State_City_List.aef ReadMe

Audience

The reader of this document and user of its accompanying CRS Application Editor script file (.aef) is assumed to be familiar with the CRS product suite and the Application Editor. It is assumed that the reader understands the configuration requirements necessary to utilize the script as explained in this document.
This script is offered “AS-IS”. While the script is functional in its delivered form, has been tested, and can be used as is, CISCO DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, relating to the script. You may use this script at your own risk, provided you agree that Cisco shall have no liability for damages of any kind, including, but not limited to direct, incidental or consequential damages, relating to your use of the script. You and you alone are responsible for final deliverables to your customers.
Purpose

The purpose of this document is to describe the structure and intended use or uses of the accompanying script. While the script is functional in its delivered form, has been tested, and can be used as is, there is no warranty, expressed or implied, for this script to be used in a production environment. It is intended to be a sample that can be easily modified to suit a particular need, as well as provide a visual “how to” for CRS Application developers.

Obtaining Technical Assistance

Should you require assistance in the development of your own script, there are several avenues available to you. First, you may solicit aid from the CRS support mailer alias, ask-icd-ivr-support@cisco.com.

If the issue is with your CRS system as a whole (e.g.: Subsystems out of service, CRS installation issues, etc) and you have a valid support contract, please open a TAC case by calling 800-553-2447. For faster assistance, please open a case on the web at http://tools.cisco.com/ServiceRequestTool/create/launch.do by clicking the “Create a new TAC Service Request” link.

Overview of this Script

This script, used in conjunction with the “tts_Test.aef” script, is an example of how to input a city and state value and have the Text To Speech (TTS) engine speak the city name and state with the proper pronunciation. While not necessarily designed for any specific use, these scripts show an example of how to use TTS with “inline grammar”, which uses phonetic spelling to achieve proper pronunciation.
Detailed Script Description
This section details each step of the script. Steps such as “Start”, “End”, and “Accept” may not have descriptions unless it is deemed necessary. Otherwise, these steps will not be described, as they should be self-explanatory. The first two images are the entire script and the Variable pane from the CRS Application Editor.

[image: image1.png]£y Statt

A Create Fie Document
{54 Create Fie Document
) state_Lit=Create XML DocumentSouce Document = state_Li)
& oiy_List-Create XML DocumentSouce Documert = cty_Lit
= seta
= setaw
[stete_Sting=Eract XML Document Data{Document = state_List, XML Path = st3]
(' alt_City=Estiact XML Document Data{Document = ciy_List, XML Path = sré]
=L If (al_City 1= NULL) Then
G e
& Fabe

= Setal Ciy=ciy

A End

[image: image2.png]Name | Type | Value | Attibute |

stae st Document
stale Code Sting
state_Sting Sting

sl Sting “descendant: Stalelst/chic: Statelatibule: symbol=
3 Sting

2 Sting

e Sting

ciy Sting “Pllugervile”

ciy._List Document

a5 Sting descendant:Ciylis/hid: Ciylatibute:symbol
a6 Sting Vehid: Name'"

At City Sting

Step Descriptions:

Start

Create File Document
This step creates the Document “state_List” from the file “state_list.xml”. We need to do this in order to create an XML document within CRS.

Create File Document

This step creates the Document “city_List” from the file “city_list.xml”. We need to do this in order to create an XML document within CRS.

Create XML Document

This step now creates the XML document “state_List” using the file document as the source.

Create XML Document

This step now creates the XML document “city_List” using the file document as the source.

Set

This step begins to build our string we will need to extract data from the XML document. This step sets the value of the “str3” String variable to the value of “str1 + state_Code + str2”. The str1 variable is initially set to:
"/descendant::Statelist/child::State[attribute::symbol='"
And str2 is set to:

"']/child::Name"
Extract XML Document Data
This step pulls the expanded state name from the state_List XML document, using the str3 String variable as the XML path.

Extract XML Document Data

This step pulls the city name from the city_List XML document, using the str4 String variable as the XML path.

If

This step checks for a null value for alt_City.

True

Since the If statement is “alt_City != NULL”, then this step means the alt_City variable has a valid value. We proceed to the next step (End).
False

Set

This step sets the value of alt_City to the value of the City String variable in the event that alt_City is NULL.
End
