Cisco 10S XE
Programmability
Automating Device
Lifecycle Management

Context

Intent

B
=

Cisco I0S XE

o],
CISCO.

Adam Radford
Fabrizio Maccioni
Gabriel Zapodeanu
Itai Koren

Jeff McLaughlin
Jeremy Cohoe
Jonathan Yang
Krishna Kotha
Nabil Michraf
Robert Grasby

e
CISCO.

Cisco |I0S XE Programmability

Automating Device Lifecycle Management

Table of Contents

Authors

Acknowledgments

About this Book

Introduction
Why Programmability Matters
Lifecycle of Network Device Operations
Use Cases
Operational Approaches

Next Steps

General Concepts
Cisco I0S XE

What is Programmability?

Application Programming Interfaces (APIs)
Programming Languages

Structured Data

Data Encoding Formats

13
14
16
18
24

25
26
28
30

31
32
34

Day 0 Device Onboarding

Introduction

Zero-Touch Provisioning (ZTP) Scenarios
Basic ZTP Workflow

Advanced ZTP Workflows
Considerations

Next Steps

YANG

Overview

YANG Concepts

YANG Native vs Open Data Models
YANG Data Model Highlights

YANG Tools

Network Device APIs

Overview

NETCONF

RESTCONF

Comparison of NETCONF and RESTCONF

Next Steps

36
37
41
42
44
47

48

49
50
54
58
61
64

68
69
70
75
78
79

Telemetry 80

Overview 81
Operational Data 82
Flow Data 85
Use Cases 86
Subscription Tools 88
Data Collectors 89
Python 92
Overview 93
Python WebUI Sandbox 96
On-Box Python 98
Advanced On-Box Python 100
Common Issues 103
Guest Shell 104
Introduction 105
Security 106
Configuration and Updates 107
Resource Allocation 108
Use Cases 110

Next Steps 111

Application Hosting
Introduction
Cisco Application-Hosting Framework
Containers and Virtual Machines
Use Case

Next Steps

Controllers
Introduction

Common Controllers

Why Use a Controller?

DevOps and NetDevOps
Introduction
Continuous Integration and Delivery
DevOps Tools

Next Steps

Appendices
Additional Resources

Acronyms

112
13
115
121
123
124

125
126
128
130

131
132
134
136
139

140
141
145

Cisco 10S XE Programmability 7

Authors

This book is the result of a collaborative effort across Cisco's Technical Marketing,
Product Management, Engineering, and Sales teams. The individual authors are:

Adam Radford - Distinguished Systems Engineer

Fabrizio Maccioni - Technical Marketing Engineer

Gabriel Zapodeanu - Technology Solutions Architect

Itai Koren - Product Manager

Jeffery McLaughlin - Principal Technical Marketing Engineer
Jeremy Cohoe - Technical Marketing Engineer

Jonathan Yang - Technical Leader

Krishna Kotha - Technical Marketing Engineer

Nabil Michraf - Solutions Architect

Robert Grasby - Product Manager

Cisco |0S XE Programmability 8

Acknowledgments

A special thanks to Cisco's Enterprise Networking Business Product Management,
Engineering, Sales and Services teams who supported the realization of this book.
Thanks to Carl Solder and Muninder Sambi for their support; Christina Munoz and
Cynthia Resendez for exceptional logistics; and Sehjung Hah for his assistance in
coordinating this effort.

We would also like to thank:

* Andrew Hobby

e Andrew Brown

We are also genuinely appreciative of our Book Sprints team:

 Faith Bosworth (facilitator)

* Henrik van Leeuwen and Lennart Wolfert (illustrators)
* Juan Gutierrez (development)

 Julien Taquet (book producer)

* Sue Tearne and Raewyn Whyte (copyeditors)

A Book Sprint (https://www.booksprints.net/) is a strongly facilitated process for col-
laborative authorship of books.

https://www.booksprints.net/

Cisco I0S XE Programmability 9

About this Book

Network engineers are tasked with deploying, operating and monitoring the network as
efficiently, securely and reliably as possible.

As the complexity, scale and other demands (such as security) of the network increase,
there is greater pressure on network engineers to reduce time to implement and mini-
mize the risk of changes.

Automating Device Lifecycle Management with Cisco IOS”XE Programmability

The Cisco 10S® XE network Operating System (OS) is the single OS for enter

prise switching, routing, wired and wireless access.

It provides open, standards-based programmable interfaces to automate network
operations and brings deep visibility into users, applications and device behaviors.

Automating device lifecycle management through IOS XE programmability, as shown in
the following diagram , assists network engineers to reduce business and network
complexity.

Cisco I0S XE Programmability 10

DIAGRAM Lifecycle Management

Device __ = Device
Onboarding Configuration

Context

Intent

B
©

Cisco I0S XE

Device
Monitoring

Device
Optimization

Automation Benefits

Automating device lifecycle management provides the following benefits:

* determinism and greater network insight
* increased business agility and productivity

* lower operational costs

Operational Approaches

This book addresses the various operational approaches to integrate a network element
programmatically with controllers, DevOps tools and direct connection to devices. The
Cisco IO0S XE network OS has been designed to enable all three integration options.

Cisco I0S XE Programmability 11

The features covered in this book are available in IOS XE 16.6 and above.

Intended Audience for this Book

This book provides a summary of the general concepts of programmability supported
by Cisco I0S XE. Many books on programmability assume the reader has a back
ground in software development and understands fundamental concepts about how
software is built. This book does not make these assumptions. Instead, it is primarily
written for network engineers who are new to programmability and wish to under
stand the basic concepts before moving on to advanced topics. For engineers with
some programmability experience, this book will summarize the specific capabilities of
Cisco IOS XE.

Introduction

Introduction 13

Why Programmability Matters

The demands associated with operating enterprise networks today are increasing as
businesses undergo digital transformation and increasingly adopt the Internet of
Things (IoT), mobile, and cloud-based services.

The network has become integral to business operations, and as a result, Information
Technology (IT) teams are being required to:

* deploy new infrastructure and business services faster
* increase network reliability and security

* reduce costs associated with operating the network

In response to these challenges, Cisco has been reinventing the way campus and Wide
Area Networks (WAN) are built, deployed and operated. At the heart of this change is a
move from network operations based on manual changes, to an automated approach. In
short, it is a new paradigm where hardware and software are used to build the network.

The new era of enterprise networks requires an open and flexible network Operating
System (OS) that provides open, standards-based programmable interfaces to automate
network operations and brings deep visibility into user, application, and device
behaviors.

The Cisco I0S XE network OS addresses these needs as the single OS for enterprise
switching, routing, wired and wireless access. It delivers a transformational level of
automation and programmability, reducing business and network complexity.

This book outlines the programmability capabilities in Cisco I0S XE and the benefits
for network engineers.

Introduction 14

Lifecycle of Network Device Operations

Network engineers are tasked with deploying, operating and monitoring the network as
efficiently, securely and reliably as possible.

The first challenge is getting a device onto the network. This is commonly referred to as
"Day 0" device onboarding. The key requirement is to get the device connected with as
little effort as possible. Depending on the operational mode and security requirements,
either a small subset of configuration or a "full" initial configuration will be deployed.

Once the device is provisioned, the configuration of the device needs to be maintained
and upgraded. "Day 1" device configuration management is responsible for the ongoing
configuration. Changes to the configuration need to be reliable, efficient, and auditable.

The next challenge is monitoring the network and measuring performance. "Day 2"
device monitoring provides a view of how the network is operating. Based on this
view, some changes may be required.

Lastly, optimizations to the device are made, such as extensions to the device
capabilities, enhancements to operational robustness, or patches and software up
grades. Referred to as "Day n', this implies an iterative approach, looping back through
Days 0, 1, and 2.

This lifecycle is captured in the diagram below.

Introduction 15

DIAGRAM Device Lifecycle

Intent Context

B
=

Cisco I0S XE

As the complexity, scale, and other demands of the network increase, there is greater
pressure on network engineers to reduce time to implement and minimize the risk of
changes.

Automation offers two distinct benefits:

* Determinism: automated changes provide predictable results while manual
processes do not.

* Speed of change: automated changes are faster as human input is not required.

These two factors are important for improving operational efficiency.

Introduction 16
Use Cases

Some esxanples of the berdits of leveragng Cisco 10S XE prggranmailty are
described below.

DayO-DeploymentAutomation

Network device onboarding is a manual and time-consuming operation, requir
ing highly skilled engineering personnel. Onboarding is tedious and repetitive in na
ture. Network engineers automate the entire provisioning workflow by using the
Cisco IOS XE Zero-Touch Provisioning (ZTP) feature. Automated device onboard
ing with programmable workflows lowers the cost and time required to provision a net
work device, eliminating errors and allowing the use of lower level engineering person
nel and associated resources.

Dayl-CloudServiceProvisioningAutomation

Network devices located in dynamic environments, such as the cloud, need to avoid
being the bottleneck in service provisioning. Rapid and repeatable service delivery is
crucial in this environment. The feature-rich Cisco IOS XE device Application
Pro gramming Interfaces (API) enable efficiently automated configuration changes.

Dayn-Optimization

Events such as link flaps, power supply failure, and configuration drift are difficult to
act on in a consistent manner. The Cisco IOS XE Guest Shell feature assists IT
organizations to develop an entirely new suite of applications that help with existing
operational challenges. Python scripts running on Guest Shell can trigger alerts to IT
Network Operation Centers (NOC) when new critical events are detected,
automatically create service tickets, and mitigate the issues by dynamically applying
configurations.

Introduction 17

For example, oil and gas producers have many remote locations where Internet or WAN
access bandwidth is very limited and expensive. Data collected from drilling operations
needs to be centralized in a corporate data center. Cisco I0S XE Application Hosting
provides a solution to host the compression applications at the edge of the network so
the data can be compressed to consume less bandwidth.

Introduction 18

Operational Approaches

There are three operational approaches to programmatically integrate a network
element:

 via a controller such as Cisco's Digital Network Architecture Center (DNA Center)
* via a configuration management tool (i.e. DevOps)

 directly to the device

Each comes with various benefits and trade-offs. However, the Cisco IOS XE network
OS has been designed to enable all three integration options.

Controller Integration
Through controller integration, programmatic control of the underlying network
elements is abstracted via an intermediary to simplify automation efforts.

Controllers are purpose-built, exposing only a subset of the underlying network's
element features and functionality, as the underlying capabilities are abstracted
through the controller. Controllers usually expose Representational State Transfer
(REST) APIs for northbound integration. Their southbound interfaces may not be
based on open protocols, potentially limiting integration with Cisco IOS XE's
standards-based network configuration interfaces.

Some controllers such as Cisco DNA Center are designed to provide closed-loop
feedback, allowing the controller to dynamically adjust network configurations
based on changing network context.

Introduction

DIAGRAM Controller Integration to Cisco I0S XE Devices

REST API

!

©

Controller

— (Il \
— (1] /

- -
L IS - - -
Switch Router Wireless Switch

DIAGRAM Controller Configuration Change Workflow

Deploy

Validate

19

Introduction 20

Key considerations when integrating with controllers include support for:

 atomic network configurations: confirm that the intended configuration has been
applied to all network elements without error

 auditing and managing configuration drifts: identify when a network element's
configuration has changed from its intended state

¢ limiting and blocking direct device configuration changes: prevent configuration
drift

For more information, see the chapter on Controllers.

Configuration Management Tool Integration

Configuration Management tools enable DevOps workflows and access to the full fea-
ture set of the device. In a DevOps workflow configuration, changes are "modeled" and
run through comprehensive validation in a simulation environment prior to deploy-
ment.

Configuration management tools are used not only to manage network devices but also
to manage compute and application resources. Their input is in the form of a simplified
data model to provide human readability. Their southbound interfaces may not
be based on open protocols, and this could limit integration with Cisco IOS XE's
standards-based network configuration interfaces.

Configuration management tools do not provide closed-loop feedback. Instead,
configuration changes are extensively tested and validated in a simulation environment
before being pushed into production. Validation testing and configuration pushes are
orchestrated through Continuous Integration (CI) toolchains.

Introduction 21

DIAGRAM Configuration Management Tool Integration to Cisco I0S XE Devices

Data Model

Template
and Inventory

!

Tool Chain
Orchestration

/

&
- il
© [
Ry — (11l

Switch Router Wireless Switch

Key considerations when integrating via DevOps are similar to integrating via a
controller, specifically support for:

* atomic configurations
* auditing and managing configuration drifts

* limiting and blocking direct device configuration changes

For more information see the chapter on DevOps and NetDevOps.

Introduction 22

DIAGRAM DevOps Configuration Change Workflow

m - Deploy -

Direct Integration

Direct integration, as the name implies, involves a direct programmatic control of each
network element. While manageable with a small number of devices, this approach is
more challenging in networks with more devices.

DIAGRAM Direct Integration to Cisco I0S XE Devices

-
-

B0
& i
© i
) —— (Il

Switch Router Wireless Switch

Cisco IOS XE devices support RFC 6241 NETCONF and RFC 8040 RESTCONF network
configuration protocols, providing the option of XML-based or JSON-based integration.

With direct integration, configuration changes are made on a single set of devices, then
replicated across the entire network.

Direct integration is helpful for monitoring network devices and ensuring the changes
made did not create undesired behaviors.

Introduction 23

Direct integration is helpful for monitoring network devices and ensuring the changes
made did not create undesired behaviors.

DIAGRAM Direct Integration Configuration Change Workflow

Deploy #
=

Validate

'
!
[

Key considerations with direct integration include:

* scale: managing changes to all applicable devices

* change validation: ensuring changes made do not have undesired effects

Introduction 24

Next Steps

Automated interaction with the infrastructure is required, no matter which operational
approach is chosen, either controller, DevOps or direct.

Cisco IOS XE is ar chitected from the ground up to auto mate all phases of the
operational lifecycle, from Day O device onboarding, through configuration and

monitoring, to optimization.

The next chapters map to each phase of the device lifecycle. The last two chapters of
the book cover operational approaches based on Controllers and DevOps tools.

DIAGRAM Device Lifecycle Phases

Zero-Touch Device Device YANG Data Models
Provisioning Onboarding Configuration Network Configuration
Protocols
Intent Context
Cisco I0S XE
Guest Shell
Application Hosting Device Device Telemetry

Python Scripting Optimization Monitoring

General Concepts

General Concepts 26

Cisco I0S XE

Cisco IOS XE is an open and flexible network operating system optimized for the new
era of intent-based enterprise networks.

Recommended Release

The features covered in this book are available in Cisco IOS XE 16.6 and above.

Cisco IOSXE History

Cisco Systems was founded in 1984, long before the Internet as we know it existed.
Since then, Cisco's hardware platforms and network operating systems have evolved.
Cisco's original Internetwork Operating System (IOS) formed the backbone of computer
networks worldwide for many years. Cisco IOS XE represents an evolution of Cisco's
operating system, providing a solid foundation for modern programmable interfaces
and data models.

DIAGRAM Cisco I0S XE Evolution

@ 0S 6.0 a Routing Platforms

released 10S XE 3.x

10S 9.x 10S XE 3.x
Switching
Platforms

10S XE 16.x

founded

Cisco
‘

General Concepts 27

CiscoIOS XE Architecture

The Cisco 10S XE architecture allows feature components to run as subsystems over
common infrastructure, module drivers, and kernel. Flexibility is given to feature
components such as Border Gateway Protocol (BGP). The architecture supports
Linux Containers (LXC) and Virtual Machines (VM) to be securely hosted on the net
work device. IOS XE provides a system database for both configuration and operational
data state accessible through programmatic interfaces.

DIAGRAM Cisco I0S XE Architecture

Hosted Apps

Systems

Common Infra

Module Drivers

10S XE DB

Kernel

General Concepts 28

What is Programmability?

Programmability Overview

Routers, switches, firewalls, and wireless controllers have historically been managed
directly by humans. Management interfaces for interacting with these devices are
human-oriented and are not designed or intended for machine consumption.
Configurations are applied to these devices via the Command-line Interface (CLI) or via
a Graphical User Interface (GUI). It is possible to automate these interfaces but because
they are designed for humans, machine automation is highly inefficient.

Programmability is the capability to configure and manage networking devices using
software protocols. Unlike human-oriented interfaces such as CLI and GUIs,
programmable interfaces are designed specifically to be consumed by machines. For
the pur-poses of this book, programmability also refers to capabilities that are
supported on Cisco I0S XE devices to automate interactions with network devices
and technologies including Guest Shell and Application Hosting. These machine
interfaces allow rapid device configuration, easing the burden of network
administration to enable new ways for network operators to obtain operational data,
which makes analyzing network behavior easier.

CLI to Programmability Transition

Programmability will not be an immediate replacement for CLI-based and GUI-based
management of network devices. Programmability will automate many of the more
tedious and error-prone tasks typically done via CLI. Using programmability to manage
a network requires a period of learning and transition on the part of network operators.
Managing a network with programmable interfaces requires a significantly different
approach than traditional CLI.

The best way to begin this transition is to identify a few specific tasks or processes
that can be automated. For example, for a network engineer applying the same
configuration to a large number of devices, using model-based configuration is easier
then box-by-box CLI. An operational task that is performed repeatedly through out

General Concepts 29

the day by Network Operation Center (NOC) engineers is more easily per formed by a
script. The Cisco I0S XE native data models are aligned with CLI, making them easily
understood by experienced network engineers. Tools making the CLI to program
mability transition easier are referenced throughout this book.

General Concepts 30

Application Programming Interfaces (APIs)

An Application Programming Interface (API) is a set of routines, protocols, and tools
that integrate software components. A Network API provides automation and program-
mability which connects software to network devices. A network element is considered
programmable if it exposes an API that can be used by software components to pro-
gram the element.

These APIs may access configuration (writable) data or operational (read-only) data. The
interfaces can be standards-based or proprietary.

An API supported by a programmable device needs to be documented correctly, so the
consumer of the API can use it appropriately.

General Concepts 31

Programming Languages

Network engineers are looking for human-friendly scripting languages with adequate
related libraries. Python, Ruby and Go are the most commonly used. Python is the most
popular of the scripting languages for network automation.

Python
Python is a user-friendly interpreted (executed line-by-line) high-level scripting lan-

guage with a large and comprehensive set of libraries. Python interpreters are available
for all major operating systems.

Ruby

Ruby is a dynamic, open source scripting language with a focus on simplicity and pro-
ductivity.

Go

Go is an open source programming language created by Google, and is behind a num-
ber of cloud-centric projects.

General Concepts 32

Structured Data

Structured data is the key to building programmable interfaces which follow consistent,
predictable, and well-defined patterns. The following is an example of unstructured
data:

(John 415555121225 Main Street]

This unstructured data contains different elements that are not clearly delineated, and
it is not clear where each element begins and ends. While a human may be able to rec-
ognize and parse this data, a machine will not.

Below is an example of the same data in a structured format:

Name: John
Phone: 415-555-1212
Address: 25 Main Street

Each line consists of a key-value pair delineated by a colon. In the example above,
"Phone:" is the key and "415-555-1212" is the value.

Are CLI Outputs Structured Data?

At first glance, it would appear that CLI outputs are structured, as they seem to be pre-
sented with identifying keys. The following example of the CLI command sh int €1/10
output:

General Concepts 33

(N
switch1#sh int e1/10

Ethernet1/10 is up
Hardware: 1000/10000 Ethernet, address: 0005.73d0.9331 (bia 0005.73d0.9331)
Description: To UCS-11
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Switchport monitor is off
EtherType is 0x8100
Last link flapped 8week(s) 2day(s)
Last clearing of "show interface" counters 1d02h
30 seconds input rate 944 bits/sec, 118 bytes/sec, 0 packets/sec
30 seconds output rate 3110376 bits/sec, 388797 bytes/sec, 5221 packets/sec

While the data is nicely formatted with spacing and indentation, there is no obvious de-
limiter for key-value pairs. For example, the Media Access Control (MAC) address has a
key called "address:" with the associated value. However, apart from "Description:" there
is no other obvious key-value pair.

Structured data ensures that key-value pairs and their hierarchy are easily identifiable.
YANG data models are an example of a specification for structured data. These data
models can be used to generate XML-formatted and JSON-formatted payloads which
apply to configuration and operational data (as will be described in the following sec-
tions of this book).

General Concepts 34

Data Encoding Formats

Configuration and operational data are represented as key-value pairs. The key identi-
fies what the data is, while the value is the actual data. For example, when configuring a
Layer 3 interface with an IP address of 10.10.10.10, "IP address" is the key, while "10.10.10.
10" is the value.

It is important that both the client and the server understand the encoding format of
the data. XML, JSON and YAML are commonly used encoding formats for representing
the configuration and operational data on a device.

eXtensible Markup Language (XML)

XML is markup language for describing data in a way that is both human and machine-
readable. Much like HTML, XML uses tags to identify data. Tags are enclosed by angle
brackets (" <>") and the tags (key) surround the data (value)

JavaScript Object Notation (JSON)

JSON is an encoding format originally developed for JavaScript. JSON was intended to
provide a human and machine-readable encoding format that can be used as a replace-
ment for XML. JSON uses a key-value representation with a ":" as a delimiter instead of
the opening and closing tags used by XML.

YAML Ain't Markup Language (YAML)

YAML is a human-readable data-serialization language. It is commonly used for config-
uration files but could be used in many applications where data is being stored or
transmitted.

Note that in the XML example, the val-
ues, such as "eth0Q", are enclosed by an
opening and closing tag. The closing tag
is denoted by a forward slash. XML also
can show hierarchy by nesting tags.

In the JSON example, there are no tags.
The key-value pairs are enclosed by
quotation marks (" "), and are separated
by a colon (:). JSON also can show hier-
archy by using parentheses.

In the YAML example, again there are
no tags. The key-value pairs are sepa-
rated by a colon (:). YAML represents
the hierarchy by using spaces and car-
riage returns, unlike XML and JSON.

It is important to note that XML, JSON,
and YAML serve the same purpose.
They are simply different ways of doing
the same thing. The encoding format is
defined by the protocol.

General Concepts

DIAGRAM XML, JSON and YAML

Comparison

XML

<tag>value</tag>

<interfaces xmins:="[...Jyang:ietf-interfaces”>
<interface>

<name>eth0</name>
<description>Configured by NETCONF</description>
</interface>
</interfaces>

JSON

“key”: “value”

{
“ietf-interfaces:interfaces” : {
{
“name” : “eth0”,
“description”: “Configured by NETCONF”

YAML

“key”: “value”

ietf-interfaces:interfaces:interfaces:
interface:
name: ethO
description: Configured by NETCONF

35

Day O Device
Onboarding

Day 0 Device Onboarding 37

Introduction

Automated device onboarding ensures that network devices are put into service using
pre-defined, managed configurations which are applied programmatically. In a
traditional setting, onboarding is a manual process carried out by skilled individuals.
Network engineers would go on site, connect, and configure the device. The
process is quite manual and error-prone.

With automated device onboarding, individuals with no networking knowledge or
expertise can install the physical device. Initial configurations are deployed program
automatically, based on pre-defined business intent - reducing costs, avoiding human
errors and improving business agility. This provides a simple, secure, and integrated
option to ease new branch or campus rollouts.

Cisco I0S XE supports the following capabilities to automate device onboarding: Zero-
Touch Provisioning (ZTP), Cisco Network Plug and Play (PnP), and Pre-Boot
Execution Envi- ronment (PXE).

Day 0 Device Onboarding 38

Boot Modes

The IOS XE boot mode is based on a Read-Only Memory Monitor (ROMmon) setting.

DIAGRAM Cisco I0S XE Boot Modes

Option 67 ZTP Mode

Device (Default) R DHCP

Response

Option 43 PNP Mode

Network Boot

Power Server
. ROMMON i i
Applied to iPXE Timeout Detected

i Setting e
Device within Timeout

Period

‘ l Yes
iPXE forever N PXE Boot

Device Mode

By default, ROMmon is set to "device" which boots using the local image.

When the power is applied to a Cisco IOS XE network device, the device boots
from the hosted operating system. If there is no configuration file present, the device
uses Dy- namic Host Control Protocol (DHCP) to determine whether the device should
enter ZTP or Network PNP automated provisioning mode, based on options in the
DHCP offer. The DHCP options available for these modes are 67 and 43.

Day 0 Device Onboarding 39

Zero-Touch Provisioning (ZTP) Mode

ZTP helps to automate the process of installing or upgrading software images and
installing configuration files on Cisco devices that are deployed in a network for the first
time. When a device boots up and does not find the startup configuration, the device
enters the Zero-Touch Provisioning mode. The device locates a DHCP server, boot-
straps itself with its interface IP address, gateway, and Domain Name System (DNS)
server IP address, and enables Guest Shell. The device then obtains the IP address or
URL of an HTTP or TFTP server through DHCP Option 67 and downloads the Python
script to configure the device.

Guest Shell provides the environment for the Python script to run. Guest Shell executes
the downloaded Python script which applies an initial configuration to the device.

Zero-Touch Provisioning provides an open and flexible device onboarding workflow.
The network operator is responsible for all aspects of this workflow, including building,
testing and validating the Python script as well as hosting it on an appropriate server.

Network Plug and Play (PnP) Mode

Upon receiving DHCP Option 43, the device initiates a connection to the PnP server
such as DNA Center. This triggers a pre-defined workflow that can install a certificate,
upgrade the Cisco I0S XE software version, and apply the initial configuration to the
device.

The PnP server can pre-provision the network device: Device rules are created in
advance to map the serial number of the device to the appropriate workflow. The
workflow contains elements such as IOS XE version, network configuration, and exec
commands to run on the device.

If there is no matching rule for the network device on PnP, the device will appear as an
"unclaimed". The operator can then assign the network device to a workflow and
continue the provisioning process.

Preboot eXecution Environment (PXE) Mode

When the device is in PXE mode, it boots from an image hosted on an external server.
The PXE server is automatically detected by the Cisco IOS XE device, using the standard
PXE interface. The IOS XE image is then downloaded using HTTP, FTP, or TFTP proto
cols.

Day 0 Device Onboarding 40

There are two PXE boot options:
» PXE Timeout: If the PXE process fails and the timeout expires, the default device
boot is activated.

* PXEForever: The Cisco IOS XE device will keep sending DHCP requests forever
until it receives a DHCP response, without falling back to the default device boot.

Day O Device Onboarding 41

Zero-Touch Provisioning (ZTP) Scenarios

The most common scenarios for ZTP are:

* QOut-of-the-Box: A new device is deployed on the network and needs a
configuration file

 Return Material Authorization (RMA): A device has failed and is being replaced by
a similar device, the configuration file of the failed device needs to be applied to
the replacement

* Adds/moves/changes: Before a device is redeployed, it needs to be reset to
factory defaults, which moves it to the "Out-of-the-Box" mode

As mentioned earlier, the ZTP process only begins if the device has no configuration.
The write erase command is used to remove the configuration on a device so the ZTP
process can begin again.

Day 0 Device Onboarding 42

Basic ZTP Workflow

In the simplest scenario, the device gets an IP address, contacts the HTTP/TFTP server,
and downloads a Python script. The Python script will configure the device with a set of
credentials or configure an authentication server, then the device can be managed by
other tools.

DIAGRAM Basic ZTP Workflow with HTTP Server

©

@ Option 67: http://server/script.py
DHCP
9 Python script
e run locally

Python script

cli.cli(")...
HTTP cli.configure()

©)

In the diagram above, the first step is to get an IP address via DHCP. The DHCP offer
will also include option 67, pointing to a Python script on an HTTP server. The network
device will download the Python script and execute these commands locally on Guest
Shell.

A basic Python configuration script appears below. This script sets the hostname, the
username and password, and the enable secret which allows local login on the Virtual

Day 0 Device Onboarding 43

Terminal Line (VTY) ports. A remote user can then connect to the device to manage it.
Since the CLI Python library has a direct connection to the device, no authentication is
required. Other methods besides CLI are also available.

/from cli import configure, execute A
USER="cisco"

PASSWORD="cisco"

ENABLE="cisco"

def base_config():
configure(['hostname ztp-server'])
configure(['username {} privilege 15 password {}'.format(USER,PASSWORD)])
configure(['enable secret {}'.format(ENABLE)])
configure(['line vty 0 4', 'login local'])
execute('write memory')

base_config()
N

The device configuration is saved to Non-Volatile Random-Access Memory (NVRAM)
using the write memory command to ensure persistence. If this step is omitted and the
device reboots, it will go back to the ZTP process. There are some scenarios where this
behavior is desirable, as will be seen in the advanced section.

Common Issues

These are common issues encountered when working with ZTP:

* Some IOS XE devices only support ZTP on the management port

* Access to the TFTP or HTTP ports on the server should be permitted from the
network device

Day 0 Device Onboarding 44

Advanced ZTP Workflows

Dynamic Configuration Use Case

The simple scenario referenced earlier used a simple static configuration file. Often
there are parts of the configuration that are dynamic and include variables. The Python
script can use a REST API call to obtain the dynamic variables. A common scenario is
setting the management interface, netmask, and gateway.

The Python script calls a REST API, passing the serial number as a parameter. The REST
server uses the device serial number to look up a set of pre-defined parameters such as
IP address, netmask, and gateway. The Python script uses these variables in the
configuration applied to the device.

Coding the REST server is outside the scope of this book. Many open source
frameworks are available to build simple APIs.

This workflow could be extended further by passing a link to a Jinja template to
populate local variables from the device, such as the number of interfaces on a switch.
Jinja is one of many popular templating languages that can be used for this purpose.
These templates could be stored in a git repository with version control.

Day 0 Device Onboarding 45

DIAGRAM Advanced ZTP Workflow with REST APls

Zero-Touch Provision Oo

®

P GET /device?serial=FO0A
Serial Number (SN) FOOA ? REST API Server

®

{

“serial”: “FOOA”,
“ip”: “10.10.10.112”,
@ “netmask”: “255.255.255.192”,
Python script run locally “gw”: “10.10.10.65"

}

IP/netmask/gw can be used to configure the management interface on the device
Other attributes can be passed (such as configuration file)

Stacking Use Case

Switch stacking can create challenges for Day O deployments as the order in which
switch members appear is not deterministic. Ideally, switch numbering should be
logically and physically aligned. For example switch 1is the top of the stack while switch
2 is underneath. The interface configurations on a switch are linked to the logical
stack member number. For example, interface Gigabit Ethernetl/0/24 is on logical
switch 1. This is particularly important for uplinks as they are not normally spread
across every switch in the stack.

The dynamic configuration above can be extended to include a "renumbering" phase.
The REST API call includes all of the serial numbers in the stack and returns the serial
number of the device that should be the top of the stack, based on a predefined rule.
The Python script will then issue a renumber stack command if the serial number

Day 0 Device Onboarding

returned is not the top of stack switch. As the configuration was not saved, at this
point, the stack will be rebooted and the ZTP process will begin again.

The stack is now numbered correctly, and the API will return the same response as
before. There is no need to renumber or reboot and the ZTP process completes and

saves the configuration file.

DIAGRAM Advanced ZTP Workflow with Stacking

46

Phase 1 Phase 2
GET /device?serial=F00A&serial=F00D&serial=FO0G @
Zero-Touch Provisioning
© =
-
Zero-Touch Provisioning @
REST API Server Provision Configuration

@ (Python script)

Switch Stack : (@ Switch Stack
“serial”: “FO0A”,
#3 -y “ip”: “10.10.10.112”, #1 -y
SN:FOOA [“netmask”: “255.255.255.192”, SN:FOOA [Raes)
“gw”: “10.10.10.65”
‘-_. } #2 (—_.
SN:FOOD [Ra®) SN:FOOD Ry
#2 -y #3 “y
SN:FO0G SN:F00G
Renumber/reboot

(Python script)

The ZTP process can be as simple or as sophisticated as needed. There is complete
flexibility of the workflow and the location where state information is obtained and
stored.

Day 0 Device Onboarding 47

Considerations

Some aspects to consider when building a ZTP workflow include:

 Existing configuration: Ensure that the device is reset to factory defaults by
following the device's guideline to restart the ZTP process.

 Front panel ports: Check whether the device supports ZTP on the front panel or
the management port.

 Testing/validation: Extra work is required up front to test and validate the
workflow across different deployment scenarios.

* Wide Area Network (WAN): Consider the location of images if upgrading over the
WAN.

* Security: There are considerations around security and device certificate
management and for the encrypted communications.

Day 0 Device Onboarding ~ 48

Next Steps

ZTP is a powerful "Day 0" automation tool which can bring up hundreds of networking
devices in minutes.

For additional examples, visit https:/github.com /aradfordi23,/ZTP-samples for sample
ZTP Python scripts.

Also refer to:

https: //cs.co/ztp_ provisioning

https: //developer.cisco.com /docs /ios-xe /#day-zero-provisioning-quick-start-guide

https: //developer.cisco.com /site /standard-network-devices

http://github.com/aradford123/ZTP-samples
https://cs.co/ztp_provisioning
https://developer.cisco.com/docs/ios-xe/#day-zero-provisioning-quick-start-guide
https://developer.cisco.com/site/standard-network-devices

YANG

Intent Context

YANG 50

Overview

What is a Data Model?

A data model is a description of how data must be encoded for information exchange
between two entities.

A data model can be created for any information exchange process and is based on key-
value pairs.

For example, to represent an interface on a switch through a data model, the model
might be structured to include:

 Type: selection from a pre-defined list (for example Gigabit Ethernet IEEE 802.3z,
FastEthernet IEEE 802.3, etc)
* Description: free-form text string

 Status: Enabled /Disabled (Boolean)

In this example, the bolded items are referred to as "keys" and the "value" follows.

The standard YANG data modeling language imposes a defined structure for generating
YANG data models to provide vendor-agnostic approaches.

YANG 51

DIAGRAM YANG Data Models

10S XE — YANG Data Models

Configuration and Operation

Data Models

YANG Data Model History

SNMP MIBs and CLIs were not effective as programmatic interfaces. The NETwork
CONFiguration Management Protocol (NETCONF), RFC 4741, was standardized in 2006
to address this need. The original NETCONF standard did not specify a data schema,
resulting in inconsistency.

The YANG (Yet Another Next Generation) data modeling language and schema were
introduced by the IETF as RFC 6020 to address this problem. Subsequently, the NET
CONTF standard was updated to RFC 6241 to explicitly call out the use of YANG data
models.

DIAGRAM Network Configuration Management Standards Evolution

NETCONF 1.0 NETCONF 1.1 RESTCONF
RFC 4741 RFC 6241 RFC 8040

2006 2010 2011 2017

YANG 1.0 YANG 1.1
RFC 6020 RFC 7950

YANG 92

YANG Data Model Summary

YANG is a text-based data modeling language designed for use with any network
management protocol including NETCONF and REST Configuration (RESTCONF).

It is a modeling language for networking data that was recently updated in RFC 7950
(YANG version 1.1).

YANG data models are composed of modules which represent individual YANG files.
The following diagram provides a logical representation of the structure of a YANG
module.

DIAGRAM YANG Data Model Structure

Header Information — Unique module name
Import other modules
Imports and Include
Type Definitions — New data type definitions
Configuration and .
9 . — Data structure definition
Operational Data
. . . Remote Procedure Call
Action and Notification < . . .
extensions and notifications

YANG data models may be used to represent both configuration and operational data,
in addition to RPCs and notifications.

YANG 53

The following table describes the differences between MIBs and YANG modules.

IETF Standard
Transport Protocols

Encoding Schema
Human Readable

Vendor-Specific
Definitions

Vendor-Agnostic
Definitions

Automated Capabilities
Exchange

Configuration
Management

State and Operational
Data

TABLE

MiB

Yes
SNMP

BER
No

Yes

Yes

No

Rarely

SNMP Get
SNMP Traps

MIBS vs YANG Data Models

YANG
Yes

NETCONF, RESTCONF,
gRPC

XML, JSON, GPB

Yes

Yes

Yes

Yes

Yes

Ad hoc queries
Dynamic and Configured
Telemetry Subscriptions

YANG 54

YANG Concepts

YANG modules are hierarchical tree structures for organizing data. Some of the main
concepts are highlighted in this section.

Module Constructs

Modules usually root from one or more containers, and the schema tree extends to
another level of data structures. A branch ends with leaves and/or leaf-lists. There
are four major statements in a YANG module:

* Container: A grouping of other statements DIAGRAM Major YANG Constructs
(has no "Value")

* List: Multiple records containing at least
one Leaf "Key" and an arbitrary hierarchy Comtamer

of other statements . . .

* Leaf: Single key/value pair Container

Container

 Leaf-list: Multiple key/values pair of the

same type
Container
YANG Data Types Container

The most commonly used data types supported
by YANG data models are:

Container

 Integer: signed and unsigned integers,
ranging from 8-64bits

* Decimal64: decimal number, represented
in 64bits

¢ String: human-readable text

e Boolean: "true" or "false" value

YANG 55

* Enumeration: values from a set of assigned names

* Leafref: references a particular leaf in the data tree

For network devices, some commonly used data types such as IPv4-address and IPv6-
address are defined in RFC 6991 Common YANG data types.

Module Dependencies

Most YANG module files are not self-contained to promote module reusability. Modules
can "import" or "include" other modules and sub-modules as needed. The following
diagram illustrates a conceptual view of "import" and "include" statements.

DIAGRAM YANG Import and Include Statements

Import
Module A Module B

Submodule A1 Submodule B1
3
c
o
@

Submodule A2 Submodule B2

Namespaces

A namespace is a mechanism to resolve ambiguity where attributes that have identical
names. An example of a namespace is:

[http://openconfig.net/yang/network-instance]

Each module has a unique namespace and a unique prefix. Because there are depen-
dencies among modules, a namespace may change in the data of a module.

YANG 56

Module Augmentations and Deviations

When a YANG module is defined by a standards body such as the IETF, IEEE or Open-
Config (OC), vendors have the option to augment or deviate.

* Augment: An "augment" statement is the means for a module or a sub-module to
add nodes to a schema tree defined in another module.

* Deviate: A "deviate" statement defines elements that are different than the
standard.

Below is an example of an IOS XE implementation of the OpenConfig Network Instance
YANG data model which deviates from the published definition:

s N
module cisco-xe-openconfig-network-instance-deviation {

namespace "http://cisco.com/ns/yang/cisco-xe-openconfig-network-instance-
deviation";
prefix oc-netinst-devs;
import openconfig-network-instance {
prefix oc-netinst;
}
import Cisco-I0S-XE-types {
prefix ios-types;
¥

deviation /oc-netinst:network-instances/oc-netinst:network-instance/oc-
netinst:config/oc-netinst:route-distinguisher {
deviate replace {
type ios-types:cisco-route-distinguisher;
}
description "Replace OC type with Cisco type that supports expanded range of
values";
+

}
. J

The specific container "fdb" in the example above is not supported in the Cisco I0S XE
implementation.

Visualization of a YANG Data Model

YANG

57

A YANG module is best understood when visualized as a tree structure. The example
below shows the "openconfig-interfaces" module:

-

module: openconfig-interfaces)
+--rw interfaces
+--rw interface* [name]
+--rw name -> ../config/name
+--rw config
| +--rw name? string
| +--rw type identityref
| +--rw mtu? uint16
| +--rw description? string
| +--rw enabled? boolean
| +--rw oc-if-cisco:bandwidth
| +--rw oc-if-cisco:kilobits? uint32
+--ro state
| +--ro name? string
| +--ro type identityref
| +--ro mtu? uint16
| +--ro description? string
| +--ro enabled? boolean
| +--ro ifindex? uint32
| +--ro admin-status enumeration
| +--ro oper-status enumeration
| +--ro last-change? oc-types:timeticks64
\ J

YANG 58

YANG Native vs Open Data Models

Cisco I0S XE supports two categories of YANG data models: native and open.

Native Data Models

Cisco IOS XE native data models specific to IOS XE are not interoperable with other
platforms. They closely mirror the structure of the IOS XE Command-line Interface
(CLI), which makes them more familiar to experienced users of the IOS XE. The key
benefit of native data models is the breadth of feature coverage.

Examples include:

 Cisco-10S-XE-interfaces.yang: A native module for configuring interface
parameters such as IP address, description, and speed. It also contains
operational data about interfaces, such as admin state and InOctets.

* Cisco-10S-XE-ospfiyang: A native module for configuring Open Shortest Path
First (OSPF) routing processes.

Open Data Models

Open data models provide a common interface across multiple platforms. Cisco I0S
XE supports a number of open data models from both the IETF and OpenConfig
standards bodies.

IETF

The Internet Engineering Task Force (IETF) defines many of the standards needed for
the operation of networks, including the IP protocol. IETF has released several open
data models which are supported by Cisco I0S XE.

Some of the IETF YANG modules supported by IOS XE include:

YANG 59

¢ ietf-interfaces.yang: IETF module for configuring interface parameters such as IP
address, description, speed. It also contains operational data about interfaces,
such as admin state and InOctets.

¢ ietf-ospfiyang: IETF module for configuring OSPF routing processes.

OpenConfig

OpenConfig (OC) is a consortium of network operators created to define standards
intended to make networks more open and programmable. The OpenConfig
standards body consists primarily of network operators. As OpenConfig is not a formal
standards body, OpenConfig data models change rapidly.

Some of the OpenConfig modules supported by Cisco IOS XE include:

 openconfig-interfaces.yang: OpenConfig module for configuring interface
parameters such as IP address, description, speed. It also contains operational
data about interfaces, such as admin state and InOctets.

 openconfig-ospfv2.yang: OpenConfig module for configuring OSPF routing
processes

Using Different Model Types

Regardless of which data model is used, the resulting configuration applied to the
device is the same. For example, the XML below was generated based on the Cisco IOS
XE native data model for configuring interfaces:

s N
<native xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-native">

<interface>
<GigabitEthernet>
<name>1/0/24</name>
<description>Configured by NETCONF!</description>
</GigabitEthernet>
</interface>
</native>
-

Note the structure of the data model closely follows the structure of the I0S XE CLI
Now compare the equivalent XML generated from the IETF data model:

YANG 60

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
<interface>
<name>GigabitEthernet 1/0/24</name>
<description>Configured by NETCONF!</description>
</interface>
</interfaces>

There are some obvious differences between these two models. For example, in the
native model, the name of the interface is "1/0 /24" whereas in the IETF model the
interface is "GigabitEthernet 1/0/24" Despite these differences, I0S XE will
render the YANG-modeled data in exactly the same way, as can be seen by examining
the CLI after applying the change:

switch#show run interface g1/0/24
interface GigabitEthernet 1/0/24
description Configured by NETCONF!

The native models provided by Cisco 10S XE will support a far wider variety of features
than an open model. Some features are vendor-specific or proprietary, and will not be
mod- eled by standards bodies. For example, Enhanced Interior Gateway Routing
Protocol (EIGRP) and Cisco Discovery Protocol (CDP) are Cisco features and it is
unlikely IETF or OpenConfig would release a model supporting them. Additionally,
standards bodies are not likely to support all of the given options under a particular
model. For example, while IETF and OpenConfig both have data models covering in
terface configuration, they will not support every parameter that is configurable
under an IOS XE interface. Open models tend to support the lowest common
denominator among vendors.

Standards-based YANG modules, therefore, are the best choice in multi-platform or
multi-vendor environments where it would be inconvenient to base configurations on a
number of different device models. By using a single and consistent model structure,
the same configuration can be easily used on disparate platforms. Conversely, native
models are more suited to homogeneous environments which largely consist of a single
platform and vendor. An alternative approach is to use open models for more general
configuration, but then use native models to tweak specific features.

YANG 61

YANG Data Model Highlights

SNMP MIBs

Cisco I0S XE supports several operational YANG data models which were converted
directly from SNMP MIBs. These data models mirror the SNMP MIB exactly and were
created to ease migration from SNMP to YANG-based management.

For example, I0S XE supports a MIB for reading Cisco Discovery Protocol (CDP) data via
SNMP. This MIB is called CISCO-CDP-MIB. I0S XE also has an equivalent YANG data
model called CISCO-CDP-MIB.yang. This data model follows the MIB structure exactly.
An example of the YANG tree for a MIB follows:

s N
+--ro cdpInterfaceTable

| +--ro cdpInterfaceEntry* [cdpInterfaceIfIndex]

| +--ro cdpInterfaceIfIndex int32

| +--ro cdpInterfaceEnable? boolean

| o--ro cdpInterfaceMessageInterval? int32

| +--ro cdpInterfaceGroup? int32

| +--ro cdpInterfacePort? int32
\| +--ro cdpInterfaceName? snmpv2-tc:DisplayString)

NETCONTF Access Control Model

Data model-based Authentication, Authorization and Accounting (AAA) is based on RFC
6536's NETCONF Access Control Model (NACM). Using data model-based AAA, the user
defines different privilege levels and sets rules for each level. Four different types of ac-
cess control are permitted using data model-based AAA:

* Protocol operations: restricts users to only specific RPC or operations. For
example, if privilege 5 is limited to get-config operations, and a user logged in at
level 5 attempts an edit-config operation, it will fail.

* Module name: restricts users to only specific YANG modules. For example, if
privilege 5 is limited to the Cisco-IOS-XE-native data model, and a user logged in
at level 5 attempts to access the IETF-interfaces module, the operation will fail.

YANG 62

» Data node: restricts users to only specific nodes in a YANG tree. For example, if
privilege 5 is limited to only the /native/hostname node, and a user logged in at
level 5 attempts to write a VRF config, the operation will fail.

 Notifications: restricts users to receive only specific notifications.

NACM allows the user to define 15 privilege levels, with 15 being an administrative user.
Cisco IOS XE has 15 user privilege levels which correspond to the NACM levels. How
ever, the rules defined for NACM are independent of AAA rules for normal user
authentication of I0S XE.

A NETCONF user authenticates into the device using standard AAA. The device then
forwards the authentication and authorization request to a RADIUS server. Based on
the user credentials, the RADIUS server will return the correct authorization level to
the device, which will then enforce the rules appropriate to the authentication level of
the user.

YANG Relationship to XML and JSON

A common source of confusion is the relationship between YANG data models and en-
coding formats such as XML /JSON.

YANG used to represent the data on a device in an abstract way, but does not contain
actual device configuration or operational data; it simply shows the structure. In other
words, YANG forms the template from which XML /JSON data is generated and does
not represent the actual data.

For example, consider a router interface that has an IP address of 10.10.10.10 and de-
scription of "Configured by Python". The YANG module for interfaces describes the data
that can be associated with an interface. The interface may have an IP address format-
ted as four octets in dotted decimal notation as well as a description which is a string.
The YANG module does not specify the IP address 10.10.10.10 or the description.

When an application reads the configuration of a network device, the device sends an
XML-formatted or JSON-formatted version depending on the transport protocol in use.

YANG 63

The structure of the XML or JSON is formatted according to the structure defined in
the YANG data model.

DIAGRAM YANG Relationship to XML and JSON

container interfaces{
list interface{
key “name”;
leaf name {...}
leaf description {...}
}
}

YANG Model

Gig 1/0/1
“configured by NETCONF”

Data

<name>GigabitEthernet1/0/1</name>
<description>configured by NETCONF </description>

XML

“name”: “GigabitEthernet1/0/1”
“description”:“configured by NETCONF”

JSON

YANG 64

YANG Tools

There are many tools available to interact with the YANG modules. Some commonly
used tools and their applications are described below.

The YANG Development Kit (YDK) and YDK-Py

The YANG Development Kit (YDK) facilitates network programmability using data mod-
els. YDK can generate APIs in a variety of programming languages using YANG modules.
These APIs can then be used to simplify the implementation of applications for network
automation.

YDK has two main components: an API generator (YDK-gen) and a set of generated
APIs. YDK-gen takes YANG modules as input and produces APIs that mirror the struc-
ture of the modules. For the generated APIs, Python (YDK-Py), C++ (YDK-Cpp), and Go
(YDK-Go) frameworks are available.

More details on the YDK are available on the Cisco DevNet site at https: //developer.
cisco.com /site /ydk

https://developer.cisco.com/site/ydk/

YANG 65

GitHub Modules Repository

The YANG modules for Cisco I0S XE are posted to the GitHub site at
https:/ /github.com/YangModels /yang /tree /master /vendor /cisco /xe

Modules from multiple versions, products, and vendors are also stored at this location.
Modules can also be downloaded or exported from the running device instead of using
third-party sites. The illustration below shows the GitHub page with all the YANG
native modules included in the IOS XE 16.8.1 release:

DIAGRAM GitHub Repository Example

O venghade s { yang @vaich- es B 8w Vhek 283
e ik Tk

Cwcansafl | Upmaiie Fnciis iy

s msln Vowtert o AT35 10 e

B 31 Relcass Targ Tee s
* Cmco-G-RE-3ra-0peryang Felemse Targ ~ede s

L g

R]

£ Catn 08 KE- @i

[Coco 105 HE avbaang
£ Coon O KE-ERD groupyang

£ ©oon-E-RE-Ehi-nacrar Reicasz Targ wede s

* Cmco-E-RE-ER g Felemse Targ ~edes

C Cacn 105 ¥E bda2 comal iy

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

YANG 66

YANG Explorer

YANG Explorer is available on the Cisco DevNet GitHub site at https:/github.com
CiscoDevNet /yang-explorer and runs as a service on Mac and Linux.

Access the YANG Explorer interface at http:,//localhost:8088 Once installed, it can be
used to download modules, generate config, and interact with the network device over
a NETCONTF session.

DIAGRAM YANG Explorer GUI

Lo) aone Joea] &]

Tatmes T T B e | Tropety |Vt

Sim s g | Lyidlg

© ratcart £ wmncen o {1 [o= oo

Sty 3 S £

S e s st

https://github.com/CiscoDevNet/yang-explorer
http://localhost:8088/

YANG 67

pyang

pyang is one of the most common and easily used tools for understanding YANG mod-
ules. It produces a tree view showing the structure of a module as well as field names
and types. There is a large range of plugins available for advanced users. pyang can be

installed by PIP or from the GitHub repository.

(pyang -f tree openconfig-interfaces.yang
module: openconfig-interfaces
+--rw interfaces
+--rw interface* [name]
+--rw name -> ../config/name
+--rw config
| +--rw name? string
| +--rw type identityref
| +--rw mtu? uint16
| +--rw loopback-mode? boolean
| +--rw description? string
| +--rw enabled? boolean
+--ro state
| +--ro name? string
| +--ro type identityref
| +--ro mtu? uint16
| +--ro loopback-mode? boolean
| +--ro description? string
| +--ro enabled? boolean
| +--ro ifindex? uint32
| +--ro admin-status enumeration
| +--ro oper-status enumeration
| +--ro last-change? oc-types:timeticks64
N
YANG Catalog

The YANG Catalog at https://yangcatalog.org is a module catalog and registry
for searching through the large number of published YANG modules. It can be used
as a reference to search for what is available from existing modules, contains modules
from many vendors, and is not limited to Cisco IOS XE.

https://yangcatalog.org

Network Device APls

https://yangcatalog.org/

Network Device APIs 69

Overview

YANG organizes device configuration and operational states in data models. NETCONF
and RESTCONF are standard protocols that allow access to this data.

Data sent using these protocols need to be encoded in a format easy for both sides of
the connection to understand. XML and JSON are two commonly used encoding for-
mats. The NETCONF protocol requires data encoded in the XML format. RESTCONF
can be encoded in either XML or JSON, although generally JSON is preferred.

DIAGRAM Programmatic Interface Protocols

NETCONF RESTCONF gRPC Protocols

10S XE

B
=

Network Device APIs 70

NETCONF

Introduction

Network operators historically used two methods to manage network devices: Simple
Network Management Protocol (SNMP) and device-specific Command-line Interface
(CLI). Neither is suitable for automated, programmable networks.

SNMP has a number of limitations, including;:

* no discovery process for finding the correct Management Information Base
(MIBs)

* no transactional model and rollback

e limited industry support for configuration MIBs

NETCONTF stands for NETwork CONFiguration and was originally defined in RFC 4741
for NETCONF 1.0 and updated in RFC 6241 for NETCONF 1.1. The NETCONF protocol
defines a set of operations to manipulate structured data defined by YANG data models.
It is a Remote Procedure Call (RPC)-based protocol where data is encoded in XML.
Transactions are at the core of the protocol stack. It is session- oriented, provides a ca-
pabilities exchange for discovering models, and uses a Secure Shell (SSH) as a transport.
The combination of NETCONF with YANG constitutes an Application Programming In-
terface (API).

The following diagram shows the different layers involved when using NETCONF.

Network Device APIs

NETCONF Stack

Layer

Messages

Secure
Transport

NETCONF

Configuration Notification

data

data

<notification>

NETCONF was designed to enable:

» multiple configuration datastores (candidate, running, startup).

¢ device-level and network-wide transactions.

= configuration testing and validation.

» adistinction between configuration and operational data.

 selective data retrieval with filtering.

» streaming and playback of event notifications.

» extensible remote procedure calls.

71

NETCONF has different datastores. These datastores are the target of configuration
reads and writes. The datastores defined in the RFC are:

* running (mandatory)
» candidate (optional)

* startup (optional)

Network Device APIs 72

SNMP is unable to discover MIBs supported by the device. NETCONF has a built-in
capability exchange, providing all supported data models as well as additional
operations and datastores supported on a device. For example, "notification" or "roll
back-on-error” capabilities are shown below.

s N
urn:ietf:params:netconf:base:1.0

urn:ietf:params:netconf:base:1.1

urn:ietf:params:netconf:capability:notification:1.0
urn:ietf:params:netconf:capability:rollback-on-error:1.0
urn:ietf:params:xml:ns:yang:ietf-interfaces?module=ietf-interfaces
http://openconfig.net/yang/interfaces?module=openconfig-interfaces
http://cisco.com/ns/yang/Cisco-I0S-XE-interface-common?module=Cisco-I0S-XE-interface-
common

Operations

The capabilities exchange shows additional optional operations such as ":wvalidate". All
devices support base operations, including:

» <get-config>: retrieve all or part of a specified configuration from a named
datastore
e <get></get>: retrieve running configuration and device state information

* <edit-config>: load all or part of a specified configuration to the specified target
configuration.

* <copy-config>: create or replace an entire configuration datastore with the
contents of another complete configuration datastore

 <delete-config>: delete a configuration datastore

* <lock> and <unlock>: activate a short-lived lock and unlock the configuration
system of a device

* <close-session> and <kill-session>: gracefully close or force termination of a
NETCONTF session

Network Device APIs 73

The following is an example of a NETCONF RPC operation:

s N
<?xml version="1.0" encoding="UTF-8"7?>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<get-config>
<source>
<running/>
</source>
<filter xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
<interfaces/>
</filter>
</get-config>
</rpc>
.

These are some of the characteristics of the NETCONF RPC above:

* XML encoding
* <get-config> operation to retrieve configuration
* source data store is :running

» <filter> tag indicates specific data of interest

Cisco IOSXE Implementation

Cisco IOS XE supports two datastores, running and candidate. It also supports locking
of the datastores, as well as con guration rollback.

Datastores

The running datastore is the default and the candidate is optional. To enable the
candidate datastore, the following command is used: netconf-yang feature
candidate-data-store. When the candidate datastore is enabled, some processes in
IOS XE are restarted, and any existing NETCONF sessions are terminated.
"urn:ietf:params:net-conf:capability:candidate:1.0" is advertised in the server
capabilities for new NETCONF sessions. NETCONF clients can make changes to the
conguration in the candidate datastore, and validate the data before it is written to
the running datastore using the RPC. This provides transactionality.

Network Device APIs 74

Datastore Lock and Validation

The best practice is to lock the running datastore before locking the candidate
datastore, to prevent a change to the running-config before the candidate is
committed. Send the "validate" RPC to validate the candidate datastore before commit.

Without a candidate datastore support, the running datastore can be modified directly
using the following sequence:

1 lock running datastore
2 send edit-config to running-config

3 unlock running-config

Configuration Rollback

The NETCONF protocol supports rollback capability that automatically preserves the
state of a device in case of configuration failures.

High Availability

The redundant hardware and software in a device are transparent and appear as a
single entity. The NETCONF clients only modify the active configuration which is
synced automatically to the standby.

When a failover occurs, NETCONF clients will have to re-establish their sessions to the
device. Any configured subscription is maintained across sessions. Dynamic
subscriptions are tied to NETCONF sessions and are lost when a session is closed.

Network Device APIs 75

RESTCONF

Introduction

RESTCONTF provides a standard REST-based programmatic interface to access network
devices for configuration and operation. RESTCONF is an HTTP-based protocol that
uses structured data in XML or JSON format.

REST APIs

RESTCONF emerged in response to the broad industry adoption of REST APIs. REST
APIs are scalable, provide a simple and uniform interface, and are easy to port to differ-
ent platforms. REST APIs share the following properties:

client-server model

does not maintain per-client state

textual representation with XML or JSON

resources specified in Uniform Resource Identifiers (URIs)

pre-defined HTTP verbs e.g. GET, POST, etc

RESTCONTF provides a standard REST API based on YANG data models.

Network Device APIs 76

Stack
DIAGRAM RESTCONF Stack
Layer RESTCONF
Configuration /
Operational Data
TCP/IP Method
Methods

The RESTCONTF protocol uses HTTP methods to identify CRUD (Create, Read, Update
and Delete) operations for a particular resource. The most common operations include:
* POST: "create" a data resource or invoke an operation resource
* GET: "read" data and metadata for a resource
* PUT: "update" the target data resource

¢ DELETE: "delete" a data resource

Network Device APIs 77

The following is an example of a RESTCONF GET operation to retrieve the interface
configuration from a device

curl -X GET -u admin https://10.10.10.112/restconf/data/ietf-interfaces:interfaces"-
interfaces:interfaces

-H 'Accept: application/yang-data+json'

-H 'Cache-Control: no-cache’

Cisco IOS XE Implementation

The Cisco IOS XE implementation supports both running and candidate datastores.
Similar to NETCONF, RESTCONF supports editing the candidate datastore and
committing the changes.

Datastores

RESTCONF clients can write to the candidate datastore if enabled by CLI, as explained
in the NETCONF section. The RESTCONTF request is followed implicitly by a commit in
the same transaction. If the candidate datastore is not enabled by CLI, all RESTCONF
requests go to the running datastore directly.

Configuration Lock and Rollback

RESTCONF does not have lock capability, but the transactional behavior is guaranteed
within one request. Since each RESTCONF request is a transaction, any error in it will
cause a config rollback in Cisco IOS XE.

Network Device APIs 78

Comparison of NETCONF and RESTCONF

At a high level, NETCONF is more comprehensive, flexible, and complex than REST-
CONF. RESTCONEF is easier to learn and use for engineers with previous REST API expe-
rience. The following are differences between NETCONF and RESTCONF:

* NETCONF supports running and candidate datastores, while RESTCONF
practically supports only the running datastore as any edits of candidate
datastore are immediately committed.

* RESTCONF does not support obtaining or releasing a datastore lock. If a
datastore has an active lock, the RESTCONF edit operation will fail.

* A RESTCONF edit is a transaction limited to a single RESTCONF call.
* RESTCONF does not support transactions across multiple devices

 Validation is implicit in every RESTCONTF editing operation which either succeeds
or fails.

The following table shows the different NETCONF operations and how they map to
RESTCONF methods:

TABLE NETCONF Operations and RESTCONF Methods

DESCRIPTION NETCONF RESTCONF

Create a data resource <edit-config> </edit-config> POST
Retrieve data and meta-))

<get-config>, <get> </get-config> GET
data
Create or replace a data <edit-config> PUT
resource (nc:operation="create/replace")

Delete a data resource <edit-config> (nc:operation="delete"); DELETE

Network Device APIs 79

Next Steps

DevNet Learning Labs

The Cisco DevNet site at https.//developer.cisco.com includes learning labs, sandboxes,
coding examples and other resources for learning about RESTCONF and NETCONF.
Tools

ncclient is a Python library provided for NETCONF and can be installed with PIP.

netconf-console is based on ncclient and can be installed with PIP.

https://developer.cisco.com/
https://www.getpostman.com/

Telemetry

Context

Intent

Cisco I0S XE

Telemetry 81

Overview

Telemetry is defined as the automated communications process by which
measurements and other data are collected at remote locations and transmitted to
receiving equipment for monitoring. The word is derived from the Greek roots: tele =
remote, and metron = measure. In the context of Cisco I0S XE, the networking devices
are the remote devices which transmit operational, configuration, event and flow data
to data collectors.

Common telemetry use cases include business intelligence for network, application,
and user monitoring, network planning, security analysis, accounting, logging and
traffic engineering.

Telemetry 82

Operational Data

Operational data represented in YANG data models can be streamed as telemetry to
remote collectors for monitoring and processing. Subscriber applications, via the
ietf-yangpush YANG data model, request continuous and customized streams of up
dates from a Cisco IOS XE device. The streaming telemetry notifications are based
on the data model supported by the device which makes possible near real-time
operational and configuration insights. There are two subscription types and two
notification types described below.

Subscription Types

The application specifies the type of subscription to established, either dynamic or
configured.

Dynamic

The subscriber sends a request via the ietf-yangpush.yang data model. If the Cisco I0S
XE device approves the request, it replies with a subscription-id and starts streaming
telemetry data. Dynamic subscriptions cannot be modified but can be terminated at any
time. Dynamic subscriptions automatically terminate if the NETCONF session is
terminated.

In a dynamic subscription, the subscriber and receiver are always the same entity as
represented in the diagram below.

DIAGRAM Dynamic Subscription

Subscriber/ NETCONF only ’
Receiver «—

NMS or I0S XE Device
custom app

Telemetry 83

Configured

In the configured subscription, the receiver is not necessarily the subscriber and the
subscription is configured via CLI, NETCONF or RESTCONTF. Subscriptions can be
modified or terminated at any point in their lifetime. Configured subscriptions are
persistent between 10S XE device reboots, unlike dynamic subscriptions.
Configured subscriptions can be used to stream data to more than one receiver, as
reflected in the diagram below.

DIAGRAM Configured Subscription

RESTCONF
l Logging Apps
. gRPC / .
Publisher HTTP?2 —_— Receiver 2

IOS XE Device \ Security Apps
Receiver ’'n’

Bl Apps, etc

Notification Types

Telemetry

84

The application can specify how notifications are published to the receivers: either pe-

riodically or on-change.

Periodic Notifications

With a periodic notification, subscribed
data is streamed according to a fixed
cadence defined within the telemetry
subscription. Periodic publication is
ideal for data which represents device
counters or measures such as interface
statistics or CPU utilization because
they constantly change.

On-Change Notifications

On-change notifications stream data
only when data changes. Examples in-
clude a configuration change, a fault,
crossing a threshold, or the detection
of a new neighbor.

DIAGRAM Periodic Notifications

Periodic Subscriptions

DIAGRAM On-Change Notifications

On-change subscription

State/Configuration/Identifiers

Telemetry 85

Flow Data

NetFlow is an integral part of Cisco IOS XE software. It measures data as it enters
specific interfaces and forwards metadata to a receiver. NetFlow allows extremely
granular and accurate traffic measurements and high-level aggregated traffic
collection. Network Management Systems (NMS) use NetFlow to identify network
congestion, collect appli-cation Class of Service (CoS), IP traffic source address,
destination addresses, byte counts and more.

DIAGRAM Stealthwatch Dashboard

Terge: D oo 21

S
. %;

Senzect Do Lara: 7 T razmguan 37

Telemetry 86

Use Cases

Network Application and User Monitoring

Telemetry data provides detailed, time-based and application-based usage of a
network. This information assists planning and allocation of network and application
resources, including extensive near real-time network monitoring capabilities. It can
be used to display traffic patterns and application-based views. Telemetry enables
proactive problem detection, efficient troubleshooting, and rapid problem resolution.
This information is used to efficiently allocate network resources and to detect and
resolve potential security and policy violations.

Network Planning

Telemetry can be used to capture data over a long period of time to track and anticipate
network growth and plan upgrades to increase the number of routing devices, ports, or
higher-bandwidth interfaces. Telemetry data helps network planning, which includes
peering, backbone upgrade planning, and routing policy planning. It can be used to
minimize the total cost of network operations while maximizing network performance,
capacity, and reliability. Telemetry data allows the user to identify traffic, validate band-
width and Quality of Service (QoS), and assist the analysis of new network applications.

Security Analysis

Telemetry data can be used to identify and classify Denial of Service (DoS) attacks,
malware, and threats in real-time. Changes in network behavior indicate anomalies
that can be detected using telemetry data. The data is also a valuable forensic tool to
understand the history of security incidents.

Telemetry 87

Traffic Engineering

Telemetry can be used to measure the amount of traffic crossing peering or transit
points to determine whether the peering arrangement with service providers is fair and
equitable.

Telemetry 88

Subscription Tools

NCC is a set of tools to interact with network devices via NETCONF and is available
from https: /github.com/CiscoDevNet/ncc One of its tools allows the creation of
NETCONF notifications. The following example shows the creation of a dynamic, peri-

odic subscription:

python ./ncc-establish-subscription.py --host csr1000v --period 3000 --xpaths
"/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization/five-seconds"

This will set up a notification on the device csrl000v. It will return the data contained in
"/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization /five-seconds" (the 5 second
CPU utilization of the device). The data will be provided every 3000 centiseconds (30
seconds).

This utility creates a callback (a function that processes the notification) to handle the
streaming data. Sample output appears below:

e N
(Default Callback)

Event time : 2018-05-08 21:57:53.940000+00:00

Subscription Id : 2147483649

Type 1

Data :

<datastore-contents-xml xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
<cpu-usage xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-process-cpu-oper">
<cpu-utilization>
<five-seconds>35</five-seconds>
</cpu-utilization>
</cpu-usage>
\</datastore-contents-xm1>

In the example above, the CPU utilization over 5 seconds is shown as 35 percent.

https://github.com/CiscoDevNet/ncc

Telemetry 89

Data Collectors

Network devices stream continuous data to data collectors and provide near real-time
access to operational statistics. Below are examples of data collectors.

Cisco Stealthwatch

Cisco Stealthwatch consumes NetFlow data and is optimized for security use cases. By
providing Encrypted Traffic Analytics (ETA) capabilities, it provides visibility into
encrypted flows between hosts. Use cases include malicious traffic detection,
unauthorized application usage, and data exfiltration.

ELK Stack

The ELK stack is a collection of open source applications used for data collection and
visualization. The three applications that comprise the stack are:

* Elasticsearch: search and analytics engine
* Logstash: log data processor

» Kibana: visualization frontend

Model-Driven Telemetry is receiving data on the collector in near real-time. More in-
formation on the ELK stack is available from the Elastic website at https: /www.elastic.

cisco.com /security /step-by-step-setup-of-elk-for-netflow-analytics.

https://www.elastic.co/elk-stack
https://blogs.cisco.com/security/step-by-step-setup-of-elk-for-netflow-analytics

Telemetry 90

DIAGRAM ELK Stack Components

A~ | — ih — [alul

Logstash Elasticsearch Kibana

DNA Center

Cisco DNA Center Assurance provides the capabilities for ongoing and proactive
monitoring of network status and for alerting network failures. DNA Center uses
various methods to communicate with network elements for ongoing monitoring, such
as sys-log, SNMP, and streaming telemetry. The DNA Center Assurance solution
provides ongoing analysis of monitored Key Performance Indicators (KPIs) and includes
the ability to provide trend line analysis.

Additionally, it provides the capability for on-demand troubleshooting by recognizing
faults in the network and suggesting recommended actions and by leveraging the Path-
trace application, which visualizes the route the data takes on the network. More details
about DNA Center Assurance are available at https://cisco.com/go/dna-analytics-and-
assurance

https://cisco.com/go/dna-analytics-and-assurance

Telemetry 91

DIAGRAM DNA Center Assurance Dashboard

Pipeline

Pipeline is a set of applications that provides scalable data collection with a multi-func-
tion collection service. Pipeline receives telemetry data and converts it to a JSON-en-
coded text file. More details about Pipeline: https:,//github.com /cisco,/bigmuddy-
network-telemetry-pipeline

https://github.com/cisco/bigmuddy-network-telemetry-pipeline

Python

Context

Intent

Python 93

Overview

Python is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. It uses a simple, easy-to-learn syntax which emphasizes readability. It
supports modules and packages and encourages program modularity and code reuse.
Python interpreters and standard libraries are available in source or binary form with-
out charge for all major platforms. Additional libraries are widely available throughout
the open source community.

Python Libraries

Python libraries are collections of Python modules that allow actions to be performed
without having to create new code. Python modules contain definitions and statements
and are identified by the "py" suffix. The standard Python libraries available with Cisco
I0S XE running on Catalyst 9000 platforms are based on the library that ships with
CentOS 7. Additional Python modules are available through the open source community
to further simplify coding efforts.

TABLE

Python 94

Key Python Libraries for Network Programmabilty

1 T T

cli

eem

json

time

requests

ncclient

netaddr

Executes I0S XE CLI commands

Registers Python scripts as EEM policies

Lightweight data exchange format inspired by
inspired by JavaScript object literal syntax

Time access and conversions for various time-
related functions

Allows HTTP/1.1 requests to be sent for use
with RESTCONF

NETCONF client facilitates client-side scripting
and application development for use with NET-
CONF

Represents and manipulates IP addresses

On-Box vs Off-Box Python

Pre-installed 10S XE
specific library, on-box
only

Pre-installed I0S XE
specific library, on-box
only

Pre-installed standard
library

Pre-installed standard
library

pip install requests

pip install ncclient

pip install netaddr

Cisco I0S XE supports both On-Box and Off-Box Python. On-Box refers to the location
of the Python Interpreter which is running within the I0S XE Guest Shell. Off-Box
represents an externally hosted Python Interpreter. Using an Off-Box Python
Interpreter requires authentication to access the device, while On-Box Python
removes this burden as Guest Shell is pre-authenticated.

DIAGRAM

Python

On-Box vs Off-Box Python

Off-Box Python

External Host

Python Interpreter

require ,
authentication ‘. _ - _ _______ 4

{APIS} CLI {SNMP} EEM

On-Box Python

10S XE

62
°

require
authentication

Je R

Guest Shell

Python
Interpreter

95

Python 96

Python WebUI Sandbox

The WebUI Sandbox is a web application that generates Python code from CLI
commands or with NETCONF RPCs. The code can be executed, copied, and reused in
on-box or off-box scripts throughout the network.

WebUI Sandbox requires:

e Guest Shell to be enabled
e NETCONTF to be enabled
e HTTP Server to be enabled

* The ncclient module to be installed within the Guest Shell

Python

DIAGRAM Python WebUI Sandbox

Manitaring

Configuration

4 B % 8 e (=

ONF Sardbon

U Exmotion w | Chooss snesamue .

A Ciseo ol [} PYTHON SCRPT

show ip iot brief

PYTHON SCRIPT OUTPUT

Interface IE-Address OF? Hethod Status Frotocol
Wlan od administratively down

VirtnaltortGroup

VirtualFortoroupl

virtualFortGroups

GigabitEtherowtd/ 0 2.26.249.151

GigabitEthernetl /01 unasslgned

GigabitEtharnatl/0/2 onassigned
igabi 1/0/3 uoassigred

c 17054
GigabitEtheroetl/003
GigakitEtharnat1/0/6

97

Python 98

On-Box Python

Executing Python code directly on the device is referred to as On-Box Python. On-Box
Python can be executed interactively or scripts can be run within the Guest Shell. A
Guest Shell container is a built-in Linux Container (LXC) running on Cisco 10S
XE with Python version 2 pre-installed.

The Python interpreter within Guest Shell can be run in interactive mode which takes
commands and runs them as they are entered.

Additional Python libraries such as "requests" and "ncclient" can be installed and
upgraded using the PIP tool. To upgrade Python to version 3, use one of the
methods below:

e A stand-alone and self-contained installation tarball when Guest Shell does not
have Internet connectivity.

* "yum install" when Guest Shell has network connectivity to the online package
repository.

Why On-Box Python?

The following are some use cases for On-Box Python:

* Zero-Touch Provisioning (ZTP): During the ZTP process, a Python script is
downloaded to the IOS XE devices and executed within the Guest Shell. This
script completes the initial configuration of the device.

* Embedded Event Manager (EEM): A Python script can be executed in response to
an event detected by Embedded Event Manager (EEM). For example, if a critical
interface goes down, then a Python script can be executed to alert the
administrator or return the interface to an operational state.

* Local Execution: Python scripts executed in the secured Guest Shell environment
or directly from the IOS command line in order to automate tasks.

Python 99

Off-Box Python is historically the predominant method for Python execution due to its
centralized execution model, but there are some very good use cases for on-box as
seen above.

Python 100

Advanced On-Box Python

Executing a Python script from Cisco IOSXE

The simplest way to execute a Python script is via the I0S CLI which will run the script
within the Guest Shell environment. Optional parameters that are required by the
script can be sent.

(éuestshell run python script.py j

CLI Custom Python Library

Python scripts running within Guest Shell can use the built-in CLI module to run exec
commands and make con g uration changes. This module does not require
authentication as the Guest Shell Python interpreter can only be run by a privilege level
15 user.

The following two examples illustrate some functions provided by this module. The first
example shows how to run an IOS exec command that prints the response from the I0S
show command.

#!/usr/bin/env python
from cli import execute
print execute('show clock")

The output appears below

[guestshell@guestshell ~1$./exec.py
04:43:21.179 AEST Wed May 9 2018

The second example shows how to change the configuration of the device.

#!/usr/bin/env python
from cli import configure
print configure(['int loop12','description created by python'])

Python 101

This script configures a loopback interface with a description. Multiple commands need
to be separated by commas. The output shows the results of the commands that were
executed.

[guestshell@guestshell ~1$./configure-interface.py

[ConfigResult(success=True, command='int loop12', line=1, output='', notes=None),
ConfigResult(success=True, command='description created by python', line=2,
output=""', notes=None)]

The CLI module requires no authentication as it has a private connection to the IOS via
HTTP. The ip http server must be enabled for this to function.

EEM Custom Python Library

The Embedded Event Manager (EEM) Python library interacts with the EEM
infrastructure on the I0S XE device. These functions are only available from a
script that has been registered with EEM. There are three modes in which EEM can
execute a Python script.

1. Cron Mode

Cron mode executes a script according to the specified schedule. For example, to
execute the "monday_15h30m_script.py" script every Monday at 3:30PM, the following
I0S XE configuration can be used:

event manager applet MondayMorningPython
event timer cron cron-entry "30 15 * * 1"
action 1.0 cli command "enable"

action 1.1 cli command "guestshell run python
bootflash:gs_script/monday_15h30m_script.py"
action 1.2 cli command "exit"

2. Countdown Timer Mode

Countdown timer mode executes a script once the timer counts down to zero. In this
scenario, the EEM countdown timer is used to execute the Python script
"run_in_60_seconds.py" at some time in the future, for example in 60 seconds.

For example, 10S configuration follows:

Python 102

event manager applet CountdownPython

event timer countdown time 60

action 1.0 cli command "enable"

action 1.1 cli command "guestshell run python
bootflash:gs_script/run_in_60_seconds.py"
action 1.2 cli command "exit"

3. Policy Mode

The Python script is registered natively with the EEM infrastructure and is executed
when a specific event occurs. The following line must be at the start of the Python
script as it registers the Python script with EEM. For example, EEM executes the
Python script when a syslog message with "CONFIG_I" is matched.

(}:cisco::eem::event_register_syslog pattern "CONFIG_I" maxrun 60]

Once the above line has been added to the Python script, the following commands in-
struct IOS to look for and register policy scripts in the specified directory. I0S will
parse the script and register a trigger.

event manager directory user policy flash:
event manager policy config_check.py

When a configuration change occurs, a syslog entry with the pattern "CONFIG_I" is
matched and triggers the script.

Python 103

Common Issues

These are some common issues encountered while working with Python:

* The correct version must be verified since Python version 2 and Python version 3
are not mutually compatible.

* Python version 3 can be installed on a device that already has Python version 2.
Use the guestshell run python3 command for executing Python version 3 scripts
and use guestshell run python2 or guestshell run python for Python version 2
scripts.

* Networking connectivity, proxy, and Domain Name System (DNS) must be
configured before downloading additional packages from PIP.

* The required Python packages must be installed on the device.

Guest Shell

Guest Shell 105

Introduction

Guest Shell is an execution space running within a Linux Container (LXC), designed to
run Linux applications including Python. It also supports Day O device onboarding. The
Guest Shell environment is intended for tools, Linux utilities, and manageability rather
than network routing and switching functions.

Guest Shell shares the kernel with the host Cisco I0S XE system. While users can
access the Linux shell and update scripts and software packages in the container root
file system, users within the Guest Shell cannot modify the host file system or
processes. Decoupling the execution space from the native host system allows
customization of the Linux environment to suit the needs of the applications without
impacting the host system.

The Guest Shell container is managed using 10x, which is Cisco's Application Hosting
Infrastructure for IOS XE devices. IOx enables hosting of applications and services
developed by Cisco, partners, and third-party developers in network edge devices,
seamlessly across diverse and disparate hardware platforms.

Guest Shell

Security

Guest Shell supports several security features, including:

* The Guest Shell OS binaries and libraries are regularly updated for security
compliance.

* The Guest Shell Linux console can only be accessed once the user has
authenticated within the I0OS XE CLI or WebUI Sandbox.

* The Guest Shell listens on port 22 on the localhost interface and cannot be
accessed outside of the I0S XE device.

106

Guest Shell 107

Configuration and Updates

IOx must be configured and running for Guest Shell configuration to be successful.
Configure IOx with the command iox in configuration mode.

After IOx services are running, enable Guest Shell with the command guestshell enable
in exec mode. This command is also used to reactivate Guest Shell, if it has been dis-
abled.

Other useful commands are:
* guestshell run /inux-executable - for example guestshell run python or guestshell
run bash
* guestshell disable - shuts down and disables Guest Shell

 guestshell destroy - removes the root file system from the flash file system. All
files, data, installed applications and custom Python tools and utilities are
removed and are not recoverable.

Guest Shell network access is provided by either the management interface or from a
Virtual Port Group (VPG) if no management interface is available.

Additional configuration may be required to enable full networking connectivity:

* Configure Domain Name System (DNS) by updating the "/etc/resolv.conf" file
* Configure proxy settings by updating the "/bootflash /proxy_vars.sh" file

The Guest Shell environment comes pre-installed with Python 2.7, Cisco's Embedded
Event Manager, and the Cisco 10S XE CLI Python libraries.

Additional libraries can be installed or updated using pip install or pip update. Other
Linux applications can be installed using the Yum, RPM, or Git command-line utilities.

A DNA Network-Essentials license is required to enable Guest Shell capabilities on
Cisco I0S XE network devices.

Guest Shell 108

Resource Allocation

Each Cisco I0S XE device has hardware resources available for Guest Shell. These
specifica-tions depend on the available hardware. Cisco IOS XE running on a Catalyst
9000 switch reserves dedicated memory and CPU resources for Guest Shell while it
doesn't reserve any storage which is shared with all the other I0S XE processes. Guest
Shell uses internal flash by default but will use external Solid State Drive (SSD) storage if
available.

TABLE Catalyst 9000 Guest Shell Hardware Resources

Guest Shell
Bootflash
(GB)

Catalyst

8 4 1.8 256 2 800 1.1
9300
Catalyst

16 4 2.4 256 2 800 1.1
9400
Catalyst

16 4 2.4 256 2 800 1.1
9500
Catalyst
9500 high- 16 4 2.4 256 2 800 1.1
performance

The following are key characteristics of resource utilization for application hosting and
Guest Shell:

* The maximum amount of space is 1.1GB unless external storage is used

* Guest Shell and Application Hosting share CPU and Memory

* Guest Shell uses flash but will use external storage if available

Guest Shell 109

High Availability

High Availability is supported for stacked switches. When Guest Shell is installed, the
"/bootflash /gs_script" directory is created in the flash filesystem and contents of this
directory are synchronized across all stack members in a switchover event. During a
switchover, the new active device creates its own Guest Shell installation and the previ-
ous filesystem is not maintained.

Guest Shell 110

Use Cases

EEM Integration

When an Embedded Event Manager (EEM) event is triggered, one of the possible
actions is to execute a Python script in the Guest Shell environment.

For more details refer to the Python chapter, or visit: hiips:/ cs.co/ecim. gs

Zero-Touch Provisioning Integration

When a Cisco IOS XE device boots without a configuration file, it will enter Zero-Touch
Provisioning (ZTP) mode. It then obtains an IP address from DHCP along with the
URL of the HTTP or TFTP server so it can download and run a Python script from the
server. Guest Shell provides the environment for the Python script to run. The script
can apply the initial configuration to the device.

For more details refer to the Python chapter, or visit hitips: / cs.co//1TP

https://cs.co/eem_gs
https://cs.co/ZTP

Guest Shell 111

Next Steps

Guest Shell configuration information can be found in the Cisco I0S XE Configuration
Guide main page at hitips:/ cs.co/ guctshell config. guide

More information and practical examples can also be found at the Cisco IOS XE page
on DevNet: itips:/ developer.cisco.com/ site/ jos-xc/

https://cs.co/guetshell_config_guide
https://developer.cisco.com/site/ios-xe/

Application Hosting

Application Hosting 113

Introduction

Application Hosting makes it possible for network operators to run Linux applications
directly on a Cisco I0S XE device. Hosted applications can be developed by
partners or third-party developers. The Cisco Application Framework (CAF) manages
applications in a containerized environment at the edge.

Application Hosting enables edge computing on networking devices. Edge (or fog)
computing is the extension of cloud computing to the edge of an enterprise net
work. It changes the way data is processed in comparison to cloud-hosted applications.

Application Types and Use Cases

In the past, network devices and network operating systems were designed and built to
execute only specific tasks such as routing and switching traffic rapidly.

The Cisco IOS XE Operating System (OS) is designed to be flexible, both in the hardware
and software architecture. The new hardware features, such as multi-core Intel x86
CPUs, increased memory and storage footprints, combined with the Linux-based I0S
XE OS, makes it possible for network devices to be used in fog computing. As mentioned
above, this opens up completely new use cases such as hosting containers and third-
party applications such as network performance monitoring.

Application Hosting Types — VM /LXC/Docker

Cisco IOS XE applications are pre-packaged in containers using different formats:
* KVM-based Virtual Machines: Includes application, binaries and libraries, and
entire guest OS

* LXC Linux containers: Enables OS-level virtualization for multiple Linux systems
on a single host

Application Hosting 114

* Docker containers: Makes the process of creating and maintaining Linux
containers easier

Applications are loaded to the edge devices by use of an application orchestrator. This

manages the entire application lifecycle, from installation, activation and upgrade, to
uninstallation.

Cisco IOS XE Application Hosting is important for the adoption of new use cases such as

security agents, performance monitoring, troubleshooting tools, cloud gateways and
custom Python applications.

Application Hosting 115

Cisco Application-Hosting Framework

Cisco has built a new framework to manage applications and hardware resources on
network devices: the Cisco Application-Hosting Framework, also known as Cisco 10x.
The I0x framework was created to host applications for Internet of Things (IoT) net-
work devices where thousands of devices run small applications. Cisco is now also
leveraging the same framework for enterprise IOS XE-based network platforms.

CAF on Cisco I0S XE supports both KVM-based VMs and LXC Linux containers. While
native Docker containers are not yet supported, Docker tools can be used to easily build
CAF applications in LXC format. A reference KVM-based VM with Docker pre-installed
will also be provided.

DIAGRAM Cisco Application Framework

DNA Center

+
]
YANG
(%]

Cisco Application-Hosting Framework (CAF)/IOx

1S3y
R

4 REST
LXC LXC

VM VM VM
Snort Wireshark Docker
PerfSONAR Custom App
Kernel Kernel Kernel

i !

Host OS (IOS XE Kernel)

Anatomy of a CAF Application

A CAF application is packaged in a standard Linux tar archive format containing several
files. One of the most important files in the archive is the IOx package application
descriptor file, which contains the following:

Application Hosting 116

 application information (name, description, version, author)
 application type (LXC or VM)

* hardware resources required (CPU, memory, storage)

e container virtual network interfaces

* disk image files (in qcow2 or other format)

* startup tasks

Application Hosting Security

Applications run in either a virtual machine or a Linux container and are isolated from
the main operating system. There is isolation between the hosted application and the
network device: isolated user space, fault, and resource isolation.

Moreover, only a portion of the system resources (RAM, CPU, and storage) are allocated
for a given application, and the hosted application will not be able to consume
additional resources and impact on the operations of the IOS XE device.

Finally, applications have no access to the internal device flash storage, which is
reserved for IOS XE for integrity reasons.

Hardware Resources

Each Cisco I0OS XE network device includes specifications for the hardware resources
available for application hosting. These specifications are dependent on the hardware
available on the network device e.g. memory and flash storage available.

For example, Cisco IOS XE running on a Catalyst 9000 switch reserves dedicated
memory and CPU resources for application hosting. By reserving memory and CPU
resources, the switch provides a separate execution space for user applications. It
protects the switch's IOS XE run-time processes ensuring both its integrity and
performance.

Applications must reside in one of the external Solid State Drive (SSD) storage options
(USB or M2 Serial Advanced Technology Attachment(SATA)) provided by Catalyst

Application Hosting 117

9000 switches. Applications have no access to the internal device flash storage for
security and flash integrity.

The external SSD storage is required and shared (not reserved)
between Cisco IOS XE and hosted applications.

TABLE Catalyst 9000 Application Hosting Hardware Resources

M2 SATA

Memory CPU USB Storage (GB)

(GB) (cores)

Storage (GB)

USB 2.0 USB 3.0

Front Back
1x
Catalyst 9300 2 1.8GHz 16 120 N/A
1x
Catalyst 9400 8 2 4GHz 16 N/A 960
1x
Catalyst 9500 8 2 4GHz 16 120 N/A
Catalyst 9500 1x
high-perfor- 8 2 4GHz N/A N/A 960
mance

Resource allocation and utilization can be monitored using any of the management in-
terfaces provided.

The following command shows the total available and used resources for a Catalyst
9300 platform:

Application Hosting 118

e
cat9k#show app-hosting resource

Disk space:
Total: 10000 MB
Available: 10000 MB
Memory:
Total: 2048 MB
Available: 2048 MB
CPU:
Total: 29600 units
Available: 29600 units

Networking

A container can have up to four virtual interfaces that are displayed in the container as

"eth0", "ethl", "eth2" and "eth3"

Each interface can be attached to either the management interface or a data port.
When using a data port, a Virtual Port Group (VPG) needs to be configured. The VPG
will serve as a gateway for all the containers and allow them to connect to the IOS XE

routing domain through the front panel data ports.

Application Hosting Management

Cisco IOS XE network devices provide several options to easily manage applications:

* Command-line Interface: Using the new app-hosting CLIs

* YANG Data Models: Using NETCONF or RESTCONF protocol
* WebUI: The Graphical User Interface provided by Cisco IOS XE to

configure and monitor a single device

» IOxClient: Python-based client to build and manage IOx applications

e Cisco DNA Center: This is the Cisco-recommended solution

Application Hosting 119

Additional benefits of using DNA Center are:

» Consistent User Interface: Applications are integrated with the DNA Center Ul
while re-using their own APIs

 Integration with DNA Center Assurance: Assurance can launch hosted
applications for monitoring and remediation

Details of a given application can be found using any of the above-mentioned manage-

ment options.

DIAGRAM Catalyst 9000 Container Networking

) 10.0.0.10 . q
Container eth Container Container
eth0 eth0 eth0

10.0.0.6 10.0.0.5

Catalyst 9000

10.0.0.3

172.19.0.24

Mgmt

10.0.0.1/24

Cisco I0S XE

svi

11.0.0.1

I [| | I
Ge0/0/3

- Ge0/0 Ge0/0/1 GeO/0/2 GeO/0/3 Ge0/0/11 Ge0/0/2
Linux SW 172.19.0.23 12.0.0.1/24 13.0.0.1/24 14.0.0.1/24
component

L2 interface L3 interface

Application Hosting 120

The following CLI output for a virtual machine includes the current resource allocation
and the operational status:

/;atQk#show app-hosting detail appid wireshark)

State : RUNNING
Author : Cisco Systems, Inc.
Application

Type ovm

App id : wireshark

Version : 3.4

Description . Lubuntu based Wireshark
Resource reservation

Memory : 1792 MB

Disk : 10 MB

CPU : 6600 units

VCPU : 2
Network interfaces
eth0:

MAC address: 52:54:dd:cd:0f:d4

IPv4 address: 172.26.249.202

Application Hosting 121

Containers and Virtual Machines

Though Cisco will periodically publish certain services for application hosting, Cisco
encourages and supports the deployment of any application that fits within CAF.

In order to enable network operators, partners, and third-party software vendors to
build containers for platforms that support CAF, Cisco provides a command-line tool,
called "ioxclient" available at Cisco CCO and DevNet free of charge.

ioxclient can be used in three main workflows to build an IOx container:

LXC Container

The required files for an IOx package are:

 Disk image: For the LXC container, the disk image can be created using standard
Docker tools and a Dockerfile to describe the base image (i.e, Ubuntu, CentOS,
Alpine, etc.) and optional applications to be installed.

* Application descriptor: YAML file that provides information for building the
package such as the application description (author, versioning etc.), container
type (LXC), hardware resources, network interfaces, the disk image and startup
application.

All the provided files and information are used by the ioxclient to build the LXC IOx
container that can be then downloaded and installed in the IOS XE device.

KVM Virtual Machine

For KVM-based Virtual Machines, the workflow is very similar to the previous one but
the disk image to be provided has to be in the qcow2 format instead. The application
descriptor for a VM is very similar to the LXC container.

Application Hosting 122

Using an existing Virtual Machine running in a virtual environment such as VirtualBox,
the related .vmdk file can be converted in qcow?2 format using tools like "qgemu-img".

Docker Container

While Docker containers are not natively supported in Cisco 10S XE platforms, Cisco
provides a reference VM based on Alpine Linux including "dockerd", which allows
network engineers to use Docker tools such as Docker Swarm or Kubernetes without
having to rebuild containers.

This approach provides network engineers the flexibility to add any kernel module
required without relying on modules provided by IOS XE only.

Step-by-step instructions on how to build IOx applications are available on the Cisco

https://developer.cisco.com/site/iox/

Application Hosting 123

Use Case

A common task for network administrators and operators is troubleshooting and verify-
ing network performance. While the network may not always be the source of perfor-
mance issues, network operators provide help in identifying the source of the issue.

Performance Monitoring

perf SONAR, the first application available for Catalyst 9000 switches, is an Open
Source network measurement toolkit, designed to provide federated coverage of paths.
perfSONAR simulates application traffic and provides an application-centric network
performance view which:

 differentiates between an application-level issue versus a more generic network-
level issue;

* locates the source of the bottleneck; and

 centralizes performance monitoring into a single view, to quickly pinpoint
performance issues.

Benefits from running utilities on the network infrastructure include:

* no dedicated parallel infrastructure

* selection of traffic of interest intuitively — no manual configuration of SPAN
sessions

* trigger application access to network device traffic automatically

Application Hosting provides the infrastructure to run any type of
application on the supported Cisco devices. Cisco does not
recommend App Hosting for use cases such as cryptocurrency
mining, gaming, and video streaming.

Application Hosting 124
Next Steps

For more information about Application Hosting on Cisco 10S XE devices, refer to
Cisco DevNet. DevNet provides documentation on CAF, I0S XE-specific
documentation, and Learning Labs with step-by-step instructions for building I0x

applications.

Additional Application Hosting references:

iips:/ developer.cisco.com/ site/jos- xc¢/
iips;/ developer.cisco.com/ site/ nctworking/

https://developer.cisco.com/site/iox/
https://developer.cisco.com/site/ios-xe/
https://developer.cisco.com/site/networking/

Controllers

Controllers 126

Introduction

A network controller is a centralized platform for managing the configuration and
operational data of network devices. Controllers often take over management of the
network devices, meaning that all interactions with the devices take place through
the controllers only. The general idea of controllers is to abstract and centralize
administration of individual network devices, reducing or eliminating the need for
device-by-device configuration and management.

DIAGRAM Network Controller Architecture

REST APIs

!

Controller

Device APIs

@ O

Switch Router Wireless Firewall

Network
Devices

Controllers 127

Controller APIs

Controllers expose northbound APIs to integrate with other enterprise IT systems, such
as Business Intelligence, monitoring, logging and security systems. Northbound APIs
are exposed by the REST framework.

Controllers integrate southbound with network elements via NETCONF, but other op-
tions exist including RESTCONF, OpenFlow, and the gRPC Network Management Inter-
face (gNMI).

Controllers 128

Common Controllers

The following is an overview of controllers commonly used in enterprise networks.

Cisco Digital Network Architecture (DNA) Center

The Cisco DNA Center dashboard provides an intuitive and simple overview of network
health and clear drill-down menus for quickly identifying and remediating issues. The
network design interface allows quick creation of physical maps and logical views of all
network deployment locations. Automation and orchestration provide Zero-Touch Pro-
visioning based on profiles which facilitate remote branch network deployments. Ad-
vanced assurance and analytics capabilities use deep insights from devices, streaming
telemetry, and rich context to deliver an uncompromised experience while proactively
monitoring, troubleshooting, and optimizing wired and wireless networks.

Key features of DNA Center are:
 simple design: network design using intuitive workflows, starting with locations
where network devices will be deployed

 secure policy: define user and device profiles that facilitate highly secure access
and network segmentation based on business needs

 automated provisioning: policy-based automation to deliver services to the
network based on business priority and to simplify device deployment

* proactive assurance: deep insights with rich context to deliver a consistent
experience and proactive optimization of the network

» programmability and APIs: support for Representational State Transfer (REST)
APIs at the northbound layer for programmability

More information about Cisco DNA Center is available from https. /www.cisco.com

go/dnacenter

https://www.cisco.com/go/dnacenter

Controllers 129

Cisco Network Service Orchestrator (NSO)
Cisco Network Services Orchestrator is an orchestration platform for hybrid networks.

Northbound, NSO provides a number of interfaces including NETCONF and REST based
on services defined using YANG data models to automate network services.

NSO supports various southbound network management protocols, including NET-
CONF and CLI, to maintain multi-vendor device configurations in the network.

Some of the NSO advantages are:
» device abstraction: abstracts device details and focuses on the network services
that are being managed

» network-wide transactions: enables network-wide transactional service
provisioning
« simplified automation: provides a simpler automation workflow

 multi-vendor: makes possible management of multi-vendor environments

OpenDaylight (ODL)

ODL is an open source controller which assists control plane applications to interact
with network devices through a variety of southbound protocols including NETCONF
and OpenFlow. ODL architecture is based on a YANG data model-driven service ab-
straction layer and supports the northbound interfaces of NETCONF, REST and REST-
CONF.

Cisco and others are collaborating on this open source project. ODL is available for
download or via a commercial distribution.

Controllers 130

Why Use a Controller?

Controller-level and device-level automation are both valid choices for managing a
network. Device-level automation provides more control but requires more effort to
manage. Conversely, controllers do not allow the granular level of control of device-
level automation and are easier to manage.

For example, it is possible to deploy the individual features of a Software-Defined
Access fabric device-by-device by using either NETCONF or even CLI, with
configuration management tools such as Ansible and Puppet. This allows the user more
granular control than providing the configuration through DNA Center. However,
configuring a large number of devices for a fabric in this way would require more work
to define the configuration parameters, data models, and to ensure that proper
validation of configurations takes place. DNA Center would do these automatically.

It is also possible to use a combination of controller-based and device-based
automation. For example, DNA Center could be used to provision and manage most of
the settings in the network, but certain scripts could be used to collect certain pieces of
operational data.

While the controller still manages the devices and provides a layer of abstraction to the
network operator, it is still possible to use scripts or other tools to automate the
network using the northbound REST APIs available to the controller.

DevOps and
NetDevOps

DevOps and NetDevOps 132

Introduction

Traditionally, software development has followed a waterfall process where all
requirements and features are defined at the beginning. Major releases deliver
significant software changes and new capabilities. However, the time between major
releases can be months or years.

In recent years, there has been a major shift toward an Agile Software Development
methodology, based on small increments that minimize the amount of up-front
planning and design. Short, iterative bursts of development, or sprints, are key
characteristics of this methodology. Each iteration involves a team working across plan
ning, analysis, design, coding, unit testing, and acceptance testing.

The Agile Software Development process can create friction between development and
operations teams due to different priorities as shown in the table below:

TABLE Development vs Operations Priorities

Frequent Changes Stability

Feature Development Business Operations
Creativity Productivity

"Let me try this!" " Please no change!"

Development and Operations (DevOps) is a set of practices which reduces the time
between developing a change to a system and rolling it out in production while ensuring
high quality. This requires the adoption of a new culture, new team structure, and new
processes and workflows which aim to eliminate the friction between Development and
Operations.

DevOps and NetDevOps 133

NetDevOps is the integration of Networking teams with DevOps teams. This applies the
values of automation, continuous integration and scalability to the network
infrastructure.

NetDevOps requires the network engineer to master networking skills, learn scripting
and the tools necessary for Continuous Integration/Continuous Delivery (CI/CD).

DevOps and NetDevOps 134

Continuous Integration and Delivery

Continuous Integration and Continuous Delivery (CI/CD) reduces the time to deploy
changes in production and increases the confidence that changes will be successful. It
is enabled through an automated testing process and integration with source control
systems for an easy rollback in case failures occur. The benefits of implementing C1/CD
are shorter development cycles, a faster pace of innovation, and a lower total cost.

Continuous Integration merges all developer working copies to a shared code
repository several times a day. It includes automated testing to ensure changes
do not break the “application” or in the case of Cisco 10S XE, the network.

CD stands for either Continuous Delivery or Continuous Deployment. With Continuous
Delivery, the changes are manually released according to schedule. With Continuous

Deployment, the entire deployment process is fully automated.

Most network operators are expected to implement a Continuous Delivery model and
move to Continuous Deployment once they are confident with the entire process.

The steps of the CI/CD workflow are illustrated in the diagram below.

DIAGRAM Cl/CD Workflow

Tool Chain
Orchestration

Validate

Cisco I0S XE

DevOps and NetDevOps 135

Jenkins, GitLab, Trevis CI, Drone, and Bamboo are examples of the Tool Chain Orches-

trator which manages the entire workflow:

Code: Engineers create a branch on the shared source control repository, publish
the proposed changes, and merge the updates into the master branch. Source
control tools such as Git, GitHub, GitLab and Gogs are the main tools used in this
phase.

GitHub is the most popular tool and merges can be requested by issuing a Pull
Request (PR) for the master branch that can automatically trigger the next phase.

Build: Upon merging of new code, a test environment is built from scratch or
reconfigured, replicating the production environment. For example, GitHub
services can be used to send a webhook into Jenkins to create a Cisco VIRL
instance.

Test: The changes are tested in the environment created in the Build phase.
Depending on tests results, the process moves to the next phase or notifies the
engineer about the failure and stops the workflow. For example, Jenkins can
trigger automated tests for data validation, reachability and performance by
leveraging common tools such as Python scripts and the iPerf tool.

Deploy: If the tests are successful, the changes are deployed in production.
Typically the deployment is performed using a configuration management tool
such as Ansible or Puppet, and can be either manual or automatic, depending on
whether a Continuous Delivery or a Continuous Deployment methodology is
implemented.

Validate: After the changes are deployed, tests are performed to ensure
everything is working in production. If the tests fail, the configurations are
automatically rolled back. Test results are stored for tracking purposes and
notifications are sent to the DevOps team using collaboration tools such as Cisco
Webex Teams, and ticketing systems such as ServiceNow, Jira or email.

DevOps and NetDevOps 136

DevOps Tools

DevOps engineers need to identify proper tools. There are many Open Source and
commercial tools available. A comprehensive list of these tools can be found in the Peri-

of-devops-tools

The image below shows the most common tools used in each phase of the CI/CD work-
flow.

DIAGRAM Cl/CD Workflow Tool Examples

NELTS

Tool Chain
Orchestration

Validate

GitHub VIRL Python Ansible Python
VAGRANT

Commonly Used DevOps Tools

Jenkins

Jenkins is a self-contained, open source Tool Chain Orchestrator to automate building,
testing, and delivering or deploying software.

https://xebialabs.com/periodic-table-of-devops-tools/

DevOps and NetDevOps 137

GitHub

GitHub is a web-based hosting service for software version control using Git. It pro-
vides access control and several collaboration features such as bug tracking, feature re-
quests, task management, and wikis for every project.

GitHub offers plans for both private repositories and free public accounts to host open
source projects.

Virtual Internet Routing Lab (VIRL)

VIRL is a Cisco software-based network simulation framework that makes possible the
rapid design, configuration, and testing of network infrastructure. It assists virtual net-
work devices running Cisco operating systems, to integrate with physical network de-
vices, third-party virtual machines and servers.

VIRL supports building an accurate development and test environment which closely
matches enterprise network infrastructures. More information is available at /ittp:/ virl._
0.com

Vagrant

Vagrant is a tool for building and managing virtual machine environments. With
Vagrant, developers can build a virtual environment using a simple configuration file.
The Vagrant file is used to create virtual machines from basic templates (known as
"boxes"), customize the operating system, install software, configure networking and
more. The network engineer can also quickly create test virtual environments for Cisco
IOS XE, IOS XR, and NX-OS.

More information can be found at /itips:/ www, vagrantup.coim

Configuration Management Tools (CMT)
CMT automate systems and applications consistently at scale. The benefits of such
tools are:

* a consistent approach across different vendors and operating systems

* easy integration with software version control systems

http://virl.cisco.com/
https://www.vagrantup.com/

DevOps and NetDevOps 138

* asimple way to collect hardware and software device information
* an intent-based configuration approach

* no changes are made if the system, application, or device is already in the desired
state ("idempotency")

In networking, CMTs were initially used only to automate data center networks, but are
now being used in enterprise networks as well.

CMT fall into two categories: agent-based or agent-less. Agent-based architectures re-
quire a software agent to be installed on the managed device. Agent-less architectures
are more popular in enterprise networks where third party software is typically not in-
stalled on network devices.

The two most popular CMTs are:

* Ansible: an agent-less open source CMT which allows the operator to describe
the automation jobs in an easily readable format. Ansible configurations are
defined in files called "playbooks” which are written using YAML. Ansible supports
Cisco 10S XE devices using CLI and NETCONF-based configurations.

* Puppet: currently requires an agent on the managed device but is moving towards
an agent-less architecture for network devices. Puppet will support Cisco I0S XE
devices and will be based on CLI and NETCONF.

Webex Teams

Webex Teams is a collaboration environment for com- munications between team
members. It also has integrations with bots and Webhooks. Conversations in Webex
Teams occur in virtual meeting rooms. Webex Team REST APIs provide easy integra
tions with CI/CD workflows and support notifications for ChatOps rooms.

DevOps and NetDevOps 139

Next Steps

The following Cisco DevNet GitHub repository provides a reference for building CI/CD
workflows: https:/github.com /CiscoDevNet /iosxe-ci-cd

Cisco provides abstractions for Cisco Validated Designs at https:,//cs.co/validated
design

Ansible Playbooks for L2 Cisco Validated Design (CVD) configurations are available on
GitHub at https./github.com/CiscoDevNet/cvd-config-templates

https://github.com/CiscoDevNet/iosxe-ci-cd
https://cs.co/validated_design
https://github.com/CiscoDevNet/cvd-config-templates

Appendices

Appendices 141

Additional Resources

The following list includes some resources to continue learning and using programma-
bility within the network.

Cisco Live!
Attending Cisco Live! provides great opportunities to increase personal knowledge of
Cisco products. More information about this event can be found at https:/www.

ciscolive.com

Recordings of previous Cisco Live! sessions can be accessed online from the Cisco Live
On-Demand Library at https: //www.ciscolive.com /global /on-demand-Iibrary

The following programmability sessions are recommended:

* DEVNET-1693: Model-Driven Telemetry for Cisco I0S XE

* DEVNET-1801: Insights into your WLC with Wireless Streaming Telemetry

* DEVNET-1828: Cisco's Open Device Programmability Strategy

* DEVNET-2203: Build a Network Configuration CICD Pipeline

* DEVNET-2556: Dive into Leveraging Python on Cisco I0S XE

* BRKCRS-1450: Introduction to Catalyst Programmability

* BRKCRS-2004: Application Hosting and Model-Driven Telemetry on Cisco IOS XE
* BRKCRS-2451: Scripting Catalyst Switches

* BRKSDN-2935: From Zero to Network Programmability in 90 minutes

https://www.ciscolive.com/global
https://www.ciscolive.com/global/on-demand-library

Appendices 142

Cisco DevNet

Cisco DevNet is a program that helps developers and network engineers write applica-
tions and develop integrations with Cisco products, platforms and APIs. Some recom-
mended resources include:

* Network Programmability Basics - expert-led video series introducing network
programmability https://developer.cisco.com/video/net-prog-basics

* Network Programmability Learning Labs - guided learning platform for network

* I0OS XE Sandbox - "Always On" Sandbox provides an environment for developers
and network engineers to build and test their applications and scripts
https: //devnetsandbox.cisco.com

* Developer Support Spark Chat https.,/developer.cisco.com /spark-chat/)

* Knowledge Base and Community https.,/devnetsupport.cisco.com

* Events - in-person events where developers and network engineers can listen,
learn and practice with hands-on training. More information about events can be
found at https:/devnetevents.cisco.com

dCloud

Cisco dCloud is a free online platform for evaluating Cisco solutions and products. It
provides an extensive catalog of labs, demos, training and Sandboxes for a variety of
Cisco technologies including I0S XE programmability labs. Some labs have open access,
while others may require a reservation.

dCloud can be extended to an existing enterprise network with the use of a VPN router.
The lab environment can also be shared with a team. More information can be found at
https: //dcloud.cisco.com

https://developer.cisco.com/video/net-prog-basics
https://learninglabs.cisco.com/tracks/iosxe-programmability
https://devnetsandbox.cisco.com/
https://developer.cisco.com/spark-chat/
https://devnetsupport.cisco.com/
https://devnetevents.cisco.com/
https://dcloud.cisco.com/

Appendices 143

DIAGRAM dCloud Solution Catalog

Al AT et Ceslog Suppon Hews o0
—
g

Cantard Procinars N Cata 00

[wizeand ety Pubiswed Cute - Zigeo Tutatest Sesteking Pro 9,

AN LD Teweuhin e Do Gatahe Sedtcag Pegrermanity 1t @

L) Lzmenssabzn
Selutians
Semeneion Imerprchemeons Swichas

Arrrss Lowtl I P etk o it Prushoncn HETETH et i e sttt greag i e iednseh vsieasl e

T

Build Your Own Programming Environment (BYOE)

One of the most important aspects of acquiring new skills is practice. A critical tool is a
developer environment in which to learn, test and practice programmability skills. De-
vNet has instructions for building a Python environment on a Windows/Mac/Linux
laptop.

The lab is called LM-4002: Event Preparation for DevNet Express for DNA v2.1 available

Cisco Training and Certifications

Training

Programming for Network Engineers (PRNE) - Learn how to manage a network more
efficiently with Network Programmability and develop Python programming fundamen-
tal skills. PRNE can be accessed at https:/cs.co/training._prne

https://learninglabs.cisco.com/tracks/devnet-express-dna
https://cs.co/training_prne

Appendices 144

Certifications

Cisco Network Programmability Design and Implementation Specialist (300-550
NPDESI) - Addresses the evolving role of network engineers towards more programma-
bility, automation, and orchestration, enabling them to leverage the powerful level of
abstraction provided by controller-based architectures and device APIs to create real

training_npdesi

Cisco Network Programmability Developer Specialist (300-560 NPDEV) - Addresses
software developers looking to automate network infrastructure and/or utilize APIs
and toolkits to interface with SDN controllers and individual devices. More information
about this certification can be found at https. /cs.co/training_npdev

https://cs.co/training_npdesi
https://cs.co/training_npdev

Appendices

Acronyms

AAA - Authentication, Authorization, and Accounting
ACL - Access Control List

API - Application Programming Interface

BER - Basic Encoding Rules

BGP - Border Gateway Protocol

BI - Business Intelligence

CAF - Cisco Application-Hosting Framework

CCO - Cisco Connection Online

CD - Continuous Delivery or Continuous Deployment
CDP - Cisco Discovery Protocol

CI - Continous Integration

CLI - Command-line Interface

CMT - Configuration Management Tools

CoS - Class of Service

CPU - Central Processing Unit

CRUD - Create, Read, Update and Delete

CVD - Cisco Validated Design

145

Appendices

CVE - Common Vulnerabilities and Exposures
CVS - Concurrent Versions System

DB - Database

DevOps - Development and Operations
DHCP - Dynamic Host Configuration Protocol
DNA - Digital Network Architecture

DNA-C - Digital Network Architecture Center
DNS - Domain Name System

DoS - Denial of Service

EEM - Embedded Event Manager

EIGRP - Enhanced Interior Gateway Routing Protocol
ELK - Elasticsearch Logstash and Kibana

ETA - Encrypted Traffic Analytics

FTP - File Transfer Protocol

GPB - Google Protocol Buffer

gNMI - gRPC Network Management Interface
gRPC - gRPC Remote Procedure Call

GUI - Graphical User Interface

HTML - Hypertext Markup Language

146

HTTP - Hypertext Transfer Protocol

HTTPS - Hypertext Transfer Protocol Secure
IEEE - Institute of Electrical and Electronics Engineers
IETF - Internet Engineering Task Force

IoT - Internet of Things

I0x - IOS + Linux

IP - Internet Protocol

IT - Information Technology

JRE - Java Runtime Environment

JSON - JavaScript Object Notation

KPI - Key Performance Indicator

KVM - Kernel-based Virtual Machine

LXC - Linux Container

MAC - Media Access Control

MIB - Management Information Base

NACM - NETCONTF Access Control Model
NED - Network Element Driver

NETCONF - Network Configuration Protocol

NetDevOps - Network Development and Operations

Appendices

147

Appendices 148

NMS - Network Management System

NOC - Network Operation Center

NPDESI - Cisco Network Programmability Design and Implementation Specialist
NPDEV - Cisco Network Programmability Developer Specialist
NSO - Network Service Orchestrator

NVRAM - Non-Volatile Random-Access Memory

OC - OpenConfig

ODL - OpenDaylight

OID - Object Identifier

OS - Operating System

OSPF - Open Shortest Path First

PIP - Pip Installs Python

PnP - Plug and Play

PR - Pull Request

PRNE - Programming for Network Engineers

PXE - Pre-boot Execution Environment

QoS - Quality of Service

RADIUS - Remote Authentication Dial-In User Service

REST - Representational State Transfer

Appendices 149

RESTCONF - REST Configuration

RFC - Request For Comment

RAM - Random Access Memory

RMA - Return Material Authorization

ROMmon - Read-Only Memory Monitor

RPM - Red Hat Package Manager

SATA - Serial Advanced Technology Attachment
SN - Serial Number

SNMP - Simple Network Management Protocol
SPAN - Switch Port Analyzer

SSD - Solid State Drive

SSH - Secure Shell

TFTP - Trivial File Transfer Protocol

URI - Uniform Resource Identifier

USB - Universal Serial Bus

VIRL - Virtual Internet Routing Lab

VM - Virtual Machine

VPG - Virtual Port Group

VRF - Virtual Routing and Forwarding

VTY - Virtual Terminal Line

WAN - Wide Area Network

WLC - Wireless LAN Controller

XML - eXtensible Markup Language
YANG - Yet Another Next Generation
YAML - YAML Ain't Markup Language
YUM - Yellowdog Updater Modified
YDK - YANG Development Kit

ZTP - Zero-Touch Provisioning

Appendices

150

