CRS Script Note: HolidayDoc.aef
Version: 1

Release Date: Aug. 16, 2004
Introduction
The purpose of this document is to describe the structure and intended use or uses of the accompanying script.

License & Copyright Information
This script is offered “AS-IS”. While the script is functional in its delivered form, has been tested, and can be used as is, CISCO DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, relating to the script. You may use this script at your own risk, provided you agree that Cisco shall have no liability for damages of any kind, including, but not limited to direct, incidental or consequential damages, relating to your use of the script. You and you alone are responsible for final deliverables to your customers.
Obtaining Technical Assistance

Technical assistance is not available for this individual script. It is intended to be a sample that can be easily modified to suit a particular need, as well as provide a visual “how to” for CRS Application developers.

Should you require assistance in the development of your own script, there are several avenues available to you. First, you may solicit aid from the CRS support mailer alias, ask-icd-ivr-support@external.cisco.com.

If the issue is with your CRS system as a whole (e.g.: Subsystems out of service, CRS installation issues, etc) and you have a valid support contract, please open a TAC case by calling 800-553-2447. For faster assistance, please open a case on the web at http://tools.cisco.com/ServiceRequestTool/create/launch.do by clicking the “Create a new TAC Service Request” link.

Assumptions
The reader of this document and user of its accompanying CRS Application Editor script file (.aef) is assumed to be familiar with the CRS product suite and the Application Editor. It is assumed that the reader understands the configuration requirements necessary to utilize the script as explained in this document.
Script Details
Purpose

Most contact centers require some sort of treatment based on time of day, day of week, and specific date. This script is an example of the third option, which checks the current date against a pre-defined list of holidays. This allows the use of a customized message that might simply state that the contact center is closed, or some variation of that (limited hours, limited service options, etc.)
Instructions for Use

The holidayDoc.aef script uses an XML file, “dates.xml”, as a list of holiday dates. The script compares the current day’s date with all of the date entries in the file. If it finds a match, it will set the Boolean variable “todayIsAHoliday” to "true". This script can be called as a subflow using the Call Subflow step, with this Boolean variable defined in the main script with the Parameter attribute set. The variable can be tested by the calling script to perform the desired holiday action if true.

NOTE: This script does not include an Accept step, which means that if tested with a JTAPI or HTTP Trigger, no response will be returned, i.e. ringback only for a JTAPI Trigger.

If the dates.xml file is placed in the install folder, typically: c:\Program Files\wfavvid, then this script will work as is. However, the file can be placed at any accessible URL location.
The holidayDoc script uses an xml file, dates.xml, as a list of holiday dates. The script will compare "todays date" with all of the date entries in the file. If it finds a match, it will set the boolean variable todayIsAHoliday to "true". This script can be called as a subflow with this boolean variable. The variable can be tested by the calling script to perform the desired holiday action if true.

The text file should be placed in the install folder, typically:

c:\Program Files\wfavvid

A template for the text file input is included below. Change the 3 sample dates, add dates for 4-10, and add more if needed. Do not include leading zeroes in the dates (eg: 1/2/2003 is OK, 01/02/2003 is NOT OK). Paste the following text into a file named dates.xml:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- NO LEADING ZEROES IN DATE NUMBERS !!!! -->
<Holidays>
 <Holiday1>11/30/2002</Holiday1>
 <Holiday2>12/25/2002</Holiday2>
 <Holiday3>1/3/2003</Holiday3>
 <Holiday4></Holiday4>
 <Holiday5></Holiday5>
 <Holiday6></Holiday6>
 <Holiday7></Holiday7>
 <Holiday8></Holiday8>
 <Holiday9></Holiday9>
 <Holiday10></Holiday10>
</Holidays>
Detailed Script Description
This section details each step of the script. The Start, End and Annotate steps will not be described, as they are self-explanatory. The following two images illustrate the entire script and the Variable pane from the CRS Application Editor and can be useful for reference purposes.

Figure 1 – HolidayDoc.aef Nodes
[image: image1.png]
Figure 2 – HolidayDoc.aef Variables

[image: image2.emf]

[image: image3.emf]

[image: image4.emf]

[image: image5.png]
Step Descriptions:

Create Java Object

This step uses a Java Object to obtain the current date on the system. The value is stored in the variable “todaysDate”, which is a Java Type variable of java.util.Date. Since the Java format for date is not in a “user friendly” format, the next few steps perform Java Methods to turn the date into a more usable format.

Execute Java Method - getMonth

This first Execute Java Method step simply uses the built-in “public int getMonth()” function to extract the month from the todaysDate variable. We store this Integer value in the “monthInt” Integer variable.

Increment

This step increments our monthInt variable by 1. We do this because Java returns the month as an integer value in the range of 0-11 instead of 1-12. So again, we are transforming the values into a more user-friendly format.

Execute Java Method – getDate

This step uses the built-in “public int getDate()” function to extract the day of the month and write the value to the “dayInt” Integer variable.

Execute Java Method – getYear

This step uses the built-in “public int getYear()” function to extract the year and write it to the “yearInt” Integer variable.

Set

This step sets the yearInt variable to the current value of yearInt + 1900. This is due to Java returning the year as the number of years since 1900, for example “104” for 2004.

Execute Java Method – toString()

This is the first of three steps used to convert the parts of the date into Strings. This will allow us to concatenate the pieces of the date into a usable format. This step converts the monthInt variable into the “monthString” String variable.

Execute Java Method – toString()

This step converts the dayInt variable into the “dayString” String variable.

Execute Java Method – toString()

This step coverts the yearInt variable into the “yearString” String variable.

Set

This step uses the Set function to concatenate our individual String variables into a usable format with “/” separators. Essentially, we now end up with a String variable “todaysDateString” which is something like “6/12/2004”.

Create File Document

This step loads the “dates.xml” file into a Document for CRS to reference. We write the contents of the file into the “dateList” Document variable. The reason for this step is to load the contents of the dates.xml file so that subsequent processing can be done on it by the CRS.

Create XML Document

This step now takes the File Document we have created in the previous step, stored in dateList, and parses it for XML content. In the previous step, we created (“loaded”) a text file, in a sense, with the contents of our dates.xml file. This step now reads that file as an XML document, which allows the format and tags, etc. to be understood.

Extract XML Document Data

This step sets our “date_null” String variable, which creates our check point while we loop through the dates.xml file. What we are going to be checking for is the value of “Holiday1”, “Holiday2”, etc. and comparing that with our todaysDateString variable. When we reach the point where there is no entry for “Holiday#”, the value returned will be a null string. We use the date_null variable to check that null value, which tells us we have processed all the holiday dates specified in the dates.xml file.

The path specified in this step is:

"/descendant::Holidays/child::bogusstring"

We will use a similar path string for our “real” searches, which will specify a valid /child value. Because we want to deliberately return a null value for this case, we use the “bogusstring” value.

Label – Loop Through dates.xml

This step is our return point for the loop through the dates.xml file. We return to this point after each valid (not null) holiday date check.

Increment

This step increments our “holidayEntryNum” Integer variable, which has an initial value of 0. Setting this initial value insures that we always start checking the dates at the first entry.

Execute Java Method – toString()

This step creates the “holidayEntrySuffix” String variable from the value of the holidayEntryNum Integer variable. We perform this step because we need the number to be a String in order to append it to our search string in the Extract XML Document Data step, but we need an Integer value in order to use the Increment step. So we increment the holidayEntryNum Integer variable and then convert its current value and write it to the holidayEntrySuffix String variable.

Set

We now use the Set step to concatenate “Holiday” and the holidayEntrySuffix variable to create our child string and store it in the “Holiday” String variable. This sets the value of the Holiday variable to “Holiday1”, “Holiday2”, etc.

Extract XML Document Data

This step is where we begin (and continue) to search the dates.xml file for specific date entries. We use the XML path:

"/descendant::Holidays/child::" + Holiday

What this does is create a concatenated string path with the current value of the Holiday variable. So, for the first check, our actual path would be:

"/descendant::Holidays/child::Holiday1”

If

This step now performs the comparison of the extracted holiday date to the current date.

True

If the current date matches the holiday date extracted from the XML document, then we set the Boolean variable “todayIsAHoliday” to true from its initial value of false. If this step is executed, then the script falls to the End step and completes.

False

If the current date does not match the extracted holiday date, then we need to perform a check to be sure we haven’t reached the end of the dates list, which leads to the next If step.

If

This step now checks to see whether we have reached the end of the entered dates in the XML file by comparing the extracted value with our pre-defined date_null String.

True

If the expression is true, then we know we have reached the end of the valid dates entered in the XML file. This step drops to the End step and completes the script.

False

If the expression is false, then it means that the current date does not match the extracted date, but the extracted date is still a valid entry, and therefore means we need to loop through the process again and check the next date in the XML file.

Goto – Loop Through dates.xml

This step sends the script back to the Loop Through dates.xml Label step and increments the holidayEntryNum variable to repeat the process with the next date entry.
CRS Script Note: HolidayDoc.aef

