Nexus Validation Test Phase 4.2

Table of Contents

1	Introduction	3
2	NVT Validated Scale	
	2.1 VxLAN Solution	4
	2.2 Service Provider MPLS F3	4
	2.3 Dynamic Fabric Automation (Vinci) Solution	
	2.4 Enterprise 1	
	2.5 MSDC Scale Profiles	
	2.6 Hosted DC M2 BGP Scale	
	2.7 M1 vPC	
3	ISSU Matrix	
4	Profile Details	
-	4.1 VxLAN Solution	
	4.2 Hardware and Software Overview	
	4.2.1 VxLAN Solution Design Review	
	4.3 SP MPLS Solution	
	4.3.1 Network Logical Topology Design Overview	
	4.3.2 Description of the test network	
	4.3.3 Topology	
	4.4 Dynamic Fabric Automation (Vinci)	
	4.4.1 Topology Design Review	
	4.4.2 Hardware and Software Overview	
	4.5 ENT	
	4.5.1 Network Logical Topology Design Overview	
	4.6 Configuration Details	
	4.7 ENT Topology	
	4.8 MSDC Scale	
	4.8.1 Topology Design Overview	
	4.9 Hosted DC BGP M2 Scale	21
	4.10 M1 vPC Scale	
	4.10.1 Hardware and Software Overview	
	4.10.2 Network Logical Topology Design Overview	
	4.10.3 Configuration Details	
	4.11 M1 vPC Scale Topology	
	4.12 DC1, ENT1 and M1 vPC Feature / Scale Coverage	24
5	NVT Findings/Conclusion/Recommendations	25
6	Appendix	25
	6.1 VxLAN Solution Configuration Guide	25
	6.2 Service Provider MPLS Configuration Guideline	
	6.3 DC1 Configuration Guideline	
	6.4 ENT1 Configuration Guide	
	6.5 M1 vPC Scale Configuration Guideline	

1 Introduction

The Cisco Nexus line of data center product hardware and software must pass Cisco's comprehensive quality assurance process, which includes a multistage approach comprising extensive unit test, feature test, and system-level test. Each successive stage in the process adds increasingly higher levels of complexity in a multidimensional mix of features and topologies.

This document describes the NVT Phase 4.2 network topologies, hardware and software configurations, test procedures and findings.

NVT Phase 4.2 testing is performed on the following networks:

- **VxLAN Solution**: This test profile is developed based on BGP EVPN technology using VxLAN fabric. It is intend to provide host mobility and subnet extension across data centers and simplify network operation using anycast gateway and does not require a first hop redundancy protocol.
- **Service Provider MPLS**: The topology validates the inter DC inter site design with Carriers supporting Carriers CSC backbone for MPLS L3VPN. Two data center networks are simulated. N7710 with F3 card is used in one data center and N7010 with F3 is used in the second network. Testing is focused on the network with N7710. N7710 and N7010 with F3 card are used as aggregation and core switches. ASR9K is used as CSC PE. N5K is used for layer2 access as well as for vPC. ASR1K is used as secondary RRs for redundancy purpose in the network. One POD on DC1 has vPC to MPLS handoff, while the second POD on DC1 does Fabricpath to MPLS handoff.
- **Dynamic Fabric Automation (Vinci) Profile**: DFA profile uses power on autoprovisioning to configure network devices and support distributed gateway function and automated data center interconnect. The topology contains N7000/N7700/N6004 spines, N7000/N6001 leafs, and N7004 border leafs. The topology uses the latest DCNM for cable management and workflow automation. It also uses emulated leafs (Virtual ToR or VToRs) to achieve scale. It supports unicast and multicast for IPv4 and IPv6 hosts and auto configuration based on dynamic frame snooping based on the traffic and VDP running on the vSwitch.
- **ENT**: This test profile primarily is built to validate Enterprise customer profiles. In the first phase, we have validated the TIER I Enterprises customer profile. The test bed is built with a new hardware covering the existing feature set for future deployments. Nexus7000 SUP2E/M2 is used at the core layer and N7700 SUP2E/F2E/F3(40G) at the aggregation layer. The profile also covers interoperability with Nexus6000 and Nexus3000 switches and covers L3Agg with L3 ToR and L3Agg with L2 ToR.
- **MSDC**: This profile focuses on scale requirements of Massively Scalable Data Centers. It uses a fully loaded 7018 peering with another 7018 and uses F2 line card and Sup2. Tests were done with BGP and OSPF as IGP protocols
- **Hosted DC M2 BGP Scale**: In this profile, a pair of N7K ASBRs that peers with provider edge routers and receives Internet feed. N7K also peers with customer access routers in the same AS and redistribute routes. The firewall clusters are connected to the N7Ks through N2K FEXes.
- **M1 VPC**: This test bed focuses on scaling the virtual Port-Channel (vPC] with Nexus 7000. It also covers interoperability with Catalyst 6500. This network uses vPC and PVLAN to deliver high availability to servers connecting to data centers.

Operation: Network management including SNMP poling and inventory collection is performed through DCNM from Cisco and netMRI from Infoblox, TACAS+ authentication and syslog server. NetFlow is configured to export third party Netflow collector Scrutinizer on certain test beds. Real hosts are connected by Nexus access switches using NIC teaming (in

both active mode and On mode). UCS-B series are connected to Nexus access switches thru fabric interconnect. NTP is synced to the server.

2 NVT Validated Scale

2.1 VxLAN Solution

Scale	
Feature	Scale
Maximum VLANs	40
VLANs per TOR	14
VRFs per ToR	10
Max VNI per ToR	24
Max VNI per network	10 VRFs + 30 VLANs = 40
Max underlay Multicast Groups	10 (to support broadcast + multicast traffic
Max ToR per 'network'	116 (112 ToRs per POD and 4 on peer POD)
Max VTEP peers per 'network'	116 (112 ToRs per POD and 4 on peer POD)
Overlay MAC scale	16K per POD * 2 = 32 K per 'network'
Overlay IPv4 routes	16K per POD * 2 = 32 K per 'network'
LISP dynamic routes	6600
Undelay v4 routes	400 across all PODs
Undelay v6 routes	none

Hardware

	Model No.	NVT 4.2
N77K	N77-SUP2E / N77-	7.2.1
	F324FQ-25	
N9K	N9K-C9396PX / N9K-	7.0.3
	M12PQ	
CSR1000v	Na	15.4(3)S1
ASR1K	ASR1000-RP2/	155-1.S1
	ASR1000-SIP10/ SPA-	
	10X1GE-V2	
ASR9K	A9K-RSP440-TR/A9K-	5.3.0
	40GE-E/ A9K-2x100GE-	
	SE	

2.2 Service Provider MPLS F3

Scale

Feature

Scale

Feature	Scale
6VPE VRFs (dual stack)	100
ARP addresses on each switch	21,120
Global Multicast routes	100
HSRP groups	1,000
IGMP groups	100
L3 Physical interfaces	300
L3VPN v4 VRFs	100
MVPN VRFs	10
Number of IPv6 Host	2,000
L3 Port channel	2
SVI	1,000
Total Multicast prefixes in MVPN	100
Total number of IPv4 prefixes in default routing table with 2 IGP Path	200
Total VPNv4 Prefixes from IBGP peers with 2 IGP Path	8,000
Total VPNv6 Prefixes from IBGP peers with 2 IGP Path	2,000
vPC links	8
VPNv4 Prefixes across 6 VRFs with one IGP Path	6,000
VPNv6 Prefixes across 6 VRFs with one IGP Path	2,000
Fabricpath links per spine	5

	Model No.	Image Version
N77K	N77-SUP2E/N77-	7.2.1
	F324FQ-25	
N7K	N7K-SUP2E/N7K-	7.2.1
	F312FQ-25	
N5K	N5K-C5548UP-SUP	7.0(5)N1(1)
ASR9K	ASR9001-RP/ A9K-MPA-	5.1.1
	20X1GE	
ASR1K	ASR1000-RP2/ASR1000-	3.14

	ESP20/ SPA-8X1GE-V2	
2.3	Dynamic Fabric Automation (Vinci) Solution	

Scale	
Spine/SuperSpine	
VRFs (vni)	Transit-Mode
SVI/BDI	Transit-Mode
VLAN/BD	Transit-Mode
BGP Route-Reflector Peer	180
Fabric Core Ports (Ports to leaves)	192
Fabric BFD Sessions	12
Fabric BGP Sessions	192
FabricPath Layer-2 BFD	12

Leaf	
Fabric Facing	
Fabric Core Ports	16
Fabric BFD Sessions	16
Fabric BGP Sessions	1 RR
VRFs (vni)	410
SVI/BDI (Core)	410
VLAN/BD (Core)	410
Host Facing	
VLAN (vn-segment)	1640
SVI/BDI	1640
VPC+/VPC	96
FEX	NA
Physical/Virtual Server IP Addresses (ARP/ND) -	
1:6 IPv4 to IPv6 ratio	
IPv4 Routes (/32 + Subnet Route)	6k
IPv6 Routes (/128 + Subnet Route)	4k
Multicast Routes (S,G)	2k
Total VNI/vn-segment per Leaf	2050

BORDER LEAF	
Fabric Facing	
Fabric Core Ports	16
Fabric BFD Sessions	16
Fabric iBGP Sessions	1
VRFs (vni)	1000
SVI/BDI (Core)	1000
VLAN/BD (Core)	1000
Edge-Router Facing	
VLAN (vn-segment)	1000
Sub-Interface per BorderLeaf (if VRF-lite)	1000

IPv4 Routes (/32 + Subnet Route)	17K*
IPv6 Routes (/128 + Subnet Route)	5K*
Multicast Routes (S,G)	1K*
eBGP/MP-BGP peers	1000
VPC+/VPC	0
Labels/VRF	Option B
Total VNI/vn-segment per Border Leaf	1000

	Model No.	Image Version
N77K	N7F-SUP2E / N77-	7.2(0)D1(1)
	F324FQ-25 / N77-	
	F248XP-23E / N7F-	
	F248XP-23E	
N7K	N7K-SUP2E / N7K-	7.2(0)D1(1)
	F312FQ-25 / N7K-	
	F248XP-25E / N7K-	
	F248XP-25	
N6K	N6K-C6001-64P-SUP /	7.1(1)N1(1)
	N6K-C6001-M4Q	
N6K	N6K-C6004-96Q-SUP /	7.1(0)N1(1)
	N6K-FIXED-LEM / N6K-	
	C6004-M12Q	
N6K	N6K-C6004-96Q-SUP /	7.0(2)N1(1)
	N6K-FIXED-LEM	
Cisco Prime	Data Center Network	7.2(0.14)
	Manager	

2.4 Enterprise 1

Scale	
Feature	Scale
ACL/ACE	500
VLAN / SVI	2000
MAC	1K
HSRP v2	2000
BGP Neighbor	18
PIM Neighbor	2000
PBR Sequence	200
Unicast Route	22K
Multicast Route	3К
Multicast Group	390
PVLAN	60
vPC Config-Sync	120
Netflow	84
WCCP	58

Platform	Model No.	Software
N7000	SUP2E, M2	7.2.1
N7700	SUP2E, F2E, F3(40G with	7.2.1
	breakout)	
N6000	N6K-C6004-96Q-SUP,	7.1.0.N1
	N6K-C6001-64P-SUP	
N3000	N3K-C3548P-10G-SUP,	6.0.2
	N3K-C3048TP-1GE-SUP	

2.5 MSDC Scale Profiles

Scale

Parameters	Profile 1 (L3 ToR + L3 Agg)	Profile 2-1 (L2 ToR + L3 Agg)	Profile 1 (L3 ToR + L3 Agg) w/ RFC5549
REQ-ID	NXOS-MD-OTT- 002-001	NXOS-MD-OTT- 002-003	
Description	F2-Series based;	M2-based; Dual- stack;	F2-Series based;
ToR	4948E or N3K	4948E or any other	4948E or any other
Hardware	* Fully loaded F2- series	* 4 M Series	* Fully loaded F2- series
	Single Sup : Test 1 Sup2; Test 2 Sup1	Dual Sup	Dual Sup
VDC	1 VDC	1 VDC	1 VDC
Port channels	8-bundle Port- channel	8-bundle Port- channel	8-bundle Port- channel
L3 ECMP	Test1: 16-way ECMP; Test 2: 32- way ECMP	16-way ECMP	32-way ECMP v4 – 3k host routes and default route
Unicast Routing Protocol	Test1- iBGP 754 Adjacencies; Test 2- OSPF 754 Adj	OSPF, OSPFv3 48 Adj	23 iBGPv4 Adjacencies [leaf nodes that do not support rfc5549 and 16 simulated gateway/loadbalanc er/firewall nodes] 755 iBGPv6 Adjacencies that support rfc5549 1 N7700 leaf node that support rfc5549
Multicast Routing Protocols	N/A	PIM-SM, MSDP w/anycast RP	N/A

FHRP	N/A	2000 HSRP groups (1000 HSRPv4 + 1000 HSRPv6)	NA
Fast Detection (for IGP, PIM, FHRP)	Test 1: BFD: 250ms x 3; Test 2: Default Timers	Test 1: BFD: 250ms x 3; Test 2: Default Timers	Test 1: BFD: 250ms x 3; Test 2: Default Timers
Dual Stack	Yes	Yes	Yes, on supporting leaf nodes
Number of /32 & /128 host entries	N/A	80K split (40K IPv4 + 40K IPv6)	N/A
Number of Unicast IGP	10K IPv4 300 IPv6	10K	10K
Number of Multicast Routes (S,G)	N/A	15K	N/A
VLANs	N/A	250	N/A
SVI (same as VLANs)	N/A	250	N/A
ACLs	N/A	250	N/A
ARP/NDP (30seconds ARP refresh rate)	N/A	80K (40K ARP and 40K NDP)	N/A
ARP/NDP Learning Rate	N/A	5000pps	N/A
ARP/NDP Glean rate	N/A	1000pps	N/A
DHCP Relay	N/A	100 pps	N/A
MIB	KPIX	KPIX	КРІХ

2.6 Hosted DC M2 BGP Scale

Scale	
Feature	Scale
VLAN / SVI	400
Port Channel Members	8
HSRP	200
VRRP	200

BGP Neighbor	100 eBGP [on Individual links] 50 iBGP
BGP Peer Groups	25
OSPF Neighbor	20
Unicast Route	655K
LACP	9
vPC Config-Sync	120

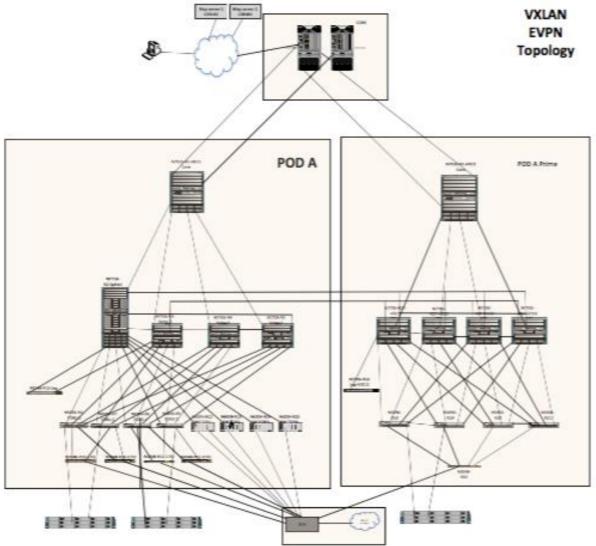
Equipment Model	Quantity
C7009 Chassis	2
N7K-M224XP-23L	18
Catalyst 6504	2
ASR9K	2
N3548	7
N3048	4

2.7 M1 vPC

S	С	a	1	е	

M1 vPC
140
280
168
388
388
256
32
54
186
186

3 ISSU Matrix


Image	ISSU/COLD	MPLS	ENT	MSDC	M2 BGP	M1v
	BOOT	Profile 1			Scale	РС
7.2.0 > 7.2.1	ISSU	PASS	PASS	PASS	PASS	
7.2.0 + SMU >	ISSU		PASS	PASS		
7.2.1						
7.2.1 > 7.2.1	ISSU	PASS	PASS	PASS		PAS
upg						S
6.2.10 > 7.2.1	ISSU		PASS		PASS	
6.2.12 > 7.2.1	ISSU		PASS			
7.2.0 > 7.2.1	COLD BOOT	PASS	PASS			
7.2.1 > 7.2.1	COLD BOOT		PASS			
upg						

6.2.10 > 7.2.1	COLD BOOT	PASS		
6.2.12 > 7.2.1	COLD BOOT	PASS		
7.2.1 > 6.2.10	COLD BOOT	PASS		
7.2.1 > 6.2.12	COLD BOOT	PASS		

4 Profile Details

4.1 VxLAN Solution

Topology

4.2 Hardware and Software Overview

	Model No.	NVT 4.2
N77K	N77-SUP2E / N77-	7.2.1
	F324FQ-25	
N9K	N9K-C9396PX / N9K-	7.0.3
	M12PQ	
CSR1000v	Na	15.4(3)S1
ASR1K	ASR1000-RP2/	155-1.S1

	ASR1000-SIP10/ SPA- 10X1GE-V2	
ASR9K	A9K-RSP440-TR/ A9K-	5.3.0
	40GE-E/ A9K-2x100GE-	
	SE	

4.2.1 VxLAN Solution Design Review

The DC design is structured in pairs of PODs between which mobility and segmentation should be supported. The choice is to use VXLAN with an EVPN control plane within each POD and for east-west connectivity across peer PODs; LISP is required for optimization of North-South traffic. There are 4 aggregation boxes per POD that use SUP2E and F3 line cards and 40GE interfaces. Each aggregation box is connected to all ToRs. The 4 aggregation boxes are also connected to each other in a ring. Each Rack has two ToRs in a vPC array. vPC runs from the physical hosts to the ToRs.

Communication between PODs in the same DC happens over the core. North-South Communication in and out of the PODs also happens over the core. Segmentation is only stretched between peer-PODs; segmentation is not stretched outside of the PODs to the Core. Only one VRF (the production VRF) is routable over the core. Thus, inter-POD and North-South communication is limited to the production VRF only.

East-West communication is optimized between pairs of PODs across DCs. Each POD will have a peer POD at the remote DC and the aggregation switches of these peer PODs will be directly connected over fiber. The following connections will be established: POD1 to POD1'

East-West communications between Peer PODs will follow the low latency/high-capacity direct connection between Aggregation switches. Communication across PODs that are not peers will happen over the core only for the "Production VRF"

Design Choices

- Spine to Core is eBGP, peering is interface based. On Spine only Production_vrf routes are routable in core
- Core is single AS
- OSPF will be running between all Spines in the ring topology
- Spines are iBGP peering over interface to TORs. Loopback are redistributed with network statement. All four spines are IPv4 RR to all ToRs
- Each N9396 are connected to all four Spines. Connection is 40G links. Some connection uses are port-channel with 2-3 40G member link
- Legacy TORs has 10 VRFs. Correspondingly Spine will have 10 VRF-lite for Intra-POD legacy to fabric traffic
- Legacy TORs eBGP peer to Spine thru "fake iBGP" by manipulating "local AS" in as-path. So BGP peering is iBGP, but local AS are different so route get redistributed to MP-iBGP L2VPN EVPN.
- Spines are route reflector for IPv4 and L2VPN EVPN
- All leafs in the POD are EVPN RR clients to Spins. IBGP peering is with loopback
- Total 10 VRF in system, one is Production VRF which will carry hosts that will require inter-POD and N-S (i.e branch to host) access
- Other 9 VRFs will be connecting within the POD or peer-POD only. No N-S access for these VRFs. There is no route-leaking into Production VRF. These 9 VRFs require connectivity to legacy ToRs also

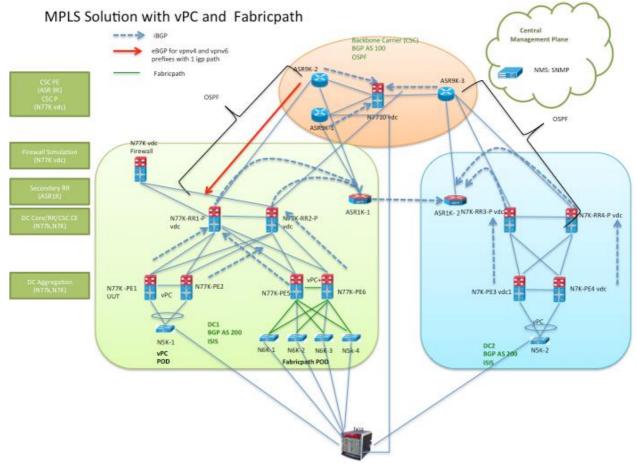
- VM hosts requiring mobility are separated into different VLANs (we call it mobility VLAN)
- Production VRF will have 10 Mobility Vlan with total of 6600 host and 500 Non-mobility vlans with 4 Vlan each in each TORs (125 TORs X 4 Vlans = 500)
- Each Mobility Vlan will have 3 host (10 Vlan x 3 host X 125 Racks = 3750 hosts) in POD A and 2850 hosts in POD A"
- For Non Mobility Vlans, 4 Vlan X 50 host X 125 TORs = 25000 hosts in POD A
- Inter-peer-POD is EBGP interface peering over high speed direct link. VXLAN tunnels are TOR to TOR
- For N-S for Production VRF, VXLAN tunnel will terminate on Spine and L3VRF handoff to production-vrf handoff
- IPv4 and L2VPN EVPN iBGP peering between inter-spine ring links and Set local pref low for inter spine link
- POD A has 250 emulated TORs using IXIA eVPN emulation
- Each TORs N9K have 40 host VPCs with N3K fan out switches
- 10 Legacy TORs are connected to PODA
- 2 map server (CSR1KV) connected with DDT to Branch router ASR1K.
- LISP traffic will load balance between 4 spines by the map-server
- Spine we have configured route-map to allow only non-mobility prefixes to get advertise to core and branch for south to north traffic

4.3 SP MPLS Solution

4.3.1 Network Logical Topology Design Overview

MPLS Solution: The focus of this test bed is to test the MPLS solution proposed to the data center customers in general. Scale and topology are aligned to the deployment proposed to the to a specific customer. Solution testing is done for inter DC (layer 3 DCI with MPLS) with CSC backbone. Testing is primarily focused on MPLS features configured on N77K with F3 card positioned as aggregation and core switches in the data center network. This network uses vPC towards aggregation on one POD and Fabric Path based vPC+ towards aggregation on another POD to deliver highly available unicast and multicast services and CSC is in the MPLS backbone. ASR9Ks are used as CSC PEs.

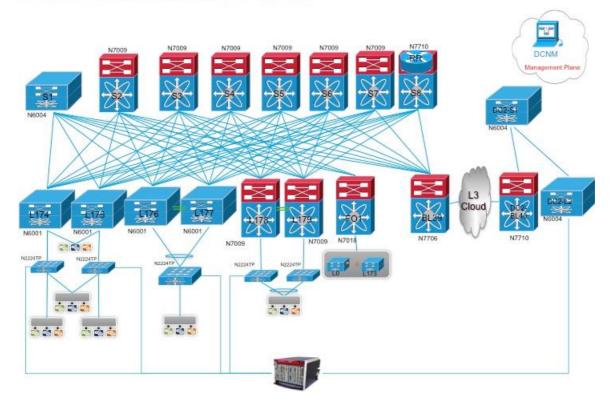
The overall goal is to identify any stability issues when configured with multiple features and measure traffic convergence metric with key triggers such as SSO, process crashes/restarts, VDC reload and OIR with multiple features configured at pre-defined scales. The results in this document are closely tied with the setup utilized for this profile. These results may vary depending upon the deployment and optimizations tuned for the convergence.


The topology validates the inter DC inter site design with CSC backbone for MPLS L3VPN. Two data center networks are simulated. N7710 with F3 card is used in one data center and N7010 with F3 is used in the second network. Testing is focused on the network with N7710.

N7710 and N7010 with F3 card are used as aggregation and core switches. ASR9K is used as CSC PE. N5K is used for layer2 access as well as for vPC. ASR1K is used as secondary RRs for redundancy purpose in the network as shown in Figure 1.

4.3.2 Description of the test network

- N7710 and N7010 with F3 card are used as aggregation and core switches Features configured are L3VPN with VRFs, ISIS, iBGP, HSRP, SVIs, vPC, LDP, 6vPE, mvpn, multicast.
- ASR9K is used as CSC PE Features configured are OSPF, iBGP, LDP, VRF.
- N5K is used for layer2 access as well as for vPC.
- ASR1K is used as secondary RRs for redundancy purpose in the network Features configured are OSPF, iBGP, LDP
- Ixia is used to generate host routes (/32) as well for end to end traffic validation.


4.3.3 Topology

4.4 Dynamic Fabric Automation (Vinci)

Тороlоду

SSTE Vinci-Fabric Encapsulation Test Topology

4.4.1 Topology Design Review

There are 9 Spines, 180 Leafs and 2 Border Leafs in this topology. Spine S1 and RemoteDC-Spine are Nexus 6004 Switches. Spine S8 is Nexus 7710 Chassis with F3 Card and Spine S2 to S7 are VDCs within Nexus 7009 Chassis with F2e Cards. Leafs L174 to L177 are Nexus 6001 Switches. Leafs L178 and Leaf 179 are Nexus 7009 Chassis with F3 Cards and Leaf 0 to Leaf 173 are emulated using Titanium+ VTORs. Border 39 and Border Leaf 40 are Nexus 7706 and Nexus 7710 Chassis respectively with F3 cards.

Fabric Connectivity

Real Leafs (L174-L179) and Border Leafs (BL38-BL40) are connected to 8 spines. Spine8 is connected to 174 Emulated Leafs (L0-L173) with the help of Fan out switch (Nexus 7018). UCSs used for emulating VTORs are connected to Fan out switch with a Trunk Link as described in Vinci Hybrid Cluster approach.

Server Leaf Connectivity

For configuring VM, we use Emulated hosts. IXIA traffic generator will be used for emulating host with VDP and ARP/ND Support connected to Real Leafs.

DCI and L3VPN Connectivity at Border Leaf

BGP based VRF Lite will be configured as border Leaf node and DCI node. BGP MPLS VPN will be configured between DCI Peers. IXIA emulation will be used to emulate remote branch routes.

	Model No.	Image Version
N77K	N7F-SUP2E / N77-	7.2(1)D1(1)
	F324FQ-25 / N77-	
	F248XP-23E / N7F-	
	F248XP-23E	
N7K	N7K-SUP2E / N7K-	7.2(1)D1(1)
	F312FQ-25 / N7K-	
	F248XP-25E / N7K-	
	F248XP-25	
N6K	N6K-C6001-64P-SUP /	7.1(1)N1(1)
	N6K-C6001-M4Q	
N6K	N6K-C6004-96Q-SUP /	7.1(0)N1(1)
	N6K-FIXED-LEM / N6K-	
	C6004-M12Q	
N6K	N6K-C6004-96Q-SUP /	7.0(2)N1(1)
	N6K-FIXED-LEM	
Cisco Prime	Data Center Network	7.2(0.14)
	Manager	

4.4.2 Hardware and Software Overview

4.5 ENT

4.5.1 Network Logical Topology Design Overview

The topologies and test cases validate high-available data center networks in order to provide unified fabric and computing services. This is achieved by using the Nexus 7010 and Nexus 7700 with features such as vPC scale, VRF, PVLAN, ACL, netflow, wccp, multicast, dual vpc, etc.

Nexus 7710 installed with F2E and F3 line cards provide legacy L2 & L3 and vPC leg port channel connectivity with peer devices.

Access layer switches in this setup are extended to IXIA (Traffic Generator) ports to simulate end hosts/servers to send and receive unicast & multicast traffic

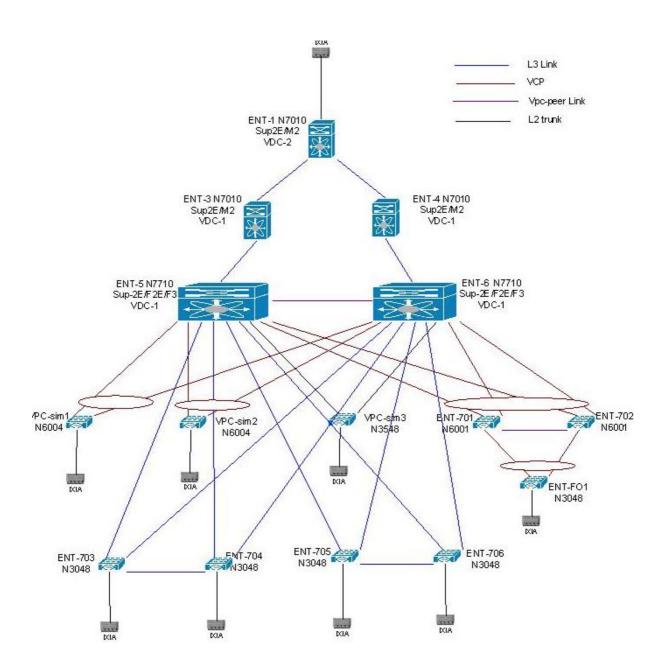
The data center site is built around the Nexus 7010 with SUP2E at core & Nexus 7710 with SUP2E at aggregation.

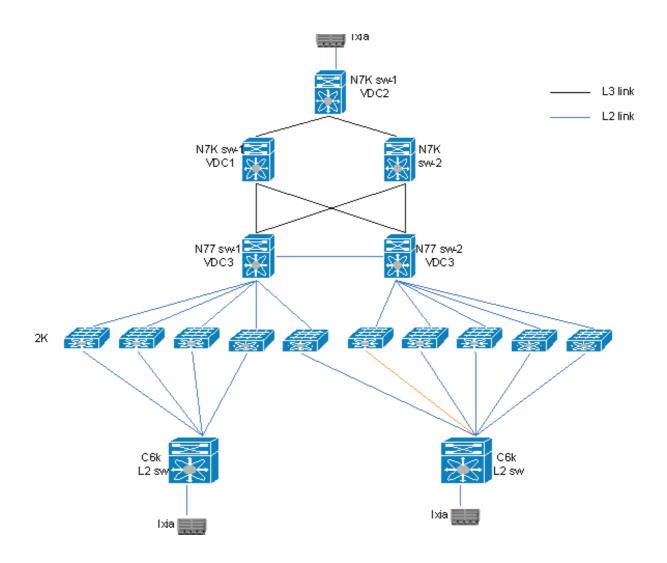
ENT1 Aggregation: Nexus 7710 with 120 VPC PO to N6004 Nexus 7710 with Dual VPC PO to N6001 Nexus 7710 with VRFs on F2 physical ports and 6 ECMP to N3k Nexus 7710 with VRFs on F3 Port-channels /sub-interface to N3k Nexus 7710 with PVLAN on F3 and F2 to N3K

ENT1

Device	Platform	Position	Status
Ent-1 (VDC)	N7000	Backbone	L3
Ent-3	N7000	Core	L3
Ent-4	N7000	Core	L3

Ent-5	N7700	Aggregation	VPC
Ent-6	N7700	Aggregation	VPC
VPC-sim1	N6004	VPC simulator	Fanout
VPC-sim2	N6004	VPC simulator	Fanout
VPC-sim3	N3548	Access	No-VPC /
			Regular L2
Ent-701	N6001	Access	Dual sided VPC
Ent-702	N6001	Access	Dual sided VPC
Ent-703	N3048	Access	L3 with VRF
Ent-704	N3048	Access	L3 with VRF
Ent-705	N3048	Access	L3 with VRF
Ent-706	N3048	Access	L3 with VRF
Ent-F01	N3048	Fanout	Fanout /
			Regular L2


4.6 Configuration Details


The following configurations are applied to the test network:

- Common system control, management and accounting: Common system features like SSH, TACACS+, Syslog, SNMP, NTP, SPAN, DNS and Management VRF are configured
- BGP: eBGP is configured between the core switches and the public cloud.
- PIM-SM: PIM Sparse Mode/PIM Any Source Multicast is deployed across the network to support multicast. Each aggregation-access block is configured with the RP for the locally sourced groups.
- MSDP Anycast RP: MSDP is deployed to exchange source information between Anycast RPs.
- vPC: vPC technology is deployed in the aggregation-access as shown in figure bellow. In addition, dual-sided vPC is configured between the Nexus 7000 and Nexus 6000 switches
- STP: Rapid Spanning Tree Protocol is used to prevent Layer 2 loops in the aggregationaccess blocks. The spanning tree root is placed on the aggregation level. Root Guard is configured on the aggregation level to enforce root placement. BPDU Filter, BPDU Guard and Port-Fast Edge are configured on the access ports towards hosts.
- HSRP: HSRP v2 is used as the first hop gateway protocol for hosts; HSRP configured at N7K aggregation
- IGMP: IGMP is used by hosts to join multicast groups of interest. IGMP snooping is enabled on all switches in the aggregation-access blocks to prevent flooding of multicast data traffic.

- LACP: LACP is used for link aggregation to form port-channels across the network.
- Separate VDC created in Aggregation N7700 switch to validate additional test scenarios. Features enabled in this VDC include legacy L2, HSRP, IPv4/Ipv6 dual stack, FEX HIFs configured as L2 trunk/access port-channel/phy, N-S, E-W pv4/ipv6 traffic
- FEX Active-active : Uplink ports as port-channel connected to each vpc peer in vpc mode. All FEX host ports configured as L2 trunk allowing one unique vlan. Unicast ipv4 and multicast ipv4 traffic flow in N-S direction.

4.7 ENT Topology

4.8 MSDC Scale

The topologies and test cases validate the requirement of feature and scale in a Massive Scalable Datacenter (MSDC) deployment. This is achieved by using the Nexus 7010, Nexus 3k, and Nexus 5548 with protocols such as OSPF, BGP, and BFD to create various profiles.

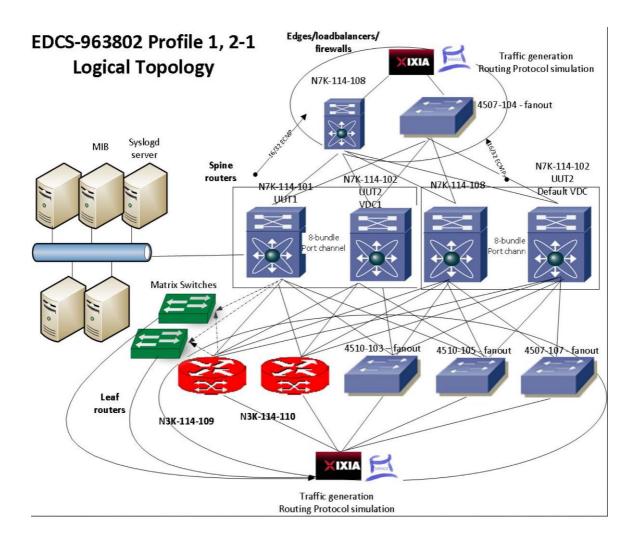
The following features are covered in profile 1:-

- BGP or OSPF
- BFD with default timers (50ms) or 250ms
- SNMP
- NTP
- SYSLOG

The following features are covered in profile 2-1:

- OSPF / OSPFv3
- BFD (v4 and v6) with timers of 250ms
- vPC
- Multicast with MSDP (v4)
- IGMP
- ACL
- DHCP relay

- High availability
- SNMP
- NTP
- SYSLOG


4.8.1 Topology Design Overview

MSDC covered 2 main profiles – profile 1 with BGP/OSPF and profile 2-1

- 1) Profile 1 leaf node on a 7018 with 16 F2, running either BGP or OSPF as routing protocol with BFD using different bfd timers, default (50ms) or 250ms.
- 2) Profile 2-1 L2/L3 on a 7018 with 2 M2, running ospf/ospfv3 as routing protocol with BFD using 250ms with vpc, multicast.

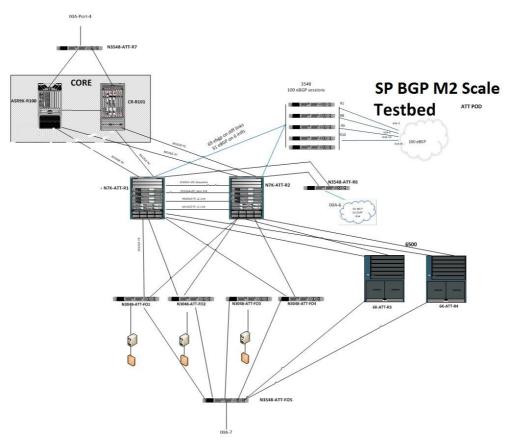
/	
Roles	Routers and Devices
Spine node	N7K-114-101(UUT1), N7K-114-102 default VDC (UUT2) and VDC1 and N7k-114-108 VDC1. 16/32 ECMP is between spine node and gateway/load balancers and firewall.
Leaf node/ToR	N3K and simulated by 4510-1-fanout/4510-2-fanout/4510-3 fanout + Ixia
Gateway, Load balancers, Firewall	Simulated by N7K-114-108 default VDC and 4507-1-fanout + Ixia

Roles and Routers/devices

4.9 Hosted DC BGP M2 Scale

A pair of N7Ks are used as Edge Router/ASBR. They are connected to provider edge routers with eBGP peering. Within the Autonomous System, these N7K pairs peer with customer access routers. The edge routers also connect to firewall clusters. The firewalls are connected using N2K FEXes.

Base Configuration in Core


- Each core routers (ASR9K) will be connected to Edge Router DCI with 8 members (10 GB) port-channel
- IBGP on each Edge Router links and advertise internet table (655K) to SP POD Customer Access Routers

Base Configuration in SP POD

- L3 (IPv4/IPv6) Port-channel interface with 8 members 10GB links (between R1 and R2) to each core routers (ASR9K)
- 1 vPC keep alive link with 2 members links (between R1 and R2)
- 2 vPC peer links with 4 members links (between R1 and R2) one for vPC for L2 and seconds vPC for L3)
- 50 iBGP sessions from R1 and R2 to remote PE emulation to IXIA. 655K internet routing table will be advertise to all 50 iBGP links
- HSRP and VRRP for IPv4 and IPv6

- Each Edge Routers (R1 and R2) are connected to 4 L3 links to 2 6500 switch each
- 100 eBGP sessions from R5 and R6 to remote PE emulation to IXIA. 655K internet routing table will be advertise to all 100 BGP links
- 20 OSPF sessions between R1/R2 and IXIA [thru R6]
- Aggregation Layer: It's a vPC setup with HSRP on all SVIs. vPC enhancements are also covered. UDLD is enabled on all interfaces.
- Core Layer: BGP and OSPF prefixes are injected into this layer. eBGP configured towards north of the traffic generator. Between Agg and Core devices, OSPF and iBGP is configured to carry traffic
- Two sets of traffic profiles will be provisioned for testing. One for regular testing (particularly convergence testing), and the other set for background traffic.
- North-South (N-S) indicates traffic flows between Ixia ports connected to the core routers and Ixia ports connected to the access switches.
- East-West (E-W) indicates traffic flows (inter- and intra-VLAN traffic) between Ixia ports connected to different access switches.

Topology:

4.10 M1 vPC Scale

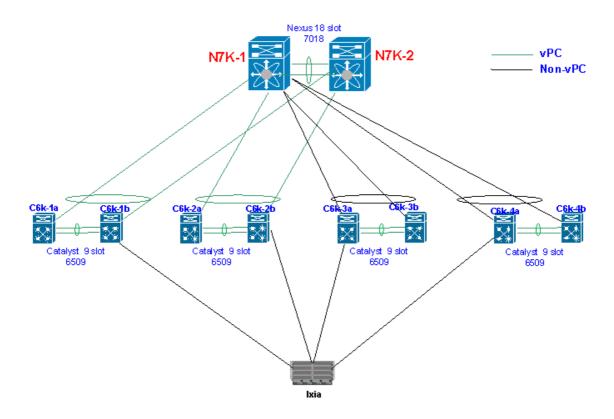
4.10.1 Hardware and Software Overview

Platform	Model No.	Software
N7K	N7K SUP2E M1	7.2.0.
С6К	VS-SUP720-10G	122-33.SXJ1

4.10.2 Network Logical Topology Design Overview

The topology validates high-available networks that depict the various private VLAN feature implementations in order to provide an idea of the private VLAN scale numbers supported. This is achieved by using the Nexus 7000 and Catalyst 6500 switches.

Figure 3 illustrates the network built around 2 Nexus 7000 switches with Sup2e and M1 modules. The topology contains:


- Nexus 7000 with vPC to Catalyst 6500 VSS switches for access configured.
- Nexus 7000 connected to Catalyst 6500 switch with classical Port-channels.
- Nexus 7000 connected to Catalyst 6500 switches using orphan ports.

4.10.3 Configuration Details

The following configurations are applied to the test network:

- Common system control, management and accounting: Common system features like SSH, Syslog, SNMP, NTP and Management VRF are configured.
- vPC: vPC technology is deployed in the network between the N7k and the Catalyst VSS switches as shown in the figure 3.
- VLAN trunking: VLAN trunking is used in the aggregation-access blocks to maintain segregation and security.
- STP: Rapid Spanning Tree Protocol is used to prevent Layer 2 loops in the aggregationaccess blocks. The spanning tree root is placed on the aggregation level. Root Guard is configured on the aggregation level to enforce root placement. BPDU Filter, BPDU Guard and PortFast Edge are configured on the access ports towards hosts.
- LACP: LACP is used for link aggregation to form port-channels across the network
- PVLAN: PVLAN is configured in the network and is the main focus of testing. The following PVLAN components are covered in the network:
 - PVLAN primary and secondary vlan(Community and Isolated)
 - Promiscuous trunk and secondary trunk on vpc
 - > PVLAN host on classic port-channel.
 - > PVLAN promiscuous trunk, secondary trunk on classic Port-channel

4.11 M1 vPC Scale Topology

4.12 DC1, ENT1 and M1 vPC Feature / Scale Coverage

Feature Max	DC1	ENT	M1 vPC
F1	2		
M1	5		
VDC	4		
FEX	6		
FEX-HIF	96		
ACL/ACE	500	500	
PO Members	2		
VLAN / SVI	100	2000	
VLAN per FEX	10		
FP VLAN	50		
MAC	7K	1K	
vPC	120		
VLAN per vPC	1,10,16		
HSRP v2	100	2000	
OSPF Neighbor	16		
BGP Neighbor	2	18	
PIM Neighbor	256	2000	
PBR Sequence	20	200	
Unicast Route	10K	22K	

Multicast Route	500	3K	
Multicast Source	20		
Multicast OIF	10		
Multicast Group	100	390	
Fabric Extender	3		
FP IS-IS adjacencies	6		
FP Number of Switch ID's	20		
Primary VLAN	20		140
Secondary VLAN	25		280
Phy. Ports used for PVLAN			468
Port-channel	125		388
Port-channel in PVLAN	18		388
VPC PO with PVLAN	10		256
Host mode	18		32
Promiscuous Access	2		64
Promiscuous Trunk	2		186
Trunk Secondary	7		186
PVLAN	50	60	
vPC Config-Sync		120	
Netflow		84	
WCCP		58	

5 NVT Findings/Conclusion/Recommendations

<u>Assigned/New</u>	→	Still working on fixes and may be seen in CCO image
<u>Unreproducible</u>	→	Not seen in CCO image may have fixed by other code fixes.
Verified/Resolved	→	Fixed in CCO image
<u>Closed</u>	→	System limitation and behavior will remain the same

6 Appendix

6.1 VxLAN Solution Configuration Guide

The following configurations are divided as below

- Spine
- Leaf
- LISP Map server
- LISP Branch router

Spine configuration guide N77K

- Feature set requirement
 - Install feature-set fabric # Installed feature-set fabric

	0	Feature-set fabric	# Enable/Disable fabric
	0	feature bgp	# Enable/Disable Border Gateway Protocol
	0	feature lisp	#Enable/Disable Locator/ID Separation Protocol
	0	feature pim	#Enable/Disable Protocol Independent Multicast
	0	feature ospf	# Enable/Disable Open Shortest Path First Protocol
	0	feature interface-vlan	#Enable/Disable interface vlan
	0	feature lacp	#Enable/Disable LACP
	0	feature bfd	# Enable/Disable BFD
	0	feature nv overlay	# Enable/Disable NV Overlay
	0	feature vni	# Enable/Disable Virtual Network Segment (VNI)
0	Glo	obal configuration command	
	0	nv overlay evpn	# Enable/Disable Ethernet VPN (EVPN)
	0	system bridge-domain	#Configure Bridge-domain ID
	0	vni <range></range>	# configure VNI range
	0	ip pim rp-address <>	# Configure static RP for group range for BUM
			Traffic
	0	bridge-domain <>	# configure Bridge-domain ID
0	VR	F Configuration	
	0	vrf context <>	# Create VRF and enter VRF mode
	0	Vni <>	# configure L3 VNI for VXLAN
	0	rd auto	# Generate RD automatically
	0	address-family ipv4 unicas	
	0	route-target import <>	# Import Target-VPN community
	0	o i	pn # Specify Target for EVPN routes
	0	route-target export <>	# Export Target-VPN community
	0	route-target export <> ev	
	0	route-target both auto	# Export And Import Target-VPN community
	0	route-target both auto ev	pn # Specify Target for EVPN routes
0	Мэ	p the bridge domain to L3 VI	NI.
0	0	bridge-domain <>	# Bridge-domain ID
	-	member vni <>	0
	0		# configure L3 VNI associated with VRF

- Bridge-domain interface (each VRF must have 1 bridge-domain)
 - interface bdi <> # Bdi interface
 - no shutdown # Enable/disable an interface
 - vrf member <> # Configure VRF parameters
 - ip forward # Enable ip forwarding on interface
- Port-channel interface (for all L3 links)

0	interface port-channel1	# Port Channel interface
0	mtu 9216	# Configure mtu for the port
0	bfd interval <>min_rx <> multip	lier <> # BFD interval commands
0	no ip redirects	#disable IP directed-broadcast
0	ip address <>	# Configure IP address on interface
0	ip pim sparse-mode	#onfigures sparse-mode PIM on interface
0	Interface ethernet<>	# Ethernet IEEE 802.3z
0	mtu 9216	# Configure mtu for the port

- channel-group 1 mode active
- \circ no shutdown

#Configure port channel parameters
Enable/disable an interface

- **NVE** interface 0 interface nve1 **#** NVE interface \circ 0 no shutdown # Enable/disable an interface # NVE Source-Interface source-interface <> 0 host-reachability protocol bgp # Configure host reachability advertisement 0 member vni <> associate-vrf # Associate vni with a vrf 0 **BGP** Global configuration 0 o router bgp 1 # Border Gateway Protocol (BGP) # Configure unicast address-family 0 address-family ipv4 unicast # Configure an IP prefix to advertise network <loopback > 0 redistribute direct route-map <passall> # Directly connected 0 # Number of parallel paths (EBGP) maximum-paths <> 0 maximum-paths ibgp <> # Number of parallel paths (IBGP) 0 address-family l2vpn evpn # Configure L2VPN EVPN address-family 0 route-map <passall> permit 10 # Permit anv 0 vrf <> 0 **#** Production VRF address-family ipv4 unicast # Configure unicast address-family 0 network 0.0.0/0 # Default route 0
 - advertise l2vpn evpn
- vpn # advertise l2vpn evpn routes
- redistribute direct route-map passall # Directly connected
- IBGP (Spine and Leaf configuration) Suggestion to configure IPv4 over interface and EVPN peering over loopback
 - template peer IBGP-IPv4
 - o bfd
 - o remote-as 1
 - password 3<>
 - o address-family ipv4 unicast
 - o send-community
 - route-reflector-client
 - route-map SELF out
 - route-map SELF permit 10
 - set ip next-hop peer-address
 - \circ neighbor <> remote-as 1
 - o inherit peer IBGP-IPv4
 - update-source <>

o template peer IBGP-EVPN

- o bfd
- o remote-as 1
- password 3 <>
- o update-source loopback0
- o address-family l2vpn evpn

- # Template configuration for peer parameters
- # Bidirectional Fast Detection for the neighbor
- # Specify AS Number of the neighbor
- # Configure a password for neighbor
- # Configure unicast address-family
- # Send Community attribute to this neighbor
- # Configure a neighbor as Route reflector client
- # Apply route-map to neighbor
- # route-map name
- # Use peer address (for BGP only)
- # neighbor IBGP peering
- # Inherit a template
- # Specify source of BGP session and updates
- # Template configuration for peer parameters
- # Bidirectional Fast Detection for the neighbor
- # Specify AS Number of the neighbor
- #Configure a password for neighbor
- # Specify source of BGP session and updates
 - # Configure L2VPN EVPN address-family

- send-community extended attributes
- \circ route-reflector-client
- neighbor <> remote-as 1
- o inherit peer IBGP-EVPN

#Send Standard and Extended Community

Configure a neighbor as Route reflector client
neighbor IBGP peering

- # Inherit a template
- EBGP (Inter-POD Spine) Suggestion to configure IPv4 over interface and EVPN peering over loopback
 - template peer EBGP-IPv4 # Template configuration for peer parameters 0 # Bidirectional Fast Detection for the neighbor 0 bfd remote-as 10 # Specify AS Number of the neighbor 0 password 3 <> #Configure a password for neighbor 0 address-family ipv4 unicast # Configure unicast address-family 0 send-community extended # Send Community attribute to this neighbor 0 neighbor <> remote-as 10 #neighbor EBGP peering 0 inherit peer EBGP-IPv4 # Inherit a template 0 template peer EBGP-EVPN # Template configuration for peer parameters 0 # Bidirectional Fast Detection for the neighbor bfd 0 remote-as 10 # Specify AS Number of the neighbor 0 password 3 <> #Configure a password for neighbor 0 update-source loopback0 # Specify source of BGP session and updates 0 # Specify multihop TTL for remote peer ebgp-multihop 2 0 # Configure L2VPN EVPN address-family address-family l2vpn evpn 0 send-community extended #Send Standard and Extended Community 0 attributes # Apply route-map to neighbor route-map UNCHGD out 0 route-map UNCHGD permit 10 # route-map name 0 set ip next-hop unchanged # Use unchanged address (for eBGP session only) 0 neighbor <> remote-as 10 #neighbor EBGP peering 0 inherit peer EBGP-EVPN # Inherit a template 0
- IBGP (Spine and Legacy TOR configuration) Legacy TORs eBGP peer-to-spine through "fake iBGP" by manipulating "local AS" in as-path. So BGP peering is iBGP, but the local AS are different, so the route gets redistributed to MP-iBGP L2VPN EVPN.
 - \circ Router bgp 1
 - VRF <>
 - neighbor <> remote-as 201
 - local-as 202 no-prepend replace-as eBGP

#Border Gateway Protocol (BGP)
Production VRF

- # neighbor EBGP peering
- # Specify the local-as number for the

neighbor, Do not prepend the local-as number to updates from the eBGP

				neighbor, Prepend only the local-as number to updates to eBGP neighbor
	0	address-family ipv4 unicast		# Configure unicast address-family
0		GP (Intra-POD Spine over Ring link opback	ks) – OS	PF over ring links an IPv4 and EVPN over
	0	router ospf 1	# Ope	n Shortest Path First (OSPF)
	0	router-id <loopback></loopback>		DSPF process router-id
	0	interface Ethernet1/22		
	0	mtu 9216	# Conf	figure mtu for the port
	0	bfd interval <> min_rx <> multip	olier 3 #	BFD interval
	0	no bfd echo	# disa	ble BFD Echo
	0	no ip redirects	# disa	ble IP directed-broadcast
	0	ip address <>	# Conf	figure IP address on interface
	0	ip router ospf 1 area 0.0.0.0	# enat	ole ospf on the interface
	0	no shutdown		ole/disable an interface
	0	neighbor <> remote-as 1	#neigl	nbor IBGP peering
	0	update-source loopback0		rify source of BGP session and updates
	0	address-family ipv4 unicast	_	figure unicast address-family
	0	send-community extended attributes	#Send	Standard and Extended Community
	0	route-map LOCAL_PREF in	#Appl	y route-map to neighbor
	0	address-family l2vpn evpn		figure L2VPN EVPN address-family
	0	send-community extended attributes	#Send	Standard and Extended Community
	0	route-map LOCAL_PREF in	# App	ly route-map to neighbor
	0	route-map LOCAL_PREF permit 1	10 #rout	e-map name
	0	set local-preference 50 less	#BGP	local preference path attribute (configure
			than d	efault 100)
	0	EBGP (core link) – setup route-r	nap whi	ch will advertise only non-mobility subnets
		 Router bgp 1 VRF <> neighbor <> remote-as 11 address-family ipv4 unicast route-map WAN-map out 		#Border Gateway Protocol (BGP) # Production VRF #neighbor IBGP peering #Configure unicast address-family # Apply route-map to neighbor
		 route-map WAN-map permit match ip address prefix-list v 		#route-map name # Match entries of prefix-lists

ip prefix-list wan-list seq 5 permit <subnet> # only allow non-mobility prefixes toward core and LISP branch

LISP Configuration on Spine (N7K)

0	vrf context <>	# Production VRF
0	ip lisp etr	#Configures LISP Egress Tunnel Router
	(ETR)	5 5
0	lisp instance-id 1000	#Configures Instance-ID for global data- mappings
0	ip lisp itr map-resolver <ip add=""></ip>	
	(primary)	ľ
0	a vy	#To interact with Map-Resolver
	(secondary)	r
0		y <> # Authentication key used with Map-
		Server (Primary)
0	ip lisp etr map-server <ip add="">ke</ip>	y <> # Authentication key used with Map-
		Server (secondary)
0	lisp dynamic-eid 101	# Configure dynamic-EIDs for roaming
0	database-mapping <mobility netv<="" td=""><td>vork> < core link address> priority 1</td></mobility>	vork> < core link address> priority 1
	weight	
	0	EID-prefix and locator-set for dynamic-EID
0	register-route-notifications tag 1	# Register more-specific routes of the
		ase-mapping EID-prefix to Map-Server,
	I. al. d.	

Include

only routes with this BGP tag

LISP configuration on Map server (CSR1kv)

- router lisp #Locator/ID Separation Protocol
- ddt authoritative instance-id 1000 <Subnet> # ddt authoritative to allow (VXLAN

Mobility subnet

- map-server-peer <ip address> # IPv4 Peer map-server locator address (secondary)
- map-server-peer <ip address> # IPv4 Peer map-server locator address (Primary)
- o ddt # Enable ddt
- site <name> # LISP site name
- authentication-key <key> # password
- eid-prefix instance-id 1000 <subnet> accept-more-specifics # allow VXLAN Mobility

subnet

- eid-prefix instance-id 1000 <subnet> accept-more-specifics # allow Branch subnet
- ipv4 map-server # Configures a LISP Map Server

• ipv4 map-resolver # Configures a LISP Map Resolver (MR)

LISP configuration on Branch (ASR1K)

- router lisp # Locator/ID Separation Protocol
- o eid-table default instance-id 1000 #Configures Instance-ID for global data-

mappings

 database-mapping <Mobility network> < core link address> priority 1 weight #configure EID-prefix and locator-set for dynamic-EID

- ipv4 itr map-resolver <ip address> #To interact with Map-Resolver (primary)
- ipv4 itr map-resolver <ip address> #To interact with Map-Resolver (secondary)
- ipv4 itr # Configures a LISP Ingress Tunnel Router (ITR)
- ipv4 etr map-server <ip address> key <key>#Authentication key used with Map-Server (Primary)
- ipv4 etr map-server <ip address> key <key>#Authentication key used with Map-Server (secondary)
- ipv4 etr # Configures a LISP Egress Tunnel Router (ETR)
- ipv4 map-cache-limit <> # Address family specific map cache configuration

Leaf configuration guide N9K

Vni <>

0

0	> Feature set requirement		
	 feature bgp 	# Enable/Disable Border Gateway Protocol	
	o feature pim	#Enable/Disable Protocol Independent Multicast	
	• feature interface-vlan	#Enable/Disable interface vlan	
	o feature lacp	#Enable/Disable LACP	
	 feature bfd 	# Enable/Disable BFD	
	 feature nv overlay 	# Enable/Disable NV Overlay	
	 feature vni 	# Enable/Disable Virtual Network Segment (VNI)	
	• feature vn-segment-vlan-ba	ased # Enable/Disable VLAN based VN segment	
	o feature vpc	# Enable/Disable VPC (Virtual Port Channel)	
0			
	 nv overlay evpn 	# Enable/Disable Ethernet VPN (EVPN)	
	 ip pim rp-address <> 	# Configure static RP for group range for BUM	
		Traffic	
	 fabric forwarding anycast-gateway-mac <> # Anycast Gateway MAC of the Swit 		
0	• Vlan to vn-segment mapping configuration command (Note it is require for each L2		
VLAN and L3 VLAN per VRF)			
		# Vlan commands	
	vn-segment <>	# VN Segment id of the VLAN	

- VRF Configuration
 vrf context <> # Create VRF and enter VRF mode
 - # configure L3 VNI for VXLAN

- rd auto 0
- address-family ipv4 unicast # Configure IPv4 address family 0
- route-target import <> 0
- route-target import <> evpn # Specify Target for EVPN routes 0
- route-target export <> 0
- route-target export <> evpn # Specify Target for EVPN routes 0
- route-target both auto 0
- 0
- route-target both auto evpn # Specify Target for EVPN routes
- \cap

bridge-domain <>

peer-switch

- # Generate RD automatically
- # Import Target-VPN community

- # Export Target-VPN community
- # Export And Import Target-VPN community
- Map the bridge domain to L3 VNI
 - # Bridge-domain ID
 - member vni <> # configure L3 VNI associated with VRF 0
- VPC domain <> \cap

0

- VPN domain # Specify domain
 - # Enable peer switch on vPC pair switches
- # Configure priority to be used during vPC role role priority <> 0
 - (primary/secondary) election
- # Configure system priority system-priority <> 0
- peer-keepalive destination <>> source <> vrf <> # Keepalive/Hello with peer 0 switch
- # Enable L3 forwarding for packets destined to peer's peer-gateway 0 gateway mac-address
- ipv6 nd synchronize # Display Neighbor Discovery interface information
- ip arp synchronize # CFS synchronize
- VPC Keepalive link

0	interface port-channel <>	# Port Channel interface
0	mtu 9216	# Configure mtu for the port
0	vrf member VPC	# Set interface's VRF membership
0	ip address <>	# Configure IP address on interfac

Configure IP address on interface

VPC peer-link 0

 interface port-channel<> 	# Port Channel interface
--	--------------------------

Port mode trunk

- switchport mode trunk 0
- switchport trunk allowed vlan <> #Set allowed VLAN characteristics when 0 interface
- in trunking mode spanning-tree port type network # Consider the interface as inter-switch link 0 vpc peer-link # Specify if this link is used for peer 0 communication
- VPV leg port-channel (host connected link)

0	interface port-channel<>	# Port Channel interface
0	switchport mode access	# Port mode access

- switchport access vlan<> 0
- 0
- 0 mtu 9216
- vpc <> \circ
- Vlan interface configuration
 - interface Vlan101 0
 - 0 no shutdown
 - mtu 9216 0
 - vrf member<> 0
 - no ip redirects 0
 - ip address <> 0
 - no ipv6 redirects 0 messages

Set access mode characteristics of the interface

spanning-tree bpdufilter enable # Enable BPDU filtering for this interface

Configure mtu for the port

#Virtual Port Channel configuration

- # Vlan interface # Enable/disable an interface
- # Configure mtu for the port
- **#** Configure VRF parameters
- **#Disable Send ICMP Redirect messages**
- # Configure IP address on interface
- # Disable sending ICMPv6 Redirect
- fabric forwarding mode anycast-gateway # Anycast Gateway Forwarding Mode 0
- Vlan interface configuration mapped to L3 VNI 0
 - interface vlan <> \circ # Vlan interface • no shutdown # Enable/disable an interface o mtu 9216 # Configure mtu for the port vrf member <> **#** Configure VRF parameters # Configure IP address on interface o no ip redirects ip forward #Enable ip forwarding on interface 0
- Port-channel interface (for all L3 links) 0
 - interface port-channel1 # Port Channel interface 0 # Configure mtu for the port mtu 9216 0 bfd interval <>min_rx <> multiplier <> # BFD interval commands 0 no ip redirects #disable IP directed-broadcast 0 ip address <> # Configure IP address on interface 0 ip pim sparse-mode #Configures sparse-mode PIM on interface 0 # Ethernet IEEE 802.3z 0 Interface ethernet<> mtu 9216 # Configure mtu for the port 0 channel-group 1 mode active #Configure port channel parameters 0 # Enable/disable an interface no shutdown 0
- NVE interface \cap
- o interface nve1 # NVE interface no shutdown # Enable/disable an interface 0 **#** NVE Source-Interface source-interface <> 0 host-reachability protocol bgp # Configure host reachability advertisement 0 member vni <L3 VNI> associate-vrf # Associate L3 vni with a vrf 0 member vni <L2 VNI> **#NVE VN-Segment Membership** 0 mcast-group <> **#NVE Multicast Group** 0 • BGP Global configuration
 - o router bgp 1

Border Gateway Protocol (BGP)

- address-family ipv4 unicast 0
- network <loopback > 0
- 0 maximum-paths ibgp <>
- address-family l2vpn evpn 0
- route-map <passall> permit 10 0
- vrf <> 0
- address-family ipv4 unicast 0
- 0 advertise l2vpn evpn

- # Configure unicast address-family
- # Configure an IP prefix to advertise
- # Number of parallel paths (IBGP)
- # Configure L2VPN EVPN address-family # Permit any
- **#** Production VRF
- # Configure unicast address-family
- # advertise l2vpn evpn routes
- redistribute direct route-map passall # Directly connected 0
- IBGP (Spine and Leaf configuration) Suggestion to configure IPv4 over interface and 0 EVPN peering over loopback
 - template peer IBGP-IPv4 0
 - bfd 0
 - remote-as 1 0
 - password 3<> 0
 - address-family ipv4 unicast 0
 - send-community 0
 - 0
 - neighbor <> remote-as 1
 - 0 inherit peer IBGP-IPv4 0
 - update-source <> 0
 - template peer IBGP-EVPN 0
 - bfd 0

0

0

- remote-as 1 0
- password 3 <> 0
- update-source loopback0 0
- address-family l2vpn evpn 0
- send-community extended 0 attributes
- neighbor <> remote-as 1 0
- inherit peer IBGP-EVPN 0

- # Template configuration for peer parameters # Bidirectional Fast Detection for the neighbor
- # Specify AS Number of the neighbor
- # Configure a password for neighbor
- # Configure unicast address-family
- # Send Community attribute to this neighbor
- # neighbor IBGP peering
- # Inherit a template
- # Specify source of BGP session and updates
- # Template configuration for peer parameters
- # Bidirectional Fast Detection for the neighbor
- # Specify AS Number of the neighbor
- #Configure a password for neighbor
- # Specify source of BGP session and updates
- # Configure L2VPN EVPN address-family
- **#Send Standard and Extended Community**
- # neighbor IBGP peering
- # Inherit a template
- IBGP inter vPC SVI link over peer-link (Only for IPv4 peering) and add vlan id to peer \cap link allow list

0	interface Vlan3901	# Vlan interface
0	no shutdown	# Enable/disable an interface
0	bfd interval <>min_rx <> multiplie	er <> # BFD interval commands
0	no bfd echo	# Disable Echo function for all address families
0	no ip redirects	#disable IP directed-broadcast
0	ip address <>	# Configure IP address on interface
0	no ipv6 redirects	# Disable sending ICMPv6 Redirect messages
0	ip pim sparse-mode	#Configures sparse-mode PIM on interface

router bgp <> **#Border Gateway Protocol (BGP)** address-family ipv4 unicast # Configure unicast address-family

	0	network <>	# Add SVI interface address	
	0	neighbor <> remote-as 1	# neighbor IBGP peering	
	0	bfd	# Bidirectional Fast Detection for the neighbor	
	0	password 3 <>	# Configure a password for neighbor	
	0	update-source <svi id)<="" td=""><td>#Specify source of BGP session and updates</td></svi>	#Specify source of BGP session and updates	
	0	address-family ipv4 unicast	# Configure unicast address-family	
	0	send-community extended	#Send Standard and Extended Community attributes	
	0	route-reflector-client	# Configure a neighbor as Route reflector client	
	0	route-map NHS out	#Apply route-map to neighbor	
	0	route-map NHS permit 10	#route-map name	
	0	set local-preference 50	#BGP local preference path attribute (configure	
			less than default 100)	
	0	set ip next-hop peer-address	# Use peer address (for BGP only)	
0	EV	PN Configuration for each L2 VNI		
	0	Evpn	# Enter EVPN configuration mode	
	0	vni <> 12	# Configure Ethernet VPN ID	
	0	rd auto	# VPN Route Distinguisher Auto	
	0	route-target import auto	# Import Target-VPN community and Generate RT automatically	
	0	route-target import <>	# RT extcommunity in aa:nn format	
	0	route-target export auto	# Export Target-VPN community and Generate RT automatically	
	0	route-target export <>	#RT extcommunity in aa:nn format	
	2 Service Provider MPLS Configuration Guideline			

6.2

The following configurations are applied to the test network:

•

Common system control, management and accounting: Common system features like SSH, TACACS+, Syslog, SNMP, NTP, SPAN, DNS and Management VRF are configured.			
0	feature tacacs+	<i># enabling the tacacs feature</i>	
0	<pre>tacacs server host <ip address=""> key <0/7> authenticate users</ip></pre>	<i># configure the tacacs server to</i>	
0	aaa group server tacacs+ <group name=""> <i>redundancy</i></group>	<i># enable server groups for</i>	
	 server <ip address=""></ip> 		
	 use-vrf <vrf_name> reachability</vrf_name> 	# use-vrf based on server	
0	 snmp-server user user-name> <group-name> auth md5 <pass-phrase> pri</pass-phrase></group-name> 		
	<pass-phrase> localizedkey authentication enabled</pass-phrase>	# snmp v3 user with	
0	ntp server <ip address=""></ip>	<i># enable ntp with server ip address</i>	
0	ip domain-name <domain name=""></domain>	# enable domain-name	
0	interface mgmt0	# configure mgmt0	
	 vrf member management 		
	ip address <ip_address></ip_address>		
0	power redundancy-mode ps-redundant <i>mode</i>	<i># set the power in redundancy</i>	

- no system admin-vdc 0
- install feature-set fabricpath 0
- install feature-set mpls 0

vdc <VDC name> id 1 0

disable system admin-vdc # enable feature-set for fabricpath

enable feature-set for mpls

spawns a new named VDC

- limit-resource module-type <module-type> #enable <module-type> modules for the given VDC
- allow feature-set fabricpath be enabled on the given VDC allow feature-set mpls

enabled on the given VDC

- *# allows fabricpath feature-set to*
- *# allows mpls feature-set to be*
- allocate interface <interface-ranges> # allocate one of more interface ranges to the given VDC. When assigning any range of interfaces the maximum granularity applicable for the "allocate interface" command is limited to the layout of the port-group for each specific type of module. Attaching to the module and using "show hardware internal dev-port-map" allows to display the mapping between front panel ports and ASIC instances.
- limit-resource u4route-mem minimum 200 maximum 200 # allows to allocate more shared memory for the IPv4 routes. To estimate the amount of memory to be allocated for both IPv4 or IPv6 routes, the following two commands can be used: "show ip route sum"on each VRF and "show routing <ip|ipv4|ipv6> memory estimate routes <total-number-of-routes> next-hop <N>". Likewise, the same method can be applied for multicast allocation.

control-plane 0

	 service-policy input testcopp-policy policy-strict for the control-plane copp copy profile strict prefix mvpm class-map type control-plane match match exception ip multicast rpf-fai match exception ipv6 multicast rpf- 	-any mvpn-copp-class-normal lure
	control-plane class to the control-plane to reduce t (CSCut68318) service-policy input mvpn-copp-pol	<i># apply the modified mvpn</i> <i>he effects of PIM assert issue</i>
0	snmp-server user admin network-admin auth md5 0x213ea412ed9e450340d412f4c9741a25 network-admin privileges and md5 authentication	# enables user admin with
0	ip pim auto-rp forward listen <i>messages"</i>	# enables to forward auto-rp

- ip msdp originator-id <interface> # enables the originator-id for 0 **MSDP** messages
- ip msdp peer <remote-peer-address> connect-source <interface> # establish MSDP peering with a given remote peer
- spanning-tree vlan <vlan-ranges> priority <priority> # enables spanning tree for the specified list of vlan ranges

0	 rd <n:m> discriminator for the given vrf. We recommended to use different RD.</n:m> mdt default <mcast-group-addre MDT default tunnel for the given v mdt data <mcast-group-address,< li=""> </mcast-group-address,<></mcast-group-addre 	ed set of multicast groups within the given vrf # configure the route- hen deployed in a vPC/vPC+ scenarios it is s on the two vPC peers. ss> # configure the
	 route-target export <nn:m></nn:m> route-target export <nn:m></nn:m> 	
0	vpc domain <n> peer-switch <i>vPC peers to act as a single device</i> peer-keepalive destination <rem< li=""> </rem<></n>	ote-peer> source <local-peer> vrf keepalive</local-peer>
	 delay restore 180 minutes to guarantee the converg traffic disruption 	# configure the peer-keepalive on the specified vrf. # delays the leg bringup for 3 rence of the routing protocols to minimize NS
	 peer-gateway act as the active gateway for pack MAC fabricpath multicast load-balance 	
	 multicast traffic between the two fabricpath switch-id 1 for the fabricpath vPC pair config-sync 	vPC+ peer devices. # defines the emulated switch-id # enable config synchronization
	 between the two vPC peers ip arp synchronize between the two vPC peers 	# enable ARP synchronization
0	 Switched Virtual Interfaces (SVIs): interface VlanN mtu 9216 vrf member <vrf-name></vrf-name> no ip redirects redirects messages to the clients (# enable jumbo frames # assign the SVI to a given vrf # prevent the router to send ICMP)

- ip address <ip-address>/<24 bit mask>
- ipv6 address <ipv4-address>/<64 bit mask> •
- ip ospf passive-interface *# disable the routing updates on* • the speficied OSPF interface preventing the formation of any OSPF adjacency
- ip router ospf 1 area 0.0.0.0 *# enable OSPF on the specified* interface and place it in area 0 *# enable PIM sparse mode*
- ip pim sparse-mode
- hsrp version 2
- hsrp G specified interface

set the HSRP version two # defines the HSRP group G for the

 preempt delay min 	nimum 120 P switchover to minimize		eemption for two
	rding-threshold lower 1		
for this HSRP peer	-		
 ip <hsrp-ip-addres< li=""> </hsrp-ip-addres<>		# HSRP virtual	
 hsrp Gv6 ipv6 		# defines the H	SRPv6 group Gv6 for
<i>the specified interf</i> preempt delay mir			
	rding-threshold lower 1	l upper 101	
■ ip <hsrpv6-ip-add< td=""><td></td><td>11</td><td></td></hsrpv6-ip-add<>		11	
		, ,	
LACP: LACP is used for link ag interface port-char		channels across <i># create a port</i>	
 mterrace port-chai mtu 9216 		•	o frames on the port-
channel N		" onabio jumbe	, ji amoo on one por e
	ress>/<24 bit mask>		
 ip ospf network po 	-		PF network type as
	e time to form the OSPF		on the energified
 ip router ospf 1 ar interface and place 		# enuble OSPF	on the specified
 ip pim sparse-mod 		# enable PIM s	parse mode
 interface port-chai 			C peer-link as a
<i>switched port-char</i> switchport	nnel carrying all the nece	essary VLANs.	
switchport mode t	runk		
	llowed vlan 11-510,200)1-2500	
 spanning-tree por network for the vP 	t type network	# defines the n	etwork type as
 mtu 9216 		# enable jumbo	-
 vpc peer-link vPC peer-link 		# defines the p	ort-channel M as the
 interface port-characteristic 	nnel R		
 switchport 			
 switchport mode t 			
switchport trunk amtu 9216		# anabla jumb	framas
• $vpc R$		# enable jumbo # defines the n	ort-channel R as a
vPC leg			
MDICIDD and Ground in			
MPLS LDP configuration: mpls ldp configuration	tion		
 router-id Lo0 force 		# defines the lo	opback interface 0
as router-id for all	the LDP updates		
OSPF/LDP configurations:			
 router ospf 1 		# set the OSPF	process id as one
 router-id <router-< li=""> </router-<>		# set the OSPF	-
 mpls ldp autoconfi 		# turn on LDP	
	ed in the backbone area	(refer to section	n 5 for further
information)			

• BGP: iBGP is configured between the core switches and the two route-reflectors. iBGP is also configured between each PE on each site and the two RRs:

 router bgp 1 	# defines the BGP AS as one
 graceful-restart-helper 	# enables the graceful-restart-
helper	
 address-family ipv4 unicast 	
 maximum-paths ibgp 2 	# enable ICMP for the AF IPv4
unicast	, ,
 template peer RR-CLIENT 	<i># defines the template for the RR</i>
iBGP peering	
 remote-as 1 	# iBGP session
 update-source loopback0 	# uses the loopback interface zero
as the source of the BGP updates	
 address-family ipv4 unicast 	una messages
 route-reflector-client 	<i># set the template to be a client for</i>
the route-reflector cluster in the	
	AF IFV4 unicust
addiess family vphv i amease	
Sena community extended	
 address-family vpnv6 unicast 	# allows the outer ded attributes for
 send-community extended 	# allows the extended attributes for
both AF VPNv4 and VPNv6	
 address-family ipv4 mdt 	# enables MVPN services
 neighbor <rr1-loopback-interf< li=""> </rr1-loopback-interf<>	ace-0>
 inherit peer RR-CLIENT 	
 neighbor <rr2-loopback-interf< li=""> </rr2-loopback-interf<>	
 inherit peer RR-CLIENT 	# enable iBGP peering with the two
route-reflectors configured in a	
 vrf vrf1 	# defines the VPNv4 parameters
such as route injections, route re	edistributions, ECMP, etc. etc.
 address-family ipv4 unicast 	
 network <loopback interface="">/</loopback> 	<32 bit mask> <i># inject the loopback</i>
interface to be advertised to the	other iBGP peers. This interface is used as
customer RP interface	
network <svi1-ip-address>/<2</svi1-ip-address>	4 bit mask>
• ,	
 network <svin-ip-address>/<2</svin-ip-address> 	24 bit mask> # inject the SVI subnets
that belong to the specified vrf in	
 maximum-paths ibgp 2 	# enable ECMP
 address-family ipv4 unicast 	

- IGMPv2: IGMP is used by hosts to join multicast groups of interest. IGMP snooping is enabled on all switches in the aggregation-access blocks to prevent flooding of multicast data traffic.
 - FP: FabricPath is deployed in the aggregation block DC1-Dist-N7k-102. The
 - spine layer is comprised of Nexus 7000 switches and the leaf switches are deployed using Nexus 5000 switches:
 - feature-set fabricpath *fabricpath feature set*

ip igmp snooping

•

- fabricpath topology 12
- member vlan 2001-2500
 the vPC+ access switch (CE12)

procedure to install and enable

by default enabled on Nexus

defines the set of VLANs used for

- fabricpath topology 6
- member vlan 11-260 •
- fabricpath topology 7
- member vlan 261-510
- vlan 11-510,2001-2500
- *# defines the 2 fabricpath* mode fabricpath topologies deployed for the 2 CE devices (CE6 and CE7) *# defines the local FP switch-id*
- fabricpath switch-id 106
- vpc domain 100
- fabricpath multicast load-balance
- fabricpath switch-id 1 . *# defines the emulated FP switch*id. This is common between the two vPC peers
- interface port-channel7 *# This interface is used as vPC* peer-link. It has to carry both FP and vPC+ VLANs and it has to be configured in FP mode
- switchport mode fabricpath •
- . fabricpath isis metric 800 *# since in steady state it is not* desired to forward traffic through the vPC peer-link, it is recommended to set the *ISIS metric the highest in the FP domain*
- fabricpath topology-member 6
- fabricpath topology-member 7
 - fabricpath topology-member 12
- interface port-channel100
- switchport mode fabricpath

in order to minimize the root changes for fabricpath isis metric 10 multicast traffic, it is recommended to set the ISIS metric in all the FP interfaces. This will minimize the impact on the traffic convergence upon network disruptions

DC1 Configuration Guideline 6.3

.

The following configurations are applied to the test network:

Common system control, management and accounting: Common system features like • SSH, TACACS+, Syslog, SNMP, NTP, SPAN, DNS and Management VRF are configured.

(С	feature tacacs+	<i># enabling the tacacs feature</i>
C	2	tacacs server host <ip address=""> key <0/7></ip>	<i># configure the tacacs server to</i>
		authenticate users	
(С	aaa group server tacacs+ <group name=""> <i>redundancy</i></group>	# enable server groups for
		 server <ip address=""></ip> 	
		use-vrf <vrf_name></vrf_name>	# use-vrf based on server
		reachability	
(С	snmp-server user <user-name> <group-nam< td=""><td>e> auth md5 <pass-phrase> priv</pass-phrase></td></group-nam<></user-name>	e> auth md5 <pass-phrase> priv</pass-phrase>
		<pass-phrase> localizedkey</pass-phrase>	# snmp v3 user with
		authentication enabled	
(С	ntp server <ip address=""></ip>	<i># enable ntp with server ip address</i>
(С	ip domain-name <domain name=""></domain>	# enable domain-name
(C	interface mgmt0	# configure mgmt0

- interface mgmt0 0
 - vrf member management
 - ip address <ip_address >
- BGP: eBGP is configured between the core switches and the public cloud.
 - o feature bgp

enable bgp

FP topology definitions

enters the vPC/vPC+ parameters

	0	router bgp <autonomous-id></autonomous-id>	# bgp autonomous -id
	0	router-id <router-id></router-id>	
	0	graceful-restart stalepath-time <120>	
	0	log-neighbor-changes	
	0	address-family ipv4 unicast	
	0	redistribute direct route-map <acl-name></acl-name>	# route-map used for redistribution
		directly connected subnets	
	0	redistribute ospf 1 route-map <acl-name> OSPF routes</acl-name>	<i># route-map used for redistribution</i>
	0	maximum-paths <8>	
	0	maximum-paths ibgp <8>	
	0	neighbor <neighbor addres="" ip=""> remote-as 10</neighbor>	0090 # BGP peer
	0	address-family ipv4 unicast	
	0	prefix-list NO_SELF in	# acl configured to restrict
		prefix import	
•	OSPF:	OSPF is the IGP running across the network. Ea	ach aggregation-access block is
	config	ured as a unique area with the core switches p	laying the role of the ABR.
	0	feature ospf	# enable ospf for IPv4
	0	feature ospfv3	# enable ospf for IPv6
	0	router ospf <instance-tag></instance-tag>	
	0	router-id <ip address=""></ip>	
	0	redistribute bgp <as_no> route-map <acl-name< th=""><th>ne> # route-map used for</th></acl-name<></as_no>	ne> # route-map used for
		redistribution for bgp routes	
	0	log-adjacency-changes	
	0	timers throttle spf 100 200 500	
	0	timers throttle lsa 50 100 300	
	0	auto-cost reference-bandwidth 1000000	
	0	default-metric <1>	
•	PIM-SI	M: PIM Sparse Mode/PIM Any Source Multicas	t is deployed across the network to
	suppor	rt multicast. Each aggregation-access block is c	onfigured with the RP for the
	locally	sourced groups.	
	0	feature pim	# enable pim
	0	ip pim rp-address <rp-address> group-list <r RP for a multicast group range</r </rp-address>	nulticast-groups> <i># configure static</i>
	0	ip pim send-rp-announce loopback2 prefix-li candidate auto-rp	st <multicast-groups> # configure</multicast-groups>
	0	ip pim send-rp-discovery loopback2 <i>mapping-agent</i>	# configure auto-rp
	0	ip pim ssm range <>	<i># configure pim ssm for</i>
	0	default range	" conjigure pint ssint jor
	0	ip pim auto-rp forward listen forwarding	# enable auto-rp messages
•	MSDP	Anycast RP: MSDP is deployed to exchange sou	rce information between Anycast
	RPs.		
	0	feature msdp	# enable msdp
	0	ip msdp originator-id <interface></interface>	<i># configure source</i>

 interface for msdp peering, generally loopback interface
 ip msdp peer <ip address> connect-source <interface> # configure peer address

- vPC: The vPC technology is deployed in the aggregation-access block DC1-Dist-N7k-101 • as shown in Figure 1. In addition, dual-sided vPC is configured between the Nexus 7000 and Nexus 5000 switches # enable vpc
 - feature vpc 0
 - vpc domain <domain-id> 0 peer-switch
- *# configure vpc domain-id # enable peer-switch for*
- faster STP convergence . role priority 200
- *# configure priority* peer-keepalive destination <ip address> source <ip address> vrf vpckeepalive *# configure keep-alive link # enable peer-gateway to*
- peer-gateway avoid vPC loop
- track <id> *# track the L3 core* connectivity to avoid black-hole ip arp synchronize *# configure arp*
 - synchronize for faster convergence of address tables
- FP: FabricPath is deployed in the aggregation block DC1-Dist-N7k-102. The spine layer • comprises Nexus 7000 switches and the leaf switches are deployed using Nexus 5000 switches.

0	feature-set fabricpath	<i># configure feature-set</i>
	fabricpath	
0	vlan <vlan-range></vlan-range>	
	 mode fabricpath 	# configure vlan-range in
	fabric path	
0	fabricpath switch-id <switch-id></switch-id>	# configure switch-id
0	vpc domain <domain-id></domain-id>	# configure vpc domain-id
	 fabricpath switch-id <vpc+_switch-id></vpc+_switch-id> 	# configure virtual switch
	for peers present on the network	
0	interface port-channel <po></po>	# configure fabricpat
	interface	
	 switchport mode fabricpath 	# configure fabricpath

STP: Rapid Spanning Tree Protocol is used to prevent Layer 2 loops in the aggregation-• access blocks. The spanning tree root is placed on the aggregation level. BPDU Filter and PortFast Edge are configured on the access ports towards the hosts.

C	Interface port-channel <po></po>	# configure port-channel
	 switchport 	
	 switchport access vlan <vlan></vlan> 	
	 spanning-tree port type edge 	# enable host
	 spanning-tree bpdufilter enable 	# configure bpdufilter
HSRI	: HSRP is used as the first hop gateway protocol for hos	sts.
C	interface Vlan <id></id>	# configure svi
С	ip access-group <acl> in</acl>	# enable access-list
С	ip access-group <acl> out</acl>	
С	no ip redirects	
С	ip address <ip address=""></ip>	
С	hsrp version 2	
С	hsrp 1	
	 authentication md5 key-string cisco 	# enable authentication
	 preempt delay minimum 200 	

priority 200

•

ip <ip address>

HSRP IP address

- FEX: Fabric Extenders (Nexus 2000) are deployed on Nexus 7000
- IGMP: IGMP is used by hosts to join multicast groups of interest. IGMP snooping is enabled on all switches in the aggregation-access blocks to prevent flooding of multicast data traffic.
 - \circ ip igmp snooping

by default enabled on Nexus

enable feature udld

- LACP: LACP is used for link aggregation to form port-channels across the network.
 feature lacp # enable LACP, by default LACP is used on all port-channel
- UDLD: UDLD aggressive mode is configured across the network to detect and prevent unidirectional links
 - feature udldudld aggressive
 - udld aggressive *# udld aggressive mode is enabled to re-establish the connection with the neighbor*
- PVLAN: Private VLAN configured at DC101 between Nexus 7000 VPC peers to:
 - Nexus 5000
 - CAT 6500
 - Following Private VLAN modes configured:
 - Promiscuous
 - Isolated (host)
 - Isolated (trunk)
 - Single PVLAN association in a port-channel (host mode)
 - Multiple PVLAN association in a port-channel (trunk mode)
 - PVLAN Promiscuous in host mode
 - PVLAN Promiscuous in trunk mode
 - o *feature private-vlan # enable feature private-vlan* vlan <vlan-id> *# configure primary vlan* \circ • private-vlan primary vlan <vlan-id> \cap private-vlan <isolated/community> *# configure secondary vlan* . private-vlan association <vlan-id> *# configure association with* primary vlan *interface port-channel <port-channel # configure port-channel* switchport switchport mode private-vlan trunk secondary #PLAN trunk mode *switchport private-vlan trunk allowed vlan 1 # configure native vlan*
 - switchport private-vlan association trunk <primary> <secondary>

interface port-channel <>

switchport switchport mode private-vlan promiscuous # PVLAN Promiscuous switchport private-vlan mapping 1201 1211-1213 # PVLAN mapping vpc 71 # assign VPC

interface port-channel <>
 switchport
 switchport mode private-vlan host

PVLAN host mode

switchport private-vlan host-association 1201 1213 # PVLAN Association vpc 81

6.4 ENT1 Configuration Guide

The following configurations are applied to the test network:

 Common system control, management and accounting: Common system features li SSH, TACACS+, Syslog, SNMP, NTP, SPAN, DNS and Management VRF are configure 				
	0	feature tacacs+	<i># enabling the tacacs feature</i>	
	0	tacacs server host <ip address=""> key <0/7> authenticate users</ip>	<i># configure the tacacs server to</i>	
	0	aaa group server tacacs+ <group name=""></group>	# enable server groups for	
		redundancy		
		 server <ip address=""></ip> 		
		 use-vrf <vrf_name> reachability</vrf_name> 	# use-vrf based on server	
	0	snmp-server user <user-name> <group-nam< th=""><th>es auth md5 <nass-nhrases nriv<="" th=""></nass-nhrases></th></group-nam<></user-name>	es auth md5 <nass-nhrases nriv<="" th=""></nass-nhrases>	
	0	<pre><pre>shinp server user <user hame=""> <group <pre="" ham="">pass-phrase> localizedkey</group></user></pre></pre>	# snmp v3 user with	
		authentication enabled		
	0	ntp server <ip address=""></ip>	<i># enable ntp with server ip address</i>	
	0	ip domain-name <domain name=""></domain>	# enable domain-name	
	0	interface mgmt0	# enable domain-name # configure mgmt0	
	0		# conjigure mgmto	
		 vrf member management in address in address > 		
		 ip address <ip_address></ip_address> 		
•	BGP: e	eBGP is configured between the core switches		
	0	feature bgp	# enable bgp	
	0	router bgp <autonomous-id></autonomous-id>	# bgp autonomous -id	
	0	router-id <router-id></router-id>		
	0	graceful-restart stalepath-time <120>		
	0	log-neighbor-changes		
	0	address-family ipv4 unicast		
	0	redistribute direct route-map <acl-name></acl-name>	# route-map used for redistribution	
		directly connected subnets		
	0	redistribute ospf 1 route-map <acl-name> OSPF routes</acl-name>	<i># route-map used for redistribution</i>	
	0	maximum-paths <8>		
	0	maximum-paths ibgp <8>		
	0	neighbor <neighbor addres="" ip=""> remote-as 10</neighbor>	00090 # BGP peer	
	0	address-family ipv4 unicast		
	0	prefix-list NO_SELF in	<i># acl configured to restrict</i>	
	0	prefix import	n der conjugar od to rober tot	
•	OSPF:	OSPF is the IGP running across the network. E	ach aggregation-access block is	
		configured as a unique area with the core switches playing the role of the ABR.		
	0	feature ospf	# enable ospf for IPv4	
	0	feature ospfv3	# enable ospf for IPv6	
	0	router ospf <instance-tag></instance-tag>		
	0	router-id <ip address=""></ip>		
	0	redistribute bgp <as_no> route-map <acl-nat< th=""><th>me> # route-map used for</th></acl-nat<></as_no>	me> # route-map used for	
	0	redistribution for bgp routes		

- log-adjacency-changes
 timers throttle spf 100 200 500

- \circ timers throttle lsa 50 100 300
- o auto-cost reference-bandwidth 1000000
- o default-metric <1>
- PIM-SM: PIM Sparse Mode/PIM Any Source Multicast is deployed across the network to support multicast. Each aggregation-access block is configured with the RP for the locally sourced groups.
 - feature pim

- # enable pim
- ip pim rp-address <rp-address> group-list <multicast-groups> # configure static RP for a multicast group range
- ip pim send-rp-announce loopback2 prefix-list <multicast-groups> # configure candidate auto-rp
- ip pim send-rp-discovery loopback2 # configure auto-rp mapping-agent
 ip pim ssm range <> # configure pim ssm for default range
- ip pim auto-rp forward listen # enable auto-rp messages forwarding

• MSDP Anycast RP: MSDP is deployed to exchange source information between Anycast RPs.

- feature msdp
 ip msdp originator-id <interface>
 interface for msdp peering, generally loopback interface
 ip msdp peer <ip address> connect-source <interface>
 # configure peer
- address
- vPC: vPC technology is deployed in the aggregation-access block DC2-Dist-N7k-201. In addition, dual-sided vPC is configured between the Nexus 7000 and Nexus 5000 switches.
 - feature vpc *# enable vpc* 0 vpc domain <domain-id> *# configure vpc domain-id* 0 peer-switch # enable peer-switch for faster STP convergence role priority 200 *# configure priority* peer-keepalive destination <ip address> source <ip address> vrf vpckeepalive *# configure* keep-alive link peer-gateway *# enable peer-gateway to* avoid vPC loop track <id> # track the L3 core connectivity to avoid black-hole ip arp synchronize *# configure arp* synchronize for faster convergence of address tables
- STP: Rapid Spanning Tree Protocol is used to prevent Layer 2 loops in the aggregationaccess block DC-Dist-N7K-201. MSTP is enabled on DC-Dist-N7K-202 for the same purpose wherever applicable. The spanning tree root is placed on the aggregation level. BPDU Filter and PortFast Edge are configured on the access ports towards hosts.
 - interface port-channel <po> # configure port-channel
 - switchport
 - switchport access vlan <vlan>

spanning-tree port type edge

- spanning-tree bpdufilter enable
- SNMP: SNMP traps are enabled and SNMP scripts are used to collect system information and to monitor potential memory leaks.
- HSRP: HSRP is used as the first hop gateway protocol for hosts.
 - interface Vlan<id>
 - ip access-group <acl> in
 - ip access-group <acl> out
 - $\circ \quad \text{no ip redirects} \quad$
 - ip address <ip address>
 - hsrp version 2
 - o hsrp 1
 - authentication md5 key-string cisco #
 - preempt delay minimum 200
 - priority <priority>
 - ip <ip address>
- FEX: Multiple types of Fabric Extenders are deployed on Nexus 5000 parent switches.
- IGMP: IGMP is used by hosts to join multicast groups of interest. IGMP snooping is enabled on all switches in the aggregation-access blocks to prevent flooding of multicast data traffic.
 - $\circ \quad \text{ip igmp snooping} \quad$

by default enabled on Nexus

- LACP: LACP is used for link aggregation to form port-channels across the network.
 feature lacp # enable LACP, by default LACP is used on all port-channel
- UDLD: UDLD aggressive mode is configured across the network to detect and prevent unidirectional links
 - feature udld # enable feature udld
 udld aggressive # udld aggressive mode is enabled to re-establish the connection with the neighbor
- Route MAP for Inter-VRF PBR

0	feature pbr route-map GLOBAL-to-VRF permit 10 match ip address PBR-GLOBAL-VRF set vrf A	# enable feature pbr # define route-map # match ACL for the route-map # define VRF
	ip access-list PBR-VRF-GLOBAL 10 permit ip 151.15.1.0/24 any	# define ACL for the route-map
	interface Vlan1501 vrf member A no ip redirects ip address 151.15.1.152/24 no ipv6 redirects ip router ospf 1 area 0.0.0.151 ip pim sparse-mode ip pim dr-priority 100	<i># Create SVI interface</i>

enable host
configure bpdufilter

configure svi # enable access-list

enable authentication

HSRP IP address

ip policy route-map VRF-to-global hsrp version 2 hsrp 1501 authentication text eCATS priority 100 forwarding-threshold lower 1 upper 100 timers 1 3 ip 151.15.1.1 ip dhcp relay address 172.28.92.48 ip dhcp relay address 172.28.92.49 no shutdown mtu 9000

6.5 M1 vPC Scale Configuration Guideline

The following configurations are applied to the test network:

- Common system control, management and accounting: Common system features like • SSH, Syslog, SNMP, NTP and Management VRF are configured.
 - snmp-server user <user-name> <group-name> auth md5 <pass-phrase> priv <pass-phrase> localizedkey *# snmp v3 user with* authentication enabled
 - ntp server <ip address>
 - ip domain-name <domain name>
 - interface mgmt0

0

- vrf member management
- ip address <ip_address >

enable ntp with server ip address # enable domain-name # configure mgmt0

- vPC: vPC technology is deployed in the network between the N7k and the Catalyst VSS switches as shown in the figure 3.
 - feature vpc # enable vpc 0 vpc domain <domain-id> *# configure vpc domain-id* peer-switch *# enable peer-switch for* faster STP convergence . role priority 200 *# configure priority* peer-keepalive destination <ip address> source <ip address> vrf vpckeepalive *# configure* keep-alive link • peer-gateway *# enable peer-gateway to* avoid vPC loop ip arp synchronize *# configure arp*
 - synchronize for faster convergence of address tables
- STP: Rapid Spanning Tree Protocol is used to prevent Layer 2 loops in the aggregationaccess blocks. The spanning tree root is placed on the aggregation level. Root Guard is configured on the aggregation level to enforce root placement. BPDU Filter, BPDU Guard and PortFast Edge are configured on the access ports towards hosts.
 - interface port-channel <po>

configure port-channel

- switchport
- switchport access vlan <vlan>

spanning-tree port type edge

enable host
configure bpdufilter

- spanning-tree bpdufilter enable
- LACP: LACP is used for link aggregation to form port-channels across the network
 - feature lacp # enable LACP, by default LACP is used on all port-channel
- PVLAN: PVLAN is configured in the network and is the main focus of testing. The following PVLAN components are covered in the network:
 - PVLAN primary and secondary VLAN(Isolated)
 - Secondary Trunk and promiscuous trunk on vPC
 - Private VLAN promiscuous access and Private vlan host on classis port-channel.
 - Private VLAN promiscuous trunk, secondary trunk on classic Port-channel

0	feature private-vlan	# enable feature private-vlan
0	vlan <vlan-id></vlan-id>	# configure primary vlan
	 private-vlan primary 	
0	vlan <vlan-id></vlan-id>	
	 private-vlan <isolated community=""></isolated> 	# configure secondary vlan
	 private-vlan association <vlan-id> primary vlan</vlan-id> 	<i># configure association with</i>
0	interface port-channel <port-channel></port-channel>	# configure port-channel
	 switchport 	
	 switchport mode private-vlan trunk s 	secondary
	 switchport private-vlan trunk allowe 	d vlan 1 <i># configure native vlan</i>
	 switchport private-vlan association to 	runk <primary> <secondary></secondary></primary>
0	interface port-channel <port-channel></port-channel>	# configure port-channel
	 switchport 	
	 switchport mode private-vlan trunk 	promiscuous
	 switchport private-vlan mapping tru 	-
	secondary2,>	# configure
		# conjigure
	primary to secondary mapping	
0	interface port-channel <port-channel></port-channel>	# configure port-channel
	 switchport 	
	 switchport mode private-vlan prom 	iscuous # configure promiscuous
	access	
	 switchport private-vlan mapping <pp></pp> 	rimary secondary>
		igure primary to secondary mapping
	-	
0	interface port-channel <port-channel></port-channel>	# configure port-channel
	 switchport 	
	 switchport mode private-vlan host 	# configure host

switchport private-vlan host-association <primary secondary>
 # configure primary to secondary host-association