Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>CVD Navigator</td>
<td>2</td>
</tr>
<tr>
<td>- Use Cases</td>
<td>2</td>
</tr>
<tr>
<td>- Scope</td>
<td>2</td>
</tr>
<tr>
<td>- Proficiency</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>- Technology Use Cases</td>
<td>3</td>
</tr>
<tr>
<td>- Use Case: Secure Site-to-Site WAN Communications</td>
<td>3</td>
</tr>
<tr>
<td>Cisco Intelligent WAN Overview</td>
<td>4</td>
</tr>
<tr>
<td>- Transport Independence</td>
<td>4</td>
</tr>
<tr>
<td>- Intelligent Path Control</td>
<td>5</td>
</tr>
<tr>
<td>- Application Optimization</td>
<td>5</td>
</tr>
<tr>
<td>- Secure Connectivity</td>
<td>5</td>
</tr>
<tr>
<td>Design Overview</td>
<td>5</td>
</tr>
<tr>
<td>- Transport-Independent WAN Design</td>
<td>5</td>
</tr>
<tr>
<td>- IP Multicast</td>
<td>15</td>
</tr>
<tr>
<td>- Quality of Service</td>
<td>15</td>
</tr>
<tr>
<td>- Intelligent Path Control</td>
<td>16</td>
</tr>
<tr>
<td>Deploying the Cisco Intelligent WAN</td>
<td>18</td>
</tr>
<tr>
<td>- Overall IWAN Architecture Design Goals</td>
<td>18</td>
</tr>
<tr>
<td>- Overlay Transport (DMVPN)</td>
<td>18</td>
</tr>
<tr>
<td>- IP Routing (EIGRP)</td>
<td>18</td>
</tr>
<tr>
<td>- Quality of Service</td>
<td>18</td>
</tr>
<tr>
<td>- Path Optimization (Performance Routing)</td>
<td>19</td>
</tr>
<tr>
<td>- LAN Access</td>
<td>19</td>
</tr>
<tr>
<td>- Design Parameters</td>
<td>19</td>
</tr>
</tbody>
</table>
Table of Contents

Deploying the Transport Independent Design

- Design Overview .. 20
 - DMVPN Hub Routers .. 20
 - Remote Sites—DMVPN Spoke Router Selection .. 20
 - VRFs and Front Door VRF ... 21
 - Design Details ... 23
 - EIGRP .. 24
 - Encryption .. 24
 - DMVPN .. 25

Deployment Details

- Configuring an IOS Certificate Authority .. 27
- Configuring DMVPN Hub Router ... 34
- Configuring the Firewall and DMZ Switch .. 55
- Configuring Remote-Site DMVPN Router .. 65
- Adding Second DMVPN for a Single-Router Remote Site ... 88
- Adding LTE fallback DMVPN for a single-router remote site .. 99
- Modifying the First Router for Dual Router Design .. 114
- Configuring Remote-Site DMVPN Router (Router 2) ... 119

Deploying an IWAN Remote-Site Distribution Layer

- Connecting Remote-site Router to Distribution Layer ... 146
- Connecting Remote-Site Router to Distribution Layer (Router 2) ... 153

Deploying IWAN Quality of Service

- Configuring QoS for DMVPN Routers ... 158
- Applying DMVPN QoS Policy to DMVPN Hub Routers .. 164
- Applying QoS Configurations to Remote Site Routers ... 168

Deploying IWAN Performance Routing

- Configuring PfR Hub Master Controller .. 175
- Configuring Performance Routing for Hub Location ... 181
- Configuring PfR for Remote Site Locations ... 189

Deploying IWAN Monitoring

- Configuring Flexible NetFlow for IWAN Monitoring ... 202

Appendix A: Product List

- Appendix B: Technical Feature Supplement ... 213
- Front Door VRF for DMVPN ... 213

Appendix C: Device Configuration Files

- Front Door VRF for DMVPN ... 213
Cisco Validated Designs (CVDs) present systems that are based on common use cases or engineering priorities. CVDs incorporate a broad set of technologies, features, and applications that address customer needs. Cisco engineers have comprehensively tested and documented each design in order to ensure faster, more reliable, and fully predictable deployment.

CVDs include two guide types that provide tested design details:

- **Technology design guides** provide deployment details, information about validated products and software, and best practices for specific types of technology.

- **Solution design guides** integrate existing CVDs but also include product features and functionality across Cisco products and sometimes include information about third-party integration.

Both CVD types provide a tested starting point for Cisco partners or customers to begin designing and deploying systems.

CVD Foundation Series

This CVD Foundation guide is a part of the *January 2015 Series*. As Cisco develops a CVD Foundation series, the guides themselves are tested together, in the same network lab. This approach assures that the guides in a series are fully compatible with one another. Each series describes a lab-validated, complete system.

The CVD Foundation series incorporates wired and wireless LAN, WAN, data center, security, and network management technologies. Using the CVD Foundation simplifies system integration, allowing you to select solutions that solve an organization’s problems—without worrying about the technical complexity.

To ensure the compatibility of designs in the CVD Foundation, you should use guides that belong to the same release. For the most recent CVD Foundation guides, please visit the CVD Foundation web site.

Comments and Questions

If you would like to comment on a guide or ask questions, please use the feedback form.
The CVD Navigator helps you determine the applicability of this guide by summarizing its key elements: the use cases, the scope or breadth of the technology covered, the proficiency or experience recommended, and CVDs related to this guide. This section is a quick reference only. For more details, see the Introduction.

Use Cases

This guide addresses the following technology use cases:

- **Use Case: Secure Site-to-Site WAN Communications** — This guide helps organizations connect remote sites over private (MPLS VPN) and public (Internet) IP networks, efficiently and securely.

For more information, see the “Use Cases” section in this guide.

Scope

This guide covers the following areas of technology and products:

- Dynamic Multipoint Virtual Private Network (DMVPN) design and deployment over public and private WAN transport
- Transport Independent Design (TID) provides capabilities for easy multi-homing over any carrier service offering, including MPLS, broadband, and cellular 3G/4G/LTE
- Intelligent Path Control with Cisco Performance Routing (PfR) improves application delivery and WAN efficiency
- Secure connectivity protects the corporate communications and offloads user traffic directly to the Internet
- WAN quality of server (QoS) design and configuration

For more information, see the “Design Overview” section in this guide.

Proficiency

This guide is for people with the following technical proficiencies or equivalent experience:

- CCNP Routing and Switching
- CCNP Security

To view the related CVD guides, click the titles or visit the CVD Foundation web site.
The Cisco Intelligent WAN (IWAN) solution provides design and implementation guidance for organizations looking to deploy wide area network (WAN) transport with a transport-independent design (TID), intelligent path control, application optimization, and secure encrypted communications between branch locations while reducing the operating cost of the WAN. IWAN takes full advantage of cost-effective transport services in order to increase bandwidth capacity without compromising performance, reliability, or security of collaboration or cloud-based applications.

Technology Use Cases

Organizations require the WAN to provide sufficient performance and reliability for the remote-site users to be effective in supporting the business. Although most of the applications and services that the remote-site worker uses are centrally located, the WAN design must provide the workforce with a common resource-access experience, regardless of location.

Carrier-based MPLS service is not always available or cost-effective for an organization to use exclusively for remote-site WAN connectivity. There are multiple WAN transport offerings that can be used simultaneously to create a robust, secure, and cost-effective WAN, including MPLS VPNs, Internet, Cellular (3G/LTE), and Carrier Ethernet. Internet-based IP VPNs offer attractive bandwidth pricing and can augment premium MPLS offerings or replace MPLS in some scenarios. A flexible network architecture should include all common WAN transport offerings as options without significantly increasing the complexity of the overall design.

While Internet IP VPN networks present an attractive option for effective WAN connectivity, anytime an organization sends data across a public network there is risk that the data will be compromised. Loss or corruption of data can result in a regulatory violation and can present a negative public image, either of which can have significant financial impact on an organization. Secure data transport over public networks like the Internet requires adequate encryption to protect business information.

Use Case: Secure Site-to-Site WAN Communications

This guide helps organizations connect remote sites over private (MPLS VPN) and public (Internet) IP networks, efficiently and securely.

This design guide enables the following network capabilities:

- Secure, encrypted communications solutions for up to 2000 locations by using a dynamic multipoint VPN (DMVPN) IPsec tunnel overlay configuration
- A multi-homed active-active connectivity solution for resiliency and efficient use of all WAN bandwidth, using single or dual routers in remote locations
- Support for IP Multicast and replication performed on core, hub-site routers
- Compatibility with public Internet networks where network address translation (NAT) is implemented
Cisco Intelligent WAN Overview

With the advent of globalization, WANs have become a major artery for communication between remote offices and customers in any corner of the world. Additionally, with data center consolidation, applications are moving to centralized data centers and clouds. WANs now play an even more critical role, because business survival is dependent on the availability and performance of the network.

Until now, the only way to get reliable connectivity with predictable performance was to take advantage of a private WAN using MPLS or leased line service. However, carrier-based MPLS and leased line services can be expensive and are not always cost-effective for an organization to use for WAN transport in order to support growing bandwidth requirements for remote-site connectivity. Organizations are looking for ways to lower operating budget while adequately providing the network transport for a remote site.

As bandwidth demands have increased, the Internet has become a much more stable platform, and the price-to-performance gains are very attractive. However, businesses are primarily deploying “Internet as WAN” in their smaller sites or as a backup path because of the risks. Now this cost-effective, performance-enhancing opportunity can be realized at all your branch offices with Cisco IWAN.

Cisco IWAN enables organizations to deliver an uncompromised experience over any connection. With Cisco IWAN IT organizations can provide more bandwidth to their branch office connections by using less expensive WAN transport options without affecting performance, security, or reliability. With the IWAN solution, traffic is dynamically routed based on application service-level agreement (SLA), endpoint type, and network conditions in order to deliver the best quality experience. The realized savings from IWAN not only pays for the infrastructure upgrades, but also frees resources for business innovation.

Figure 1 - Cisco IWAN solution components

Transport Independence

Using DMVPN, IWAN provides capabilities for easy multi-homing over any carrier service offering, including MPLS, broadband, and cellular 3G/4G/LTE. More importantly, the design simplifies the routing design with a single routing control plane and minimal peering to providers, making it easy for organizations to mix and match and change providers and transport options. Two or more WAN transport providers are recommended in order to increase network availability up to 99.999%. Additionally, the Cisco DMVPN solution provides an industry-proven and U.S. government FIPS 140-2 certified IPsec solution for data privacy and integrity protection, as
well as automatic site-to-site IP security (IPsec) tunnels. These tunnels can be set up using pre-shared keys or using a public key infrastructure with a certificate authority in the demilitarized zone (DMZ) in order to enroll and authorize the use of keys between routers.

Intelligent Path Control

Cisco Performance Routing (PfR) improves application delivery and WAN efficiency. PfR dynamically controls data packet forwarding decisions by looking at application type, performance, policies, and path status. PfR monitors the network performance—jitter, packet loss, and delay—and makes decisions to forward critical applications over the best-performing path based on the application policy. Cisco PfR can intelligently load-balance traffic to efficiently use all available WAN bandwidth. IWAN intelligent path control is the key to providing a business-class WAN over Internet transport.

Application Optimization

Cisco Application Visibility and Control (AVC) and Cisco Wide Area Application Services (WAAS) provide application performance visibility and optimization over the WAN. With applications becoming increasingly opaque due to the increased reuse of well-known ports such as HTTP (port 80), static port classification of applications is no longer sufficient. Cisco AVC provides application awareness with deep packet inspection of traffic in order to identify and monitor applications’ performance. Cisco AVC allows IT to determine what traffic is running across the network, tune the network for business-critical services, and resolve network problems. With increased visibility into the applications on the network, better QoS and PfR policies can be enabled to help ensure that critical applications are properly prioritized across the network. Cisco WAAS provides application-specific acceleration capabilities that improve response times while reducing WAN bandwidth requirements.

Secure Connectivity

Secure connectivity protects the corporate communications and offloads user traffic directly to the Internet. Strong IPsec encryption, zone-based firewalls, and strict access controls are used to protect the WAN over the public Internet. Routing remote-site users directly to the Internet improves public cloud application performance while reducing traffic over the WAN. Cisco Cloud Web Security (CWS) service provides a cloud-based web proxy to centrally manage and secure user traffic accessing the Internet.

Design Overview

The *Cisco Intelligent WAN Design Guide* provides a design that enables highly available, secure, and optimized connectivity for multiple remote-site local area networks (LANs).

Transport-Independent WAN Design

A transport-independent design simplifies the WAN deployment by using an IPsec VPN overlay over all WAN transport options including MPLS, Internet, and Cellular (3G/4G). A single VPN overlay reduces routing and security complexity, and provides flexibility in choosing providers and transport options. Cisco DMVPN provides the IWAN IPsec overlay.

DMVPN makes use of multipoint generic routing encapsulation (mGRE) tunnels to interconnect the hub to all of the spoke routers. These mGRE tunnels are also sometimes referred to as DMVPN clouds in this context. This technology combination supports unicast, multicast, and broadcast IP, including the ability to run routing protocols within the tunnels.
Internet as WAN Transport

The Internet is essentially a large-scale public IP WAN composed of multiple interconnected service providers. The Internet can provide reliable high-performance connectivity between various locations, although it lacks any explicit guarantees for these connections. Despite its “best effort” nature, the Internet is a sensible choice for augmenting premium MPLS VPN transports or as a primary WAN transport in some cases. The IWAN architecture leverages two or more providers for resiliency and application availability. Provider path diversity provides the foundation for PfR to route around fluctuations in the providers’ performance.

Internet connections are typically included in discussions relevant to the Internet edge, specifically for the primary site. Remote-site routers also commonly have Internet connections but do not provide the same breadth of services using the Internet. For security and other reasons, Internet access at remote sites is often routed through the primary site.

This design guide uses both MPLS and the Internet for VPN site-to-site connections.

Dynamic Multipoint VPN

DMVPN is a solution for building scalable site-to-site VPNs that support a variety of applications. DMVPN is widely used for encrypted site-to-site connectivity over public or private IP networks and can be implemented on all WAN routers used in this design guide.

DMVPN was selected for the secure overlay WAN solution because DMVPN supports on-demand full mesh connectivity over any carries transport with a simple hub-and-spoke configuration. DMVPN also supports spoke routers that have dynamically assigned IP addresses.

DMVPN makes use of multipoint generic routing encapsulation (mGRE) tunnels to interconnect the hub to all of the spoke routers. These mGRE tunnels are also sometimes referred to as DMVPN clouds in this context. This technology combination supports unicast, multicast, and broadcast IP, including the ability to run routing protocols within the tunnels.

Ethernet

The WAN transports mentioned previously use Ethernet as a standard media type. Ethernet is becoming a dominant carrier handoff in many markets and it is relevant to include Ethernet as the primary media in the tested architectures. Much of the discussion in this guide can also be applied to non-Ethernet media (such as T1/E1, DS-3, OC-3, and so on), but they are not explicitly discussed.

WAN-Aggregation Designs

This guide describes two IWAN design models.

The first design model is the IWAN Hybrid, which uses MPLS paired with Internet VPN as WAN transports. In this design model, the MPLS WAN can provide more bandwidth for the critical classes of services needed for key applications and can provide SLA guarantees for these applications. The second design model is the IWAN Dual Internet, which uses a pair of Internet service providers to further reduce cost while maintaining a high level of resiliency for the WAN. A third design model, the IWAN Dual MPLS, is not covered in this guide.
The IWAN WAN-aggregation (hub) designs for both design models include two WAN edge routers.

When WAN aggregation routers are referred to in the context of the connection to a carrier or service provider, they are typically known as customer edge (CE) routers. WAN aggregation routers that terminate VPN traffic are referred to as VPN hub routers. In the context of IWAN, a MPLS A CE router is also used as a VPN hub router. Regardless of the design model, the WAN aggregation routers always connect into a pair of distribution layer switches.

Each of the design models is shown with LAN connections into either a collapsed core/distribution layer or a dedicated WAN distribution layer. From the WAN-aggregation perspective, there are no functional differences between these two methods.

In all of the WAN-aggregation designs, tasks such as IP route summarization are performed at the distribution layer. There are other various devices supporting WAN edge services, and these devices should also connect into the distribution layer.

The characteristics of each design are discussed in the following sections.
IWAN Hybrid Design Model

The IWAN Hybrid design model:

- Has a single MPLS VPN carrier.
- Uses a single Internet carrier.
- Uses front-door virtual routing and forwarding (FVRF) on both MPLS and Internet links, with static default routing within the FVRF.

FVRF provides control plane separation from the providers and an additional security layer between inside and outside networks.

Figure 3 - WAN aggregation: IWAN hybrid design model

In both the IWAN Hybrid and IWAN Dual Internet design models, the DMVPN hub routers connect to the Internet indirectly through a firewall DMZ interface contained within the Internet edge. For details about the connection to the Internet, see the Firewall and IPS Technology Design Guide. The VPN hub routers are connected into the firewall DMZ interface, rather than connected directly with Internet service-provider routers. A firewall connection is typically not used when the VPN hub router connects to a MPLS carrier.
IWAN Dual Internet Design Model

The IWAN Dual Internet design model:

- Uses two Internet carriers.
- Uses Front Door VRF (FVRF) on both Internet links, with static default routing within the FVRF.

Figure 4 - WAN aggregation: IWAN dual Internet design model

WAN Remote-Site Designs

This guide documents multiple WAN remote-site designs, and they are based on various combinations of WAN transports mapped to the site specific requirements for service levels and redundancy.

Figure 5 - WAN remote-site design options
The remote-site designs include single or dual WAN edge routers. The remote-site routers are DMVPN spokes to the primary site hubs.

Most remote sites are designed with a single router WAN edge; however, certain remote-site types require a dual router WAN design. Dual router candidate sites include regional office or remote campus locations with large user populations or sites with business critical needs that justify additional redundancy to remove single points of failure.

The overall WAN design methodology is based on a primary WAN-aggregation site design that can accommodate all of the remote-site types that map to the various link combinations listed in the following table.

Table 1 - WAN remote-site transport options

<table>
<thead>
<tr>
<th>WAN remote-site routers</th>
<th>WAN transports</th>
<th>Primary transport</th>
<th>Secondary transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Dual</td>
<td>MPLS VPN</td>
<td>Internet</td>
</tr>
<tr>
<td>Dual</td>
<td>Dual</td>
<td>MPLS VPN</td>
<td>Internet</td>
</tr>
<tr>
<td>Single</td>
<td>Dual</td>
<td>Internet</td>
<td>Internet</td>
</tr>
<tr>
<td>Dual</td>
<td>Dual</td>
<td>Internet</td>
<td>Internet</td>
</tr>
</tbody>
</table>

This design guide also includes information for adding an LTE fallback DMVPN for a single-router remote site.

Table 2 - WAN remote-site transport options with LTE fallback

<table>
<thead>
<tr>
<th>WAN remote-site routers</th>
<th>WAN transports</th>
<th>Primary transport</th>
<th>Secondary transport</th>
<th>Tertiary transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Dual w/ fallback</td>
<td>MPLS VPN</td>
<td>Internet</td>
<td>4G LTE</td>
</tr>
<tr>
<td>Single</td>
<td>Dual w/ fallback</td>
<td>Internet</td>
<td>Internet</td>
<td>4G LTE</td>
</tr>
</tbody>
</table>

The modular nature of the IWAN network design enables you to create design elements that can be replicated throughout the network.

The WAN-aggregation designs and all of the WAN remote-site designs are standard building blocks in the overall design. Replication of the individual building blocks provides an easy way to scale the network and allows for a consistent deployment method.

WAN/LAN Interconnection

The primary role of the WAN is to interconnect primary site and remote-site LANs. The LAN discussion within this guide is limited to how the WAN-aggregation site LAN connects to the WAN-aggregation devices and how the remote-site LANs connect to the remote-site WAN devices. Specific details regarding the LAN components of the design are covered in the [Campus Wired LAN Technology Design Guide](#).
At remote sites, the LAN topology depends on the number of connected users and physical geography of the site. Large sites may require the use of a distribution layer to support multiple access layer switches. Other sites may only require an access layer switch directly connected to the WAN remote-site routers. The variants that are tested and documented in this guide are shown in the following table.

Table 3 - WAN remote-site LAN options

<table>
<thead>
<tr>
<th>WAN remote-site routers</th>
<th>WAN transports</th>
<th>LAN topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Dual</td>
<td>Access only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution/Access</td>
</tr>
<tr>
<td>Dual</td>
<td>Dual</td>
<td>Access only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution/Access</td>
</tr>
</tbody>
</table>

WAN Remotes Sites–LAN Topology

For consistency and modularity, all WAN remote sites use the same VLAN assignment scheme, which is shown in the following table. This design guide uses a convention that is relevant to any location that has a single access switch and this model can also be easily scaled to additional access closets through the addition of a distribution layer.

Table 4 - WAN remote-sites: VLAN assignment

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Usage</th>
<th>Layer 2 access</th>
<th>Layer 3 distribution/access</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN 64</td>
<td>Data 1</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>VLAN 69</td>
<td>Voice 1</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>VLAN 99</td>
<td>Transit (dual router only)</td>
<td>Yes</td>
<td>(dual router only)</td>
</tr>
<tr>
<td>VLAN 50</td>
<td>Router Link (1)</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>VLAN 54</td>
<td>Router Link (2)</td>
<td>–</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Layer 2 Access

WAN remote sites that do not require additional distribution layer routing devices are considered to be flat or from a LAN perspective they are considered un-routed Layer 2 sites. All Layer 3 services are provided by the attached WAN routers. The access switches, through the use of multiple VLANs, can support services such as data and voice. The design shown in the following figure illustrates the standardized VLAN assignment scheme. The benefits of this design are clear: all of the access switches can be configured identically, regardless of the number of sites in this configuration.

Access switches and their configuration are not included in this guide. The Campus Wired LAN Technology Design Guide provides configuration details on the various access switching platforms.

IP subnets are assigned on a per-VLAN basis. This design only allocates subnets with a 255.255.255.0 netmask for the access layer, even if less than 254 IP addresses are required. (This model can be adjusted as necessary to other IP address schemes.) The connection between the router and the access switch must be configured for 802.1Q VLAN trunking with sub-interfaces on the router that map to the respective VLANs on the switch. The various router sub-interfaces act as the IP default gateways for each of the IP subnet and VLAN combinations.
A similar LAN design can be extended to a dual-router edge as shown in the following figure. This design change introduces some additional complexity. The first requirement is to run a routing protocol. You need to configure enhanced interior gateway routing protocol (EIGRP) between the routers.

Because there are now two routers per subnet, a first-hop redundancy protocol (FHRP) must be implemented. For this design, Cisco selected hot standby router protocol (HSRP) as the FHRP. HSRP is designed to allow for transparent failover of the first-hop IP router. HSRP provides high network availability by providing first-hop routing redundancy for IP hosts configured with a default gateway IP address. HSRP is used in a group of routers for selecting an active router and a standby router. When there are multiple routers on a LAN, the active router forwards the packets; the standby router is the router that takes over when the active router fails or when preset conditions are met.

Enhanced object tracking (EOT) provides a consistent methodology for various router and switching features to conditionally modify their operation based on information objects available within other processes. The objects that can be tracked include interface line protocol, IP route reachability, and IP SLA reachability, as well as several others.

To improve convergence times after a primary WAN failure, HSRP has the capability to monitor the line-protocol status of the DMVPN tunnel interface. This capability allows for a router to give up its HSRP Active role if its DMVPN hub becomes unresponsive, and that provides additional network resiliency.
HSRP is configured to be active on the router with the highest priority WAN transport. EOT of the primary DMVPN tunnel is implemented in conjunction with HSRP so that in the case of WAN transport failure, the standby HSRP router associated with the lower priority (alternate) WAN transport becomes the active HSRP router.

The dual router designs also warrant an additional component that is required for proper routing in certain scenarios. In these cases, a traffic flow from a remote-site host might be sent to a destination reachable via the alternate WAN transport (for example, a dual DMVPN remote site communicating with a DMVPN2-only remote site). The primary WAN transport router then forwards the traffic out the same data interface to send it to the alternate WAN transport router, which then forwards the traffic to the proper destination. This is referred to as hairpinning.

The appropriate method to avoid sending the traffic out the same interface is to introduce an additional link between the routers and designate the link as a transit network (Vlan 99). There are no hosts connected to the transit network, and it is only used for router-router communication. The routing protocol runs between router sub-interfaces assigned to the transit network. No additional router interfaces are required with this design modification because the 802.1Q VLAN trunk configuration can easily accommodate an additional sub-interface.

Distribution and Access Layer

Large remote sites may require a LAN environment similar to that of a small campus LAN that includes a distribution layer and access layer. This topology works well with either a single or dual router WAN edge. To implement this design, the routers should connect via EtherChannel links to the distribution switch. These EtherChannel links are configured as 802.1Q VLAN trunks, to support both a routed point-to-point link to allow EIGRP routing with the distribution switch, and in the dual router design, to provide a transit network for direct communication between the WAN routers.

Figure 8 - IWAN single router remote-site: Connection to distribution layer
The distribution switch handles all access layer routing, with VLANs trunked to access switches. No HSRP is required when the design includes a distribution layer. A full distribution and access layer design is shown in the following figure.
IP Multicast

IP Multicast allows a single IP data stream to be replicated by the infrastructure (routers and switches) and sent from a single source to multiple receivers. IP Multicast is much more efficient than multiple individual unicast streams or a broadcast stream that would propagate everywhere. IP telephony music on hold (MOH) and IP video broadcast streaming are two examples of IP Multicast applications.

To receive a particular IP Multicast data stream, end hosts must join a multicast group by sending an Internet group management protocol (IGMP) message to their local multicast router. In a traditional IP Multicast design, the local router consults another router in the network acting as a rendezvous point (RP). An RP maps the receivers to active sources so the end hosts can join their streams.

The RP is a control-plane operation that should be placed in the core of the network or close to the IP Multicast sources on a pair of Layer 3 switches or routers. IP Multicast routing begins at the distribution layer if the access layer is Layer 2 and provides connectivity to the IP Multicast RP. In designs without a core layer, the distribution layer performs the RP function.

This design is fully enabled for a single global scope deployment of IP Multicast. The design uses an Anycast RP implementation strategy. This strategy provides load sharing and redundancy in protocol-independent multicast sparse mode (PIM SM) networks. Two RPs share the load for source registration and the ability to act as hot backup routers for each other.

The benefit of this strategy from the WAN perspective is that all IP routing devices within the WAN use an identical configuration referencing the Anycast RPs. IP PIM-SM is enabled on all interfaces including loopbacks, VLANs and sub-interfaces.

Quality of Service

Most users perceive the network as just a transport utility mechanism to shift data from point A to point B as fast as it can. Many sum this up as just “speeds and feeds.” While it is true that IP networks forward traffic on a best-effort basis by default, this type of routing only works well for applications that adapt gracefully to variations in latency, jitter, and loss. However networks are multiservice by design and support real-time voice and video as well as data traffic. The difference is that real-time applications require packets to be delivered within the specified delay, jitter, and loss parameters.

In reality, the network affects all traffic flows and must be aware of end-user requirements and services being offered. Even with unlimited bandwidth, time-sensitive applications are affected by jitter, delay, and packet loss. Quality of service (QoS) enables a multitude of user services and applications to coexist on the same network.

Within the architecture, there are connectivity options that provide advanced classification, prioritizing, queuing, and congestion-avoidance as part of the integrated QoS in order to help ensure optimal use of network resources. This functionality allows for the differentiation of applications, ensuring that each has the appropriate share of the network resources to protect the user experience and ensure the consistent operations of business critical applications.

QoS is an essential function of the network infrastructure devices used throughout this architecture. QoS enables a multitude of user services and applications, including real-time voice, high-quality video, and delay-sensitive data to coexist on the same network. In order for the network to provide predictable, measurable, and sometimes guaranteed services, it must manage bandwidth, delay, jitter, and loss parameters.

There are twelve common service classes that are grouped together based on interface speed, available queues, and device capabilities. The treatment of the twelve classes can be adjusted according to the policies of your organization. Cisco recommends marking your traffic in a granular manner to make it easier to make the appropriate queuing decisions at different places in the network. The goal of this design is to allow you to enable voice, video, critical data applications, bulk data applications and management traffic on the network, either during the initial deployment or later, with minimal system impact and engineering effort.
The twelve mappings in the following table are applied throughout this design by using an eight-class model in the enterprise and a six-class model in the service provider network.

Table 5 - QoS service class mappings

<table>
<thead>
<tr>
<th>Service class</th>
<th>Per-hop-behavior (PHB)</th>
<th>Differentiated services code point (DSCP)</th>
<th>Application examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network control</td>
<td>CS6</td>
<td>48</td>
<td>EIGRP, OSPF, BGP, HSRP, IKE</td>
</tr>
<tr>
<td>VoIP telephony</td>
<td>EF</td>
<td>46</td>
<td>Cisco IP Phones (G.711, G.729)</td>
</tr>
<tr>
<td>Call signaling</td>
<td>CS3</td>
<td>24</td>
<td>SCCP, SIP, H.323</td>
</tr>
<tr>
<td>Multimedia conferencing</td>
<td>AF4</td>
<td>34, 36, 38</td>
<td>Cisco TelePresence, Jabber, UC Video, WebEx</td>
</tr>
<tr>
<td>Real-time interactive</td>
<td>CS4</td>
<td>32</td>
<td>Cisco TelePresence (previous)</td>
</tr>
<tr>
<td>Multimedia streaming</td>
<td>AF3</td>
<td>26, 28, 30</td>
<td>Cisco Digital Media System (VoDs)</td>
</tr>
<tr>
<td>Broadcast video</td>
<td>CS5</td>
<td>40</td>
<td>Cisco IP Video Surveillance / Cisco Enterprise TV</td>
</tr>
<tr>
<td>Transactional data</td>
<td>AF2</td>
<td>18, 20, 22</td>
<td>ERP Apps, CRM Apps, Database Apps</td>
</tr>
<tr>
<td>Operation, administration, and maintenance (OAM)</td>
<td>CS2</td>
<td>16</td>
<td>SNMP, SSH, Syslog</td>
</tr>
<tr>
<td>Bulk data</td>
<td>AF1</td>
<td>10, 12, 14</td>
<td>E-mail, FTP, Backup Apps, Content Distribution</td>
</tr>
<tr>
<td>Default “best effort”</td>
<td>DF</td>
<td>0</td>
<td>Default class</td>
</tr>
<tr>
<td>Scavenger</td>
<td>CS1</td>
<td>8</td>
<td>YouTube, iTunes, BitTorrent, Xbox Live</td>
</tr>
</tbody>
</table>

Per-Tunnel QoS for DMVPN

The Per-Tunnel QoS for DMVPN feature allows the configuration of a QoS policy on a DMVPN hub on a per-tunnel (spoke) basis. This feature allows you to apply a QoS policy on a tunnel instance (per-endpoint or per-spoke basis) in the egress direction for DMVPN hub-to-spoke tunnels. The QoS policy on a tunnel instance allows you to shape the tunnel traffic to individual spokes (parent policy) and to differentiate between traffic classes within the tunnel for appropriate treatment (child policy).

With simplified configurations, the hub site is prevented from sending more traffic than any single remote-site can handle. This ensures high bandwidth hub sites do not overrun remote-sites with lower bandwidth allocations.

Intelligent Path Control

Intelligent path control improves application delivery and WAN efficiency using PfR. PfR uses policies to dynamically control data packet forwarding by looking at application type, performance, and path status. PfR continuously monitors the network performance for jitter, packet loss and delay, and then it makes decisions to forward critical applications over the best performing path based on the application policy. PfR can evenly distribute traffic to maintain equivalent link utilization levels by using an advanced load balancing technique, even over links with differing bandwidth capacities.

Cisco PfR consists of border routers (BRs) that connect to the DMVPN overlay networks for each carrier network and a master controller (MC) application process that enforces policy. The BR collects traffic and path information and sends it to the MC at each site. The MC and BR can be configured on separate routers or the same router as shown in the figures below.
Figure 11 - Cisco Performance Routing: Hub location

Figure 12 - Cisco Performance Routing: Remote site options

IWAN intelligent path control is the key to providing a business-class WAN over an Internet transport.
Overall IWAN Architecture Design Goals

Overlay Transport (DMVPN)

All remote-site traffic must be encrypted when transported over public IP networks such as the Internet. This design also encrypts traffic over private IP networks such as MPLS and 4G LTE. It is recommended that you enable encryption on DMVPN over all paths in order to ensure consistency in data privacy and operations.

The use of encryption should not limit the performance or availability of a remote-site application and should be transparent to end users.

IP Routing (EIGRP)

The design has the following IP routing goals:

- Provide optimal routing connectivity from primary WAN-aggregation sites to all remote locations
- Isolate WAN routing topology changes from other portions of the network
- Ensure active/standby symmetric routing when multiple paths exist, for ease of troubleshooting and to prevent oversubscription of IP telephony call admission control (CAC) limits
- Provide a solid underlying IP routed topology in order to support the Intelligent Path Control provided by Cisco Performance Routing.
- Provide site–site remote routing via the primary WAN-aggregation site (hub-and-spoke model)
- Permit optimal direct site–site remote routing (spoke-to-spoke model)
- Support IP Multicast sourced from the primary WAN-aggregation site

At the WAN remote sites, there is no local Internet access for web browsing or cloud services. This model is referred to as a **centralized Internet model**. It is worth noting that sites with Internet/DMVPN could potentially provide local Internet capability; however, for this design, only encrypted traffic to other DMVPN sites is permitted to use the Internet link. In the centralized Internet model, a default route is advertised to the WAN remote sites in addition to the internal routes from the data center and campus.

The use of local Internet access is covered separately from this guide.

The network must tolerate single failure conditions including the failure of any single WAN transport link or any single network device at the primary WAN-aggregation site.

Quality of Service

The network must ensure that business applications perform across the WAN during times of network congestion. Traffic must be classified and queued and the WAN connection must be shaped to operate within the capabilities of the connection. When the WAN design uses a service provider offering with QoS, the WAN edge QoS classification and treatment must align to the service provider in order to ensure consistent end-to-end QoS treatment of traffic.
Path Optimization (Performance Routing)

The network must protect business critical applications from fluctuating WAN performance by using the best-performing path based on the application policy. The design must also intelligently load-balance traffic in order to reduce an organization's overall communications expenses by allowing them to use a less expensive Internet transport without negatively affecting their mission critical traffic.

Remote sites classified as single-router, dual-link must be able tolerate the loss of either WAN transport. Remote sites classified as dual-router, dual-link must be able to tolerate the loss of either an edge router or a WAN transport.

LAN Access

All remote sites support both wired and wireless LAN access.

Design Parameters

This design guide uses certain standard design parameters and references various network infrastructure services that are not located within the WAN. These parameters are listed in the following table.

Table 6 - Universal design parameters

<table>
<thead>
<tr>
<th>Network service</th>
<th>IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain name</td>
<td>cisco.local</td>
</tr>
<tr>
<td>Active Directory, DNS server, DHCP server</td>
<td>10.4.48.10</td>
</tr>
<tr>
<td>Cisco Secure Access Control System (ACS)</td>
<td>10.4.48.15</td>
</tr>
<tr>
<td>Network Time Protocol (NTP) server</td>
<td>10.4.48.17</td>
</tr>
</tbody>
</table>
Deploying the Transport Independent Design

Design Overview

DMVPN Hub Routers

The most critical devices are the WAN routers that are responsible for reliable IP forwarding and QoS. The amount of bandwidth required at each site determines which model of router to use. The IWAN Hybrid and Dual Internet designs both require dual WAN aggregation routers to support the pair of DMVPN clouds that are required in order to provide resilient connections to all of the remote sites.

Cisco ASR 1000 Series Aggregation Services Routers represent the next-generation, modular, services-integrated Cisco routing platform. They are specifically designed for WAN aggregation, with the flexibility to support a wide range of 3- to 16-mpps (millions of packets per second) packet-forwarding capabilities, 2.5- to 200-Gbps system bandwidth performance, and scaling.

The Cisco ASR 1000 Series is fully modular from both hardware and software perspectives, and the routers have all the elements of a true carrier-class routing product that serves both enterprise and service-provider networks.

This design uses the following routers as DMVPN hub routers:
- Cisco ASR 1002-X router configured with an embedded services processor (ESP) default bandwidth of 5 Gbps upgradable with software licensing options to 10 Gbps, 20 Gbps and 36 Gbps.
- Cisco 4451X Integrated Services Router

Remote Sites—DMVPN Spoke Router Selection

The actual WAN remote-site routing platforms remain unspecified because the specification is tied closely to the bandwidth required for a location and the potential requirement for the use of service module slots. The ability to implement this solution with a variety of potential router choices is one of the benefits of a modular design approach.

There are many factors to consider in the selection of the WAN remote-site routers. Among those, and key to the initial deployment, is the ability to process the expected amount and type of traffic. You also need to make sure that you have enough interfaces, enough module slots, and a properly licensed Cisco IOS Software image that supports the set of features that is required by the topology.

The DMVPN spoke routers at the WAN remote sites connect to the Internet directly through a router interface. More details about the security configuration of the remote-site routers connected to the Internet are discussed later in this guide. The single link DMVPN remote site is the most basic of building blocks for any remote location. This design can be used with the DMVPN spoke router connected directly to the access layer, or it can support a more complex LAN topology by connecting the DMVPN spoke router directly to a distribution layer.
The IP routing is straightforward and can be handled entirely by static routes at the WAN-aggregation site and static default routes at the remote site. However, there is significant value to configuring this type of site with dynamic routing. It is easy to add or modify IP networks at the remote site when using dynamic routing because any changes are immediately propagated to the rest of the network. It is also easier to migrate to a full dual link IWAN design if DMVPN with dynamic routing is already enabled at single link sites.

Figure 13 - IWAN remote-site single-link (basic)

The first DMVPN connection is the primary WAN transport. You can add the second DMVPN link to an existing DMVPN single-link design in order to provide the resilient either connecting on the same router or on an additional router. By adding an additional link, you provide the first level of high availability for the remote site. A failure in the primary link can be automatically detected by the router and traffic can be rerouted to the secondary path. It is mandatory to run dynamic routing when there are multiple paths. The routing protocols are tuned to ensure the proper path selection.

The dual-router, dual-link design continues to improve upon the level of high availability for the site. This design can tolerate the loss of the primary router and traffic can be rerouted via the secondary router (through the alternate path).

Figure 14 - IWAN remote-site dual-link

VRFs and Front Door VRF

Virtual route forwarding (VRF) is a technology used in computer networks that allows multiple instances of a routing table to co-exist within the same router at the same time. Because the routing instances are independent, you can use the same or overlapping IP Addresses without conflicting with each other. Often in an L3 VPN context, VRF is also defined as VPN Route Forwarding.
IWAN uses VRF to provide the following:

- Default route separation between user traffic and DMVPN tunnel establishment
- Control and data plane separation between inside and outside networks for security purposes

You can implement VRF in a network device by having distinct routing tables, also known as Forwarding Information Bases (FIBs), one per VRF.

The simplest form of VRF implementation is VRF Lite. In this implementation, each router within the network participates in the virtual routing environment on a peer-by-peer basis. VRF Lite configurations are only locally significant.

The IP routing policy used in this design guide for the WAN remote sites does not allow direct Internet access for web browsing or other uses; any remote-site hosts that access the Internet must do so via the Internet edge at the primary site. The end hosts require a default route for all external and Internet destinations; however, this route must force traffic across the primary or secondary WAN transport DMVPN tunnels. DMVPN also has a default route requirement to establish tunnels between sites. The default route for the user traffic over DMVPN conflicts with the default route needed for DMVPN in order to establish tunnels between sites.

The multiple default route conundrum is solved through the use of VRFs on the router. A router can have multiple routing tables that are kept logically separate on the device. This separation is similar to a virtual router from the forwarding plane perspective. The global VRF corresponds to the traditional routing table, and additional VRFs are given names and route descriptors (RDs). Certain features on the router are VRF aware, including static routing and routing protocols, interface forwarding and IPSec tunneling. This set of features is used in conjunction with DMVPN to permit the use of multiple default routes for both the DMVPN hub routers and DMVPN spoke routers. This design uses global VRF for user traffic routing and a VRF for each WAN physical interface for DMVPN tunnel establishment. This combination of features is referred to as FVRF, because the VRF faces the WAN and the router internal LAN and DMVPN tunnel interfaces all remain in the global VRF. For more technical details regarding FVRF, see “Appendix B: Technical Feature Supplement.”

Figure 15 - Front door VRF (FVRF)
Design Details

In both the IWAN Hybrid and IWAN Dual Internet design models, the DMVPN hub routers must have sufficient IP-routing information in order to provide end-to-end reachability. Maintaining this routing information typically requires a routing protocol, and EIGRP or BGP are recommended for this purpose. However, a single end-to-end process named *IWAN-EIGRP* is used in this design guide for the WAN. You can also use Internal BGP (IBGP) as an overlay routing protocol and design guidance for IBGP will be added in the future.

At the WAN-aggregation site, you must connect the DMVPN hub routers to the WAN and configure default routing to build the DMVPN tunnels. The MPLS VPN hub uses default routing to the MPLS provider edge (PE) router, and the Internet VPN hubs use default routing to the DMZ-VPN that provides Internet connectivity. The DMVPN hub routers use FVRF and have a static default route with the IWAN-TRANSPORT VRF pointing to their respective next hops.

Figure 16 - IWAN hybrid design model: FVRF default routing

Figure 17 - IWAN dual Internet design model: FVRF default routing
EIGRP

Cisco uses EIGRP as the primary routing protocol because it is easy to configure, does not require a large amount of planning, has flexible summarization and filtering, and can scale to large networks. As networks grow, the number of IP prefixes or routes in the routing tables grows as well. You should program IP summarization on links where logical boundaries exist, like distribution layer links to the wide area or to a core. By performing IP summarization, you can reduce the amount of bandwidth, processor, and memory necessary to carry large route tables, as well as reduce convergence time associated with a link failure.

With the advances in EIGRP, this guide uses EIGRP named mode. The use of named mode EIGRP allows related EIGRP configurations to be centrally located in the configuration. Named mode EIGRP includes features such as wide metrics, supporting larger multi-gigabit links. For added security, EIGRP neighbor authentication has been implemented to prevent unauthorized neighbor associations.

Tech Tip

With EIGRP named mode configuration, EIGRP Wide Metric support is on by default and backward compatible with existing routes.

In this design, the primary EIGRP process (AS 400) is referred to as **IWAN-EIGRP** and uses EIGRP named configuration.

The IWAN-EIGRP process is configured in the WAN-aggregation site in order to connect to the primary site LAN distribution layer, across the DMVPN tunnels and at all WAN remote sites, including those with distribution-layer LAN topologies.

Encryption

The primary goal of encryption is to provide data confidentiality, integrity, and authenticity by encrypting IP packets as the data travels across a network.

The encrypted payloads are then encapsulated with a new header (or multiple headers) and transmitted across the network. The additional headers introduce a certain amount of overhead to the overall packet length. The following table highlights the packet overhead associated with encryption based on the additional headers required for various combinations of IPsec and GRE.

Table 7 - Overhead associated with IPsec and GRE

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRE only</td>
<td>24 bytes</td>
</tr>
<tr>
<td>IPsec (Transport Mode)</td>
<td>36 bytes</td>
</tr>
<tr>
<td>IPsec (Tunnel Mode)</td>
<td>52 bytes</td>
</tr>
<tr>
<td>IPsec (Transport Mode) + GRE</td>
<td>60 bytes</td>
</tr>
<tr>
<td>IPsec (Tunnel Mode) + GRE</td>
<td>76 bytes</td>
</tr>
</tbody>
</table>

There is a maximum transmission unit (MTU) parameter for every link in an IP network and typically the MTU is 1500 bytes. IP packets larger than 1500 bytes must be fragmented when transmitted across these links. Fragmentation is not desirable and can impact network performance. To avoid fragmentation, the original packet size plus overhead must be 1500 bytes or less, which means that the sender must reduce the original packet size. To account for other potential overhead, Cisco recommends that you configure tunnel interfaces with a 1400 byte MTU.
There are dynamic methods for network clients to discover the path MTU, which allow the clients to reduce the size of packets they transmit. However, in many cases, these dynamic methods are unsuccessful, typically because security devices filter the necessary discovery traffic. This failure to discover the path MTU drives the need for a method that can reliably inform network clients of the appropriate packet size. The solution is to implement the `ip tcp adjust mss [size]` command on the WAN routers, which influences the TCP maximum segment size (MSS) value reported by end hosts.

The MSS defines the maximum amount of data that a host is willing to accept in a single TCP/IP datagram. The MSS value is sent as a TCP header option only in TCP SYN segments. Each side of a TCP connection reports its MSS value to the other side. The sending host is required to limit the size of data in a single TCP segment to a value less than or equal to the MSS reported by the receiving host.

The IP and TCP headers combine for 40 bytes of overhead, so the typical MSS value reported by network clients will be 1460. This design includes encrypted tunnels with a 1400 byte MTU, so the MSS used by endpoints should be configured to be 1360 to minimize any impact of fragmentation. In this solution, you implement the `ip tcp adjust mss 1360` command on all WAN facing router interfaces.

IPsec security association (SA) anti-replay is a security service in which the decrypting router can reject duplicate packets and protect itself against replay attacks. Cisco QoS gives priority to high-priority packets. This prioritization may cause some low-priority packets to be discarded. Cisco IOS provides anti-replay protection against an attacker duplicating encrypted packets. By expanding the IPsec anti-replay window you can allow the router to keep track of more than the default of 64 packets. In this solution you implement the `crypto ipsec security-association replay window-size` command in order to increase the window size on all DMVPN routers.

IPsec uses a key exchange between the routers in order to encrypt/decrypt the traffic. You can exchange these keys by using a simple pre-sharing algorithm or a certificate authority. You can deploy IOS-CA in order to enroll, store, authenticate and distribute the keys to routers that request them. If a certificate authority is chosen, the certificates and keys can be distributed using the simple certificate enrollment protocol (SCEP) for automated certificate retrieval by the routers.

DMVPN

To address data security and privacy concerns, all IWAN traffic will be encrypted over DMVPN.

All use cases in the Cisco IWAN design are dual-link. The dual-link use cases require a DMVPN dual-cloud design, each with a single hub router. Multiple DMVPN hub routers are supported, but the current version of PfR supports only a single hub router per link. The DMVPN routers use tunnel interfaces that support IP unicast as well as IP multicast and broadcast traffic, including the use of dynamic routing protocols. After the initial spoke-to-hub tunnel is active, it is possible to create dynamic spoke-to-spoke tunnels when site-to-site IP traffic flows require it.

The information required by a spoke to set up dynamic spoke-to-spoke tunnels and properly resolve other spokes is provided through the next-hop resolution protocol (NHRP) within DMVPN. Spoke-to-spoke tunnels allow for the optimal routing of traffic between locations without indirect forwarding through the hub. Idle spoke-to-spoke tunnels gracefully time out after a period of inactivity.

It is common for a firewall to be placed between the DMVPN hub routers and the Internet. In many cases, the firewall may provide NAT from an internal RFC-1918 IP address (such as 192.168.146.10) to an Internet-routable IP address. The DMVPN solution works well with NAT but requires the use of IPsec transport mode to support a DMVPN hub behind static NAT.

The IWAN DMVPN design requires the use of Internet Key Management Protocol version 2 (IKEv2) keepalive intervals for dead peer detection (DPD), which is essential to facilitate fast reconvergence and for spoke registration to function properly in case a DMVPN hub is restarted. This design enables a spoke to detect that an encryption peer has failed and that the IKEv2 session with that peer is stale, which then allows a new one to be created.
Without DPD, the IPsec security association (SA) must time out (the default is 60 minutes) and when the router cannot renegotiate a new SA, a new IKEv2 session is initiated. The IWAN design with the recommended IKEv2 and DPD timers reduces this convergence time to 40 seconds.

One of the key benefits of the DMVPN solution is that the spoke routers can use dynamically assigned addresses, often using DHCP from an Internet provider. The spoke routers can leverage an Internet default route for reachability to the hub routers and also other spoke addresses.

The DMVPN hub routers have static IP addresses assigned to their public-facing interfaces. This configuration is essential for proper operation as each of the spoke routers have these IP addresses embedded in their configurations.
Deployment Details

How to Read Commands

This guide uses the following conventions for commands that you enter at the command-line interface (CLI).

Commands to enter at a CLI prompt:
- configure terminal

Commands that specify a value for a variable:
- ntp server 10.10.48.17

Commands with variables that you must define:
- class-map [highest class name]

Commands at a CLI or script prompt:
- Router# enable

Long commands that line wrap are underlined. Enter them as one command:
- police rate 10000 pps burst 10000 packets conform-action

Noteworthy parts of system output (or of device configuration files) are highlighted:
- interface Vlan64
- ip address 10.5.204.5 255.255.255.0

The procedures in this section provide examples for most settings. The actual settings and values that you use are determined by your current network configuration. The following optional process is used for both the IWAN hybrid design model and the IWAN dual Internet design model.

Configuring an IOS Certificate Authority

1. Configure the IOS CA platform
2. Configure the WAN-facing VRFs
3. Configure connectivity to the three networks
4. Configure certificate authority

Use this optional process if you want to deploy an IOS Certificate Authority (IOS CA) on a router in your DMZ with access from the internal network and the MPLS provider network. Skip this process if you are using pre-shared keys or if you plan to use a different certificate authority. You can create a more complex CA environment, but the same basic reachability principles will apply for an IWAN enabled solution.

For this process, you configure an IOS CA with three interfaces:
- The first interface on the internal LAN allows access from the hub routers and is also used for managing the router.
- The second interface on the DMZ allows access from remote site routers with Internet connectivity.
- The third interface on the MPLS provider network allows access from remote site routers with MPLS connectivity.
Each interface is in its own VRF and there is no routing between the interfaces. Three static routes allow the IOS CA to reach each network individually.

Figure 19 - IOS CA with three non-routed interfaces

Procedure 1 Configure the IOS CA platform

Step 1: Configure the device host name. Make it easy to identify the device.

```bash
hostname IWAN-IOS-CA
```

Step 2: Configure the local login and password.

The local login account and password provides basic access authentication to a router that provides only limited operational privileges. The enable password secures access to the device configuration mode. By enabling password encryption, you prevent the disclosure of plain text passwords when viewing configuration files.

```bash
username admin secret c1sco123
enable secret c1sco123
service password-encryption
aaa new-model
```

By default, https access to the router uses the enable password for authentication.

Step 3: (Optional) Configure centralized user authentication.

As networks scale in the number of devices to maintain, it poses an operational burden to maintain local user accounts on every device. A centralized authentication, authorization and accounting (AAA) service reduces operational tasks per device and provides an audit log of user access for security compliance and root cause analysis. When AAA is enabled for access control, AAA controls all management access to the network infrastructure devices (secure shell [SSH] and hypertext transfer protocol secure [HTTPS]).
Terminal access controller access control system plus (TACACS+) is the primary protocol used to authenticate management logins on the infrastructure devices to the AAA server. A local AAA user database is also defined (in Step 2) on each network infrastructure device in order to provide a fallback authentication source in case the centralized TACACS+ server is unavailable.

```
tacacs server TACACS-SERVER-1
  address ipv4 10.4.48.15
  key SecretKey

aaa group server tacacs+ TACACS-SERVERS
  server name TACACS-SERVER-1

aaa authentication login default group TACACS-SERVERS local
aaa authorization exec default group TACACS-SERVERS local
aaa authorization console
ip http authentication aaa
```

Step 4: Configure device management protocols.

HTTPS and SSH are secure replacements for the HTTP and Telnet protocols. They use secure sockets layer (SSL) and TLS in order to provide device authentication and data encryption.

Secure management of the network device is enabled through the use of the SSH and HTTPS protocols. Both protocols are encrypted for privacy and Telnet is turned off. SCP is enabled, which allows the use of code upgrades using Prime Infrastructure via SSH based SCP protocol. HTTP is needed for SCEP and CRL download.

Specify the transport `preferred none` on vty lines to prevent errant connection attempts from the CLI prompt. Without this command, if the ip name-server is unreachable, long timeout delays may occur for mistyped commands.

```
ip domain-name cisco.local
ip ssh version 2
ip http server
ip http secure-server
ip scp server enable
line vty 0 15
  transport input ssh
  transport preferred none
```

When synchronous logging of unsolicited messages and debug output is turned on, console log messages are displayed on the console after interactive CLI output is displayed or printed. With this command, you can continue typing at the device console when debugging is enabled.

```
line con 0
  transport preferred none
  logging synchronous
```

Enable SNMP in order to allow the network infrastructure devices to be managed by a NMS. SNMPv2c is configured both for a read-only and a read-write community string.

```
ssh-server community cisco RO
ssh-server community cisco123 RW
ssh-server ifindex persist ! IOS Classic Only
ssh ifmib ifindex persist ! IOS XE Only
```
Step 5: (Optional) In networks where network operational support is centralized, you can increase network security by using an access list to limit the networks that can access your device. In this example, only devices on the 10.4.48.0/24 network will be able to access the device via SSH or SNMP.

```
access-list 55 permit 10.4.48.0 0.0.0.255
line vty 0 15
  access-class 55 in

snmp-server community cisco RO 55
snmp-server community cisco123 RW 55
snmp-server ifindex persist ! IOS Classic Only
snmp ifmib ifindex persist ! IOS XE Only
```

Tech Tip

If you configure an access-list on the vty interface you may lose the ability to use ssh to login from one router to the next for hop-by-hop troubleshooting.

Step 6: Configure a synchronized clock.

The network time protocol (NTP) is designed to synchronize a network of devices. An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the organizations network.

A synchronized clock is an absolute requirement for routers using certificates, since certificates have a valid lifetime. The local NTP server typically references a more accurate clock feed from an outside source. By configuring console messages, logs, and debug output to provide time stamps on output, you can cross-reference events in a network.

```
ntp server 10.4.48.17

clock timezone PST -8
clock summer-time PDT recurring

service timestamps debug datetime msec localtime
service timestamps log datetime msec localtime
```

Procedure 2 Configure the WAN-facing VRFs

The VRF name is arbitrary, but it is useful to select a name that describes the VRF. The VRF must be enabled for IPv4.

This design uses VRF Lite, so the selection is only locally significant to the device. It is a best practice to use the same VRF/RD combination across multiple devices when using VRFs in a similar manner. However, this convention is not strictly required.

Step 1: Configure the public Internet and MPLS provider VRFs.
Example: DMZ facing VRF (public Internet)

```bash
vrf definition IWAN-PUBLIC
description IWAN PUBLIC (Internet DMZ)
address-family ipv4
```

Example: MPLS facing VRF (MPLS provider)

```bash
vrf definition IWAN-TRANSPORT-1
description IWAN TRANSPORT 1 (MPLS)
address-family ipv4
```

Procedure 3 Configure connectivity to the three networks

Each interface is in its own VRF and there is no routing between the interfaces. Three static routes allow the IOS CA to reach each network individually.

Table 8 - IOS CA IP address assignments

<table>
<thead>
<tr>
<th>Network</th>
<th>IP Address</th>
<th>NAT IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>10.6.24.11</td>
<td>N/A</td>
</tr>
<tr>
<td>Internet DMZ</td>
<td>192.168.144.127</td>
<td>172.16.140.110 (ISP-A)</td>
</tr>
<tr>
<td>MPLS Provider</td>
<td>192.168.6.254</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The NAT IP address is added in the “Configuring the Firewall and DMZ Switch” process later in this guide.

Step 1: The internal address is an inside address that can be accessed from the hub site or a remote site if the site is already up and running with a DMVPN tunnel.

```bash
interface GigabitEthernet0/0
description Internal
ip address 10.6.24.11 255.255.255.224
no shutdown
```

Step 2: The second interface is connected to the DMZ network. This address is only reachable from the IWAN-PUBLIC VFR and has NAT applied in order to be addressable via the Internet.

```bash
interface GigabitEthernet0/1
description Internet DMZ
vrf forwarding IWAN-PUBLIC
ip address 192.168.144.127 255.255.255.0
no shutdown
```

Step 3: The third interface is connected to the MPLS provider network. This address is reachable from the IWAN-TRANSPORT-1 VRF at a remote site before there is a DMVPN tunnel.

```bash
interface GigabitEthernet0/2
description MPLS Provider
vrf forwarding IWAN-TRANSPORT-1
ip address 192.168.6.254 255.255.255.252
no shutdown
```
Step 4: Configure IP routing using static routes.

Three static routes are configured. The first default static route is for traffic into the internal LAN. The second default static route is for the VRF IWAN-PUBLIC towards the Internet and the third default static route is for VRF IWAN-TRANSPORT-1 towards the MPLS provider.

```
ip route 0.0.0.0 0.0.0.0 10.6.24.1
ip route vrf IWAN-PUBLIC 0.0.0.0 0.0.0.0 192.168.144.1
ip route vrf IWAN-TRANSPORT-1 0.0.0.0 0.0.0.0 192.168.6.253
```

Procedure 4 Configure certificate authority

The following commands configure the certificate authority (CA) on the router. This CA can be part of a public key infrastructure (PKI) hierarchy, but only of IOS authorities, and the certificate from the root CA must be issued via SCEP.

Step 1: Configure the server.

```
crypto pki server IWAN-IOS-CA
database level complete
no database archive
issuer-name CN=IWAN-IOS-CA.cisco.local L=SanJose St=CA C=US
```

Step 2: Configure the server to use SCEP for issuing certificates.

```
grant auto
```

Step 3: Configure the lifetime for the issued certificates at 2 years. The time is in days.

```
lifetime certificate 730
```

Step 4: Configure the lifetime for the certificate server signing certificate at 3 years. The time is in days.

```
lifetime ca-certificate 1095
```

Step 5: Configure the location for certificate revocation lists.

Tech Tip

In order to force the parser to retain the embedded question mark within the specified location, enter CTRL+V prior to the question mark. If this action is not taken, CRL retrieval through HTTP returns an error message.

```
database url crl nvram:
```
Step 6: Start the server with the no shutdown command.

```plaintext
crypto pki server IWAN-IOS-CA
no shutdown
%Some server settings cannot be changed after CA certificate generation.
% Please enter a passphrase to protect the private key
% or type Return to exit
Password: cisco123

Re-enter password: cisco123
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 2 seconds)

% Certificate Server enabled.
IWAN-IOS-CA(cs-server)#

The following trustpoint and rsa keypair are automatically generated when you start the server:

crypto pki trustpoint IWAN-IOS-CA
revocation-check crl
rsakeypair IWAN-IOS-CA
```

Tech Tip

For more information, including options for configuring certificates, see the following document:

Configuring DMVPN Hub Router

1. Configure the distribution switch
2. Configure the WAN aggregation platform
3. Configure connectivity to the LAN
4. Configure the WAN-facing VRF
5. Connect to the MPLS WAN or Internet
6. Configure IKEv2 and IPsec
7. Configure the mGRE tunnel
8. Configure EIGRP

Use this process for both the IWAN hybrid design model and the IWAN dual Internet design model, and repeat it for each DMVPN hub router.

Table 9 - DMVPN Hub Router IP Addresses

<table>
<thead>
<tr>
<th>DMVPN Cloud</th>
<th>Hostname</th>
<th>Loopback IP Address</th>
<th>Port Channel IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid—Primary WAN</td>
<td>VPN-MPLS-ASR1002X-1</td>
<td>10.6.32.241/32</td>
<td>10.6.32.2/30</td>
</tr>
<tr>
<td>Hybrid—Secondary WAN</td>
<td>VPN-INET-4451X-2</td>
<td>10.6.32.242/32</td>
<td>10.6.32.6/30</td>
</tr>
<tr>
<td>Dual Internet—Primary WAN</td>
<td>VPN-INET-ASR1002X-3</td>
<td>10.6.32.243/32</td>
<td>10.6.32.18/30</td>
</tr>
<tr>
<td>Dual Internet—Secondary WAN</td>
<td>VPN-INET-ASR1002X-4</td>
<td>10.6.32.244/32</td>
<td>10.6.32.22/30</td>
</tr>
</tbody>
</table>

Procedure 1 Configure the distribution switch

Reader Tip

This process assumes that the distribution switch has already been configured following the guidance in the Campus Wired LAN Technology Design Guide. Only the procedures required to support the integration of the WAN aggregation router into the deployment are included.

The LAN distribution switch is the path to the organization’s main campus and data center. A Layer 3 port-channel interface connects to the distribution switch to the WAN aggregation router and the internal routing protocol peers across this interface.

Tech Tip

As a best practice, use the same channel numbering on both sides of the link where possible.
Step 1: Configure the Layer 3 port-channel interface and assign the IP address.

```
interface Port-channel1
  description VPN-MPLS-ASR1002X-1
  no switchport
  ip address 10.6.32.1 255.255.255.252
  ip pim sparse-mode
  load-interval 30
  no shutdown
```

Step 2: Configure EtherChannel member interfaces.

Configure the physical interfaces to tie to the logical port-channel using the `channel-group` command. The number for the port-channel and channel-group must match. Not all router platforms can support LACP to negotiate with the switch, so to keep the design consistent across the network, EtherChannel is configured statically, which also reduces startup times.

Also, apply the egress QoS macro that was defined in the platform configuration procedure in order to ensure traffic is prioritized appropriately.

```
interface GigabitEthernet1/0/1
  description VPN-MPLS-ASR1002X-1 Gig0/0/0

interface GigabitEthernet2/0/1
  description VPN-MPLS-ASR1002X-1 Gig0/0/1

interface range GigabitEthernet1/0/1, GigabitEthernet2/0/1
  no switchport
  channel-group 1 mode on
  logging event link-status
  logging event trunk-status
  logging event bundle-status
  load-interval 30
  no shutdown
  macro apply EgressQoS
```

Step 3: Allow the routing protocol to form neighbor relationships across the port channel interface.

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel1
    no passive-interface
    authentication mode md5
    authentication key-chain LAN-KEY
  exit-af-interface
  exit-address-family
```
Step 4: If you had previously configured EIGRP stub routing on your WAN distribution switch, disable the feature.

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  no eigrp stub
  exit-address-family
```

Step 5: On the distribution layer switch, configure the Layer 3 interface connected to the LAN core to summarize the WAN network ranges.

```
Tech Tip

It is a best practice to summarize IP routes from the WAN distribution layer towards the core.

```

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel38
    summary-address 10.6.32.0 255.255.248.0
    summary-address 10.7.0.0 255.255.0.0
    summary-address 10.255.240.0 255.255.248.0
  exit-af-interface
  exit-address-family
```

Procedure 2 | Configure the WAN aggregation platform

Within this design, there are features and services that are common across all WAN aggregation routers. These are system settings that simplify and secure the management of the solution.

Step 1: Configure the device host name. Make it easy to identify the device.

```
hostname VPN-MPLS-ASR1002X-1
```

Step 2: Configure local login and password.

The local login account and password provide basic access authentication to a router, which provides only limited operational privileges. The enable password secures access to the device configuration mode. By enabling password encryption, you prevent the disclosure of plain text passwords when viewing configuration files.

```
username admin secret cisco123
enable secret cisco123
service password-encryption
aaa new-model
```

By default, https access to the router will use the enable password for authentication.

Step 3: (Optional) Configure centralized user authentication.

As networks scale in the number of devices to maintain, it poses an operational burden to maintain local user accounts on every device. A centralized AAA service reduces operational tasks per device and provides an audit log of user access for security compliance and root cause analysis. When AAA is enabled for access control, AAA controls all management access to the network infrastructure devices (SSH and HTTPS).
TACACS+ is the primary protocol used to authenticate management logins on the infrastructure devices to the AAA server. A local AAA user database is also defined (in Step 2) on each network infrastructure device in order to provide a fallback authentication source in case the centralized TACACS+ server is unavailable.

```
tacacs server TACACS-SERVER-1
  address ipv4 10.4.48.15
  key SecretKey

aaa group server tacacs+ TACACS-SERVERS
  server name TACACS-SERVER-1

  aaa authentication login default group TACACS-SERVERS local
  aaa authorization exec default group TACACS-SERVERS local
  aaa authorization console

ip http authentication aaa
```

Step 4: Configure device management protocols.

Secure HTTPS and SSH are secure replacements for the HTTP and Telnet protocols. They use SSL and TLS in order to provide device authentication and data encryption.

Secure management of the network device is enabled through the use of the SSH and HTTPS protocols. Both protocols are encrypted for privacy and the nonsecure protocols, Telnet and HTTP, are turned off. SCP is enabled, which allows the use of code upgrades using Prime Infrastructure via SSH-based SCP protocol.

Specify the transport `preferred none` on vty lines in order to prevent errant connection attempts from the command line interface (CLI) prompt. Without this command, if the ip name-server is unreachable, long timeout delays may occur for mistyped commands.

```
  ip domain-name cisco.local
  ip ssh version 2
  no ip http server
  ip scp server enable
  line vty 0 15
    transport input ssh
    transport preferred none
```

When synchronous logging of unsolicited messages and debug output is turned on, console log messages are displayed on the console after interactive CLI output is displayed or printed. With this command, you can continue typing at the device console when debugging is enabled.

```
  line con 0
    transport preferred none
    logging synchronous
```

Enable SNMP in order to allow the network infrastructure devices to be managed by a Network Management System (NMS). SNMPv2c is configured both for a read-only and a read-write community string.

```
  snmp-server community cisco RO
  snmp-server community cisco123 RW
  snmp-server ifindex persist ! IOS Classic Only
  snmp ifmib ifindex persist ! IOS XE Only
```
Step 5: (Optional) In networks where network operational support is centralized, you can increase network security by using an access list to limit the networks that can access your device. In this example, only devices on the 10.4.48.0/24 network will be able to access the device via SSH or SNMP.

 access-list 55 permit 10.4.48.0 0.0.0.255
 line vty 0 15
 access-class 55 in

 snmp-server community cisco RO 55
 snmp-server community cisco123 RW 55
 snmp-server ifindex persist ! IOS Classic Only
 snmp ifmib ifindex persist ! IOS XE Only

Tech Tip

If you configure an access-list on the vty interface you may lose the ability to use ssh to login from one router to the next for hop-by-hop troubleshooting.

Step 6: Configure a synchronized clock.

NTP is designed to synchronize a network of devices. An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the organizations network.

You should program network devices to synchronize to a local NTP server in the network. The local NTP server typically references a more accurate clock feed from an outside source. By configuring console messages, logs, and debug output to provide time stamps on output, you can cross-reference events in a network.

 ntp server 10.4.48.17
 clock timezone PST -8
 clock summer-time PDT recurring

 service timestamps debug datetime msec localtime
 service timestamps log datetime msec localtime

Step 7: Configure an in-band management interface.

The loopback interface is a logical interface that is always reachable as long as the device is powered on and any IP interface is reachable to the network. Because of this capability, the loopback address is the best way to manage the router in-band. Layer 3 process and features are also bound to the loopback interface to ensure process resiliency.

The loopback address is commonly a host address with a 32-bit address mask. Allocate the loopback address from the IP address block that the router summarizes to the rest of the network.

 interface Loopback 0
 ip address 10.6.32.241 255.255.255.255
 ip pim sparse-mode

The `ip pim sparse-mode` command will be explained further in the process.
Bind the device processes for SNMP, SSH, PIM, TACACS+ and NTP to the loopback interface address for optimal resiliency:

- `snmp-server trap-source Loopback0`
- `ip ssh source-interface Loopback0`
- `ip pim register-source Loopback0`
- `ip tacacs source-interface Loopback0`
- `ntp source Loopback0`

Step 8: Configure IP unicast routing authentication key.

```
key chain LAN-KEY
key 1
  key-string cisco123
```

Step 9: Configure IP unicast routing using EIGRP named mode.

EIGRP is configured facing the LAN distribution or core layer. In this design, the port-channel interface and the loopback must be EIGRP interfaces. The loopback may remain a passive interface. Passive interfaces are used to prevent accidental peering and to reduce the EIGRP traffic on a network segment. The network range must include both interface IP addresses, either in a single network statement or in multiple network statements. This design uses a best practice of assigning the router ID to a loopback address.

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface default
  passive-interface
  exit-af-interface
  network 10.6.0.0 0.1.255.255
  eigrp router-id 10.6.32.241
  nsf
  exit-address-family
```

Step 10: Configure IP Multicast routing.

In this design, which is based on sparse mode multicast operation, Auto RP is used to provide a simple yet scalable way to provide a highly resilient RP environment.

Step 11: Enable IP Multicast routing on the platforms in the global configuration mode.

```
ip multicast-routing
```

Step 12: The Cisco ASR1000 series and ISR4000 series routers require the `distributed` keyword.

```
ip multicast-routing distributed
```

Step 13: Configure every Layer 3 switch and router to discover the IP Multicast RP with autorp. Use the `ip pim autorp listener` command to allow for discovery across sparse mode links. This configuration provides for future scaling and control of the IP Multicast environment and can change based on network needs and design.

```
ip pim autorp listener
```

Step 14: Enable sparse mode multicast operation.

```
ip pim sparse-mode
```
Procedure 3 Configure connectivity to the LAN

Any links to adjacent distribution layers should be Layer 3 links or Layer 3 EtherChannels.

Step 1: Enable QoS support for port-channel interfaces.

platform qos port-channel-aggregate 1

Tech Tip

This only applies to ASR1000 routers. If there is a requirement to configure QoS on the port-channel interface, make sure to enable platform support before you create the port-channel interface on the router.

platform qos port-channel-aggregate [port-channel number]

If you apply this command globally for an existing port-channel interface that already has been configured, you will receive an error:

"Port-channel 1 has been configured with non-aggregate mode already, please use different interface number that port-channel interface hasn’t been configured"

If you need to apply a QoS policy to an existing port-channel interface, you must first delete the existing port-channel interface and configure platform support for that port-channel interface number.

Step 2: Configure Layer 3 port-channel interface.

interface Port-channel1
 ip address 10.6.32.2 255.255.255.252
 ip pim sparse-mode
 no shutdown

Step 3: Configure EtherChannel member interfaces.

Configure the physical interfaces to tie to the logical port-channel using the channel-group command. The number for the port-channel and channel-group must match.

interface GigabitEthernet0/0/0
 description IW-WAN-D3750X Gig1/0/1

interface GigabitEthernet0/0/1
 description IW-WAN-D3750X Gig2/0/1

interface range GigabitEthernet0/0/0, GigabitEthernet0/0/1
 no ip address
 channel-group 1
 cdp enable
 no shutdown
Step 4: Configure the EIGRP interface.

Allow EIGRP to form neighbor relationships across the interface to establish peering adjacencies and exchange route tables. In this step, you configure EIGRP authentication by using the authentication key specified in the previous procedure.

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel1
  no passive-interface
  authentication mode md5
  authentication key-chain LAN-KEY
  exit-af-interface
  exit-address-family
```

Procedure 4 Configure the WAN-facing VRF

Next, you create a WAN-facing VRF in order to support FVRF for DMVPN. The VRF name is arbitrary but it is useful to select a name that describes the VRF. The VRF must be enabled for IPv4.

Table 10 - VRF assignments

<table>
<thead>
<tr>
<th>IWAN Design</th>
<th>Primary WAN VRF</th>
<th>Secondary WAN VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>Dual Internet</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
</tbody>
</table>

This design uses VRF Lite, so the selection is only locally significant to the device. It is a best practice to use the same VRF/RD combination across multiple devices when using VRFs in a similar manner. However, this convention is not strictly required.

Step 1: Configure the primary WAN VRF.

Example: Transport 1 in IWAN hybrid design model

```
vrf definition IWAN-TRANSPORT-1
  address-family ipv4
```

Procedure 5 Connect to the MPLS WAN or Internet

Each IWAN DMVPN hub requires a connection to the WAN transport, which is either MPLS or Internet.

If you are using MPLS in this design, the DMVPN hub is connected to the service provider’s MPLS PE router. The IP addressing used between IWAN CE and MPLS PE routers must be negotiated with your MPLS carrier.

If you are using the Internet in this design, the DMVPN hub is connected through a Cisco ASA 5500 Adaptive Security Appliance (ASA) using a DMZ interface specifically created and configured for a VPN termination router.
The IP address that you use for the Internet-facing interface of the DMVPN hub router must be an Internet-routable address. There are two possible methods for accomplishing this task:

- Assign a routable IP address directly to the router.
- Assign a non-routable RFC-1918 address directly to the router and use a static NAT on the Cisco ASA 5500 to translate the router IP address to a routable IP address.

This design assumes that the Cisco ASA 5500 is configured for static NAT for the DMVPN hub router.

Option 1: MPLS WAN physical WAN interface

The DMVPN design is using FVRF, so you must place the WAN interface into the VRF configured in the previous procedure.

Step 1: Enable the interface, select the VRF, and assign the IP address.
```
interface GigabitEthernet0/0/3
vrf forwarding IWAN-TRANSPORT-1
ip address 192.168.6.1 255.255.255.252
no shutdown
```

Step 2: If you are deploying an IOS CA for MPLS remote site routers, extend the MPLS provider network using a second physical interface.

The interface will have an IP address with a 30-bit mask on the same subnet as the IOS CA in the IWAN-TRANSPORT-1 VRF.
```
interface GigabitEthernet0/0/5
description IWAN-IOS-CA
vrf forwarding IWAN-TRANSPORT-1
ip address 192.168.6.253 255.255.255.252
no shutdown
```

Step 3: Configure the VRF-specific default routing.

The VRF created for FVRF must have its own default route to the MPLS. This default route points to the MPLS PE router’s IP address and is used by DMVPN for tunnel establishment.
```
ip route vrf IWAN-TRANSPORT-1 0.0.0.0 0.0.0.0 192.168.6.2
```

Option 2: Internet WAN physical WAN interface

The DMVPN design is using FVRF, so you must place the WAN interface into the VRF configured in Procedure 4, “Configure the WAN-facing VRF.”

Step 1: Enable the interface, select the VRF, and assign the IP address.
```
interface GigabitEthernet0/0/3
vrf forwarding IWAN-TRANSPORT-2
ip address 192.168.146.10 255.255.255.0
no shutdown
```
Step 2: Configure the VRF-specific default routing.

The VRF created for FVRF must have its own default route to the Internet. This default route points to the Cisco ASA 5500’s DMZ interface IP address.

```
   ip route vrf IWAN-TRANSPORT-2 0.0.0.0 0.0.0.0 192.168.146.1
```

Figure 20 - Physical and logical views for DMZ connection

Procedure 6 Configure IKEv2 and IPsec

The parameters in the tables below are used in this procedure. Use the values in the table that represents the design model that you are configuring.

Table 11 - Crypto parameters: IWAN hybrid design model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-1</td>
<td>DMVPN-KEYRING-2</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-1</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-1</td>
<td>DMVPN-PROFILE-TRANSPORT-2</td>
</tr>
</tbody>
</table>

Table 12 - Crypto Parameters: IWAN dual Internet design model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-3</td>
<td>DMVPN-KEYRING-4</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-3</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-3</td>
<td>DMVPN-PROFILE-TRANSPORT-4</td>
</tr>
</tbody>
</table>

IPsec uses a key exchange between the routers in order to encrypt/decrypt the traffic. These keys can be exchanged using a simple pre-sharing algorithm or a certificate authority. It is also possible to use a combination of the two, which is useful during a migration from one method to the other.
You have two options for configuring key exchange: using pre-shared keys or using a certificate authority.

Option 1: Configure with pre-shared keys

Step 1: Configure the crypto keyring for pre-shared keys.

The crypto keyring defines a pre-shared key (or password) valid for IP sources that are reachable within a particular VRF. This key is a wildcard pre-shared key if it applies to any IP source. A wildcard key is configured using the 0.0.0.0 0.0.0.0 as the network/mask combination.

```
crypto ikev2 keyring [keyring name]
  peer ANY
  address 0.0.0.0 0.0.0.0
  pre-shared-key [password]
```

Example: Primary WAN hub router in the IWAN hybrid design model

```
crypto ikev2 keyring DMVPN-KEYRING-1
  peer ANY
  address 0.0.0.0 0.0.0.0
  pre-shared-key cisco123
```

Step 2: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with Advanced Encryption Standard (AES) cipher with a 256-bit key
- Integrity with Secure Hash Standard (SHA) with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

```
VPN-MPLS-ASR1002X-1# show crypto ikev2 proposal
IKEv2 proposal: default
  Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
  Integrity : SHA512 SHA384 SHA256 SHA96 MD596
  PRF       : SHA512 SHA384 SHA256 SHA1 MD5
  DH Group  : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
```

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with **authentication local** and what methods will be accepted from remote locations with **authentication remote**. The **pre-share** keyword is used with the keyring defined above.

```
crypto ikev2 profile [profile name]
  match fvrf [vrf name]
  match identity remote address [IP address]
  authentication remote pre-share
  authentication local pre-share
  keyring local [keyring name]
```
Example: Primary WAN hub router in the IWAN hybrid design model

```
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-1
  match fvr fvr IWAN-TRANSPORT-1
  match identity remote address 0.0.0.0
  authentication remote pre-share
  authentication local pre-share
  keyring local DMVPN-KEYRING-1
```

Step 3: Define the IPsec transform set.

A transform set is an acceptable combination of security protocols, algorithms, and other settings to apply to IPsec-protected traffic. Peers agree to use a particular transform set when protecting a particular data flow.

The IPsec transform set for DMVPN uses the following:

- ESP with the 256-bit AES encryption algorithm
- ESP with the SHA (HMAC variant) authentication algorithm

Because the DMVPN hub router is behind a NAT device, the IPsec transform must be configured for transport mode.

```
crypto ipsec transform-set [transform set] esp-aes 256 esp-sha-hmac
  mode transport
```

Example

```
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
  mode transport
```

Step 4: Configure the IPSec profile.

The IPsec profile creates an association between an IKEv2 profile and an IPsec transform-set.

```
crypto ipsec profile [profile name]
  set transform-set [transform set]
  set ikev2-profile [ikev2 profile name]
```

Example: Primary WAN hub router in the IWAN hybrid design model

```
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-1
  set transform-set AES256/SHA/TRANSPORT
  set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-1
```

Step 5: Increase the IPsec anti-replay window size.

```
crypto ipsec security-association replay window-size [value]
```

Example

```
crypto ipsec security-association replay window-size 512
```
QoS queuing delays can cause anti-replay packet drops, so it is important to extend the window size in order to prevent the drops from occurring.

Increasing the anti-replay window size has no impact on throughput and security. The impact on memory is insignificant because only an extra 128 bytes per incoming IPsec SA is needed.

It is recommended that you use the maximum window size to eliminate future anti-replay problems. On the Cisco ASR 1000 router platform, the maximum replay window size is 512.

If you do not increase the window size, the router may drop packets and you may see the following error message on the router CLI:

```
%CRYPTO-4-PKT_REPLAY_ERR: decrypt: replay check failed
```

Step 6: Proceed to Procedure 7, “Configure the mGRE tunnel.”.

Option 2: Configure with a certificate authority

The crypto pki trustpoint is the method of specifying the parameters associated with a certificate authority (CA). The router must authenticate to the CA first and then enroll with the CA to obtain its own identity certificate.

Step 1: The fingerprint command limits the responding CA. You can find this fingerprint by using `show crypto pki server` on the IOS CA.

```
IWAN-IOS-CA# show crypto pki server
Certificate Server IWAN-IOS-CA:
   Status: enabled
   State: enabled
   Server’s configuration is locked  (enter "shut" to unlock it)
   Issuer name: CN=IWAN-IOS-CA.cisco.local L=SanJose St=CA C=US
   CA cert fingerprint: 75BEF625 9A9876CF 6F341FE5 86D4A5D8
   Granting mode is: auto
   Last certificate issued serial number (hex): 11
   CA certificate expiration timer: 10:28:57 PST Nov 11 2017
   CRL NextUpdate timer: 09:47:47 PST Dec 4 2014
   Current primary storage dir: nvram:
   Current storage dir for .crl files: nvram:
   Database Level: Complete - all issued certs written as <serialnum>.cer
```

Table 13 - IOS CA IP address assignments

<table>
<thead>
<tr>
<th>Network</th>
<th>IP Address</th>
<th>NAT IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>10.6.24.11</td>
<td>N/A</td>
</tr>
<tr>
<td>Internet DMZ</td>
<td>192.168.144.127</td>
<td>172.16.140.110 (ISP-A)</td>
</tr>
<tr>
<td>MPLS Provider</td>
<td>192.168.6.254</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Step 2: Configure the PKI trust point.

```
crypto pki trustpoint [name]
enrollment url [URL of IOS CA]
serial-number none
fqdn [fully qualified domain name of this router]
ip-address [Loopback IP address of this router]
fingerprint [fingerprint from IOS CA]
revocation-check none
rsakeypair [name] 2048 2048
```

Example: VPN-INET-ASR1002X-4

This example is from the secondary WAN hub router in the dual Internet design model. It can reach the IOS CA through the internal network at 10.6.24.11 using the default VRF.

```
crypto pki trustpoint IWAN-CA
  enrollment url http://10.6.24.11:80
  serial-number none
  fqdn VPN-INET-ASR1002X-4.cisco.local
  ip-address 10.6.32.244
  fingerprint 75BEF6259A9876CF6F341FE586D4A5D8
  revocation-check none
  rsakeypair IWAN-CA-KEYS 2048 2048
```

Step 3: Authenticate to the CA and obtain the CA's certificate

Exit the trustpoint configuration mode on the hub router and issue the following command to authenticate to the CA and get its certificate.

```
VPN-INET-ASR1002X-4 (config)# crypto pki authenticate IWAN-CA
Certificate has the following attributes:
  Fingerprint MD5: 75BEF625 9A9876CF 6F341FE5 86D4A5D8
  Fingerprint SHA1: 9C14D6F4 D1F08023 17A85669 52922632 C6B02928
  Trustpoint Fingerprint: 75BEF625 9A9876CF 6F341FE5 86D4A5D8
Certificate validated - fingerprints matched.
```

Step 4: When the trustpoint CA certificate is accepted, enroll with the CA, enter a password for key retrieval, and obtain a certificate for this hub router.

```
VPN-INET-ASR1002X-4 (config)# crypto pki enroll IWAN-CA

% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this
  password to the CA Administrator in order to revoke your certificate.
  For security reasons your password will not be saved in the configuration.
  Please make a note of it.

Password: cisco123
Re-enter password: cisco123

% The subject name in the certificate will include: VPN-INET-ASR1002X-4.cisco.
local
% The IP address in the certificate is 10.6.32.244

Request certificate from CA? [yes/no]: yes
% Certificate request sent to Certificate Authority
% The `show crypto pki certificate verbose IWAN-CA` command will show the fingerprint.

Step 5: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

```bash
VPN-MPLS-ASR1002X-4# show crypto ikev2 proposal
IKEv2 proposal: default
 Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
 Integrity: SHA512 SHA384 SHA256 SHA96 MD596
 PRF: SHA512 SHA384 SHA256 SHA1 MD5
 DH Group: DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
```

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote. The rsa-sig keyword is used when certificates contain the encryption key.

```bash
crypto ikev2 profile [profile name]
 match fvrf [vrf name]
 match identity remote address [IP address]
 authentication remote rsa-sig
 authentication local rsa-sig
 pki trustpoint [trustpoint name]
```

Example: Secondary WAN hub router in the dual Internet design model

```bash
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-4
 match fvrf IWAN-TRANSPORT-4
 match identity remote address 0.0.0.0
 authentication remote rsa-sig
 authentication local rsa-sig
 pki trustpoint IWAN-CA
```

Step 6: Define the IPsec transform set.

A transform set is an acceptable combination of security protocols, algorithms, and other settings to apply to IPsec-protected traffic. Peers agree to use a particular transform set when protecting a particular data flow.

The IPsec transform set for DMVPN uses the following:

- ESP with the 256-bit AES encryption algorithm
- ESP with the SHA (HMAC variant) authentication algorithm
Because the DMVPN hub router is behind a NAT device, you must configure the IPsec transform for transport mode.

```
crypto ipsec transform-set [transform set] esp-aes 256 esp-sha-hmac
 mode transport
```

**Example**

```
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
 mode transport
```

**Step 7:** Configure the IPSec profile.

The IPsec profile creates an association between an IKEv2 profile and an IPsec transform-set.

```
crypto ipsec profile [profile name]
 set transform-set [transform set]
 set ikev2-profile [ikev2 profile name]
```

**Example: Secondary WAN hub router in the dual Internet design model**

```
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-4
 set transform-set AES256/SHA/TRANSPORT
 set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-4
```

**Step 8:** Increase the IPsec anti-replay window size.

```
crypto ipsec security-association replay window-size [value]
```

**Example**

```
crypto ipsec security-association replay window-size 512
```

**Tech Tip**

QoS queuing delays can cause anti-replay packet drops, so it is important to extend the window size to prevent the drops from occurring.

Increasing the anti-replay window size has no impact on throughput and security. The impact on memory is insignificant because only an extra 128 bytes per incoming IPsec SA is needed.

It is recommended that you use the maximum window size to eliminate future anti-replay problems. On the Cisco ASR 1000 router platform, the maximum replay window size is 512.

If you do not increase the window size, the router may drop packets and you may see the following error message on the router CLI:

```
%CRYPTO-4-PKT_REPLAY_ERR: decrypt: replay check failed
```
Procedure 7  Configure the mGRE tunnel

The parameters in the table below are used in this procedure. Choose the rows that represent the design model that you are configuring. This procedure applies to the primary WAN hub router in the IWAN hybrid design model.

**Table 14 - DMVPN tunnel parameters**

<table>
<thead>
<tr>
<th>DMVPN cloud</th>
<th>Tunnel VRF</th>
<th>Tunnel Number</th>
<th>Tunnel IP address</th>
<th>NHRP network ID / Tunnel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid—Primary WAN</td>
<td>IWAN-TRANSPORT-1</td>
<td>10</td>
<td>10.6.34.1/23</td>
<td>101</td>
</tr>
<tr>
<td>Hybrid—Secondary WAN</td>
<td>IWAN-TRANSPORT-2</td>
<td>11</td>
<td>10.6.36.1/23</td>
<td>102</td>
</tr>
<tr>
<td>Dual Internet—Primary WAN</td>
<td>IWAN-TRANSPORT-3</td>
<td>20</td>
<td>10.6.38.1/23</td>
<td>201</td>
</tr>
<tr>
<td>Dual Internet—Secondary WAN</td>
<td>IWAN-TRANSPORT-4</td>
<td>21</td>
<td>10.6.40.1/23</td>
<td>202</td>
</tr>
</tbody>
</table>

**Step 1:** Configure the basic interface settings.

The tunnel number is arbitrary, but it is best to begin tunnel numbering at 10 or above, because other features deployed in this design may also require tunnels and they may select lower numbers by default.

The tunnel interface bandwidth setting should be set to match the bandwidth of the respective transport, which should correspond to the actual interface speed or, if you are using a subrate service, use the policed rate from the carrier.

Configure the `ip mtu` to 1400 and the `ip tcp adjust-mss` to 1360. There is a 40 byte difference that corresponds to the combined IP and TCP header length.

The tunnel interface throughput delay setting should be set to influence the routing protocol path preference. Set the primary WAN path to 10000 microseconds (usec) and the secondary WAN path to 20000 usec to prefer one over the other. The delay command is entered in 10 usec units.

```plaintext
interface Tunnel10
 bandwidth 1000000
 ip address 10.6.34.1 255.255.254.0
 no ip redirects
 ip mtu 1400
 ip tcp adjust-mss 1360
 delay 1000
```

**Step 2:** Configure the tunnel.

DMVPN uses mGRE tunnels. This type of tunnel requires a source interface only. Use the same source interface that you use to connect to the Internet. Set the `tunnel vrf` command to the VRF defined previously for FVRF.

Enabling encryption on this interface requires that you apply the IPsec profile configured in the previous procedure.

```plaintext
interface Tunnel10
 tunnel source GigabitEthernet0/0/3
 tunnel mode gre multipoint
 tunnel key 101
 tunnel vrf IWAN-TRANSPORT-1
 tunnel protection ipsec profile DMVPN-PROFILE-TRANSPORT-1
```
Step 3: Configure NHRP.

The DMVPN hub router acts in the role of NHRP server for all of the spokes. NHRP is used by remote routers to determine the tunnel destinations for peers attached to the mGRE tunnel.

NHRP requires all devices within a DMVPN cloud to use the same network ID and authentication key. The NHRP cache holdtime should be configured to 600 seconds.

EIGRP (configured in the following procedure) relies on a multicast transport and requires NHRP to automatically add routers to the multicast NHRP mappings.

The ip nhrp redirect command allows the DMVPN hub to notify spoke routers that a more optimal path may exist to a destination network, which may be required for DMVPN spoke-spoke direct communications.

```
interface Tunnel10
 ip nhrp authentication cisco123
 ip nhrp map multicast dynamic
 ip nhrp network-id 101
 ip nhrp holdtime 600
 ip nhrp redirect
```

Step 4: Enable PIM non-broadcast multiple access (NBMA) mode for the DMVPN tunnel.

Spoke-to-spoke DMVPN networks present a unique challenge because the spokes cannot directly exchange information with one another, even though they are on the same logical network. This inability to directly exchange information can also cause problems when running IP Multicast.

To resolve this issue requires a method where each remote PIM neighbor has its join messages tracked separately. A router in PIM NBMA mode treats each remote PIM neighbor as if it were connected to the router through a point-to-point link.

Tech Tip

Do not enable PIM on the Internet DMZ interface, as no multicast traffic should be requested from this interface.

```
interface Tunnel10
 ip pim sparse-mode
 ip pim nbma-mode
```

Procedure 8 Configure EIGRP

Step 1: Configure the EIGRP values for the mGRE tunnel interface.

Spoke-to-spoke DMVPN networks present a unique challenge because the spokes cannot directly exchange information with one another, even though they are on the same logical network. This limitation requires that the DMVPN hub router advertise routes from other spokes on the same network. This advertisement of these routes would normally be prevented by split horizon and can be overridden by the no split-horizon command.

The EIGRP hello interval is increased to 20 seconds and the EIGRP hold time is increased to 60 seconds in order to accommodate up to 2000 remote sites on a single DMVPN cloud.
Increasing the EIGRP timers also slows down the routing convergence to improve network stability and the IWAN design allows PfR to initiate the fast failover, so changing the timers is recommended for all IWAN deployments.

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel10
 hello-interval 20
 hold-time 60
 no passive-interface
 no split-horizon
 exit-af-interface
 exit-address-family
```

**Step 2:** Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the DMVPN tunnel interface.

```
key chain WAN-KEY
 key 1
 key-string cisco123
```

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel10
 authentication mode md5
 authentication key-chain WAN-KEY
 no passive-interface
 exit-af-interface
 exit-address-family
```

**Step 3:** Tag and filter the routes.

This design uses a single EIGRP autonomous system for the WAN and all of the WAN remote sites. Every remote site is dual connected for resiliency. However, due to the multiple paths that exist within this topology, you must try to avoid routing loops and to prevent remote sites from becoming transit sites if WAN failures were to occur.

In this design, there is a separate IP subnet for each DMVPN network and the EIGRP tags are defined as the NHRP network ID to help with readability and troubleshooting.

The following logic is used to control the routing.

- Each DMVPN network will have a unique EIGRP route tag to prevent routes from being re-advertised over the other DMVPN network.
- All prefixes that are advertised towards the WAN are tagged with the NHRP network ID of the DMVPN hub that advertises the route.
- All DMVPN learned WAN prefixes, except those that originate locally from a hub, are advertised towards the LAN and tagged with the DMVPN NHRP network ID of the hub that advertises the route.
- The IWAN design always uses DMVPN hub routers in pairs. Each DMVPN hub router blocks DMVPN WAN routes from the LAN that are tagged with the opposite hub’s DMVPN NHRP network ID.

Outbound distribute-lists are used to set tags on the DMVPN hub routers towards the WAN and LAN. The remote-site routers use the tags set towards the WAN in order to protect against becoming transit sites.
The DMVPN hub routers use an inbound distribute-list in order to limit which routes are accepted for installation into the route table. These routers are configured to only accept routes that do not originate from the MPLS and DMVPN WAN sources. To accomplish this task, during the route redistribution process, the DMVPN hub router must explicitly tag the DMVPN learned WAN routes. The following tables show specific route tags in use.

Table 15 - Route tag information for DMVPN IWAN hybrid hub routers

<table>
<thead>
<tr>
<th>DMVPN Hub</th>
<th>DMVPN prefix (tag)</th>
<th>Tag Tunnel</th>
<th>Tag LAN</th>
<th>Block LAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN-MPLS-ASR1002X-1</td>
<td>101 (MPLS)</td>
<td>101</td>
<td>101 (WAN routes)</td>
<td>102 (INET Tagged)</td>
</tr>
<tr>
<td>VPN-INET-4451X-2</td>
<td>102 (INET)</td>
<td>102</td>
<td>102 (WAN routes)</td>
<td>101 (MPLS Tagged)</td>
</tr>
</tbody>
</table>

Table 16 - Route tag information for DMVPN IWAN dual Internet hub routers

<table>
<thead>
<tr>
<th>DMVPN Hub</th>
<th>DMVPN prefix (tag)</th>
<th>Tag Tunnel</th>
<th>Tag LAN</th>
<th>Block LAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN-INET-ASR1002X-3</td>
<td>201 (INET1)</td>
<td>201</td>
<td>201 (WAN routes)</td>
<td>202 (INET2 Tagged)</td>
</tr>
<tr>
<td>VPN-INET-ASR1002X-4</td>
<td>202 (INET2)</td>
<td>202</td>
<td>202 (WAN routes)</td>
<td>201 (INET1 Tagged)</td>
</tr>
</tbody>
</table>

The following examples show both DMVPN hub routers in the IWAN hybrid design model.

Example: VPN-MPLS-ASR1002X-1

```plaintext
route-map SET-TAG-ALL permit 10
 description tag all routes advertised through the tunnel
 set tag 101

! All MPLS tunnel interfaces are in this IP address range
ip access-list standard DMVPN-1-SPOKES
 permit 10.6.34.0 0.0.1.255

route-map SET-TAG-DMVPN-1 permit 10
 description Tag routes sourced from DMVPN-1
 match ip route-source DMVPN-1-SPOKES
 set tag 101
route-map SET-TAG-DMVPN-1 permit 100
 description Advertise all other routes with no tag

route-map BLOCK-DMVPN-2 deny 10
 description Do not advertise routes sourced from DMVPN-2
 match tag 102
route-map BLOCK-DMVPN-2 permit 100

router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
topology base
distribute-list route-map SET-TAG-DMVPN-1 out Port-channel1
```
distribute-list route-map SET-TAG-ALL out Tunnel10

distribute-list route-map BLOCK-DMVPN-2 in Port-channel1

**Example: VPN-INET-ISR4451X-2**

route-map SET-TAG-ALL permit 10
description tag all routes advertised through the tunnel
set tag 102

! All INET tunnel interfaces are in this IP address range
ip access-list standard DMVPN-2-SPOKES
permit 10.6.36.0 0.0.1.255

route-map SET-TAG-DMVPN-2 permit 10
description Tag routes sourced from DMVPN-2
match ip route-source DMVPN-2-SPOKES
set tag 102
route-map SET-TAG-DMVPN-2 permit 100
description Advertise all other routes with no tag

route-map BLOCK-DMVPN-1 deny 10
description Do not advertise routes sourced from DMVPN-1
match tag 101
route-map BLOCK-DMVPN-1 permit 100

router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
topology base
distribute-list route-map SET-TAG-DMVPN-2 out Port-channel2
distribute-list route-map SET-TAG-ALL out Tunnel11
distribute-list route-map BLOCK-DMVPN-1 in Port-channel2
Configuring the Firewall and DMZ Switch

1. Configure the DMZ switch for DMVPN hub router
2. Configure the DMZ switch for IOS CA
3. Configure firewall DMZ interface
4. Configure network address translation
5. Configure security policy

If necessary, configure the DMZ and firewall for the Internet WAN.

**Procedure 1** Configure the DMZ switch for DMVPN hub router

---

**Reader Tip**

This procedure assumes that the switch has already been configured following the guidance in the *Campus Wired LAN Technology Design Guide*. Only the procedures required to support the integration of the firewall into the deployment are included.

**Step 1:** Set the DMZ switch to be the spanning tree root for the VLAN that contains the DMVPN hub router.

```plaintext
vlan 1118
name dmz-vm

spanning-tree vlan 1118 root primary
```

**Step 2:** Configure the interface that is connected to the DMVPN hub routers. Repeat as necessary.

```plaintext
interface GigabitEthernet1/0/1
description VPN-INET-4451X-2 (gig0/0/3)
switchport access vlan 1118
switchport host
logging event link-status
load-interval 30
no shutdown
macro apply EgressQoS
```
**Step 3:** Configure the interfaces that are connected to the appliances as a trunk.

```bash
interface GigabitEthernet1/0/48
 description IE-ASA5545Xa Gig0/1

interface GigabitEthernet2/0/48
 description IE-ASA5545Xb Gig0/1

interface range GigabitEthernet1/0/48, GigabitEthernet2/0/48
 switchport trunk allowed vlan add 1118
 switchport mode trunk
 logging event link-status
 logging event trunk-status
 load-interval 30
 no shutdown
 macro apply EgressQoS
```

---

**Procedure 2** Configure the DMZ switch for IOS CA

If you are using an IOS CA, configure the DMZ switch with the VLAN, port, and trunks.

**Step 1:** Configure the interface that is connected to the IOS CA.

```bash
interface GigabitEthernet1/0/20
 description IWAN-IOS-CA (gig 0/1)
 switchport access vlan 1116
 switchport mode access
 logging event trunk-status
 spanning-tree portfast
```

**Step 2:** Configure the interfaces that are connected to the appliances.

```bash
interface range GigabitEthernet1/0/48, GigabitEthernet2/0/48
 switchport trunk allowed vlan add 1116
```

---

**Procedure 3** Configure firewall DMZ interface

The firewall’s DMZ is a portion of the network where, typically, traffic to and from other parts of the network is tightly restricted. Organizations place network services in a DMZ for exposure to the Internet. These servers are typically not allowed to initiate connections to the ‘inside’ network, except for specific circumstances.

The DMZ network is connected to the appliances on the appliances’ GigabitEthernet interface via a VLAN trunk to allow the greatest flexibility if new VLANs must be added to connect additional DMZs. The trunk connects the appliances to a 2960X access-switch stack to provide resiliency. The DMZ VLAN interfaces on the Cisco ASA are each assigned an IP address, which will be the default gateway for each of the VLAN subnets.
The DMZ switch only offers Layer 2 switching capability; the DMZ switch’s VLAN interfaces do not have an IP address assigned, save for one VLAN interface with an IP address for management of the switch.

Figure 21 - DMZ VLAN topology and services

---

**Tech Tip**

By setting the DMZ connectivity as a VLAN trunk, you get the greatest flexibility.

**Step 1:** In **Configuration > Device Setup > Interfaces**, click the interface that is connected to the DMZ switch. (Example: GigabitEthernet0/1)

**Step 2:** Click **Edit**.

**Step 3:** Select **Enable Interface**, and then click **OK**.

**Step 4:** On the Interface pane, click **Add > Interface**.

**Step 5:** In the **Hardware Port** list choose the interface configured in Step 1. (Example: GigabitEthernet0/1)

**Step 6:** In the **VLAN ID** box, enter the VLAN number for the DMZ VLAN. (Example: 1118)

**Step 7:** In the **Subinterface ID** box, enter the VLAN number for the DMZ VLAN. (Example: 1118)

**Step 8:** Enter an **Interface Name**. (Example: dmz-dmvpn)

**Step 9:** In the **Security Level** box, enter a value of 75.

**Step 10:** Enter the interface **IP Address**. (Example: 192.168.146.1)

**Step 11:** Enter the interface **Subnet Mask**, and then click **OK**. (Example: 255.255.255.0)
Step 12: Click Apply.

Step 13: In Configuration > Device Management > High Availability > click Failover.

Step 14: On the Interfaces tab, for the interface created in Step 4, enter the IP address of the standby unit in the Standby IP address column. (Example: 192.168.146.2)

Step 15: Select Monitored.

Step 16: Click Apply.
**Step 17:** (Optional) Repeat this procedure for the IOS CA VLAN by using the appropriate information.

### Procedure 4  Configure network address translation

The DMZ network uses private network (RFC 1918) addressing that is not Internet routable, so the firewall must translate the DMZ address of the DMVPN hub router to an outside public address.

The example DMZ address to public IP address mapping is shown in the following table.

**Table 17 - DMVPN NAT address mapping**

<table>
<thead>
<tr>
<th>DMVPN</th>
<th>DMVPN hub router DMZ address</th>
<th>DMVPN hub router public address (externally routable after NAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWAN-TRANSPORT-2</td>
<td>192.168.146.10</td>
<td>172.16.140.1 (ISP-A)</td>
</tr>
<tr>
<td>IWAN-TRANSPORT-3</td>
<td>192.168.146.20</td>
<td>172.16.140.11 (ISP-A)</td>
</tr>
<tr>
<td>IWAN-TRANSPORT-4</td>
<td>192.168.146.21</td>
<td>172.17.140.11 (ISP-B)</td>
</tr>
</tbody>
</table>

**Table 18 - (Optional) IOS CA NAT address mapping**

<table>
<thead>
<tr>
<th>Device Name</th>
<th>IOS CA router DMZ address</th>
<th>IOS CA router public address (externally routable after NAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWAN-IOS-CA</td>
<td>192.168.144.127</td>
<td>172.16.140.110 (ISP-A)</td>
</tr>
<tr>
<td>IWAN-IOS-CA</td>
<td>192.168.144.127</td>
<td>172.17.140.110 (ISP-B)</td>
</tr>
</tbody>
</table>
First, to simplify the configuration of the security policy, you create the External DMZ network objects that are used in the firewall policies.

**Table 19 - External DMZ firewall network objects**

<table>
<thead>
<tr>
<th>Network object name</th>
<th>Object type</th>
<th>IP address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outside-dmvpn-2-ISPa</td>
<td>Host</td>
<td>172.16.140.1</td>
<td>DMVPN hub router 2 on ISP A (outside)</td>
</tr>
<tr>
<td>outside-dmvpn-3-ISPa</td>
<td>Host</td>
<td>172.16.140.11</td>
<td>DMVPN hub router 3 on ISP A (outside)</td>
</tr>
<tr>
<td>outside-dmvpn-4-ISPb</td>
<td>Host</td>
<td>172.17.140.11</td>
<td>DMVPN hub router 4 on ISP B (outside)</td>
</tr>
<tr>
<td>outside-iwan-ios-ca-ISPa (optional)</td>
<td>Host</td>
<td>172.16.140.110</td>
<td>IOS CA on ISP A for iWAN</td>
</tr>
<tr>
<td>outside-iwan-ios-ca-ISPb (optional)</td>
<td>Host</td>
<td>172.17.140.110</td>
<td>IOS CA on ISP B for iWAN</td>
</tr>
</tbody>
</table>

**Step 1:** Navigate to **Configuration > Firewall > Objects > Network Objects/Groups.**

**Step 2:** Click **Add > Network Object.**

The Add Network Object dialog box appears.

**Step 3:** In the **Name** box, enter the name. (Example: outside-dmvpn-2-ISPa)

**Step 4:** In the **Type** list, choose **Host** or **Network**. (Example: Host)

**Step 5:** In the **IP Address** box, enter the address. (Example: 172.16.140.1)

**Step 6:** In the **Description** box, enter a useful description, and then click **OK**. (Example: DMVPN hub router 2 on ISP A)

**Step 7:** Repeat Step 2 through Step 6 for each object listed in Table 19. If an object already exists, then skip to the next object listed in the table.
**Step 8:** After adding all of the objects listed, click **Apply** on the Network Objects/Groups pane.

Next, you add a network object for the private DMZ address of the DMVPN hub router.

**Table 20 - Private DMZ firewall network objects**

<table>
<thead>
<tr>
<th>Network object name</th>
<th>Object type</th>
<th>IP address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dmz-dmvpn-2</td>
<td>Host</td>
<td>192.168.146.10</td>
<td>DMVPN hub router 2 on vpn-dmz</td>
</tr>
<tr>
<td>dmz-dmvpn-3</td>
<td>Host</td>
<td>192.168.146.20</td>
<td>DMVPN hub router 3 on vpn-dmz</td>
</tr>
<tr>
<td>dmz-dmvpn-4</td>
<td>Host</td>
<td>192.168.146.21</td>
<td>DMVPN hub router 4 on vpn-dmz</td>
</tr>
<tr>
<td>dmz-iwan-ios-ca-ISPa</td>
<td>Host</td>
<td>192.168.144.127</td>
<td>IOS CA on DMZ to ISP-A</td>
</tr>
<tr>
<td></td>
<td>(optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dmz-iwan-ios-ca-ISPb</td>
<td>Host</td>
<td>192.168.144.127</td>
<td>IOS CA on DMZ to ISP-B</td>
</tr>
<tr>
<td></td>
<td>(optional)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Step 9:** Navigate to **Configuration > Firewall > Objects > Network Objects/Groups**.

**Step 10:** Click **Add > Network Object**.

The Add Network Object dialog box appears.

**Step 11:** In the **Name** box, enter the name. (Example: dmz-dmvpn-2)

**Step 12:** In the **Type** list, choose Host or Network. (Example: Host)

**Step 13:** In the **IP Address** box, enter the address. (Example: 192.168.146.10)

**Step 14:** In the **Description** box, enter a useful description, and then click **OK**. (Example: DMVPN hub router 2 on vpn-dmz)

**Step 15:** Click the two down arrows. The NAT pane expands.

**Step 16:** Select **Add Automatic Address Translation Rules**.

**Step 17:** In the **Translated Address** list, choose the network object created previously. (Example: outside-dmvpn-2-ISPa)

**Step 18:** Select **Use one-to-one address translation**, and then click **OK**.

**Step 19:** Repeat Step 10 through Step 18 for each object listed in Table 20. If an object already exists, then skip to the next object listed in the table.
Step 20: After adding all of the objects listed, click **Apply** on the Network Objects/Groups pane.

![Network Object Configuration](image)

**Procedure 5** **Configure security policy**

The VPN DMZ provides an additional layer of protection to lower the likelihood of certain types of misconfiguration of the DMVPN routers exposing the business network to the Internet. A filter allows only DMVPN related traffic to reach the DMVPN hub routers from the DMVPN spoke routers on the Internet.

**Step 1:** Navigate to **Configuration > Firewall > Access Rules.**
Table 21 - Firewall policy rules for DMZ-VPN DMVPN hub routers

<table>
<thead>
<tr>
<th>Interface</th>
<th>Action</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Description</th>
<th>Logging Enable / Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>udp/4500</td>
<td>(required) Allow (non500-ISAKMP) traffic to the DMVPN hub routers</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>udp/isakmp</td>
<td>(required) Allow ISAKMP (UDP500) traffic to the DMVPN hub routers</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>Esp</td>
<td>(required) Allow ESP IP protocol 50 IPsec traffic to the DMVPN hub routers</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>icmp/echo</td>
<td>(optional) Allow remote ping diagnostic traffic [ ICMP Type 0, Code 0 ]</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>icmp/echo reply</td>
<td>(optional) Allow remote pings reply diagnostic traffic [ICMP Type 8, Code 0 ]</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>icmp/time-exceeded</td>
<td>(optional) ICMP Type 11, Code 0</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>icmp/port-unreachable</td>
<td>(optional) ICMP Type 3, Code 3</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-vpn-network</td>
<td>&gt;udp/1023</td>
<td>(optional) UDP high ports</td>
<td>Selected / Default</td>
</tr>
<tr>
<td>Any</td>
<td>Permit</td>
<td>any4</td>
<td>dmz-networks</td>
<td>tcp/http</td>
<td>(optional) IOS CA Port 80 traffic</td>
<td>Selected / Default</td>
</tr>
</tbody>
</table>

Step 2: Click the rule that denies traffic from the DMZ toward other networks.

Caution

Be sure to perform this step for every rule listed in the previous table. Inserting the rules above the DMZ-to-any rule keeps the added rules in the same order as listed, which is essential for the proper execution of the security policy.

Step 3: Click Add > Insert.

The Add Access Rule dialog box appears.

Step 4: In the Interface list, choose the interface. (Example: Any)

Step 5: For the Action option, select the action. (Example: Permit)

Step 6: In the Source box, choose the source. (Example: any4)

Step 7: In the Destination box, choose the destination. (Example: dmz-vpn-network)
Step 8: In the **Service** box, enter the service. (Example: udp/4500)

Step 9: In the **Description** box, enter a useful description. (Example: Allow (non500-ISA)KMP) traffic to the DMVPN hub routers)

Step 10: Select or clear **Enable Logging**. (Example: Selected)

Step 11: In the **Logging Level** list, choose the logging level value, and then click **OK**. (Example: Default)

Step 12: Repeat Step 2 through Step 11 for all rules listed in Table 21.

Step 13: After adding all of the rules in the order listed, click **Apply** on the Access Rules pane.

*Figure 22 - Firewall rules summary*
Configuring Remote-Site DMVPN Router

1. Configure the WAN remote site router
2. Configure the WAN-facing VRF
3. Connect to the MPLS WAN or Internet
4. Configure IKEv2 and IPsec
5. Configure the mGRE Tunnel
6. Configure EIGRP
7. Configure IP multicast routing
8. Connect router to access layer switch
9. Configure access layer routing

These procedures describe configuring a single-router, dual-link design. You also use them when configuring the first router of a dual-router, dual-link design.
Refer to the following flowchart to help you navigate through the required procedures for your environment.

Figure 23 - Remote-site DMVPN router configuration flowchart

1. Configure the WAN Remote Site Router
2. Configure the WAN-facing VRF
3. Connect to the MPLS WAN or Internet
4. Configure IKEv2 and IPSec
5. Configure mGRE Tunnel
6. Configure EIGRP
7. Configure IP Multicast Routing

8. Connect Router to Access Layer Switch

Dual Router Design?

NO

9. Configure Access Layer Routing

Configure 2nd DMVPN for a Single Router Remote Site

YES

Dual Router Design Modification Procedures for 1st Router

1. Configure Access Layer HSRP
2. Configure Transit Network
3. Configure EIGRP on the Transit Network
4. Enable Enhanced Object Tracking

Remote Site Router to Distribution Layer

Configure 2nd DMVPN for a Single Router Remote Site

Configure 2nd Router at Remote Site

1. Connect Router to Distribution Layer
2. Configure EIGRP for Distribution Layer Link

Dual Router Design?

NO

3. Configure Transit Network for Dual Router Design

YES

Configure 2nd Router at Remote Site
**Procedure 1**  Configure the WAN remote site router

Within this design, there are features and services that are common across all WAN remote site routers. These are system settings that simplify and secure the management of the solution.

**Step 1:** Configure the device host name to make it easy to identify the device.

```
hostname [hostname]
```

**Step 2:** Configure a local login and password.

The local login account and password provides basic access authentication to a router which provides only limited operational privileges. The enable password secures access to the device configuration mode. By enabling password encryption, you prevent the disclosure of plain text passwords when viewing configuration files.

```
username admin secret cisco123
enable secret cisco123
service password-encryption
aaa new-model
```

By default, https access to the router will use the enable password for authentication.

**Step 3:** (Optional) Configure centralized user authentication.

As networks scale in the number of devices to maintain it poses an operational burden to maintain local user accounts on every device. A centralized AAA service reduces operational tasks per device and provides an audit log of user access for security compliance and root cause analysis. When AAA is enabled for access control, all management access to the network infrastructure devices (SSH and HTTPS) is controlled by AAA.

TACACS+ is the primary protocol used to authenticate management logins on the infrastructure devices to the AAA server. A local AAA user database is also defined on each network infrastructure device to provide a fallback authentication source in case the centralized TACACS+ server is unavailable.

```
tacacs server TACACS-SERVER-1
 address ipv4 10.4.48.15
 key SecretKey

aaa group server tacacs+ TACACS-SERVERS
 server name TACACS-SERVER-1

 aaa authentication login default group TACACS-SERVERS local
 aaa authorization exec default group TACACS-SERVERS local
 aaa authorization console
 ip http authentication aaa
```

**Step 4:** Configure the device management protocols.

HTTPS and SSH are secure replacements for the HTTP and Telnet protocols. They use SSL and TLS to provide device authentication and data encryption.

Secure management of the network device is enabled through the use of the SSH and HTTPS protocols. Both protocols are encrypted for privacy and the nonsecure protocols, Telnet and HTTP, are turned off. SCP is enabled, which allows the use of code upgrades using Prime Infrastructure via SSH-based SCP protocol.
Specify the transport preferred none on vty lines to prevent errant connection attempts from the CLI prompt. Without this command, if the ip name-server is unreachable, long timeout delays may occur for mistyped commands.

```
ip domain-name cisco.local
ip ssh version 2
no ip http server
ip http secure-server
ip scp server enable
line vty 0 15
 transport input ssh
 transport preferred none
```

**Step 5:** When synchronous logging of unsolicited messages and debug output is turned on, console log messages are displayed on the console after interactive CLI output is displayed or printed. With this command, you can continue typing at the device console when debugging is enabled.

```
line con 0
 transport preferred none
 logging synchronous
```

**Step 6:** Enable SNMP. This allows the network infrastructure devices to be managed by a NMS. SNMPv2c is configured both for a read-only and a read-write community string.

```
snmp-server community cisco RO
snmp-server community cisco123 RW
snmp-server ifindex persist ! IOS Classic Only
snmp ifmib ifindex persist ! IOS XE Only
```

**Step 7:** (Optional) In networks where network operational support is centralized you can increase network security by using an access list to limit the networks that can access your device. In this example, only devices on the 10.4.48.0/24 network will be able to access the device via SSH or SNMP.

```
access-list 55 permit 10.4.48.0 0.0.0.255
line vty 0 15
 access-class 55 in
```

```
snmp-server community cisco RO 55
snmp-server community cisco123 RW 55
snmp-server ifindex persist ! IOS Classic Only
snmp ifmib ifindex persist ! IOS XE Only
```

---

**Tech Tip**

If you configure an access-list on the vty interface you may lose the ability to use ssh to login from one router to the next for hop-by-hop troubleshooting.

---

**Step 8:** Configure a synchronized clock.

NTP is designed to synchronize a network of devices. An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the organizations network.
You should program network devices to synchronize to a local NTP server in the network. The local NTP server typically references a more accurate clock feed from an outside source. By configuring console messages, logs, and debug output to provide time stamps on output, you can cross-reference events in a network.

```
ntp server 10.4.48.17
ntp update-calendar

clock timezone PST -8
clock summer-time PDT recurring

service timestamps debug datetime msec localtime
service timestamps log datetime msec localtime
```

**Step 9:** Configure an in-band management interface.

The loopback interface is a logical interface that is always reachable as long as the device is powered on and any IP interface is reachable to the network. Because of this capability, the loopback address is the best way to manage the router in-band. Layer 3 process and features are also bound to the loopback interface to ensure process resiliency.

The loopback address is commonly a host address with a 32-bit address mask. Allocate the loopback address from a unique network range that is not part of any other internal network summary range.

```
interface Loopback 0
 ip address [ip address] 255.255.255.255
 ip pim sparse-mode
```

The `ip pim sparse-mode` command will be explained in the next step.

Bind the device processes for SNMP, SSH, PIM, TACACS+ and NTP to the loopback interface address for optimal resiliency:

```
snmp-server trap-source Loopback0
ip ssh source-interface Loopback0
ip pim register-source Loopback0
ip tacacs source-interface Loopback0
ntp source Loopback0
```

**Step 10:** Configure IP Multicast routing.

In this design, which is based on sparse mode multicast operation, Auto RP is used to provide a simple yet scalable way to provide a highly resilient RP environment.

Enable IP Multicast routing on the platforms in the global configuration mode.

```
ip multicast-routing
```

Every Layer 3 switch and router must be configured to discover the IP Multicast RP with autorp. Use the `ip pim autorp listener` command to allow for discovery across sparse mode links. This configuration provides for future scaling and control of the IP Multicast environment and can change based on network needs and design.

```
ip pim autorp listener
```

All Layer 3 interfaces in the network must be enabled for sparse mode multicast operation.

```
ip pim sparse-mode
```
**Procedure 2** Configure the WAN-facing VRF

You create a WAN-facing VRF in order to support FVRF for DMVPN. The VRF name is arbitrary, but it is useful to select a name that describes the VRF. The VRF must be enabled for IPv4.

**Table 22 - VRF assignments**

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Primary WAN VRF</th>
<th>Secondary WAN VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>Dual Internet</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
</tbody>
</table>

This design uses VRF Lite, so the selection is only locally significant to the device. It is a best practice to use the same VRF/RD combination across multiple devices when using VRFs in a similar manner. However, this convention is not strictly required.

**Step 1:** Configure the primary WAN VRF.

**Example: Primary WAN in the IWAN hybrid design model**

```bash
vrf definition IWAN-TRANSPORT-1
address-family ipv4
```

**Procedure 3** Connect to the MPLS WAN or Internet

The remote sites that are using DMVPN can use either static or dynamically assigned IP addresses. Cisco tested the design with static addresses for MPLS connections and DHCP assigned external addresses for Internet connections, which also provides a dynamically configured default route.

If you are using MPLS in this design, the DMVPN spoke router is connected to the service provider’s MPLS PE router. The IP addressing used between IWAN CE and MPLS PE routers must be negotiated with your MPLS carrier.

The DMVPN spoke router connects directly to the Internet without a separate firewall. This connection is secured in two ways. Because the Internet interface is in a separate VRF, no traffic can access the global VRF except traffic sourced through the DMVPN tunnel. This design provides implicit security. Additionally, an IP access list permits only the traffic required for an encrypted tunnel, as well as DHCP and various ICMP protocols for troubleshooting.

**Option 1: MPLS WAN Physical WAN Interface**

The DMVPN design uses FVRF, so you must place this interface into the VRF configured in the previous procedure.

**Step 1:** Enable the interface, select VRF, and assign the IP address.

**Example: Primary WAN in IWAN hybrid design model**

```bash
interface GigabitEthernet0/0
vrf forwarding IWAN-TRANSPORT-1
ip address 192.168.6.5 255.255.255.252
no shutdown
```
Do not enable PIM on this interface, because no multicast traffic should be requested from this interface.

**Step 2:** Configure the VRF-specific default routing.

The VRF created for FVRF must have its own default route to the Internet. This default route points to the MPLS PE router's IP address and is used by DMVPN for tunnel establishment.

```
ip route vrf IWAN-TRANSPORT-1 0.0.0.0 0.0.0.0 192.168.6.6
```

---

**Option 2: Internet WAN Physical WAN Interface**

The DMVPN design uses FVRF, so you must place this interface into the VRF configured in the previous procedure.

**Step 1:** Enable the interface, select VRF, and enable DHCP.

**Example: Primary WAN in IWAN dual Internet design model**

```
interface GigabitEthernet0/0
 vrf forwarding IWAN-TRANSPORT-3
 ip address dhcp
 no cdp enable
 no shutdown
```

Do not enable PIM on this interface, because no multicast traffic should be requested from this interface.

**Step 2:** Configure and apply the access list.

The IP access list must permit the protocols specified in the following table. The access list is applied inbound on the WAN interface, so filtering is done on traffic destined to the router.

**Table 23 - Required DMVPN protocols**

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>non500-isakmp</td>
<td>UDP 4500</td>
<td>IPsec via NAT-T</td>
</tr>
<tr>
<td>isakmp</td>
<td>UDP 500</td>
<td>ISAKMP</td>
</tr>
<tr>
<td>esp</td>
<td>IP 50</td>
<td>IPsec</td>
</tr>
<tr>
<td>bootpc</td>
<td>UDP 68</td>
<td>DHCP</td>
</tr>
</tbody>
</table>

**Example: Primary WAN in IWAN dual Internet design model**

```
interface GigabitEthernet0/0
 ip access-group ACL-INET-PUBLIC in

 ip access-list extended ACL-INET-PUBLIC
 permit udp any any eq non500-isakmp
 permit udp any any eq isakmp
 permit esp any any
 permit udp any any eq bootpc
```
The additional protocols listed in the following table may assist in troubleshooting, but are not explicitly required to allow DMVPN to function properly.

**Table 24 - Optional protocols: DMVPN spoke router**

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp echo</td>
<td>ICMP Type 0, Code 0</td>
<td>Allow remote pings</td>
</tr>
<tr>
<td>icmp echo-reply</td>
<td>ICMP Type 8, Code 0</td>
<td>Allow ping replies from your requests</td>
</tr>
<tr>
<td>icmp ttl-exceeded</td>
<td>ICMP Type 11, Code 0</td>
<td>Allow traceroute replies from your requests</td>
</tr>
<tr>
<td>icmp port-unreachable</td>
<td>ICMP Type 3, Code 3</td>
<td>Allow traceroute replies from your requests</td>
</tr>
<tr>
<td>UDP high ports</td>
<td>UDP &gt; 1023, TTL=1</td>
<td>Allow remote traceroute</td>
</tr>
<tr>
<td>IOS CA Port 80</td>
<td>172.16.140.110 on TCP / 80</td>
<td>Allow IOS CA to communicate with router during enrollment</td>
</tr>
</tbody>
</table>

The additional optional entries for an access list to support ping are as follows:

```plaintext
permit icmp any any echo
permit icmp any any echo-reply
```

The additional optional entries for an access list to support traceroute are as follows:

```plaintext
permit icmp any any ttl-exceeded ! for traceroute (sourced)
permit icmp any any port-unreachable ! for traceroute (sourced)
permit udp any any gt 1023 ttl eq 1 ! for traceroute (destination)
```

The additional optional entry for an access list to support IOS CA at the Internet DMZ address 172.16.140.11 on source port 80 is as follows:

```plaintext
permit tcp host 172.16.140.110 eq www any
```

**Procedure 4 Configure IKEv2 and IPsec**

The parameters in the tables below are used in this procedure. Choose the table that represents the design model that you are configuring. This procedure applies to the Primary WAN.

**Table 25 - Crypto parameters: IWAN hybrid design model**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-1</td>
<td>DMVPN-KEYRING-2</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-1</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-1</td>
<td>DMVPN-PROFILE-TRANSPORT-2</td>
</tr>
</tbody>
</table>
Table 26 - Crypto parameters: IWAN dual Internet design model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-3</td>
<td>DMVPN-KEYRING-4</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-3</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-3</td>
<td>DMVPN-PROFILE-TRANSPORT-4</td>
</tr>
</tbody>
</table>

IPsec uses a key exchange between the routers in order to encrypt/decrypt the traffic. These keys can be exchanged using a simple pre-sharing algorithm or a certificate authority. It is also possible to use a combination of the two, which is useful during a migration from one method to the other. Please choose one of the two options below as your method of key exchange.

**Option 1: Configure with Pre-Shared Keys**

**Step 1:** Configure the crypto keyring for pre-shared keys.

The crypto keyring defines a pre-shared key (or password) valid for IP sources that are reachable within a particular VRF. This key is a wildcard pre-shared key if it applies to any IP source. A wildcard key is configured using the 0.0.0.0 0.0.0.0 network/mask combination.

```
crypto ikev2 keyring [keyring name]
 peer ANY
 address 0.0.0.0 0.0.0.0
 pre-shared-key [password]
```

**Example: Primary WAN in the IWAN hybrid design model**

```
crypto ikev2 keyring DMVPN-KEYRING-1
 peer ANY
 address 0.0.0.0 0.0.0.0
 pre-shared-key cisco123
```

**Step 2:** Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

```
RS11-2921# show crypto ikev2 proposal
IKEv2 proposal: default
 Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
 Integrity: SHA512 SHA384 SHA256 SHA96 MD596
 PRF: SHA512 SHA384 SHA256 SHA1 MD5
 DH Group: DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
```

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote.
The `pre-share` keyword is used with the keyring defined above.

```plaintext
crypto ikev2 profile [profile name]
 match fvrf [vrf name]
 match identity remote address [IP address]
 authentication remote pre-share
 authentication local pre-share
 keyring local [keyring name]
```

**Example: Primary WAN in the IWAN hybrid design model**

```plaintext
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-1
 match fvrf IWAN-TRANSPORT-1
 match identity remote address 0.0.0.0
 authentication remote pre-share
 authentication local pre-share
 keyring local DMVPN-KEYRING-1
```

**Step 3:** Configure DPD.

DPD is essential in order to facilitate fast reconvergence and for spoke registration to function properly in case a DMVPN hub is restarted. The IWAN design recommends you set the remote site DPD timer to 40 seconds with 5 a second retry.

```plaintext
crypto ikev2 dpd [interval in seconds] [retry interval] on-demand
```

**Example**

```plaintext
crypto ikev2 dpd 40 5 on-demand
```

**Step 4:** Define the IPsec transform set.

A transform set is an acceptable combination of security protocols, algorithms, and other settings to apply to IPsec-protected traffic. Peers agree to use a particular transform set when protecting a particular data flow.

The IPsec transform set for DMVPN uses the following:

- ESP with the 256-bit AES encryption algorithm
- ESP with the SHA (HMAC variant) authentication algorithm

Because the DMVPN hub router is behind a NAT device, the IPsec transform must be configured for transport mode.

```plaintext
crypto ipsec transform-set [transform set] esp-aes 256 esp-sha-hmac
 mode transport
```

**Example**

```plaintext
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
 mode transport
```

**Step 5:** Configure the IPsec profile.

The IPsec profile creates an association between an IKEv2 profile and an IPsec transform-set.

```plaintext
crypto ipsec profile [profile name]
 set transform-set [transform set]
 set ikev2-profile [ikev2 profile name]
```
Example: Primary WAN in the IWAN hybrid design model

```plaintext
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-1
set transform-set AES256/SHA/TRANSPORT
set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-1
```

**Step 6:** Increase the IPsec anti-replay window size.

```plaintext
crypto ipsec security-association replay window-size 1024
```

**Tech Tip**

QoS queuing delays can cause anti-replay packet drops, so it is important to extend the window size to prevent the drops from occurring.

Increasing the anti-replay window size has no impact on throughput and security. The impact on memory is insignificant because only an extra 128 bytes per incoming IPsec SA are needed.

It is recommended that you use the full 1024 window size to eliminate future anti-replay problems.

If you do not increase the window size, the router may drop packets and you may see the following error message on the router CLI:

```
%CRYPTO-4-PKT_REPLAY_ERR: decrypt: replay check failed
```

**Step 7:** Proceed to Procedure 5, “Configure the mGRE Tunnel.”.

**Option 2: Configure with a certificate authority**

The crypto pki trustpoint is the method of specifying the parameters associated with a CA. The router must authenticate to the CA first and then enroll with the CA in order to obtain its own identity certificate.

**Step 1:** The fingerprint command limits the responding CA. You can find this fingerprint by using `show crypto pki server` on the IOS CA.

```
IWAN-IOS-CA# show crypto pki server
Certificate Server IWAN-IOS-CA:
 Status: enabled
 State: enabled
 Server’s configuration is locked (enter "shut" to unlock it)
 Issuer name: CN=IWAN-IOS-CA.cisco.local L=SanJose St=CA C=US
 CA cert fingerprint: 75BEF625 9A9876CF 6F341FE5 86D4A5D8
 Granting mode is: auto
 Last certificate issued serial number (hex): 11
 CA certificate expiration timer: 10:28:57 PST Nov 11 2017
 CRL NextUpdate timer: 09:47:47 PST Dec 4 2014
 Current primary storage dir: nvram:
 Current storage dir for .crl files: nvram:
 Database Level: Complete - all issued certs written as <serialnum>.cer
```
Table 27 - IOS CA IP address assignments

<table>
<thead>
<tr>
<th>Network</th>
<th>IP Address</th>
<th>NAT IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>10.6.24.11</td>
<td>N/A</td>
</tr>
<tr>
<td>Internet DMZ</td>
<td>192.168.144.127</td>
<td>172.16.140.110 (ISP-A)</td>
</tr>
<tr>
<td>MPLS Provider</td>
<td>192.168.6.254</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Step 2: Configure the PKI trust point.

```plaintext
crypto pki trustpoint [name]
enrollment url [URL of IOS CA that is reachable]
serial-number none
fqdn [fully qualified domain name of this router]
ip-address [loopback IP address of this router]
fingerprint [fingerprint from IOS CA]
vrf [vrf name]
revocation-check none
rsakeypair [name] 2048 2048
```

Example: RS11-2921

This example is from a Primary WAN remote site router in the hybrid design model. This router can only reach the IOS CA from the MPLS provider cloud, and it uses the IP address 192.168.6.254 in VRF IWAN-TRANSPORT-1 for enrollment.

```plaintext
crypto pki trustpoint IWAN-CA
enrollment url http://192.168.6.254:80
serial-number none
fqdn RS11-2921.cisco.local
ip-address 10.255.241.11
fingerprint 75BEF6259A9876CF6F341FE586D4A5D8
vrf IWAN-TRANSPORT-1
revocation-check none
rsakeypair IWAN-CA-KEYS 2048 2048
```

Example: RS14-2921-2

This example is from the second remote site router in the dual Internet design model. This router can only reach the IOS CA from the Internet, and it uses the NAT IP address 172.16.140.110 in VRF IWAN-TRANSPORT-4 for enrollment.

```plaintext
crypto pki trustpoint IWAN-CA
enrollment url http://172.16.140.110:80
serial-number none
fqdn RS14-2921-2.cisco.local
ip-address 10.255.244.14
fingerprint 75BEF6259A9876CF6F341FE586D4A5D8
vrf IWAN-TRANSPORT-4
revocation-check none
rsakeypair IWAN-CA-KEYS 2048 2048
```
Step 3: Authenticate to the CA and obtain the CA’s certificate

Exit the trustpoint configuration mode on the hub router and issue the following command to authenticate to the CA and get its certificate.

```
RS11-2921(config)# crypto pki authenticate IWAN-CA
Certificate has the following attributes:
 Fingerprint MD5: 75BEF625 9A9876CF 6F341FE5 86D4A5D8
 Fingerprint SHA1: 9C14D6F4 D1F08023 17A85669 52922632 C6B02928
 Trustpoint Fingerprint: 75BEF625 9A9876CF 6F341FE5 86D4A5D8
Certificate validated - fingerprints matched.
```

Step 4: When the trustpoint CA certificate is accepted, enroll with the CA, enter a password for key retrieval and obtain a certificate for this hub router.

```
RS11-2921(config)# crypto pki enroll IWAN-CA
% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this password to the CA Administrator in order to revoke your certificate. For security reasons your password will not be saved in the configuration. Please make a note of it.

Password: cisco123
Re-enter password: cisco123

% The subject name in the certificate will include: RS11-2921.cisco.local
% The IP address in the certificate is 10.255.241.11

Request certificate from CA? [yes/no]: yes
% Certificate request sent to Certificate Authority
% The ‘show crypto pki certificate verbose IWAN-CA’ command will show the fingerprint.
```

Step 5: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

```
RS11-2921# show crypto ikev2 proposal
IKEv2 proposal: default
 Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
 Integrity : SHA512 SHA384 SHA256 SHA96 MD596
 PRF : SHA512 SHA384 SHA256 SHA1 MD5
 DH Group : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
```
The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote. The rsa-sig keyword is used when certificates contain the encryption key.

```bash
crypto ikev2 profile [profile name]
match fvrf [vrf name]
match identity remote address [IP address]
authentication remote rsa-sig
authentication local rsa-sig
pki trustpoint [trustpoint name]
```

**Example: RS11-2921**

This example is from a Primary WAN remote site router in the IWAN hybrid design model.

```bash
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-1
match fvrf IWAN-TRANSPORT-1
match identity remote address 0.0.0.0
authentication remote rsa-sig
authentication local rsa-sig
pki trustpoint IWAN-CA
```

**Example: RS14-2921-2**

This example is from a Secondary WAN remote site router in the dual Internet design model.

```bash
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-4
match fvrf IWAN-TRANSPORT-4
match identity remote address 0.0.0.0
authentication remote rsa-sig
authentication local rsa-sig
pki trustpoint IWAN-CA
```

**Step 6: Configure DPD.**

DPD is essential in order to facilitate fast reconvergence and for spoke registration to function properly in case a DMVPN hub is restarted. The IWAN design recommends you set the remote site DPD timer to 40 seconds with 5 a second retry.

```bash
crypto ikev2 dpd [interval in seconds] [retry interval] on-demand
```

**Example**

```bash
crypto ikev2 dpd 40 5 on-demand
```

**Step 7: Define the IPsec transform set.**

A transform set is an acceptable combination of security protocols, algorithms, and other settings to apply to IPsec-protected traffic. Peers agree to use a particular transform set when protecting a particular data flow.

The IPsec transform set for DMVPN uses the following:

- ESP with the 256-bit AES encryption algorithm
- ESP with the SHA (HMAC variant) authentication algorithm
Because the DMVPN hub router is behind a NAT device, the IPsec transform must be configured for transport mode.

```plaintext
crypto ipsec transform-set [transform set] esp-aes 256 esp-sha-hmac
 mode transport
```

**Example**

```plaintext
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
 mode transport
```

**Step 8:** Configure the IPSec profile.

The IPSec profile creates an association between an IKEv2 profile and an IPSec transform-set.

```plaintext
crypto ipsec profile [profile name]
 set transform-set [transform set]
 set ikev2-profile [ikev2 profile name]
```

**Example: RS11-2921**

This example is from a Primary WAN remote site router in the IWAN hybrid design model.

```plaintext
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-1
 set transform-set AES256/SHA/TRANSPORT
 set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-1
```

**Example: RS14-2921-2**

This example is from a Secondary WAN remote site router in the dual Internet design model.

```plaintext
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-4
 set transform-set AES256/SHA/TRANSPORT
 set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-4
```

**Step 9:** Increase the IPSec anti-replay window size.

```plaintext
crypto ipsec security-association replay window-size [value]
```

**Example**

```plaintext
crypto ipsec security-association replay window-size 512
```

## Tech Tip

QoS queuing delays can cause anti-replay packet drops, so it is important to extend the window size in order to prevent the drops from occurring.

Increasing the anti-replay window size has no impact on throughput and security. The impact on memory is insignificant because only an extra 128 bytes per incoming IPSec SA is needed.

It is recommended that you use the maximum window size to eliminate future anti-replay problems. On the Cisco ASR 1000 router platform, the maximum replay window size is 512.

If you do not increase the window size, the router may drop packets and you may see the following error message on the router CLI:

```
%CRYPTO-4-PKT_REPLAY_ERR: decrypt: replay check failed
```
Configure the mGRE Tunnel

The parameters in the table below are used in this procedure. Choose the rows that represent the design model that you are configuring. This procedure applies to the Primary WAN remote site router in the IWAN hybrid design model.

<table>
<thead>
<tr>
<th>Design Model</th>
<th>Tunnel VRF</th>
<th>Tunnel Number</th>
<th>Tunnel Network</th>
<th>NHRP network ID / Tunnel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid–Primary WAN</td>
<td>IWAN-TRANSPORT-1</td>
<td>10</td>
<td>10.6.34.0/23</td>
<td>101</td>
</tr>
<tr>
<td>Hybrid–Secondary WAN</td>
<td>IWAN-TRANSPORT-2</td>
<td>11</td>
<td>10.6.36.0/23</td>
<td>102</td>
</tr>
<tr>
<td>Dual Internet–Primary WAN</td>
<td>IWAN-TRANSPORT-3</td>
<td>20</td>
<td>10.6.38.0/23</td>
<td>201</td>
</tr>
<tr>
<td>Dual Internet–Secondary WAN</td>
<td>IWAN-TRANSPORT-4</td>
<td>21</td>
<td>10.6.40.0/23</td>
<td>202</td>
</tr>
</tbody>
</table>

**Step 1:** Configure basic interface settings.

The tunnel number is arbitrary, but it is best to begin tunnel numbering at 10 or above, because other features deployed in this design may also require tunnels and they may select lower numbers by default.

You must set the bandwidth to match the bandwidth of the respective transport which corresponds to the actual interface speed. Or, if you are using a subrate service, use the policed rate from the carrier. QoS and PfR require the correct bandwidth setting in order to operate properly.

Configure the `ip mtu` to 1400 and the `ip tcp adjust-mss` to 1360. There is a 40 byte difference, which corresponds to the combined IP and TCP header length.

The tunnel interface throughput delay setting should be set to influence the routing protocol path preference. Set the primary WAN path to 10000 usec and the secondary WAN path to 20000 usec to prefer one over the other. The delay command is entered in 10 usec units.

```
interface Tunnel10
 bandwidth 300000
 ip address 10.6.34.11 255.255.255.0
 no ip redirects
 ip mtu 1400
 ip tcp adjust-mss 1360
 delay 1000
```

**Step 2:** Configure the tunnel.

DMVPN uses mGRE tunnels. This type of tunnel requires a source interface only. The source interface should be the same interface used in to connect to the MPLS or Internet connection. The `tunnel vrf` command should be set to the VRF defined previously for FVRF.
Enabling encryption on this interface requires the application of the IPsec profile configured in the previous procedure.

```
interface Tunnel10
 tunnel source GigabitEthernet0/0
 tunnel mode gre multipoint
 tunnel key 101
 tunnel vrf IWAN-TRANSPORT-1
 tunnel protection ipsec profile DMVPN-PROFILE-TRANSPORT-1
```

**Step 3:** Configure NHRP.

The DMVPN hub router is the NHRP server for all of the spokes. Remote routers use NHRP in order to determine the tunnel destinations for peers attached to the mGRE tunnel.

The spoke router requires an additional configuration statement in order to define the NHRP server (NHS). This statement includes the NBMA definition for the DMVPN hub router tunnel endpoint. EIGRP relies on a multicast transport. Spoke routers require the NHRP multicast keyword in this statement.

The value used for the next hop server (NHS) is the mGRE tunnel address for the DMVPN hub router. The nbma entry must be set to either the MPLS DMVPN hub router’s actual public address or the outside NAT value of the DMVPN hub, as configured on the Cisco ASA 5500. This design uses the values shown in the following tables.

**Table 29 - DMVPN tunnel NHRP parameters: IWAN hybrid design model**

<table>
<thead>
<tr>
<th></th>
<th>Transport 1</th>
<th>Transport 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.6.1</td>
<td>192.168.146.10</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>n/a (MPLS)</td>
<td>172.16.140.1</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.34.1</td>
<td>10.6.36.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>101</td>
<td>102</td>
</tr>
</tbody>
</table>

**Table 30 - DMVPN tunnel NHRP parameters: IWAN dual Internet design model**

<table>
<thead>
<tr>
<th></th>
<th>Transport 3</th>
<th>Transport 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.146.20</td>
<td>192.168.146.21</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>172.16.140.11</td>
<td>172.17.140.11</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.38.1</td>
<td>10.6.40.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>201</td>
<td>202</td>
</tr>
</tbody>
</table>

NHRP requires all devices within a DMVPN cloud to use the same network ID and authentication key. The NHRP cache holdtime should be configured to 600 seconds.
This design supports DMVPN spoke routers that receive their external IP addresses through DHCP. It is possible for these routers to acquire different IP addresses after a reload. When the router attempts to register with the NHRP server, it may appear as a duplicate to an entry already in the cache and be rejected. The registration no-unique option allows you to overwrite existing cache entries. This feature is only required on NHRP clients (DMVPN spoke routers). The if-state nhrp option ties the tunnel line-protocol state to the reachability of the NHRP NHS, and if the NHS is unreachable, the tunnel line-protocol state changes to down. This feature is used in conjunction with Enhanced Object Tracking (EOT).

interface Tunnel10
  ip nhrp authentication cisco123
  ip nhrp network-id 101
  ip nhrp holdtime 600
  ip nhrp nhs 10.6.34.1 nbma 192.168.6.1 multicast
  ip nhrp registration no-unique
  ip nhrp shortcut
  if-state nhrp

**Procedure 6** Configure EIGRP

A single EIGRP process runs on the DMVPN spoke router. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interface is non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements. This design uses a best practice of assigning the router ID to a loopback address. All DMVPN spoke routers should run EIGRP stub routing to improve network stability and reduce resource utilization.

**Step 1:** Configure an EIGRP process for DMVPN using EIGRP named mode on the spoke router.

```plaintext
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface default
 passive-interface
 exit-af-interface
 af-interface Tunnel10
 no passive-interface
 exit-af-interface
 network 10.6.34.0 0.0.1.255
 network 10.7.0.0 0.0.255.255
 network 10.255.0.0 0.0.255.255
 eigrp router-id [IP address of Loopback0]
 eigrp stub connected summary redistributed
 exit-address-family
```
Step 2: Configure EIGRP values for the mGRE tunnel interface.

The EIGRP hello interval is increased to 20 seconds and the EIGRP hold time is increased to 60 seconds in order to accommodate up to 2000 remote sites on a single DMVPN cloud. Increasing the EIGRP timers also slows down the routing convergence in order to improve network stability and the IWAN design allows PfR to initiate the fast failover, so changing the timers is recommended for all IWAN deployments.

```
routing eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel10
 hello-interval 20
 hold-time 60
 exit-af-interface
 exit-address-family
```

Step 3: Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the DMVPN tunnel interface.

```
key chain WAN-KEY
 key 1
 key-string c1sco123

routing eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel10
 authentication mode md5
 authentication key-chain WAN-KEY
 exit-af-interface
 exit-address-family
```

Step 4: Configure EIGRP network summarization.

The remote-site LAN networks must be advertised. The IP assignment for the remote sites was designed so that all of the networks in use can be summarized within a single aggregate route. The summary address as configured below supresses the more specific routes. If any network within the summary is present in the route table, the summary is advertised to the DMVPN hub, which offers a measure of resiliency. If the various LAN networks cannot be summarized, then EIGRP continues to advertise the specific routes.

```
routing eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel10
 summary-address [summary network] [summary mask]
 exit-af-interface
 exit-address-family
```
**Procedure 7** Configure IP multicast routing

This procedure includes additional steps for configuring IP Multicast for a DMVPN tunnel on a router with IP Multicast already enabled.

**Step 1:** Configure PIM on the DMVPN tunnel interface.
Enable IP PIM sparse mode on the DMVPN tunnel interface.

```
interface Tunnel10
ip pim sparse-mode
```

**Step 2:** Enable PIM non-broadcast multiple access mode for the DMVPN tunnel.

Spoke-to-spoke DMVPN networks present a unique challenge because the spokes cannot directly exchange information with one another, even though they are on the same logical network. This inability to directly exchange information can also cause problems when running IP Multicast.

To resolve the NBMA issue, you need to implement a method where each remote PIM neighbor has its join messages tracked separately. A router in PIM NBMA mode treats each remote PIM neighbor as if it were connected to the router through a point-to-point link.

```
interface Tunnel10
ip pim nbma-mode
```

**Step 3:** Configure the DR priority for the DMVPN spoke router.

Proper multicast operation across a DMVPN cloud requires that the hub router assumes the role of PIM designated router (DR). Spoke routers should never become the DR. You can prevent that by setting the DR priority to 0 for the spokes.

```
interface Tunnel10
ip pim dr-priority 0
```

**Procedure 8** Connect router to access layer switch

**Optional**

If you are using a remote-site distribution layer, skip to the “Deploying an IWAN Remote-Site Distribution Layer” section of this guide.

**Reader Tip**

This guide includes only the steps needed in order to complete the access layer configuration. For complete access layer configuration details, refer to the Campus Wired LAN Technology Design Guide.

Layer 2 EtherChannels are used to interconnect the CE router to the access layer in the most resilient method possible. If your access layer device is a single fixed configuration switch, a simple Layer 2 trunk between the router and switch is used.

In the access layer design, the remote sites use collapsed routing, with 802.1Q trunk interfaces to the LAN access layer. The VLAN numbering is locally significant only.
Option 1: Layer 2 EtherChannel from router to access layer switch

Step 1: Configure port-channel interface on the router.

```plaintext
interface Port-channel 1
description EtherChannel link to RS12-A2960X
no shutdown
```

Step 2: Configure EtherChannel member interfaces on the router.

Configure the physical interfaces to tie to the logical port-channel using the channel-group command. The number for the port-channel and channel-group must match. Not all router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```plaintext
interface GigabitEthernet 0/1
description RS12-A2960X Gig1/0/47

interface GigabitEthernet 0/2
description RS12-A2960X Gig2/0/47

interface range GigabitEthernet 0/1, GigabitEthernet 0/2
no ip address
channel-group 1
no shutdown
```

Step 3: Configure EtherChannel member interfaces on the access layer switch.

Connect the router EtherChannel uplinks to separate switches in the access layer switch stack, or in the case of the Cisco Catalyst 4507R+E distribution layer, to separate redundant modules for additional resiliency.

The physical interfaces that are members of a Layer 2 EtherChannel are configured prior to configuring the logical port-channel interface. Doing the configuration in this order allows for minimal configuration and reduces errors because most of the commands entered to a port-channel interface are copied to its members interfaces and do not require manual replication.

Configure two physical interfaces to be members of the EtherChannel. Also, apply the egress QoS macro that was defined in the LAN switch platform configuration procedure to ensure traffic is prioritized appropriately.

Not all connected router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```plaintext
interface GigabitEthernet1/0/47
description Link to RS12-2911-1 Gig0/1

interface GigabitEthernet2/0/47
description Link to RS12-2911-1 Gig0/2

interface range GigabitEthernet1/0/24, GigabitEthernet2/0/24
switchport
macro apply EgressQoS
channel-group 1 mode on
logging event link-status
logging event trunk-status
logging event bundle-status
```
**Step 4:** Configure EtherChannel trunk on the access layer switch.

An 802.1Q trunk is used which allows the router to provide the Layer 3 services to all the VLANs defined on the access layer switch. The VLANs allowed on the trunk are pruned to only the VLANs that are active on the access layer switch. When using EtherChannel the interface type will be port-channel and the number must match the channel group configured in Step 3. DHCP Snooping and address resolution protocol (ARP) inspection are set to trust.

```
interface Port-channel1
 description EtherChannel link to RS12-2911-1
 switchport trunk allowed vlan 64,69
 switchport mode trunk
 ip arp inspection trust
 spanning-tree portfast trunk
 ip dhcp snooping trust
 load-interval 30
 no shutdown
```

The Cisco Catalyst 3750 Series Switch requires the `switchport trunk encapsulation dot1q` command.

**Option 2: Layer 2 trunk from router to access layer switch**

**Step 1:** Enable the physical interface on the router.

```
interface GigabitEthernet0/2
 description RS11-A2960X Gig1/0/48
 no ip address
 no shutdown
```

**Step 2:** Configure the trunk on the access layer switch.

Use an 802.1Q trunk for the connection, which allows the router to provide the Layer 3 services to all the VLANs defined on the access layer switch. The VLANs allowed on the trunk are pruned to only the VLANs that are active on the access switch. DHCP Snooping and ARP inspection are set to trust.

```
interface GigabitEthernet1/0/48
 description Link to RS11-2921 Gig0/2
 switchport trunk allowed vlan 64,69
 switchport mode trunk
 ip arp inspection trust
 spanning-tree portfast trunk
 logging event link-status
 logging event trunk-status
 ip dhcp snooping trust
 load-interval 30
 no shutdown
 macro apply EgressQoS
```

The Cisco Catalyst 3750 Series Switch requires the `switchport trunk encapsulation dot1q` command.
Procedure 9  Configure access layer routing

Optional
If you are using a dual router design, skip to the “Modifying the First Router for Dual Router Design” section of this guide.

Step 1: Create subinterfaces and assign VLAN tags.
After the physical interface or port-channel has been enabled, then the appropriate data or voice subinterfaces can be mapped to the VLANs on the LAN switch. The subinterface number does not need to equate to the 802.1Q tag, but making them the same simplifies the overall configuration. The subinterface portion of the configuration should be repeated for all data or voice VLANs.

```
interface [type][number].[sub-interface number]
encapsulation dot1Q [dot1q VLAN tag]
```

Step 2: Configure IP settings for each subinterface.
This design uses an IP addressing convention with the default gateway router assigned an IP address and IP mask combination of N.N.N.1 255.255.255.0 where N.N.N is the IP network and 1 is the IP host.

When you are using a centralized DHCP server, your routers with LAN interfaces connected to a LAN using DHCP for end-station IP addressing must use an IP helper.

If the remote-site router is the first router of a dual-router design, then HSRP is configured at the access layer. This requires a modified IP configuration on each subinterface.

```
interface [type][number].[sub-interface number]
ip address [LAN network 1] [LAN network 1 netmask]
ip helper-address 10.4.48.10
ip pim sparse-mode
```

Example: Layer 2 EtherChannel
```
interface Port-channel1
no ip address
no shutdown

interface Port-channel1.64
description Data
encapsulation dot1Q 64
ip address 10.7.18.1 255.255.255.0
ip helper-address 10.4.48.10
ip pim sparse-mode

interface Port-channel1.69
description Voice
encapsulation dot1Q 69
ip address 10.7.19.1 255.255.255.0
ip helper-address 10.4.48.10
ip pim sparse-mode
```
Example: Layer 2 Link

interface GigabitEthernet0/2
  no ip address
  no shutdown

interface GigabitEthernet0/2.64
  description Data
  encapsulation dot1Q 64
  ip address 10.7.2.1 255.255.255.0
  ip helper-address 10.4.48.10
  ip pim sparse-mode

interface GigabitEthernet0/2.69
  description Voice
  encapsulation dot1Q 69
  ip address 10.7.3.1 255.255.255.0
  ip helper-address 10.4.48.10
  ip pim sparse-mode

Adding Second DMVPN for a Single-Router Remote Site

1. Configure the WAN-facing VRF
2. Connect to the Internet
3. Configure IKEv2 and IPsec
4. Configure the mGRE Tunnel
5. Configure EIGRP
6. Configure IP multicast routing

Use this set of procedures for any of the following topologies: Single router with an MPLS + DMVPN remote site or a DMVPN + DMVPN remote site.

This set of procedures includes the additional steps necessary to add a second DMVPN link to a remote-site router that has already been configured with a DMVPN link in the “Configuring Remote-Site DMVPN Router” process in this guide.
The following flowchart details how to add the second DMVPN to an existing remote-site router.

**Figure 24 - Adding second DMVPN configuration flowchart**

1. Configure the WAN-facing VRF
2. Connect to the Internet
3. Configure IKEv2 and IPSec
4. Configure mGRE Tunnel
5. Configure EIGRP
6. Configure IP Multicast Routing

**Procedures for Adding a Second DMVPN for a Single Router Remote Site**

1. Install LTE EHWIC into ISR
2. Configure Chat Script
3. Configure the WAN-facing VRF
4. Connect to the Cellular Provider
5. Configure the Dialer Watch List
6. Configure VRF-specific Default Routing
7. Configure IKEv2 and IPsec
8. Configure the mGRE Tunnel
9. Configure EIGRP
10. Configure IP Multicast Routing
11. Enable the Cellular Interface
12. Control Usage of LTE Fallback Tunnel

**Site Complete**
**Procedure 1** Configure the WAN-facing VRF

You create a WAN-facing VRF in order to support FVRF for DMVPN. The VRF name is arbitrary, but it is useful to select a name that describes the VRF. The VRF must be enabled for IPv4.

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Primary WAN VRF</th>
<th>Secondary WAN VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>Dual Internet</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
</tbody>
</table>

This design uses VRF Lite, so the selection is only locally significant to the device. It is a best practice to use the same VRF/RD combination across multiple devices when using VRFs in a similar manner. However, this convention is not strictly required.

**Step 1:** Configure the secondary WAN VRF.

**Example: Secondary WAN in the hybrid design model**

```configuration
vrf definition IWAN-TRANSPORT-2
address-family ipv4
```

**Procedure 2** Connect to the Internet

The remote sites that are using DMVPN can use either static or dynamically assigned IP addresses. Cisco tested the design with DHCP assigned external addresses for Internet connections, which also provides a dynamically configured default route.

The DMVPN spoke router connects directly to the Internet without a separate firewall. This connection is secured in two ways. Because the Internet interface is in a separate VRF, no traffic can access the global VRF except traffic sourced through the DMVPN tunnel. This design provides implicit security. Additionally, an IP access list permits only the traffic required for an encrypted tunnel, as well as DHCP and various ICMP protocols for troubleshooting.

**Step 1:** Enable the interface, select VRF and enable DHCP.

The DMVPN design uses FVRF, so you must place this interface into the VRF configured in the previous procedure.

```configuration
interface GigabitEthernet0/1
 ip vrf forwarding IWAN-TRANSPORT-2
 ip address dhcp
 no cdp enable
 no shutdown
```
Step 2: Configure and apply the access list.

The IP access list must permit the protocols specified in the following table. The access list is applied inbound on the WAN interface, so filtering is done on traffic destined to the router.

Table 32 - Required DMVPN protocols

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>non500-isakmp</td>
<td>UDP 4500</td>
<td>IPsec via NAT-T</td>
</tr>
<tr>
<td>isakmp</td>
<td>UDP 500</td>
<td>ISAKMP</td>
</tr>
<tr>
<td>esp</td>
<td>IP 50</td>
<td>IPsec</td>
</tr>
<tr>
<td>bootpc</td>
<td>UDP 68</td>
<td>DHCP</td>
</tr>
</tbody>
</table>

Example

interface GigabitEthernet0/1
ip access-group ACL-INET-PUBLIC in

ip access-list extended ACL-INET-PUBLIC
permit udp any any eq non500-isakmp
permit udp any any eq isakmp
permit esp any any
permit udp any any eq bootpc

The additional protocols listed in the following table may assist in troubleshooting, but are not explicitly required to allow DMVPN to function properly.

Table 33 - Optional protocols: DMVPN spoke router

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp echo</td>
<td>ICMP Type 0, Code 0</td>
<td>Allow remote pings</td>
</tr>
<tr>
<td>icmp echo-reply</td>
<td>ICMP Type 8, Code 0</td>
<td>Allow ping replies (from your requests)</td>
</tr>
<tr>
<td>icmp ttl-exceeded</td>
<td>ICMP Type 11, Code 0</td>
<td>Allow traceroute replies (from your requests)</td>
</tr>
<tr>
<td>icmp port-unreachable</td>
<td>ICMP Type 3, Code 3</td>
<td>Allow traceroute replies (from your requests)</td>
</tr>
<tr>
<td>UDP high ports</td>
<td>UDP &gt; 1023, TTL=1</td>
<td>Allow remote traceroute</td>
</tr>
<tr>
<td>IOS CA Port 80</td>
<td>172.16.140.110 on TCP / 80</td>
<td>Allow IOS CA to communicate with router during enrollment</td>
</tr>
</tbody>
</table>

The additional optional entries for an access list to support ping are as follows:

permit icmp any any echo
permit icmp any any echo-reply

The additional optional entries for an access list to support traceroute are as follows:

permit icmp any any ttl-exceeded ! for traceroute (sourced)
permit icmp any any port-unreachable ! for traceroute (sourced)
permit udp any any gt 1023 ttl eq 1 ! for traceroute (destination)

The additional optional entry for an access list to support IOS CA at the Internet DMZ address 172.16.140.11 on source port 80 is as follows:

permit tcp host 172.16.140.110 eq www any
Procedure 3  Configure IKEv2 and IPsec

This procedure uses the parameters in the tables below. Choose the table that represents the design model that you are configuring. This procedure applies to the Secondary WAN.

Table 34 - Crypto parameters: IWAN hybrid design model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-1</td>
<td>DMVPN-KEYRING-2</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-1</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-1</td>
<td>DMVPN-PROFILE-TRANSPORT-2</td>
</tr>
</tbody>
</table>

Table 35 - Crypto parameters: IWAN dual Internet design model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-3</td>
<td>DMVPN-KEYRING-4</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-3</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-3</td>
<td>DMVPN-PROFILE-TRANSPORT-4</td>
</tr>
</tbody>
</table>

IPsec uses a key exchange between the routers in order to encrypt/decrypt the traffic. These keys can be exchanged using a simple pre-sharing algorithm or a certificate authority. It is also possible to use a combination of the two, which is useful during a migration from one method to the other. Choose one of two options below as your method of key exchange.

**Option 1: Configure with Pre-Shared Keys**

Step 1: Configure the crypto keyring for pre-shared keys.

The crypto keyring defines a pre-shared key (or password) valid for IP sources that are reachable within a particular VRF. This key is a wildcard pre-shared key if it applies to any IP source. A wildcard key is configured using the 0.0.0.0 0.0.0.0 network/mask combination.

```
crypto ikev2 keyring [keyring name]
peer ANY
 address 0.0.0.0 0.0.0.0
 pre-shared-key [password]
```

**Example: Secondary WAN in the hybrid design model**

```
crypto ikev2 keyring DMVPN-KEYRING-2
peer ANY
 address 0.0.0.0 0.0.0.0
 pre-shared-key cisco123
```
Step 2: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

```
RS11-2921# show crypto ikev2 proposal
IKEv2 proposal: default
 Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
 Integrity : SHA512 SHA384 SHA256 SHA96 MD596
 PRF : SHA512 SHA384 SHA256 SHA1 MD5
 DH Group : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
```

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote. The pre-share keyword is used with the keyring defined above.

```
crypto ikev2 profile [profile name]
 match fvrf [vrf name]
 match identity remote address [IP address]
 authentication remote pre-share
 authentication local pre-share
 keyring local [keyring name]
```

Example: Secondary WAN in the hybrid design model

```
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-2
 match fvrf IWAN-TRANSPORT-2
 match identity remote address 0.0.0.0
 authentication remote pre-share
 authentication local pre-share
 keyring local DMVPN-KEYRING-2
```

Step 3: Configure the IPsec profile.

The IPsec profile creates an association between an IKEv2 profile and an IPsec transform-set.

```
crypto ipsec profile [profile name]
 set transform-set [transform set]
 set ikev2-profile [ikev2 profile name]
```

Example: Secondary WAN in the hybrid design model

```
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-2
 set transform-set AES256/SHA/TRANSPORT
 set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-2
```

Step 4: Proceed to Procedure 4, “Configure the mGRE Tunnel.”
Option 2: Configure with a certificate authority

The crypto pki trustpoint is the method of specifying the parameters associated with a CA. This router has already authenticated to the CA and enrolled in order to obtain its identity certificate in a previous procedure.

Step 1: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

    RS11-2921# show crypto ikev2 proposal
    IKEv2 proposal: default
    Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
    Integrity : SHA512 SHA384 SHA256 SHA96 MD596
    PRF       : SHA512 SHA384 SHA256 SHA1 MD5
    DH Group  : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote. The rsa-sig keyword is used when certificates contain the encryption key.

    crypto ikev2 profile [profile name]
    match fvrf [vrf name]
    match identity remote address [IP address]
    authentication remote rsa-sig
    authentication local rsa-sig
    pki trustpoint [trustpoint name]

Example: RS11-2921

This example is from a secondary WAN in the hybrid design model.

    crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-2
    match fvrf IWAN-TRANSPORT-2
    match identity remote address 0.0.0.0
    authentication remote rsa-sig
    authentication local rsa-sig
    pki trustpoint IWAN-CA

Step 2: Configure the IPSec profile.

The IPSec profile creates an association between an IKEv2 profile and an IPSec transform-set.

    crypto ipsec profile [profile name]
    set transform-set [transform set]
    set ikev2-profile [ikev2 profile name]
Example: RS11-2921

This example is from a secondary WAN in the hybrid design model.

```plaintext
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-2
set transform-set AES256/SHA/TRANSPORT
set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-2
```

Procedure 4  Configure the mGRE Tunnel

This procedure uses the parameters in the table below. Choose the rows that represent the design model that you are configuring. This procedure applies to the secondary WAN.

<table>
<thead>
<tr>
<th>Design Model</th>
<th>Tunnel VRF</th>
<th>Tunnel Number</th>
<th>Tunnel Network</th>
<th>NHRP network ID / Tunnel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid–Primary WAN</td>
<td>IWAN-TRANSPORT-1</td>
<td>10</td>
<td>10.6.34.0/23</td>
<td>101</td>
</tr>
<tr>
<td>Hybrid–Secondary WAN</td>
<td>IWAN-TRANSPORT-2</td>
<td>11</td>
<td>10.6.36.0/23</td>
<td>102</td>
</tr>
<tr>
<td>Dual Internet–Primary WAN</td>
<td>IWAN-TRANSPORT-3</td>
<td>20</td>
<td>10.6.38.0/23</td>
<td>201</td>
</tr>
<tr>
<td>Dual Internet–Secondary WAN</td>
<td>IWAN-TRANSPORT-4</td>
<td>21</td>
<td>10.6.40.0/23</td>
<td>202</td>
</tr>
</tbody>
</table>

Step 1: Configure the basic interface settings.

The tunnel number is arbitrary, but it is best to begin tunnel numbering at 10 or above, because other features deployed in this design may also require tunnels and they may select lower numbers by default.

The bandwidth setting must be set to match the bandwidth of the respective transport, which corresponds to the actual interface speed. Or, if you are using a subrate service, use the policed rate from the carrier. QoS and PfR require the correct bandwidth setting in order to operate properly.

Configure the `ip mtu` to 1400 and the `ip tcp adjust-mss` to 1360. There is a 40 byte difference, which corresponds to the combined IP and TCP header length.

The tunnel interface throughput delay setting should be set to influence the routing protocol path preference. Set the primary WAN path to 10000 usec and the secondary WAN path to 20000 usec to prefer one over the other. The delay command is entered in 10 usec units.

```plaintext
interface Tunnel11
 bandwidth 200000
 ip address 10.6.36.11 255.255.254.0
 no ip redirects
 ip mtu 1400
 ip tcp adjust-mss 1360
 delay 2000
```

Step 2: Configure the tunnel.

DMVPN uses mGRE tunnels. This type of tunnel requires a source interface only. Use the same source interface that you use to connect to the Internet. Set the `tunnel vrf` command should be set to the VRF defined previously for FVRF.
Enabling encryption on this interface requires the application of the IPsec profile configured in the previous procedure.

```
interface Tunnel11
 tunnel source GigabitEthernet0/1
 tunnel mode gre multipoint
 tunnel key 102
 tunnel vrf IWAN-TRANSPORT-2
 tunnel protection ipsec profile DMVPN PROFILE-TRANSPORT-2
```

**Step 3:** Configure NHRP.

The DMVPN hub router is the NHRP server for all of the spokes. NHRP is used by remote routers to determine the tunnel destinations for peers attached to the mGRE tunnel.

The spoke router requires several additional configuration statements to define the NHRP server (NHS) and NHRP map statements for the DMVPN hub router mGRE tunnel IP address. EIGRP (configured in the following Procedure 5) relies on a multicast transport. Spoke routers require the NHRP static multicast mapping.

The value used for the NHS is the mGRE tunnel address for the DMVPN hub router. The map entries must be set to the outside NAT value of the DMVPN hub, as configured on the Cisco ASA 5500. This design uses the values shown in the following tables.

**Table 37 - DMVPN tunnel NHRP parameters: IWAN hybrid design model**

<table>
<thead>
<tr>
<th>VRF</th>
<th>Transport 1</th>
<th>Transport 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.6.1</td>
<td>192.168.146.10</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>n/a (MPLS)</td>
<td>172.16.140.1</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.34.1</td>
<td>10.6.36.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>101</td>
<td>102</td>
</tr>
</tbody>
</table>

**Table 38 - DMVPN tunnel NHRP parameters: IWAN dual Internet design model**

<table>
<thead>
<tr>
<th>VRF</th>
<th>Transport 3</th>
<th>Transport 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.146.20</td>
<td>192.168.146.21</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>172.16.140.11</td>
<td>172.17.140.11</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.38.1</td>
<td>10.6.40.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>201</td>
<td>202</td>
</tr>
</tbody>
</table>

NHRP requires all devices within a DMVPN cloud to use the same network ID and authentication key. The NHRP cache holdtime should be configured to 600 seconds.
This design supports DMVPN spoke routers that receive their external IP addresses through DHCP. It is possible for these routers to acquire different IP addresses after a reload. When the router attempts to register with the NHRP server, it may appear as a duplicate to an entry already in the cache and be rejected. The registration no-unique option allows you to overwrite existing cache entries. This feature is only required on NHRP clients (DMVPN spoke routers). The if-state nhrp option ties the tunnel line-protocol state to the reachability of the NHRP NHS, and if the NHS is unreachable the tunnel line-protocol state changes to down. This feature is used in conjunction with EOT.

```
interface Tunnel11
 ip nhrp authentication cisco123
 ip nhrp network-id 102
 ip nhrp holdtime 600
 ip nhrp nhs 10.6.36.1 nbma 172.16.140.1 multicast
 ip nhrp registration no-unique
 ip nhrp shortcut
 if-state nhrp
```

**Procedure 5  Configure EIGRP**

A single EIGRP process runs on the DMVPN spoke router, which has already been enabled during the first DMVPN tunnel’s configuration. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interfaces are non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements.

**Step 1:** Add the network range for the secondary DMVPN tunnel and configure as non-passive.

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel11
 no passive-interface
 exit-af-interface
 network 10.6.36.0 0.0.1.255
 exit-address-family
```

**Step 2:** Configure EIGRP values for the mGRE tunnel interface.

The EIGRP hello interval is increased to 20 seconds and the EIGRP hold time is increased to 60 seconds in order to accommodate up to 2000 remote sites on a single DMVPN cloud. Increasing the EIGRP timers also slows down the routing convergence to improve network stability and the IWAN design allows PfR to initiate the fast failover, so changing the timers is recommended for all IWAN deployments.

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel11
 hello-interval 20
 hold-time 60
 exit-af-interface
 exit-address-family
```
Step 3: Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the DMVPN tunnel interface.

```
key chain WAN-KEY
key 1
key-string cisco123

router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel11
 authentication mode md5
 authentication key-chain WAN-KEY
 exit-af-interface
exit-address-family
```

Step 4: Configure EIGRP route summarization.

The remote-site LAN networks must be advertised. The IP assignment for the remote sites was designed so that all of the networks in use can be summarized within a single aggregate route. The summary address as configured below suppresses the more specific routes. If any network within the summary is present in the route table, the summary is advertised to the DMVPN hub, which offers a measure of resiliency. If the various LAN networks cannot be summarized, EIGRP continues to advertise the specific routes.

```
router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
 af-interface Tunnel11
 summary-address [summary network] [summary mask]
 exit-af-interface
exit-address-family
```

**Procedure 6** Configure IP multicast routing

This procedure includes additional steps for configuring IP Multicast for a DMVPN tunnel on a router with IP Multicast already enabled.

Step 1: Configure PIM on the DMVPN tunnel interface.

Enable IP PIM sparse mode on the DMVPN tunnel interface.

```
interface Tunnel11
 ip pim sparse-mode
```

Step 2: Enable PIM NBMA mode for the DMVPN tunnel.

Spoke-to-spoke DMVPN networks present a unique challenge because the spokes cannot directly exchange information with one another, even though they are on the same logical network. This inability to directly exchange information can also cause problems when running IP Multicast.

To resolve the NBMA issue, you need to implement a method where each remote PIM neighbor has its join messages tracked separately. A router in PIM NBMA mode treats each remote PIM neighbor as if it were connected to the router through a point-to-point link.

```
interface Tunnel11
 ip pim nbma-mode
```
Step 3: Configure the DR priority for the DMVPN spoke router.

Proper multicast operation across a DMVPN cloud requires that the hub router assumes the role of PIM designated router (DR). Spoke routers should never become the DR. You can prevent that by setting the DR priority to 0 for the spokes.

```
interface Tunnel11
ip pim dr-priority 0
```

---

**Adding LTE fallback DMVPN for a single-router remote site**

1. Install LTE EHWIC into ISR
2. Configure chat script
3. Configure the WAN-facing VRF
4. Connect to the cellular provider
5. Configure the dialer watch list
6. Configure VRF-specific default routing
7. Configure IKEv2 and IPsec
8. Configure the mGRE Tunnel
9. Configure EIGRP
10. Configure IP multicast routing
11. Enable the cellular interface
12. Control usage of LTE fallback tunnel

This set of procedures includes the additional steps necessary to add a third fallback DMVPN link to a remote-site router that has already been configured primary and secondary DMVPN links by using the following processes in this guide:

- “Configuring Remote-Site DMVPN Router”
- “Adding Second DMVPN for a Single-Router Remote Site”

This section includes only the additional procedures for adding the LTE fallback DMVPN to the running remote-site router.

This section is specific to cellular LTE devices used to test this document. There are other Cisco products that share common configuration with the devices mentioned that may have different packages (Cisco Enhanced High-Speed WAN Interface Card [EHWIC] vs. router) and different carriers. You must get a data service account from your service provider. You should receive a SIM card that you install on the LTE EHWIC, no matter the carrier.

There are vendor specific variations of 4G/LTE HWICs, some with geographically specific firmware. The table below shows the version of the 4G/LTE card validated in this guide and the version of firmware tested. Additional specific geographic and carrier information for the various Cisco cellular WAN access interfaces can be found online at: [http://www.cisco.com/c/en/us/products/routers/networking_solutions_products_genericcontent0900aecd80601f7e.html](http://www.cisco.com/c/en/us/products/routers/networking_solutions_products_genericcontent0900aecd80601f7e.html)
Table 39  -  GSM 4G/LTE specific HWICs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Modem</th>
<th>Carrier</th>
<th>Firmware Version</th>
<th>Firmware Date</th>
<th>Remote Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHWIC-4G-LTE-A</td>
<td>MC7700</td>
<td>AT&amp;T</td>
<td>SWI9200X_03.05.10.02</td>
<td>2012/02/25 11:58:38</td>
<td>RS222</td>
</tr>
</tbody>
</table>

Procedure 1  
Install LTE EHWIC into ISR

Figure 25  -  LTE EHWIC SIM card installation

Step 1: Insert the SIM card into the EHWIC.

Step 2: Power down the Integrated Services G2 router.

Step 3: Insert and fasten the LTE EHWIC into the router.

Step 4: Power up the router, and then begin configuration.

Procedure 2  
Configure chat script

Chat scripts are strings of text used to send commands for modem dialing, to log in to remote systems, and to initialize asynchronous devices connected to an asynchronous line. The 4G WAN interface should be treated just like any other asynchronous interface.

The following chat script shows the required information to connect to the Verizon or the AT&T LTE network. It uses an LTE-specific dial string and a timeout value of 30 seconds. Note that your carrier may require a different chat script.

Step 1: Create the chat script.

```
chat-script [Script-Name] [Script]
```
**Example**

```
chat-script LTE "" AT!CALL1" TIMEOUT 30 "OK"
```

**Step 2:** Apply the chat script to the asynchronous line.

```
line [Cellular-Interface-Number]
 script dialer [Script-Name]
```

**Example**

For the interface cellular0/1/0, the matching line would be as follows.

```
line 0/1/0
 script dialer LTE
```

---

**Procedure 3** Configure the WAN-facing VRF

You create a WAN-facing VRF in order to support FVRF for DMVPN. The VRF name is arbitrary, but it is useful to select a name that describes the VRF. The VRF must be enabled for IPv4.

**Table 40 - VRF assignments**

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Primary WAN VRF</th>
<th>Secondary WAN VRF</th>
<th>LTE Fallback VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
<td>IWAN-TRANSPORT-3</td>
</tr>
<tr>
<td>Dual Internet</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
<td>IWAN-TRANSPORT-1</td>
</tr>
</tbody>
</table>

This design uses VRF Lite, so the selection is only locally significant to the device. It is a best practice to use the same VRF/RD combination across multiple devices when using VRFs in a similar manner. However, this convention is not strictly required.

**Step 1:** Configure the LTE fallback VRF.

**Example: Transport 3 in the IWAN hybrid design model**

```
vrf definition IWAN-TRANSPORT-3
 address-family ipv4
```

---

**Procedure 4** Connect to the cellular provider

You add the cellular interface to a dialer watch group and to the VRF. You set the bandwidth value to match the minimum uplink speed of the chosen technology, as shown in the following table. Configure the interface as administratively down until the rest of the configuration steps are complete.

**Table 41 - 4G encapsulation and bandwidth parameters**

<table>
<thead>
<tr>
<th>Cellular keyword</th>
<th>Encapsulation</th>
<th>Cellular Script Name (Created Previously)</th>
<th>Downlink speed (Kbps)</th>
<th>Uplink speed (Kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTE</td>
<td>Direct IP (SLIP)</td>
<td>LTE</td>
<td>8000 to 12,000 (range)</td>
<td>2000 to 5000 (range)</td>
</tr>
</tbody>
</table>
Tech Tip

LTE cellular interfaces use Direct IP encapsulation. When configuring Direct IP encapsulation, use the serial line Internet protocol (SLIP) keyword.

Step 1: Configure the cellular interface.

```
interface Cellular [Interface-Number]
bandwidth [bandwidth (Kbps)]
vrf forwarding IWAN-TRANSPORT-3
ip address negotiated
no ip unreachables
ip virtual-reassembly in
encapsulation [encapsulation type]
dialer in-band
dialer idle-timeout 0
dialer string [Chat Script Name]
dialer watch-group 1
no peer default ip address
async mode interactive
shutdown
```

Example: LTE Bandwidth and Encapsulation

```
interface Cellular 0/1/0
bandwidth 2000
ip vrf forwarding IWAN-TRANSPORT-3
ip address negotiated
no ip unreachables
ip virtual-reassembly in
encapsulation slip
dialer in-band
dialer idle-timeout 0
dialer string LTE
dialer watch-group 1
no peer default ip address
async mode interactive
shutdown
```
Step 2: Configure and apply the access list.

The IP access list must permit the protocols specified in the following table. The access list is applied inbound on the WAN interface, so filtering is done on traffic destined to the router.

Table 42 - Required DMVPN protocols

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>non500-isakmp</td>
<td>UDP 4500</td>
<td>IPsec via NAT-T</td>
</tr>
<tr>
<td>isakmp</td>
<td>UDP 500</td>
<td>ISAKMP</td>
</tr>
<tr>
<td>esp</td>
<td>IP 50</td>
<td>IPsec</td>
</tr>
</tbody>
</table>

interface Cellular0/1/0
ip access-group ACL-INET-PUBLIC-4G in

ip access-list extended ACL-INET-PUBLIC-4G
permit udp any any eq non500-isakmp
permit udp any any eq isakmp
permit esp any any
permit udp any any eq bootpc

The additional protocols listed in the following table may assist in troubleshooting but are not explicitly required to allow DMVPN to function properly.

Table 43 - Optional protocols: DMVPN spoke router

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp echo</td>
<td>ICMP Type 0, Code 0</td>
<td>Allow remote pings</td>
</tr>
<tr>
<td>icmp echo-reply</td>
<td>ICMP Type 8, Code 0</td>
<td>Allow ping replies (from your requests)</td>
</tr>
<tr>
<td>icmp ttl-exceeded</td>
<td>ICMP Type 11, Code 0</td>
<td>Allow traceroute replies (from your requests)</td>
</tr>
<tr>
<td>icmp port-unreachable</td>
<td>ICMP Type 3, Code 3</td>
<td>Allow traceroute replies (from your requests)</td>
</tr>
<tr>
<td>UDP high ports</td>
<td>UDP &gt; 1023, TTL=1</td>
<td>Allow remote traceroute</td>
</tr>
<tr>
<td>IOS CA Port 80</td>
<td>172.16.140.110 on TCP / 80</td>
<td>Allow IOS CA to communicate with router during enrollment</td>
</tr>
</tbody>
</table>

The additional optional entries for an access list to support ping are as follows:

    permit icmp any any echo
    permit icmp any any echo-reply

The additional optional entries for an access list to support traceroute are as follows:

    permit icmp any any ttl-exceeded ! for traceroute (sourced)
    permit icmp any any port-unreachable ! for traceroute (sourced)
    permit udp any any gt 1023 ttl eq 1 ! for traceroute (destination)

The additional optional entry for an access list to support IOS CA at the Internet DMZ address 172.16.140.11 on source port 80 is as follows:

    permit tcp host 172.16.140.110 eq www any
**Procedure 5**  Configure the dialer watch list

The *dialer watch-list* is a construct that allows the activation of the dialer script and associated cellular interface when the specified route no longer exists in the routing table. In this procedure, the dialer-watch list activates the cellular interface when the specified phantom route is missing from the routing table.

This design uses the IANA-specified loopback address of 127.0.0.255, which should never appear in the routing table under normal circumstances. The absence of this route in the routing table causes the cellular interface to become active and stay active until the interface is brought down.

**Step 1:** Assign a phantom route to the *dialer watch-list*. Use the same value as the *dialer watch-group* in the previous procedure.

- `dialer watch-list 1 ip 127.0.0.255 255.255.255.255`
- `dialer watch-list 1 delay route-check initial 60`
- `dialer watch-list 1 delay connect 1`

**Procedure 6**  Configure VRF-specific default routing

The remote sites using 3G or 4G DMVPN use negotiated IP addresses for the cellular interfaces. Unlike DHCP, the negotiation does not automatically set a default route. This step must be completed manually.

**Step 1:** Configure a VRF-specific default route for the cellular interface.

- `ip route vrf IWAN-TRANSPORT-3 0.0.0.0 0.0.0.0 Cellular 0/1/0`

**Procedure 7**  Configure IKEv2 and IPsec

This procedure uses the parameters in the following table. Choose the column that represents the design model that you are configuring. This procedure applies to the LTE Fallback DMVPN using either the IWAN hybrid design model or the IWAN dual Internet design model.

<table>
<thead>
<tr>
<th>Table 44 - Crypto parameters: LTE fallback DMVPN</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parameter</strong></td>
</tr>
<tr>
<td>vrf</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
</tr>
</tbody>
</table>

IPsec uses a key exchange between the routers in order to encrypt/decrypt the traffic. These keys can be exchanged using a simple pre-sharing algorithm or a certificate authority. It is also possible to use a combination of the two, which is useful during a migration from one method to the other. Choose one of two options below as your method of key exchange.
Option 1: Configure with Pre-Shared Keys

**Step 1:** Configure the crypto keyring for pre-shared keys.

The crypto keyring defines a pre-shared key (or password) valid for IP sources that are reachable within a particular VRF. This key is a wildcard pre-shared key if it applies to any IP source. A wildcard key is configured using the 0.0.0.0 0.0.0.0 network/mask combination.

```
crypto ikev2 keyring [keyring name]
peer ANY
 address 0.0.0.0 0.0.0.0
 pre-shared-key [password]
```

**Example: LTE remote site router in the IWAN hybrid design model**

```
crypto ikev2 keyring DMVPN-KEYRING-3
peer ANY
 address 0.0.0.0 0.0.0.0
 pre-shared-key c1sco123
```

**Step 2:** Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

```
RS51-2921# show crypto ikev2 proposal
IKEv2 proposal: default
 Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
 Integrity : SHA512 SHA384 SHA256 SHA96 MD596
 PRF : SHA512 SHA384 SHA256 SHA1 MD5
 DH Group : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
```

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with **authentication local** and what methods will be accepted from remote locations with **authentication remote**. The **pre-share** keyword is used with the keyring defined above.

```
crypto ikev2 profile [profile name]
 match vrf [vrf name]
 match identity remote address [IP address]
 authentication remote pre-share
 authentication local pre-share
 keyring local [keyring name]
crypto ikev2 dpd [interval in seconds] [retry interval] on-demand
```
Example: LTE remote site router in the IWAN hybrid design model

crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-3
match fvrf IWAN-TRANSPORT-1
match identity remote address 0.0.0.0
authentication remote pre-share
authentication local pre-share
keyring local DMVPN-KEYRING-3
crypto ikev2 dpd 40 5 on-demand

Step 3: Configure the IPsec profile.

The IPsec profile creates an association between an IKEv2 profile and an IPsec transform-set.

crypto ipsec profile [profile name]
set transform-set [transform set]
set ikev2-profile [ikev2 profile name]

Example: LTE remote site router in the IWAN hybrid design model

crypto ipsec profile DMVPN-PROFILE-TRANSPORT-3
set transform-set AES256/SHA/TRANSPORT
set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-3

Step 4: Skip to the next procedure.

Option 2: Configure with a Certificate Authority

The crypto pki trustpoint is the method of specifying the parameters associated with a CA. This router has already authenticated to the CA and enrolled to obtain its identity certificate in a previous procedure.

Step 1: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

RS51-2921# show crypto ikev2 proposal
IKEv2 proposal: default
  Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
  Integrity : SHA512 SHA384 SHA256 SHA96 MD596
  PRF      : SHA512 SHA384 SHA256 SHA1 MD5
  DH Group : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote. The rsa-sig keyword is used when certificates contain the encryption key.

```
crypto ikev2 profile [profile name]
match fvrf [vrf name]
match identity remote address [IP address]
authentication remote rsa-sig
authentication local rsa-sig
pki trustpoint [trustpoint name]
```

**Example: RS51-2921**

This example is from an LTE remote site router in the hybrid design model.

```
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-3
match fvrf IWAN-TRANSPORT-3
match identity remote address 0.0.0.0
authentication remote rsa-sig
authentication local rsa-sig
pki trustpoint IWAN-CA
```

**Step 2: Configure the IPSec profile.**

The IPSec profile creates an association between an IKEv2 profile and an IPsec transform-set.

```
crypto ipsec profile [profile name]
set transform-set [transform set]
set ikev2-profile [ikev2 profile name]
```

**Example: RS51-2921**

This example is from an LTE remote site router in the hybrid design model.

```
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-3
set transform-set AES256/SHA/TRANSPORT
set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-3
```

**Procedure 8**  
**Configure the mGRE Tunnel**

This procedure uses the parameters in the table below. Choose the rows that represent the design model that you are configuring.

**Table 45 - LTE fallback DMVPN tunnel parameters**

<table>
<thead>
<tr>
<th>Design Model</th>
<th>Tunnel VRF</th>
<th>Tunnel Number</th>
<th>Tunnel Network</th>
<th>NHRP network ID / Tunnel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>IWAN-TRANSPORT-3</td>
<td>20</td>
<td>10.6.38.0/23</td>
<td>201</td>
</tr>
<tr>
<td>Dual Internet</td>
<td>IWAN-TRANSPORT-1</td>
<td>10</td>
<td>10.6.34.0/23</td>
<td>101</td>
</tr>
</tbody>
</table>
**Step 1:** Configure basic interface settings.

The tunnel number is arbitrary, but it is best to begin tunnel numbering at 10 or above, because other features deployed in this design may also require tunnels and they may select lower numbers by default.

The bandwidth setting must be set to match the bandwidth of the respective transport which corresponds to the actual interface speed. Or, if you are using a subrate service, use the policed rate from the carrier. QoS and PfR require the correct bandwidth setting to operate properly.

Configure the **ip mtu** to 1400 and the **ip tcp adjust-mss** to 1360. There is a 40 byte difference, which corresponds to the combined IP and TCP header length.

The tunnel interface throughput delay setting is not needed because this is a tertiary path which will only be used when the other two paths are not available.

```plaintext
interface Tunnel20
 bandwidth 8000
 ip address 10.6.38.51
 no ip redirects
 ip mtu 1400
 ip tcp adjust-mss 1360
```

**Step 2:** Configure the tunnel.

DMVPN uses mGRE tunnels. This type of tunnel requires a source interface only. Use the same source interface that you use to connect to the Internet. Set the **tunnel vrf** command should be set to the VRF defined previously for FVRF.

Enabling encryption on this interface requires the application of the IPsec profile configured in the previous procedure.

```plaintext
interface Tunnel20
 tunnel source Cellular0/1/0
 tunnel mode gre multipoint
 tunnel key 201
 tunnel vrf IWAN-TRANSPORT-3
 tunnel protection ipsec profile DMVPN-PROFILE-TRANSPORT-3
```

**Step 3:** Configure NHRP.

The DMVPN hub router is the NHRP server for all of the spokes. NHRP is used by remote routers to determine the tunnel destinations for peers attached to the mGRE tunnel.

The spoke router requires several additional configuration statements to define the NHRP server (NHS) and NHRP map statements for the DMVPN hub router mGRE tunnel IP address. EIGRP (configured in the following Procedure 5) relies on a multicast transport. Spoke routers require the NHRP static multicast mapping.
The value used for the NHS is the mGRE tunnel address for the DMVPN hub router. The map entries must be set to the outside NAT value of the DMVPN hub, as configured on the Cisco ASA 5500. This design uses the values shown in Table 37 and Table 38.

Table 46 - DMVPN tunnel NHRP parameters: IWAN hybrid design model

<table>
<thead>
<tr>
<th>VRF</th>
<th>LTE Fallback</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.146.20</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>172.16.140.11</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.38.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>20</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>201</td>
</tr>
</tbody>
</table>

Table 47 - LTE fallback DMVPN tunnel NHRP parameters: IWAN dual Internet design model

<table>
<thead>
<tr>
<th>VRF</th>
<th>LTE Fallback</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.146.10</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>172.16.140.1</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.34.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>10</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>101</td>
</tr>
</tbody>
</table>

NHRP requires all devices within a DMVPN cloud to use the same network ID and authentication key. The NHRP cache holdtime should be configured to 600 seconds.

This design supports DMVPN spoke routers that receive their external IP addresses through DHCP. It is possible for these routers to acquire different IP addresses after a reload. When the router attempts to register with the NHRP server, it may appear as a duplicate to an entry already in the cache and be rejected. The `registration no-unique` option allows you to overwrite existing cache entries. This feature is only required on NHRP clients (DMVPN spoke routers). The `if-state nhrp` option ties the tunnel line-protocol state to the reachability of the NHRP NHS, and if the NHS is unreachable, the tunnel line-protocol state changes to down.

```interface Tunnel20
ip nhrp authentication cisco123
ip nhrp network-id 201
ip nhrp holdtime 600
ip nhrp nhs 10.6.38.1 nbma 172.16.140.11 multicast
ip nhrp registration no-unique
ip nhrp shortcut
if-state nhrp```

Deploying the Transport Independent Design

January 2015

109
A single EIGRP process runs on the DMVPN spoke router, which has already been enabled during the configuration of the first DMVPN tunnel. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interfaces are non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements.

Step 1: Add the network range for the LTE Fallback DMVPN tunnel and configure as non-passive.

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Tunnel20
    no passive-interface
  exit-af-interface
  network 10.6.38.0 0.0.1.255
  exit-address-family
```

Step 2: Configure EIGRP values for the mGRE tunnel interface.

The EIGRP hello interval is increased to 20 seconds and the EIGRP hold time is increased to 60 seconds in order to accommodate up to 2000 remote sites on a single DMVPN cloud. Increasing the EIGRP timers also slows down the routing convergence to improve network stability and the IWAN design allows PfR to initiate the fast failover, so changing the timers is recommended for all IWAN deployments.

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Tunnel20
    hello-interval 20
    hold-time 60
  exit-af-interface
  exit-address-family
```

Step 3: Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the DMVPN tunnel interface.

```
key chain WAN-KEY
  key 1
    key-string cisco123
!
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Tunnel20
    authentication mode md5
    authentication key-chain WAN-KEY
  exit-af-interface
  exit-address-family
```
Step 4: Configure EIGRP route summarization.

The remote-site LAN networks must be advertised. The IP assignment for the remote sites was designed so that all of the networks in use can be summarized within a single aggregate route. The summary address as configured below suppresses the more specific routes. If any network within the summary is present in the route table, the summary is advertised to the DMVPN hub, which offers a measure of resiliency. If the various LAN networks cannot be summarized, EIGRP continues to advertise the specific routes.

```
router eigrp IWAN-EIGRP
    address-family ipv4 unicast autonomous-system 400
    af-interface Tunnel20
        summary-address [summary network] [summary mask]
        exit-af-interface
        exit-address-family
```

Procedure 10 Configure IP multicast routing

This procedure includes additional steps for configuring IP Multicast for a DMVPN tunnel on a router with IP Multicast already enabled.

Step 1: Configure PIM on the DMVPN tunnel interface.

Enable IP PIM sparse mode on the DMVPN tunnel interface.

```
interface Tunnel20
    ip pim sparse-mode
```

Step 2: Enable PIM NBMA mode for the DMVPN tunnel.

Spoke-to-spoke DMVPN networks present a unique challenge because the spokes cannot directly exchange information with one another, even though they are on the same logical network. This inability to directly exchange information can also cause problems when running IP Multicast.

To resolve the NBMA issue, you need to implement a method where each remote PIM neighbor has its join messages tracked separately. A router in PIM NBMA mode treats each remote PIM neighbor as if it were connected to the router through a point-to-point link.

```
interface Tunnel20
    ip pim nbma-mode
```

Step 3: Configure the DR priority for the DMVPN spoke router.

Proper multicast operation across a DMVPN cloud requires that the hub router assumes the role of PIM DR. Spoke routers should never become the DR. You can prevent that by setting the DR priority to 0 for the spokes.

```
interface Tunnel20
    ip pim dr-priority 0
```
Procedure 11 Enable the cellular interface

The 4G/LTE portion of the router configuration is essentially complete.

Step 1: Enable the cellular interface to bring up the DMVPN tunnel.

```
interface Cellular0/1/0
no shutdown
```

Procedure 12 Control usage of LTE fallback tunnel

Many 4G/LTE service providers do not offer a mobile data plan with unlimited usage. More typically, you will need to select a usage-based plan with a bandwidth tier that aligns with the business requirements for the remote site. To minimize recurring costs of the 4G/LTE solution, it is a best practice to limit the use of the wireless WAN specifically to a backup-only path.

The remote-site router can use EOT to track the status of the DMVPN hub routers for the primary and secondary links. If both become unreachable, then the router can use the Embedded Event Manager (EEM) to dynamically enable the cellular interface.

Step 1: Configure EOT to track the interface state of primary and secondary tunnels.

This step links the status of each interface to a basic EOT object.

```
track 10 interface Tunnel10 line-protocol
track 11 interface Tunnel11 line-protocol
```

Step 2: Configure composite object tracking.

A track list using Boolean OR is Up if either basic object is Up, and changes state to Down only when both basic objects are Down. This logic permits either the primary or secondary DMVPN tunnel to fail without enabling the LTE fallback tunnel. Both the primary and secondary tunnels must be down before the LTE fallback tunnel is enabled.

A short delay of 20 seconds is added when the primary or secondary tunnels are restored before shutting down the cellular interface.

```
track 20 list boolean or
object 10
object 11
delay up 20
```
Step 3: Configure EEM scripting to enable or disable the cellular interface.

An event-tracking EEM script monitors the state of an object and runs router Cisco IOS commands for that particular state. It is also a best practice to generate syslog messages that provide status information regarding EEM.

event manager applet [EEM script name]
event track [object number] state [tracked object state]
action [sequence 1] cli command "[command 1]"
action [sequence 2] cli command "[command 2]"
action [sequence 3] cli command "[command 3]"
action [sequence …] cli command "[command …]"
action [sequence N] syslog msg "[syslog message test]"

Example: EEM script to enable the cellular interface.

```plaintext
event manager applet ACTIVATE-LTE
event track 20 state down
action 1 cli command "enable"
action 2 cli command "configure terminal"
action 3 cli command "interface cellular0/1/0"
action 4 cli command "no shutdown"
action 5 cli command "end"
action 99 syslog msg "Both tunnels down - Activating 4G interface"
```

Example: EEM script to disable the cellular interface.

```plaintext
event manager applet DEACTIVATE-LTE
event track 20 state up
action 1 cli command "enable"
action 2 cli command "configure terminal"
action 3 cli command "interface cellular0/1/0"
action 4 cli command "shutdown"
action 5 cli command "end"
action 99 syslog msg "Connectivity Restored - Deactivating 4G interface"
```
Modifying the First Router for Dual Router Design

1. Configure access layer HSRP
2. Configure transit network
3. Configure EIGRP on the transit network
4. Enable enhanced object tracking

This process is required when the first router has already been configured using the “Configuring Remote-Site DMVPN Router” process.

Procedure 1 Configure access layer HSRP

You need to configure HSRP to enable the use of a Virtual IP (VIP) as a default gateway that is shared between two routers. The HSRP active router is the router connected to the primary WAN link and the HSRP standby router is the router connected to the secondary WAN link. Configure the HSRP active router with a standby priority that is higher than the HSRP standby router.

The router with the higher standby priority value is elected as the HSRP active router. The preempt option allows a router with a higher priority to become the HSRP active, without waiting for a scenario where there is no router in the HSRP active state. The following table shows the relevant HSRP parameters for the router configuration.

Table 48 - WAN remote-site HSRP parameters (dual router)

<table>
<thead>
<tr>
<th>Router</th>
<th>HSRP role</th>
<th>VIP</th>
<th>Real IP address</th>
<th>HSRP priority</th>
<th>PIM DR priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Active</td>
<td>.1</td>
<td>.2</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Secondary</td>
<td>Standby</td>
<td>.1</td>
<td>.3</td>
<td>105</td>
<td>105</td>
</tr>
</tbody>
</table>

The assigned IP addresses override those configured in the previous procedure, so the default gateway IP address remains consistent across locations with single or dual routers.

The dual-router access-layer design requires a modification for resilient multicast. The PIM DR should be on the HSRP active router. The DR is normally elected based on the highest IP address, and has no awareness of the HSRP configuration. In this design, the HSRP active router has a lower real IP address than the HSRP standby router, which requires a modification to the PIM configuration. The PIM DR election can be influenced by explicitly setting the DR priority on the LAN-facing subinterfaces for the routers.

Tech Tip

The HSRP priority and PIM DR priority are shown in the previous table to be the same value; however you are not required to use identical values.
This procedure should be repeated for all data or voice subinterfaces.

```
interface [type][number].[sub-interface number]
encapsulation dot1Q [dot1q VLAN tag]
ip address [LAN network 1 address] [LAN network 1 netmask]
ip helper-address 10.4.48.10
ip pim sparse-mode
ip pim dr-priority 110
standby version 2
standby 1 ip [LAN network 1 gateway address]
standby 1 priority 110
standby 1 preempt
standby 1 authentication md5 key-string cisco123
```

Example: Layer 2 Link

```
interface GigabitEthernet0/2
  no ip address
  no shutdown

interface GigabitEthernet0/2.64
  description Data
  encapsulation dot1Q 64
  ip address 10.7.18.2 255.255.255.0
  ip helper-address 10.4.48.10
  ip pim dr-priority 110
  ip pim sparse-mode
  standby version 2
  standby 1 ip 10.7.18.1
  standby 1 priority 110
  standby 1 preempt
  standby 1 authentication md5 key-string cisco123

interface GigabitEthernet0/2.69
  description Voice
  encapsulation dot1Q 69
  ip address 10.7.19.2 255.255.255.0
  ip helper-address 10.4.48.10
  ip pim dr-priority 110
  ip pim sparse-mode
  standby version 2
  standby 1 ip 10.7.19.1
  standby 1 priority 110
  standby 1 preempt
  standby 1 authentication md5 key-string cisco123
```
Procedure 2 Configure transit network

The transit network is configured between the two routers. This network is used for router-router communication and to avoid hair-pinning. The transit network should use an additional subinterface on the router’s physical interface that is already being used for data or voice.

There are no end stations connected to this network, so HSRP and DHCP are not required.

```plaintext
interface [type][number].[sub-interface number]
encapsulation dot1Q [dot1q VLAN tag]
ip address [transit net address] [transit net netmask]
ip pim sparse-mode
```

Example

```plaintext
interface GigabitEthernet0/2.99
description Transit Net
encapsulation dot1Q 99
ip address 10.7.16.9 255.255.255.252
ip pim sparse-mode
```

Step 1: Add transit network VLAN to the access layer switch.

If the VLAN does not already exist on the access layer switch, configure it now.

```plaintext
vlan 99
name Transit-net
```

Step 2: Add transit network VLAN to existing access layer switch trunk.

```plaintext
interface GigabitEthernet1/0/48
switchport trunk allowed vlan add 99
```

Procedure 3 Configure EIGRP on the transit network

A single EIGRP process runs on the DMVPN spoke router, which has already been enabled when configuring the DMVPN tunnel. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interface and transit network are non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements.

EIGRP stub routers normally do not exchange routes with other stub routers, which is problematic in a dual router remote site. It is useful to maintain the benefits of EIGRP stub routing in this type of design. This requires the configuration of stub route leaking between the two remote-site routers for full route reachability. This is needed so that if a router loses its DMVPN link, it knows how to reach the WAN from the other router at the branch.

In order to prevent the remote site from becoming a transit site during certain failure conditions when stub route leaking is enabled, you must also configure a distribute-list on the tunnel interfaces to control route advertisement.
Step 1: Configure the transit network subinterface as non-passive.

```conf
router eigrp IWAN-EIGRP
    address-family ipv4 unicast autonomous-system 400
    af-interface Port-channel1.99
    no passive-interface
    exit-af-interface
    exit-address-family
```

Step 2: Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the transit network interface.

```conf
key chain LAN-KEY
key 1
key-string cisco123

router eigrp IWAN-EIGRP
    address-family ipv4 unicast autonomous-system 400
    af-interface Port-channel1.99
    authentication mode md5
    authentication key-chain LAN-KEY
    exit-af-interface
    exit-address-family
```

Step 3: Configure stub route leaking.
A simple route-map statement with no match statements matches all routes, which permits full route leaking between two routers configured as EIGRP stub.

```conf
route-map STUB-LEAK-ALL permit 100
    description Leak all routes

router eigrp IWAN-EIGRP
    address-family ipv4 unicast autonomous-system 400
    eigrp stub connected summary redistributed leak-map STUB-LEAK-ALL
    exit-address-family
```

Step 4: Configure distribute-list to protect from becoming a transit site.
The route-map matches all routes learned from the WAN by matching on the tags set on the DMVPN hub routers in a previous process. The goal is to exchange full WAN routes between EIGRP stub routers, but to only advertise local prefixes out to the WAN over DMVPN.

```conf
route-map ROUTE-LIST deny 10
    description Block readvertisement of learned WAN routes
    match tag 101 102

route-map ROUTE-LIST permit 100
    description Advertise all other routes

router eigrp IWAN-EIGRP
    address-family ipv4 unicast autonomous-system 400
```
Procedure 4 Enable enhanced object tracking

The HSRP active router remains the active router unless the router is reloaded or fails. Having the HSRP router remain as the active router can lead to undesired behavior. If the primary WAN transport were to fail, the HSRP active router would learn an alternate path through the transit network to the HSRP standby router and begin to forward traffic across the alternate path. This is sub-optimal routing, and you can address it by using EOT.

The HSRP active router can track the state of its DMVPN tunnel interface. If the tunnel line-protocol state changes to down, this implies that the path to the primary site is no longer viable. This is a benefit of using the `if-state nhrp` feature with a DMVPN tunnel configuration.

This procedure is valid only on the router connected to the primary transport.

Step 1: Configure EOT.

A tracked object is created based on tunnel line-protocol state. If the tunnel is up, the tracked object status is Up; if the tunnel is down, the tracked object status is Down. A short delay is added after the tunnel interface comes back up in order to ensure that routing has converged properly before changing the HSRP active router.

```
track 50 interface Tunnel10 line-protocol
delay up 20
```

Step 2: Link HSRP with the tracked object.

All data or voice subinterfaces should enable HSRP tracking.

HSRP can monitor the tracked object status. If the status is down, the HSRP priority is decremented by the configured priority. If the decrease is large enough, the HSRP standby router preempts.

```
interface [interface type] [number].[sub-interface number]
standby 1 track 50 decrement 10
```

Example

```
track 50 interface Tunnel10 line-protocol
delay up 20

interface GigabitEthernet0/2.64
standby 1 track 50 decrement 10

interface GigabitEthernet0/2.69
standby 1 track 50 decrement 10
```
Configuring Remote-Site DMVPN Router (Router 2)

1. Configure the WAN remote site router
2. Configure the WAN-facing VRF
3. Connect to the Internet
4. Configure IKEv2 and IPsec
5. Configure the mGRE tunnel
6. Configure EIGRP
7. Configure IP multicast routing
8. Connect router to access layer switch
9. Configure access layer interfaces
10. Configure access layer HSRP
11. Configure transit network
12. Configure EIGRP on the transit network

Use these procedures when configuring the second router of a dual-router, dual-link design for either the hybrid design model or the dual-Internet design model.

This set of procedures includes the additional steps necessary to configure a second router as a DMVPN spoke router when the first router has already been configured with the process Configuring Remote-Site DMVPN Spoke Router.

The previous process, Router 1 Modifications for Dual Router Design, must also be completed.
The following flowchart provides details about how to complete the configuration of a remote-site DMVPN spoke router.

Figure 26 - Remote-site DMVPN second router configuration flowchart

![Remote-Site DMVPN Router (Router 2) Configuration Procedures](Image)

Procedure 1 Configure the WAN remote site router

Within this design, there are features and services that are common across all WAN remote-site routers. These are system settings that simplify and secure the management of the solution.

Step 1: Configure the device host name to make it easy to identify the device.

```bash
hostname [hostname]
```
Step 2: Configure local login and password.

The local login account and password provides basic access authentication to a router which provides only limited operational privileges. The enable password secures access to the device configuration mode. By enabling password encryption, you prevent the disclosure of plain text passwords when viewing configuration files.

username admin secret clisco123
enable secret clisco123
service password-encryption
aaa new-model

By default, https access to the router will use the enable password for authentication.

Step 3: (Optional) Configure centralized user authentication.

As networks scale in the number of devices to maintain it poses an operational burden to maintain local user accounts on every device. A centralized AAA service reduces operational tasks per device and provides an audit log of user access for security compliance and root cause analysis. When AAA is enabled for access control, all management access to the network infrastructure devices (SSH and HTTPS) is controlled by AAA.

TACACS+ is the primary protocol used to authenticate management logins on the infrastructure devices to the AAA server. A local AAA user database is also defined on each network infrastructure device to provide a fallback authentication source in case the centralized TACACS+ server is unavailable.

tacacs server TACACS-SERVER-1
 address ipv4 10.4.48.15
 key SecretKey

aaa group server tacacs+ TACACS-SERVERS
 server name TACACS-SERVER-1

 aaa authentication login default group TACACS-SERVERS local
 aaa authorization exec default group TACACS-SERVERS local
 aaa authorization console
 ip http authentication aaa

Step 4: Configure device management protocols.

HTTPS and SSH are secure replacements for the HTTP and Telnet protocols. They use SSL and TLS to provide device authentication and data encryption.

Secure management of the network device is enabled through the use of the SSH and HTTPS protocols. Both protocols are encrypted for privacy and the nonsecure protocols, Telnet and HTTP, are turned off. SCP is enabled, which allows the use of code upgrades using Prime Infrastructure via SSH-based SCP protocol.
Specify the transport preferred none on vty lines in order to prevent errant connection attempts from the CLI prompt. Without this command, if the ip name-server is unreachable, long timeout delays may occur for mistyped commands.

```conf
ip domain-name cisco.local
ip ssh version 2
no ip http server
ip http secure-server
ip scp server enable
line vty 0 15
  transport input ssh
  transport preferred none
```

Step 5: When synchronous logging of unsolicited messages and debug output is turned on, console log messages are displayed on the console after interactive CLI output is displayed or printed. With this command, you can continue typing at the device console when debugging is enabled.

```conf
line con 0
  transport preferred none
  logging synchronous
```

Step 6: Enable SNMP. This allows the network infrastructure devices to be managed by an NMS. SNMPv2c is configured both for a read-only and a read-write community string.

```conf
snmp-server community cisco RO
snmp-server community cisco123 RW
snmp-server ifindex persist ! IOS Classic Only
snmp ifmib ifindex persist ! IOS XE Only
```

Step 7: (Optional) In networks where network operational support is centralized, you can increase network security by using an access list to limit the networks that can access your device. In this example, only devices on the 10.4.48.0/24 network will be able to access the device via SSH or SNMP.

```conf
access-list 55 permit 10.4.48.0 0.0.0.255
line vty 0 15
  access-class 55 in
snmp-server community cisco RO 55
snmp-server community cisco123 RW 55
snmp-server ifindex persist ! IOS Classic Only
snmp ifmib ifindex persist ! IOS XE Only
```

Tech Tip

If you configure an access-list on the vty interface, you may lose the ability to use ssh to login from one router to the next for hop-by-hop troubleshooting.

Step 8: Configure a synchronized clock.

NTP is designed to synchronize a network of devices. An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the organizations network.
You should program network devices to synchronize to a local NTP server in the network. The local NTP server typically references a more accurate clock feed from an outside source. By configuring console messages, logs, and debug output to provide time stamps on output, you can cross-reference events in a network.

```bash
ntp server 10.4.48.17
ntp update-calendar

clock timezone PST -8
clock summer-time PDT recurring

service timestamps debug datetime msec localtime
service timestamps log datetime msec localtime
```

Step 9: Configure an in-band management interface.

The loopback interface is a logical interface that is always reachable as long as the device is powered on and any IP interface is reachable to the network. Because of this capability, the loopback address is the best way to manage the router in-band. Layer 3 process and features are also bound to the loopback interface to ensure process resiliency.

The loopback address is commonly a host address with a 32-bit address mask. Allocate the loopback address from a unique network range that is not part of any other internal network summary range.

```bash
interface Loopback 0
  ip address [ip address] 255.255.255.255
  ip pim sparse-mode
```

The `ip pim sparse-mode` command will be explained further in the process.

Bind the device processes for SNMP, SSH, PIM, TACACS+ and NTP to the loopback interface address for optimal resiliency:

```bash
snmp-server trap-source Loopback0
ip ssh source-interface Loopback0
ip pim register-source Loopback0
ip tacacs source-interface Loopback0
ntp source Loopback0
```

Step 10: Configure IP Multicast routing.

In this design, which is based on sparse mode multicast operation, Auto RP is used to provide a simple yet scalable way to provide a highly resilient RP environment.

Enable IP Multicast routing on the platforms in the global configuration mode.

```bash
ip multicast-routing
```

Every Layer 3 switch and router must be configured to discover the IP Multicast RP with autorp. Use the `ip pim autorp listener` command to allow for discovery across sparse mode links. This configuration provides for future scaling and control of the IP Multicast environment and can change based on network needs and design.

```bash
ip pim autorp listener
```

All Layer 3 interfaces in the network must be enabled for sparse mode multicast operation.

```bash
ip pim sparse-mode
```
Procedure 2 Configure the WAN-facing VRF

A WAN-facing VRF is created to support FVRF for DMVPN. The VRF name is arbitrary, but it is useful to select a name that describes the VRF. The VRF must be enabled for IPv4.

Table 49 - VRF assignments

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Primary WAN VRF</th>
<th>Secondary WAN VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>Dual Internet</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
</tbody>
</table>

This design uses VRF Lite, so the selection is only locally significant to the device. It is a best practice to use the same VRF/RD combination across multiple devices when using VRFs in a similar manner. However, this convention is not strictly required.

Step 1: Configure the secondary WAN VRF.

Example: Transport 2 in the IWAN hybrid design model

```
vrf definition IWAN-TRANSPORT-2
  address-family ipv4
```

Procedure 3 Connect to the Internet

The remote sites using DMVPN can use either static or dynamically assigned IP addresses. Cisco tested the design with a DHCP assigned external address, which also provides a dynamically configured default route.

The DMVPN spoke router connects directly to the Internet without a separate firewall. This connection is secured in two ways. Because the Internet interface is in a separate VRF, no traffic can access the global VRF except traffic sourced through the DMVPN tunnel. This design provides implicit security. Additionally, an IP access list permits only the traffic required for an encrypted tunnel, as well as DHCP and various ICMP protocols for troubleshooting.

Step 1: Enable the interface, select VRF and enable DHCP.

The DMVPN design uses FVRF, so you must place this interface into the VRF configured in the previous procedure.

```
interface GigabitEthernet0/0
  vrf forwarding IWAN-TRANSPORT-2
  ip address dhcp
  no cdp enable
  no shutdown
```

Do not enable PIM on this interface because no multicast traffic should be requested from this interface.
Step 2: Configure and apply the access list.

The IP access list must permit the protocols specified in the following table. The access list is applied inbound on the WAN interface, so filtering is done on traffic destined to the router.

Table 50 - Required DMVPN protocols

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>non500-isakmp</td>
<td>UDP 4500</td>
<td>IPSec via NAT-T</td>
</tr>
<tr>
<td>isakmp</td>
<td>UDP 500</td>
<td>ISAKMP</td>
</tr>
<tr>
<td>esp</td>
<td>IP 50</td>
<td>IPSec</td>
</tr>
<tr>
<td>bootpc</td>
<td>UDP 68</td>
<td>DHCP</td>
</tr>
</tbody>
</table>

Example

```
interface GigabitEthernet0/0
 ip access-group ACL-INET-PUBLIC in

ip access-list extended ACL-INET-PUBLIC
 permit udp any any eq non500-isakmp
 permit udp any any eq isakmp
 permit esp any any
 permit udp any any eq bootpc
```

The additional protocols listed in the following table may assist in troubleshooting, but are not explicitly required to allow DMVPN to function properly.

Table 51 - Optional protocols: DMVPN spoke router

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp echo</td>
<td>ICMP Type 0, Code 0</td>
<td>Allow remote pings</td>
</tr>
<tr>
<td>icmp echo-reply</td>
<td>ICMP Type 8, Code 0</td>
<td>Allow ping replies (from your requests)</td>
</tr>
<tr>
<td>icmp ttl-exceeded</td>
<td>ICMP Type 11, Code 0</td>
<td>Allow traceroute replies (from your requests)</td>
</tr>
<tr>
<td>icmp port-unreachable</td>
<td>ICMP Type 3, Code 3</td>
<td>Allow traceroute replies (from your requests)</td>
</tr>
<tr>
<td>UDP high ports</td>
<td>UDP > 1023, TTL=1</td>
<td>Allow remote traceroute</td>
</tr>
<tr>
<td>IOS CA Port 80</td>
<td>172.16.140.110 on TCP / 80</td>
<td>Allow IOS CA to communicate with router during enrollment</td>
</tr>
</tbody>
</table>

The additional optional entries for an access list to support ping are as follows:

```
permit icmp any any echo
permit icmp any any echo-reply
```

The additional optional entries for an access list to support traceroute are as follows:

```
permit icmp any any ttl-exceeded ! for traceroute (sourced)
prompt icmp any any port-unreachable ! for traceroute (sourced)
prompt udp any any gt 1023 ttl eq 1 ! for traceroute (destination)
```

The additional optional entry for an access list to support IOS CA at the Internet DMZ address 172.16.140.11 on source port 80 is as follows:

```
permit tcp host 172.16.140.110 eq www any
```
Procedure 4 Configure IKEv2 and IPsec

This procedure uses the parameters in the tables below. Choose the table that represents the design model that you are configuring. This procedure applies to the Secondary WAN.

Table 52 - Crypto parameters: IWAN hybrid design model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-1</td>
<td>IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-1</td>
<td>DMVPN-KEYRING-2</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-1</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-2</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-1</td>
<td>DMVPN-PROFILE-TRANSPORT-2</td>
</tr>
</tbody>
</table>

Table 53 - Crypto parameters: IWAN dual Internet design model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary WAN</th>
<th>Secondary WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>IWAN-TRANSPORT-3</td>
<td>IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ikev2 keyring</td>
<td>DMVPN-KEYRING-3</td>
<td>DMVPN-KEYRING-4</td>
</tr>
<tr>
<td>crypto ikev2 profile</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-3</td>
<td>FVRF-IKEv2-IWAN-TRANSPORT-4</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>DMVPN-PROFILE-TRANSPORT-3</td>
<td>DMVPN-PROFILE-TRANSPORT-4</td>
</tr>
</tbody>
</table>

IPsec uses a key exchange between the routers in order to encrypt/decrypt the traffic. These keys can be exchanged using a simple pre-sharing algorithm or a certificate authority. It is also possible to use a combination of the two, which is useful during a migration from one method to the other. Choose one of two options below as your method of key exchange.

Option 1: Configure with Pre-Shared Keys

Step 1: Configure the crypto keyring for pre-shared keys.

The crypto keyring defines a pre-shared key (or password) valid for IP sources that are reachable within a particular VRF. This key is a wildcard pre-shared key if it applies to any IP source. A wildcard key is configured using the 0.0.0.0 0.0.0.0 network/mask combination.

```plaintext
crypto ikev2 keyring [keyring name]
  peer ANY
    address 0.0.0.0 0.0.0.0
    pre-shared-key [password]
```

Example: Secondary WAN in the IWAN hybrid design model

```plaintext
crypto ikev2 keyring DMVPN-KEYRING-2
  peer ANY
    address 0.0.0.0 0.0.0.0
    pre-shared-key cisco123
```
Step 2: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

RS12-2911-2# show crypto ikev2 proposal
IKEv2 proposal: default
 Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
 Integrity : SHA512 SHA384 SHA256 SHA96 MD596
 PRF : SHA512 SHA384 SHA256 SHA1 MD5
 DH Group : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote. The pre-share keyword is used with the keyring defined above.

```
crypto ikev2 profile [profile name]
   match fvrf [vrf name]
   match identity remote address [IP address]
   authentication remote pre-share
   authentication local pre-share
   keyring local [keyring name]
```

Example: Secondary WAN in the IWAN hybrid design model
```
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-2
   match fvrf IWAN-TRANSPORT-2
   match identity remote address 0.0.0.0
   authentication remote pre-share
   authentication local pre-share
   keyring local DMVPN-KEYRING-2
```

Step 3: Configure DPD.

DPD is essential to facilitate fast reconvergence and for spoke registration to function properly in case a DMVPN hub is restarted. The IWAN design recommends you set the remote site DPD timer to 40 seconds with 5 a second retry.

```
crypto ikev2 dpd [interval in seconds] [retry interval] on-demand
```

Example
```
crypto ikev2 dpd 40 5 on-demand
```

Step 4: Define the IPsec transform set.

A transform set is an acceptable combination of security protocols, algorithms, and other settings to apply to IPsec-protected traffic. Peers agree to use a particular transform set when protecting a particular data flow.
The IPsec transform set for DMVPN uses the following:

- ESP with the 256-bit AES encryption algorithm
- ESP with the SHA (HMAC variant) authentication algorithm

Since the DMVPN hub router is behind a NAT device, the IPsec transform must be configured for transport mode.

```
crypto ipsec transform-set [transform set] esp-aes 256 esp-sha-hmac
    mode transport
```

Example

```
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
    mode transport
```

Step 5: Configure the IPsec profile.

The IPsec profile creates an association between an IKEv2 profile and an IPsec transform-set.

```
crypto ipsec profile [profile name]
    set transform-set [transform set]
    set ikev2-profile [ikev2 profile name]
```

Example: Secondary WAN in the IWAN hybrid design model

```
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-2
    set transform-set AES256/SHA/TRANSPORT
    set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-2
```

Step 6: Increase the IPsec anti-replay window size.

```
crypto ipsec security-association replay window-size 1024
```

Tech Tip

QoS queuing delays can cause anti-replay packet drops, so it is important to extend the window size to prevent the drops from occurring.

Increasing the anti-replay window size has no impact on throughput and security. The impact on memory is insignificant because only an extra 128 bytes per incoming IPsec SA are needed.

It is recommended that you use the full 1024 window size to eliminate future anti-replay problems.

If you do not increase the window size, the router may drop packets and you may see the following error message on the router CLI:

```
%CRYPTO-4-PKT_REPLAY_ERR: decrypt: replay check failed
```

Step 7: Skip to the next procedure.
Option 2: Configure with a Certificate Authority

The crypto pki trustpoint is the method of specifying the parameters associated with a CA. The router must authenticate to the CA first, and then enroll with the CA to obtain its own identity certificate.

Step 1: The fingerprint command limits the responding CA. This fingerprint can be found using `show crypto pki server` on the IOS CA.

```
IWAN-IOS-CA# show crypto pki server
Certificate Server IWAN-IOS-CA:
   Status: enabled
   State: enabled
   Server's configuration is locked (enter "shut" to unlock it)
   Issuer name: CN=IWAN-IOS-CA.cisco.local L=SanJose St=CA C=US
   CA cert fingerprint: 75BEF625 9A9876CF 6F341FE5 86D4A5D8
   Granting mode is: auto
   Last certificate issued serial number (hex): 11
   CA certificate expiration timer: 10:28:57 PST Nov 11 2017
   CRL NextUpdate timer: 09:47:47 PST Dec 4 2014
   Current primary storage dir: nvram:
   Current storage dir for .crl files: nvram:
   Database Level: Complete - all issued certs written as <serialnum>.cer
```

Table 54 - IOS CA IP address assignments

<table>
<thead>
<tr>
<th>Network</th>
<th>IP Address</th>
<th>NAT IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>10.6.24.11</td>
<td>N/A</td>
</tr>
<tr>
<td>Internet DMZ</td>
<td>192.168.144.127</td>
<td>172.16.140.110 (ISP-A)</td>
</tr>
<tr>
<td>MPLS Provider</td>
<td>192.168.6.254</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Step 2: Configure the PKI trust point.

```
crypto pki trustpoint [name]
   enrollment url [URL of IOS CA that is reachable]
   serial-number none
   fqdn [fully qualified domain name of this router]
   ip-address [loopback IP address of this router]
   fingerprint [fingerprint from IOS CA]
   vrf [vrf name]
   revocation-check none
   rsakeypair [name] 2048 2048
```
Example: RS14-2921-2

This example is from the second remote site router in the dual Internet design model. This router can only reach the IOS CA from the Internet and it uses the NAT IP address of 172.16.140.110 in VRF IWAN-TRANSPORT-4 for enrollment.

```
crypto pki trustpoint IWAN-CA
  enrollment url http://172.16.140.110:80
  serial-number none
  fqdn RS14-2921-2.cisco.local
  ip-address 10.255.244.14
  fingerprint 75BEF6259A9876CF6F341FE586D4A5D8
  vrf IWAN-TRANSPORT-4
  revocation-check none
  rsakeypair IWAN-CA-KEYS 2048 2048
```

Step 3: Authenticate to the CA and obtain the CA's certificate

Exit the trustpoint configuration mode on the hub router and issue the following command to authenticate to the CA and get its certificate.

```
RS14-2921-2(config)# crypto pki authenticate IWAN-CA
Certificate has the following attributes:
  Fingerprint MD5: 1A070F43 38068E1C BE04A8FB CBAA406F
  Fingerprint SHA1: F463AAF1 54C4D994 E2732F36 3BEBED23 D410192E
  Trustpoint Fingerprint: 1A070F43 38068E1C BE04A8FB CBAA406F
Certificate validated - fingerprints matched.
Trustpoint CA certificate accepted.
```

Step 4: Enroll with the CA, enter a password for key retrieval and obtain a certificate for this hub router.

```
RS14-2921-2(config)# crypto pki enroll IWAN-CA

% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this
  password to the CA Administrator in order to revoke your certificate.
  For security reasons your password will not be saved in the configuration.
  Please make a note of it.

Password: cisco123
Re-enter password: cisco123

% The subject name in the certificate will include: RS14-2921-2.cisco.local
% The IP address in the certificate is 10.255.244.14

Request certificate from CA? [yes/no]: yes
% Certificate request sent to Certificate Authority
% The 'show crypto pki certificate verbose IWAN-CA' command will show the
  fingerprint.
```
Step 5: Configure the IKEv2 profile.

The default IKEv2 proposal is used, which includes the following:

- Encryption with AES cipher with a 256-bit key
- Integrity with SHA with 512-bit digest
- Pseudo-random function with SHA with 512-bit digest
- Diffie-Hellman group: 5

```
RS14-2921-2# show crypto ikev2 proposal
IKEv2 proposal: default
  Encryption: AES-CBC-256 AES-CBC-192 AES-CBC-128
  Integrity : SHA512 SHA384 SHA256 SHA96 MD596
  PRF       : SHA512 SHA384 SHA256 SHA1 MD5
  DH Group  : DH_GROUP_1536_MODP/Group 5 DH_GROUP_1024_MODP/Group 2
```

The IKEv2 profile creates an association between an identity address, a VRF, and a crypto keyring. A wildcard address within a VRF is referenced with 0.0.0.0. The profile also defines what method of key sharing will be used on this router with authentication local and what methods will be accepted from remote locations with authentication remote. The rsa-sig keyword is used when certificates contain the encryption key.

```
crypto ikev2 profile [profile name]
  match fvrf [vrf name]
  match identity remote address [IP address]
  authentication remote rsa-sig
  authentication local rsa-sig
  pki trustpoint [trustpoint name]
```

Example: RS14-2921-2

This example is from a secondary WAN remote site router in the dual Internet design model.

```
crypto ikev2 profile FVRF-IKEv2-IWAN-TRANSPORT-4
  match fvrf IWAN-TRANSPORT-4
  match identity remote address 0.0.0.0
  authentication remote rsa-sig
  authentication local rsa-sig
  pki trustpoint IWAN-CA
```

Step 6: Configure DPD.

DPD is essential to facilitate fast reconvergence and for spoke registration to function properly in case a DMVPN hub is restarted. The IWAN design recommends you set the remote site DPD timer to 40 seconds with 5 a second retry.

```
crypto ikev2 dpd [interval in seconds] [retry interval] on-demand
```

Example:

```
crypto ikev2 dpd 40 5 on-demand
```

Step 7: Define the IPsec transform set.

A transform set is an acceptable combination of security protocols, algorithms, and other settings to apply to IPsec-protected traffic. Peers agree to use a particular transform set when protecting a particular data flow.
The IPsec transform set for DMVPN uses the following:

- ESP with the 256-bit AES encryption algorithm
- ESP with the SHA (HMAC variant) authentication algorithm

Because the DMVPN hub router is behind a NAT device, the IPsec transform must be configured for transport mode.

```
crypto ipsec transform-set [transform set] esp-aes 256 esp-sha-hmac
  mode transport
```

Example
```
crypto ipsec transform-set AES256/SHA/TRANSPORT esp-aes 256 esp-sha-hmac
  mode transport
```

Step 8: Configure the IPSec profile.

The IPsec profile creates an association between an IKEv2 profile and an IPsec transform-set.

```
crypto ipsec profile [profile name]
  set transform-set [transform set]
  set ikev2-profile [ikev2 profile name]
```

Example: RS14-2921-2

This example is from a secondary WAN remote site router in the dual Internet design model.

```
crypto ipsec profile DMVPN-PROFILE-TRANSPORT-4
  set transform-set AES256/SHA/TRANSPORT
  set ikev2-profile FVRF-IKEv2-IWAN-TRANSPORT-4
```

Step 9: Increase the IPsec anti-replay window size.

```
crypto ipsec security-association replay window-size [value]
```

Example
```
crypto ipsec security-association replay window-size 512
```

Tech Tip

QoS queuing delays can cause anti-replay packet drops, so it is important to extend the window size to prevent the drops from occurring.

Increasing the anti-replay window size has no impact on throughput and security. The impact on memory is insignificant because only an extra 128 bytes per incoming IPsec SA is needed.

It is recommended that you use the maximum window size to eliminate future anti-replay problems. On the Cisco ASR 1000 router platform, the maximum replay window size is 512.

If you do not increase the window size, the router may drop packets and you may see the following error message on the router CLI:
```
%CRYPTO-4-PKT_REPLAY_ERR: decrypt: replay check failed
```
Procedure 5 Configure the mGRE tunnel

This procedure uses the parameters in the table below. Choose the rows that represent the design model that you are configuring. This procedure applies to the Secondary WAN.

Table 55 - DMVPN tunnel parameters

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Tunnel VRF</th>
<th>Tunnel Number</th>
<th>Tunnel Network</th>
<th>NHRP network ID / Tunnel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid—Primary WAN</td>
<td>IWAN-TRANSPORT-1</td>
<td>10</td>
<td>10.6.34.0/23</td>
<td>101</td>
</tr>
<tr>
<td>Hybrid—Secondary WAN</td>
<td>IWAN-TRANSPORT-2</td>
<td>11</td>
<td>10.6.36.0/23</td>
<td>102</td>
</tr>
<tr>
<td>Dual Internet—Primary WAN</td>
<td>IWAN-TRANSPORT-3</td>
<td>20</td>
<td>10.6.38.0/23</td>
<td>201</td>
</tr>
<tr>
<td>Dual Internet—Secondary WAN</td>
<td>IWAN-TRANSPORT-4</td>
<td>21</td>
<td>10.6.40.0/23</td>
<td>202</td>
</tr>
</tbody>
</table>

Step 1: Configure basic interface settings.

The tunnel number is arbitrary, but it is best to begin tunnel numbering at 10 or above, because other features deployed in this design may also require tunnels and they may select lower numbers by default.

You must set the bandwidth setting to match the bandwidth of the respective transport, which corresponds to the actual interface speed. Or, if you are using a subrate service, use the policed rate from the carrier. QoS and PfR require the correct bandwidth setting to operate properly.

Configure the `ip mtu` to 1400 and the `ip tcp adjust-mss` to 1360. There is a 40 byte difference, which corresponds to the combined IP and TCP header length.

The tunnel interface throughput delay setting should be set to influence the routing protocol path preference. Set the primary WAN path to 10000 usec and the secondary WAN path to 20000 usec to prefer one over the other. The delay command is entered in 10 usec units.

```bash
interface Tunnel11
bandwidth 10000
ip address 10.6.36.12 255.255.254.0
no ip redirects
ip mtu 1400
ip tcp adjust-mss 1360
delay 2000
```

Step 2: Configure the tunnel.

DMVPN uses multipoint GRE (mGRE) tunnels. This type of tunnel requires a source interface only. The source interface should be the same interface you use to connect to the Internet. You should set the `tunnel vrf` command to the VRF defined previously for FVRF.

To enable encryption on this interface, you must apply the IPsec profile that you configured in the previous procedure.

```bash
interface Tunnel11
  tunnel source GigabitEthernet0/0
  tunnel mode gre multipoint
  tunnel key 102
  tunnel vrf IWAN-TRANSPORT-2
  tunnel protection ipsec profile DMVPN-PROFILE-TRANSPORT-2
```
Step 3: Configure NHRP.

The spoke router requires an additional configuration statement to define the NHRP server (NHS). This statement includes the NBMA definition for the DMVPN hub router tunnel endpoint. EIGRP relies on a multicast transport. Spoke routers require the NHRP multicast keyword in this statement.

The value used for the NHS is the mGRE tunnel address for the DMVPN hub router. The nbma entry must be set to either the MPLS DMVPN hub router’s actual public address or the outside NAT value of the DMVPN hub, as configured on the Cisco ASA 5500. This design uses the values shown in the following tables.

Table 56 - DMVPN tunnel NHRP parameters: IWAN hybrid design model

<table>
<thead>
<tr>
<th>VRF</th>
<th>Transport 1</th>
<th>Transport 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.6.1</td>
<td>192.168.146.10</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>n/a (MPLS)</td>
<td>172.16.140.1</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.34.1</td>
<td>10.6.36.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>101</td>
<td>102</td>
</tr>
</tbody>
</table>

Table 57 - DMVPN tunnel NHRP parameters: IWAN dual Internet design model

<table>
<thead>
<tr>
<th>VRF</th>
<th>Transport 3</th>
<th>Transport 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMVPN hub public address (actual)</td>
<td>192.168.146.20</td>
<td>192.168.146.21</td>
</tr>
<tr>
<td>DMVPN hub public address (externally routable after NAT)</td>
<td>172.16.140.11</td>
<td>172.17.140.11</td>
</tr>
<tr>
<td>DMVPN hub tunnel IP address (NHS)</td>
<td>10.6.38.1</td>
<td>10.6.40.1</td>
</tr>
<tr>
<td>Tunnel number</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>NHRP network ID</td>
<td>201</td>
<td>202</td>
</tr>
</tbody>
</table>

NHRP requires all devices within a DMVPN cloud to use the same network ID and authentication key. The NHRP cache holdtime should be configured to 600 seconds.

This design supports DMVPN spoke routers that receive their external IP addresses through DHCP. It is possible for these routers to acquire different IP addresses after a reload. When the router attempts to register with the NHRP server, it may appear as a duplicate to an entry already in the cache and be rejected. The **registration no-unique** option allows you to overwrite existing cache entries. This feature is only required on NHRP clients (DMVPN spoke routers). The **if-state nhrp** option ties the tunnel line-protocol state to the reachability of the NHRP NHS, and if the NHS is unreachable the tunnel line-protocol state changes to down.
This feature is used in conjunction with EOT.

interface Tunnel11
ip nhrp authentication cisco123
ip nhrp network-id 102
ip nhrp holdtime 600
ip nhrp nhs 10.6.36.1 nbma 172.16.140.1 multicast
ip nhrp registration no-unique
ip nhrp shortcut
if-state nhrp

Procedure 6 Configure EIGRP

A single EIGRP process runs on the DMVPN spoke router. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interface is non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements. This design uses a best practice of assigning the router ID to a loopback address. All DMVPN spoke routers should run EIGRP stub routing to improve network stability and reduce resource utilization.

Step 1: Configure an EIGRP process for DMVPN by using EIGRP named mode on the spoke router.

```conf
toolkit
  router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface default
  passive-interface
  exit-af-interface
  af-interface Tunnel11
  no passive-interface
  exit-af-interface
  network 10.6.36.0 0.0.1.255
  network 10.7.0.0 0.0.255.255
  network 10.255.0.0 0.0.255.255
  eigrp router-id [IP address of Loopback0]
  eigrp stub connected summary redistributed
  exit-address-family
```

Step 2: Configure EIGRP values for the mGRE tunnel interface.

The EIGRP hello interval is increased to 20 seconds and the EIGRP hold time is increased to 60 seconds in order to accommodate up to 2000 remote sites on a single DMVPN cloud. Increasing the EIGRP timers also slows down the routing convergence to improve network stability and the IWAN design allows PfR to initiate the fast failover, so changing the timers is recommended for all IWAN deployments.

```conf
toolkit
  router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Tunnel11
  hello-interval 20
  hold-time 60
  exit-af-interface
  exit-address-family
```
Step 3: Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the DMVPN tunnel interface.

```
key chain WAN-KEY
key 1
key-string cisco123
```

```
router eigrp IWAN-EIGRP
   address-family ipv4 unicast autonomous-system 400
   af-interface Tunnel11
      authentication mode md5
      authentication key-chain WAN-KEY
   exit-af-interface
   exit-address-family
```

Step 4: Configure EIGRP network summarization.

The remote-site LAN networks must be advertised. The IP assignment for the remote sites was designed so that all of the networks in use can be summarized within a single aggregate route. The summary address as configured below suppresses the more specific routes. If any network within the summary is present in the route table, the summary is advertised to the DMVPN hub, which offers a measure of resiliency. If the various LAN networks cannot be summarized, then EIGRP continues to advertise the specific routes.

```
router eigrp IWAN-EIGRP
   address-family ipv4 unicast autonomous-system 400
   af-interface Tunnel10
      summary-address [summary network] [summary mask]
   exit-af-interface
   exit-address-family
```

Procedure 7 Configure IP multicast routing

This procedure includes additional steps for configuring IP Multicast for a DMVPN tunnel on a router with IP Multicast already enabled.

Step 1: Configure PIM on the DMVPN tunnel interface.

Enable IP PIM sparse mode on the DMVPN tunnel interface.

```
interface Tunnel11
   ip pim sparse-mode
```

Step 2: Enable PIM NBMA mode for the DMVPN tunnel.

Spoke-to-spoke DMVPN networks present a unique challenge because the spokes cannot directly exchange information with one another, even though they are on the same logical network. This inability to directly exchange information can also cause problems when running IP Multicast.

To resolve the NBMA issue, you need to implement a method where each remote PIM neighbor has its join messages tracked separately. A router in PIM NBMA mode treats each remote PIM neighbor as if it were connected to the router through a point-to-point link.

```
interface Tunnel11
   ip pim nbma-mode
```
Step 3: Configure the DR priority for the DMVPN spoke router.

Proper multicast operation across a DMVPN cloud requires that the hub router assumes the role of PIM DR. Spoke routers should never become the DR. You can prevent that by setting the DR priority to 0 for the spokes.

```
interface Tunnel11
  ip pim dr-priority 0
```

Procedure 8 Connect router to access layer switch

Optional

If you are using a remote-site distribution layer, skip to the “Connecting Remote-Site Router to Distribution Layer (Router 2)” process.

Reader Tip

This guide includes only the additional steps needed to complete the access layer configuration. For complete access layer configuration details, refer to the Campus Wired LAN Technology Design Guide.

Layer 2 EtherChannels are used to interconnect the router to the access layer in the most resilient method possible, unless the access layer device is a single fixed configuration switch, Otherwise a simple Layer 2 trunk between the router and switch is used.

In the access layer design, the remote sites use collapsed routing, with 802.1Q trunk interfaces to the LAN access layer. The VLAN numbering is locally significant only.

Option 1: Layer 2 EtherChannel from router to access layer switch

Step 1: Configure port-channel interface on the router.

```
interface Port-channel12
  description EtherChannel link to RS12-A2960X
  no shutdown
```

Step 2: Configure EtherChannel member interfaces on the router.

Configure the physical interfaces to tie to the logical port-channel using the channel-group command. The number for the port-channel and channel-group must match. Not all router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```
interface GigabitEthernet0/1
  description RS12-A2960X Gig1/0/48

interface GigabitEthernet0/2
  description RS12-A2960X Gig2/0/48

interface range GigabitEthernet0/1, GigabitEthernet0/2
  no ip address
  channel-group 2
  no shutdown
```
Step 3: Configure EtherChannel member interfaces on the access layer switch.

Connect the router EtherChannel uplinks to separate switches in the access layer switch stack, or in the case of the Cisco Catalyst 4507R+E distribution layer, to separate redundant modules for additional resiliency.

The physical interfaces that are members of a Layer 2 EtherChannel are configured prior to configuring the logical port-channel interface. Doing the configuration in this order allows for minimal configuration and reduces errors because most of the commands entered to a port-channel interface are copied to its members interfaces and do not require manual replication.

Configure two or more physical interfaces to be members of the EtherChannel. It is recommended that they are added in multiples of two. Also, apply the egress QoS macro that was defined in the platform configuration procedure to ensure traffic is prioritized appropriately.

Not all connected router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```
interface GigabitEthernet1/0/48
description Link to RS12-2911-2 Gig0/1

interface GigabitEthernet2/0/48
description Link to RS12-2911-2 Gig0/2

interface range GigabitEthernet1/0/48, GigabitEthernet2/0/48
switchport
channel-group 2 mode on
logging event link-status
logging event trunk-status
logging event bundle-status
load-interval 30
macro apply EgressQoS
```

Step 4: Configure EtherChannel trunk on the access layer switch.

An 802.1Q trunk is used which allows the router to provide the Layer 3 services to all the VLANs defined on the access layer switch. The VLANs allowed on the trunk are pruned to only the VLANs that are active on the access layer switch. When using EtherChannel the interface type will be port-channel and the number must match the channel group configured in Step 3. DHCP Snooping and ARP inspection are set to trust.

```
interface Port-channel12
description EtherChannel link to RS12-2911-2
switchport trunk allowed vlan 64,69,99
switchport mode trunk
ip arp inspection trust
spanning-tree portfast trunk
ip dhcp snooping trust
load-interval 30
no shutdown
```

The Cisco Catalyst 3750 Series Switch requires the `switchport trunk encapsulation dot1q` command.
Option 2: Layer 2 trunk from router to access layer switch

Step 1: Enable the physical interface on the router.

```bash
interface GigabitEthernet0/2
  description RS12-A2960X Gig1/0/48
  no ip address
  no shutdown
```

Step 2: Configure the trunk on the access layer switch.

Use an 802.1Q trunk for the connection, which allows the router to provide the Layer 3 services to all the VLANs defined on the access layer switch. The VLANs allowed on the trunk are pruned to only the VLANs that are active on the access switch. DHCP Snooping and ARP inspection are set to trust.

```bash
interface GigabitEthernet1/0/48
  description Link to RS12-2911-2 Gig0/2
  switchport trunk allowed vlan 64,69,99
  switchport mode trunk
  ip arp inspection trust
  spanning-tree portfast trunk
  logging event link-status
  logging event trunk-status
  ip dhcp snooping trust
  no shutdown
  load-interval 30
  macro apply EgressQoS
```

The Cisco Catalyst 3750 Series Switch requires the `switchport trunk encapsulation dot1q` command.

Procedure 9 Configure access layer interfaces

Step 1: Create subinterfaces and assign VLAN tags.

After the physical interface or port-channel have been enabled, then the appropriate data or voice subinterfaces can be mapped to the VLANs on the LAN switch. The subinterface number does not need to equate to the 802.1Q tag, but making them the same simplifies the overall configuration. The subinterface portion of the configuration should be repeated for all data or voice VLANs.

```bash
interface [type][number].[sub-interface number]
  encapsulation dot1Q [dot1q VLAN tag]
```

Step 2: Configure IP settings for each subinterface.

This design uses an IP addressing convention with the default gateway router assigned an IP address and IP mask combination of N.N.N.1 255.255.255.0 where N.N.N is the IP network and 1 is the IP host.

When you are using a centralized DHCP server, your routers with LAN interfaces connected to a LAN using DHCP for end-station IP addressing must use an IP helper.
This remote-site DMVPN spoke router is the second router of a dual-router design and HSRP is configured at the access layer. The actual interface IP assignments will be configured in the following procedure.

```
interface [type][number].[sub-interface number]
description [usage]
encapsulation dot1Q [dot1q VLAN tag]
ip helper-address 10.4.48.10
ip pim sparse-mode
```

Example: Layer 2 EtherChannel

```
interface Port-channel2
no ip address
no shutdown

interface Port-channel2.64
description Data
encapsulation dot1Q 64
ip helper-address 10.4.48.10
ip pim sparse-mode

interface Port-channel2.69
description Voice
encapsulation dot1Q 69
ip helper-address 10.4.48.10
ip pim sparse-mode
```

Example: Layer 2 Link

```
interface GigabitEthernet0/2
no ip address
no shutdown

interface GigabitEthernet0/2.64
description Data
encapsulation dot1Q 64
ip helper-address 10.4.48.10
ip pim sparse-mode

interface GigabitEthernet0/2.69
description Voice
encapsulation dot1Q 69
ip helper-address 10.4.48.10
ip pim sparse-mode
```
Procedure 10 Configure access layer HSRP

You configure HSRP to enable a VIP that you use as a default gateway that is shared between two routers. The HSRP active router is the router connected to the primary carrier and the HSRP standby router is the router connected to the secondary carrier or backup link. Configure the HSRP standby router with a standby priority that is lower than the HSRP active router.

The router with the higher standby priority value is elected as the HSRP active router. The preempt option allows a router with a higher priority to become the HSRP active, without waiting for a scenario where there is no router in the HSRP active state. The relevant HSRP parameters for the router configuration are shown in the following table.

Table 58 - WAN remote-site HSRP parameters (dual router)

<table>
<thead>
<tr>
<th>Router</th>
<th>HSRP role</th>
<th>Virtual IP address (VIP)</th>
<th>Real IP address</th>
<th>HSRP priority</th>
<th>PIM DR priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Active</td>
<td>.1</td>
<td>.2</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Secondary</td>
<td>Standby</td>
<td>.1</td>
<td>.3</td>
<td>105</td>
<td>105</td>
</tr>
</tbody>
</table>

The dual-router access-layer design requires a modification for resilient multicast. The PIM DR should be on the HSRP active router. The DR is normally elected based on the highest IP address and has no awareness of the HSRP configuration. In this design, the HSRP active router has a lower real IP address than the HSRP standby router, which requires a modification to the PIM configuration. The PIM DR election can be influenced by explicitly setting the DR priority on the LAN-facing subinterfaces for the routers.

Tech Tip

The HSRP priority and PIM DR priority are shown in the previous table to be the same value; however there is no requirement that these values must be identical.

Repeat this procedure for all data or voice subinterfaces.

```
interface [interface type][number].[sub-interface number]
ip address [LAN network 1 address] [LAN network 1 netmask]
ip pim dr-priority 105
standby version 2
standby 1 ip [LAN network 1 gateway address]
standby 1 priority 105
standby 1 preempt
standby 1 authentication md5 key-string cisco123
```

Example: Layer 2 EtherChannel

```
interface PortChannel2
no ip address
no shutdown

interface PortChannel2.64
description Data
encapsulation dot1Q 64
```
ip address 10.7.18.3 255.255.255.0
ip helper-address 10.4.48.10
ip pim dr-priority 105
ip pim sparse-mode
standby version 2
standby 1 ip 10.7.18.1
standby 1 priority 105
standby 1 preempt
standby 1 authentication md5 key-string cisco123

interface PortChannel2.69
description Voice
encapsulation dot1Q 69
ip address 10.7.19.3 255.255.255.0
ip helper-address 10.4.48.10
ip pim dr-priority 105
ip pim sparse-mode
standby version 2
standby 1 ip 10.7.19.1
standby 1 priority 105
standby 1 preempt
standby 1 authentication md5 key-string cisco123

Example: Layer 2 Link
interface GigabitEthernet0/2
no ip address
no shutdown

interface GigabitEthernet0/2.64
description Data
encapsulation dot1Q 64
ip address 10.7.18.3 255.255.255.0
ip helper-address 10.4.48.10
ip pim dr-priority 105
ip pim sparse-mode
standby version 2
standby 1 ip 10.7.18.1
standby 1 priority 105
standby 1 preempt
standby 1 authentication md5 key-string cisco123

interface GigabitEthernet0/2.69
description Voice
encapsulation dot1Q 69
ip address 10.7.19.3 255.255.255.0
ip helper-address 10.4.48.10
ip pim dr-priority 105
Procedure 11 Configure transit network

Configure the transit network between the two routers. You use this network for router-router communication and to avoid hairpinning. The transit network should use an additional subinterface on the router interface that is already being used for data or voice.

There are no end stations connected to this network, so HSRP and DHCP are not required.

```bash
interface [interface type][number].[sub-interface number]
encapsulation dot1Q [dot1q VLAN tag]
ip address [transit net address] [transit net netmask]
ip pim sparse-mode
```

Example: Layer 2 EtherChannel

```
interface PortChannel0/2.99
description Transit Net
en encapsulation dot1Q 99
ip address 10.7.16.10 255.255.255.252
ip pim sparse-mode
```

Example: Layer 2 Link

```
interface GigabitEthernet0/2.99
description Transit Net
en encapsulation dot1Q 99
ip address 10.7.16.10 255.255.255.252
ip pim sparse-mode
```

Procedure 12 Configure EIGRP on the transit network

A single EIGRP process runs on the DMVPN spoke router, which has already been enabled during the configuration of the DMVPN tunnel. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interface and transit network are non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements.

EIGRP stub routers normally do not exchange routes with other stub routers, which is problematic in a dual router remote site. It is useful to maintain the benefits of EIGRP stub routing in this type of design. This requires the configuration of stub route leaking between the two remote-site routers for full route reachability. This is needed so that if a router loses its DMVPN link, it knows how to reach the WAN from the other router at the branch.
In order to prevent the remote site from becoming a transit site during certain failure conditions when stub route leaking is enabled, you must also configure a distribute-list on the tunnel interfaces to control route advertisement.

Step 1: Configure the transit network subinterface as non-passive.
```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel 2.99
    no passive-interface
  exit-af-interface
  exit-address-family
```

Step 2: Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the transit network interface.
```
key chain LAN-KEY
  key 1
    key-string cisco123

router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel 2.99
    authentication mode md5
    authentication key-chain LAN-KEY
  exit-af-interface
  exit-address-family
```

Step 3: Configure stub route leaking.
A simple route-map statement with no match statements matches all routes, which permits full route leaking between two routers configured as EIGRP stub.
```
route-map STUB-LEAK-ALL permit 100
  description Leak all routes

router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  eigrp stub connected summary redistributed leak-map STUB-LEAK-ALL
  exit-address-family
```
Step 4: Configure distribute-list to protect from becoming a transit site.

The route-map matches all routes learned from the WAN by matching on the tags set on the DMVPN hub routers in a previous process. The goal is to exchange full WAN routes between EIGRP stub routers, but to only advertise local prefixes out to the WAN over DMVPN.

```
route-map ROUTE-LIST deny 10
  description Block readvertisement of learned WAN routes
  match tag 101 102

route-map ROUTE-LIST permit 100
  description Advertise all other routes

router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  topology base
    distribute-list route-map ROUTE-LIST out Tunnel11
  exit-af-topology
  exit-address-family
```
Connecting Remote-site Router to Distribution Layer

1. Connect router to distribution layer
2. Configure EIGRP for distribution layer link
3. Configure transit network for dual router design

This process helps you configure a DMVPN spoke router for an IWAN remote site and connect to a distribution layer.

This process covers the IWAN hybrid design model and the IWAN dual-Internet design model. Use this process to:

- Connect a distribution layer to a router in the single-router, dual-link design.
- Connect a distribution layer to the first router of the dual-router, dual-link design.

The distribution layer remote-site options are shown in the following figures.

Figure 27 - IWAN single router remote-site: Connection to distribution layer
Procedure 1 Connect router to distribution layer

Reader Tip

This guide includes only the additional steps for completing the distribution layer configuration. For complete distribution layer configuration details, see the Campus Wired LAN Technology Design Guide.

Layer 2 EtherChannels are used to interconnect the remote-site router to the distribution layer in the most resilient method possible. This connection allows for multiple VLANs to be included on the EtherChannel as necessary.

Step 1: Configure port-channel interface on the router.

```
interface Port-channel11
  description EtherChannel link to RS42-D3850
  no shutdown
```

Step 2: Configure the port channel sub-interfaces and assign IP addresses.

After you have enabled the interface, map the appropriate sub-interfaces to the VLANs on the distribution layer switch. The sub-interface number does not need to equate to the 802.1Q tag, but making them the same simplifies the overall configuration.
The sub-interface configured on the router corresponds to a VLAN interface on the distribution-layer switch. Traffic is routed between the devices with the VLAN acting as a point-to-point link.

```
interface Port-channel1.50
  description R1 routed link to distribution layer
  encapsulation dot1Q 50
  ip address 10.7.208.1 255.255.255.252
  ip pim sparse-mode
```

Step 3: Configure EtherChannel member interfaces on the router.

Configure the physical interfaces to tie to the logical port-channel using the channel-group command. The number for the port-channel and channel-group must match. Not all router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```
interface GigabitEthernet0/0/2
  description RS42-D3850 Gig1/1/1

interface GigabitEthernet0/0/3
  description RS42-D3850 Gig2/1/1

interface range GigabitEthernet0/0/2, GigabitEthernet0/0/3
  no ip address
  channel-group 1
  no shutdown
```

Step 4: Configure VLAN on the distribution layer switch.

```
vlan 50
  name R1-link
```

Step 5: Configure Layer 3 on the distribution layer switch.

Configure a VLAN interface, also known as a switch virtual interface (SVI), for the new VLAN added. The SVI is used for point to point IP routing between the distribution layer and the WAN router.

```
interface Vlan50
  ip address 10.5.208.2 255.255.255.252
  ip pim sparse-mode
  no shutdown
```

Step 6: Configure EtherChannel member interfaces on the distribution layer switch.

Connect the router EtherChannel uplinks to separate switches in the distribution layer switches or stack, and in the case of the Cisco Catalyst 4507R+E distribution layer, to separate redundant modules for additional resiliency.

The physical interfaces that are members of a Layer 2 EtherChannel are configured prior to configuring the logical port-channel interface. Doing the configuration in this order allows for minimal configuration and reduces errors because most of the commands entered to a port-channel interface are copied to its members interfaces and do not require manual replication.

Configure two or more physical interfaces to be members of the EtherChannel. It is recommended that they are added in multiples of two. Also, apply the egress QoS macro that was defined in the platform configuration procedure to ensure traffic is prioritized appropriately.
Not all connected router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```plaintext
interface GigabitEthernet1/1/1
  description Link to RS42-4451X-1 Gig0/0/2

interface GigabitEthernet2/1/1
  description Link to RS42-4451X-1 Gig0/0/3

interface range GigabitEthernet1/1/1, GigabitEthernet2/1/1
  switchport
  channel-group 1 mode on
  logging event link-status
  logging event trunk-status
  logging event bundle-status
  load-interval 30
  macro apply EgressQoS
```

Step 7: Configure EtherChannel trunk on the distribution layer switch.

An 802.1Q trunk is used which allows the router to provide the Layer 3 services to all the VLANs defined on the distribution layer switch. The VLANs allowed on the trunk are pruned to only the VLANs that are active on the distribution layer switch. When using EtherChannel the interface type will be port-channel and the number must match the channel group configured in Step 3. DHCP Snooping and ARP inspection are set to trust.

```plaintext
interface Port-channel1
  description EtherChannel link to RS42-4451X-1
  switchport trunk allowed vlan 50
  switchport mode trunk
  spanning-tree portfast trunk
  load-interval 30
  no shutdown
```

The Cisco Catalyst 3750 Series Switch requires the `switchport trunk encapsulation dot1q` command

Procedure 2 Configure EIGRP for distribution layer link

A single EIGRP process runs on the DMVPN spoke router, which has already been enabled during configuration of the DMVPN tunnel. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interface and the link to the distribution layer are non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements.

EIGRP stub routers normally do not exchange routes with other stub routers and distribution switches, which is problematic in a dual-router remote site. It is useful to maintain the benefits of EIGRP stub routing in this type of design. This requires the configuration of stub route leaking between the remote-site routers and distribution layer switch for full route reachability.

In order to prevent the remote site from becoming a transit site during certain failure conditions when stub route leaking is enabled, you must also configure a distribute-list on the tunnel interfaces to control route advertisement.
Step 1: Configure the distribution layer link sub-interface as non-passive.

```c
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel1.50
  no passive-interface
  exit-af-interface
  exit-address-family
```

Step 2: Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the interface.

```c
key chain LAN-KEY
  key 1
    key-string cisco123

router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel1.50
  authentication mode md5
  authentication key-chain LAN-KEY
  exit-af-interface
  exit-address-family
```

Step 3: Configure stub route leaking.

A simple route-map statement with no match statements matches all routes, which permits full route leaking between two routers configured as EIGRP stub.

```c
route-map STUB-LEAK-ALL permit 100
  description Leak all routes

router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  eigrp stub connected summary redistributed leak-map STUB-LEAK-ALL
  exit-address-family
```

Step 4: Configure distribute-list to protect from becoming a transit site.

The route-map matches all routes learned from the WAN by matching on the tags set on the DMVPN hub routers in a previous process. If the remote site a single-router, dual-link site, you must configure the distribution list on both DMVPN tunnel interfaces.

Example: Single-router dual-link remote site

```c
route-map ROUTE-LIST deny 10
  description Block readvertisement of learned WAN routes
  match tag 101 102

route-map ROUTE-LIST permit 100
  description Advertise all other routes

router eigrp IWAN-EIGRP
```
address-family ipv4 unicast autonomous-system 400
topology base
distribute-list route-map ROUTE-LIST out Tunnel10
distribute-list route-map ROUTE-LIST out Tunnel11
exit-af-topology
exit-address-family

Example: Router 1 of a dual-router remote site
route-map ROUTE-LIST deny 10
description Block readvertisement of learned WAN routes
match tag 101 102

route-map ROUTE-LIST permit 100
description Advertise all other routes

router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
topology base
distribute-list route-map ROUTE-LIST out Tunnel10
exit-af-topology
exit-address-family

Step 5: On the distribution layer switch VLAN interface, enable EIGRP.
EIGRP is already configured on the distribution layer switch. The VLAN interface that connects to the router must be configured for EIGRP neighbor authentication and as a non-passive EIGRP interface.

key chain LAN-KEY
key 1
key-string cisco123

router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
af-interface Vlan50
authentication mode md5
authentication key-chain LAN-KEY
no passive-interface
exit-af-interface
exit-address-family
Procedure 3 Configure transit network for dual router design

This procedure is only for dual-router remote sites.

Configure the transit network between the two routers. You use this network for router-router communication and to avoid hairpinning. The transit network should use an additional sub-interface on the EtherChannel interface that is already used to connect to the distribution layer.

The transit network must be a non-passive EIGRP interface.

There are no end stations connected to this network so HSRP and DHCP are not required. The transit network uses Layer 2 pass through on the distribution layer switch, so no SVI is required.

Step 1: Configure the transit net interface on the router.

```
interface Port-channel1.99
  description Transit Net
  encapsulation dot1Q 99
  ip address 10.7.208.9 255.255.255.252
  ip pim sparse-mode
```

Step 2: Enable EIGRP on the transit net interface on the router.

```
router eigrp IWAN-EIGRP
  address-family ipv4 unicast autonomous-system 400
  af-interface Port-channel1.99
    authentication mode md5
    authentication key-chain LAN-KEY
    no passive-interface
  exit-af-interface
  exit-address-family
```

Step 3: Configure transit network VLAN on the distribution layer switch.

```
vlan 99
  name Transit-net
```

Step 4: Add transit network VLAN to the existing distribution layer switch EtherChannel trunk.

```
interface Port-channel1
  switchport trunk allowed vlan add 99
```
Connecting Remote-Site Router to Distribution Layer (Router 2)

1. Connect router to distribution layer
2. Configure EIGRP for distribution layer link

This process helps you configure a DMVPN spoke router for an IWAN remote site and connect to a distribution layer.

This process covers the IWAN hybrid design model and the IWAN dual-Internet design model. Use this process to connect a distribution layer to the second router of the dual-router, dual-link design.

The dual-router distribution layer remote-site option is shown in the following figure.

Figure 29 - WAN remote site: Connection to distribution layer

Procedure 1 Connect router to distribution layer

Reader Tip

Please refer to the *Campus Wired LAN Design Guide* for complete distribution layer configuration details. This guide only includes the additional steps to complete the distribution layer configuration.
Layer 2 EtherChannels are used to interconnect the remote-site router to the distribution layer in the most resilient method possible. This connection allows for multiple VLANs to be included on the EtherChannel as necessary.

Step 1: Configure port-channel interface on the router.

```plaintext
interface Port-channel12
  description EtherChannel link to RS42-D3850
  no shutdown
```

Step 2: Configure the port channel sub-interfaces and assign IP address.

After you have enabled the interface, map the appropriate sub-interfaces to the VLANs on the distribution layer switch. The sub-interface number does not need to equate to the 802.1Q tag, but making them the same simplifies the overall configuration.

The sub-interface configured on the router corresponds to a VLAN interface on the distribution-layer switch. Traffic is routed between the devices with the VLAN acting as a point-to-point link.

```plaintext
interface Port-channel12.54
  description R2 routed link to distribution layer
  encapsulation dot1Q 54
  ip address 10.7.208.5 255.255.255.252
  ip pim sparse-mode
```

Step 3: Configure the transit network interface on the router.

```plaintext
interface Port-channel12.99
  description Transit Net
  encapsulation dot1Q 99
  ip address 10.7.208.10 255.255.255.252
  ip pim sparse-mode
```

Step 4: Configure EtherChannel member interfaces on the router.

Configure the physical interfaces to tie to the logical port-channel using the channel-group command. The number for the port-channel and channel-group must match. Not all router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```plaintext
interface GigabitEthernet0/0/2
  description RS42-D3850X Gig1/1/2

interface GigabitEthernet0/0/3
  description RS42-D3850X Gig2/1/2

interface range GigabitEthernet0/0/2, GigabitEthernet0/0/3
  no ip address
  channel-group 2
  no shutdown
```

Step 5: Configure VLAN on the distribution layer switch.

```plaintext
vlan 54
  name R2-link
```
Step 6: Configure Layer 3 on the distribution layer switch.

Configure a VLAN interface, also known as a SVI, for the new VLAN added. The SVI is used for point to point IP routing between the distribution layer and the WAN router.

```plaintext
interface Vlan54
  ip address 10.7.208.6 255.255.255.252
  ip pim sparse-mode
  no shutdown
```

Step 7: Configure EtherChannel member interfaces on the distribution layer switch.

Connect the router EtherChannel uplinks to separate switches in the distribution layer switches or stack, and in the case of the Cisco Catalyst 4507R+E distribution layer, to separate redundant modules for additional resiliency.

The physical interfaces that are members of a Layer 2 EtherChannel are configured prior to configuring the logical port-channel interface. Doing the configuration in this order allows for minimal configuration and reduces errors because most of the commands entered to a port-channel interface are copied to its members interfaces and do not require manual replication.

Configure two or more physical interfaces to be members of the EtherChannel. It is recommended that they are added in multiples of two. Also, apply the egress QoS macro that was defined in the platform configuration procedure to ensure traffic is prioritized appropriately.

Not all connected router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```plaintext
interface GigabitEthernet1/1/2
  description Link to RS42-4451X-2 Gig0/0/2

interface GigabitEthernet2/1/2
  description Link to RS42-4451X-2 Gig0/0/3

interface range GigabitEthernet1/1/2, GigabitEthernet2/1/2
  switchport
  channel-group 2 mode on
  logging event link-status
  logging event trunk-status
  logging event bundle-status
  load-interval 30
  macro apply EgressQoS
```

Step 8: Configure EtherChannel trunk on the distribution layer switch.

An 802.1Q trunk is used which allows the router to provide the Layer 3 services to all the VLANs defined on the distribution layer switch. The VLANs allowed on the trunk are pruned to only the VLANs that are active on the distribution layer switch. When using EtherChannel the interface type will be port-channel and the number must match the channel group configured in Step 3. DHCP Snooping and ARP inspection are set to trust.

```plaintext
interface Port-channel2
  description EtherChannel link to RS42-4451X-2
  switchport trunk allowed vlan 54,99
  switchport mode trunk
  spanning-tree portfast trunk
  no shutdown

The Cisco Catalyst 3750 Series Switch requires the switchport trunk encapsulation dot1q command
**Procedure 2** Configure EIGRP for distribution layer link

A single EIGRP process runs on the DMVPN spoke router, which has already been enabled during DMVPN tunnel configuration. All interfaces on the router are EIGRP interfaces, but only the DMVPN tunnel interface, the link to the distribution layer, and the transit network link are non-passive. The network range must include all interface IP addresses either in a single network statement or in multiple network statements.

EIGRP stub routers normally do not exchange routes with other stub routers and distribution switches, which is problematic in a dual-router remote site. It is useful to maintain the benefits of EIGRP stub routing in this type of design. This requires the configuration of stub route leaking between the remote-site routers and distribution layer switch for full route reachability.

In order to prevent the remote site from becoming a transit site during certain failure conditions when stub route leaking is enabled, you must also configure a distribute-list on the tunnel interfaces in order to control route advertisement.

**Step 1:** Configure the distribution layer link subinterface as non-passive.

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Port-channel2.54
 no passive-interface
 exit-af-interface
exit-address-family
```

**Step 2:** Configure the transit network link subinterface as non-passive.

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Port-channel2.99
 no passive-interface
 exit-af-interface
exit-address-family
```

**Step 3:** Configure EIGRP neighbor authentication. Neighbor authentication enables the secure establishment of peering adjacencies and exchange route tables over the interface.

```
key chain LAN-KEY
 key 1
 key-string cisco123

router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Port-channel2.54
 authentication mode md5
 authentication key-chain LAN-KEY
 exit-af-interface
 af-interface Port-channel2.99
 authentication mode md5
 authentication key-chain LAN-KEY
 exit-af-interface
exit-address-family
```
Step 4: Configure stub route leaking.
A simple route-map statement with no match statements matches all routes, which permits full route leaking between two routers configured as EIGRP stub.

```
route-map STUB-LEAK-ALL permit 100
description Leak all routes

router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
eigrp stub connected summary redistributed leak-map STUB-LEAK-ALL
exit-address-family
```

Step 5: Configure distribute-list to protect from becoming a transit site.
The route-map matches all routes learned from the WAN by matching on the tags set on the DMVPN hub routers in a previous process.

```
route-map ROUTE-LIST deny 10
description Block readvertisement of learned WAN routes
match tag 101 102

route-map ROUTE-LIST permit 100
description Advertise all other routes

router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
topology base
distribute-list route-map ROUTE-LIST out Tunnel11
exit-af-topology
exit-address-family
```

Step 6: Enable EIGRP on distribution layer switch VLAN interface.
EIGRP is already configured on the distribution layer switch. The VLAN interface that connects to the router must be configured for EIGRP neighbor authentication and as a non-passive EIGRP interface.

```
key chain LAN-KEY
key 1
key-string c1sco123

router eigrp IWAN-EIGRP
address-family ipv4 unicast autonomous-system 400
af-interface Vlan54
authentication mode md5
authentication key-chain LAN-KEY
no passive-interface
exit-af-interface
exit-address-family
```
Deploying IWAN Quality of Service

QoS has already proven itself as the enabling technology for the convergence of voice, video and data networks. As business needs evolve, so do demands on QoS technologies. The need to protect voice, video and critical data with QoS mechanisms is extremely important on the WAN because access speeds are much lower than the LAN networks that feed them.

Configuring QoS for DMVPN Routers

1. Create the class maps in order to classify traffic
2. Create policy map with queuing policy

When configuring WAN-edge QoS, you are defining how traffic egresses your network. It is critical that the classification, marking, and bandwidth allocations align to the service provider, offering to ensure consistent QoS treatment end to end.

The Per-Tunnel QoS for DMVPN feature allows the configuration of a QoS policy on a DMVPN hub on a per-tunnel (spoke) basis. The QoS policy on a tunnel instance allows you to shape the tunnel traffic to individual spokes (parent policy) and to differentiate between traffic classes within the tunnel for appropriate treatment (child policy).

You can also mark the header of the GRE tunneled packets by using the QoS policy map classes. There are two methods for marking the DSCP of the tunnel headers in order to influence per-hop treatment within the service provider network. One method applies the policy to a virtual tunnel interface and the second method applies the policy to a physical interface.

The following table shows an example of how to mark the tunnel headers when using a 12 or 8-class model in the enterprise, while combining the traffic classes into a smaller 6-, 5- or 4-class model in the service provider network. The tunnel markings must match the service provider offering, so you will have to adjust the table below according to your specific service level agreement.
Figure 30 - QoS class model mapping: Tunnel mappings must match provider

<table>
<thead>
<tr>
<th>Application Class</th>
<th>Per-Hop Behavior</th>
<th>Queuing &amp; Dropping</th>
<th>12-Class</th>
<th>8-Class</th>
<th>6-Class For Tunnel</th>
<th>5-Class For Tunnel</th>
<th>4-Class For Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP Telephony</td>
<td>EF</td>
<td>Priority Queue (PQ)</td>
<td>Voice</td>
<td>VOICE</td>
<td>EF</td>
<td>EF</td>
<td>EF</td>
</tr>
<tr>
<td>Broadcast Video</td>
<td>CS5</td>
<td>BR Queue</td>
<td>Broadcast-Video</td>
<td>STREAMING-VIDEO</td>
<td>AF31</td>
<td>AF31</td>
<td>AF31</td>
</tr>
<tr>
<td>Realtime Interactive</td>
<td>CS4</td>
<td>BR Queue + DSCP WRED</td>
<td>Realtime</td>
<td>INTERACTIVE-VIDEO</td>
<td>AF41</td>
<td>AF31</td>
<td>AF31</td>
</tr>
<tr>
<td>Multimedia Conferencing</td>
<td>AF4</td>
<td>BR Queue + DSCP WRED</td>
<td>Interactive-Video</td>
<td>INTERACTIVE-VIDEO</td>
<td>AF41</td>
<td>AF31</td>
<td>AF31</td>
</tr>
<tr>
<td>Multimedia Streaming</td>
<td>AF3</td>
<td>BR Queue + DSCP WRED</td>
<td>Streaming-Video</td>
<td>STREAMING-VIDEO</td>
<td>AF31</td>
<td>AF31</td>
<td>AF31</td>
</tr>
<tr>
<td>Network Control</td>
<td>CS6</td>
<td>BR Queue</td>
<td>Net-Ctrl</td>
<td>NET-CTRL-MGMT</td>
<td>CS6</td>
<td>CS6</td>
<td>CS6</td>
</tr>
<tr>
<td>Call-Signaling</td>
<td>CS3</td>
<td>BR Queue</td>
<td>Call-Signaling</td>
<td>CALL-SIGNALING</td>
<td>AF41</td>
<td>AF31</td>
<td>AF31</td>
</tr>
<tr>
<td>Ops / Admin / Mgmt</td>
<td>CS2</td>
<td>BR Queue</td>
<td>Net-Mgmt</td>
<td>NET-CTRL-MGMT</td>
<td>CS6</td>
<td>CS6</td>
<td>CS6</td>
</tr>
<tr>
<td>Transactional Data</td>
<td>AF2</td>
<td>BR Queue + DSCP WRED</td>
<td>Transactional-Data</td>
<td>CRITICAL-DATA</td>
<td>AF21</td>
<td>AF21</td>
<td>AF21</td>
</tr>
<tr>
<td>Bulk Data</td>
<td>AF1</td>
<td>BR Queue + DSCP WRED</td>
<td>Bulk-Data</td>
<td>CRITICAL-DATA</td>
<td>AF21</td>
<td>AF21</td>
<td>AF21</td>
</tr>
<tr>
<td>Best Effort</td>
<td>DF</td>
<td>BR Queue + RED</td>
<td>Default</td>
<td>DEFAULT</td>
<td>Default</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>Scavenger</td>
<td>CS1</td>
<td>Min BR Queue</td>
<td>Scavenger</td>
<td>SCAVENGER</td>
<td>CS1</td>
<td>CS1</td>
<td>Default</td>
</tr>
</tbody>
</table>

Tech Tip

Because the provider will generally have a network control queue that they do not declare as part of their customer-facing model, the traffic in the NET-CTRL-MGMT queue will be marked as CS6 on the tunnel header. Because the network elements use this traffic to ensure stability under congestion and when a device is oversubscribed, CS6 traffic should be preserved.

Traffic is regulated from the central site (hub) routers to the remote-site routers on a per-tunnel (spoke) basis. The hub site is unable to send more traffic than a single remote-site can handle, and this ensures that high bandwidth hub sites do not overrun lower bandwidth remote-sites.

The following two procedures apply to all DMVPN WAN hub and spoke routers.

Procedure 1 Create the class maps in order to classify traffic

This number of classes in an egress policy should be chosen based on interface speed, available queues, and device capabilities. This design guide uses an 8-class model in the enterprise and the examples will have to be modified for other models, as required.

Use the class-map command to define a traffic class and identify traffic to associate with the class name. You use these class names when configuring policy maps that define actions you want to take against the traffic type. The class-map command sets the match logic. In this case, the match-any keyword indicates that the maps match any of the specified criteria. This keyword is followed by the name you want to assign to the class of service. After you have configured the class-map command, you define specific values, such as DSCP and protocols to match with the match command.
Step 1: Create the class maps for DSCP matching.

Repeat this step to create a class-map for each of the seven non-default WAN classes of service listed in the following table.

You do not need to explicitly configure the default class.

```
class-map match-any [class-map name]
match dscp [dscp value] [optional additional dscp value(s)]
```

Table 59 - Class of service for 8-class model

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Traffic type</th>
<th>DSCP values</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOICE</td>
<td>Voice traffic</td>
<td>ef</td>
</tr>
<tr>
<td>INTERACTIVE-VIDEO</td>
<td>Interactive video (video conferencing)</td>
<td>cs4, af4</td>
</tr>
<tr>
<td>STREAMING-VIDEO</td>
<td>Video streaming</td>
<td>af3</td>
</tr>
<tr>
<td>NET-CTRL-MGMT</td>
<td>Routing protocols, network management traffic</td>
<td>cs6, cs2</td>
</tr>
<tr>
<td>CALL-SIGNALING</td>
<td>Voice and video call signaling</td>
<td>cs3</td>
</tr>
<tr>
<td>CRITICAL-DATA</td>
<td>Highly interactive</td>
<td>af1, af2</td>
</tr>
<tr>
<td>default</td>
<td>Best effort</td>
<td>all others</td>
</tr>
<tr>
<td>SCAVENGER</td>
<td>Scavenger</td>
<td>cs1</td>
</tr>
</tbody>
</table>

Example: Class Maps for 8-class QoS model

```
class-map match-any VOICE
match dscp ef

class-map match-any INTERACTIVE-VIDEO
match dscp cs4, af41 af42

class-map match-any STREAMING-VIDEO
match dscp af31 af32

class-map match-any NET-CTRL-MGMT
match dscp cs6 cs2

class-map match-any CALL-SIGNALING
match dscp cs3

class-map match-any CRITICAL-DATA
match dscp af11 af21

class-map match-any SCAVENGER
match dscp cs1
```

Tech Tip

You do not need to configure a Best-Effort class-map. This is implicitly included within class-default as shown in Procedure 2.
The WAN policy map references the class names you created in the previous procedures and defines the queuing behavior, along with the minimum guaranteed bandwidth allocated to each class. Using a policy-map accomplishes this specification. Then, each class within the policy map invokes an egress queue and assigns a percentage of bandwidth. One additional default class defines the minimum allowed bandwidth available for best effort traffic. There are two methods for marking the tunnel headers depending on whether you apply the policy to a virtual tunnel interface or a physical interface.

**Tech Tip**

The local router policy maps define eight classes, while most service providers offer only six classes of service. The NET-CTRL-MGMT class is defined to ensure the correct classification, marking, and queuing of network-critical traffic on egress to the WAN. After the traffic has been transmitted to the service provider, it is put into a queue that is not part of the customer-facing class model.

**Step 1:** Create the policy map.

```bash
policy-map [policy-map-name]
```

**Step 2:** Apply the previously created class-map.

```bash
class [class-name]
```

**Step 3:** (Optional) Define what proportion of available bandwidth should be reserved for this class of traffic under congestion.

```bash
bandwidth remaining percent [percentage]
```

**Step 4:** (Optional) Define the congestion avoidance mechanism.

```bash
random-detect [type]
```

**Step 5:** (Optional) For priority queues, define the priority level for the class

```bash
priority level [value]
```

**Step 6:** (Optional) For priority queues, define the amount of bandwidth that may be consumed by priority traffic.

```bash
police cir [percentage]
```

**Step 7:** (Optional) For QOS policies that will be attached to tunnel interfaces (hub router configuration), mark the DSCP in the tunnel header.

```bash
set dscp tunnel [dscp value]
```

**Step 8:** (Optional) For QOS policies that will be attached to physical interface (remote-site router configuration), mark the DSCP in the tunnel header.

```bash
set dscp [dscp value]
```
Table 60 - Bandwidth, congestion avoidance and outbound tunnel values

<table>
<thead>
<tr>
<th>Class of service for 8-class model</th>
<th>Bandwidth %</th>
<th>Congestion avoidance</th>
<th>Tunnel DSCP values for 6-class model</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOICE</td>
<td>10 (PQ)</td>
<td>–</td>
<td>ef</td>
</tr>
<tr>
<td>INTERACTIVE-VIDEO</td>
<td>30 remaining</td>
<td>DSCP based WRED</td>
<td>af41</td>
</tr>
<tr>
<td>STREAMING-VIDEO</td>
<td>10 remaining</td>
<td>DSCP based WRED</td>
<td>af31</td>
</tr>
<tr>
<td>NET-CTRL-MGMT</td>
<td>5 remaining</td>
<td>–</td>
<td>cs6</td>
</tr>
<tr>
<td>CALL-SIGNALING</td>
<td>4 remaining</td>
<td>–</td>
<td>af41</td>
</tr>
<tr>
<td>CRITICAL-DATA</td>
<td>25 remaining</td>
<td>DSCP based WRED</td>
<td>af21</td>
</tr>
<tr>
<td>default</td>
<td>25 remaining</td>
<td>random</td>
<td>default</td>
</tr>
<tr>
<td>SCAVENGER</td>
<td>1 remaining</td>
<td>–</td>
<td>af11</td>
</tr>
</tbody>
</table>

**Step 9:** Repeat Step 2 through Step 8 for each class in the previous table, including the default class.

**Example: WAN aggregation policy map for 6-class service provider offering**

This example uses the set dscp tunnel command in each class because the policy is applied to the tunnel interfaces on the WAN aggregation routers.

```
policy-map WAN
 class INTERACTIVE-VIDEO
 bandwidth remaining percent 30
 random-detect dscp-based
 set dscp tunnel af41
 class STREAMING-VIDEO
 bandwidth remaining percent 10
 random-detect dscp-based
 set dscp tunnel af41
 class NET-CTRL-MGMT
 bandwidth remaining percent 5
 set dscp tunnel cs6
 class CALL-SIGNALING
 bandwidth remaining percent 4
 set dscp tunnel af41
 class CRITICAL-DATA
 bandwidth remaining percent 25
 random-detect dscp-based
 set dscp tunnel af21
 class SCAVENGER
 bandwidth remaining percent 1
 set dscp tunnel af11
 class VOICE
 priority level 1
 police cir percent 10
 set dscp tunnel ef
```
Example: Remote site policy map for 6-class service provider offering

This example uses the `set dscp` command in each class, because the policy is applied to the physical interfaces on the remote site routers.

```
policy-map WAN
class INTERACTIVE-VIDEO
 bandwidth remaining percent 30
 random-detect dscp-based
 set dscp af41
class STREAMING-VIDEO
 bandwidth remaining percent 10
 random-detect dscp-based
 set dscp af41
class NET-CTRL-MGMT
 bandwidth remaining percent 5
 set dscp cs6
class CALL-SIGNALING
 bandwidth remaining percent 4
 set dscp af41
class CRITICAL-DATA
 bandwidth remaining percent 25
 random-detect dscp-based
 set dscp af21
class SCAVENGER
 bandwidth remaining percent 1
 set dscp af11
class VOICE
 priority level 1
 police cir percent 10
 set dscp ef
```

Although these bandwidth assignments represent a good baseline, it is important to consider your actual traffic requirements per class and adjust the bandwidth settings accordingly.
Applying DMVPN QoS Policy to DMVPN Hub Routers

1. Configure shaping policy for hub router
2. Configure per-tunnel QoS policies for DMVPN hub router
3. Configure per-tunnel QoS NHRP policies on DMVPN hub router

This process applies only to DMVPN WAN Aggregation routers.

Procedure 1 Configure shaping policy for hub router

With WAN interfaces using Ethernet as an access technology, the demarcation point between the enterprise and service provider may no longer have a physical-interface bandwidth constraint. Instead, a specified amount of access bandwidth is contracted with the service provider. To ensure the offered load to the service provider does not exceed the contracted rate that results in the carrier discarding traffic, you need to configure shaping on the physical interface. When you configure the `shape average` command, ensure that the value matches the contracted bandwidth rate from your service provider.

Tech Tip

QoS on a physical interface is limited only to the class default shaper. Other QoS configurations on the physical interface are not supported.

You must apply the class default shaper policy map on the main interface before applying the tunnel policy map.

The class default shaper policy map must contain only the class class-default and shape commands.

Create the policy map and configure the shaper for the default class.

As a best practice, embed the interface name within the name of the policy map.

```
policy-map [policy-map-name]
 class class-default
 shape average [bandwidth (kbps)]
```

**Step 1:** Apply the shaper to the WAN interface.

You must apply the service policy needs to be applied in the outbound direction.

```
interface [interface type] [number]
 service-policy output [policy-map-name]
```
**Example: Physical interface**

This example shows a router with a 100 Mbps service rate configured on a 1 Gbps physical interface.

```plaintext
policy-map WAN-INTERFACE-G0/0/3-SHAPE-ONLY
 class class-default
 shape average 100000000

interface GigabitEthernet0/0/3
 bandwidth 100000
 service-policy output WAN-INTERFACE-G0/0/3-SHAPE-ONLY
```

**Procedure 2** Configure per-tunnel QoS policies for DMVPN hub router

The QoS policy on a tunnel instance allows you to shape the tunnel traffic to individual spokes and to differentiate between traffic classes within the tunnel for appropriate treatment.

The QoS policy on the tunnel instance is defined and applied only to the DMVPN hub routers at the central site. The remote-site router signals the QoS group policy information to the hub router with a command in the NHRP configuration, which greatly reduces QoS configuration and complexity. The hub router applies the signaled policy in the egress direction for each remote site.

**Tech Tip**

With Per-Tunnel QoS for DMVPN, the queuing and shaping is performed at the outbound physical interface for the GRE/IPsec tunnel packets. This means that the GRE header, the IPsec header and the layer2 (for the physical interface) header are included in the packet-size calculations for shaping and bandwidth queuing of packets under QoS.

The values in the table are examples; make sure to adjust these values for your specific needs and remote-site bandwidth provisioned with your ISP.

**Table 61 - Per-Tunnel QoS policies**

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Class</th>
<th>Bandwidth bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-GROUP-300MBPS-POLICY</td>
<td>class-default</td>
<td>3000000000</td>
</tr>
<tr>
<td>RS-GROUP-200MBPS-POLICY</td>
<td>class-default</td>
<td>2000000000</td>
</tr>
<tr>
<td>RS-GROUP-100MBPS-POLICY</td>
<td>class-default</td>
<td>1000000000</td>
</tr>
<tr>
<td>RS-GROUP-50MBPS-POLICY</td>
<td>class-default</td>
<td>500000000</td>
</tr>
<tr>
<td>RS-GROUP-30MBPS-POLICY</td>
<td>class-default</td>
<td>300000000</td>
</tr>
<tr>
<td>RS-GROUP-20MBPS-POLICY</td>
<td>class-default</td>
<td>200000000</td>
</tr>
<tr>
<td>RS-GROUP-10MBPS-POLICY</td>
<td>class-default</td>
<td>10000000</td>
</tr>
<tr>
<td>RS-GROUP-4G-POLICY</td>
<td>class-default</td>
<td>80000000</td>
</tr>
</tbody>
</table>

**Step 1:** Create a policy.

```plaintext
policy-map [policy-map-name]
```
Step 2: Define a shaper and bandwidth remaining ratio for the default-class and apply the WAN QoS queuing child service policy created in Procedure 2, “Define policy map to use queuing policy.”

```
policy-map [policy-map-name]
class class-default
 shape average [bandwidth (kbps)]
 bandwidth remaining ratio [bandwidth / 1 Mbps]
 service-policy [policy-map name]
```

Step 3: For each remote-site type, repeat steps 1 and 2.

**Example: Hub router**

```
policy-map RS-GROUP-300MBPS-POLICY
class class-default
 shape average 300000000
 bandwidth remaining ratio 300
 service-policy WAN
policy-map RS-GROUP-200MBPS-POLICY
class class-default
 shape average 200000000
 bandwidth remaining ratio 200
 service-policy WAN
policy-map RS-GROUP-100MBPS-POLICY
class class-default
 shape average 100000000
 bandwidth remaining ratio 100
 service-policy WAN
policy-map RS-GROUP-50MBPS-POLICY
class class-default
 shape average 50000000
 bandwidth remaining ratio 50
 service-policy WAN
policy-map RS-GROUP-30MBPS-POLICY
class class-default
 bandwidth remaining ratio 30
 shape average 30000000
 service-policy WAN
policy-map RS-GROUP-20MBPS-POLICY
class class-default
 bandwidth remaining ratio 20
 shape average 20000000
 service-policy WAN
policy-map RS-GROUP-10MBPS-POLICY
class class-default
 bandwidth remaining ratio 10
 shape average 10000000
 service-policy WAN
policy-map RS-GROUP-4G-POLICY
```
class class-default
shape average 8000000
bandwidth remaining ratio 8
service-policy WAN

Procedure 3 Configure per-tunnel QoS NHRP policies on DMVPN hub router

The QoS policy that the hub uses for a particular endpoint or spoke is selected by the NHRP group in which the spoke is configured.

Prerequisites and important caveats:

- DMVPN must be fully configured and operational before you can configure an NHRP group on a spoke or map the NHRP group to a QoS policy on a hub.
- Although you may configure multiple spokes as part of the same NHRP group, the tunnel traffic for each spoke is measured individually for shaping and policing.
- Only output NHRP policies are supported. These apply to per-site traffic egressing the router towards the WAN.

Step 1: Create NHRP group policy name mapping and apply the policies configured in the previous procedure to the DMVPN tunnel interface on the hub router.

```
interface tunnel[number]
 ip nhrp map group [NHRP GROUP Policy Name] service-policy output [policy-map name]
```

Example: Hub router

```
interface tunnel10
 ip nhrp map group RS-GROUP-300MBPS service-policy output RS-GROUP-300MBPS-POLICY
 ip nhrp map group RS-GROUP-200MBPS service-policy output RS-GROUP-200MBPS-POLICY
 ip nhrp map group RS-GROUP-100MBPS service-policy output RS-GROUP-100MBPS-POLICY
 ip nhrp map group RS-GROUP-50MBPS service-policy output RS-GROUP-50MBPS-POLICY
 ip nhrp map group RS-GROUP-30MBPS service-policy output RS-GROUP-30MBPS-POLICY
 ip nhrp map group RS-GROUP-20MBPS service-policy output RS-GROUP-20MBPS-POLICY
 ip nhrp map group RS-GROUP-10MBPS service-policy output RS-GROUP-10MBPS-POLICY
 ip nhrp map group RS-GROUP-4G service-policy output RS-GROUP-4G-POLICY
```
Applying QoS Configurations to Remote Site Routers

1. Configure per-tunnel QoS NHRP policy on remote-site routers
2. Configure physical interface QoS policy on remote-site routers
3. Apply QoS policy to the physical interface on remote-site routers
4. Verify QoS policy on physical interfaces of remote site router
5. Verify DMVPN per-tunnel QoS from hub routers

This process completes the remote-site QoS configuration and applies to all DMVPN spoke routers.

Procedure 1 Configure per-tunnel QoS NHRP policy on remote-site routers

This procedure configures the remote-site router to reference the QoS policy configured on the hub site routers.

Step 1: Apply the NHRP group policy to the DMVPN tunnel interface on the corresponding remote-site router. Use the NHRP group name as defined on the hub router in Procedure 2, “Configure per-tunnel QoS policies for DMVPN hub router,” above.

```
interface Tunnel[value]
ip nhrp group [NHRP GROUP Policy Name]
```

Example: Remote-site router with dual-link

This example shows a remote-site using a 20 Mbps policy and a 10 Mbps policy.

```
interface Tunnel10
ip nhrp group RS-GROUP-20MBPS

interface Tunnel11
ip nhrp group RS-GROUP-10MBPS
```

Procedure 2 Configure physical interface QoS policy on remote-site routers

Repeat this procedure in order to support remote-site routers that have multiple WAN connections attached to different interfaces.

With WAN interfaces using Ethernet as an access technology, the demarcation point between the enterprise and service provider may no longer have a physical-interface bandwidth constraint. Instead, a specified amount of access bandwidth is contracted with the service provider. To ensure the offered load to the service provider does not exceed the contracted rate that results in the carrier discarding traffic, configure shaping on the physical interface. This shaping is accomplished with a QoS service policy. You configure a QoS service policy on the outside Ethernet interface, and this parent policy includes a shaper that then references a second or subordinate (child) policy that enables queuing within the shaped rate. This is called a hierarchical Class-Based Weighted Fair Queuing configuration. When you configure the `shape average` command, ensure that the value matches the contracted bandwidth rate from your service provider.
Step 1: Create the parent policy map. As a best practice, embed the interface name within the name of the parent policy map.

```
policy-map [policy-map-name]
```

Step 2: Configure the shaper.

```
class [class-name]
shape [average | peak] [bandwidth (kbps)]
```

Step 3: Apply the child service policy as defined in Procedure 2, “Define policy map to use queuing policy,” above.

```
service-policy WAN
```

Example: Remote-site router with dual-link

This example shows a router with a 20-Mbps rate on interface GigabitEthernet0/0 and a 10-Mbps rate on interface GigabitEthernet0/1.

```
policy-map WAN-INTERFACE-G0/0
 class class-default
 shape average 20000000
 service-policy WAN

policy-map WAN-INTERFACE-G0/1
 class class-default
 shape average 10000000
 service-policy WAN
```

Procedure 3  Apply QoS policy to the physical interface on remote-site routers

Repeat this procedure in order to support remote-site routers that have multiple WAN connections attached to different interfaces.

To invoke shaping and queuing on a physical interface, you must apply the parent policy that you configured in the previous procedure.

Step 1: Select the WAN interface.

```
interface [interface type] [number]
```

Step 2: Apply the WAN QoS policy.

The service policy needs to be applied in the outbound direction.

```
service-policy output [policy-map-name]
```

Example: Remote-site router with dual-link

```
interface GigabitEthernet0/0
 service-policy output WAN-INTERFACE-G0/0

interface GigabitEthernet0/1
 service-policy output WAN-INTERFACE-G0/1
```
After all of the physical interfaces on a router are configured, you can verify each one before moving to the next remote site.

**Step 1:** Verify the QoS output policy on each interface is correct by using the `show policy-map interface` command.

This example is truncated due to the overall length.

```
RS11-2921# show policy-map interface GigabitEthernet 0/0
GigabitEthernet0/0

Service-policy output: WAN-INTERFACE-G0/0

Class-map: class-default (match-any)
66941984 packets, 1495153762 bytes
5 minute offered rate 83000 bps, drop rate 0000 bps
Match: any
Queueing
queue limit 64 packets
(queue depth/total drops/no-buffer drops) 0/0/0
(pkts output/bytes output) 66941987/15813338284
shape (average) cir 30000000, bc 120000, be 120000
target shape rate 30000000

Service-policy : WAN

queue stats for all priority classes:
Queueing
priority level 1
queue limit 64 packets
(queue depth/total drops/no-buffer drops) 0/0/0
(pkts output/bytes output) 572961/124080310

Class-map: INTERACTIVE-VIDEO (match-any)
530608 packets, 205927572 bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: dscp cs4 (32) af41 (34) af42 (36)
530608 packets, 205927572 bytes
5 minute rate 0 bps
Queueing
queue limit 64 packets
(queue depth/total drops/no-buffer drops) 0/0/0
(pkts output/bytes output) 530608/209102464
bandwidth remaining 30%
Exp-weight-constant: 9 (1/512)
Mean queue depth: 0 packets
```
Step 2: Repeat the previous step for each interface configured with QoS.

**Procedure 5** Verify DMVPN per-tunnel QoS from hub routers

Once all of the DMVPN routers are configured for Per-Tunnel QoS, you can verify the configurations from the hub router.

**Step 1:** Verify the Per-Tunnel QoS output policy to each remote-site is correct by using the `show dmvpn detail` command.

This example is truncated due to the overall length.

```
VPN-MPLS-ASR1002X-1# show dmvpn detail
Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
 N - NATed, L - Local, X - No Socket
 T1 - Route Installed, T2 - Nexthop-override
 C - CTS Capable
 # Ent --> Number of NHRP entries with same NBMA peer
 NHS Status: E --> Expecting Replies, R --> Responding, W --> Waiting
 UpDn Time --> Up or Down Time for a Tunnel
==
Interface Tunnel10 is up/up, Addr. is 10.6.34.1, VRF ""
Tunnel Src./Dest. addr: 192.168.6.1/MGRE, Tunnel VRF "IWAN-TRANSPORT-1"
Protocol/Transport: "multi-GRE/IP", Protect "DMVPN-PROFILE-TRANSPORT-1"
Interface State Control: Disabled
nhrp event-publisher : Disabled
Type:Hub, Total NBMA Peers (v4/v6): 9

<table>
<thead>
<tr>
<th># Ent</th>
<th>Peer NBMA Addr</th>
<th>Peer Tunnel Add</th>
<th>Add State</th>
<th>UpDn Tm</th>
<th>Attrb</th>
<th>Target Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.6.5</td>
<td>10.6.34.11</td>
<td>UP</td>
<td>1w0d</td>
<td>D</td>
<td>10.6.34.11/32</td>
</tr>
</tbody>
</table>

NHRP group: RS-GROUP-30MBPS

Output QoS service-policy applied: RS-GROUP-30MBPS-POLICY
```

### QoS Set

**dscp af41**

Packets marked 530608
NHRP group: RS-GROUP-20MBPS
Output QoS service-policy applied: RS-GROUP-20MBPS-POLICY
1 192.168.6.13         10.6.34.21    UP     1w0d     D      10.6.34.21/32

NHRP group: RS-GROUP-30MBPS
Output QoS service-policy applied: RS-GROUP-30MBPS-POLICY
1 192.168.6.17         10.6.34.22    UP     1w0d     D      10.6.34.22/32

NHRP group: RS-GROUP-20MBPS
Output QoS service-policy applied: RS-GROUP-20MBPS-POLICY
1 192.168.6.21         10.6.34.31    UP     1w0d     D      10.6.34.31/32

NHRP group: RS-GROUP-200MBPS
Output QoS service-policy applied: RS-GROUP-200MBPS-POLICY
1 192.168.6.25         10.6.34.32    UP     1w0d     D      10.6.34.32/32

NHRP group: RS-GROUP-300MBPS
Output QoS service-policy applied: RS-GROUP-300MBPS-POLICY
1 192.168.6.29         10.6.34.41    UP     1w0d     D      10.6.34.41/32

NHRP group: RS-GROUP-30MBPS
Output QoS service-policy applied: RS-GROUP-30MBPS-POLICY
1 192.168.6.33         10.6.34.42    UP     1w0d     D      10.6.34.42/32

NHRP group: RS-GROUP-300MBPS
Output QoS service-policy applied: RS-GROUP-300MBPS-POLICY

Step 2: Repeat the previous step for each DMVPN hub router.
Deploying IWAN Performance Routing

Performance Routing Version 3 (PfRv3) consists of two major Cisco IOS components, an MC and a BR. The MC defines the policies and applies them to various traffic classes that traverse the BR systems. The MC can be configured to learn and control traffic classes on the network.

- The MC is the policy decision-maker. At a large site, such as a data center or campus, the MC is a standalone router. For smaller locations, the MC is typically collocated (configured) on the same platform as the BR. As a general rule, the large locations manage more network prefixes and applications than a remote site deployment so they consume more CPU and memory resources for the MC function. Therefore, Cisco recommends a dedicated router for the MC at large sites.

- The BR is in the data-forwarding path. A BR collects data from its Performance Monitor cache and smart probes, provides a degree of aggregation of this information, and influences the packet-forwarding path as directed by the MC to optimize traffic.

The remote site typically manages fewer active traffic classes (TCs), which are made up of prefixes and applications. In most remote site deployments, it is possible to co-locate the MC and BR on the same hardware platform. CPU and memory utilization should be monitored on MC platforms, and if utilization is high, the network manager should consider an MC platform with a higher capacity CPU and memory. The MC communicates with the border routers over an authenticated TCP socket but has no requirement for populating its own IP routing table with anything more than a route to reach the border routers.

Because PfRv3 is an intelligent path selection technology, there must be at least two external interfaces under the control of PfRv3 and at least one internal interface. There must be at least one BR configured. If only one BR is configured, then both external interfaces are attached to the single BR. If more than one BR is configured, then the two or more external interfaces are configured across these BR platforms. External links, or exit points, are therefore owned by the BR; they may be logical (tunnel) or physical interfaces (serial, Ethernet, etc.).

There are four different roles a device can play in a PfRv3 configuration:

- **Hub Master Controller**—The hub MC is the MC at the primary WAN aggregation site. This is the MC device where all PfRv3 policies are configured. It also acts as MC for that site and makes path optimization decision. There is only one hub MC per IWAN domain.

- **Hub Border Router**—This is a BR at the hub MC site. This is the device where WAN interfaces terminate. There can be one or more WAN interfaces on the same device. There can be one or more hub BRs. On the Hub BRs, PfRv3 must be configured with:
  - The address of the local MC
  - The path name on external interfaces

- **Branch Master Controller**—The Branch MC is the MC at the branch-site. There is no policy configuration on this device. It receives policy from the Hub MC. This device acts as MC for that site for making path optimization decision. The configuration includes the IP address of the hub MC.

- **Branch Border Router**—This is a BR at the branch-site. The configuration on this device enables BR functionality and includes the IP address of the site local MC. The WAN interface that terminates on the device is detected automatically.
The first design model is the IWAN Hybrid, which uses a primary MPLS transport paired with Internet VPN as a secondary transport. In this design model, the MPLS WAN provides SLA class of service guarantees for key applications. The second design model is the IWAN Dual Internet, which uses a pair of Internet service providers to further reduce cost while leveraging PfR in order to mitigate network performance problems on a single Internet provider. The PfR configuration is the same for both design models, so this guide will focus mainly on the IWAN Hybrid design.

The following diagrams show the four different device roles and where the fit into the IWAN Hybrid design model.

**Figure 31 - IWAN hybrid design model: PfR hub location**

**Figure 32 - IWAN hybrid design model: PfR branch locations**
Configuring PfR Hub Master Controller

1. Configure the distribution switch
2. Configure the Hub MC platform
3. Configure connectivity to the LAN

This section describes configuring the PfR Hub MC as a new router. Only the core relevant features are included.

Table 62 - Hub MC IP addresses

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Host name</th>
<th>Loopback IP Address</th>
<th>Port-channel IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>PFR-MC-ASR-1004-1</td>
<td>10.6.32.251/32</td>
<td>10.6.32.151/26</td>
</tr>
<tr>
<td>Dual Internet</td>
<td>PFR-MC-ASR-1004-2</td>
<td>10.6.32.252/32</td>
<td>10.6.32.152/26</td>
</tr>
</tbody>
</table>

Procedure 1 Configure the distribution switch

Step 1: If a VLAN does not already exist for the hub MC on the distribution layer switch, configure it now.

```
vlan 350
 name WAN_Service_Net
```

Step 2: If the Layer 3 SVI has not yet been configured, configure it now.

Be sure to configure a VLAN interface (SVI) for every new VLAN you add, so devices in the VLAN can communicate with the rest of the network.

```
interface Vlan350
 ip address 10.6.32.129 255.255.255.192
 no shutdown
```

Next, configure EtherChannel member interfaces.

Tech Tip

EtherChannel is a logical interface that bundles multiple physical LAN links into a single logical link.

Step 3: Connect the hub MC EtherChannel uplinks in order to separate switches in the distribution layer switches or stack (for the Cisco Catalyst 4507R+E distribution layer, this separates redundant modules for additional resiliency), and then configure two physical interfaces to be members of the EtherChannel. Also, apply the egress QoS macro that was defined in the platform configuration procedure. This ensures traffic is prioritized appropriately. The EtherChannel provides extra resiliency for the hub MC in case there is a link, line card or switch failure.
Tech Tip

Configure the physical interfaces that are members of a Layer 2 EtherChannel prior to configuring the logical port-channel interface. Doing the configuration in this order allows for minimal configuration and reduces errors because most of the commands entered to a port-channel interface are copied to its members interfaces and do not require manual replication.

```
interface GigabitEthernet 1/0/13
 description PFR-MC-ASR1004-1 (gig0/0/0)

interface GigabitEthernet 2/0/9
 description PFR-MC-ASR1004-1 (gig0/0/1)

interface range GigabitEthernet 1/0/13, GigabitEthernet 2/0/13
 switchport
 channel-group 21 mode on
 logging event link-status
 logging event bundle-status
 load-interval 30
 macro apply EgressQoS
```

Next, configure the EtherChannel. Access mode interfaces are used for the connection to the hub MCs.

**Step 4:** Assign the VLAN created at the beginning of the procedure to the interface. When using EtherChannel, the port-channel number must match the channel group configured in Step 3.

```
interface Port-channel 21
 description PFR-MC-ASR1004-1
 switchport access vlan 350
 logging event link-status
 load-interval 30
 no shutdown
```

**Step 5:** Allow the routing protocol to form neighbor relationships across the vlan interface.

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Vlan350
 no passive-interface
 authentication mode md5
 authentication key-chain LAN-KEY
 exit-af-interface
 exit-address-family
```
**Procedure 2** Configure the Hub MC platform

Within this design, there are features and services that are common across all PfR routers. In this procedure, you configure system settings that simplify and secure the management of the solution.

**Step 1:** Configure the device host name to make it easy to identify the device.

```
Hostname PFR-MC-ASR1004-1
```

**Step 2:** Configure the local login and password.

The local login account and password provide basic access authentication to a router, which provides only limited operational privileges. The enable password secures access to the device configuration mode. By enabling password encryption, you prevent the disclosure of plaintext passwords when viewing configuration files.

```
username admin password cisco123
enable secret cisco123
service password-encryption
aaa new-model
```

By default, HTTPS access to the router will use the enable password for authentication.

**Step 3:** If you want to configure centralized user authentication, perform this step.

As networks scale in the number of devices to maintain, the operational burden to maintain local user accounts on every device also scales. A centralized AAA service reduces operational tasks per device and provides an audit log of user access for security compliance and root-cause analysis. When AAA is enabled for access control, all management access to the network infrastructure devices (SSH and HTTPS) is controlled by AAA.

TACACS+ is the primary protocol used to authenticate management logins on the infrastructure devices to the AAA server. A local AAA user database is also defined in Step 2 on each network infrastructure device in order to provide a fallback authentication source in case the centralized TACACS+ server is unavailable.

```
tacacs server TACACS-SERVER-1
 address ipv4 10.4.48.15
 key SecretKey

aaa group server tacacs+ TACACS-SERVERS
 server name TACACS-SERVER-1

aaa authentication login default group TACACS-SERVERS local
aaa authorization exec default group TACACS-SERVERS local
aaa authorization console
ip http authentication aaa
```

**Step 4:** Configure device management protocols.

HTTPS and SSH are secure replacements for the HTTP and Telnet protocols. They use SSL and TLS in order to provide device authentication and data encryption.

The use of the SSH and HTTPS protocols enables secure management of the network device. Both protocols are encrypted for privacy, and the unsecure protocols—Telnet and HTTP—are turned off.
Specify the `transport preferred none` command on vty lines in order to prevent errant connection attempts from the CLI prompt. Without this command, if the ip name-server is unreachable, long timeout delays may occur for mistyped commands.

```bash
ip domain-name cisco.local
ip ssh version 2
no ip http server
ip http secure-server
ip scp server enable
line vty 0 15
 transport input ssh
 transport preferred none
```

**Step 5:** When synchronous logging of unsolicited messages and debug output is turned on, console log messages are displayed on the console after interactive CLI output is displayed or printed. With this command, you can continue typing at the device console when debugging is enabled.

```bash
line con 0
 logging synchronous
```

**Step 6:** Enable SNMP. This allows the network infrastructure devices to be managed by a NMS. SNMPv2c is configured both for a read-only and a read/write community string.

```bash
snmp-server community cisco RO
snmp-server community cisco123 RW
snmp-server ifindex persist ! IOS Classic Only
snmp ifmib ifindex persist ! IOS XE Only
```

**Step 7:** If operational support is centralized in your network, you can increase network security by using an access list to limit the networks that can access your device. In this example, only devices on the 10.4.48.0/24 network will be able to access the device via SSH or SNMP.

```bash
access-list 55 permit 10.4.48.0 0.0.0.255
line vty 0 15
 access-class 55 in

snmp-server community cisco RO 55
snmp-server community cisco123 RW 55
snmp-server ifindex persist ! IOS Classic Only
snmp ifmib ifindex persist ! IOS XE Only
```

**Tech Tip**

If you configure an access list on the vty interface, you may lose the ability to use SSH to log in from one router to the next for hop-by-hop troubleshooting.

**Step 8:** Configure a synchronized clock.

NTP is designed to synchronize a network of devices. An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the organization’s network.
You should program network devices to synchronize to a local NTP server in the network. The local NTP server typically references a more accurate clock feed from an outside source. By configuring console messages, logs, and debug output to provide time stamps on output, you can cross-reference events in a network.

```
ntp server 10.4.48.17
ntp update-calendar
clock timezone PST -8
clock summer-time PDT recurring
service timestamps debug datetime msec localtime
service timestamps log datetime msec localtime
```

**Step 9:** Configure an in-band management interface.

The loopback interface is a logical interface that is always reachable as long as the device is powered on and any IP interface is reachable to the network. Because of this capability, the loopback address is the best way to manage the router in-band. Layer 3 process and features are also bound to the loopback interface to ensure process resiliency.

The loopback address is commonly a host address with a 32-bit address mask. Allocate the loopback address from the IP address block that the router summarizes to the rest of the network.

```
interface Loopback 0
 ip address 10.6.32.251 255.255.255.255
```

Bind the device processes for SNMP, SSH, PIM, TACACS+ and NTP to the loopback interface address for optimal resiliency:

```
snmp-server trap-source Loopback0
ip ssh source-interface Loopback0
ip pim register-source Loopback0
ip tacacs source-interface Loopback0
ntp source Loopback0
```

**Step 10:** Configure IP unicast routing authentication key.

```
key chain LAN-KEY
 key 1
 key-string cisco123
```

**Step 11:** Configure IP unicast routing using EIGRP named mode.

EIGRP is configured facing the LAN distribution or core layer. In this design, the port-channel interface and the loopback must be EIGRP interfaces. The loopback may remain a passive interface. The network range must include both interface IP addresses, either in a single network statement or in multiple network statements. This design uses a best practice of assigning the router ID to a loopback address.

```
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 passive-interface
 exit-af-interface
 network 10.6.0.0 0.1.255.255
eigrp router-id 10.6.32.251
 nsf
 exit-address-family
```
Any links to adjacent distribution layers should be Layer 3 links or Layer 3 EtherChannels.

**Step 1:** Configure a Layer 3 interface.

```plaintext
interface Port-channel21
 ip address 10.6.32.151 255.255.255.192
 no shutdown
```

**Step 2:** Configure EtherChannel member interfaces.

Configure the physical interfaces to tie to the logical port-channel by using the `channel-group` command. The number for the port-channel and channel-group must match. Not all router platforms can support LACP to negotiate with the switch, so EtherChannel is configured statically.

```plaintext
interface GigabitEthernet0/0/0
description WAN-D3750X Gig1/0/13

interface GigabitEthernet0/0/1
description WAN-D3750X Gig2/0/13

interface range GigabitEthernet0/0/0, GigabitEthernet0/0/1
 no ip address
 channel-group 21
 no shutdown
```

**Step 3:** Configure the EIGRP interface.

Allow EIGRP to form neighbor relationships across the interface to establish peering adjacencies and exchange route tables. In this step, you configure EIGRP authentication by using the authentication key specified in the previous procedure.

```plaintext
router eigrp IWAN-EIGRP
 address-family ipv4 unicast autonomous-system 400
 af-interface Port-channel21
 no passive-interface
 authentication mode md5
 authentication key-chain LAN-KEY
 exit-af-interface
 exit-address-family
```
Configuring Performance Routing for Hub Location

1. Verify IP connectivity to remote site loopback interfaces
2. Configure prefixes for the enterprise and primary site
3. Configure PfR domain in the hub MC
4. Configure PfR domain in the hub BR
5. Verify PfR domain is operational on the hub MC

All sites belong to an PfR domain where the remote site MCs are peered together. Peering has been greatly enhanced in PfRv3 which allows site information exchange and single touch provisioning.

PfRv3 has simplified policies with pre-existing templates. The policy configuration for the PfR domain is done in the hub MC and the information is distributed to all sites via MC peering. This not only simplifies provisioning substantially but also makes the policy consistent across the entire IWAN network.

PfRv3 uses Unified Monitor (also called Performance Monitor) to monitor traffic going into WAN links and traffic coming from the WAN links. It monitors performance metrics per differentiated service code point (DSCP) rather than monitoring on per-flow or per-prefix basis. When application-based policies are used, the MC will use a mapping table between the Application Name and the DSCP discovered. This reduces the number of records significantly. PfRv3 relies on performance data measured on the existing data traffic on all paths whenever it can, thereby reducing the need of synthetic traffic. Furthermore, the measurement data is not exported unless there is a violation, which further reduces control traffic and processing of those records.

PfRv3 is also VRF-aware and instances of the MC work under a VRF.

**Procedure 1** Verify IP connectivity to remote site loopback interfaces

Cisco recommends using loopback interfaces for the peering traffic between the BR and MC routers. For this design, you put the loopback addresses into a specific subnet range, so they are easily identified in the routing table. The loopback addresses for the remote sites are as follows:

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Loopback 0 Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid–Primary Router</td>
<td>10.255.241.0/24</td>
</tr>
<tr>
<td>Hybrid–Secondary Router (optional)</td>
<td>10.255.242.0/24</td>
</tr>
<tr>
<td>Dual Internet–Primary Router</td>
<td>10.255.243.0/24</td>
</tr>
<tr>
<td>Dual Internet–Secondary Router (optional)</td>
<td>10.255.244.0/24</td>
</tr>
</tbody>
</table>
Step 1: Verify that the loopback 0 interfaces on each of your remote sites are reachable from the hub MC by using the **show ip route** command.

This example shows a loopback address range of 10.255.241.0/24 for nine remote site primary routers and an address range of 10.255.242.0/24 for four remote site secondary routers.

    PFR-MC-ASR1004-1# show ip route | include 10.255.241
    D  10.255.241.11/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.12/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.21/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.22/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.31/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.32/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.41/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.42/32 [90/25610880] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.241.51/32 [90/25610880] via 10.6.32.129, 1w3d, Port-channel21

    PFR-MC-ASR1004-1# show ip route | include 10.255.242
    D  10.255.242.12/32 [90/25613440] via 10.6.32.129, 1w1d, Port-channel21
    D  10.255.242.22/32 [90/25613440] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.242.32/32 [90/25613440] via 10.6.32.129, 1w2d, Port-channel21
    D  10.255.242.42/32 [90/25613440] via 10.6.32.129, 1w2d, Port-channel21

Procedure 2  Configure prefixes for the enterprise and primary site

Before the configuration of PfRv3 on the hub MC, you must create a prefix list for the enterprise and primary site. The enterprise-prefix list covers the range of IP addresses to be controlled and optimized within this IWAN domain. Prefixes outside of the enterprise-prefix list will not be controlled by application policies, but they will be load-balanced.

The site-prefix range includes the prefixes at this specific site, which is typically a WAN aggregation or data center (DC) site. Site-prefixes are typically statically defined at WAN aggregation and DC sites and discovered automatically at remote sites.

**Step 1:** Create the enterprise prefix list.

    ip prefix-list [prefix-list-name] seq [value] permit [prefix list]

**Example**

This example shows a contiguous block of private address space from 10.4.0.0 to 10.7.255.255, which covers all the IP addresses within this IWAN PfR domain. It does not include the router loopback address range of 10.255.240.0 to 10.255.247.255 because you do not want PfR controlling those prefixes.

    ip prefix-list ENTERPRISE-PREFIXES seq 10 permit 10.4.0.0/14

**Step 2:** Create the primary site prefix list.

    ip prefix-list [prefix-list-name] seq [value] permit [prefix list]
**Example**

This example shows a primary site network with two class B private address blocks of 10.4.0.0 and 10.6.0.0.

```plaintext
ip prefix-list PRIMARY-SITE-PREFIXES seq 10 permit 10.4.0.0/16
ip prefix-list PRIMARY-SITE-PREFIXES seq 20 permit 10.6.0.0/16
```

**Procedure 3**  Configure PfR domain in the hub MC

Domain policies are configured on the hub MC. These policies are distributed to branch MCs by using the peering infrastructure. All sites that are in the same domain will share the same set of PfR policies. Policies can be based on DSCP or on application names.

Policies are created using preexisting templates, or they can be customized with manually defined thresholds for delay, loss and jitter.

**Table 64 - PfR domain pre-defined policy templates**

<table>
<thead>
<tr>
<th>Pre-defined Template</th>
<th>Priority</th>
<th>Threshold Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice</td>
<td>1</td>
<td>one-way-delay threshold 150 msec</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>packet-loss-rate threshold 1.0 percent</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>byte-loss-rate threshold 1.0 percent</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>jitter threshold 30000 usec</td>
</tr>
<tr>
<td>Real-time-video</td>
<td>1</td>
<td>packet-loss-rate threshold 1.0 percent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>byte-loss-rate threshold 1.0 percent</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>one-way-delay threshold 150 msec</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>jitter threshold 20000 usec</td>
</tr>
<tr>
<td>Low-latency-data</td>
<td>1</td>
<td>one-way-delay threshold 100 msec</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>packet-loss-rate threshold 5.0 percent</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>byte-loss-rate threshold 5.0 percent</td>
</tr>
<tr>
<td>Bulk-data</td>
<td>1</td>
<td>one-way-delay threshold 300 msec</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>packet-loss-rate threshold 5.0 percent</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>byte-loss-rate threshold 5.0 percent</td>
</tr>
<tr>
<td>Best-effort</td>
<td>1</td>
<td>one-way-delay threshold 500 msec</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>packet-loss-rate threshold 10.0 percent</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>byte-loss-rate threshold 10.0 percent</td>
</tr>
<tr>
<td>Scavenger</td>
<td>1</td>
<td>one-way-delay threshold 500 msec</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>packet-loss-rate threshold 50.0 percent</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>byte-loss-rate threshold 50.0 percent</td>
</tr>
</tbody>
</table>
Step 1: Create the hub MC domain.

```bash
domain [name]
vrf [name]
master hub (create the hub MC)
source-interface [interface]
site-prefixes prefix-list [prefixes from previous procedure]
password [password]
enterprise-prefix prefix-list [prefixes from previous procedure]
collector [IP address of NMS] port [NetFlow]
```

Example

```bash
domain iwan
vrf default
master hub
source-interface Loopback0
site-prefixes prefix-list PRIMARY-SITE-PREFIXES
password cisco123
enterprise-prefix prefix-list ENTERPRISE-PREFIXES
collector 10.4.48.178 port 2055
```

Step 2: Create the hub MC policy.

```bash
domain [name]
vrf [name]
master hub (configure the hub MC with additional commands)
load-balance (load balance the traffic not specified in a class)
class [name] sequence [value] (repeat for each class)
match dscp [value] policy [name] (repeat for each dscp value)
path-preference [primary] fallback [secondary] (path names)
```

Example

**Tech Tip**

To make the PfR policies easy to identify, Cisco recommends using the same class names that were used for the QoS policies. The dscp for each PfR class should also match the dscp used for the QoS policies.

This example uses the same class names and dscp values that were previously discussed in QoS section of this guide. The policies use the PfR predefined templates. The path preference for all policies is to use MPLS unless the delay, jitter, and loss values on the path fall outside the values specified in the templates. The rest of the traffic will be load-balanced between the two paths.

```bash
domain iwan
vrf default
master hub
load-balance
class VOICE sequence 10
match dscp ef policy voice
path-preference MPLS fallback INET
```
class INTERACTIVE-VIDEO sequence 20
  match dscp cs4 policy real-time-video
  match dscp af41 policy real-time-video
  match dscp af42 policy real-time-video
  path-preference MPLS fallback INET
class CRITICAL-DATA sequence 30
  match dscp af21 policy low-latency-data
  path-preference MPLS fallback INET

Step 3: Verify the hub MC policy configuration by using the `show domain [name] master policy` command.

In this example, the `class default` listed last is automatically added when the `load-balance` key word is used in the hub MC policy.

PFR-MC-ASR1004-1# show domain iwan master policy
No Policy publish pending

---

class VOICE sequence 10
  path-preference MPLS fallback INET
  class type: Dscp Based
  match dscp ef policy voice
    priority 2 packet-loss-rate threshold 1.0 percent
    priority 1 one-way-delay threshold 150 msec
    priority 3 jitter threshold 30000 usec
    priority 2 byte-loss-rate threshold 1.0 percent

class INTERACTIVE-VIDEO sequence 20
  path-preference MPLS fallback INET
  class type: Dscp Based
  match dscp cs4 policy real-time-video
    priority 1 packet-loss-rate threshold 1.0 percent
    priority 2 one-way-delay threshold 150 msec
    priority 3 jitter threshold 20000 usec
    priority 1 byte-loss-rate threshold 1.0 percent
  match dscp af41 policy real-time-video
    priority 1 packet-loss-rate threshold 1.0 percent
    priority 2 one-way-delay threshold 150 msec
    priority 3 jitter threshold 20000 usec
    priority 1 byte-loss-rate threshold 1.0 percent
  match dscp af42 policy real-time-video
    priority 1 packet-loss-rate threshold 1.0 percent
    priority 2 one-way-delay threshold 150 msec
    priority 3 jitter threshold 20000 usec
    priority 1 byte-loss-rate threshold 1.0 percent

class CRITICAL-DATA sequence 30
  path-preference MPLS fallback INET
class type: Dscp Based
  match dscp af21 policy low-latency-data
  priority 2 packet-loss-rate threshold 5.0 percent
  priority 1 one-way-delay threshold 100 msec
  priority 2 byte-loss-rate threshold 5.0 percent

class default
  match dscp all

Number of Traffic classes using this policy: 39

**Procedure 4** Configure PfR domain in the hub BR

The hub BRs are also the DMVPN hub WAN aggregation routers for the network. The PfRv3 configurations for standalone BRs are much simpler because they dynamically learn their policy information from the hub MC. The hub BR routers are also used to advertise the path names specified in the hub MC configuration.

**Step 1:** Create the hub BR domain.

```plaintext
domain [name]
vrf [name]
 border (create the BR)
 source-interface [interface]
 master [IP address of local MC]
 password [password of hub MC]
 collector [IP address of NMS] port [NetFlow]
```

**Example**

```plaintext
domain iwan
vrf default
 border
 source-interface Loopback0
 master 10.6.32.251
 password cisco123
 collector 10.4.48.178 port 2055
```

**Step 2:** Add the path names to the tunnel interfaces of the hub BR.

```plaintext
interface Tunnel [value]
 domain [name] path [name]
```

**Example**

This example is the primary hub BR using Tunnel 10 with MPLS as the provider.

```plaintext
interface Tunnel10
 domain iwan path MPLS
```

This example is the secondary hub BR using Tunnel 11 with INET as the provider.

```plaintext
interface Tunnel11
 domain iwan path INET
```
Step 3: Verify the border is operational by using the `show domain [name] border status` command.

This example shows the primary hub BR of the IWAN Hybrid model with MPLS as the provider. There is only one external WAN interface because the second path is on the secondary hub BR which is reachable via the Tunnel 0 interface at IP address 106.32.242.

```
VPN-MPLS-ASR1002X-1# show domain iwan border status
Fri Dec 05 11:28:34.754
--
****Border Status****

Instance Status: UP
Present status last updated: 1w4d ago
Loopback: Configured Loopback0 UP (10.6.32.241)
Master: 10.6.32.251
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 1w2d
Route-Control: Enabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
 Name: Tunnel0 Interface Index: 18 SNMP Index: 13 SP:MPLS Status: UP

Auto Tunnel information:

 Name:Tunnel0 if_index: 19
 Borders reachable via this tunnel: 10.6.32.242,
```

Step 4: Repeat this procedure for each hub BR by using the appropriate path name.

Procedure 5 Verify PfR domain is operational on the hub MC

The PfR path names are automatically discovered at the remote site routers from the configuration entered into the tunnel interfaces at the hub site. The hub MC uses the path names to determine where traffic should be sent according to its policies.

Step 1: Verify the domain is operational from the hub MC using the `show domain [name] master status` command.
This example shows the hub MC of the IWAN Hybrid model in an operational state. The hub BRs are both connected and using their respective Tunnel interfaces as the exits for the hub location.

```
PFR-MC-ASR1004-1# show domain iwan master status

*** Domain MC Status ***

Master VRF: Global

Instance Type: Hub
Instance id: 0
Operational status: Up
Configured status: Up
Loopback IP Address: 10.6.32.251
Load Balancing:
 Admin Status: Enabled
 Operational Status: Up
 Enterprise top level prefixes configured: 2
 Max Calculated Utilization Variance: 0%
 Last load balance attempt: never
 Last Reason: Variance less than 20%
 Total unbalanced bandwidth:
 External links: 0 Kbps Internet links: 0 Kpbs
Route Control: Enabled
Mitigation mode Aggressive: Disabled
Policy threshold variance: 20
Minimum Mask Length: 28
Sampling: off

Borders:
 IP address: 10.6.32.242
 Connection status: CONNECTED (Last Updated 1w2d ago)
 Interfaces configured:
 Name: Tunnel11 | type: external | Service Provider: INET | Status: UP
 Number of default Channels: 22

Tunnel if: Tunnel0

IP address: 10.6.32.241
Connection status: CONNECTED (Last Updated 1w2d ago)
Interfaces configured:
 Name: Tunnel10 | type: external | Service Provider: MPLS | Status: UP
 Number of default Channels: 22

Tunnel if: Tunnel0
```
Configuring PfR for Remote Site Locations

1. Verify IP connectivity to hub MC loopback interface
2. Configure PfR in the primary remote site router
3. Configure PfR in the secondary remote site router
4. Verify PfR traffic classes are controlled

Remote sites are discovered using peering. Each remote site MC peers with the hub MC. The remote site MC advertises local site information and learns information about every other site. Prefixes specific to sites are advertised along with the site-id. The site-prefix to site-id mapping is used in monitoring and optimization. This mapping is also used for creating reports for specific sites.

WAN interfaces at each site are discovered using special probing mechanism. This further reduces provisioning on the remote sites. The WAN interface discovery also creates mapping of the interface to a particular service provider. The mapping is used in monitoring and optimization. It can also be used to draw the WAN topology in an NMS GUI like LiveAction.

Procedure 1 Verify IP connectivity to hub MC loopback interface

PfRv3 requires loopback interfaces for the peering traffic between the BR and MC routers. For this design, you put the hub MC loop back interface into the subnet range of the hub location. The following table shows the loopback addresses for the hub MC.

<table>
<thead>
<tr>
<th>IWAN Design Model</th>
<th>Loopback 0 IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid--Hub MC</td>
<td>10.6.32.251</td>
</tr>
<tr>
<td>Dual Internet--Hub MC</td>
<td>10.6.32.252</td>
</tr>
</tbody>
</table>

Each remote site must have a route to the hub MC in the EIGRP topology table over each exit path. You can have more than two paths. You can also have two routes and Equal Cost Multiple Paths.

Step 1: Verify that there are at least two available paths to the loopback 0 interface on the hub MC from each remote site router by using the `show ip eigrp topology` command.

This example shows there are two available paths to the hub MC (10.6.32.251) in the IWAN hybrid design model. The internal tags are from the DMVPN hub configurations configured previously in this design guide. The first path is the one shown in the IP routing table because the bandwidth is higher than the feasible successor listed second.

```
RS11-2921# show ip eigrp topology 10.6.32.251 255.255.255.255
EIGRP-IPv4 VR(IWAN-EIGRP) Topology Entry for AS(400)/ID(10.255.241.11) for 10.6.32.251/32
 State is Passive, Query origin flag is 1, 1 Successor(s), PD is 3280049493, RIB is 25625386
 Descriptor Blocks:
 10.6.34.1 (Tunnel10), from 10.6.34.1, Send flag is 0x0
```
Composite metric is (3280049493/1720320), route is Internal
Vector metric:
- **Minimum bandwidth is 300000 Kbit**
- Total delay is 50016250000 picoseconds
- Reliability is 255/255
- Load is 1/255
- Minimum MTU is 1400
- Hop count is 3
- Originating router is 10.6.32.251
  - Internal tag is 101
  - 10.6.36.1 (Tunnel11), from 10.6.36.1, Send flag is 0x0

Composite metric is (3281141760/1720320), route is Internal
Vector metric:
- **Minimum bandwidth is 200000 Kbit**
- Total delay is 50016250000 picoseconds
- Reliability is 255/255
- Load is 1/255
- Minimum MTU is 1400
- Hop count is 3
- Originating router is 10.6.32.251
  - Internal tag is 102

**Procedure 2** Configure PfR in the primary remote site router

Each remote site must have a branch MC and branch BR configured. At dual-router sites it is recommended that you configure the primary router as both an MC and BR and the secondary router as only a BR.

The domain name, VRF, and password must match the hub MC configuration. Use the loopback 0 interface as the source. Configure the hub MC and the NetFlow collector IP addresses.

**Step 1:** If you are not on the router console port, turn on terminal monitoring with the `terminal monitor` command from the global command line interface.

```
terminal monitor
```

**Step 2:** Create the branch MC domain.

```
domain [name]
vrf [name]
 master branch (create the branch MC)
 source-interface [interface]
 Password [password]
 hub [IP address of hub MC]
 collector [IP address of NMS] port [NetFlow]
```
**Example**

This example configures the branch MC and points to the IP address of the hub MC in the IWAN Hybrid design model.

```plaintext
domain iwan
vrf default
 master branch
 source-interface Loopback0
 password c1sco123
 hub 10.6.32.251
 collector 10.4.48.178 port 2055
```

**Step 3:** After approximately two minutes, the console displays an EIGRP SAF message similar to the one below, which indicates the branch MC has created an adjacency with the loopback interface of the hub MC.

```
Dec 5 14:16:00.389: %DUAL-5-NBRCHANGE: EIGRP-SFv4 59501: Neighbor 10.6.32.251 (Loopback0) is up: new adjacency
```

**Step 4:** Verify the PfR policy from the hub MC has been propagated to the branch MC by using the `show domain [name] master policy` command.

The example shows the branch MC policy from the IWAN Hybrid design model, which is automatically updated from the hub MC. The output from this command should look the same as the output on the hub MC.

```
RS11-2921# show domain iwan master policy

class VOICE sequence 10
 path-preference MPLS fallback INET
 class type: Dscp Based
 match dscp ef policy voice
 priority 2 packet-loss-rate threshold 1.0 percent
 priority 1 one-way-delay threshold 150 msec
 priority 3 jitter threshold 30000 usec
 priority 2 byte-loss-rate threshold 1.0 percent

class INTERACTIVE-VIDEO sequence 20
 path-preference MPLS fallback INET
 class type: Dscp Based
 match dscp cs4 policy real-time-video
 priority 1 packet-loss-rate threshold 1.0 percent
 priority 2 one-way-delay threshold 150 msec
 priority 3 jitter threshold 20000 usec
 priority 1 byte-loss-rate threshold 1.0 percent
 match dscp af41 policy real-time-video
 priority 1 packet-loss-rate threshold 1.0 percent
 priority 2 one-way-delay threshold 150 msec
 priority 3 jitter threshold 20000 usec
 priority 1 byte-loss-rate threshold 1.0 percent
 match dscp af42 policy real-time-video
 priority 1 packet-loss-rate threshold 1.0 percent
```

priority 2 one-way-delay threshold 150 msec
priority 3 jitter threshold 20000 usec
priority 1 byte-loss-rate threshold 1.0 percent

class CRITICAL-DATA sequence 30
path-preference MPLS fallback INET
class type: Dscp Based
match dscp af21 policy low-latency-data
priority 2 packet-loss-rate threshold 5.0 percent
priority 1 one-way-delay threshold 100 msec
priority 2 byte-loss-rate threshold 5.0 percent

class default
match dscp all
Number of Traffic classes using this policy: 2

Step 5: Enable the BR function.

domain [name]
vrf [name]
border (create the border)
source-interface [interface]
master [local] (local keyword means this router)
password [password]
collector [IP address of NMS] port [NetFlow]

Example

This example configures the branch BR and points it to the local branch MC, which is running on the same router platform.

domain iwan
vrf default
border
source-interface Loopback0
master local
password cisco123
collector 10.4.48.178 port 2055

Step 6: After approximately thirty seconds, the console displays a line protocol up/down message similar to the one below, which indicates the automatically generated tunnel interface has been created.

Dec 5 14:31:26.317: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel1, changed state to up
Step 7: Verify that the branch BR is operational by using the `show domain [name] border status` command. This example shows the branch BR operational in the IWAN Hybrid model and the external WAN interfaces are up.

```
RS11-2921# show domain iwan border status
Fri Dec 05 14:38:45.911
--
 ****Border Status****

Instance Status: **UP**
Present status last updated: 1w4d ago
Loopback: **Configured Loopback0 UP (10.255.241.11)**
Master: 10.255.241.11
Connection Status with Master: **UP**
MC connection info: **CONNECTION SUCCESSFUL**
Connected for: 1w4d
Route-Control: Enabled
Minimum Mask length: 28
Sampling: **off**
Minimum Requirement: Met
External Wan interfaces:
 Name: Tunnel10 Interface Index: 15 SNMP Index: 12 SP:MPLS Status: **UP**
 Name: Tunnel11 Interface Index: 16 SNMP Index: 13 SP:INET Status: **UP**

Auto Tunnel information:

Name:Tunnel10 if_index: 25
```

Step 8: Verify that the branch MC is operational by using the `show domain [name] master status` command. This example shows the branch MC operational in the IWAN Hybrid design model. The borders are up with the correct tunnel and service provider information.

```
RS11-2921# show domain iwan master status

*** Domain MC Status ***

Master VRF: Global

Instance Type: **Branch**
Instance id: 0
Operational status: **Up**
Configured status: **Up**
Loopback IP Address: 10.255.241.11
Load Balancing:
 Operational Status: **Up**
 Max Calculated Utilization Variance: 0%
 Last load balance attempt: never
```
Last Reason: Variance less than 20%
Total unbalanced bandwidth:
   External links: 0 Kbps  Internet links: 0 Kbps
Route Control: Enabled
Mitigation mode Aggressive: Disabled
Policy threshold variance: 20
Minimum Mask Length: 28
Sampling: off
Minimum Requirement: Met

Borders:
   IP address: 10.255.241.11
   Connection status: CONNECTED (Last Updated 1w4d ago)
Interfaces configured:
   Name: Tunnel10  |  type: external  |  Service Provider: MPLS  |  Status: UP
      Number of default Channels: 2
   Name: Tunnel11  |  type: external  |  Service Provider: INET  |  Status: UP
      Number of default Channels: 2

Tunnel if: Tunnel10

**Procedure 3** Configure PfR in the secondary remote site router

Use this procedure only when there is a secondary remote site router. If you have a single router at a remote location, skip this procedure.

PfRv3 requires loopback interfaces for the peering traffic between the BR and MC routers. For this design, you put the hub MC loop back interface into the subnet range of the hub location.

Each remote site must have a route to the hub MC in the EIGRP topology table over each exit path. You can have more than two paths. You can also have two routes and Equal Cost Multiple Paths.

**Step 1:** Verify that there are at least two available paths to the loopback 0 interface on the hub MC from each remote site router by using the `show ip eigrp topology` command.

This example shows there are two available paths to the hub MC (10.6.32.251) in the IWAN hybrid design model from the secondary router at a remote site. The internal tags are from the DMVPN hub configurations configured previously in this design guide. The first path is through the port-channel2.99 interface, which is the transit network between the primary router and the secondary router in a dual-router configuration.

```
RS12-2911-2# show ip eigrp topology 10.6.32.251 255.255.255.255
EIGRP-IPv4 VR(IWAN-EIGRP) Topology Entry for AS(400)/ID(10.255.242.12) for 10.6.32.251/32
State is Passive, Query origin flag is 1, 1 Successor(s), FD is 3310960640, RIB is 25866880
Descriptor Blocks:
10.7.16.9 (Port-channel2.99), from 10.7.16.9, Send flag is 0x0
Composite metric is (3310960640/3310632960), route is Internal
```
Vector metric:
- Minimum bandwidth is 20000 Kbit
- Total delay is 50021250000 picoseconds
- Reliability is 255/255
- Load is 1/255
- Minimum MTU is 1400
- Hop count is 4
- Originating router is 10.6.32.251
- Internal tag is 101

10.6.36.1 (Tunnel11), from 10.6.36.1, Send flag is 0x0
Composite metric is (3343400960/1720320), route is Internal

Vector metric:
- Minimum bandwidth is 10000 Kbit
- Total delay is 50016250000 picoseconds
- Reliability is 255/255
- Load is 1/255
- Minimum MTU is 1400
- Hop count is 3
- Originating router is 10.6.32.251
- Internal tag is 102

Step 2: Enable the BR function.

```plaintext
domain [name]
vrf [name]
border (create the border)
 source-interface [interface]
 master [IP address of branch MC]
 Password [password]
 collector [IP address of NMS] port [NetFlow]
```

**Example**

This example configures the branch BR and points it to the branch MC, which is running on the primary remote site router.

```plaintext
domain iwan
vrf default
border
 source-interface Loopback0
 master 10.255.241.12
 password cisco123
 collector 10.4.48.178 port 2055
```
Step 3: After approximately thirty seconds, the console displays several EIGRP messages and a line protocol up/down message similar to the ones below. These messages indicate the branch BR has neighbored with the branch MC and automatically generated the tunnel interface from the loopback of the branch BR to the loopback of the branch MC.

Dec 5 16:09:11.202: %DUAL-5-NBRCHANGE: EIGRP-SFv4 59501: Neighbor 10.7.18.2 (Port-channel2.64) is up: new adjacency
Dec 5 16:09:11.202: %DUAL-5-NBRCHANGE: EIGRP-SFv4 59501: Neighbor 10.7.19.2 (Port-channel2.69) is up: new adjacency
Dec 5 16:09:11.202: %DUAL-5-NBRCHANGE: EIGRP-SFv4 59501: Neighbor 10.255.241.12 (Loopback0) is up: new adjacency
Dec 5 16:09:11.690: %DUAL-5-NBRCHANGE: EIGRP-SFv4 59501: Neighbor 10.7.16.9 (Port-channel2.99) is up: new adjacency
Dec 5 16:09:12.174: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up

Step 4: Verify that the branch BR is operational by using the `show domain [name] border status` command.

This example shows the secondary branch BR operational in the IWAN Hybrid model and the external WAN interface is up. There is only one external WAN interface listed because the other tunnel is on the primary remote site router. The primary branch BR is reachable through the automatically generated Tunnel 0 interface at IP address 10.255.241.12.

RS12-2911-2# show domain iwan border status
Fri Dec 05 16:10:38.925
--------------------------------------------------------------------
****Border Status****
Instance Status: UP
Present status last updated: 00:01:27 ago
Loopback: Configured Loopback0 UP (10.255.242.12)
Master: 10.255.241.12
Connection Status with Master: UP
MC connection info: CONNECTION SUCCESSFUL
Connected for: 00:01:27
Route-Control: Enabled
Minimum Mask length: 28
Sampling: off
Minimum Requirement: Met
External Wan interfaces:
  Name: Tunnel11 Interface Index: 15 SNMP Index: 12 SP:INET Status: UP

Auto Tunnel information:

  Name:Tunnel10 if_index: 20
  Borders reachable via this tunnel: 10.255.241.12,

Step 5: Repeat Procedure 1 thru Procedure 3 for each remote site in your network.
Procedure 4  Verify PfR traffic classes are controlled

The final procedure is to verify that the configured and default traffic classes are controlled by the MC at the hub and branch locations.

Step 1: With traffic flowing over the WAN, verify that the PfR traffic classes are controlled in the outbound direction on the hub MC by using the `show domain [name] master traffic-classes summary` command.

This example shows the traffic classes are controlled as signified by the CN in the State column. The default class is load-balanced between the MPLS and INET paths across the network. This example is truncated due to the overall length.

```
PFR-MC-ASR1004-1# show domain iwan master traffic-classes summary

APP - APPLICATION, TC-ID - TRAFFIC-CLASS-ID, APP-ID - APPLICATION-ID
SP - SERVICE PROVIDER, PC = PRIMARY CHANNEL ID,
BC - BACKUP CHANNEL ID, BR - BORDER, EXIT - WAN INTERFACE
UC - UNCONTROLLED, PE - PICK-EXIT, CN - CONTROLLED, UK - UNKNOWN

<table>
<thead>
<tr>
<th>Dst-Site-Pfx</th>
<th>Dst-Site-Id</th>
<th>APP</th>
<th>DSCP</th>
<th>TC-ID</th>
<th>APP-ID</th>
<th>State</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7.83.0/24</td>
<td>10.255.241.2N/A</td>
<td>cs3</td>
<td>7632</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10131/NA</td>
<td>10.6.32.242/Tunnel11</td>
<td>default</td>
<td>12063</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>MPLS</td>
</tr>
<tr>
<td>10.255.241.21/32</td>
<td>10.255.241.2N/A</td>
<td>default</td>
<td>7656</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>3643/10128</td>
<td>10.6.32.241/Tunnel110</td>
<td>default</td>
<td>7651</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.7.82.0/24</td>
<td>10.255.241.2N/A</td>
<td>default</td>
<td>7636</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>MPLS</td>
</tr>
<tr>
<td>10130/NA</td>
<td>10.6.32.242/Tunnel11</td>
<td>default</td>
<td>10126</td>
<td>NA</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.7.18.13/32</td>
<td>10.255.241.1N/A</td>
<td>default</td>
<td>7646</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10126/NA</td>
<td>10.6.32.242/Tunnel11</td>
<td>default</td>
<td>7651</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.7.2.0/24</td>
<td>10.255.241.1N/A</td>
<td>default</td>
<td>7636</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>MPLS</td>
</tr>
<tr>
<td>3638/NA</td>
<td>10.6.32.241/Tunnel110</td>
<td>default</td>
<td>7651</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.7.2.0/24</td>
<td>10.255.241.1N/A</td>
<td>default</td>
<td>7638</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>3650/10125</td>
<td>10.6.32.241/Tunnel110</td>
<td>default</td>
<td>10140</td>
<td>NA</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.255.242.42/32</td>
<td>10.255.241.4N/A</td>
<td>default</td>
<td>7653</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10138/NA</td>
<td>10.6.32.242/Tunnel111</td>
<td>default</td>
<td>10138</td>
<td>NA</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.7.195.0/24</td>
<td>10.255.241.4N/A</td>
<td>default</td>
<td>15340</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.7.195.0/24</td>
<td>10.255.241.4N/A</td>
<td>default</td>
<td>7630</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>MPLS</td>
</tr>
<tr>
<td>3654/NA</td>
<td>10.6.32.241/Tunnel110</td>
<td>default</td>
<td>7638</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.7.18.0/24</td>
<td>10.255.241.1N/A</td>
<td>default</td>
<td>17896</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10126/NA</td>
<td>10.6.32.242/Tunnel11</td>
<td>default</td>
<td>10126</td>
<td>NA</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10.255.241.41/32</td>
<td>10.255.241.4N/A</td>
<td>default</td>
<td>7623</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
<tr>
<td>10138/NA</td>
<td>10.6.32.242/Tunnel11</td>
<td>default</td>
<td>7623</td>
<td>N/A</td>
<td></td>
<td>CN</td>
<td>INET</td>
</tr>
</tbody>
</table>
```
Step 2: With traffic flowing over the WAN, verify that the PfR traffic classes are controlled in the outbound direction on one of the branch MC routers by using the `show domain [name] master traffic-classes dscp` command.

This example shows a video call is taking place from remote site RS11 to the HQ location. The traffic class is controlled, as signified by the Present State row. The INTERACTIVE-VIDEO, with a DSCP of AF41 (34), is in-policy and using the MPLS path. The traffic class has a valid backup channel, which means the INET path is available if the primary path falls out of policy.

```
RS11-2921# show domain iwan master traffic-classes dscp af41

Dst-Site-Prefix: 10.4.0.0/16 DSCP: af41 [34] Traffic class id:304
TC Learned: 00:00:31 ago
Present State: CONTROLLED
Current Performance Status: in-policy
Current Service Provider: MPLS since 00:00:01 (hold until 88 sec)
Previous Service Provider: Unknown
BW Used: 416 Kbps
Present WAN interface: Tunnel10 in Border 10.255.241.11
Present Channel (primary): 312
Backup Channel: 313
Destination Site ID: 10.6.32.251
Class-Sequence in use: 20
Class Name: INTERACTIVE-VIDEO using policy real-time-video
BW Updated: 00:00:01 ago
Reason for Route Change: Uncontrolled to Controlled Transition
```

RS11-2921# show domain iwan master traffic-classes dscp af41

```
DSCP: af41 [34] Traffic class id:304
TC Learned: 00:00:31 ago
Present State: CONTROLLED
Current Performance Status: in-policy
Current Service Provider: MPLS since 00:00:01 (hold until 88 sec)
Previous Service Provider: Unknown
BW Used: 416 Kbps
Present WAN interface: Tunnel10 in Border 10.255.241.11
Present Channel (primary): 312
Backup Channel: 313
Destination Site ID: 10.6.32.251
Class-Sequence in use: 20
Class Name: INTERACTIVE-VIDEO using policy real-time-video
BW Updated: 00:00:01 ago
Reason for Route Change: Uncontrolled to Controlled Transition
```
NetFlow monitoring with LiveAction is configured in the “Deploying IWAN Monitoring” process later in this guide. The example below shows the AF41 traffic flow through the MPLS path under normal conditions.

Figure 33 - LiveAction: AF41 traffic flow through the MPLS path on tunnel 10
Step 3: After introducing loss into the MPLS path, verify that the protected traffic class is moved to the backup INET path by using the `show domain [name] master traffic-classes dscp` command.

This example shows the INTERACTIVE-VIDEO class, with a DSCP of AF41 (34), using the backup INET path. The branch MC has moved the traffic due to packet loss of greater than 1%. The traffic is considered in-policy because it has already been moved to the INET path where there is no loss occurring.

```
RS11-2921# show domain iwan master traffic-classes dscp af41

Dst-Site-Prefix: 10.4.0.0/16 DSCP: af41 [34] Traffic class id:303
TC Learned: 00:25:40 ago
Present State: CONTROLLED
Current Performance Status: in-policy
Current Service Provider: INET since 00:01:09
Previous Service Provider: INET for 180 sec
(A fallback provider. Primary provider will be re-evaluated 00:02:53 later)
BW Used: 414 Kbps
Present WAN interface: Tunnel11 in Border 10.255.241.11
Present Channel (primary): 311
Backup Channel: 310
Destination Site ID: 10.6.32.251
Class-Sequence in use: 10
Class Name: INTERACTIVE-VIDEO using policy real-time-video
BW Updated: 00:00:10 ago
Reason for Route Change: Loss
```

--------------------------------------------------------------------
NetFlow monitoring with LiveAction is configured in the “Deploying IWAN Monitoring” process later in this guide. The example below shows the AF41 traffic flow through the INET path after loss has been introduced on the MPLS path.

*Figure 34 - LiveAction: AF41 traffic flow through the INET path on tunnel 11 after loss*
NetFlow operates by creating a NetFlow cache entry that contains information for all active flows on a NetFlow-enabled device. NetFlow builds its cache by processing the first packet of a flow through the standard switching path. It maintains a flow record within the NetFlow cache for all active flows. Each flow record in the NetFlow cache contains key fields, as well as additional non-key fields, that can be used later for exporting data to a collection device. Each flow record is created by identifying packets with similar flow characteristics and counting or tracking the packets and bytes per flow.

Flexible NetFlow (FNF) allows you to customize and focus on specific network information. To define a flow, you can use a subset or superset of the traditional seven key fields. FNF also has multiple additional fields (both key and non-key). This permits an organization to target more specific information so that the total amount of information and the number of flows being exported is reduced, allowing enhanced scalability and aggregation.

### Configuring Flexible NetFlow for IWAN Monitoring

**Process**

1. Create flexible NetFlow flow record
2. Create flow exporter
3. Create a flow monitor
4. Apply flow monitor to router interfaces

These procedures include best practice recommendations for which key fields and non-key fields need to be collected in order to allow for effective IWAN monitoring.

Additional details regarding the deployment of NetFlow with NBAR2 and the usage of a broad range of NetFlow collector/analyzers are covered in the Application Monitoring Using NetFlow Technology Design Guide.

### Procedure 1  Create flexible NetFlow flow record

Flexible NetFlow requires the explicit configuration of a flow record that consists of both key fields and non-key fields. This procedure provides guidance on how to configure a user-defined flow record that includes all of the Traditional NetFlow (TNF) fields (key and non-key) as well as additional FNF fields (key and non-key). The resulting flow record includes the full subset of TNF fields used in classic NetFlow deployments.

The example in this guide is from LiveAction. Different NetFlow collector applications support different export version formats and you should align your flow record with the type of network management platform used by your organization.

**Step 1:** Specify key fields. This determines unique flow. Be sure to include a separate match statement for each key field.

```plaintext
flow record [record name]
description [record description]
match [key field type] [key field value]
```
Table 66 - Recommended FNF key fields for IWAN

<table>
<thead>
<tr>
<th>Key field type</th>
<th>Key field value</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow</td>
<td>flow direction</td>
</tr>
<tr>
<td>interface</td>
<td>input</td>
</tr>
<tr>
<td>ipv4</td>
<td>tos</td>
</tr>
<tr>
<td></td>
<td>protocol</td>
</tr>
<tr>
<td></td>
<td>source address</td>
</tr>
<tr>
<td></td>
<td>destination address</td>
</tr>
<tr>
<td>transport</td>
<td>source port</td>
</tr>
<tr>
<td></td>
<td>destination port</td>
</tr>
</tbody>
</table>

Step 2: Specify non-key fields to be collected for each unique flow. Be sure to include a separate `collect` statement for each non-key field.

```
flow record [record name]
collect [non-key field type] [non-key field value]
```

Table 67 - Recommended FNF non-key fields for IWAN

<table>
<thead>
<tr>
<th>Non-key field type</th>
<th>Non-key field value</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>name</td>
</tr>
<tr>
<td>flow</td>
<td>sampler</td>
</tr>
<tr>
<td>routing</td>
<td>source as</td>
</tr>
<tr>
<td></td>
<td>destination as</td>
</tr>
<tr>
<td></td>
<td>next-hop address ipv4</td>
</tr>
<tr>
<td>ipv4</td>
<td>source prefix</td>
</tr>
<tr>
<td></td>
<td>source mask</td>
</tr>
<tr>
<td></td>
<td>destination mask</td>
</tr>
<tr>
<td></td>
<td>dscp</td>
</tr>
<tr>
<td></td>
<td>id</td>
</tr>
<tr>
<td>transport</td>
<td>tcp flags</td>
</tr>
<tr>
<td>interface</td>
<td>output</td>
</tr>
<tr>
<td>counter</td>
<td>bytes</td>
</tr>
<tr>
<td></td>
<td>packets</td>
</tr>
<tr>
<td>timestamp</td>
<td>sys-uptime first</td>
</tr>
<tr>
<td></td>
<td>sys-uptime last</td>
</tr>
</tbody>
</table>
Example

```
flow record Record-FNF-IWAN
 description Flexible NetFlow for IWAN Monitoring
 match flow direction
 match interface input
 match ipv4 destination address
 match ipv4 protocol
 match ipv4 source address
 match ipv4 tos
 match transport destination-port
 match transport source-port
 collect application name
 collect counter bytes
 collect counter packets
 collect flow sampler
 collect interface output
 collect ipv4 destination mask
 collect ipv4 dscp
 collect ipv4 id
 collect ipv4 source mask
 collect ipv4 source prefix
 collect routing destination as
 collect routing next-hop address ipv4
 collect routing source as
 collect timestamp sys-uptime first
 collect timestamp sys-uptime last
 collect transport tcp flags
```

Procedure 2  Create flow exporter

The NetFlow data that is stored in the cache of the network device can be more effectively analyzed when exported to an external collector.

Creating a flow exporter is only required when exporting data to an external collector. If data is analyzed only on the network device, you can skip this procedure.

Reader Tip

Most external collectors use SNMP to retrieve the interface table from the network device. Ensure that you have completed the relevant SNMP procedures for your platform.

Different NetFlow collector applications support different export version formats (v5, v9, IPFIX) and expect to receive the exported data on a particular UDP or TCP port (ports 2055, 9991, 9995, 9996 are popular). The NetFlow RFC 3954 does not specify a specific port for collectors to receive NetFlow data.
In this deployment, the collector applications used for testing use the parameters designated in the following table.

**Table 68 - NetFlow collector parameters**

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Application</th>
<th>Version</th>
<th>Export capability</th>
<th>Netflow destination port</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiveAction</td>
<td>LiveAction</td>
<td>4.1.2</td>
<td>Flexible NetFlow v9</td>
<td>UDP 2055</td>
</tr>
</tbody>
</table>

**Step 1:** Configure a basic flow exporter by using Netflow v9.

```plaintext
flow exporter [exporter name]
description [exporter description]
destination [NetFlow collector IP address]
source Loopback0
transport [UDP or TCP] [port number]
export-protocol netflow
```

**Step 2:** For FNF records, export the interface table for FNF. The `option interface-table` command enables the periodic sending of an options table. This provides interface names through the NetFlow export.

```plaintext
flow exporter [exporter name]
option interface-table
template data timeout 600
```

**Step 3:** If you are using an NBAR flow record, export the NBAR application table. The `option application-table` command enables the periodic sending of an options table that allows the collector to map the NBAR application IDs provided in the flow records to application names.

```plaintext
flow exporter [exporter name]
option application-table
```

**Step 4:** If you are using an NBAR flow record, export the NBAR application attributes. The `option application-attributes` command causes the periodic sending of NBAR application attributes to the collector.

```plaintext
flow exporter [exporter name]
option application-attributes
```

**Step 5:** If you are using the Cisco ISR-G2 series routers, enable `output-features`. Otherwise, NetFlow traffic that originates from a WAN remote-site router will not be encrypted or tagged using QoS.

```plaintext
flow exporter [exporter name]
output-features
```

**Example: FNF with LiveAction**

```plaintext
flow exporter Export-FNF-LiveAction
description FNFv9 with LiveAction
destination 10.4.48.178
source Loopback0
output-features ! this command is not required on IOS-XE routers
transport udp 2055
template data timeout 600
option interface-table
option application-table
option application-attributes
```
Step 6: Verify the NetFlow exporter configuration using the `show flow exporter` command.

RS41-2921# show flow exporter Export-FNF-LiveAction

Flow Exporter Export-FNF-LiveAction:
Description: FNFv9 with LiveAction
Export protocol: NetFlow Version 9
Transport Configuration:
  Destination IP address: 10.4.48.178
  Source IP address: 10.255.241.41
  Source Interface: Loopback0
  Transport Protocol: UDP
  Destination Port: 2055
  Source Port: 60925
  DSCP: 0x0
  TTL: 255
Output Features: Used
Options Configuration:
  interface-table (timeout 600 seconds)
  application-table (timeout 600 seconds)
  application-attributes (timeout 600 seconds)

Procedure 3  Create a flow monitor

The network device must be configured to monitor the flows through the device on a per-interface basis. The flow monitor must include a flow record and optionally one or more flow exporters if data is to be collected and analyzed. After the flow monitor is created, it is applied to device interfaces. The flow monitor stores flow information in a cache, and the timer values for this cache are modified within the flow monitor configuration. It is recommended that you set the timeout active timer to 60 seconds, which exports flow data on existing long-lived flows.

Step 1: Create the flow monitor, and then set the cache timers.

    flow monitor [monitor name]
    description [monitor description]
    cache timeout active 60
    cache timeout inactive 10

Step 2: Associate the flow record to the flow monitor. You can use either a custom or a built-in flow record.

    flow monitor [monitor name]
    record [record name]

Step 3: If you are using an external NetFlow collector, associate the exporters to the flow monitor. If you are using multiple exporters, add additional lines.

    flow monitor [monitor name]
    exporter [exporter name]
Example: FNF with LiveAction

flow monitor Monitor-FNF-IWAN
  description IWAN Traffic Analysis
  record Record-FNF-IWAN
  exporter Export-FNF-LiveAction
  cache timeout active 60
  cache timeout inactive 10

Step 4: Verify the flow monitor configuration by using the `show flow monitor` command.

RS41-2921#show flow monitor
Flow Monitor Monitor-FNF-IWAN:
  Description:       IWAN Traffic Analysis
  Flow Record:       Record-FNF-IWAN
  Flow Exporter:     Export-FNF-LiveAction (inactive)
  Cache:
    Type:                 normal
    Status:               not allocated
    Size:                 4096 entries / 0 bytes
    Inactive Timeout:     10 secs
    Active Timeout:       60 secs
    Update Timeout:       1800 secs
    Synchronized Timeout: 600 secs
  Status:            allocated
  Size:              4096 entries / 376856 bytes
  Inactive Timeout:  15 secs
  Active Timeout:    60 secs
  Update Timeout:    1800 secs

Procedure 4: Apply flow monitor to router interfaces

A best practice for NetFlow in an IWAN deployment is to monitor all inbound and outbound traffic on the DMVPN tunnel interfaces.

Step 1: Apply the flow monitor to the tunnel interface(s).

interface [name]
  ip flow monitor [monitor name] input
  ip flow monitor [monitor name] output

Example: Single-router dual-link remote site

interface Tunnel10
  ip flow monitor Monitor-FNF-IWAN input
  ip flow monitor Monitor-FNF-IWAN output

interface Tunnel11
  ip flow monitor Monitor-FNF-IWAN input
  ip flow monitor Monitor-FNF-IWAN output
Step 2: Verify the proper interfaces are configured for NetFlow monitoring using the `show flow interface` command.

```
RS41-2921# show flow interface
Interface Tunnel10
 FNF: monitor: Monitor-FNF-IWAN
direction: Input
 traffic(ip): on
 FNF: monitor: Monitor-FNF-IWAN
direction: Output
 traffic(ip): on
Interface Tunnel11
 FNF: monitor: Monitor-FNF-IWAN
direction: Input
 traffic(ip): on
 FNF: monitor: Monitor-FNF-IWAN
direction: Output
 traffic(ip): on
```

Step 3: At dual-router sites with a distribution layer, also apply the flow monitor to the interfaces that connect to the distribution layer switch. This ensures that you capture all possible traffic flows.

**Example: First router of a dual-router dual-link remote site**

```
interface Port-channel 1.50
 ip flow monitor Monitor-FNF-IWAN input
 ip flow monitor Monitor-FNF-IWAN output
```

**Example: Second router of a dual-router dual-link remote site**

```
interface Port-channel 2.54
 ip flow monitor Monitor-FNF-IWAN input
 ip flow monitor Monitor-FNF-IWAN output
```

Step 4: Verify the dscp used in the network by displaying the NetFlow cache on the WAN aggregation routers. Use the `show flow monitor` command.

This example is truncated due to the width and overall length.

```
show flow monitor Monitor-FNF-IWAN cache format table
Cache type: Normal (Platform cache)
Cache size: 200000
Current entries: 217
High Watermark: 1190

Flows added: 9904555
Flows aged: 9904338
- Active timeout (60 secs) 1028876
- Inactive timeout (10 secs) 8875462
```
<table>
<thead>
<tr>
<th>IPV4 SRC ADDR</th>
<th>IPV4 DST ADDR</th>
<th>TRNS SRC PORT</th>
<th>TRNS DST PORT</th>
<th>INTF INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6.32.251</td>
<td>10.255.241.31</td>
<td>18000</td>
<td>19000</td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td>Output</td>
<td>0xA8</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>10.6.34.31</td>
<td>0</td>
<td>0.0.0.0</td>
<td>23</td>
<td>0x00</td>
</tr>
<tr>
<td>Tu10</td>
<td></td>
<td>16632</td>
<td>231</td>
<td>10:29:20.873</td>
</tr>
<tr>
<td>10:29:32.053</td>
<td>0x2A</td>
<td>layer7 rtp</td>
<td>231</td>
<td>10:29:32.053</td>
</tr>
<tr>
<td>10.7.83.20</td>
<td>10.4.48.111</td>
<td>50166</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Tu10</td>
<td>Output</td>
<td>0x60</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10.6.32.1</td>
<td>7960</td>
<td>10.7.80.0</td>
<td>/21</td>
<td>/15 0x18</td>
</tr>
<tr>
<td>Po1</td>
<td></td>
<td>0</td>
<td>92</td>
<td>2 10:29:25.261</td>
</tr>
<tr>
<td>10:29:25.277</td>
<td>0x18</td>
<td>layer7 skinny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4.48.178</td>
<td>10.255.241.32</td>
<td>0</td>
<td>771</td>
<td></td>
</tr>
<tr>
<td>Po1</td>
<td>Input</td>
<td>0x00</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10.6.32.242</td>
<td>9581</td>
<td>10.4.0.0</td>
<td>/15</td>
<td>/32 0x00</td>
</tr>
<tr>
<td>Tu0</td>
<td></td>
<td>1972</td>
<td>11</td>
<td>10:29:14.505</td>
</tr>
<tr>
<td>10:29:32.031</td>
<td>0x00</td>
<td>prot icmp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Appendix A: Product List

## WAN Aggregation

<table>
<thead>
<tr>
<th>Place In Network</th>
<th>Product Description</th>
<th>Part Number</th>
<th>SW Version</th>
<th>Feature Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN-aggregation Router</td>
<td>Aggregation Services 1002X Router</td>
<td>ASR1002X-5G-VPNK9</td>
<td>IOS-XE 15.5(1)S</td>
<td>Advanced Enterprise</td>
</tr>
<tr>
<td></td>
<td>Cisco ISR 4451-X Security Bundle w/SEC license PAK</td>
<td>ISR4451-X-SEC/K9</td>
<td>IOS-XE 15.5(1)S</td>
<td>securityk9</td>
</tr>
</tbody>
</table>

## WAN Remote Site

<table>
<thead>
<tr>
<th>Place In Network</th>
<th>Product Description</th>
<th>Part Number</th>
<th>SW Version</th>
<th>Feature Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular WAN Remote-site Router</td>
<td>Cisco ISR 4451 w/ 4GE,3NIM,2SM,8G FLASH, 4G DRAM, IP Base, SEC, AX license with; DATA, AVC, ISR-WAAS with 2500 connection RTU</td>
<td>ISR4451-X-AX/K9</td>
<td>IOS-XE 15.5(1)S</td>
<td>securityk9, appk9</td>
</tr>
<tr>
<td></td>
<td>Cisco ISR 3945 w/ SPE150, 3GE, 4EHWIC, 4DSP, 4SM, 256MBCF, 1GBDRAM, IP Base, SEC, AX licenses with; DATA, AVC, and WAAS/vWAAS with 2500 connection RTU</td>
<td>C3945-AX/K9</td>
<td>15.4(3)M1</td>
<td>securityk9, datak9, uck9</td>
</tr>
<tr>
<td></td>
<td>Cisco ISR 3925 w/ SPE100 (3GE, 4EHWIC, 4DSP, 2SM, 256MBCF, 1GBDRAM, IP Base, SEC, AX licenses with; DATA, AVC, WAAS/vWAAS with 2500 connection RTU</td>
<td>C3925-AX/K9</td>
<td>15.4(3)M1</td>
<td>securityk9, datak9, uck9</td>
</tr>
<tr>
<td></td>
<td>Unified Communications Paper PAK for Cisco 3900 Series</td>
<td>SL-39-UC-K9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISR 2951 w/ 3 GE, 4 EHWIC, 3 DSP, 2 SM, 256MB CF, 1GB DRAM, IP Base, SEC, AX license with; DATA, AVC, and WAAS/vWAAS with 1300 connection RTU</td>
<td>C2951-AX/K9</td>
<td>15.4(3)M1</td>
<td>securityk9, datak9, uck9</td>
</tr>
<tr>
<td></td>
<td>Cisco ISR 2921 w/ 3 GE, 4 EHWIC, 3 DSP, 1 SM, 256MB CF, 1GB DRAM, IP Base, SEC, AX license with; DATA, AVC, and WAAS/vWAAS with 1300 connection RTU</td>
<td>C2921-AX/K9</td>
<td>15.4(3)M1</td>
<td>securityk9, datak9, uck9</td>
</tr>
<tr>
<td></td>
<td>Cisco ISR 2911 w/ 3 GE,4 EHWIC, 2 DSP, 1 SM, 256MB CF, 1GB DRAM, IP Base, SEC, AX license with; DATA, AVC and WAAS/vWAAS with 1300 connection RTU</td>
<td>C2911-AX/K9</td>
<td>15.4(3)M1</td>
<td>securityk9, datak9, uck9</td>
</tr>
<tr>
<td></td>
<td>Unified Communications Paper PAK for Cisco 2900 Series</td>
<td>SL-29-UC-K9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco ISR 1941 Router w/ 2 GE, 2 EHWIC slots, 256MB CF, 2.5GB DRAM, IP Base, DATA, SEC, AX license with; AVC and WAAS-Express</td>
<td>C1941-AX/K9</td>
<td>15.4(3)M1</td>
<td>securityk9, datak9</td>
</tr>
</tbody>
</table>
### Internet Edge

<table>
<thead>
<tr>
<th>Place In Network</th>
<th>Product Description</th>
<th>Part Number</th>
<th>SW Version</th>
<th>Feature Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco ASA 5512-X Security Plus license</td>
<td>ASA5512-SEC-PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firewall Management</td>
<td>ASDM</td>
<td></td>
<td>7.1(6)</td>
<td></td>
</tr>
</tbody>
</table>

### Internet Edge LAN

<table>
<thead>
<tr>
<th>Place In Network</th>
<th>Product Description</th>
<th>Part Number</th>
<th>SW Version</th>
<th>Feature Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMZ Switch</td>
<td>Cisco Catalyst 2960-X Series 24 10/100/1000 PoE and 2 SFP+ Uplink</td>
<td>WS-C2960X-24PS</td>
<td>15.0(2)EX5</td>
<td>LAN Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 2960-X FlexStack-Plus Hot-Swappable Stacking Module</td>
<td>C2960X-STACK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### LAN Access Layer

<table>
<thead>
<tr>
<th>Place In Network</th>
<th>Product Description</th>
<th>Part Number</th>
<th>SW Version</th>
<th>Feature Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular Access Layer Switch</td>
<td>Cisco Catalyst 4500E Series 4507R+E 7-slot Chassis with 48Gbps per slot</td>
<td>WS-C4507R+E</td>
<td>3.3.1X0(15.1.1X01)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E Supervisor Engine 8-E, Unified Access, 928Gbps</td>
<td>WS-X45-SUP8-E</td>
<td>3.3.1X0(15.1.1X01)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E 12-port 10GbE SFP+ Fiber Module</td>
<td>WS-X4712-SFP+E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E 48-Port 802.3at PoE+ 10/100/1000 (RJ-45)</td>
<td>WS-X4748-RJ45V+E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E Series 4507R+E 7-slot Chassis with 48Gbps per slot</td>
<td>WS-C4507R+E</td>
<td>3.5.3E(15.2.1E3)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E Supervisor Engine 7L-E, 520Gbps</td>
<td>WS-X45-SUP7L-E</td>
<td>3.5.3E(15.2.1E3)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E 48 Ethernet 10/100/1000 (RJ45) PoE+, UPOE+ ports</td>
<td>WS-X4748-UPOE+E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 4500E 48 Ethernet 10/100/1000 (RJ45) PoE+ ports</td>
<td>WS-X4648-RJ45V+E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place In Network</td>
<td>Product Description</td>
<td>Part Number</td>
<td>SW Version</td>
<td>Feature Set</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td>-----------------</td>
<td>---------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Stackable Access</td>
<td>Cisco Catalyst 3850 Series Stackable 48 Ethernet 10/100/1000 PoE+ ports</td>
<td>WS-C3850-48F</td>
<td>3.3.3SE(15.0.1EZ3)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3850 Series Stackable 24 Ethernet 10/100/1000 PoE+ Ports</td>
<td>WS-C3850-24P</td>
<td>3.3.3SE(15.0.1EZ3)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3850 Series 2 x 10GE Network Module</td>
<td>C3850-NM-2-10G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3850 Series 4 x 1GE Network Module</td>
<td>C3850-NM-4-1G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3650 Series 24 Ethernet 10/100/1000 PoE+ and 2x10GE or 4x1GE Uplink</td>
<td>WS-C3650-24PD</td>
<td>3.3.3SE(15.0.1EZ3)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3650 Series 24 Ethernet 10/100/1000 PoE+ and 4x1GE Uplink</td>
<td>WS-C3650-24PS</td>
<td>3.3.3SE(15.0.1EZ3)</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3650 Series Stack Module</td>
<td>C3650-STACK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3750-X Series Stackable 48 Ethernet 10/100/1000 PoE+ ports</td>
<td>WS-C3750X-48PF-S</td>
<td>15.2(1)E3</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3750-X Series Stackable 24 Ethernet 10/100/1000 PoE+ ports</td>
<td>WS-C3750X-24P-S</td>
<td>15.2(1)E3</td>
<td>IP Base</td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module</td>
<td>C3KX-NM-10G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 3750-X Series Four GbE SFP ports network module</td>
<td>C3KX-NM-1G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Catalyst 2960-X Series 24 10/100/1000 Ethernet and 2 SFP+ Uplink</td>
<td>WS-C2960X-24PD</td>
<td>15.0(2)EX5</td>
<td>LAN Base</td>
</tr>
<tr>
<td>Standalone Access</td>
<td>Cisco Catalyst 3650 Series 24 Ethernet 10/100/1000 PoE+ and 4x1GE Uplink</td>
<td>WS-C3650-24PS</td>
<td>3.3.3SE(15.0.1EZ3)</td>
<td>IP Base</td>
</tr>
</tbody>
</table>
Appendix B: Technical Feature Supplement

Front Door VRF for DMVPN

Building an IPsec tunnel requires reachability between the crypto routers. When you use the Internet, routers use a default route to contact their peers.

Figure 35 - IPsec tunnel

![IPsec tunnel diagram]

If you need to extend the internal network and the same default routing options that are available to internal users, you must advertise a default route to the VPN hub router. For details, see section A in the following figure.
The advertisement of a default route to the hub router (with an existing default route) is problematic. This route requires a better administrative distance to become the active default, which then overrides the default route that is supporting the peer-peer IPsec tunnel connection. This routing advertisement breaks the tunnel as shown in section B in the previous figure.

Through the introduction of an external VRF INET-PUBLIC (shown in red), the hub router can support multiple default routes. The internal network remains in the global VRF. This is shown in section A of the following figure.

Tech Tip

Most additional features on the hub router do not require VRF-awareness.
This configuration is referred to as FVRF, because the Internet is contained in a VRF. FVRF is sometimes referred to as Front Side VRF. The alternative to this design is Inside VRF (IVRF), where the internal network is in a VRF on the VPN hub and the Internet remains in the global VRF. This method is not documented in this guide.

It is now possible to reestablish the IPSec tunnel to the remote peer router. Because the remote-site policy requires central Internet access for end users, a default route is advertised through the tunnel. This advertisement causes a similar default routing issue on the remote router; the tunnel default overrides the Internet-pointing default and the tunnel connection breaks as shown in section B of the previous figure.

This configuration requires using FVRF on the remote-site router as well. The primary benefits of using this solution are:

- Simplified default routing and static default routes in the INET-PUBLIC VRFs.
- Ability to support default routing for end-users traffic through VPN tunnels.
- Ability to use dynamic default routing for sites with multiple WAN transports.
- Ability to build spoke-to-spoke tunnels with DMVPN with end-user traffic routed by default through VPN tunnels.
The final design that uses FVRF at both the WAN-aggregation site and a WAN remote-site is shown in the following figure.

Figure 38 – FVRF: Final configuration
Appendix C: Device Configuration Files

To view the configuration files from the CVD lab devices that were used to test this guide, go to the following URL:

http://cvddocs.com/fw/201i-15a
Please use the feedback form to send comments and suggestions about this guide.