
Citrix NetScaler 1000V
NITRO Getting Started Guide
Citrix NetScaler 10.1
October 3, 2013
Cisco Systems, Inc.
www.cisco.com

Cisco has more than 200 offices worldwide.
Addresses, phone numbers, and fax numbers
are listed on the Cisco website at
www.cisco.com/go/offices.

http://www.cisco.com
http://www.cisco.com/go/offices

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant
to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause
harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required
to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant
to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates,
uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a particular installation. If the equipment causes interference to radio or television reception, which can be
determined by turning the equipment off and on, users are encouraged to try to correct the interference by using one or more of the following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.

• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

• Consult the dealer or an experienced radio/TV technician for help.

Modifications to this product not authorized by Cisco could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in
illustrative content is unintentional and coincidental.

Citrix and other Citrix product names referenced herein are trademarks of Citrix Systems, Inc. and/or one of its subsidiaries, and may be registered in the United States Patent
and Trademark Office and in other countries. All other product names, company names, marks, logos, and symbols are trademarks of their respective owners.

© 2013 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

Contents

1 NITRO API. 5

2 Obtaining the NITRO Package. .7

3 How NITRO Works. 9

4 Java API. 11
Tutorials. .12

Create Your First NITRO Application. 12
Sample Code. .12
To create your first NITRO application:. .12
Debug the NITRO application. 14

System APIs. 14
Feature Configuration APIs. 15
Feature Statistics APIs. 19
AppExpert Application APIs. .20
Exception Handling. .20

5 .NET API. .23
Tutorials. .24

Create Your First NITRO Application. 24
Sample Code. .24
To create your first NITRO application:. .24
Debug the NITRO application. 26

System APIs. 26
Feature Configuration APIs. 27
Feature Statistics APIs. 31
AppExpert Application APIs. .32
Exception Handling. .32

iii

6 REST Web Services. 33
Performing System Level Operations. .35
Configuring NetScaler Features. 38
Binding NetScaler Resources. .43
Retrieving Feature Statistics. 44
Managing AppExpert Applications. 45
Handling Exceptions. 47

7 Unsupported NetScaler Operations. 49

Contents

iv

Chapter 1

NITRO API

The NetScaler NITRO protocol allows you to configure and
monitor the NetScaler appliance programmatically.

NITRO exposes its functionality through Representational
State Transfer (REST) interfaces. Therefore, NITRO
applications can be developed in any programming language.
Additionally, for applications that must be developed in Java
or .NET, NITRO APIs are exposed through Java and .NET
libraries that are packaged as separate Software Development
Kits (SDKs).

Note: You must have a basic understanding of the NetScaler
appliance before using the NITRO protocol.

To use the NITRO protocol, the client application needs only
the following:

w Access to a NetScaler appliance, version 9.2 or later.

w To use REST interfaces, you must have a system to
generate HTTP or HTTPS requests (payload in JSON format)
to the NetScaler appliance. You can use any programming
language or tool.

w For Java clients, you must have a system where Java
Development Kit (JDK) 1.5 or later is available. The JDK
can be downloaded from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

w For .NET clients, you must have a system with .NET
framework 3.5 or later installed. The .NET framework can
be downloaded from http://www.microsoft.com/
downloads/en/default.aspx.

Note: You can also use XML APIs to configure the NetScaler
appliance programmatically.

5

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.microsoft.com/Downloads/en/default.aspx
http://www.microsoft.com/Downloads/en/default.aspx

Chapter 1 NITRO API

6

Chapter 2

Obtaining the NITRO Package

The NITRO package is available as a tar file on the Downloads
page of the NetScaler appliance's configuration utility. You
must download and un-tar the file to a folder on your local
system. This folder is referred to as <NITRO_SDK_HOME> in
this documentation.

The folder contains the NITRO libraries (JARs for Java and
DLLs for .NET) in the lib subfolder. The libraries must be
added to the client application classpath to access NITRO
functionality. The <NITRO_SDK_HOME> folder also provides
samples and documentation that can help you understand the
NITRO SDK.

Note: The REST package contains only documentation for
using the REST interfaces.

7

Chapter 2 Obtaining the NITRO Package

8

Chapter 3

How NITRO Works

The NITRO infrastructure consists of a client application and
the NITRO Web service running on a NetScaler appliance. The
communication between the client application and the NITRO
web service is based on REST architecture using HTTP or
HTTPS.

Figure 3-1. NITRO execution flow

As shown in the above figure, a NITRO request is executed as
follows:

1. The client application sends REST request message to the
NITRO web service. When using Java or .NET SDKs, an API
call is translated into the appropriate REST request
message.

2. The web service processes the REST request message.

3. The NITRO web service returns the corresponding REST
response message to the client application. When using
Java or .NET SDKs, the REST response message is
translated into the appropriate response for the API call.

To minimize traffic on the NetScaler network, you retrieve the
whole state of a resource from the server, make modifications
to the state of the resource locally, and then upload it back to
the server in one network transaction. For example, to update
a load balancing virtual server, you must retrieve the object,
update the properties, and then upload the changed object in
a single transaction.

9

Note: Local operations on a resource (changing its
properties) do not affect its state on the server until the state
of the object is explicitly uploaded.

NITRO APIs are synchronous in nature. This means that the
client application waits for a response from the NITRO web
service before executing another NITRO API.

Chapter 3 How NITRO Works

10

Chapter 4

Java API

Topics:
• Tutorials

• System APIs

• Feature Configuration APIs

• Feature Statistics APIs

• AppExpert Application APIs

• Exception Handling

NetScaler NITRO APIs are categorized depending on the scope
and purpose of the APIs into system APIs, feature
configuration APIs, and feature statistics APIs. Additionally,
you can import and export AppExpert applications. You can
also troubleshoot NITRO operations.

Note: All NITRO operations are logged in the /var/nitro/
nitro.log file on the appliance.

11

Tutorials
These tutorials demonstrate the end-to-end usage of NITRO to achieve the following:

w Create Your First NITRO Application

Create Your First NITRO Application
After completing this tutorial, you will understand and be able to perform the following
tasks:

w Integrate NITRO with the IDE

w Log in to the appliance

w Create a load balancing virtual server (lbvserver)

w Retrieve details of an lbvserver

w Delete an lbvserver

w Save the configurations on the appliance

w Log out of the appliance

w Debug the NITRO application

Before you begin, make sure that you have the latest NITRO SDK and that the client
application satisfies the prerequisites for using the NITRO SDK.

Sample Code
For the executable code, see the <NITRO_SDK_HOME>/sample/
MyFirstNitroApplication.java sample file.

To create your first NITRO application:
1. Copy the libraries from <NITRO_SDK_HOME>/lib folder to the project classpath.

2. Create a new class and name it MyFirstNitroApplication.

3. Create an instance of
com.citrix.netscaler.nitro.service.nitro_service class. This
instance is used to perform all operations on the appliance:

nitro_service ns_session = new
nitro_service("10.102.29.170","HTTP");

This code establishes a connection with an appliance that has IP address
10.102.29.170 and uses the HTTP protocol. Replace 10.102.29.170 with the IP
address of the NetScaler appliance that you have access to.

Chapter 4 Java API

12

4. Use the nitro_service instance to log in to the appliance using your
credentials:

ns_session.login("admin","verysecret");

This code logs into the appliance, with user name as admin and password as
verysecret. Replace the credentials with your login credentials.

5. Enable the load balancing feature:

String[] features_to_be_enabled = {"lb"};
ns_session.enable_features(features_to_be_enabled);

This code first sets the features to be enabled in an array and then enables the LB
feature.

6. Create an instance of the
com.citrix.netscaler.nitro.resource.config.lb.lbvserver class.
You will use this instance to perform operations on the lbvserver.

lbvserver new_lbvserver_obj = new lbvserver();

7. Use the lbvserver instance to create a new lbvserver:

new_lbvserver_obj.set_name("MyFirstLbVServer");
new_lbvserver_obj.set_ipv46("10.102.29.88");
new_lbvserver_obj.set_servicetype("HTTP");
new_lbvserver_obj.set_port(88);
new_lbvserver_obj.set_lbmethod("ROUNDROBIN");
lbvserver.add(ns_session,new_lbvserver_obj);

This code first sets the attributes (name, IP address, service type, port, and load
balancing method) of the lbvserver locally and then adds it to the appliance by
using the corresponding add() method.

8. Retrieve the details of the lbvserver you have created:

new_lbvserver_obj =
lbvserver.get(ns_session,new_lbvserver_obj.get_name());
System.out.println("Name : " +new_lbvserver_obj.get_name()
+"\n" +"Protocol : " +new_lbvserver_obj.get_servicetype());

This code first retrieves the details of the lbvserver as an object from the
NetScaler, extracts the required attributes (name and service type) from the
object, and displays the results.

9. Delete the lbvserver you created in the above steps:

lbvserver.delete(ns_session, new_lbvserver_obj.get_name());

10. Save the configurations:

ns_session.save_config();

Citrix NetScaler NITRO Getting Started Guide

13

11. Log out of the appliance:

ns_session.logout();

Debug the NITRO application
All NITRO exceptions are captured by the
com.citrix.netscaler.nitro.exception.nitro_exception class. For a more
detailed description, see Exception Handling.

System APIs
The first step towards using NITRO is to establish a session with the NetScaler appliance
and then authenticate the session by using the NetScaler administrator's credentials.

You must create an object of the
com.citrix.netscaler.nitro.service.nitro_service class by specifying the
NetScaler IP (NSIP) address and the protocol to connect to the appliance (HTTP or
HTTPS). You then use this object and log on to the appliance by specifying the user
name and the password of the NetScaler administrator.

Note: You must have a user account on that appliance. The configuration operations
that you perform are limited by the administrative roles assigned to your account.

The following sample code establishes a session with a NetScaler appliance with IP
address 10.102.29.60 by using the HTTPS protocol:

//Specify the NetScaler appliance IP address and protocol
nitro_service ns_session = new
nitro_service("10.102.29.60","https");

//Specify the login credentials
ns_session.login("admin","verysecret");

Note: When using HTTPS, you must make sure that the root CA is added to the
truststore. By default, NITRO validates the SSL certificate and verifies the hostname.
To disable this validation, use the following:

ns_session.set_certvalidation(false);
ns_session.set_hostnameverification(false);

Note: By default, the connection to the appliance expires after 30 minutes of inactivity.
You can modify the timeout period by specifying a new timeout period (in seconds) in
the login method. For example, to modify the timeout period to 60 minutes:

ns_session.login("admin","verysecret",3600);

Chapter 4 Java API

14

You must use the nitro_service object in all further NITRO operations on the
appliance. For example to save the configurations on the appliance, you must use the
nitro_service object as follows:

ns_session.save_config();

The nitro_service class also provides APIs to perform other system-level operations
such as enabling and disabling NetScaler features and modes, saving and clearing
NetScaler configurations, setting the session timeout, setting the severity of the
exceptions to be handled, setting the behavior of bulk operations, and disconnecting
from the appliance.

Feature Configuration APIs
NetScaler resources are organized into a set of packages or namespaces. Each package
or namespace corresponds to a NetScaler feature. For example, all load-balancing
related resources, such as load balancing virtual server, load balancing group, and load
balancing monitor are available in
com.citrix.netscaler.nitro.resource.config.lb. Similarly, all application
firewall related resources, such as application firewall policy and application firewall
archive are available in
com.citrix.netscaler.nitro.resource.config.appfw.

Each NetScaler resource is represented by a class in NITRO. For example, the class that
represents a load balancing virtual server is called lbvserver (in
com.citrix.netscaler.nitro.resource.config.lb). The state of a resource is
represented by properties of a class. You can set the value for these properties by using
the set_<propertyname>() methods provided by the resource class. For example to
set the IP address of a load balancing virtual server, the lbvserver class provides the
set_ipv46() method. Similarly, you can get the value of these properties by using
the get_<propertyname>() methods of the resource class.

Note: The setter and getter properties are always executed locally on the client. They
do not involve any network interaction with the NITRO web service. All properties have
basic simple types: integer, long, boolean, and string.

A resource class provides APIs to perform other feature-level operations such as
creating a resource, retrieving resources and resource properties, updating a resource,
binding resources, and performing bulk operations on resources.

Creating a Resource

To create a new resource, instantiate the resource class, configure the resource by
setting its properties locally, and then upload the new resource instance to the
NetScaler appliance.

Citrix NetScaler NITRO Getting Started Guide

15

The following sample code creates a load balancing virtual server:

//Create an instance of the lbvserver class
lbvserver new_lbvserver_obj = new lbvserver();

//Set the properties of the resource locally
new_lbvserver_obj.set_name("MyFirstLbVServer");
new_lbvserver_obj.set_ipv46("10.102.29.88");
new_lbvserver_obj.set_port(88);
new_lbvserver_obj.set_servicetype("HTTP");
new_lbvserver_obj.set_lbmethod("ROUNDROBIN");

//Upload the resource to NetScaler
lbvserver.add(ns_session,new_lbvserver_obj);

Retrieving Properties of a Resource

To retrieve the properties of a resource, you retrieve the resource object from the
NetScaler appliance. Once the object is retrieved, you can extract the required
properties of the resource locally, without further network traffic.

The following sample code retrieves the details of a load balancing virtual server:

//Retrieve the resource object from the NetScaler
new_lbvserver_obj =
lbvserver.get(ns_session,"MyFirstLbVServer");

//Extract the properties of the resource from the object
locally
System.out.println(new_lbvserver_obj.get_name());
System.out.println(new_lbvserver_obj.get_servicetype());

You can also retrieve resources by specifying a filter on the value of their properties by
using the com.citrix.netscaler.nitro.util.filtervalue class.

For example, you can retrieve all the load balancing virtual servers that have their port
set to 80 and servicetype to HTTP:

filtervalue[] filter = new filtervalue[2];
filter[0] = new filtervalue("port","80");
filter[1] = new filtervalue("servicetype","HTTP");
lbvserver[] result = lbvserver.get_filtered(ns_session,filter);

You can also retrieve all NetScaler resources of a certain type, such as all services in
the NetScaler appliance, by calling the static get() method on the service class,
without providing a second parameter, as follows:

service[] resources = service.get(ns_session);

Updating a Resource

Chapter 4 Java API

16

To update the properties of a resource, instantiate the resource class, specify the name
of the resource to be updated, configure the resource by updating its properties
locally, and then upload the updated resource instance to the NetScaler appliance.

The following sample code updates the service type and load balancing method of a
load balancing virtual server:

//Create an instance of the lbvserver class
lbvserver update_lb = new lbvserver();

//Specify the name of the lbvserver to be updated
update_lb.set_name("MyFirstLbVServer");

//Specify the updated service type and lb method
update_lb.set_servicetype("https");
update_lb.set_lbmethod("LEASTRESPONSETIME");

//Upload the resource to NetScaler
lbvserver.update(ns_session,update_lb);

Note: Some properties in some NetScaler resources are not allowed to be modified
after creation. The port number or the service type (protocol) of a load balancing virtual
server or a service, are examples of such properties. Even though the update method
appears to succeed, these properties retain their original values on the appliance.

Performing Bulk Operations

You can create, retrieve, update, and delete multiple resources simultaneously and
thus minimize network traffic. For example, you can add multiple load balancing
virtual servers in the same operation. To perform a bulk operation, you instantiate an
array of the resource class, configure the properties of all the instances locally, and
then upload all the instances to the NetScaler with one command.

To account for the failure of some operations within the bulk operation, NITRO allows
you to configure one of the following behaviors:

w Exit. When the first error is encountered, the execution stops. The commands that
were executed before the error are committed.

w Rollback. When the first error is encountered, the execution stops. The commands
that were executed before the error are rolled back. Rollback is only supported for
add and bind commands.

w Continue. All the commands in the list are executed even if some commands fail.

Note: You must configure the required behavior while establishing a connection with
the appliance.

nitro_service ns_session = new
nitro_service("10.102.29.60","http");
ns_session.set_onerror(OnerrorEnum.CONTINUE);
ns_session.login("admin","verysecret");

Citrix NetScaler NITRO Getting Started Guide

17

The following sample code creates two load balancing virtual servers:

//Create an array of lbvserver instances
lbvserver[] lbs = new lbvserver[2];

//Specify properties of the first lbvserver
lbs[0] = new lbvserver();
lbs[0].set_name("lbvserv1");
lbs[0].set_servicetype("http");
lbs[0].set_ipv46("10.70.136.5");
lbs[0].set_port(80);

//Specify properties of the second lbvserver
lbs[1] = new lbvserver();
lbs[1].set_name("lbvserv2");
lbs[1].set_servicetype("https");
lbs[1].set_ipv46("10.70.136.5");
lbs[1].set_port(443);

//Upload the properties of the two lbvservers to the NetScaler
lbvserver.add(ns_session,lbs);

Binding Resources

NetScaler resources form relationships with each other through the process of binding.
This is how services are associated with a load balancing virtual server (by binding
them to it), or how various policies are bound to a load balancing virtual server. Each
binding relationship is represented in NITRO by its own class.

To bind one NetScaler resource to another, you must instantiate the appropriate
binding class (for example, to bind a service to a load balancing virtual server, you
must instantiate the lbvserver_service_binding class) and add it to the
NetScaler configuration (by using the static add() method on this class).

Binding classes have a property representing the name of each resource in the binding
relationship. They can also have other properties related to that relationship (for
example, the weight of the binding between a load balancing virtual server and a
service).

The following sample code binds a service to a load balancing virtual server, by
specifying a certain weight for the binding:

lbvserver_service_binding bindObj = new
lbvserver_service_binding();
bindObj.set_name("MyFirstLbVServer");
bindObj.set_servicename("svc_prod");
bindObj.set_weight(20);
lbvserver_service_binding.add(ns_session,bindObj);

Globally Binding Resources

Some NetScaler resources can be bound globally to affect the whole system. For
example, a compression policy can be bound to an load balancing virtual server, in
which case the policy affects only the traffic on that load balancing virtual server.

Chapter 4 Java API

18

However, if bound globally, it can affect any traffic on the appliance, regardless of
which virtual servers handle the traffic.

Some NITRO classes can be used to bind resources globally. These classes have names
that follow the following pattern:
<featurename>global_<resourcetype>_binding.

For example, the class aaaglobal_preauthenticationpolicy_binding is used
to bind preauthentication policies globally.

The following sample code creates a preauthentication action and a preauthentication
policy that uses that action, and then binds the policy globally at priority 200:

aaapreauthenticationaction preauth_act1;
aaapreauthenticationpolicy preauth_pol1;
aaaglobal_aaapreauthenticationpolicy_binding glob_binding;
preauth_act1 = new aaapreauthenticationaction();
preauth_act1.set_name("preauth_act1");
preauth_act1.set_preauthenticationaction("ALLOW");
aaapreauthenticationaction.add(ns_session,preauth_act1);

preauth_pol1 = new aaapreauthenticationpolicy();
preauth_pol1.set_name("preauth_pol1");
preauth_pol1.set_rule("CLIENT.APPLICATION.PROCESS(antivirus.exe
) EXISTS");
preauth_pol1.set_reqaction("preauth_act1");
aaapreauthenticationpolicy.add(ns_session,preauth_pol1);

glob_binding = new
aaaglobal_aaapreauthenticationpolicy_binding();
glob_binding.set_policy("preauth_pol1");
glob_binding.set_priority(200);
aaaglobal_aaapreauthenticationpolicy_binding.add(ns_session,glo
b_binding);

Feature Statistics APIs
The NetScaler appliance collects statistics about the usage of its features and the
corresponding resources. You can retrieve these statistics by using NITRO API. The
statistics APIs are available in different packages from the configuration APIs.

The APIs to retrieve statistics of NetScaler features are available in packages that have
the following pattern:
com.citrix.netscaler.nitro.resource.stat.<feature>.

For example, APIs to retrieve statistics of the load balancing virtual server are
available in the com.citrix.netscaler.nitro.resource.stat.lb package.

The following sample code retrieves the statistics of a load balancing virtual server and
displays some of the statistics returned:

lbvserver_stats stats =
lbvserver_stats.get(ns_session,"MyFirstLbVServer");

Citrix NetScaler NITRO Getting Started Guide

19

System.out.println(stats.get_curclntconnections());
System.out.println(stats.get_deferredreqrate());

Note: Not all NetScaler features and resources have statistic objects associated with
them.

AppExpert Application APIs
To export an AppExpert application, you must instantiate the
com.citrix.netscaler.nitro.resource.config.app.application class,
configure the properties of the AppExpert locally, and then export the AppExpert
application.

The following sample code exports an AppExpert application named "MyApp1":

application myapp = new application();
myapp.set_appname("MyApp1");
myapp.set_apptemplatefilename("myapp_template");
application.export(ns_session,myapp);

You can also import an AppExpert application. You must instantiate the
com.citrix.netscaler.nitro.resource.config.app.application class,
configure the properties of the AppExpert locally, and then import the AppExpert
application.

The following sample code imports an AppExpert application named "MyApp1":

application myapp = new application();
myapp.set_appname("MyApp1");
myapp.set_apptemplatefilename("myapp_template");
application.Import(ns_session,myapp);

Exception Handling
The status of a NITRO request is captured in the
com.citrix.netscaler.nitro.exception.nitro_exception class. This class
provides the following details of the exception:

w Session ID. The session in which the exception occurred.

w Severity. The severity of the exception: error or warning. By default, only errors are
captured. To capture warnings, you must set the warning flag to true, while
connecting to the appliance.

w Error code. The status of the NITRO request. An error code of 0 indicates that the
NITRO request is successful. A non-zero error code indicates an error in processing
the NITRO request.

w Error message. Provides a brief description of the exception.

Chapter 4 Java API

20

For a list of error codes, see the errorlisting.html file available in the
<NITRO_SDK_HOME>/doc/api_reference folder.

Citrix NetScaler NITRO Getting Started Guide

21

Chapter 4 Java API

22

Chapter 5

.NET API

Topics:
• Tutorials

• System APIs

• Feature Configuration APIs

• Feature Statistics APIs

• AppExpert Application APIs

• Exception Handling

NetScaler NITRO APIs are categorized depending on the scope
and purpose of the APIs into system APIs, feature
configuration APIs, and feature statistics APIs. Additionally,
you can import and export AppExpert applications. You can
also troubleshoot NITRO operations.

Note: All NITRO operations are logged in the /var/nitro/
nitro.log file on the appliance.

23

Tutorials
These tutorials demonstrate the end-to-end usage of NITRO to achieve the following:

w Create Your First NITRO Application

Create Your First NITRO Application
After completing this tutorial, you will understand and be able to perform the following
tasks:

w Integrate NITRO with the IDE

w Log in to the appliance

w Create a load balancing virtual server (lbvserver)

w Retrieve details of an lbvserver

w Delete an lbvserver

w Save the configurations on the appliance

w Log out of the appliance

w Debug the NITRO application

Before you begin, make sure that you have the latest NITRO SDK and that the client
application satisfies the prerequisites for using the NITRO SDK.

Sample Code
For the executable code, see the <NITRO_SDK_HOME>/sample/
MyFirstNitroApplication.cs sample file.

To create your first NITRO application:
1. Copy the libraries from <NITRO_SDK_HOME>/lib folder to the project classpath.

2. Create a new class and name it MyFirstNitroApplication.

3. Create an instance of
com.citrix.netscaler.nitro.service.nitro_service class. This
instance is used to perform all operations on the appliance:

nitro_service ns_session = new
nitro_service("10.102.29.170", "http");

This code establishes a connection with an appliance that has IP address
10.102.29.170 and uses the HTTP protocol. Replace 10.102.29.170 with the IP
address of the NetScaler appliance that you have access to.

Chapter 5 .NET API

24

4. Use the nitro_service instance to log in to the appliance using your
credentials:

ns_session.login("admin","verysecret");

This code logs into the appliance, with user name as admin and password as
verysecret. Replace the credentials with your login credentials.

5. Enable the load balancing feature:

String[] features_to_be_enabled = {"lb"};
ns_session.enable_features(features_to_be_enabled);

This code enables load balancing on the appliance.

6. Create an instance of the
com.citrix.netscaler.nitro.resource.config.lb.lbvserver class.
You will use this instance to perform operations on the lbvserver.

lbvserver new_lbvserver_obj = new lbvserver();

7. Use the lbvserver instance to create a new lbvserver:

new_lbvserver_obj.name = "MyFirstLbVServer";
new_lbvserver_obj.ipv46 = "10.102.29.88";
new_lbvserver_obj.servicetype = "HTTP";
new_lbvserver_obj.port = 80;
new_lbvserver_obj.lbmethod = "ROUNDROBIN";
lbvserver.add(ns_session,new_lbvserver_obj);

This code first sets the attributes (name, IP address, service type, port, and load
balancing method) of the lbvserver locally and then adds it to the appliance by
using the corresponding add() method.

8. Retrieve the details of the lbvserver you have created:

lbvserver new_lbvserver_obj1 =
lbvserver.get(ns_session,new_lbvserver_obj.name);
System.Console.Out.WriteLine("Name : "
+new_lbvserver_obj1.name +"\n" +"Protocol : "
+new_lbvserver_obj1.servicetype);

This code first retrieves the details of the lbvserver as an object from the
NetScaler, extracts the required attributes (name and service type) from the
object, and displays the results.

9. Delete the lbvserver you created in the above steps:

lbvserver.delete(ns_session, new_lbvserver_obj.name);

10. Save the configurations:

ns_session.save_config();

Citrix NetScaler NITRO Getting Started Guide

25

11. Log out of the appliance:

ns_session.logout();

Debug the NITRO application
All NITRO exceptions are captured by the
com.citrix.netscaler.nitro.exception.nitro_exception class. For a more
detailed description, see Exception Handling.

System APIs
The first step towards using NITRO is to establish a session with the NetScaler appliance
and then authenticate the session by using the NetScaler administrator's credentials.

You must create an object of the
com.citrix.netscaler.nitro.service.nitro_service class by specifying the
NetScaler IP (NSIP) address and the protocol to connect to the appliance (HTTP or
HTTPS). You then use this object and log on to the appliance by specifying the user
name and the password of the NetScaler administrator.

Note: You must have a user account on that appliance. The configuration operations
that you perform are limited by the administrative roles assigned to your account.

The following sample code establishes a session with a NetScaler appliance with IP
address 10.102.29.60 by using the HTTPS protocol:

//Specify the NetScaler appliance IP address and protocol
nitro_service ns_session = new
nitro_service("10.102.29.60","https");

//Specify the login credentials
ns_session.login("admin","verysecret");

Note: When using HTTPS, you must make sure that the root CA is added to the
truststore. By default, NITRO validates the SSL certificate and verifies the hostname.
To disable this validation, use the following:

ns_session.set_certvalidation(false);
ns_session.set_hostnameverification(false);

Note: By default, the connection to the appliance expires after 30 minutes of inactivity.
You can modify the timeout period by specifying a new timeout period (in seconds) in
the login method. For example, to modify the timeout period to 60 minutes:

ns_session.login("admin","verysecret",3600);

Chapter 5 .NET API

26

You must use the nitro_service object in all further NITRO operations on the
appliance. For example to save the configurations on the appliance, you must use the
nitro_service object as follows:

ns_session.save_config();

The nitro_service class also provides APIs to perform other system-level operations
such as enabling and disabling NetScaler features and modes, saving and clearing
NetScaler configurations, setting the session timeout, setting the severity of the
exceptions to be handled, setting the behavior of bulk operations, and disconnecting
from the appliance.

Feature Configuration APIs
NetScaler resources are organized into a set of packages or namespaces. Each package
or namespace corresponds to a NetScaler feature. For example, all load-balancing
related resources, such as load balancing virtual server, load balancing group, and load
balancing monitor are available in
com.citrix.netscaler.nitro.resource.config.lb. Similarly, all application
firewall related resources, such as application firewall policy and application firewall
archive are available in
com.citrix.netscaler.nitro.resource.config.appfw.

Each NetScaler resource is represented by a class in NITRO. For example, the class that
represents a load balancing virtual server is called lbvserver (in
com.citrix.netscaler.nitro.resource.config.lb). The state of a resource is
represented by properties of a class. You can get and set the properties of the class.

Note: The setter and getter properties are always executed locally on the client. They
do not involve any network interaction with the NITRO web service. All properties have
basic simple types: integer, long, boolean, and string.

A resource class provides APIs to perform other feature-level operations such as
creating a resource, retrieving resources and resource properties, updating a resource,
binding resources, and performing bulk operations on resources.

Creating a Resource

To create a new resource, instantiate the resource class, configure the resource by
setting its properties locally, and then upload the new resource instance to the
NetScaler appliance.

The following sample code creates a load balancing virtual server:

//Create an instance of the lbvserver class
lbvserver new_lbvserver_obj = new lbvserver();

//Set the properties of the resource locally
new_lbvserver_obj.name = "MyFirstLbVServer";
new_lbvserver_obj.ipv46 = "10.102.29.88";

Citrix NetScaler NITRO Getting Started Guide

27

new_lbvserver_obj.port = 88;
new_lbvserver_obj.servicetype = "HTTP";
new_lbvserver_obj.lbmethod = "ROUNDROBIN";

//Upload the resource to NetScaler
lbvserver.add(ns_session,new_lbvserver_obj);

Retrieving Properties of a Resource

To retrieve the properties of a resource, retrieve the resource object from the
NetScaler appliance. Once the object is retrieved, you can extract the required
properties of the resource locally, without incurring further network traffic.

The following sample code retrieves the details of a load balancing virtual server:

//Retrieve the resource object from the NetScaler
new_lbvserver_obj =
lbvserver.get(ns_session,"MyFirstLbVServer");

//Extract the properties of the resource from the object
locally
Console.WriteLine(new_lbvserver_obj.name);
Console.WriteLine(new_lbvserver_obj.servicetype);

You can also retrieve resources by specifying a filter on the value of their properties by
using the com.citrix.netscaler.nitro.util.filtervalue class.

For example, you can retrieve all the load balancing virtual servers that have their port
set to 80 and servicetype to HTTP:

filtervalue[] filter = new filtervalue[2];
filter[0] = new filtervalue("port","80");
filter[1] = new filtervalue("servicetype","HTTP");
lbvserver[] result = lbvserver.get_filtered(ns_session,filter);

You can also retrieve all NetScaler resources of a certain type, such as all services in
the NetScaler appliance, by calling the static get() method on the service class,
without providing a second parameter, as follows:

service[] resources = service.get(ns_session);

Updating a Resource

To update the properties of a resource, instantiate the resource class, specify the name
of the resource to be updated, configure the resource by updating its properties
locally, and then upload the updated resource instance to the NetScaler appliance.

The following sample code updates the service type and load balancing method of a
load balancing virtual server:

//Create an instance of the lbvserver class
lbvserver update_lb = new lbvserver();

Chapter 5 .NET API

28

//Specify the name of the lbvserver to be updated
update_lb.name = "MyFirstLbVServer";

//Specify the updated service type and lb method
update_lb.servicetype = "https";
update_lb.lbmethod = "LEASTRESPONSETIME";

//Upload the resource to NetScaler
lbvserver.update(ns_session, update_lb);

Note: Some properties in some NetScaler resources are not allowed to be modified
after creation. The port number or the service type (protocol) of a load balancing virtual
server or a service, are examples of such properties. Even though the update method
appears to succeed, these properties retain their original values on the appliance.

Performing Bulk Operations

You can create, retrieve, update, and delete multiple resources simultaneously and
thus minimize network traffic. For example, you can add multiple load balancing
virtual servers in the same operation. To perform a bulk operation, you instantiate an
array of the resource class, configure the properties of all the instances locally, and
then upload all the instances to the NetScaler with one command.

To account for the failure of some operations within the bulk operation, NITRO allows
you to configure one of the following behaviors:

w Exit. When the first error is encountered, the execution stops. The commands that
were executed before the error are committed.

w Rollback. When the first error is encountered, the execution stops. The commands
that were executed before the error are rolled back. Rollback is only supported for
add and bind commands.

w Continue. All the commands in the list are executed even if some commands fail.

Note: You must configure the required behavior while establishing a connection with
the appliance.

nitro_service ns_session = new
nitro_service("10.102.29.60","http");
ns_session.onerror = OnerrorEnum.CONTINUE;
ns_session.login("admin","verysecret");

The following sample code creates two load balancing virtual servers:

//Create an array of lbvserver instances
lbvserver[] lbs = new lbvserver[2];

//Specify details of first lbvserver
lbs[0] = new lbvserver();
lbs[0].name = "lbvserv1";
lbs[0].servicetype = "http";
lbs[0].ipv46 = "10.70.136.5";
lbs[0].port = 80;

Citrix NetScaler NITRO Getting Started Guide

29

//Specify details of second lbvserver
lbs[1] = new lbvserver();
lbs[1].name = "lbvserv2";
lbs[1].servicetype = "https";
lbs[1].ipv46 = "10.70.136.5";
lbs[1].port = 443;

//upload the details of the lbvservers to the NITRO server
lbvserver.add(ns_session,lbs);

Binding Resources

NetScaler resources form relationships with each other through the process of binding.
This is how services are associated with a load balancing virtual server (by binding
them to it), or how various policies are bound to a load balancing virtual server. Each
binding relationship is represented in NITRO by its own class.

To bind one NetScaler resource to another, you must instantiate the appropriate
binding class (for example, to bind a service to a load balancing virtual server, you
must instantiate the lbvserver_service_binding class) and add it to the
NetScaler configuration (by using the static add() method on this class).

Binding classes have a property representing the name of each resource in the binding
relationship. They can also have other properties related to that relationship (for
example, the weight of the binding between a load balancing virtual server and a
service).

The following sample code binds a service to a load balancing virtual server, by
specifying a certain weight for the binding:

lbvserver_service_binding bindObj = new
lbvserver_service_binding();
bindObj.name = "MyFirstLbVServer";
bindObj.servicename = "svc_prod";
bindObj.weight = 20;
lbvserver_service_binding.add(ns_session,bindObj);

Globally Binding Resources

Some NetScaler resources can be bound globally to affect the whole system. For
example, a compression policy can be bound to an load balancing virtual server, in
which case the policy affects only the traffic on that load balancing virtual server.
However, if bound globally, it can affect any traffic on the appliance, regardless of
which virtual servers handle the traffic.

Some NITRO classes can be used to bind resources globally. These classes have names
that follow the following pattern:
<featurename>global_<resourcetype>_binding.

For example, the class aaaglobal_preauthenticationpolicy_binding is used
to bind preauthentication policies globally.

Chapter 5 .NET API

30

The following sample code creates a preauthentication action and a preauthentication
policy that uses that action, and then binds the policy globally at priority 200:

aaapreauthenticationaction preauth_act1;
aaapreauthenticationpolicy preauth_pol1;
aaaglobal_aaapreauthenticationpolicy_binding glob_binding;
preauth_act1 = new aaapreauthenticationaction();
preauth_act1.name = "preauth_act1";
preauth_act1.preauthenticationaction = "ALLOW";
aaapreauthenticationaction.add(ns_session, preauth_act1);

preauth_pol1 = new aaapreauthenticationpolicy();
preauth_pol1.name = "preauth_pol1";
preauth_pol1.rule = "CLIENT.APPLICATION.PROCESS(antivirus.exe)
EXISTS";
preauth_pol1.reqaction = "preauth_act1";
aaapreauthenticationpolicy.add(ns_session, preauth_pol1);

glob_binding = new
aaaglobal_aaapreauthenticationpolicy_binding();
glob_binding.policy = "preauth_pol1";
glob_binding.priority = 200;
aaaglobal_aaapreauthenticationpolicy_binding.add(ns_session,glo
b_binding);

Feature Statistics APIs
The NetScaler appliance collects statistics about the usage of its features and the
corresponding resources. You can retrieve these statistics by using NITRO API. The
statistics APIs are available in different namespaces from the configuration APIs.

The APIs to retrieve statistics of NetScaler features are available in namespaces that
have the following pattern:
com.citrix.netscaler.nitro.resource.stat.<feature>.

For example, APIs to retrieve statistics of the load balancing virtual server are
available in the com.citrix.netscaler.nitro.resource.stat.lb namespace.

The following sample code retrieves the statistics of a load balancing virtual server and
displays some of the statistics returned:

lbvserver_stats stats =
lbvserver_stats.get(ns_session,"MyFirstLbVServer");
Console.WriteLine(stats.curclntconnections);
Console.WriteLine(stats.deferredreqrate);

Note: Not all NetScaler features and resources have statistic objects associated with
them.

Citrix NetScaler NITRO Getting Started Guide

31

AppExpert Application APIs
To export an AppExpert application, you must instantiate the
com.citrix.netscaler.nitro.resource.config.app.application class,
configure the properties of the AppExpert locally, and then export the AppExpert
application.

The following sample code exports an AppExpert application named "MyApp1":

application myapp = new application();
myapp.appname = "MyApp1";
myapp.apptemplatefilename = "myapp_template";
application.export(ns_session,myapp);

You can also import an AppExpert application. You must instantiate the
com.citrix.netscaler.nitro.resource.config.app.application class,
configure the properties of the AppExpert locally, and then import the AppExpert
application.

The following sample code imports an AppExpert application named "MyApp1":

application myapp = new application();
myapp.appname = "MyApp1";
myapp.apptemplatefilename = "myapp_template";
application.Import(ns_session,myapp);

Exception Handling
The status of a NITRO request is captured in the
com.citrix.netscaler.nitro.exception.nitro_exception class. This class
provides the following details of the exception:

w Session ID. The session in which the exception occurred.

w Severity. The severity of the exception: error or warning. By default, only errors are
captured. To capture warnings, you must set the warning flag to true, while
connecting to the appliance.

w Error code. The status of the NITRO request. An error code of 0 indicates that the
NITRO request is successful. A non-zero error code indicates an error in processing
the NITRO request.

w Error message. Provides a brief description of the exception.

For a list of error codes, see the errorlisting.html file available in the
<NITRO_SDK_HOME>/doc/api_reference folder.

Chapter 5 .NET API

32

Chapter 6

REST Web Services

Topics:
• Performing System Level

Operations

• Configuring NetScaler
Features

• Binding NetScaler Resources

• Retrieving Feature Statistics

• Managing AppExpert
Applications

• Handling Exceptions

REST (REpresentational State Transfer) is an architectural
style based on simple HTTP requests and responses between
the client and the server. REST is used to query or change the
state of objects on the server side. In REST, the server side is
modeled as a set of entities where each entity is identified by
a unique URL. For example, the load balancing virtual server
entity is identified by the URL http://<NSIP>/nitro/v1/
config/<lbvserver>/<lbvserver_name>.

Each resource also has a state on which the following
operations can be performed:

w Create. Clients can create new server-side resources on a
"container" resource. You can think of container resources
as folders, and child resources as files or subfolders. The
calling client provides the state for the resource to be
created. The state can be specified in the request by using
XML or JSON format. The client can also specify the unique
URL that will identify the new object. Alternatively, the
server can choose and return a unique URL identifying the
created object. The HTTP method used for Create requests
is POST.

w Read. Clients can retrieve the state of a resource by
specifying its URL with the HTTP GET method. The
response message contains the resource state, expressed
in JSON format.

w Update. You can update the state of an existing resource
by specifying the URL that identifies that object and its
new state in JSON or XML, using the PUT HTTP method.

w Delete. You can destroy a resource that exists on the
server-side by using the DELETE HTTP method and the URL
identifying the resource to be removed.

In addition to these four CRUD operations (Create, Read,
Update, and Delete), resources can support other operations
or actions. These operations use the HTTP POST method, with
the URL specifying the operation to be performed and the
request body specifying the parameters for that operation.

33

NetScaler NITRO APIs are categorized depending on the scope
and purpose of the APIs into system APIs, feature
configuration APIs, and feature statistics APIs.

Note: All NITRO operations are logged in the /var/nitro/
nitro.log file on the appliance.

Chapter 6 REST Web Services

34

Performing System Level Operations
The first step towards using NITRO is to establish a session with the NetScaler appliance
and then authenticate the session by using the NetScaler administrator's credentials.
You must specify the username and password in the login object. The session ID that
is created must be specified in the request header of all further operations in the
session.

Note: You must have a user account on the appliance to log on to it. The configuration
operations that you can perform are limited by the administrative roles assigned to
your account.

To connect to a NetScaler appliance with NSIP address 10.102.29.60 by using the HTTP
protocol:

w URL. https://10.102.29.60/nitro/v1/config/login/

w Method. POST

w Request.

• Header.

Content-Type:application/vnd.com.citrix.netscaler.login
+json

Note: Content types such as 'application/x-www-form-urlencoded'
that were supported in earlier versions of NITRO can also be used. You must
make sure that the payload is the same as used in earlier versions. The
payloads provided in this documentation are only applicable if the content type
is of the form 'application/vnd.com.citrix.netscaler.login
+json'.

• Payload.

{
 "login":
 {
 "username":"admin",
 "password":"verysecret"
 }
}

w Response.

• Header.

HTTP/1.0 201 Created
Set-Cookie:
NITRO_AUTH_TOKEN=##87305E9C51B06C848F0942; path=/nitro/v1

Citrix NetScaler NITRO Getting Started Guide

35

Note: By default, the connection to the appliance expires after 30 minutes of inactivity.
You can modify the timeout period by specifying a new timeout period (in seconds) in
the login object. For example, to modify the timeout period to 60 minutes, the
request payload is:

{
 "login":
 {
 "username":"admin",
 "password":"verysecret",
 "timeout":3600
 }
}

You can also connect to the appliance to perform a single operation, by specifying the
username and password in the request header of the operation. For example, to
connect to an appliance while adding a load balancing virtual server:

w URL. https://10.102.29.60/nitro/v1/config/lbvserver/

w Method. POST

w Request.

• Header.

X-NITRO-USER:admin
X-NITRO-PASS:verysecret
Content-Type:application/vnd.com.citrix.netscaler.lbvserver
+json

• Payload.

{
 "lbvserver":
 {
 ...
 ...
 ...
}

w Response.

• Header.

HTTP/1.0 201 Created

You can also perform other system-level operations such as enabling NetScaler features
and modes, saving and clearing NetScaler configurations, setting the session timeout,
setting the severity of the exceptions to be handled, setting the behavior of bulk
operations, and disconnecting from the appliance.

For more information on the REST messages, see the Configuration node of the
<NITRO_SDK_HOME>/index.html file.

Chapter 6 REST Web Services

36

Example 1: Enable the load balancing feature

w URL. http://10.102.29.60/nitro/v1/config/nsfeature?action=enable

w HTTP Method. POST

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/vnd.com.citrix.netscaler.nsfeature
+json

• Payload

{
 "nsfeature":
 {
 "feature":
 [
 "LB",
]
 }
}

Example 2: Save NetScaler configurations

w URL. http://10.102.29.60/nitro/v1/config/nsconfig?action=save

w HTTP Method. POST

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/vnd.com.citrix.netscaler.nsconfig
+json

• Payload

{
 "nsconfig":{}
}

Example 3: Disconnecting from the appliance

w URL. https://10.102.29.60/nitro/v1/config/logout/

w HTTP Method. POST

w Request.

Citrix NetScaler NITRO Getting Started Guide

37

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/vnd.com.citrix.netscaler.logout
+json

• Payload

{
 "logout":{}
}

Note: Make sure that you have saved the configurations before performing this
operation.

Configuring NetScaler Features
A NetScaler appliance has multiple features, and each feature has multiple resources.
Each NetScaler resource, depending on the operation to be performed on it, has a
unique URL associated with it. URLs for configuration operations have the format
http://<NSIP>/nitro/v1/config/<resource_type>/<resource_name>. For
example, to access the lbvserver named MyFirstLbVServer on a NetScaler with IP
10.102.29.60, the URL is http://10.102.29.60/nitro/v1/config/lbvserver/
MyFirstLbVServer.

Using NITRO you can perform operations such as creating a resource, retrieving
resources and resource properties, updating a resource, binding resources, and
performing bulk operations on resources.

For more information on the REST messages, see the Configuration node of the
<NITRO_SDK_HOME>/index.html file.

Creating a resource

To create a new resource (for example, an lbvserver) on the appliance, specify the
resource name and other related arguments in the specific resource object. For a
lbvserver resource, the object would be an lbvserver object.

To create an lbvserver named "MyFirstLbVServer":

w URL. http://10.102.29.60/nitro/v1/config/lbvserver/

w HTTP Method. POST

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/vnd.com.citrix.netscaler.lbvserver
+json

Chapter 6 REST Web Services

38

• Payload

{
 "lbvserver":
 {
 "name":"MyFirstLbVServer",
 "servicetype":"http"
 }
}

Retrieving properties of a resource

NetScaler resource properties can be retrieved as follows:

w To retrieve details of all resources of a specific type, specify the resource type in
the URL.

URL format: http://<NSIP>/nitro/v1/config/<resource_type>
w To retrieve details of a specific resource on the NetScaler appliance, specify the

resource name in the URL.

URL format: http://<NSIP>/nitro/v1/config/<resource_type>/
<resource_name>

w To retrieve specific details of a resource, specify the resource details that you want
to view in the URL.

URL format: http://<NSIP>/nitro/v1/config/<resource_type>/
<resource_name>?attrs=<attrib1>,<attrib2>

w To retrieve details of resources on the basis of some filter, specify the filter
conditions in the URL.

URL format: http://<NSIP>/nitro/v1/config/<resource_type>?
filter=<attrib1>:<value>,<attrib2>:<value>

w If the request is likely to result in a large number of resources, you can divide the
results into pages and retrieve them page by page.

For example, assume that you have a NetScaler that has 53 lbvservers and you want
to retrieve all the lbvservers. So, instead of retrieving all 53 in one response, you
can configure the results to be divided into pages of 10 lbvservers each (6 pages
total), and retrieve them from the NetScaler page by page.

URL format: http://<NSIP>/nitro/v1/config/<resource_type>?
pageno=<value>&pagesize=<value>
You specify the page count with the pagesize parameter and the page number
that you want to retrieve with the pageno parameter.

w To get the number of resources that are likely to be returned by a request, you can
use the count query string parameter to ask for a count of the resources to be
returned, rather than the resources themselves.

URL format: http://<NSIP>/nitro/v1/config/<resource_type>?
count=yes

To retrieve the details of an lbvserver named "MyFirstLbVServer":

Citrix NetScaler NITRO Getting Started Guide

39

w URL. http://10.102.29.60/nitro/v1/config/lbvserver/MyFirstLbVServer/

w HTTP Method. GET

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue

w Response.

• Header

HTTP/1.0 200 OK
Content-Type:application/vnd.com.citrix.netscaler.lbvserver
+json

• Payload

{
 "lbvserver":
 [
 {
 "name":"MyFirstLbVServer",
 "servicetype":"http",
 "insertvserveripport":"OFF",
 "ip":"0.0.0.0",
 "port":80,
 ...
 }
]
}

Updating a resource

To update the details of an existing resource on the NetScaler appliance, specify the
resource name, and the arguments to be updated, in the specific resource object.

To change the load balancing method to ROUNDROBIN and update the comment
property for a load balancing virtual server named "MyFirstLbVServer":

w URL. http://10.102.29.60/nitro/v1/config/lbvserver/MyFirstLbVServer/

w HTTP Method. PUT

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/vnd.com.citrix.netscaler.lbvserver
+json

• Payload

{
 "lbvserver":

Chapter 6 REST Web Services

40

 {
 "name":"MyFirstLbVServer",
 "lbmethod":"ROUNDROBIN",
 "comment":"Updated comments"
 }
}

Enabling a resource

To enable a resource on the NetScaler appliance, specify the resource name in the
specific resource object.

To enable a load balancing virtual server named "MyFirstLbVServer":

w URL. http://10.102.29.60/nitro/v1/config/lbvserver?action=enable

w HTTP Method. POST

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/vnd.com.citrix.netscaler.lbvserver
+json

• Payload

{
 "lbvserver":
 {
 "name":"MyFirstLbVServer"
 }
}

Performing bulk operations

You can create, retrieve, update, and delete multiple resources simultaneously and
thus minimize network traffic. For example, you can add multiple load balancing
virtual servers in the same operation. To perform a bulk operation, specify the required
parameters in the same request payload.

To account for the failure of some operations within the bulk operation, NITRO allows
you to configure one of the following behaviors:

w Exit. When the first error is encountered, the execution stops. The commands that
were executed before the error are committed.

w Rollback. When the first error is encountered, the execution stops. The commands
that were executed before the error are rolled back. Rollback is only supported for
add and bind commands.

w Continue. All the commands in the list are executed even if some commands fail.

You must specify the behavior of the bulk operation in the request header using the X-
NITRO-ONERROR parameter.

Citrix NetScaler NITRO Getting Started Guide

41

To add two load balancing virtual servers in one operation and continue if one
command fails:

w URL. http://10.102.29.60/nitro/v1/config/lbvserver/

w HTTP Method. POST

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/
vnd.com.citrix.netscaler.lbvserver_list+json
X-NITRO-ONERROR:continue

• Payload

{
 "lbvserver":
 [
 {
 "name":"new_lbvserver1",
 "servicetype":"http"
 },

 {
 "name":"new_lbvserver2",
 "servicetype":"http"
 }
]
}

w Response

• Header

HTTP/1.0 207 Multi Status

• Payload

{
 "errorcode":273,
 "message":"Resource already exists",
 "severity":"ERROR",
 "response":
 [
 {
 "errorcode": 0,
 "message": "Done",
 "severity": "NONE"
 },
 {
 "errorcode": 273,
 "message":"Resource already exists",
 "severity": "ERROR"
 }

Chapter 6 REST Web Services

42

]
}

Binding NetScaler Resources
NetScaler resources form relationships with each other through the process of binding.
This is how services are associated with an lbvserver (by binding them to it), or how
various policies are bound to an lbvserver. Each binding relationship is represented by
its own object. A binding resource has properties representing the name of each
NetScaler resource in the binding relationship. It can also have other properties related
to that relationship (for example, the weight of the binding between an lbvserver
resource and a service resource).

Note: Unlike for NetScaler entities, you use a PUT HTTP method, instead of POST, for
adding new binding resources.

For more information on the REST messages, see the Configuration node of the
<NITRO_SDK_HOME>/index.html file.

To bind a service to a load balancing virtual server named "MyFirstLbVServer" and
specify a weight for the binding:

w URL. http://10.102.29.60/nitro/v1/config/lbvserver_service_binding/
MyFirstLbVServer?action=bind

w HTTP Method. PUT

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/
vnd.com.citrix.netscaler.lbvserver_service_binding+json

• Payload

{
 "lbvserver_service_binding":
 {
 "servicename":"svc_prod",
 "weight":20,
 "name":"MyFirstLbVServer"
 }
}

To retrieve list of all the services bound to a virtual server "lbv1":

w URL. http://10.102.29.60/nitro/v1/config/lbvserver_service_binding/lbv1?
attrs=servicename

w HTTP Method. GET

Citrix NetScaler NITRO Getting Started Guide

43

For more information on retrieving information, see the "Retrieving properties of a
resource" section in Configuring NetScaler Features.

Globally Bind Resources

Some NetScaler resources can be bound globally to affect the whole system. For
example, if a compression policy is bound to an lbvserver, the policy affects only the
traffic on that lbvserver. However, if bound globally, it can affect any traffic on the
appliance, regardless of which virtual servers handle the traffic.

The names of NITRO resources that can be used to bind resources globally have the
pattern <featurename>global_<resourcetype>_binding. For example, the
object aaaglobal_preauthenticationpolicy_binding is used to bind preauthentication
policies globally.

To bind the policy named preautpol1 globally at priority 200:

w URL. http://10.102.29.60/nitro/v1/config/
aaaglobal_aaapreauthenticationpolicy_binding?action=bind

w HTTP Method. PUT

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/
vnd.com.citrix.netscaler.aaaglobal_aaapreauthenticationpoli
cy_binding+json

• Payload

{
 "aaaglobal_aaapreauthenticationpolicy_binding":
 {
 "policy":"preautpol1",
 "priority":200
 }
}

Retrieving Feature Statistics
The NetScaler appliance collects statistics about the usage of its features and the
corresponding resources. NITRO can retrieve these statistics.

w URL to get statistics of a feature must have the format http://<NSIP>/
nitro/v1/stat/<feature_name>.

w URL to get the statistics of a resource must have the format: http://<NSIP>/
nitro/v1/stat/<resource_type>/<resource_name>.

For more information on the REST messages, see the Statistics node of the
<NITRO_SDK_HOME>/index.html file.

Chapter 6 REST Web Services

44

To get the statistics of a lbvserver named "MyFirstLbVServer":

w URL. http://10.102.29.60/nitro/v1/stat/lbvserver/MyFirstLbVServer

w HTTP Method. GET

w Request.

• Header.

Content-Type:application/vnd.com.citrix.netscaler.lbvserver
+json

w Response.

• Header

HTTP/1.0 200 OK

• Payload

{
 "lbvserver":
 [
 {
 "name":"MyFirstLbVServer",
 "establishedconn":0,
 "vslbhealth":0,
 "primaryipaddress":"0.0.0.0",
 ...
 }
]
}

Note: Not all NetScaler features and resources have statistic objects associated with
them.

Managing AppExpert Applications
To export an AppExpert application, specify the parameters needed for the export
operation in the apptemplateinfo object. Optionally, you can specify basic
information about the AppExpert application template, such as the author of the
configuration, a summary of the template functionality, and the template version
number, in the template_info object. This information is stored as part of the
template file that is created.

To export an AppExpert application named "MyApp1":

w URL. http://10.102.29.60/nitro/v1/config/apptemplateinfo?action=export

w HTTP Method. POST

w Request.

Citrix NetScaler NITRO Getting Started Guide

45

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/
vnd.com.citrix.netscaler.apptemplateinfo+json

• Payload

{
 "apptemplateinfo":
 {
 "appname":"MyApp1",
 "apptemplatefilename":"BizAp.xml",
 "template_info":
 {
 "templateversion_major":"2",
 "templateversion_minor":"1",
 "author":"XYZ",
 "introduction":"Intro",
 "summary":"Summary"
 },
 }
}

To import an AppExpert application, specify the parameters needed for the import
operation in the apptemplateinfo object.

To import an AppExpert application named "MyApp1":

w URL. http://10.102.29.60/nitro/v1/config/apptemplateinfo?action=import

w HTTP Method. POST

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/
vnd.com.citrix.netscaler.apptemplateinfo+json
X-NITRO-ONERROR:rollback

• Payload

{
 "apptemplateinfo":
 {
 "apptemplatefilename":"BizAp.xml",
 "deploymentfilename":"BizAp_deployment.xml",
 "appname":"MyApp1"
 }
}

To import an AppExpert application by specifying different deployment settings:

w URL. http://10.102.29.60/nitro/v1/config/apptemplateinfo?action=import

Chapter 6 REST Web Services

46

w HTTP Method. POST

w Request.

• Header

Cookie:NITRO_AUTH_TOKEN=tokenvalue
Content-Type:application/
vnd.com.citrix.netscaler.apptemplateinfo+json
X-NITRO-ONERROR:rollback

• Payload

{
 "apptemplateinfo":
 {
 "apptemplatefilename":"BizAp.xml",
 "appname":"Myapp2"
 "deploymentinfo":
 {
 "appendpoint":
 [
 {
 "ipv46":"11.2.3.8",
 "port":80,
 "servicetype":"HTTP"
 }
],
 "service":
 [
 {
 "ip":"12.3.3.15",
 "port":80,
 "servicetype":"SSL"
 },
 {
 "ip":"14.5.5.16",
 "port":443,
 "servicetype":"SSL"
 }
],
 }
 }
}

Handling Exceptions
The response header provides the status of an operation by using HTTP status codes
and the response payload provides the requested resource object (for GET method) and
error details (for unsuccessful operation). NITRO does not provide a response payload
for successful POST, PUT and DELETE methods. For successful GET method, the
response payload consists only the requested resource object.

The following table provides the HTTP status codes:

Citrix NetScaler NITRO Getting Started Guide

47

Status HTTP Status
Code

Description

Success 200 OK Request successfully executed.

201 CREATED Entity created.

Failure 400 Bad
Request

Incorrect request provided.

401
unauthorized

Not provided login credentials.

403 forbidden User is unauthorized

404 Not Found User is trying to access a resource not present in
the NetScaler.

405 Method
Not Allowed

User is trying to access request methods not
supported by NITRO.

406 Not
Acceptable

None of the values supplied by the user in the
Accept header can be satisfied by the server.

409 Conflict The resource already exists on the NetScaler.

503 Service
Unavailable

The service is not available.

599 NetScaler specific error code.

Warning 209 X-NITRO-
WARNING

Warnings are captured by specifying the login
URL as http://<nsip>/nitro/v1/config/
login/?warning=yes.

Combination of
success and
failure (for bulk
operation with
X-NITRO-
ONERROR set as
continue)

207 Multi
Status

Some commands are executed successfully and
some have failed.

Note: The content-type in the response header of an unsuccessful operation, consists
of error MIME type instead of resource MIME type.

For a more detailed description of the error codes, see the API reference available in
the <NITRO_SDK_HOME>/doc folder.

Chapter 6 REST Web Services

48

Chapter 7

Unsupported NetScaler Operations

Some NetScaler operations that are available through the
command line interface and through the configuration utility,
are not available through NITRO APIs. The following list
provides the NetScaler operations not supported by NITRO:

w install API

w diff API on nsconfig resource

w UI-internal APIs (update, unset, and get)

w show ns info

w Application firewall APIs:

• importwsdl
• importcustom
• importxmlschema
• importxmlerrorpage
• importhtmlerrorpage
• rmwsdl
• rmcustom
• rmxmlschema
• rmxmlerrorpage
• rmhtmlerrorpage

w CLI-specific APIs:

• ping
• ping6
• traceroute
• traceroute6
• nstrace
• scp
• configaudit

49

• show defaults
• show permission
• batch
• source

Chapter 7 Unsupported NetScaler Operations

50

	Citrix NetScaler 1000V NITRO Getting Started Guide
	Contents
	NITRO API
	Obtaining the NITRO Package
	How NITRO Works
	Java API
	Tutorials
	Create Your First NITRO Application
	Sample Code
	To create your first NITRO application:
	Debug the NITRO application

	System APIs
	Feature Configuration APIs
	Feature Statistics APIs
	AppExpert Application APIs
	Exception Handling

	.NET API
	Tutorials
	Create Your First NITRO Application
	Sample Code
	To create your first NITRO application:
	Debug the NITRO application

	System APIs
	Feature Configuration APIs
	Feature Statistics APIs
	AppExpert Application APIs
	Exception Handling

	REST Web Services
	Performing System Level Operations
	Configuring NetScaler Features
	Binding NetScaler Resources
	Retrieving Feature Statistics
	Managing AppExpert Applications
	Handling Exceptions

	Unsupported NetScaler Operations

