erase previously entered input before capturing caller input
	 Yes

[image: image21.png]
Figure 7.22

18. The next step is the “Goto” step to take the caller to the “GetAccountNumber” label, so the caller can enter the account number again.
19. The first step in the Successful” of the “DB Get” step is the “DB Release” step to close a SQL query and release the allocated resources.
20. Table 7.22 shows the settings and the values used in “DB Release” step.
	Table 7.22

	DB Release Step

	Property
	Value

	DB Resource Name
	“AccountInfo”

21. The next step in the “Successful” branch is the “Goto” step to take the caller to the “MainMenu” label, so the caller will be prompted with the options.
Menu

1. The “General” tab of the “Menu” step is shown in Figure 7.23. The description of the fields in the “General” tab and the values used in this script are in Table 7.23.
	Table 7.23

	Menu Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step is interfacing with.
	default

	Interruptible
	Yes: an external event (such as an agent becomes available or a caller hanging up) will interrupt the step
No: the step must complete before any other process can be executed
	Yes

[image: image22.png]
Figure 7.23

2. The “Prompt” tab of the “Menu” step is shown in Figure 7.24. The description of the fields in the “Prompt” tab and the values used in this script are in Table 7.24.
	Table 7.24

	Menu Step - Prompt Tab

	Property
	Description
	Value

	Prompt
	Contact (trigger event) the step is interfacing with.
	“pMainMenu” variable (Prompt 1186)

	Barge In
	Yes: the caller can interrupt the prompt

No: caller is required to hear the whole prompt
	Yes

	Continue On Prompt Error
	Yes: the step continues with the next prompt in the list if a prompt error occurs, or, if this prompt was the last in the list, the step waits for input from the caller

No: an exception results which can then be handled in the script.
	Yes

[image: image23.png]
Figure 7.24

3. The “Input” tab of the “Menu” step is shown in Figure 7.25. The description of the fields in the “Input” tab and the values used in this script are in Table 7.25.
	Table 7.25

	Menu Step - Input Tab

	Property
	Description
	Value

	Timeout
	A variable or expression indicating the amount of time the system waits for input from the caller. When this timer expires, the system either replays the prompt or plays the system prompt asking if the caller is still there.
	3

	Maximum Retries
	Indicates the number of times a new entry can be entered after a timeout or invalid key
	0
(No retry)

	Flush Input Buffer
	Yes: the system erases previously entered input before capturing caller input.

No: the system does not erase previously entered input before capturing caller input
	No

[image: image24.png]
Figure 7.25

4. The “Filter” tab of the “Menu” step is shown in Figure 6.14 and 7.26. The description of the fields in the “Filter” tab and the values used in this script are in Table 7.26, 7.27, 7.28, 7.29, 7.30, and 7.31.
	Table 7.26

	Menu Step - Filter Tab

	Property
	Description
	Value

	Options
	The connections list box and the number key pad to map an option name to a digit.
	“CheckingBalance” maps to 1

“SavingsBalance” maps to 2

“TotalBalance” maps to 3

“TransferFromCheckingToSavings” maps to 4

“TransferFromSavingsToChecking” maps to 5

“Customer Service” maps to 0

	Add and Modify buttons
	Used to add or modify a Connection Name for the option
	NA

	Delete button
	Used to remove an Output Option Name
	NA

When the options are created, “Menu” step will have branches created with the same names.

[image: image25.png]
Figure 7.26
[image: image26.png]
Figure 7.27

[image: image27.png]
Figure 7.28

[image: image28.png]
Figure 7.29
[image: image29.png]
Figure 7.30

[image: image30.png]
Figure 7.31
Menu Steps continued:
5. The “CheckingBalance” branch of the “Menu” step is executed if the caller chooses option 1 to listen to the checking account balance.

6. The “SavingsBalance” branch of the “Menu” step is executed if the caller chooses option 2 to listen to the savings account balance.

7. The “TotalBalance” branch of the “Menu” step is executed if the caller chooses option 3 to listen to the total balance.

8. The “TransferFromCheckingToSavings” branch of the “Menu” step is executed if the caller chooses option 4 to transfer funds from the checking account to the savings account.

9. The “TransferFromSavingsToChecking” branch of the “Menu” step is executed if the caller chooses option 5 to transfer funds from the savings account to the checking account.

10. The “CustomerService” branch of the “Menu” step is executed if the caller chooses option 0 to connect to the customer service for an available agent. The only step in this branch is “Goto” step to the “ToCallCenter” label.

11. The other branches of the “Menu” step are “Timeout” and “Unsuccessful” branches. If the maximum number of retries is reached, the “Menu” step takes either the “Timeout” or “Unsuccessful” branch, depending on the reason for the latest failure. The only step in these branches is the “Goto” step to the “MainMenu” label to play the prompt to the caller to ask to select one of the options.
12. In the “CheckingBalance” branch of the “Menu” step, the first step is the “Create Generated Prompt” step. It creates prompt phrases from variables whose values may be determined based on run-time script information.
13. Table 7.27 shows the settings and the values used in “Create Generated Prompt” step. All of the tabs in the “Create Generated Prompt” step are shown in Figure 7.32.

	Table 7.27

	Create Generated Prompt Step
	

	Setting
	Value

	Generator Type
	Currency

	Constructor Type
	(dollar, cent, currency)

	Arguments
	dollar: “customerCheckingBalance” variable

cent: (customerCheckingBalance - customerCheckingBalance.intValue())*100

currency: C[USD]

	Override Language
	Blank

	Output Prompt
	“pCheckingAmount” variable

[image: image31.png]
Figure 7.32

17. The next step is the “Play Prompt” step. Table 7.28 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 7.33.

	Table 7.28

	Play Prompt Step
	

	Setting
	Value

	Contact
	default

	Interruptible
	Yes

	Prompt
	“pCheckingBalance” variable (Prompt 1187)

“pCheckingAmount” variable

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image32.png]
Figure 7.33

14. The last step in this branch is “Goto” step to the “MainMenu” label to ask the caller to select one of the menu options.
15. In the “SavingBalance” branch of the “Menu” step, the first step is the “Create Generated Prompt” step. Table 7.29 shows the settings and the values used in “Create Generated Prompt” step. All of the tabs in the “Create Generated Prompt” step are shown in Figure 7.34 on page 28.
	Table 7.29

	Create Generated Prompt Step
	

	Setting
	Value

	Generator Type
	Currency

	Constructor Type
	(dollar, cent, currency)

	Arguments
	dollar: “customerSavingBalance” variable

cent:
(customerSavingBalance - customerSavingBalance.intValue())*100

currency: C[USD]

	Override Language
	Blank

	Output Prompt
	“pSavingAmount” variable

[image: image33.png]
Figure 7.34

18. The next step is the “Play Prompt” step. Table 7.30 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 7.35, seen below.
	Table 7.30

	Play Prompt Step
	

	Setting
	Value

	Contact
	default

	Interruptible
	Yes

	Prompt
	“pSavingBalance” variable (Prompt 1188)

“pSavingAmount” variable

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image34.png]
Figure 7.35

16. The last step in this branch is “Goto” step to the “MainMenu” label to ask the caller to select one of the menu options.

17. In the “TotalBalance” branch of the “Menu” step, the first step is the “Create Generated Prompt” step.
18. Table 7.31 shows the settings and the values used in “Create Generated Prompt” step. All of the tabs in the “Create Generated Prompt” step are shown in Figure 7.36 seen below.
	Table 7.31

	Create Generated Prompt Step
	

	Setting
	Value

	Generator Type
	Currency

	Constructor Type
	(dollar, cent, currency)

	Arguments
	dollar: “customerTotalBalance” variable

cent: (customerTotalBalance - customerTotalBalance.intValue())*100

currency: C[USD]

	Override Language
	Blank

	Output Prompt
	“pTotalAmount” variable

[image: image35.png]
Figure 7.36

19. The next step is the “Play Prompt” step. Table 7.32 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 7.37 on page 30.
	Table 7.32

	Play Prompt Step
	

	Setting
	Value

	Contact
	default

	Interruptible
	Yes

	Prompt
	“pTotalBalance” variable (Prompt 1189)

“pTotalAmount” variable

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image36.png]
Figure 7.37

20. The last step in this branch is “Goto” step to the “MainMenu” label to ask the caller to select one of the menu options.

21. In the “TransferFromCheckingToSaving” branch of the “Menu” step, the first step is the “Get Digit String” step to collect the amount of the fund to be transferred from the caller. The caller is asked to enter the fund amount to transfer using key pad. To separate dollars and cents amount, the caller is asked to press “*” key.
22. Table 7.33 shows the settings and the values used in “Get Digit String” step. All of the tabs in the “Get Digit String” step are shown in Figure 7.38, 7.39, 7.40, and 7.41.

	Table 7.33

	Get Digit String Step

	Property
	Value

	Contact
	default

	Interruptible
	Yes

	Result Digit String
	“strEnteredFund” variable

	Prompt
	“ pEnterFunds” variable (Prompt 1190)

	Barge In
	Yes

	Continue On Prompt Error
	Yes

	Initial Timeout
	5

	Interdigit Timeout
	3

	Maximum Retries
	0

	Flush Input Buffer
	No

	Clear Input Buffer On Retry
	Yes

	Input Length
	1

	Digits Filter
	0-9 and *

	Terminating Digit
	#

	Cancel Digit
	None

[image: image37.png]
Figure 7.38

[image: image38.png]
Figure 7.39

[image: image39.png]
Figure 7.40
[image: image40.png]
Figure 7.41

23. The “Get Digit String” step has three branches. The first branch is “Successful” indicating the caller entry was valid against the Filtered rules. The second and third branches are “Timeout” and “Unsuccessful” respectively. If the caller does not press any keys or input does not match the Filter rules, the script uses “Goto” step to the “GetFundAmountCheckingToSavings” label to ask the agent to enter the fund amount again.
24. In the “Successful” branch of the “Get Digit String” step, the fist step is “Set" step to determine the position of the “*” character in the entered fund amount.
25. The “Set” step is shown in Figure 7.42. The description of the fields in the step and the values used in this script are in Table 7.34 on page 32 and 33.
	Table 7.34

	Set Step - Global Tab

	Property
	Description
	Value

	Variable
	Variable for which the value will be set.
	“indexOfStar” variable

	Value
	Value for the specified variable.
	strEnteredFund.indexOf("*") expression

[image: image41.png]
Figure 7.42

26. The next step is the “If” step to check if the entered amount start with * character. In other words, checking to see if dollar amount is not entered. The Figure 7.43 shows the step.
[image: image42.png]
Figure 7.43

27. In the “True” branch of the “If” step, the “Set” step is used to add a “0” character in front of the entered fund amount to indicate zero dollar.
28. The next step is another “If” step to check if no “*” character is entered. The Figure 7.44 shows the step.
[image: image43.png]
Figure 7.44

29. In the “True” branch of the “If” step, the “Set” step is used to add a “*0” character at the end of the entered fund amount to indicate zero cent. The Figure 7.45 shows the step.
[image: image44.png]
Figure 7.45

30. In the “False” branch of the “If” step, we check if there is second “*” in the entered fund amount. The “Set” step is used to get the position of the second “*” character, if exist. The “Variable setting is set to “indexOfStar” variable to hold the position of the second “*” character. The step is shown in Figure 7.46. The “Value” setting is set to the below expression to get the position of the * character.

strEnteredFund.indexOf("*",indexOfStar+1)
[image: image45.png]
Figure 7.46

31. The next step is “If” step to check if the second “*” character exist. The Figure 7.47 shows the step.
[image: image46.png]
Figure 7.47

32. In the “True” branch of the “If” statement, the script uses “Goto” step to the “GetFundAmountCheckingToSavings” label to ask the agent to enter the fund amount again.
33. The next step is the “Set” step to get the dollar amount of the entered fund amount. The step is shown in Figure 7.48. The “Variable setting is set to “enteredDollar” variable. The “Value” setting is set to the expression. (see next page)
strEnteredFund.substring(0, strEnteredFund.indexOf("*"))

[image: image47.png]
Figure 7.48

34. The next step is another “Set” step to get the cent amount of the entered fund amount. The step is shown in Figure 7.49. The “Variable setting is set to “enteredCent” variable. The “Value” setting is set to the below expression.

strEnteredFund.substring(strEnteredFund.indexOf("*")+1)
[image: image48.png]
Figure 7.49

35. The next step is the “Create Generated Prompt” step. It creates prompt phrases from variables whose values may be determined based on run-time script information.Table 7.35 shows the settings and the values used in “Get Digit String” step. The “Create Generated Prompt” step is shown in Figure 7.50.
	Table 7.35

	Create Generated Prompt Step
	

	Setting
	Value

	Generator Type
	currency

	Constructor Type
	(dollar, cent, currency)

	Arguments
	dollar: “enteredDollar” variable

cent: “enteredCent” variable

currency: C[USD]

	Override Language
	Blank

	Output Prompt
	“pEnteredFundAmount” variable

[image: image49.png]
Figure 7.50

36. Another “Set” step is used to convert the entered fund amount to a numerical value to be able to compare it with other values. The step is shown in Figure 7.51. The step also replaces the “*” character with “.” Character. The “Variable setting is set to “enteredFund” variable. The “Value” setting is set to the expression. (see next page)

strEnteredFund.replace("*",".")

[image: image50.png]
Figure 7.51

37. The next step is the “If” step to check if the entered fund amount is grater than the amount that exists in the checking account. The step is shown in Figure 7.52.
[image: image51.png]
Figure 7.52

38. In the “True” branch of the “If” step, the “Play Prompt” step is the next step to play the entered amount of the fund and let the caller that there is not enough fund to make the transfer. Table 7.36 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 7.53.
	Table 7.36

	Play Prompt Step

	Property
	Value

	Prompt
	“ pYouEntered ” variable (Prompt 1183)
“ pEnteredFundAmount” variable (generated)

“ pNotEnoughFund” variable (Prompt 1193)

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image52.png]
Figure 7.53

39. The last step in the True branch of the “If” step is the “Goto” step to the “GetFundAmountCheckingToSavings” label to ask the agent to enter the fund amount again.
40. In the “False” branch of the “If” step, the fist step is “Explicit Confirmation” step to confirm the amount of the fund entered by the caller.
41. Table 7.37 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 7.54.

	Table 7.37

	Explicit Confirmation Step

	Initial Prompt
	“pYouEntered” variable (Prompt 1183)
“pEnteredFundAmount” variable (generated)

“pFundConfirmation” variable (Prompt 1191)

	Error Prompt
	Blank

	Timeout Prompt
	Blank

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image53.png]
Figure 7.54

42. The “Explicit Confirmation” step has four branches. The first branch is “Yes” indicating the caller pressed 1 or said “Yes”. The second branch is “No” indicating the caller pressed 2 or said “No”. The third and fourth branches are “Timeout” and “Unsuccessful” branches. These branches indicate that the caller’s does press any keys or presses an invalid option.
43. The only step in the “Timeout” and “Unsuccessful” branches is “Goto” step to take the caller to the “ConfirmFundAmountCheckingToSavings” label, so the system asks the caller to confirm the fund amount entered again.
44. The only step in the “No” branch is “Goto” step to take the caller to the “GetFundAmountCheckingToSavings” label, so the caller can re-enter the fund amount to transfer.
45. In the “Yes” branch, the fists step is the “Set” step to subtract the entered fund amount from the “customerCheckingBalance” variable to update the database records later. The step is shown in Figure 7.55. The “Variable” setting is set to “customerCheckingBalance”. The “Variable” setting is set to the following:

customerCheckingBalance – enteredFund

[image: image54.png]
Figure 7.55

46. The second step is also the “Set” step to add the entered fund amount to the “customerSavingBalance” variable to update the database records later. The step is shown in Figure 7.56. The “Variable” setting is set to “customerSavingBalance”. The “Variable” setting is set to the following:

customerSavingBalance + enteredFund

[image: image55.png]
Figure 7.56

47. The next step is “DB Write” step to write the new balances to the database table for the account. The “DB Write” step is used to select a database and enter SQL UPDATE, SQL DELETE, or SQL INSERT statements to update an enterprise database. After the step is finished, the “DB Release” step has to be used to free the connection to the database server.
48. The “General” tab of the “DB Write” step is shown in Figure 7.57. The description of the fields in the “General” tab and the values used in this script are in Table 7.38.
	Table 7.38

	DB Write Step - General Tab

	Property
	Description
	Value

	DB Resource Name
	The name identifying this database query
	“TransferCheckingToSaving”

	Data Source Name
	The variable indicating the database you want to update when you are defining a new query
	“BaseLine”

	Refresh Database Schema button
	Used to download the schema from the Cisco CRS Engine if the Data Source Name drop-down menu is empty
	NA

[image: image56.png]
Figure 7.57

49. The “SQL” tab of the “DB Write” step is shown in Figure 7.58. The description of the fields in the “SQL” tab and the values used in this script are in Table 7.39.
	Table 7.39

	DB Write Step - SQL Tab

	Property
	Description
	Value

	Enter SQL command to be executed
	where the SQL query that needs to executed is entered. Standard SQL syntax is used to enter SQL UPDATE, SQL DELETE, or SQL INSERT statements.
Notice that to pass a variable to the SQL command from the script requires “$” sign in front of the name of the variable name.

	UPDATE Customers SET moneyCheckingBalance = $customerCheckingBalance, moneySavingBalance = $customerSavingBalance

WHERE strAccountNumber = $accountNumber

	Show all fields (select table)
	drop-down list to select the table from the database and display all fields
	

[image: image57.png]
Figure 7.58

50. The “Test” tab of the “DB Write” step is shown in Figure 7.59. The description of the fields in the “Test” tab and the values used in this script are in Table 7.40.
	Table 7.40

	DB Write Step - Test Tab

	Property
	Description
	Value

	SQL command entered
	is the SQL command that is going to be tested
	UPDATE Customers SET moneyCheckingBalance = $customerCheckingBalance, moneySavingBalance = $customerSavingBalance

WHERE strAccountNumber = $accountNumber

	Execute button
	Starts the test.

Clicking the “Execute” button in this window does not update the database. This action does nothing but validate the SQL statement. You must be connected to an active CRS server to perform this operation.

	NA

	Number of rows altered
	A read only field that shows the number of rows affected. This number indicates whether or not your SQL statements are producing the expected results.
	NA

[image: image58.png]
Figure 7.59

51. The “DB Write” step has three branches. The “Successful” branch executes when the “DB Write” step is successful. The “Connection Not Available” branch executes when the “DB Write” step can not find a connection to the specified database. The “SQL Error” branch executes when the “DB Write” step encounters a SQL command error.
52. The first step in the “SQL Error” branch is the “DB Release” step to close a SQL query and release the allocated resources. The step is shown in Figure 7.60. The “DB Resource” setting is set to “TransferCheckingToSaving” value.
[image: image59.png]
Figure 7.60

53. The next step in the “SQL Error” branch is the “Goto” step to take the caller to the “MainMenu” label.
54. The only step in the “Connection Not Available” branch is the “Goto” step to take the caller to the “MainMenu” label.
55. The first step in “Successful” branch is The “DB Release” step to close a SQL query and release the allocated resources. The “DB Resource” setting is set to “TransferCheckingToSaving” value.
56. The next step in “Successful” branch is the “Play Prompt” step to confirm the transfer transaction to the caller. Table 7.41 shows the settings and the values used in “Play Prompt” step. All of the tabs in the “Play Prompt” step are shown in Figure 7.61 seen below.
	Table 7.41

	Play Prompt Step
	

	Setting
	Value

	Prompt
	“pTransferComplete” variable (Prompt 1192)

	Barge In
	Yes

	Continue On Prompt Errors
	Yes

[image: image60.png]
Figure 7.61

57. The “TransferFromSavingToChecking” branch of the “Menu” step is very similar to the “TransferFromCheckingToSaving” branch that is explained in the previous steps in this document.
Call Center – Select Resource & Queuing

1. The first step after the Label “ToCallCenter” is the “Set” step to assign value to the “Layout” variable. This variable is set to “BaseLine” that is used in the next step to identify the layout of the Agent who is getting this call eventually.

2. The next step is the “Set Enterprise Call Info” step. The “Set Enterprise Call Info” step can send data from one part of the system to another.
3. The “General” tab of the “Set Enterprise Call Info” step is used to set call data in predefined Call Variables. There are ten (10) “Call Variables” that can be used to pass data into the db_cra database. The variables defined in the “General” tab are stored in the Cisco Agent Desktop call record fields. They can be found in the ContactCallDetail table and can be used in reporting using the Historical Report Tool. This step should be placed script before the call gets connected to an agent. This means the step in the script should be placed before the Select Resource Step or in the Selected/Queued branch of the Select Resource step. The “General” tab is shown in Figure 7.62. The description of the fields in the “General” tab is in Table 7.42. (See Page 46)
	Table 7.42

	Set Enterprise Call Info Step- General Tab

	Property
	Description

	Contact
	Contact (trigger event) the step is interfacing with.

	Fields
	Values: An expression or variable from the drop-down list, or an expression which will be the value to which you set the enterprise call variable

Names: The name of the enterprise call variable you want to set.

Token: The token (index) number of the enterprise call variable. Leave the default value if you do not want to use a token.

	Add and Modify buttons
	Used to access the Add Field dialog box. Use that dialog to add or modify the mapping of enterprise call variables to local call variables.

	Delete button
	Used to remove the mapping of an enterprise call variable to a local call variable.

4. Table 7.43 shows the Call Variable and local variable mapping that is used in the script. This information will be passed to the Cisco Agent Desktop based on the default layout that is chosen.

	Table 7.43

	Values (Variables)
	Names
	Tokens

	accountNumber
	-- CalPeripheralVariable10 --
	-- All – (default)

	customerFirstName
	-- CallPeripheralVariable8 --
	-- All – (default)

	customerLastName
	-- CallPeripheralVariable3 --
	-- All – (default)

[image: image61.png]
Figure 7.62

5. The “Expanded Call Variables” tab enables more call variables than those defined in “General” tab. The variables defined in this tab are also called expanded call context (ECC) variables. The ECC variables defined in this tab are not written to the db_cra database and cannot be used in reporting. Every enterprise ECC variable must be defined on both sides of the system that sends and receives the variable data. The enterprise ECC variable must be defined both the CRS script and in Cisco Desktop Administrator (CDA). The tab is shown in Figure 7.63.
[image: image62.png]
Figure 7.63

6. The “Select Resource” step is used to queue a call to a specific set of agents and optionally to connect the call to the agent the system chooses. The “Select Resource” step is shown in Figure 7.64. The description of the fields in “General” tab and values used in this script are Table 6.3.

	Table 7.44

	Select Resource Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step interfacing with
	default

	Routing Target Type
	Indicates the routing method used.

Contact Service Queue: Calls will be routed to an available agent in the specified CSQ

Resource: Calls will be routed to the specified agent. Select this option for Agent Based Routing feature.
	Contact Service Queue

	CSQ Target
	Identifies which CSQ is targeted
	“CSQ” variable

	Connect
	Yes: the system will connect the call to the available resource as soon as it becomes available.

No: the system will select the resource but not connect until the “Connect” step is executed later in the script.
	No

	Timeout
	The length of time, in seconds, before the contact is retrieved back into the queue.

Note: This value must be lower than the Call Forward No Answer timeout in the Cisco Unified Communications Manager.
	10 (default)

It’s disabled if the “Connect” is set to “No”

	Resource Selected
	The variable that identifies the target Resource
	“selectedResource” variable

[image: image63.png]
Figure 7.64
7. The “Select Resource” step has two branches. If an agent is available it will go to the first branch which is “Selected”.
8. The “Connect” Step in the first step under “Selected” branch since the “Connect” was set to “No” on the “Select Resource” step. The “Connect” step is shown in Figure 7.65. The description of the fields in “General” tab and values used in this script are in Table 7.45.
	Table 7.45

	Connect Step - General Tab

	Property
	Description
	Value

	Contact
	Contact (trigger event) the step interfacing with
	default

	Resource Selected
	The variable that identifies the target Resource
	“selectedResource” variable

	Timeout
	The length of time, in seconds, before the contact is retrieved back into the queue.
	10 (default)

[image: image64.png]
Figure 7.65

9. If no agents are available the “Select Resource” step will send the call to “Queued” branch. Here we can define what type of call treatment the caller will be provided. The screenshot of the script that has the “Queued” branch is shown in Figure 7.66.
[image: image65.png]
Figure 7.66

10. In this script we are playing an initial prompt and then putting the caller on hold for 30 seconds where they will hear the “Music on Hold” (MOH) configured in the Call Manager. The MOH that is assigned to the CTI ports determines what the callers will hear in queue. Once the 30 seconds expire the caller is taken off hold.

11. The script then uses a “Get Reporting Statistic” step to find the callers position in queue and assign it to the variable “positioningQueue”. The description of the fields in the “General” tab and the values used in this script are in Table 7.46.The “Get Reporting Statistic” step is shown in Figure 7.67. (See Pg. 50)
	Table 7.46

	Get Reporting Statistics Step - General Tab

	Property
	Description
	Value

	Reporting Object
	Type of report:
- Outbound Campaign

- Overall Cisco Unified CCX

- Resource Cisco Unified CCX

- CSQ IPCC Express
	CSQ IPCC Express

	Field
	Specific statistic to retrieve from the report. The list is based on the Reporting Object selected
	Position in Queue

	Row Identifier
	Value or the name of variable identifying the CSQ or Resource. Only applicable to CSQ IPCC Express or Resource Cisco Unified CCX reports.
	“CSQ” variable

	Contact
	Contact (trigger event) the step is interfacing with.
	Default

	Result Statistics
	Variable that will contain the resulting statistic value.
	“positionInQueue” variable

[image: image66.png]
Figure 7.67

12. The script then uses a “Create Generated Prompt” to create a prompt with the value stored in the variable “positionInQueue”. Table 7.47 shows the settings and the values used in “Create Generated Prompt” step. All of the tabs in the “Create Generated Prompt” step are shown in Figure 7.68. (see pg 51)
	Table 7.47

	Create Generated Prompt Step

	Property
	Value

	Generator Type
	number

	Constructor Type
	(number)

	Arguments
	Number: “positionInQueue” variable

	Override Language
	Blank

	Output Prompt
	“positionPrompt” variable

[image: image67.png]
Figure 7.68
13. The next step is a “Create Container Prompt” step which take the prompt stored in the variable “pQueueSecond” (Prompt 1163) and the new create prompt from the position in queue and concentrates them together. The description of the fields in the “General” tab and the values used in this script are in Table 7.48. The “Create Container Prompt” step is shown in Figure 7.69.
	Table 7.48

	Create Container Prompt Step - General Tab

	Property
	Description
	Value

	Type
	Concatenated, Escalating, or Random prompt.
	Concatenation

	Prompts
	List of prompts to be combined into the container prompt
	“pQueueSecond” variable

“positionPrompt” variable

	Override Language
	Variable or expression indicating language in which the prompts are played back.
	blank

	Output Prompt
	Script variable that holds the combined prompt generated by the Create Container Prompt step
	“prompt” variable

[image: image68.png]
Figure 7.69

14. The result is another prompt that is in the variable “prompt”
15. The script uses the “Play Prompt” step to play the created prompt to the caller. Then the script takes the caller to the beginning of the “Queued” section of the “Select Resource” step.

Call Center – Desktop Administrator - Setting Enterprise Data - Layouts
1. To modify and configure the “Enterprise Data”, launch the “Cisco Desktop Administration” web interface from the following URL:

http://x.x.x.x:6293/teamadmin/main.cda
Note: x.x.x.x is the IP address of the UCC Express server. The “Cisco Desktop Administration” web site is shown in Figure 7.70 seen on page 53.
[image: image69.png]
Figure 7.70

2. The username is “admin”. The password is blank unless it was changed before.

3. Once logged in, expand “Service Configuration”, and then expand “Enterprise Data”. Click on “Fields” to see the list of “Enterprise Data” fields configured as shown in Figure 7.71.

[image: image70.png]
Figure 7.71

4. When the “Enterprise Data” displays in the “Cisco Agent Desktop” application, it uses the “Display Name” defined in the Desktop Administrator. To change the display name of an “Enterprise Data”, click on the “Field Name” of the variable. Type in your new “Display Name” and click on “Save” button as it is shown in Figure 7.72, 7.73, and 7.74. Table 7.49 shows the call variables and their display names used in this script.
	Table 7.49

	Call Variable
	Display Name

	Call Variable 10
	Account Number

	Call Variable 8
	First Name

	Call Variable 3
	Last Name

[image: image71.png]
Figure 7.72

[image: image72.png]
Figure 7.73

[image: image73.png]
Figure 7.74

5. The script also uses ECC variables that have to be configured unless they are one of the default ECC variables. Since the “user.layout” variable is a system default, it doesn’t have to be configured.
6. To create ECC variables, Click on “Add New” button in the “Fields” page as shown in Figure 7.75.

[image: image74.png]
Figure 7.75

7. Enter the information and click on the “Save” button as it is shown in Figure 7.76, 7.77, and 7.78. Table 7.50 shows the ECC variables and their attributes used in this script.
	Table 7.50

	Field Name
	Display Name
	Default
	Filed Index

	CheckingBalance
	Checking Balance
	No
	1

	SavingBalance
	Saving Balance
	No
	2

	TotalBalance
	Total Balance
	No
	3

	user.layout
	Layout
	Yes
	252

[image: image75.png]
Figure 7.76
[image: image76.png]
Figure 7.77

[image: image77.png]
Figure 7.78

8. To configure a layout, Expand “services Configuration”, and then expand the “Enterprise Data”. Click on the “Layout List” link. The page will display the default layouts already created in the system. Click on the “Add New” button to create a new layout that the script is using as shown in Figure 7.79.
[image: image78.png]
Figure 7.79

9. Enter the layout name “BaseLine” to the field called “Layout Name”. Select the “Enterprise Data” fields from “Available” list box and move them over to the “Selected” list box. Click on the “Save” button as shown in Figure 7.80.
[image: image79.png]
Figure 7.80
Call Center – Desktop Administrator – Setting up Work Flows

To be able to set up work flow for this application, please make sure the sample screen-pop internal website is created and working properly. The instructions about setting up screen-pop internal web site are in the appendix section. Rest of the section will assume that you are able to launch the web site and retrieve account information with it without any problem.

The work flow takes the account number from the caller and launches internal web site that displays the account information for that account number using the built in browser within the Cisco Agent Desktop.

1. Work Flows / Screen-Pops are designed at a team level in the UCCX. The work flows can be setup on five different agent events. Typically the “Ringing” and/or “Answer” event is chosen when setting up work flows.

2. To setup a work flow in the Desktop Administrator, expand “Call Center 1”, expand “Work Flow Configuration”, expand “Work Flow Groups”, expand “default”, expand “CAD Agent”, and click on “Voice Contact Work flows”. Select “default” from the list and click on the “Edit” button. For this application the “Ringing” event was chosen. This assumes that the agents are set up to be in the “default” work flow group in the Cisco Desktop Administrator Web Interface. The screenshot is shown in Figure 7.81, seen on page 59.
[image: image80.png]
Figure 7.81

3. To create a new rule for that event click on “New” button. The “New Name” input box will appear as shown in Figure 7.82. Enter a name for the rule.

[image: image119.png]
Figure 7.82

4. To create new actions for that rule, highlight your new rule and click on “Add” under the “Actions (of current Rule)”. Table 7.51 shows possible actions types.
	Table 7.51

	Action Type
	Description

	Run Macro Action
	Plays back a recorded sequence of keystrokes

	Call Control Actions
	Answer, drop, call, conference, or transfer a call, or input touch tones during a call

	HTTP Action
	Enables the Agent Desktop and CAD-BE integrated browser to interact with a web application

	Launch External Application Action
	Start a third-party application

	Agent State Action
	Set an agent state

	Utility Action
	Run a utility, such as start and stop recording or sending a predefined, high-priority chat message to a supervisor

	Delay Action
	Inserts delay time in series of actions

	Agent Notification Action
	Displays a custom message popup window on the agent’s desktop when a certain event occurs

	Set Enterprise Data Action
	Automatically changes an enterprise data field in Agent Desktop to a selected desktop variable or static text

	IPC Action
	Passes enterprise data or user-defined data from the agent desktop to a custom third-party application

	Timer Action
	Triggers actions after a specified time has elapsed

5. To create the new action select the “HTTP Action” tab and click on “New” as shown in Figure 7.83.

[image: image81.png]
Figure 7.83

6. In the “URL” section, enter the information that is described in the table below. The screenshot of the “HTTP Action Setup” is shown in Figure 7.84 on page 61. The description of the fields in “URL” section and the values used in the script are shown in Table 7.52.

	Table 7.52

	URL

	Property
	Description
	Value

	Action Name
	Name of the Action
	BaseLineAccountLookup

	Protocol
	Select HTTP or HTTPS as a protocol
	http

	Method
	Select GET or POST
	GET

	Host
	Host name or IP address of the website. Do not include the HTTP or HTTPS prefix
	y.y.y.y (web server IP address) For detailed information, please refer to the appendix section.

	Port
	The port number that the host is listening on. For HTTP, the default is 80; for HTTPS, the default is 443.
	80

	Path
	Enter the path portion of the URL. Do not include a leading slash.
	Search.asp

[image: image82.png]
Figure 7.84

7. In the “Request Data” section click on “Add” to enter the Enterprise Data that will be passed to the URL. The “HTTP Request Data Dialog” box opens as shown in Figure 7.85. The description of the fields in “Request Data” section and the values used in the script are shown in Table 7.53.

	Table 7.53

	Request Data

	Property
	Description
	Value

	Name (Value Name)
	Enter a name for the value.
	accountNumber

	Value
	Select the name of the Enterprise Data field
	Select
*Account Number

	Value Type
	
	Select “DataField”

	Test Data
	Enter a valid value in order to test the logic using the “Preview” and “Test” buttons
	11501

[image: image83.png]
 Figure 7.85

8. Click “OK” to save the new HTTP Action and click “OK” to save the new Action.
9. To enable the new rule, click on the first “Edit” button in the “Current Rule Condition” section in Figure 7.81. The “Data Field Condition” window appears as shown in Figure 7.86. . The description of the fields in “Data Field Condition” window and the values used in the script are shown in Table 7.54.

	Table 7.54

	Data Field Condition

	Property
	Description
	Value

	Data Field
	Enterprise Data field that is going to be used for the condition
	Select *Layout

	Enable Condition
	Enables the condition
	Check the box

	Date Field Filter
	Gives different option for filtering
	Select “Is in the List” filter

	Add and Delete buttons
	Used to add or delete items to the list
	Add “BaseLine” to the list

[image: image84.png]
Figure 7.86

10. Click on “Add” button to enter an item to the “List”. The “Enter List Item” window appears as shown in Figure 7.87. In this application, the only item in the “List” is “BaseLine”.

[image: image85.png]
Figure 7.87

11. Click the “OK” button to close the “Data Field Condition” window and then click on the “Enable Rule” check box, and then click on the “Apply” button to save as shown in Figure 7.81. This completes the work in the Desktop Administrator Tool.

12. Screenshot of CAD with Account information screen-pop web site and enterprise data is shown in Figure 7.88.

[image: image86.png]
Figure 7.88

Validating the Scripts

1. The first step that always needs to be done before you upload a script is to validate the script to make sure it has no syntax errors. From the Menu on CRS Script Editor, choose “Tools” menu and then click “Validate” to validate the script as shown in Figure 7.89.
[image: image87.png]
Figure 7.89

2. If there are no syntax errors you will receive a message the “Script validation succeeded” as shown in Figure 7.90. Click “OK” to continue” If your script does not validate the bottom right side of the CRS Editor will show you each error. You can then click on each error and it will take you directly to the step that is causing the problem. (Note: If you upload a script that has an error it will possibly put the UCXX Engine subsystem “Unified CM Telephony Subsystem” in Partial Service.)
[image: image120.png]
 Figure 7.90

Saving the Scripts

There are two different ways to save the changes to a script and upload it to the repository. We will cover both options.

Saving the Scripts - Option 1

1. This option requires that you authenticated to the UCXX Server when you launched the CRS Editor. To save the changes made to this script Click on “File” and then “Save As”. When the “Save As” window appears as shown in Figure 7.91, click on the “Script Repository” on the upper left side of the window. You will then see the “Default [default] directory option in the window.

[image: image88.png]
Figure 7.91

2. Double click on the “Default” directory” and you will see all the scripts that are uploaded into the repository in that directory as shown in Figure 7.92. If the Script has already been uploaded you can click on “save” and replace the current file. If the script has not been uploaded before you can click on save, it will create the new script in the repository.
[image: image89.png]
Figure 7.92

3. Once the file has been uploaded to the repository, launch the UCXX AppAdmin web page. Choose “Applications” from the Menu and choose “Script Management”. Find the BaseLineDatabase.aef name and click on the “Refresh” icon [image: image90.png] as shown in Figure 7.93 seen on page 66.
[image: image91.png]
Figure 7.93

4. Once the script has been refreshed the application also has to be refreshed for it to use the new script. If the application is already configured choose “Applications” from the Menu and “Application Management”. Locate your application and click on the “Refresh” icon [image: image92.png] as shown in Figure 7.94.
[image: image93.png]
Figure 7.94
Saving the Script - Option 2

1. This option does not require that you authenticated to the UCCX Server. To save the changes made to this script, Click on “File” and then “Save As” and save it to any directory that you will have access to when you run the UCCX Administration web page.

2. Once the file has been saved, launch the UCCX Administration web page and choose “Applications” from the Menu and choose “Script Management”.

3. If the script is already uploaded to the repository find the BaseLineDatabase.aef script and click up the Upload icon. [image: image94.png] If this is a new application skip to “Creating a New Application”.
4. The script uploading window will open as shown in Figure 7.95. Click on “Browse” and locate your new script that you just saved. Once you have selected your script click on “Upload” to save the script to the repository.
[image: image95.png]
Figure 7.95
5. After the Script is uploaded click on “Refresh the Script” as shown in Figure 7.96 and then update the repository.
[image: image96.png]
Figure 7.96

6. [image: image121.png]The window in Figure 7.97 appears. If the Application is already setup Click on “Yes” to refresh the script and application. If the application is not configured click on “No” to only refresh the script.
Figure 7.97

Creating a New Application
To create a new application launch the UCCX Administration web page and choose “Applications” from the Menu and choose “Application Management”.

1. Click on “Add a New Application”

2. Click on “Next” for a “Cisco Script Application” type.

3. Fill in the form with the information in Table 7.55. The screenshot of the form is shown in Figure 7.98, seen on page 69.
	Table 7.55

	Field
	Description

	Name
	Application name

	ID
	Assigned by the system

	Maximum Number of Sessions
	Calls that you want this application to handle simultaneously.

	Script
	Select the scrip

	Description
	Enter description for the application

	Enabled
	Default value is set to “Enable”. When you change this parameter the application will not operate.

	Default Script
	The default value is set to “System Default”. You do not need to change this unless your application requires a backup script in case of an error on the configured script.

[image: image122.png]
Figure 7.98

4. Once all your changes have been made click on the “Add” button.
5. Once the application is added click on “Add new trigger”. Click on “Next” to add a “Unified CM Telephony Trigger” type. (The other type of trigger you can activate is a script from a HTTP trigger.)

6. Fill in the information on the Unified CM Telephony Trigger Configuration form as necessary. The form is shown in Figure 7.99 seen on page 70.
7. Click on “Add” to save the Trigger.

[image: image97.png]
Figure 7.99

8. The Figure 7.100 (Page 71 shows the application with the trigger and some of the parameter values filled in.)
[image: image98.png]
Figure 7.100
APPENDIX

Install CRS Editor

1. If you have not installed the CRS Editor login to the UCCX admin web site
http://x.x.x.x/appadmin
2. Choose “Tools” from the main menu and Click on “Plug-ins” as shown in Figure 7.101.
3. Click on “Cisco CRS Editor” and choose “Open” to install the Editor.

[image: image123.png]
Figure 7.101
Setting Up and Configuring the Database

This script uses small database to show how to integrate a UCCX script with database using “DB Get”, “DB Read”, and “DB Write” steps. To have the script work properly, a database has to be set up a location other than UCCX server and configured on the UCCX server.

The UCCX system is compatible with ODBC compliant databases such as Microsoft SQL server 2000 or 2005 and Oracle. The rest of this section is written for a Microsoft SQL database server.

We recommend that you have your local database admin complete the following steps 1 through 3.

1. Locate a database server and create the sample database using the following SQL script. The SQL Script is also in the “database.sql” file. If the database server is Microsoft SQL 2000 server, you can use “Query Analyzer” application to execute the script. If the database server is Microsoft 2005 server, you can use “SQL Server Management Studio” application to execute the scripts.
2. The SQL script (Pg 73) is going to create a database and a table. Then add sample records to the table to be used in this script. The name of the database is “BaseLine” and the name of the table is “Customers”.

Note: Please verify that your current Database Server does not have database with the name “BaseLine”. The following script will automatically delete existing “BaseLine” database and recreate a database with the same name.

3. Obtain user name and password information of a user who has read and write permissions to the database.

Sample Script
----------------------------Begin-----------------------------
IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'BaseLine')

DROP DATABASE [BaseLine]

GO

CREATE DATABASE BaseLine

GO

USE BaseLine

GO

if exists (select * from dbo.sysobjects where id = object_id (N'[dbo].[Customers]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[Customers]

GO

CREATE TABLE [dbo].[Customers] (

[strAccountNumber] [varchar] (12) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strFirstName] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strLastName] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strAddress] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strCity] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strState] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strZipCode] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strPhone] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[strEmailAddress] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[moneyCheckingBalance] [real] NULL ,

[moneySavingBalance] [real] NULL ,

[moneyTotalBalance] [real] NULL ,

[moneyFees] [real] NULL ,

[strPIN] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]

GO

INSERT INTO Customers VALUES ('11501','Thomas','Smith','1550 Main Street','Metropolis','ST','12341','(555)555-5550','thomas.smith@cisco.com',871.23,7129.75,8000.98,11.75,'1111')

INSERT INTO Customers VALUES ('11502','Elizabeth','Jones','6551 Elm Street','Metropolis','ST','12342','(555)555-5551','elizabeth.jones@cisco.com',10489.34,38691.64,49180.98,23.25,'2222')

INSERT INTO Customers VALUES ('11503','Mark','Johnson','7125 North Avenue','Metropolis','ST','12343','(555)555-5552','mark.johnson@cisco.com',553.33,551.65,1104.98,24.5,'3333')

INSERT INTO Customers VALUES ('11504','Susan','Brown','3939 Spring Avenue','Anytown','ST','12344','(555)555-5553','susan.brown@cisco.com',7217.85,1328.68,8546.53,5.75
,'4444')

INSERT INTO Customers VALUES ('11505','Mike','Davis','5501 West 1st Street','Anytown','ST','12345','(555)555-5554','mike.davis@cisco.com',9591.12,35875.14,45466.26,23.25,'5555')

INSERT INTO Customers VALUES ('11506','Karen','Jackson','135 Park Street','Anytown','ST','12346','(555)555-5555','karen.jackson@cisco.com',2178.23,3975.12,6153.35,9.25,'6666')

INSERT INTO Customers VALUES ('11507','John','Anderson','4737 Oak Street','Suburbia','ST','12347','(555)555-5556','john.anderson@cisco.com',4689.14,6580.36,11269.5,13.75,'7777')

INSERT INTO Customers VALUES ('11508','Lisa','Miller','6235 Willow Road','Suburbia','ST','12348','(555)555-5557','lisa.miller@cisco.com',18975.35,525.14,19500.49,48.25,'8888')

INSERT INTO Customers VALUES ('11509','James','Wilson','1725 Cherry Road','Suburbia','ST','12349','(555)555-5558','james.wilson@cisco.com',8597.51,14586.37,23183.88,25.25,'9999')

----------------------------End-----------------------------
4. Once the database and the table are created, A ODBC Data Source Name (DSN) has to be configured in the UCCX server. The DSN informs Microsoft Windows about how to connect the application server to an enterprise database.

5. On the UCCX server, Go to Start > Programs > Administrative Tools > Data Sources (ODBC) to launch the ODBC Data Source Administrator window.
6. Click on “System DSN” tab as shown in Figure 7.102.
[image: image99.png]
Figure 7.102

7. Click on “Add” button. The “Create New Data Source” window is displayed as shown in the Figure 7.103.
8. Select the driver for which you want to set up a data source. For our script, select “SQL Server” and Click on “Finish” button.
[image: image100.png]
Figure 7.103

9. The “Create a New Data Source to SQL Server” window is displayed as shown in Figure 7.104.
10. Type “BaseLine” as the name for the new data source in the Name field. Note that the Name entered here will be used in the Data Source Name field in the Customer Response Applications (CRA) Administration web interface.

11. Type an appropriate description in the Description field.

12. Select the host name or IP address from the database server list. If the list does not show the database server, type the IP address or host name.

[image: image101.png]
Figure 7.104
13. Click the “Next” button. “Microsoft SQL Server DSN Configuration” window is displayed as shown in Figure 7.105 seen on page 76.
14. Select SQL Server as the authentication method depending on the user information you get from the database administrator.

[image: image102.png]
Figure 7.105
15. Type a user name in the Login ID field and a password in the Password field.

16. Click the “Next” button to select the name of the default database to connect. Select the “BaseLine” database as shown in Figure 7.106.

[image: image103.png]
Figure 7.106
17. Click the “Next” button and then the “Finish” button to complete the DSN configuration and to test connectivity to the selected data sources as shown in Figure 7.107 seen on page 77.
[image: image104.png]
Figure 7.107
18. After the DSN is configured, the enterprise database configuration has to be done on Cisco CRS Administration web site.
19. Log in to CRS Administration web site and go to Subsystem > Database as shown in Figure 7.108.
[image: image105.png]
Figure 7.108
20. Click on the “Add a New Datasource” link as shown in Figure 7.109 seen on page 78.
[image: image106.png]
Figure 7.109

21. Enter the information to the page. Use the same username and password that you used to create the DSN in previous steps. Figure 7.110 shows the form. Click on the “Add” button.
[image: image107.png]
Figure 7.110

22. Once the datasource is created you should see it in the Enterprise Database subsystem configuration page as shown in Figure 7.111.
[image: image108.png]
Figure 7.111

Setting Up Screen-Pop Internal Web Site

When a call gets connected to an agent, a screen-pop will appear in the embedded browser of the Cisco Agent Desktop application. For this script, the screen-pop is a web site that shows account information of the customer based on the account number entered. To be able to enable this feature, the web site has to be created in a web server.

1. Use a server either has the Internet Information Services (IIS) installed on it or find a server that you can install IIS.
2. An ODBC connection to the database has to be configured on the web server if it’s not done so already. You can follow the steps described in setting up and configuring database section in Appendix to create the DSN to the database server that hosts “BaseLine” database.
3. Copy the web site files in “ScreenPop” folder to the “C:\inetpub\wwwroot” folder on the server.
4. After installing the IIS, if the server is Windows 2003 or above, make sure that “Active Server Pages” are permitted on the server. Go to the "Computer Management”, expand “Services and Applications”, expand “IIS”, and then click on “Web Service Extensions. Select “Active Server Pages” from the list and click on “Allow” button as shown in Figure 7.112.
[image: image109.png]
Figure 7.112

5. Expand the “Web Sites”, and right click on the “Default Web Site” and click on the “Properties”

6. Go to “Home Directory” tab, end select “Scripts Only” option for the “Execute permissions” setting.

7. Go to “Directory Security Tab”, under “Authentication and access control” section Click on the “Edit” button. In the user name and password fields, Enter a username and password that has administrative rights in the server, such as Administrator user. The screenshot of this step is in Figure 7.113.
[image: image110.png]
Figure 7.113
8. At this point, you should be able to launch browser and go to the web site. The URL to the web site would be:

http://y.y.y.y/index.asp

9. If you are able to see the home page, click on the “Account Login” link to test the database connection. Enter an account number (11501-11509) and click on the “Enter” button. If you see the account information, the connection is established.
Script Layouts
Pages 81 through 87 are showing the complete layouts for the “BaseLineDatabase.aef” (Figure 7.2) script. Comments have been added to each step to define the functionality for that step.
BaseLineDatabase.aef Layout

[image: image111.png]
[image: image112.png]
[image: image113.png]
[image: image114.png]
[image: image115.png]
[image: image116.png]
[image: image117.png]
Figure 7.114

Variable Layouts
The list of all variables and variable parameters are listed below.
BaseLineDatabase.aef Variable Layout

[image: image118.png]
Figure 7.115

PAGE
6
Version 4.2

_1295421568.vsd

