

APPENDIX D

Connector and Cable Specifications

- Connector Specifications, page B-1
- Cables and Adapters, page B-3

Connector Specifications

- $10 / 100$ and $10 / 100 / 1000$ Ports, page B-1
- SFP Module Connectors, page B-2
- Dual-Purpose Ports, page B-2
- Cables and Adapters, page B-3

10/100 and 10/100/1000 Ports

The 10/100 and 10/100/1000 Ethernet ports on switches use RJ-45 connectors and Ethernet pinouts with internal crossovers. Figure B-1 and Figure B-2 show the pinouts.

Figure B-1 10/100 Port Pinouts

Pin	Label	12345678
1	RD+	
2	RD-	
3	TD+	
4	NC	
5	NC	
6	TD-	
7	NC	
8	NC	

Figure B－2 10／100／1000 Port Pinouts

Pin	Label	12345678
1	TP0＋	
2	TPO－	
3	TP1＋	
4	TP2＋	
5	TP2－	
6	TP1－	
7	TP3＋	
8	TP3－	

SFP Module Connectors

Figure B－3 Fiber－Optic SFP Module LC Connector

$\stackrel{\circ}{\stackrel{\circ}{\circ}}$

Invisible laser radiation may be emitted from disconnected fibers or connectors．Do not stare into beams or view directly with optical instruments．Statement 1051

Dual－Purpose Ports

The 10／100／1000 Ethernet ports on the dual－purpose ports use RJ－45 connectors．

Figure B－4 10／100／1000 Port Pinouts

Pin	Label	12345678
1	TP0＋	7月明日月碞
2	TP0－	
3	TP1＋	\geqslant ，
4	TP2＋	
5	TP2－	
6	TP1－	
7	TP3＋	
8	TP3－	

Cables and Adapters

- SFP Module Cables, page B-3
- Cable Pinouts, page B-4
- Console Port Adapter Pinouts, page B-5

SFP Module Cables

Each port must match the wave-length specifications on each end of the cable, and for reliable communications, the cable must not exceed the allowable length. Copper 1000BASE-T SFP transceivers use standard four twisted-pair, Category 5 (or greater) cable at lengths up to 328 feet (100 meters).

Table B-1

Fiber-Optic SFP Module Port Cabling Specifications

Type of SFP Module	Wavelength (nanometers)	Fiber Type	Core Size/Cladding Size (micron)	Modal Bandwidth (MHz/km)	Cable Distance

[^0]2. A mode-conditioning patch cord is required. Using an ordinary patch cord with MMF, 1000BASE-LX/LH SFP modules, and a short link distance can cause transceiver saturation, resulting in an elevated bit error rate (BER). When using the LX/LH SFP module with 62.5-micron diameter MMF, you must also install a mode-conditioning patch cord between the SFP module and the MMF cable on both the sending and receiving ends of the link. The mode-conditioning patch cord is required for link distances greater than 984 feet $(300 \mathrm{~m})$.
3. 1000BASE-ZX SFP modules can send data up to 62 miles (100 km) by using dispersion-shifted SMF or low-attenuation SMF; the distance depends on the fiber quality, the number of splices, and the connectors.
4. A mode-field diameter/cladding diameter $=9$ micrometers $/ 125$ micrometers.

When the fiber-optic cable span is less than 15.43 miles (25 km), insert a 5 -decibel (dB) or $10-\mathrm{dB}$ inline optical attenuator between the fiber-optic cable plant and the receiving port on the 1000BASE-ZX SFP module.

Cable Pinouts

Figure B-5 Two Twisted-Pair Straight-Through Cable Schematic for 10/100 Ports

Switch	Router or PC
3 TD+	$\rightarrow 3 \mathrm{RD}+$
6 TD-	$\rightarrow 6$ RD-
1 RD+	- 1 TD+
2 RD-	- 2 TD-

Figure B-6 Two Twisted-Pair Crossover Cable Schematic for 10/100 Ports
Switch

Figure B-7 Four Twisted-Pair Straight-Through Cable Schematic for 1000BASE-T Ports

Switch	Router or PC
1 TP0+	1 TPO+
2 TPO-	2 TPO-
3 TP1+	3 TP1+
6 TP1-	6 TP1-
4 TP2+	4 TP2+
5 TP2-	5 TP2-
7 TP3+	7 TP3+
8 TP3-	8 TP3-

Figure B-8 Four Twisted-Pair Crossover Cable Schematics for 1000BASE-T Ports

To identify a crossover cable, hold the cable ends side-by-side, with the tab at the back. The wire connected to pin 1 on the left end should be the same color as the wire connected to pin 3 on the right end. The wire connected to pin 2 on the left end should be the same color as the wire connected to pin 6 on the right end.

Figure B-9 Identifying a Crossover Cable

Console Port Adapter Pinouts

The console port uses an 8-pin RJ-45 connector, which is described in Table B-2 and Table B-3. If you did not order a console cable, you need to provide an RJ-45-to-DB-9 adapter cable to connect the switch console port to a PC console port. You need to provide an RJ-45-to-DB- 25 female DTE adapter if you want to connect the switch console port to a terminal. You can order an adapter (part number ACS-DSBUASYN=). For console port and adapter pinout information, see Table B-2 and Table B-3.
Table B-2 lists the pinouts for the console port, the RJ-45-to-DB-9 adapter cable, and the console device.
Table B-2 Console Port Signaling Using a DB-9 Adapter

Switch Console Port (DTE)	RJ-45-to-DB-9 Terminal Adapter	Console Device
Signal	DB-9 Pin	Signal
RTS	8	CTS
DTR	6	DSR

Table B-2 Console Port Signaling Using a DB-9 Adapter (continued)

Switch Console Port (DTE)	RJ-45-to-DB-9 Terminal Adapter	Console Device
Signal	DB-9 Pin	Signal
TxD	2	RxD
GND	5	GND
RxD	3	TxD
DSR	4	DTR
CTS	7	RTS

Table B-3 lists the pinouts for the switch console port, RJ-45-to-DB-25 female DTE adapter, and the console device.

Note The RJ-45-to-DB-25 female DTE adapter is not supplied with the switch. You can order this adapter from Cisco (part number ACS-DSBUASYN=).

Table B-3 Console Port Signaling Using a DB-25 Adapter

Switch Console Port (DTE)	RJ-45-to-DB-25 Adapter	Console Device
Signal	DB-25 Pin	Signal
RTS	5	CTS
DTR	6	DSR
TxD	3	RxD
GND	7	GND
RxD	2	TxD
DSR	20	DTR
CTS	4	RTS

[^0]: 1. Modal bandwidth applies only to multimode fiber.
