
 

Cisco Service Portal Integration Guide
Release 9.4.1
February, 2013
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706 
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com


 

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL 
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT 
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT 
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE 
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public 
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. 

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH 
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT 
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF 
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, 
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO 
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at 
www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership 
relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display 
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in 
illustrative content is unintentional and coincidental.

Cisco Service Portal Integration Guide
© 2013 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks


 

OL-26390-02
C O N T E N T S  
About this Guide xi

C H A P T E R  1 Directory Integration and API 1-1

Overview 1-1

Introduction 1-1

Prerequisites 1-2

Purpose and Scope 1-2

Intended Audience 1-2

Gathering Directory Integration Requirements 1-2

Overview 1-2

Defining Datasources 1-3

Defining Mappings 1-4

Defining Integration Events, Operations and Steps 1-9

Configuring Directory Integration 1-20

Enabling Directory Integration 1-20

Configuring Directory Integration 1-22

Configuring Datasource Information 1-22

Configuring Mappings 1-26

Testing Mappings 1-31

Configuring Directory Integration Events 1-34

Using Custom Code in Directory Integration 1-36

Custom Code Operation Interfaces 1-38

Custom Java Class Mapping Interface 1-44

Directory Server API 1-45

Import/Refresh Person API 1-47

Best Practices 1-48

Compiling Custom Code Java Files 1-48

Coding Guidelines 1-49

Configuring Custom Code in the Administration Module 1-49

Deploying Custom Code 1-51

Sample View/Usage of the API 1-51

SQL Datasource 1-51

Datasource Definition 1-52

Sample Mapping 1-53
iii
Cisco Service Portal Integration Guide



 

Contents
Sample Event Configuration 1-54

Sample Code for SQL-Based Person Lookup 1-55

Supported Time Zones 1-63

Sample build.xml File 1-65

C H A P T E R  2 Service Link 2-1

Overview 2-1

Introduction 2-1

Service Link Prerequisites 2-2

Service Link Design Methodology and Components 2-2

Business Engine and nsXML 2-3

Service Link Design and Development 2-4

Overview 2-4

Accessing Service Link 2-5

Designing the Communication Protocol 2-8

Adapters 2-8

Agents 2-10

Transformations 2-20

Reviewing Agent Definitions and Property Sheets 2-22

Configuring a Task to use a Service Link Agent 2-23

nsXML Messages 2-25

Creating and Deploying a Service Link Agent 2-33

Monitoring Service Link Transactions 2-34

Viewing Messages from the Service Link Home Page 2-34

Viewing Messages 2-35

Viewing External Tasks 2-39

Republishing Service Link Messages 2-42

Service Link Adapters 2-42

Auto-Complete Adapter 2-43

Dummy Adapter 2-43

Database Adapter 2-43

File Adapter 2-49

HTTP/WS Adapter 2-50

JMS Adapter 2-54

MQ Adapter 2-55

Service Item Listener Adapter 2-56

VMware Adapter 2-57

Web Service Listener Adapter 2-58

Integration Wizard 2-60
iv
Cisco Service Portal Integration Guide

OL-26390-02



 

Contents
Overview 2-60

Using the Integration Wizard 2-60

Outbound Request Parameter Mappings 2-63

Outbound Response Parameter Mappings 2-64

Integration Summary 2-64

Service Link Troubleshooting and Administration 2-66

Checking Service Link Status 2-66

Starting and Stopping Agents 2-66

Logging 2-66

Message Purging 2-67

Application Server Configuration Files 2-68

Online Error Log 2-68

Prebuilt Functions 2-69

Overview 2-69

Function Usage 2-69

Function Synopsis 2-70

C H A P T E R  3 Service Link Adapter Development Kit 3-1

Overview 3-1

Intended Audience 3-1

Getting Started 3-1

Installing the JDK 3-2

Installing the ADK 3-2

ADK Structure 3-2

Creating Adapter Source Structures 3-3

Compiling Adapters 3-3

Deploying Adapters 3-4

What is an Adapter? 3-4

Concepts 3-4

Types of Adapters 3-5

Properties 3-6

Example Adapter 3-6

Directory Structure 3-6

Outbound Adapter Class 3-6

Poller Inbound Adapter Class 3-8

Listener Inbound Adapter 3-9

Exception Handler 3-9

Transaction Support 3-9

Understanding the adapter.xml Descriptor 3-10
v
Cisco Service Portal Integration Guide

OL-26390-02



 

Contents
nsXML Format 3-13

Message 3-14

Task Started or Task Cancelled 3-14

Task 3-15

Requisition 3-17

Requisition Entry 3-18

Data Values 3-19

Service 3-20

Dictionary 3-21

Form 3-22

Agent Parameter 3-23

Sample Inbound and Outbound Documents 3-24

task-started or task-cancelled (outgoing) 3-24

take-action (incoming) 3-30

send-parameters (incoming) 3-30

update-data (incoming) 3-30

add-comments (incoming) 3-31

C H A P T E R  4 Remedy Service Adapter 4-1

Overview 4-1

Integration Scenarios 4-2

Prerequisites 4-4

Service Portal Requirements 4-4

BMC Requirements 4-4

BMC Remedy Configuration Steps (Sample) 4-4

Obtaining the Adapter 4-4

Installing the Adapter 4-5

Viewing the Adapter 4-5

Configuring the Agent 4-5

Outbound Properties 4-7

Inbound Properties 4-7

Configuring the Transformation 4-7

Inbound Transformation Details 4-8

Outbound Transformation Details 4-9

Outbound and Inbound Date Format Transformations 4-10

Designing a Service for a Request Handled by the Remedy Adapter 4-11

Test Scenario 4-12

Log Messages 4-12
vi
Cisco Service Portal Integration Guide

OL-26390-02



 

Contents
C H A P T E R  5 Web Services 5-1

Overview 5-1

Audience 5-1

Web Services 5-1

Prerequisites for Web Services 5-2

Service Portal Installation and Configuration 5-2

Testing and Development Environment 5-4

Generating Code 5-4

Web Services for Request Management 5-5

Overview 5-5

Sample Service Definition 5-5

Authentication 5-6

Getting the Service Definition 5-8

Submitting a Requisition 5-11

Getting a List of Requisitions 5-13

Getting the Requisition Status 5-13

Adding Comments to a Requisition 5-15

Cancelling a Requisition 5-15

Web Services for Task Management 5-16

Overview 5-16

Getting a List of Authorizations 5-16

Approving or Rejecting an Authorization 5-18

Web Services for Portfolio Management 5-19

Overview 5-19

Exporting Offering Cost Data 5-19

Retrieving Service Offerings and their Status 5-19

Sample Requests and Responses 5-21

getServiceDefinition Response 5-21

Sample submitRequisition Request 5-31

Sample exportOfferingCostData Response 5-35

Web Services Error Messages 5-40

C H A P T E R  6 REST API 6-1

Overview 6-1

Supported Entities 6-1

Operations 6-2

Conventions and Syntax 6-2

Filters 6-3
vii
Cisco Service Portal Integration Guide

OL-26390-02



 

Contents
Sorting 6-6

Paging 6-7

Nested Entities 6-8

Invoking REST API 6-9

Using nsAPI with HTTP Clients 6-9

Using nsAPI with JavaScript Portlets 6-10

Using nsAPI with JSR Portlets 6-12

Detailed API Reference 6-16

Definitional Data 6-16

Directory Data 6-24

Transactional Data 6-31

Lifecycle Center Data 6-39

Service Portal Data 6-47

Error Messages 6-48

Quick Reference 6-49

C H A P T E R  7 JSR Portlets 7-1

Overview 7-1

Portlet Structure and Packaging 7-1

JBoss Application Server 7-1

Weblogic Application Server 7-3

WebSphere Application Server 7-4

Dependent Libraries 7-5

Portlet Development 7-6

MyJSR.css 7-8

MyJSRCreatePersonView.js 7-8

MyJSREdit.js 7-10

MyJSRHelp.js 7-10

MyJSRView.js 7-10

portlet.xml 7-13

web.xml 7-14

MyJSREdit.jsp 7-15

MyJSRHelp.jsp 7-16

MyJSRView_listperson.jsp 7-17

MyJSRView_updateperson.jsp 7-19

MyJSRController.java 7-20

MyJSRApplicationContext.xml 7-26

jsrportlet.properties 7-26

Log4j.properties 7-26
viii
Cisco Service Portal Integration Guide

OL-26390-02



 

Contents
jboss-deployment-structure.xml 7-27

Compiling JSR Portlet Controller 7-27

Portlet Deployment 7-28

I N D E X
ix
Cisco Service Portal Integration Guide

OL-26390-02



 

Contents
x
Cisco Service Portal Integration Guide

OL-26390-02



 

About this Guide

Objectives
The Cisco Service Portal Integration Guide explains all of the features you can use to integrate the Cisco 
Service Portal (Service Portal) application to other applications and systems for a complete solution at 
your site.

Service Portal is built to integrate with your corporate directory so that it can consume data from that 
directory to determine each end-user’s department membership, role, and place in the corporate 
reporting structure. The data in that directory may need to be augmented and transformed at the same 
time as it is loaded into the Portal database, however, to fulfill the specific requirements of your service 
catalog. This guide explains how you do just that.

Service Portal also provides a number of APIs for solving complex service delivery use-cases, including 
automation, and the submission of service requests and instantiation of service items through a 
mechanism other than the Portal user interface. Those APIs are fully documented here.

Finally, this guide explains the Service Link module, through which you can configure Agents that 
orchestrate workflows in external systems.

Audience
This guide is aimed at the individual or team responsible for implementing the Service Portal application 
and integrating it with all other corporate systems, including the corporate directory or directories.

Document Organization
The Cisco Service Portal Integration Guide is divided into the following seven chapters:

• Chapter 1, “Directory Integration and API”: This chapter describes how to configure directory 
integration for Service Portal using the Administration module. It also describes the set of public 
APIs and interfaces available for customizing the integration options available; best practices for 
compiling and deploying custom code; and steps to configure the custom code using the 
Administration module.

• Chapter 2, “Service Link”: This chapter describes the Service Link module that provides integration 
with external systems.

• Chapter 3, “Service Link Adapter Development Kit”: This chapter contains instructions for using 
the Service Link Adapter Development Kit (ADK) to develop Service Link adapters. 
xi
Cisco Service Portal Integration Guide

OL-26390-02



 

About this Guide
• Chapter 4, “Remedy Service Adapter”: This chapter describes the Cisco Service Adapter for BMC® 
Remedy® IT Service Management.

• Chapter 5, “Web Services”: This chapter describes the use of web services for Service Portal.

• Chapter 6, “REST API”: This chapter describes the Cisco standard REST (Representational State 
Transfer) APIs and Java stubs for accessing entities defined in Service Portal. 

• Chapter 7, “JSR Portlets”: This chapter covers some guidelines on the development and deployment 
of JSR portlets for the Portal Manager solution.

Conventions
This document uses the following conventions: 

Note Means reader take note.

Tip Means the following information will help you solve a problem. 

Caution Means reader be careful. In this situation, you might perform an action that could result in equipment 
damage or loss of data.

Convention Indication

bold font Commands and keywords and user-entered text appear in bold font.

italic font Document titles, new or emphasized terms, and arguments for which you supply 
values are in italic font.

[   ] Elements in square brackets are optional.

{x | y | z } Required alternative keywords are grouped in braces and separated by 
vertical bars.

[ x | y | z ] Optional alternative keywords are grouped in brackets and separated by 
vertical bars.

string A nonquoted set of characters. Do not use quotation marks around the string or 
the string will include the quotation marks.

<   > Nonprinting characters such as passwords are in angle brackets.

[   ] Default responses to system prompts are in square brackets.

!, # An exclamation point (!) or a pound sign (#) at the beginning of a line of code 
indicates a comment line.

Choose Menu item > 
Submenu item from 
the X menu.

Selections from a menu path use this format.

For example: Choose Import > Formats from the File menu.
xii
Cisco Service Portal Integration Guide

OL-26390-02



 

About this Guide
Timesaver Means the described action saves time. You can save time by performing the action described in 
the paragraph. 

Warning Means reader be warned. In this situation, you might perform an action that could result in 
bodily injury.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional 
information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and 
revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What’s New in Cisco Product Documentation as an RSS feed and set content to be 
delivered directly to your desktop using a reader application. The RSS feeds are a free service. Cisco currently 
supports RSS Version 2.0.
xiii
Cisco Service Portal Integration Guide

OL-26390-02

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html


 

About this Guide
xiv
Cisco Service Portal Integration Guide

OL-26390-02



 

OL-26390-02
C H A P T E R 1

Directory Integration and API

• Overview, page 1-1

• Gathering Directory Integration Requirements , page 1-2

• Configuring Directory Integration, page 1-20

• Using Custom Code in Directory Integration, page 1-36

• Best Practices, page 1-48

• Sample View/Usage of the API , page 1-51

• Supported Time Zones, page 1-63

• Sample build.xml File, page 1-65

Overview

Introduction
Service Portal Directory Integration simplifies security administration and enhances user convenience 
and productivity by implementing centralized user authentication and synchronization with an enterprise 
directory.

Service Portal enables customers to integrate with an external directory (typically using the LDAP 
protocol) for user information synchronization. This synchronization is invoked whenever a user is 
selected for Order-on-behalf (OOB) or during Person Lookup.

Single Sign-On (SSO) integration enables centralized user authentication, eliminating the need for a 
separate login mechanism. When the SSO event is enabled, users who are already logged into an 
enterprise portal with which Service Portal has been integrated do not have to login again. User 
authorization data is stored within the application database. Service Portal relies on the SSO tool to 
protect all Demand Center and Request Center URLs and for the SSO tool to perform authentication. 
Service Portal expects the SSO tool to provide person identification information for each successful 
authentication to a Service Portal URL via the HTTP header. Once a person has been authenticated, their 
information can be synchronized to the application database.

If SSO is not enabled, then the Service Portal login screen is presented to all users so they can provide 
a valid username and password combination. By default, these credentials are authenticated against the 
internal database. Alternatively, Directory Integration could be configured to authenticate to an external 
system (generally an LDAP directory). Any users who wish to access Service Portal must be present in 
this source for successful authentication.
1-1
Cisco Service Portal Integration Guide



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
The Directory Integration Framework provides the above capabilities for many frequently deployed SSO 
and directory server products through configuration options available in the Administration module. The 
framework also includes an application programming interface (API) which can supplement predefined 
configuration capabilities. The API allows programmers to access additional SSO portals and directory 
servers, as well as to alter or supplement default behavior for synchronizing user information between 
Service Portal and the external directory.

Prerequisites
Configuring directory integration requires the following:

• A working Service Portal installation.

• Directory server installed and directories populated with corporate data. Directory entries for all 
potential users must contain non-null values for all attributes that are mapped to fields required for 
integration operation, as explained in the “Defining Mappings” section on page 1-4.

• If Single Sign-On (SSO) is to be used, an SSO system that is responsible for the authenticating and 
authorizing access to Service Portal.

• A user login with a role that includes the capability to “Manage Global Settings”. This capability is 
automatically included in the “Site Administrator” role and assigned to the “admin” user, but may 
be assigned to other roles or users as appropriate, using the Roles option in the Administration 
module.

Access to an LDAP browser is strongly recommended.

Purpose and Scope
This chapter describes how to configure directory integration for Service Portal using the Administration 
module. It also describes the set of public APIs and interfaces available for customizing the integration 
options available; best practices for compiling and deploying custom code; and steps to configure the 
custom code using the Administration module.

Intended Audience
This chapter is intended for software customization and integration engineers.

Gathering Directory Integration Requirements 

Overview 
To configure directory integration, you need to have handy information about the current implementation 
of SSO (if used) and directory servers at your company, and to document the requirements for integrating 
these systems with Service Portal. This section provides a set of worksheets for collecting this 
information.
1-2
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
These worksheets should help you collect the information required to configure directory/SSO 
integration, and to identify issues which need to be resolved before the integration can be implemented. 
This, in turn, can help in estimating the amount of development and testing time required for the 
directory integration.

Defining Datasources
Service Portal defines a “datasource” for each directory which stores personnel and organization data to 
be accessed. The datasource definition includes all information required to connect to the external 
directory and extracting information from that directory.

You will need to define one datasource for each external directory. For example, different development 
and production directories may be used. In addition, Service Portal supports LDAP directory 
referrals—a datasource needs to be defined for each directory in the referral chain. 

Setting Value Description

Datasource 
Name

The name of the datasource. Do not use spaces or special 
characters.

Datasource 
Description

Optional description of the datasource.

Protocol • LDAP LDAP is the only supported protocol at this time. If directory 
information is stored using another protocol, you need to create 
custom code to access this information. 

Server Product • Sun™ ONE 
Directory

• Microsoft® 
Active 
Directory®

• IBM® Tivoli®

Choose the directory server product you are using. If the server 
is not currently supported, you will need to create custom code 
to access the server and extract directory information. 

Authentication 
Method

• Simple

• Anonymous

• SASL

Simple means plain text user/password. SASL (Simple 
Authentication and Security Layer) is also available, but SASL 
only works with Sun ONE Directory Server.

Connection 
Mechanism 

• SSL

• Non SSL

Only needed if you choose Simple or SASL as the 
authentication method.

Choose SSL to send encrypted information.

BindDN Bind distinguished name field. BindDN is used to connect to the 
LDAP server when Service Portal performs a directory 
operation. 

You may want to create a service account for this purpose. 

When this datasource is used in an External Authentication 
step, you will provide an EUA Bind DN in the Options area to 
override this value. For more details, see the “External User 
Authentication (EUA) Operation ” section on page 1-12.

Host Fully qualified hostname or IP address of the LDAP directory 
server.
1-3
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Defining Mappings
A “mapping” is a set of rules that give instructions for how data is to be transferred from the external 
directory to Service Portal. It maps between source attributes in the directory and target fields in the 
Service Portal database. The rules are used to transfer data from the directory to the designated target 
field when the Service Portal database is synchronized with the directory. 

The same mapping can be applied to multiple directories (datasources).

Port Number Port number to connect to the directory server. Port Number 389 
is typically used for non-SSL access.

Password Required if you choose Simple or SASL authentication; the 
password for the user specified as the Bind DN. If the account 
uses password aging, you will need to update this password 
periodically.

User BaseDN The directory from which to start searching for persons in the 
directory; since corporate directories may include many 
branches, specifying a base DN for the user data will optimize 
directory searches.

AuthzID Required if you choose SASL authentication.

Optional Filter This filter are added to other search filters you use, and it can 
be used to effectively change the search results. The filter 
expression must be enclosed in parentheses; for example, the 
filter:

(&(!(msExchHide=true)(ISC-GID=*)))

will return only those entries for which the msExchHide 
attribute is true and for which an ISC-GID attribute is defined.

Security 
Certificate 
Name

Required if you choose SSL as the connection mechanism.

Do not use spaces or special characters in the certificate alias 
name.

Ensure that you have the certificate data ready to enter.

Referral 
Datasource

You can add one or more datasources as a referral. When a 
datasource search does not return results, the system searches 
the referral datasources as well. Referrals are supported for 
searches only, not binding.

You cannot set up cyclic referrals. Cyclic referrals are those 
where one datasource has another datasource as a referral, 
while that datasource has the original as a referral. For 
example, datasource A has datasource B as a referral, while 
datasource B has datasource A as a referral.

Setting Value Description

Directory User Data Mapping Request Center User Data
1-4
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
A mapping includes the user/person’s profile along with all related entities: addresses, contacts, 
locations, one or more group associations, one or more organizational unit (OU) associations, and one 
or more RBAC (role-based access control) role associations. 

A person profile includes seven mandatory fields, listed in the “Mandatory” section of the Mapping 
Worksheet below. Directory records which do not provide a value for any of these fields cannot be 
imported. Other fields which are part of the person profile can also be mapped. For an overview of these 
fields, consult the screens available in Organization Designer for maintaining People information.

Most of the fields on the person profile are used by application processes, and the mapping should ensure 
that mapped attributes provide a source value appropriate for the field; that is, do not try to overload 
these fields with more information than would be suggested by the field name, or with information that 
does not match the field name. 

Service Portal also includes fields which provide an extension to the standard personnel data. These 
fields are denoted as “Extension” on the following table and appear on the Extensions page of the Person 
information in Organization Designer. Some of the most frequently required extended fields have been 
assigned meaningful names (such as Company Code and Division), but others have the names Custom 
1 through Custom 10, and are intended to be freely used, with no preconceived semantics. If you have 
additional personnel information in the LDAP directory that needs to be exposed in Request Center, map 
the attributes containing that information to one of the personnel extended fields. 

The “Directory Attribute” column in the worksheet below should be filled in for all Person profile fields 
for which the directory must supply data. The Attribute should be one of the following:

• The directory attribute name or names, if two or more attributes can be concatenated (with optional 
literals) to form the value for the field.

• “Custom mapping”, following by a number or description. All custom mappings should be 
explained in detail in the “Custom Mappings” section on page 1-8 or noted briefly in the 
“Comments” column. Custom mappings may assign the result of a regular expression to the 
attribute, or may be implemented via a module of custom Java code. Details for implementing these 
mappings are given in the “Configuring Mappings” section on page 1-26.

Mandatory Mappings

Field Comments

First Name

Last Name

Login ID Unique identifier to be used as the person's login name for Service Portal.

Person 
Identification

The Person Identification should map to an attribute that provides a unique value for 
each person. For example, specify an attribute that contains the employee id or social 
security number. Ideally, the same attribute should map to both the Login ID and the 
Person Identification; at a minimum, the two should be tightly coupled.

Email Address

Home 
Organizational 
Unit

The Home OU is always a business unit, not a service team. 

Password Directory servers will typically not return a password. However you can use this field 
to create, for example, default passwords for new users. 
1-5
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Optional Mappings

Field Comments

Title

Social Security 
Number

Birthdate The return type of the LDAP attribute being mapped must return a long. Service 
Portal does not support other formats.

Hire Date The return type of the LDAP attribute being mapped must return a long. Service 
Portal does not support other formats.

Timezone ID The mapped attribute must return a value in one of the following formats:

• GMT+- Offset

• Country/Language

As of the March 2008, the familiar three-letter time zone designations (for 
example, “EST” for Eastern Standard Time) should not be used. For a list of 
supported values for the above formats, see the “Supported Time Zones” section 
on page 1-63. If the return value does not match one of the valid formats, Service 
Portal uses PST as the default time zone.

Locale ID The mapped attribute must return a value in the form:

language_COUNTRY 

where language is a two-letter language code and the country is a two-letter 
country code. 

Directory integration supports the following locales:

• en_US (United State English)

• de_DE (German)

• es_ES (Spanish)

• fr_FR (French)

• ja_JP (Japanese)

• zh_CN (Mainland Chinese)

• zh_TW (Taiwanese Chinese)

Employee Code

Supervisor This field represents the identification of manager. For more details see the 
“Import Manager Operation” section on page 1-16.

Notes

Company Street 1

Company Street 2

Company City

Company State

Company Postal 
Code
1-6
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Company 
Country

Building

Level

Office

Cubicle

Personal Street 1

Personal Street 2

Personal City

Personal State

Personal Postal 
Code

Personal Country

Work Phone

Home phone

Fax

Mobile Phone

Pager

Other

Main Phone

Primary Phone

Primary Fax

Sales Phone

Support Phone

Billing Phone

Other Contact 
Information

Company Code Extension

Division Extension

Business Unit Extension

Department 
Number

Extension

Cost Center Extension

Management 
Level

This should return a number. When used with the Import Manager event, 
Management Level is expected to be in increasing order according to the hierarchy. 
For example, if there are two designations, Junior Engineer and Senior Engineer, 
Management Level returned for Junior Engineer should be less than the 
Management Level of Senior Engineer.

Region Extension

Field Comments
1-7
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Custom Mappings

You may use the worksheet below to document requirements for custom mappings.

.

Employee Type Extension

Location Code Extension

Custom 1 Extension

Custom 2 Extension

Custom 3 Extension

Custom 4 Extension

Custom 5 Extension

Custom 6 Extension

Custom 7 Extension

Custom 8 Extension

Custom 9 Extension

Custom 10 Extension

Organizational 
Unit List

Use this mapping to associate the person with one or more Organizational Units. 
The mapping may return multiple values. For this field Service Portal uses all 
values returned by multivalued LDAP attributes. Input for this field should be in 
one of the following formats:

• Name of the Java class that returns the multiple values as defined in Directory 
Integration API documentation.

• One or more simple mappings separated by “::”. 
For example, ou::departmentNumber.

• One or more expression mappings separated by “::”, as in:
expr:#memberOf#=(cn=(.*),cn=Users,dc=celosis,dc=com)?($1):Default:: 
expr:#memberOf#=(cn=(.*),ou=Users,dc=celosis,dc=com)?($1):Default

Group List Similar to Organizational Unit List.

Role List Similar to Organizational Unit List. The returned roles may be either system- or 
user-defined.

For system-defined roles, the names must be exactly as they appear in a browser 
with language US English. Other languages are not supported. For example, “My 
Services Executive” should be returned to associate a user with this role.

For user-defined roles, the name must exactly match the user input in user language 
while creating the role.

Field Comments

Field Type Requirements

Expression

Java

Expression

Java
1-8
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Defining Integration Events, Operations and Steps
Integration events are the interfaces between Service Portal and an external directory or SSO 
program—the only times in the use of Service Portal that the external program or directory is accessed. 
These events consist of a series of operations which are executed in sequence.

Events

Service Portal supports four directory integration events:

• The “Login” event occurs when a user's credentials are validated and the user connects to Service 
Portal. This event occurs when a user initially starts a Service Portal session. It also occurs if a 
session times out (the administrator-specified time-out period expires) and the user must reconnect.

• A “Person Lookup” event occurs every time user information must be retrieved. There are actually 
three types of Person Lookup events:

– Person Lookup for Order on Behalf: A user requests a service on behalf of another person, 
and must choose the person who is the customer for the service.

– Person Lookup for Service Form: A service form includes a Person field, which allows the 
user to designate another person as part of the service data.

– Person Lookup for Authorization Delegate: A user responsible for reviewing or authorizing 
service requests modifies his/her profile to designate another person as a temporary 
authorization delegate.

Operations

You can configure events to perform various types of operations. The operations are specified for each 
event in a series of steps, which determines the sequence in which each operation in invoked. 

The directory framework includes the following operations:

• Single Sign-On (SSO) is always the first step in the Login event. The SSO operation identifies the 
login name of the user.

• External Authentication can occur after the SSO operation or, if an SSO operation is not used, after 
the default Login screen. External Authentication uses the login name and password of the user and 
authenticates them against an external datasource. 

• Person Search is triggered when the user invokes a search on a datasource. Person Search uses the 
First Name and Last Name of the user to provide a list of matched items. 

• Import Person can occur after External Authentication or after SSO, or after a person is chosen in 
the Person Search dialog box. Import Person uses the login name of the person searched or logging 
in to query a datasource and import the person into the database. 

• Import Manager can only occur after Import Person. The Import Manager operation will use the 
imported person information to import the managers of this person.

Each operation can be customized via implementation of custom code interfaces.

Figure 1-1 below shows the sequence in which operations are triggered. 
1-9
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Figure 1-1 Trigger Order

Login Event

If a directory integration login event is not configured, the default behavior is to present the login screen 
and validate the credentials entered (user name and password) against the contents of the application 
database. 

If the directory integration event is enabled, the Login event may be configured with either one of the 
following operations as its first step:

• Single Sign-On: In a corporate environment where all users are preauthenticated using SSO vendors, 
automatically extract the login id of the user from request headers or CGI headers and allow 
transparent login, bypassing the application login screen.

• External User Authentication: Present the application login screen and validate the credentials 
entered against the specified external directory. External User Authentication may also follow an 
SSO operation.

Once the user credentials have been validated, the Login event may include additional operations to 
synchronize user data between the external datasource and Service Portal:

• The “Import Person” operation may be the next step. This operation imports the profile of the 
authenticated person selected to Service Portal, synchronizing the data.

• The “Import Manager” operation may follow the “Import Person” step. This operation retrieves 
information on the managers of the selected person from the external directory and updates the 
Service Portal database with that information.

Single Sign-On Operation

Integration with Single Sign-On (SSO) solutions can use one of the following two 
mechanisms/protocols:

1. Active Directory Services (ADS)/NT LAN Manager (NTLM)-based authenticated user

– The third-party IM/AM/SSO product is not needed to log into Service Portal.

– The logged in user credentials from any POSIX-compliant OS are returned by the browser to 
Service Portal. 

��� �����	
�
�
���	���
���	

����	���

����	������	 ������������	

�����	
��
���

������
�
	
���

��
���������	
��
��������
	�

��
���������	
��������
���

 �����!
��
�
���!
��

������"
�����	�

�����	
���
���#$%�����	���

#&%��
��'���

#$%�����	���
#&%��
��'���

����	���

#$%�����	���
#&%��
��'���
#(%�)	�'��������
�������	����

���	���
���

����	���
1-10
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
– This is also called integration through CGI Headers for SSO. 

2. HTTP Request Headers

– This is for non-ADS/NTLM integration.

– It requires the third-party IM/AM/SSO product to log into Service Portal using RequestHeaders 
in the http protocol.

For customers who plan to use SSO for both Portlet and Directory Integration, only HTTP Header SSO 
is supported. Custom SSO plug-ins within the Directory Integration framework are not supported.

Administrative Bypass of SSO

It is sometimes necessary to allow some users to bypass the Single Sign-On and login directly to Service 
Portal. This capability is typically required for:

• System administrators who need to investigate problems with Single Sign-On

• Testers who need to emulate the performance of multiple users in order to validate a service design 
and task plan

Service Portal provides a mechanism for allowing users to access the login screen and enter a user name 
and password. The newscale.properties file (located within the RequestCenter.war) specifies a value for 
the “BackDoorURLParam”; for example:

BackDoorURLParam=AdminAccess

The URL used to access Service Portal via the login screen must include a parameter. For the above value 
of the backDoorURLParam; for example, a sample URL might be:

http://prod.RequestCenter.com/RequestCenter?AdminAccess=true

Setting Value Description

Single Sign-On 
Type

HTTP Header

Remote User

Specify the type corresponding to your SSO solution. Be sure to 
verify that login ID information is accessible. 

Check HTTP Header to use http Request Header protocol.

Check Remote User to use ADS/NTLM protocol.

Login ID 
Mapping

Login ID mapping for HTTP Sign-Ons should be the exact name of 
the Http Request Header that contains the login name of user signing 
in.

Login ID mapping for ADS/NTLM Sign-Ons should be of the 
following format:

#AnyDomain#\#LoginId#

For example, celosis\#LoginId# limits users to the “celosis” domain, 
while #AnyDomain#\#LoginId# allows logins across multiple 
domains.

If multiple domains are in use, the LoginId must be unique across 
domains.

Redirect URL The URL of the corporate portal from which users typically access 
Service Portal products. Users are redirected to this URL if 
authentication fails, or when the application user session times out.
1-11
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
It is the responsibility of the administrator to establish policies for aging out the value of the 
BackDoorURLParam according to corporate guidelines and for controlling administrative access to 
Service Portal. Access via the administrative URL can be restricted to only those users who have the 
“Site Administrator” role via the corresponding Administration Setting:

The administrator must also ensure that the URL is directly accessible to users—access to the Service 
Portal application may have previously been restricted to the SSO software via web server or network 
configuration parameters. 

The Request Center service must be restarted for a change to this parameter to take effect.

External User Authentication (EUA) Operation 

Use External Authentication to authenticate all Service Portal users with a corporate directory. This way 
you do not have to worry about synchronizing user passwords.

External User Authentication must follow a login attempt—either via a configured Single Sign-On 
operation or through the application login screen. The LoginId retrieved from the previous operation is 
available to the EUA operation. However, validating this user in the external directory requires 
additional information, so that the BindDN can be located. 

The EUABindDN setting allows the application to automatically extrapolate the bind DN of the user 
trying to sign on. 

Setting Description

External Authentication 
EUABindDN

EUABindDN is of the format:

Prefix#LoginId#Suffix.

Service Portal will replace #LoginId# with the loginId of the user signing 
in from EUABindDN and use it as BindDN for authentication.

For example, you can provide the EUABindDN like this:

uid=#LoginId#,OU=People,dc=example,dc=com

In such case if the user provides scarter as the login id in the logic screen 
during sign up, Service Portal will use 

uid=scarter,OU=People,dc=example,dc=com 

to bind the user with external datasource.
1-12
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Person Lookup Events

All Person Lookup events (Order on Behalf, Service Form, and Authorization Delegate) share the same 
behavior and configuration options.

If the directory integration event is not enabled, the Person Search window searches personnel 
information in the Service Portal database. If a person is selected, their information is used. Personnel 
information is not updated.

If the directory integration event is enabled, the Person Lookup event may be configured with the 
following operations:

• The “Person Search” operation must be the first step. This operation retrieves personnel information 
from the external directory and displays it in the Person Search window. If the user selects a person, 
additional information on that person is retrieved, according to the mapping specified for the event, 
and supplied to the calling context.

• The “Import Person” operation may be the next step. This operation imports the profile of the person 
selected from the external directory to Service Portal, synchronizing the data.

• The “Import Manager” operation may follow the “Import Person” step. This operation retrieves 
information on the managers of the selected person from the external directory and updates the 
Service Portal database with that information.

Person Search Operation

Settings for the Person Search operation determine the appearance and behavior of the window that 
displays people meeting the search criteria.

In order for a person to be imported into Service Portal, all mandatory fields must have a valid attribute 
mapping, which returns in a nonblank value. If any required values are missing, the default behavior is 
to exclude that person from the Search Results. The alternative is to include such people in the Search 
Results, but to flag them as having incomplete information, as shown below.
1-13
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Figure 1-2 Person Search

People with incomplete information cannot be chosen.

When configuring a Person Search operation

Setting Value Comments

Search Selectivity • Show People 
with Incomplete 
Information

Default is to exclude people with incomplete 
information from the Search Results window. 

Sort By • First Name

• Last Name First 
Name

• First Name Last 
Name

• Last Name

• No Sort

Default is to sort by Last Name.

Max Results Default for the number of rows to display in the Search 
Results is 1000. 
1-14
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
The * (Asterisk) Wildcard Character and Person Search

When configuring and testing a Person Search, you need to be aware of the use of the asterisk (*) as a 
wildcard character.

Transparent to the user, the system always appends an * to the end of the search string. Therefore, if a 
user enters john in the Last Name field, and clicks Search, the system returns all persons in the directory 
whose last name begins with the word john, such as “John”, “Johnson”, and “Johnston”.

A user may also explicitly enter the * character in the search string of the Search Person dialog box. 
Some examples of the usage for wildcard search are:

• Enter * in the Last Name field, and click Search. The system returns all persons in the directory.

• Enter john* in the Last Name field, and click Search. This is essentially the same as typing just 
john in the Last Name field. The system returns all persons in the directory whose last name begins 
with the word “john”.

• Enter *john in the Last Name field, and click Search. The system returns all persons whose last 
name contains the word “john,” including “John”, “McJohn”, and “Johnson”.

• Enter *john*son in the Last Name field, and click Search. The system returns all persons whose 
last name contains the word “john,” followed (not necessarily immediately) by the word “son.” 
These include “Johnson”, “Mcjohnson”, and “Upjohningson”.

Note The * is always treated as a wildcard character in the search string. Therefore, the user is NOT able to 
search for a value in the directory that contains the character *. Any other special characters may be used 
in the search string.

Configuring the Search Results Window

By default, the Search Results window in the Select Person Popup displays the person's first name 
followed by the last name. Additional fields can be added to the display by changing the Setting for the 
Person Popup available in the Administration module. 

Figure 1-3 Configuring Search Results Window
1-15
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Import Person Operation

Import Person settings govern whether person information in the application is refreshed from current 
information about the selected person (when Import Person is used in a Person Search event) or the 
person who has logged in (when Import Person is used in a Login event). 

Import Manager Operation

Service Portal allows authorizations and reviews to be dynamically assigned. For example, a request 
with a dollar value greater than a specified threshold might need approval by the director of a particular 
department. Another request might need to be reviewed by the requestor's immediate superior.

To implement business rules like these, the managers of an employee who can request a service must 
also be present in the Service Portal database. The Import Manager operation supports this requirement, 
importing manager (supervisor) data in conjunction with the employee's data.

To govern the behavior of the Import Manager operation:

• Identify the attribute in the employee's directory entry that is to designate his/her manager.

• For all employees, ensure that the designated attribute is populated with a value that uniquely 
identifies their manager. This is typically the login id or email address.

• In the mapping for the Supervisor field (listed in the Optional Person Data Mappings) specify the 
attribute in the employee data that holds the manager information. In the sample below, the 
managerEmail attribute is used.

Setting Value Comments

Refresh • Refresh Person 
Profile 

• Refresh Period 
(Hours)

Leave the refresh period blank or zero to refresh on 
every import—this will ensure that the Service Portal 
database always reflects recent changes in the 
external directories. Alternatively, you can designate 
that a user's profile should be refreshed only after the 
designated period has passed since this last refresh. 

Create Associations • Do Not Create 
Organizational Unit 

• Do Not Create 
Group

Default is to create organizational units and groups if 
they do not exist. Roles cannot be created via 
directory integration and must exist before the person 
is imported.

Remove Existing 
Associations

• Organizational Unit

• Group

• Role

Default is not to remove existing organizational unit, 
group, or role associations.
1-16
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
• In the Import Manager settings, specify as the “Key Field for Manager ID” the field in the manager’s 
directory record whose value corresponds to the Supervisor attribute specified for the original 
person.

In one possible scenario, a single attribute exists in each person's directory record which uniquely 
identifies the person's supervisor. Assume, for example, that the person's directory record contains the 
manager’s email ID within the attribute manager_email. No other manager information is present

An alternative scenario may be that the directory record contains an attribute that is exactly the DN of 
the person's supervisor. Assume the name of this attribute is manager.

Supervisory hierarchies may also need to be accommodated.

For example, consider this organizational chart:

Solution Supervisor manager_email

Key Field for Manager ID email (the email attribute in the manager's directory record)

Solution Supervisor manager

Key Field for Manager ID dn (DN is a special attribute and is not prefixed before the 
search string)
1-17
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
If requests were subject to an immediate supervisor’s approval, a “relative” search is needed, going up 
the tree one level. 

Alternatively, if certain requests were subject to, for example, a Director’s approval, an “absolute” search 
is needed. People (managers) would be imported until the position of the current person was “Director”. 
In the example above, in the case of S. Person, two additional people would be needed—her immediate 
manager, A. Name, and his manager, J. Doe, who is their Director. For T. Tom, only one import would 
be required.

If you are using an absolute search (import all managers with successively higher levels of authority until 
you find one with the specified position), you must assign numeric equivalents to the positions:

• Analyze the corporate hierarchy, assigning numeric equivalents to all management positions.

• Identify the attribute in the employee’s directory entry that is to designate his/her management level. 
For example, perhaps an attribute named “paygrade” could be used. 

• For all employees, ensure that the designated attribute is populated. 

• In the mapping for the Management Level field (listed in the Optional Person Data Mappings) 
specify the attribute that holds this information.

• Enter the highest level of manager to be imported as the “Maximum Level” in the Import Manager 
settings.

You may configure a search terminator if you do not want to synchronize supervisors beyond a known 
value. You can specify multiple values in the format: #value1#, #value2# and so on.

For example, you may not want to import any supervisors who rank above a person with uid as “scarter.” 
His Supervisor attribute is mapped to his email (scarter@email.com). In this case set the Search 
Terminator to #scarter@email.com#. The directory integration will stop supervisor synchronization as 
soon as a record is found with scarter@email.com as the supervisor.

Supervisor synchronization stops as soon as either limiting condition is met—Maximum Level or Search 
Terminator.

1 Level 1 3 Level 3

2 Level 2 4 Level 4

*+������
��+���������

,+�*�	��
��������

*+����
��������

�+�!
��
���-�����
	
���

.+�.��
��+����������

�+������	
�	
�/�� 1

2

3

4

1-18
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Gathering Directory Integration Requirements 
Custom Code Operations

Use a custom code operation to invoke routines not supported by the application. A custom code 
operation may replace or supplement Service Portal operations.

Setting Value Comments

Key Field for Manager ID The directory attribute that uniquely identifies 
the employee’s manager (supervisor).

Maximum Level For absolute searches, indicates the number of 
managers above the current employee that need 
to be imported; for relative searches, indicates 
the highest management level for a manager to 
be imported.

Search Mode • Absolute

• Relative

Search Terminator The value or values that match the key field for 
managers that stop the search.

Refresh options • Refresh Person 
Profile

• Refresh Period 
(Hours)

Check the Refresh Person Profile check box to 
indicate that the manager’s profile within 
Request Center is to be refreshed. If the Refresh 
Period is left blank, the profile is refreshed 
every time the Import Manager event takes 
place for the same person. If a number is 
provided, the manager’s profile is refreshed 
only once within the specified period.

Associations • Do Not Create 
Organizational Unit

• Do Not Create 
Group 

Identical to settings for Import Person.

Remove Existing 
Association

• Organizational Unit

• Group

• Role

Identical to settings for Import Person.

Setting Value Comments

Custom Code 
Operation Type

• Single Sign-On

• External Authentication

• Import Person

• Import Manager

• Custom Code

• Person Search

Use a Java class to provide the name of your mapping. 
For more details about the Java class see the Javadocs.
1-19
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Configuring Directory Integration
Configuring directory integration involves using the Administration module’s Directories options. The 
basic process is to:

• Enable directory integration. Click the Directory Integration radio button on the Administration 
module’s Settings tab to enable directory integration.

• Configure datasource information. Use the Datasources area of the Administration module’s 
Directories tab to configure datasources that connect to directory servers. Information such as the 
datasource name, description, protocol, server product, and authentication method is required.

• Configure mapping. Use the Mappings area of the Administration module’s Directories tab to map 
application data to the directory server data. Mappings update the entire user/person’s profile along 
with all related entities: addresses, contacts, locations, one or more group associations, one or more 
organizational unit (OU) associations, and one or more role associations.

• Configure events. Use the Events area of the Administration module’s Directories tab to configure 
directory integration behavior. The Login and Person Lookup events can be configured to include 
operations such as Single Sign-On (SSO), End User Authentication (EUA), Import Person, Import 
Manager, and Person Search.

• If required, configure custom code interfaces for client customizations, including directory java 
class attribute mapping, directory server API, and Import Person, with its related entities.

Enabling Directory Integration
To enable directory integration:

Step 1 Log in using an account with administrative privileges and choose the Administration module.

Step 2 Click the Settings tab.

Step 3 Next to Directory Integration, click the On radio button.

Step 4 On the bottom of the Customizations screen, click Update.

You have now enabled directory integration. (See Figure 1-4.)
1-20
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Figure 1-4 Enabling Directory Integration

1 Administration module 3 Directory Integration setting

2 Settings tab

1

2

3

1-21
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Configuring Directory Integration
You use the Directories tab of the Administration module to configure many of the directory integration 
settings.

Figure 1-5 The Directory Integration Area

Step 1 Log in using an account with administrative privileges.

Step 2 From the drop-down menu, choose Administration.

Step 3 Click the Directories tab.

The Directory Integration page appears. These settings will be in effect once directory integration has 
been enabled.

Configuring Datasource Information
The following sections guide you through configuring datasource specific information. The tasks 
include:

• Adding or editing a datasource – You need to add a datasource to a new installation that does not 
yet have any datasources. If datasources exist, you may edit them.

• Adding a server certificate for SSL connections – You only need to do this if you choose SSL as 
the connection mechanism.

• Adding referral datasources – Only if desired.

• Testing the connection – You should always test the connection to prove connectivity.

Adding or Editing a Datasource

At least one datasource must be defined. To add a new datasource:

1 Administration module

2 Directories tab

1

2

1-22
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Figure 1-6 Adding or Editing a Datasource

Step 1 Navigate to the Directory Integration page by choosing the Administration module and then clicking 
the Directories tab.

Step 2 In the page navigator, click the Datasources option, if not already selected.

Step 3 Click Add. To edit an existing datasource instead of adding a new datasource, click Edit next to the 
desired datasource in the list.

The Datasource Configuration area expands.

Step 4 Enter the Datasource Name, Datasource Description, and the desired settings. Click the  buttons to 
access all of the settings in the adjacent area. See the Datasource Worksheet for more information about 
these settings, or see the following sections.

Step 5 Click Update.

Configuring Connection Information

Specify the connection protocol and user credentials used to connect to the datasource.

1 Datasources option 3 Edit Datasource button

2 Add Datasource button 4 Update button

1

3

4

2

1-23
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Figure 1-7 Configuring Connection Information

Configuring Certificates

If you chose SSL as the connection mechanism, you need to specify the certificates for the directory 
integration system.

Figure 1-8 Configuring Security Certificates

Step 1 Navigate to the Directory Integration page by choosing the Administration module and then clicking 
the Directories tab.

Step 2 In the page navigator, click the Datasources option, if not already selected.

Step 3 Next to the datasource to which you wish to add a certificate, click Edit.

Step 4 Click Add Certificate.

Step 5 Name the certificate. Do not use spaces or special characters in the certificate alias name.

Step 6 From the Certificate Type drop-down menu, choose the certificate type.

Step 7 Paste the certificate value (obtained from a vendor like VeriSign) into the certificate field.

Step 8 Click Update.

1 Add certificate button 3 Certificate Type drop-down menu

2 Certificate Name field 4 Certificate Value field

1

2 3

4

1-24
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Configuring Referral Datasources

If you have multiple datasources configured, you can designate datasources as referral systems to a 
selected datasource. This way, whenever the system performs a search against the selected datasources, 
it will also search all referral datasources.

The referral datasources are searched in the order in which they are specified until a match is found. 
A match is said to be found when the search criteria returns one or more records. 

Referral datasources are typically used when directory information is divided among multiple 
directories. For example, different company divisions may each maintain their own directory. 

Figure 1-9 Configuring Referral Datasources

Step 1 Navigate to the Directory Integration page of the Administration module.

Step 2 In the page navigator, click the Datasources option, if not already selected.

Step 3 Next to the datasource for which to configure a referral datasource, click Edit.

Step 4 Click Add Referral.

Step 5 The Referral Datasource area appears. From the Datasource Name drop-down menu choose a datasource 
name, and then from the Mapping Name drop-down menu choose a mapping name.

Step 6 Click Update.

Testing the Connection

If you have completed all the necessary configuration steps, then you are ready to test the directory 
integration connection.

1 Add Referral button 3 Mapping Name drop-down menu

2 Datasource Name drop-down menu

1

2 3
1-25
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Figure 1-10 Testing the Connection

Step 1 Navigate to the Directory Integration page in the Administration module.

Step 2 In the page navigator, click the Datasources option, if not already selected.

Step 3 Choose the datasource to test by checking the check box to the left of the datasource name.

Step 4 Click Test Connection. 

The Test Status column displays OK if the connection is successful, and  if it is unsuccessful.

Configuring Mappings
You use the Mappings area of the Administration module’s Directories tab to map Service Portal data to 
directory server data.

To configure mapping, see Figure 1-11 and follow the procedure below.

1 Test Connection button 2 Test Status column

1

2

1-26
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Figure 1-11 Configuring Mapping

Step 1 Navigate to the Directory Integration page of the Administration module.

Step 2 In the page navigator, click the Mappings option.

Step 3 Click Add to add a new mapping, or click Edit next to the desired mapping in the list to edit an existing 
mapping.

The Mapping Configuration area expands.

Step 4 Configure the mapping name, description, and attributes, based on the requirements documented in the 
Mapping Worksheet. The mappings prefixed with an asterisk (*), shown in the Person Data section, are 
mandatory. You may also configure optional mappings by clicking the  button, to expand the Optional 
Person Data Mappings section.

Step 5 Click Update.

The mapping fields accept simple, composite, expression, and Java mapping types, as described below.

1 Mappings options 3 Edit Mapping button

2 Add Mapping button 4 Update button

1

3
2

4

1-27
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Mapping Types

This section describes accepted mapping types, illustrates a valid sample mapping, and explains with 
examples expression mapping. The following table describes the supported mapping types.

Simple and Composite Mappings

The following table illustrates sample simple and composite mappings for the mandatory fields.

Expression Mapping

Expression mapping allows you to conditionally assign a value to an attribute, based on which pattern 
(regular expression) the expression matches. The system expression mapping uses the Perl5 Regular 
Expression Language, to specify patterns to be matched, combined with syntax similar to that of the Java 
conditional operator. Syntax:

expr:<expression>=(<patternlist>)?(<valuelist>):<default>

Table 1-1 Mapping Types

Mapping Type Description

Simple One directory attribute maps to the field. This is simple one-to-one mapping. For 
example:

Person Field: First Name

Directory Attribute: givenName

Composite A combination of attributes maps to the field. # delimits each attribute name. The 
mapping may include literals. For example:

Person Field: Email

Directory Attributes: #givenName#_#sn#@#domain#.com

Expression An expression uses regular expressions and pattern matching to derive the 
mapping. For more details see the “Expression Mapping” section on page 1-28.

Java Class Use Java mapping when simple, composite, or expression mapping does not offer 
the desired functionality. This involves writing a Java class and placing the 
compiled class file on the appropriate directory on the application server. For 
more details see the “Java Class Mapping” section on page 1-31.

Table 1-2 Sample Mapping

Person Data Directory Value 

First Name givenName

Last Name sn

Login ID uid

Person Identification uid

Email Address #givenName#_#sn#@#company#.com

Home Organizational Unit Ou

Password Uid
1-28
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
where 

For example:

expr:<expression>=
(<pattern1>|<pattern2>…<patternn>)?(<value1> | <value2>  <valuen>):<default>

If <expression> matches <pattern1>, then return <value1>.

If <expression> matches <pattern2>, then return <value2>.

If <expression> does not match any pattern, then return <default>.

Each element (expression, pattern, or value) can contain a directory attribute name, delimited by the # 
symbol. For example, a pattern can be specified as “#givenName#_#sn#”, where both #givenName# and 
#sn# are attribute names:

In addition, parentheses can be used to group a series of pattern elements to a single element. When you 
match a pattern within parentheses, you can use back-references, in the form of $1, $2, and so on, to refer 
to the previously matched pattern.

Examples of Expression Data Mapping 

A simple use of an expression applied to directory integration may be to translate one or more coded 
values in the directory to more user friendly descriptions or broader categories. For example, some 
services may need to differentiate between employees and contractors. The costCenter attribute is known 
to be “000000” for contractors. Therefore, the following expression could be applied to the “Employee 
Type” field:

expr:#costCenter#=(000000)?(Contractor):Employee

Another straightforward use of an expression may be to supply a default value for a field when the source 
attribute is blank. This may frequently be a “stop gap” measure, until directory data can be standardized. 
Or it could be standard; for example, if outside contractors are not assigned a department. The following 
expression could be applied to the “Home OU” field (a mandatory field for the mapping): 

expr:#DeptLevel2#=(.+)?(#DeptLevel2#):Contractors

This expression uses the DeptLevel2 attribute if available, or defaults to the “Unknown” Business Unit 
for the user’s Home OU.

Similarly, the expression can be used to translate from a set of input values to a different set of return 
values. This is the equivalent of a case statement, or nested if/then construct. For example, the following 
expression could be applied to the “Locale ID” field, to assign a language for the user, based on his/her 
location: 

expr:#country#=(United States | Germany)?(en_US | de_DE):en_US

If the user’s country is the United States, set the language to American English; if it is Germany, set the 
language to German. For any other country, set the language to American English.

expr is a prefix to indicate that expression mapping is used.

<expression> is the expression to match against.

<patternlist> is a set of patterns, separated by a pipe (|).

<valuelist> is a set of values, separated by a pipe (|), corresponding to the set of patterns. Each value 
designates the return value if the expression matches the corresponding pattern.

<default> is the return value to use if no pattern in the <patternlist> matches the <expression>.
1-29
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Regular expressions can check the length of a source attribute and whether it is composed of alphabetic 
or numeric characters. For example, sometimes zip codes are stored as numeric data types, truncating 
leading zeroes. To restore a leading zero, an expression such as the following could be applied to the 
“Company Postal Code” field:

expr:#postalCode#=(^[1-9][0-9][0-9][0-9]$)?(0#postalCode#):#postalCode#

If the postalCode attribute consists of precisely four digits, add a leading zero to the value of the 
attribute. This converts zip code 1701 to 01701, and leaves any source values which do not match the 
specified pattern unchanged.

A similar use of regular expressions might check that the format of an attribute value matches an 
expected pattern. Consider a use case in which a valid manager's user ID needs to consist of two letters 
followed by a series of numbers. Valid IDs would be, for example, fd1024 and ID3839. The following 
expression could be used:

expr:#manager#=(cn=([a-zA-Z][a-zA-Z][0-9]+),.*)?($1):None

Attributes can be used in the expression, pattern, or return value:

expr:#sn#, #givenname#=(Smith.*|Doe, John)?(All Smiths|Only John):Others

expr:#sn#, #givenname#=(Smith.*|Doe, John)?(#givenname#|Only John):Others

The last name and first name from directory records are combined into a string such as “Doe, Jane” 
before any attempt is made to match the patterns.

Embedded parentheses and back-references are useful for extracting a portion of the pattern. For 
example, the organization to which a person belongs is frequently embedded within a distinguished 
name (dn) attribute:

dn: cn=plee,ou=Corporate,dc=InfoSys,dc=com

The expression mapped to the “Home Organizational Unit” field might have the format:

expr:#dn#=((cn=[^,]+,ou=([a-zA-Z]+),dc=InfoSys,dc=com)?($1):Default

The returned value, “Corporate” is a back-reference value $1, which equals the pattern matched by the 
expression within the first set of parentheses, ([a-zA-Z]+). 

Usage of back-referenced variables may be required to parse overloaded attributes which include the 
values for more than one field. For example, an attribute can include the business address of a person, 
including the building name, floor (level), and office.

location=Corporate Headquarters-Fifth Floor-Office #5F

The same pattern could be used to match the three elements in the expression, by using different 
back-referenced variables as the value:

Office Building expr:#Location#=(([^-])+-([^-])+-(.*))?($1): Unknown 

Building Level expr:#Location#=(([^-])+-([^-])+-(.*))?($2): Unknown

Cubic Location expr:#Location#=(([^-])+-([^-])+-(.*))?($3): Unknown
1-30
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Java Class Mapping

You will need to be familiar with Java programming and have a Java development environment set up in 
order to implement a custom Java class to map directory data to fields.

Any custom mapping class must follow the guidelines given in “Using Custom Code in Directory 
Integration” section on page 1-36. The mapping class must implement an IEUIAttributeMapping 
interface. 

The developer must follow the guidelines below to test and install the custom code module.

1. Install a Java IDE of choice, and set up a project for developing custom mapping code.

2. Edit the custom code file to fulfill your requirements.

3. Compile.

4. The custom Java class must be installed on the Service Portal web archive (war), to be accessible to 
the Request Center service. Create a directory in RequestCenter.war/WEB-INF/classes to 
correspond to the package. Such directories are typically named: 

com/newscale/client/<clientname>, for example, com/newscale/client/aib.

5. Copy the CustomMapping.class file to the directory created in the previous step.

6. Restart the Request Center service. 

7. Specify the fully qualified name of the class file as the Mapped Attribute for the field to be 
populated.

8. Test the custom code by using the Directories Test feature.

9. Save your source in an appropriate repository.

Testing Mappings
You can use the Mapping Test feature to test that your data mapping settings are configured correctly 
and pulling the correct values from the directory server.

Using the Data Mapping Test feature involves:

• Enabling the Data Mapping Test Feature

• Using the Data Mapping Test Controls

Enabling the Directory Map Testing Feature

To enable the directory map testing feature, see Figure 1-12 and follow the procedure below.
1-31
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Figure 1-12 Enabling Mapping Testing

Step 1 Click the Settings tab of the Administration module to display the Settings page.

Step 2 In the page navigator, click the Debugging option.

The Debug Settings page appears.

Step 3 Next to the Directory Map Testing setting, click the On radio button.

Step 4 Click Update.

The system enables the Data Mapping Test feature. Now when you access the Data Mapping tab, the 
following additional features appear as shown in Figure 1-13:

• The Choose a Datasource for Testing drop-down menu

• The Fetch button

• The Clear button

• The Test Values column

1 Debugging option 3 Update button

2 Directory Map Testing setting

3
2

1

1-32
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Using the Data Mapping Test Controls

Figure 1-13 Mapping Test Controls

To use the Data Mapping test controls:

Step 1 Click Mappings, if you are not already on the Mapping page.

Step 2 Next to the mapping you wish to test, click Edit.

Step 3 From the “Choose a Datasource for testing” drop-down menu, choose the desired datasource.

1 Mappings option 4 Fetch button

2 Edit button 5 Test Values column

3 Choose a Datasource for testing drop-down menu 6 Test summary area

1

2

3 4
5

6

1-33
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Step 4 In the Test Values column, enter test values. You can use simple, composite, Java, or expression 
mapping. 

Step 5 Click Fetch.

Step 6 The test values appear in the Test Values column and a summary of the results appears at the bottom of 
the page.

Note Fetch returns values from only one datasource and does not search referrals. This is for convenience 
because it becomes difficult to debug with referrals search integrated.

Step 7 To the right of the Fetch button, click Clear and retry new values until you have configured the desired 
mappings.

Configuring Directory Integration Events
You use the Events area of the Administration module’s Directories tab to configure directory integration 
behavior for the following events:

• Login

• Person Lookup for Order on Behalf

• Person Lookup for Service Form

• Person Lookup for Authorization Delegate

To configure events, see Figure 1-14 and follow the procedure below.

Step 1 Navigate to the Directory Integration page of the Administration module.

Step 2 In the Page Navigator, click Events to display the Events page.

Step 3 Next to the type of event to configure, click Edit.

The Event Configuration area appears.

Step 4 From the Event Status drop-down menu, choose Enabled to enable the event.

Step 5 Click Add step to add a step for the system to initiate when the selected event occurs.

Step 6 Choose an operation associated with the step you just added.

• All operations are available in this menu even though some operations, such as SSO and EUA, are 
not applicable for all event types.

Step 7 Click Options to configure the options associated with the operation you just chose. The Options area 
appears. The Options area will differ according to which operation is chosen. Details on the available 
operations and their options are given in the next section. 

Step 8 Configure the associated options. See the relevant sections in this chapter on directory Events for a 
description of the operations available and options for configuring them.

Step 9 Click Update and repeat these steps for each step and operation you wish to add.
1-34
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Configuring Directory Integration
Figure 1-14 Configuring Events

1 Events option 5 Operation drop-down menu

2 Edit button 6 Options button

3 Event Status drop-down menu 7 Update button

4 Add step button

1
2

3

4
5 6

7

1-35
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
Using Custom Code in Directory Integration
The directory integration framework is designed for flexibility and customization of the “Login” and 
“Person Lookup” events. 

Standard operations for all events are available on the Administration module’s Directories tab. These 
include: SSO, External User Authentication, Import Person, Import Manager, and Person Search.

In cases where these standard operations do not fully satisfy a business scenario, the Directories tab also 
provides interfaces to execute custom Java code. This custom code should adhere to the interfaces 
described in this chapter, and you should develop any customized solutions using Service Portal exposed 
APIs.

The following are valid use cases for scenarios in which you may wish to customize an event operation:

The directory integration custom code framework also defines interfaces that can be implemented to 
provide complex retrieval logic for a specific field in the person/user profile from a record in an external 
datasource.

Public APIs and interfaces for directory integration include the:

• Custom Code Operation Interfaces, which are used to customize directory integration operations.

• Custom Java Class Mapping Interface, which is used to provide customized retrieval of a specific 
attribute in an external datasource from its record.

• Directory Server API, used to query/authenticate against an external datasource and retrieve 
records.

• Import/Refresh Person API, used to update person attributes in the Service Portal database.

A typical custom code project will involve following types of activities:

• Identify the need for custom code.

• Configure the Directories tab in the Administration module to include the Datasource to be used by 
your custom code and, if relevant, the Mappings which your custom code will use.

• Develop the custom code. You will need to understand the public APIs and interfaces provided by 
Cisco for directory integration tasks.

• Build and deploy the custom code.

• Configure the Directories tab in the Administration module to use your custom code.

Table 1-3 below summarizes the directory integration operations in more detail. 

If… Then…

The format of SSO headers input 
through the HttpServletRequest 
cannot be parsed …

Provide a custom code SSO operation to retrieve user 
credentials, in order to support the SSO integration with your 
vendor.

You wish to authenticate a user via a 
web service or database other than 
Service Portal…

Provide a custom code External Authentication operation.

The main user repository in your 
company is a database other than an 
LDAP directory…

Provide custom code External Authentication and custom code 
Import Person operations.
1-36
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
Mixing and matching, or replacing, standard operations with custom code operations is also supported 
by the directory integration framework. Service Portal supports various combinations of operations per 
event, as described in the table below, using your own customized code and Service Portal public APIs, 
designed to help implement these interfaces. 

It is important that custom code design and development engineers understand the directory integration 
framework, public APIs, and custom code interfaces, which are discussed in detail in this chapter.

Table 1-4 below portrays the relationship between methods, events, and operation types for custom code 
operations. Combinations not listed in Table 1-4 below are not supported.

Table 1-3 Directory Integration Operations

Operation Purpose Input Output

Single Sign-On Identifies the login 
name of the user

HttpServletRequest Login Name

External Authentication Authenticates a user 
against an external 
datasource

Login Name
Password

Authenticity of 
User

Person Search Retrieves the list of 
persons matching first 
name or last name

First Name and Last Name List of Persons

Import Person Imports a person into 
the Service Portal 
database from an 
external datasource

Login Name Imported person 
information, 
including the 
managerID

Import Manager Imports a manager or 
chain of managers into 
the Service Portal 
database from an 
external datasource

Imported person information 
including manager 
information

Managers are 
imported into the 
system

Table 1-4 Custom Code Operations

Event Operation Type Interface Method

Login SSO ISignOn getCredentials

EUA ISignOn authenticate

Import Person ISignOn importPerson

Import Manager ISignOn importManager

Custom Code ISignOn performCustom

Person Search for:

• Order On Behalf

• Authorization 
Delegate

• Service Form

Person Search IPersonSearch getCredentials

Import Person IPersonSearch importPerson

Import Manager IPersonSearch importManager

Custom Code IPersonSearch performCustom
1-37
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
Custom Code Operation Interfaces
If you are providing a custom implementation of an operation configured within an event, you will need 
to implement a “custom code operation interface”.

Custom code operation interfaces define callback methods that are invoked when a particular operation 
is triggered. Exactly which method is invoked depends on the operation type chosen in the operation. 
For more details see the Method, Event, and Operation Type for Custom code Operations table. All 
methods defined in the custom code operation interfaces follow the same pattern:

Parameters

In the following list, “**” must be replaced by the operation type, which is one of:

• IEUISignon

• IEUIPersonSearch

1. **OperationDTO: This object contains the information on how you have set the operation on the 
Directories tab of the Administration module. It includes mapping and datasource information.

2. **OperationContext: The Context object is used to share information across method invocations. 
The directory Integration framework makes information stored in one context object available to 
other context objects during the same HttpServletRequest invocation. 

a. Use setLocalContextObject and getLocalContextObject to set any custom information that does 
not fall as a part of results.

b. Use get**Result to get a result object. Result objects contain all the information about what 
happened throughout the event request. Results contain information that is supported in a 
productized import. The LocalContext object is used to store objects that were unforeseen 
during the implementation of productized operations.

3. Request: This is the HttpServletRequest. 

4. **ImportAPI: This object is used to import a person. More details can be found in the Javadocs.

5. **LDAPAPI: This API is used to make LDAP queries. More details can be found in the Javadocs.

Return

**Result. After performing the custom task the API must return a valid return type with results 
populated. Return the same result object retrieved from OperationContext after updating relevant 
properties. There may be unexpected behavior if a new instance of the result object is returned.

Table 1-5 below maps the expected input/return to the objects in the parameters of each of these callback 
methods:

Table 1-5 Input for Custom Code Callback Methods

Information Object/Property

HttpServletRequest Request

Login Name • IEUISignOnOperationContext .IEUISignOnOperationResult.ssoLoginId

• IEUIPersonSearchOperationContext 
.IEUIPersonSearchOperationResult.ssoLoginId

First Name and 
LastName

• First Name: IEUIPersonSearchOperationContext. firstNameSearchString

• Last Name: IEUIPersonSearchOperationContext. lastNameSearchString
1-38
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
You must implement all methods to compile your implementation class. If you customize only limited 
operation types, you must provide an empty implementation of methods not relevant to the operation 
types.

For example, if you are only interested in a customized SSO, then provide a complete implementation 
of the getCredentials method. For all other methods, return null.

The system may pool an instance of an interface and may be concurrently accessed from multiple 
threads. Thus, it is recommended to keep the instance stateless.

There are two types of custom code operation interfaces:

• ISignOn is used for customizing the login.

• IPersonSearch is used for customizing the “Person Lookup” dialog box.

Custom Code Interface for Login Event – ISignOn

This is the interface that custom code should implement in order to customize login events: SSO, EUA, 
Import Person, Import Manager and custom code operations.

Customizing the SSO Operation

The primary purpose of an SSO custom code operation is to retrieve and return the Login Name from 
HttpHeader based Sign-On or from CGI Header (CGI variable REMOTE_USER) in the case of Remote 
NTML/IWA type of Sign-On.

As outlined in Table 1-4, you must provide a Java class that implements the ISignOn interface. Please 
provide a complete implementation of the getCredentials method in this interface, and read the 
documentation for the ISignOn interface for detailed specifications.

The following are some guidelines for implementing the getCredentials method. It is not required that 
all of these guidelines are implemented; There may be additional requirements, dependent on the 
customization, which are not covered by what is outlined below.

• Get IEUISignOnOperationResult from IEUISignOnOperationContext. This is the object that must 
be returned from this interface.

• Use the parameter request and process it to derive the login name of the person.

• Return LoginId back by calling IEUISignOnOperationResult.setSsoLoginId(<login id>), if using 
the in-product directory lookup functionality.

List of Persons IEUIPersonSearchOperationContext.EUIPersonSearchOperationResult.Search
PersonList. SearchPersonList is a collection with all elements of type 
IExtPersonDTO

Imported Person 
Information

• IEUISignOnOperationContext 
.IEUISignOnOperationResult.ImportedPersonExtDTO

• IEUIPersonSearchOperationContext.EUIPersonSearchOperationResult.Impo
rtedPersonExtDTO

Manager Id IEUIPersonSearchOperationContext.EUIPersonSearchOperationResult.Importe
dPersonExtDTO.PersonDTO.managerID

Table 1-5 Input for Custom Code Callback Methods

Information Object/Property
1-39
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
• Call IEUISignOnOperationResult.setSsoRedirectUrl("<any url or error page>"), which are used for 
redirecting the user on SSO failure.

SSO Operation Options received through IEUIEventSSOOperationDTO.getEventSsoDTO() may be null 
as SSO options are not accepted in the Administration module for custom code operations.

Customizing the EUA Operation for Login Event

The primary purpose of an EUA custom code operation is to authenticate a user against an external 
system.

As outlined in Table 1-4, you must provide a Java class that implements the ISignOn interface. Please 
provide a complete implementation of the authenticate method in this interface, and read the 
documentation for the ISignOn interface for detailed specifications.

The following are some guidelines for implementing an EUA operation. It is not required that all of these 
guidelines are implemented; There may be additional requirements, depending on the customization, 
that are not covered below.

• Get IEUISignOnOperationResult from IEUISignOnOperationContext. This is the object that must 
be returned from this interface.

• The EUIDatasourceDTO object from the IEUIEventEUAOperationDTO object contains the 
interface to the Datasource configured in the Administration module for this operation.

• Populate the LDAPConfigInfo object from the EUIUtil and pass EUIDatasourceDTO. This is 
needed to call LDAP API with the connection information to LDAP Server.

• Get the Login Name by calling IEUISignOnOperationResult.getSsoLoginId().

• Form a BindDN and set it into LDAPConfigInfo by calling setBindDN().

• Get the Password entered by the user in the Login page by calling 
IEUISignOnOperationResult.getEuaPassword().

• Set it into LDAPConfigInfo by calling setBindPassword().

• Authenticate the user against the Directory Server by passing the LDAPConfigInfo object 
ILDAPApi.authenticate() API.

• If the user has been authenticated, then call 
IEUISignOnOperationResult.setEuaAuthenticated(true).

• If the user authentication failed or any exception occurred, then call 
IEUISignOnOperationResult.setEuaAuthenticated(false).

EUA Operation Options received through IEUIEventEUAOperationDTO.getEventEuaDTO() will be 
empty as EUA options are not accepted in the Administration module for custom code operations.

Customizing the Import Person Operation for the Login Event

The primary purpose of the Import Person operation is to import/refresh a user from an external system, 
like a directory server or an external database, into the Service Portal application.

As outlined in Table 1-4, you must provide a Java class that implements the ISignOn interface. Please 
provide a complete implementation of the importPerson method in this interface, and read the 
documentation for the ISignOn interface for detailed specifications.

The following are some guidelines for implementing an Import Person operation. It is not required that 
all of these guidelines are implemented; There may be additional requirements, dependent on the 
customization, which are not covered below.
1-40
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
• Get IEUISignOnOperationResult from IEUISignOnOperationContext. This is the object that must 
be returned from this interface.

• The EUIDatasourceDTO object from the IEUIEventImportPersonOperationDTO object contains the 
interface to the datasource configured in the Administration module for this operation.

• The EUIDataMappingDTO object from the IEUIEventImportPersonOperationDTO object contains 
the interface to the mapping configured in the Administration module for this operation.

• Using the Login Name retrieved from the IEUISignOnOperationResult.getSsoLoginId() method, 
query for the user on the external system either from an LDAP server or an external database and 
collect all information related to the Person profile, including organizational units, groups, and 
roles.

• Check to see if the user already exists in the Service Portal database by calling 
ISignOnImportPersonAPI.getPersonByLoginName(<Login Id>). If the person already exists, this 
method returns the IPersonDTO object. If the person does not exist, the method throws a 
signOnImportPersonAPIException.

• If the person is not found, create an IPersonDTO object through the 
PersonFactory.createPersonDTO() method in preparation for importing the person.

• From the data fetched from the external system, create these DTOs using PersonFactory and 
populate them as well: IPersonDTO, ILoginInfo, IContactDTO, IAddressDTO, and 
IPersonExtensionDTO.

• Begin the database transaction by calling ISignOnImportPersonAPI.beginTransaction().

• Check to see if an organizational unit (OU) exists by calling 
ISignOnImportPersonAPI.getOrgUnitByName(<OU Name>). If it does, this method returns an 
IOrganizationalUnitDTO object. If the organizational unit does not exist, the method throws a 
signOnImportPersonAPIException.

• If an OU does not exist, it may be created by calling 
ISignOnImportPersonAPI.createOrgUnit(<IOrganizationalUnitDTO>).

• If the user already exists, call ISignOnImportPersonAPI.updatePerson(<IPersonDTO>). This 
updates a person’s basic profile, login information, preferences, Home OU and extensions.

• If the user already exists, link/update addresses/location and contacts by calling 
ISignOnImportPersonAPI.linkAddresses(<IAddressDTO collection>) and 
ISignOnImportPersonAPI.linkContact(<IContactDTO>.

• If the person is associated with one or more groups in the external system, first try getting all the 
existing groups by calling ISignOnImportPersonAPI.getGroupByName (<ou name>). If not, create 
all the new groups by calling ISignOnImportPersonAPI.createGroup(<IOrganizationalUnitDTO>).

• If the person is new, link all the lists of OUs and groups to the user by calling 
ISignOnImportPersonAPI.linkPersonToOrgUnit() and 
ISignOnImportPersonAPI.linkPersonToGroup().

• If the person already exists, any OUs and groups may be unlinked from the user by calling 
ISignOnImportPersonAPI.unlinkPersonToOrgUnit() and 
ISignOnImportPersonAPI.unlinkPersonToGroup().

• To find out the existing associations of OUs, including the home OU, and groups for a person, call 
the ISignOnImportPersonAPI.getOrgUnitsForPerson() and 
ISignOnImportPersonAPI.getGroupsForPerson() methods.

• To find out the existing associations to roles, call the 
ISignOnImportPersonAPI.getRolesForPerson() method.
1-41
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
• If the imported person needs to be associated with a role, first get the role using 
ISignOnImportPersonAPI.getRBACRoleByLogicName(<roleLogicName>).

• Link/unlink roles to a person by calling ISignOnImportPersonAPI.linkPersonToRole() or 
ISignOnImportPersonAPI.unlinkPersonToRole().

• If the person was imported/refreshed successfully, set the flag ImportPersonDone = true into 
IEUISignOnOperationResult.

• After successful import/refresh, also create an object of IExtUserDTO through 
PersonFactory.createExtUserDTO() and set IPersonDTO and HomeOUDTO 
(IOrganizationalUnitDTO) into IExtUserDTO, then return the IExtUserDTO of the imported person 
by calling IEUISignOnOperationResult.setImportedPersonExtDTO(<IExtUserDTO>).

• If the import/refresh operation failed, set the flag ImportPersonDone = false into 
IEUISignOnOperationResult.

• End/commit the database transaction by calling ISignOnImportPersonAPI.commitTransaction().

• If the transaction failed, roll back the transaction in the exception block by calling 
ISignOnImportPersonAPI.rollbackTransaction() and releasing the transaction in the finally 
block by calling ISignOnImportPersonAPI.releaseTransaction().

Import Person operation options through the 
IEUIEventImportPersonOperationDTO.getImportPersonDTO() method will be empty as Import Person 
options are not accepted in the Administration module for custom code operations.

Customizing the Import Manager Operation for the Login Event

The primary purpose of the Import Manager operation is to import/refresh the Supervisor chain of the 
person from an external system, like a directory server, into Service Portal.

As outlined in Table 1-4, you must provide a java class that implements the ISignOn interface. Please 
provide a complete implementation of the importPerson method in this interface, and read the 
documentation for the ISignOn interface for detailed specifications.

The following are some guidelines for the Import Manager operation: 

• Get IEUISignOnOperationResult from IEUISignOnOperationContext. This is the object that must 
be returned from this interface.

• Get the user imported/refreshed user ImportedPersonExtDTO from IEUISignOnOperationResult.

• Get the Person who was imported through the 
IEUISignOnOperationResult.getImportedPersonExtDTO() method. This will return a 
IExtUserDTO object, from this get IPersonDTO object.

• Import all managers as needed from the external system, create/update each manager in the same 
way as explained in Import Person example above.

• Link a manager to a person, assuming personDTO is a reference to IPersonDTO for the imported 
manager and managerDTO is a reference to the IPersonDTO returned after the manager is imported.

• Use personDTO.setManagerId(managerDTO.getId() to set the manager association for personDTO. 

• Save the association by saving personDTO using one of the mechanisms explained in the “Import 
Person Operation” section on page 1-16. 

It is recommended that when importing the manager chain, you import the top level managers before 
persons. This avoids unnecessary updates for personDTO to update the link with the person’s manager.
1-42
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
Import Manager Operation Options received through IEUIEventImportManagerOperationDTO. 
getImportManagerDTO() will be empty as Import Manager Options are not accepted in the 
Administration module for custom code operations.

Customizing Custom Operations for the Login Event

The primary purpose of the custom code operation is to perform any custom operation that is needed and 
not represented elsewhere in the application.

The following are some guidelines for the Custom Code operation:

• Get IEUISignOnOperationResult from IEUISignOnOperationContext. This is the object that must 
be returned from this interface.

• Get EUIDatasourceDTO from IEUIEventCustomOperationDTO. This object contains the 
datasource configured in the Administration module for this operation.

• Get EUIDataMappingDTO from IEUIEventCustomOperationDTO. This object contains the 
mapping configured in the Administration module for this operation.

• Perform any custom operation as needed.

• IEUISignOnOperationResult should be populated appropriately based on previous examples. 

Custom Code Interface for Person Lookup – IPersonSearch

This is the interface that a custom code should implement in order to customize Person Search events: 
Person Search, Import Person, Import Manager and custom code operations.

The implementation class is configured in the Administration module > Directories tab > Events, and 
can be configured for searching a for person in the following places within the Service Portal 
application:

• Person Search for Order On Behalf

• Person Search for Authorization Delegate

• Person Search for Service Form

Customizing the Person Search Operation

The primary purpose of the Person Search operation is to search for users from an external system, like 
a directory server.

As outlined in Table 1-4, you must provide a Java class that implements the IPersonSearch interface. 
Please provide a complete implementation of the search method in this interface, and read the 
documentation for the ISignOn interface for detailed specifications.

The following are some guidelines for the Person Search operation:

• Get IEUISignOnOperationResult from IEUISignOnOperationContext. This is the object that must 
be returned from this interface.

• Since a custom Person Search operation can be configured using Person Search, we can add to, or 
manipulate, the search results from the previous operation in the Search Event by getting the list of 
persons already in the Search result by calling IEUISignOnOperationResult.getSearchPersonList().

• Search the users on an external system, either a directory server using the API methods in the 
interface ILDAPApi, or in an external database using the API in ISignOnImportPersonAPI for 
connecting to SQL datasources.

• For every person found on the external system, create IExtUserDTO. 
1-43
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
• Populate IExtUserDTO with IPersonDTO, IOrganizationalUnitDTO (for Home OU) and 
ILoginInfoDTO.

• Optional – based on the person popup global setting, also populate collection IContactDTO, 
collection of IAddressDTO, IPersonExtensionDTO.

• Get the flag “All Users For Order On Behalf” using ISignOnImportPersonAPI 
getCustomParam(“ShowAllUsersForOrderOnBehalf”).

• To make the custom code consistent with the standard platform behavior, if the flag is Off, and any 
mandatory attributes are missing for the person, remove the entry. This will prevent any incomplete 
persons from being shown in the popup.

• To make the custom code consistent with the standard platform behavior, if the flag is On and the 
Person is missing any mandatory attributes, call IExtUserDTO.setResultHasError(true). This 
includes the incomplete person in the popup, but displays a red asterisk “*” instead of the radio 
button. The starred user cannot be chosen by the end user or imported.

• Return the list of all persons searched by calling IEUISignOnOperationResult. 
setSearchPersonList(<List of all IExtUserDTO>).

Person Search Operation Options received through the 
IEUIEventPersonSearchOperationDTO.getPersonSearchOperationDTO() method will be empty as 
Person Search Options are not accepted in the Administration module for custom code operations.

Customizing the Import Person Operation for Person Search Event

As outlined in Table 1-4, you must provide a Java class that implements the IPersonSearch interface. 
Please provide a complete implementation of the importPerson method in this interface, and read the 
documentation for the IPersonSearch interface for detailed specifications.

Steps to customize this are similar to the “Customizing the Import Person Operation for the Login 
Event” section on page 1-40.

Customizing the Import Manager Operation for Person Search Event

As outlined in Table 1-4, you must provide a Java class that implements the IPersonSearch interface. 
Please provide a complete implementation of the search method in this interface, and read the 
documentation for the IPersonSearch interface for detailed specifications.

Steps to customize this are similar to the “Customizing the Import Manager Operation for the Login 
Event” section on page 1-42.

Customizing the Custom Operation for Person Search Event

As outlined in Table 1-4, you must provide a Java class that implements the IPersonSearch interface. 
Please provide a complete implementation of the performCustom method in this interface, and read the 
documentation for the IPersonSearch interface for detailed specifications.

Steps to customize this are similar to the “Customizing Custom Operations for the Login Event” section 
on page 1-43.

Custom Java Class Mapping Interface
When simple, composite, or regular expression attribute mappings do not suffice, a custom Java class 
can be used in a directory integration attribute mapping.
1-44
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
Custom Java Class for Attribute Mapping – IEUIAttributeMapping

This is the interface that a custom code should implement in order to customize directory attribute 
mappings. The primary purpose of custom mapping class is to customize the attribute value fetched from 
the directory server.

The implementation class has to be configured in the Administration module > Directories tab > 
Mappings, and can be configured for any attribute in the mapping.

Figure 1-15 Custom Java Class for Attribute Mapping

The following are some guidelines for using a custom Java class mapping class:

• The mapping class should only be used for simple logic to be applied to the value retrieved from the 
directory.

• For performance reasons, the mapping class should not be used to perform a call to a directory server 
using the Directory Server API or to execute any database operations. The Person Search or Login 
interfaces should be used for these use cases.

• Implement IEUIAttributeMapping.getAttributeValue() for returning a single value for the mapped 
attribute. This method should not be implemented for the OU List, Group List, or Role List mapping 
fields.

• Implement IEUIAttributeMapping.getAttributeValueArray() for returning multiple values for the 
mapped attribute. This method should only be implemented for the OU List, Group List, and Role 
List mapping fields.

Directory Server API
This is an API wrapper that Cisco provides for integrating with the directory server (LDAP) connection 
facility built into the product.
1-45
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
Authentication to, and querying, the directory server are the only features this API provides. This API 
supports all directory servers supported by Service Portal.

Typically, the Directory Server API works from the directory integration datasource and mapping 
configurations, and eliminates the need for hand-coding connection information, filters, and the 
attributes for querying.

Generally, to use the LDAP API, you also need the LDAPConfigInfo object. Use EUIUtil.get 
LDAPConfigInfo() from any datasource and mapping for this purpose.

The javadoc for LDAP API can be located in the javadocs folder of the product package.

Getting an Instance of ILDAPApi – API Implementation 

An instance of ILDAPApi does not need to be created. It is available in all method arguments of both 
custom code API interfaces (ISignOn and IPersonSearch).

Directory Integration Utility (EUIUtil) Class

The directory integration utility class (EUIUtil) converts the datasource and mapping configured in the 
Administration module into a format that the Directory Server API can use as input for authentication, 
search, and query functions.

LDAP Configuration Info (LDAPConfigInfo) Class

An object of LDAPConfigInfo class encapsulates all the following configuration options that must be 
passed to the directory server API:

• Authentication information

• Connection information

• Query attributes

• Search filter 

For more advanced users, if there is a need to override any configuration, LDAPConfigInfo provides 
getters and setters for all configurations. For further details on these methods, see the Javadoc for this 
class. 

Main interface of the API – ILDAPApi

The ILDAPApi is the main interface that provides two basic operations on the directory server:

• Authenticate 

• Search/Query

The ILDAPApi interface provides methods to interact with LDAP consistently throughout Service 
Portal.

LDAPEntryBean

After querying/searching the directory server using the ILDAPApi.query(…) method, the results are 
returned as a collection of LDAPEntryBean.
1-46
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Using Custom Code in Directory Integration
Import/Refresh Person API 
This API can be used to import/refresh Person profile, create OUs or groups and also to link or unlink a 
person to an OU, group, or role. This API also supports transaction management for importing a person, 
and connectivity to SQL datasources. This API includes a method to read from the CnfParams table.

Import/Refresh Person API Interface – ISignOnImportPersonAPI

The Import/Refresh Person API interface provides methods for the following:

• Get a Person object by PersonID or LoginName. This returns the Person with login information, 
preferences, home OU, address, contact, location, and extensions.

• Create a Person with login information, preferences, home OU, address, contact, location, and 
extensions.

• Update a Person with login, preferences, home OU, and extensions.

• Get OU by OrganizationalUnitID, Name. This does not return the members of the OU.

• Get all the OUs for a given Person. This does not return the members of the OU.

• Create an OU.

• Link/unlink a Person with an OU.

• Get Group by GroupID, Name. This does not return all the members of the Group.

• Get all the groups for a given person.

• Create a group.

• Link/unlink a person with a group.

• Get a user-defined role by name.

• Get LogicName object for a system-defined role.

• Get system-defined role by LogicName object.

• Get all the roles for a given person.

• Link/unlink a person with a role.

• Link/update address or location for a person.

• Add/update/delete a contact for a person.

• Begin transaction, commit transaction and release transaction resources for Import Person.

• Get a connection to a SQL datasource.

• Rollback the transaction on the SQL datasource connection.

• Return the connection to the SQL datasource back to the connection pool.

• Get parameter values from the CnfParams table.

For further details see the Java documentation.
1-47
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Best Practices
Customizing Java Class to Connect to a SQL Datasource

To customize the Java class to connect to a SQL datasource:

Step 1 Get a connection to a SQL datasource database from ISignOnImportPersonAPI by passing the 
DatasourceName. The DatasourceName should be prefixed with the JNDI prefix, as defined by the 
“DatasourceJNDIPrefix” property in newscale.properties file.

Step 2 Use the above connection to execute any query using a JDBC statement.

Step 3 Commit the connection object directly at the end of the try block.

Step 4 Call ISignOnImportPersonAPI to roll back the connection when there are any failures/exceptions.

Step 5 In the final block, close the statement directly and call ISignOnImportPersonAPI to release the 
connection and return it to the connection pool.

Best Practices

Compiling Custom Code Java Files
The following are steps to compile and deploy custom code:

Step 1 Copy the build.xml file given in the “Sample build.xml File” section on page 1-65 and paste it to any 
folder; for example, C:\CustomCode.

Step 2 Edit the build.xml file to change the property “rcwar.dir” to point to the full path where the 
RequestCenter.war is available.

Step 3 Edit the build.xml to change the property “javax.servlet.dir” to point to the full path where the 
servlet-api.jar is available. This is specific to the application server.

Step 4 Create a subfolder for the custom code java files; for example, C:\CustomCode\src.

Step 5 Create a custom code with a package name like “com.newscale.SignOnCustomCode” and place the 
SignOnCustomCode.java file in the following directory: 
C:\CustomCode\src\com\newscale\SignOnCustomCode.java

Step 6 Run “ant” from a command line in the C:\CusomCode folder.

Step 7 The ant build file will compile all the java files under the “src” subfolder and place the class files in the 
“out” subfolder.

Step 8 The ant build file will also deploy the class files to the “RequestCenter.war\WEB-INF\classes” folder.

Step 9 Restart the application server.
1-48
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Best Practices
Coding Guidelines

Package Names

• We recommend that the package name should be: com.newscale.[yourcompanyname].*.

• Use the key name “com.yourcompanyname.*” to store any ContextLocalAttributes. This eliminates 
clashes with the internal namespaces.

Logging 

• Use the Logger to log messages to the server logs instead of using System.out.println.

• For debug logs, always begin by checking whether debugging is enabled. This is essential for 
performance.

• Always log the error in the exception block before propagating the exception back to the caller.

Exception Handling 

• When EUIException is caught, throw it back as is.

• Wrap all other exceptions as EUIException and throw it back.

Configuring Custom Code in the Administration Module
After you have developed, compiled, and deployed the custom code, the Administration module must be 
configured to use the code. Configuration involves specifying when (in which event), in which operation 
and in what sequence (step) to invoke the custom code.

Step 1: Configure Global Settings

Ensure that the Directory Integration has been enabled by turning on this setting in the Administration 
module’s Settings tab. Instructions for turning on Directory Integration are given in the “Enabling 
Directory Integration” section on page 1-20.

Step 2: Configure Datasources

Most operations, customized or not, require a datasource and mapping, so these two areas of the 
Directory Administration must be configured first.

Datasources are the external servers, such as LDAP, where your data is currently stored, and which 
Service Portal must access. The only custom operation which does not require a datasource is SSO.

See the “Defining Datasources” section on page 1-3 and the “Configuring Datasource Information” 
section on page 1-22 for more information on configuring datasources.
1-49
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Best Practices
Step 3: Configure Attribute Mappings

Once you have set up the external datasource, you must map the person-related data available in Service 
Portal to the data in the LDAP directory (or other external datasource). These mappings tell Service 
Portal where to look and what to get during an event and sequence of operations.

To configure a mapping follow the guidelines and instructions in the “Defining Mappings” section on 
page 1-4 and the “Configuring Mappings” section on page 1-26.

Step 4: Configure Events/Customized Events

Customizing the Single Sign-On (SSO) and authentication operations for any event other than Login is 
considered an illegal action. There is no other time when these operations are necessary. Once a user is 
signed into and authenticated in the application from the external LDAP server, the process does not need 
to be replicated.

All events requiring connection to external datasources are configured here. When invoking the Custom 
Code APIs described in this guide, it is important to think through the sequence of operations for each 
event so that the custom operation does not occur out of order and fail.

Step 1 From the Navigation Pane, click Events.

Step 2 For the event you wish to customize, click Edit.

Step 3 If the event is disabled, use the drop-down menu to choose Enabled.

Step 4 Click Add step to add an operation. You can add as many steps are as necessary now, or complete the 
details of each step before adding and configuring the next.

Step 5 Choose the Operation from the drop-down menu.

• To simply invoke the code for SSO; for example, you can choose SSO from the menu. To customize 
the code for SSO, choose Custom Code, and then, in the next step, choose which operation you want 
to customize.

• To configure a customized operation, choose Custom Code.

Step 6 Choose your mapping and datasource from the drop-down menus.

Step 7 Under the “Additional Options” heading, click Options.

Step 8 Configure the options for that step:

• For Custom Code Operation Type, use the drop-down menu to choose the operation you wish to 
customize.

• For Java Class, enter the entire package name for that operation, followed by the class name; for 
example, com.newscale.bfw.eui.api.samples.operations.CustomCodeTester.

• In the above example, the Java class name is in italics. Both of these may be found in and copied 
from the code itself.

Step 9 Click Close to close the additional options for the step.

Step 10 Continue adding and configuring steps, as necessary.

Step 11 Click Update to save all steps for that event.
1-50
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
Using Custom Code as an Operation Type

In the steps above, if you choose Custom Code as the operation and Custom Code again for the operation 
type, you are then calling an undefined Custom Code, which you must design.

In the Custom Code test example provided by Cisco, you can use the Java Class “performCustom” to 
define your own custom code.

Deploying Custom Code
All custom code must be packaged as a customization to the Service Portal installer. This allows the 
customizations to be reapplied if the installation needs to be upgraded or to install a new site.

Instructions for packaging and deploying custom code are dependent on the application server which 
hosts Service Portal. See the Cisco Service Portal Installation Guide and Cisco Service Portal 
Configuration Guide for further information.

Sample View/Usage of the API 
The solution here satisfies these use cases:

• Create an event class that searches for a person using data collected from a container-managed SQL 
datasource.

• Create an event class that imports a person using data collected from a container-managed SQL 
datasource.

• Create an event class that modifies a person using data collected from a container-managed SQL 
datasource.

• Create an event class that can receive configuration parameters from the UI. The mappings interface 
is used in this example to pass the configuration parameters to the class.

It also creates the home OU for the person as a business unit, if it doesn’t already exist in Service Portal.

Note that the solution requires a datasource to be configured on the application server. The following 
sections illustrate configuration and usage of the EUIPersonSearchSQL class.

SQL Datasource
Any SQL table or tables that contain data for the mandatory fields in a Person profile (or from which 
values for those fields can be derived) could be used as a datasource. Here is the table definition used in 
this example: 

CREATE TABLE [psgextusers] (
  [login]     [nvarchar] (100) COLLATE Latin1_General_CI_AI NOT NULL,
  [firstname] [nvarchar] (100) COLLATE Latin1_General_CI_AI NULL,
  [lastname]  [nvarchar] (100) COLLATE Latin1_General_CI_AI NULL,
  [password]  [nvarchar] (100) COLLATE Latin1_General_CI_AI NULL,
  [email]     [nvarchar] (100) COLLATE Latin1_General_CI_AI NULL,
  [homeOU]    [nvarchar] (100) COLLATE Latin1_General_CI_AI NULL,
  CONSTRAINT [PK_extuser] PRIMARY KEY CLUSTERED 
  (
     [login]
  )  ON [PRIMARY] 
) ON [PRIMARY]
1-51
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
GO

The following is some sample data to go with the above table definition:

INSERT INTO [RequestCenter].[dbo].[psgextusers]([login], [firstname], [lastname], 
[password], [email], [homeOU])VALUES('Moe', 'Moe', 'Howard', 'Moe', 'moe@stooge.com', 
'Nyuk Nyuk Nyuk')
INSERT INTO [RequestCenter].[dbo].[psgextusers]([login], [firstname], [lastname], 
[password], [email], [homeOU])VALUES('Larry', 'Larry', 'Fine', 'Larry', 
'larry@stooge.com', 'Nyuk Nyuk Nyuk')
INSERT INTO [RequestCenter].[dbo].[psgextusers]([login], [firstname], [lastname], 
[password], [email], [homeOU])VALUES('Curly', 'Curly', 'Howard', 'Curly', 
'curly@stooge.com', 'Nyuk Nyuk Nyuk')
INSERT INTO [RequestCenter].[dbo].[psgextusers]([login], [firstname], [lastname], 
[password], [email], [homeOU])VALUES('Shemp', 'Shemp', 'Howard', 'Shemp', 
'shemp@stooge.com', 'Nyuk Nyuk Nyuk')

Datasource Definition
To use the Directory Integration interface you have to have an LDAP datasource configured. LDAP is 
the only UI supported datasource. You can create maps without a datasource, but you cannot test them 
without an LDAP datasource. 

Figure 1-16 Sample Datasource Configuration
1-52
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
Configuring a container-managed datasource depends on the container. Detailed instructions on 
configuring datasources are given in the Cisco Service Portal Installation Guide.

Sample Mapping
A mapping must be created for the EUIPersonSearchSQL class.

Figure 1-17 Sample Mapping Configuration

This mapping includes references to the JNDI as Custom 9 and the table name for Custom 10. Using a 
mapping like this, it is possible to do a simple query such as “select * from tablename” and use the 
metadata functionality in JDBC to select the column based on the mapping.
1-53
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
Sample Event Configuration
The “Person Lookup for Order on Behalf” event has two steps: The first must perform a “Person Search” 
operation. The name of the class is given as the mapping. The complete package specification is given 
as the Java class. 

Figure 1-18 Custom Person Search Operation

The second step in the “Person Lookup for Order on Behalf” event is to import the selected person 
(“Import Person”). This configuration uses the same Java class, but a different Custom Code Operation 
Type. The Custom Code Operation Types in the drop-down menu correspond to the methods that are 
called in the interface class.
1-54
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
Figure 1-19 Event Step 2 – Custom Import Person Operation

Sample Code for SQL-Based Person Lookup
The following is the source for the custom class:

package com.newscale.profsvcs.eui;

import com.newscale.api.person.*;
import com.newscale.bfw.eui.EUIException;
import com.newscale.bfw.eui.api.*;
import com.newscale.bfw.ldap.ILDAPApi;
import com.newscale.bfw.logging.ILogUtil;
import com.newscale.bfw.logging.LogUtilFactory;
import com.newscale.comps.extuserintegration.session.*;

import javax.servlet.http.HttpServletRequest;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.*;

/**
 * Person Search to an external SQL datasource
1-55
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
 *
 * @author Lee Weisz
 * @version $Revision$
 */
public class EUIPersonSearchSql implements IPersonSearch {
  /**
   * Logger instance
   */
  private ILogUtil log = LogUtilFactory.getLogUtil(EUIPersonSearchSql.class);

  /**
   * Implement Person Search Operation and fetch users from an external system
   *
   * @param euiOperationDTO       .
   * @param euiPersonSearchOperationContext
   *
   * @param request               .
   * @param signOnImportPersonAPI
   * @param ldapApi
   * @return .
   * @throws EUIException .
   */
  public IEUIPersonSearchOperationResult search(IEUIEventPersonSearchOperationDTO 
euiOperationDTO,
                                                IEUIPersonSearchOperationContext 
euiPersonSearchOperationContext,
                                                HttpServletRequest request,
                                                ISignOnImportPersonAPI 
signOnImportPersonAPI, ILDAPApi ldapApi)
      throws EUIException {

    log.debug("search: Entering search method...");
    IEUIPersonSearchOperationResult euiOperationResult = euiPersonSearchOperationContext
        .getEUIPersonSearchOperationResult();

    // Check if there is any SearchPerson List already available, if so we
    // can append to the existing List

    // Typically if there is a productized Person Search Operation is
    // configured before the custom code, this list would be populated

    // TODO Why is this an ArrayList? Can't it be a List?
    ArrayList personList = euiOperationResult.getSearchPersonList();

    if (null == personList) {
      personList = new ArrayList();
    }

    // Get the search criteria from the dialog box
    String searchFirstName = euiPersonSearchOperationContext.getFirstNameSearchString();
    String searchLastName = euiPersonSearchOperationContext.getLastNameSearchString();

    log.debug("search: Looking for " + searchFirstName + " " + searchLastName);

    EUIDataMappingDTO dataMappingDTO = euiOperationDTO.getEuiMappingDTO();
    Map attributeMap = dataMappingDTO.getAllAttributeMap();

    // What's in this map?
    if (log.isDebugEnabled()) {
      Set ks = attributeMap.keySet();
      for (Iterator it = ks.iterator(); it.hasNext();) {
        Object key = it.next();
        log.debug("search: " + key + " is " + attributeMap.get(key));
      }
1-56
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
    }

    // Use the map to map the columns to Person fields
    String firstNameColumn = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_FIRSTNAME);
    String lastNameColumn  = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_LASTNAME);
    String loginColumn     = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_LOGINID);

    // Use the custom9 mapping to hold the datasource value and custom10 to
    // hold the tablename. Since we control the import as well, it won't show up
    // in the imported Person's profile
    String ds = (String) attributeMap.get("custom9");
    String sourceTable = (String) attributeMap.get("custom10");

    StringBuffer searchSQL;
    searchSQL = new StringBuffer().append("select ")
        .append(firstNameColumn).append(", ")
        .append(lastNameColumn).append(", ")
        .append(loginColumn).append(" from ")
        .append(sourceTable);

    if (searchFirstName != null && searchFirstName.trim().length() > 0 ||
        searchLastName != null && searchLastName.trim().length() > 0) {
      searchSQL.append(" where ");

      if (searchFirstName != null && searchFirstName.trim().length() > 0) {
        searchSQL.append(firstNameColumn).append(" like 
'").append(searchFirstName.trim()).append("%'");
      }

      if (searchFirstName != null && searchFirstName.trim().length() > 0 &&
          searchLastName != null && searchLastName.trim().length() > 0) {
        searchSQL.append(" and ");
      }

      if (searchLastName != null && searchLastName.trim().length() > 0) {
        searchSQL.append(lastNameColumn).append(" like 
'").append(searchLastName.trim()).append("%'");
      }
    }

    log.debug("search: " + searchSQL.toString());

    Connection conn = null;
    Statement s = null;

    // get a connection to the external db
    try {
      conn = signOnImportPersonAPI.getExternalDBConnection(ds);

      s = conn.createStatement();
      ResultSet rs = s.executeQuery(searchSQL.toString());

      while (rs.next()) {
        String fname = rs.getString(firstNameColumn);
        String lname = rs.getString(lastNameColumn);
        String login = rs.getString(loginColumn);

        IExtUserDTO extUserDTO = PersonFactory.createExtUserDTO();
        IPersonDTO personDTO = PersonFactory.createPersonDTO();
1-57
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
        personDTO.setFirstName(fname);
        personDTO.setLastName(lname);
        personDTO.setPersonIdentification(login);

        // Make the IPersonDTO into an IExtPersonDTO
        extUserDTO.setPersonDTO(personDTO);
        // Add IExtUserDTO to the collection of searched persons
        personList.add(extUserDTO);
      }
    } catch (SQLException e) {
      log.error("search: " + searchSQL.toString(), e);
    } catch (SignOnImportPersonAPIException e) {
      log.error("search: Cannot get a connection to " + ds, e);
    } finally {
      try {
        s.close();
      } catch (SQLException e) {
        e.printStackTrace();
      }
      try {
        conn.close();
      } catch (SQLException e) {
        e.printStackTrace();
      }
    }

    // Set the list of Persons Searched into the Result to be returned
    euiOperationResult.setSearchPersonList(personList);

    log.debug("search: Leaving search method...");
    return euiOperationResult;
  }

  /**
   * Implement the Import Person Operation to Import a user from External
   * system
   *
   * @param euiOperationDTO       .
   * @param euiPersonSearchOperationContext
   *                              .
   * @param request               .
   * @param signOnImportPersonAPI
   * @param ldapApi
   * @return .
   * @throws EUIException .
   */
  public IEUIPersonSearchOperationResult importPerson(IEUIEventImportPersonOperationDTO 
euiOperationDTO,
                                                      IEUIPersonSearchOperationContext 
euiPersonSearchOperationContext,
                                                      HttpServletRequest request,
                                                      ISignOnImportPersonAPI 
signOnImportPersonAPI, ILDAPApi ldapApi)
      throws EUIException {

    log.debug("importPerson: Entering importPerson method...");

    /* Potentially useful stuff on the request...
      Name : isOOB          Value : true/false
      Name : customerid     Value : personDTO.setPersonIdentification() from search
      Name : customerId     Value : personDTO.setPersonIdentification() from search
      Name : lDAPCustomerId Value : personDTO.setPersonIdentification() from search
    */
1-58
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
    // What's on this request?
    if (log.isDebugEnabled()) {
      log.debug("importPerson: Parameters collected from the search window...");
      Enumeration paramNames = request.getParameterNames();

      if (paramNames.hasMoreElements()) {
        while (paramNames.hasMoreElements()) {
          String paramName = (String) paramNames.nextElement();
          String paramValues[] = request.getParameterValues(paramName);
          if (paramValues != null) {
            log.debug("importPerson: Name : " + paramName);
            for (int i = 0; i < paramValues.length; i++) {
              log.debug("importPerson: Value : " + paramValues[i]);
            }
          }
        }
      }
    }

    boolean refreshPerson = true;
    String login = request.getParameter("customerId");

    // Defaults
    String homeOU    = "";
    String firstName = "";
    String lastName  = "";
    String email     = "";
    String password  = "password";

    // Get the UI mapping
    EUIDataMappingDTO dataMappingDTO = euiOperationDTO.getEuiMappingDTO();
    Map attributeMap = dataMappingDTO.getAllAttributeMap();

    // Use the map to map the columns to Person fields
    String firstNameColumn = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_FIRSTNAME);
    String lastNameColumn  = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_LASTNAME);
    String loginColumn     = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_LOGINID);
    String passwordColumn  = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_PASSWORD);
    String emailColumn     = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_EMAILADDRESS);
    String homeOUColumn    = (String) 
attributeMap.get(EUIAPIConstants.EUIMAPFIELDTYPE.ATTR_HOMEORGANIZATIONLUNIT);

    // Use the custom9 mapping to hold the datasource value and custom10 to
    // hold the tablename. Since we control the import as well, it won't show up
    // in the imported Person's profile unless we screw up somehow and put it there...
    String ds = (String) attributeMap.get("custom9");
    String sourceTable = (String) attributeMap.get("custom10");

    StringBuffer importSQL;
    importSQL = new StringBuffer().append("select ")
        .append(firstNameColumn).append(", ")
        .append(lastNameColumn).append(", ")
        .append(loginColumn).append(", ")
        .append(passwordColumn).append(", ")
        .append(emailColumn).append(", ")
        .append(homeOUColumn)
        .append(" from ").append(sourceTable).append(" where ")
        .append(loginColumn).append("='").append(login).append("'");
1-59
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
    log.debug("import: " + importSQL.toString());

    Connection conn = null;
    Statement s = null;

    try {
      // get a connection to the external db
      conn = signOnImportPersonAPI.getExternalDBConnection(ds);
      s = conn.createStatement();
      ResultSet rs = s.executeQuery(importSQL.toString());

      while (rs.next()) {
        homeOU = rs.getString(homeOUColumn);
        firstName = rs.getString(firstNameColumn);
        lastName = rs.getString(lastNameColumn);
        email = rs.getString(emailColumn);
        password = rs.getString(passwordColumn);
      }
    } catch (SQLException e) {
      log.error("import: " + importSQL.toString(), e);
    } catch (SignOnImportPersonAPIException e) {
      log.error("import: Cannot get a connection to " + ds, e);
    } finally {
      try {
        s.close();
      } catch (SQLException e) {
        log.error("import: ", e);
      }
      try {
        conn.close();
      } catch (SQLException e) {
        log.error("import: ", e);
      }
    }

    log.debug("import : Got " + login + "," + firstName + "," + lastName + "," + email + 
"," + password + "," + homeOU);

    IPersonDTO personDTO = PersonFactory.createPersonDTO();
    try {
      // Get or Create the Person
      // This API throws an exception if the Person is not found in Request Center
      try {
        personDTO = signOnImportPersonAPI.getPersonByLoginName(login);
        log.info("importPerson: " + login + " exists in Request Center");
      } catch (SignOnImportPersonAPIException impEx) {
        log.info("importPerson: Creating new Person for " + login);
        refreshPerson = false;
        personDTO.setLogin(login);
      }

      // Get or Create the Home OU that the Person should be associated with
      // This API throws an exception if the OU is not found in Request Center
      IOrganizationalUnitDTO homeOUDTO;
      try {
        homeOUDTO = signOnImportPersonAPI.getOrgUnitByName(homeOU);
        log.info("importPerson: " + homeOU + " exists in Request Center");
      } catch (SignOnImportPersonAPIException impEx) {
        log.info("importPerson: Creating new OU " + homeOU + " for " + login);
        homeOUDTO = PersonFactory.createOrganizationalUnitDTO();
        homeOUDTO.setName(homeOU);
        homeOUDTO.setBillable(false);
        homeOUDTO.setOrganizationalUnitTypeId(2); // business unit.
        homeOUDTO.setRecordStateId(1); // active
1-60
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
        homeOUDTO.setLocaleId(EUIAPIConstants.LOCALEID.USEN);
        try {
          homeOUDTO = signOnImportPersonAPI.createOrgUnit(homeOUDTO);
        } catch (SignOnImportPersonAPIException crEx) {
          log.error("importPerson: Can't create " + homeOU + " for " + login);
          throw crEx;
        }
      }
      personDTO.setHomeOrganizationalUnitId(homeOUDTO.getId());

      // Populate the Login Object...
      // Modify the login information only if this is a new Person
      if (!refreshPerson) {
        ILoginInfoDTO loginInfoDTO = PersonFactory.createLoginInfoDTO();

        loginInfoDTO.setLoginname(personDTO.getLogin());
        loginInfoDTO.setPrivateKey(personDTO.getLogin());
        // Set the un-encrypted password
        loginInfoDTO.setPassword(password);

        // Set ILoginInfoDTO to IPersonDTO
        personDTO.setILoginInfoDTO(loginInfoDTO);
      }

      // Populate the rest of the essential fields
// Presumably, any expression on the mapping will have already been executed 
// and the result is what's returned in the personDTO
      personDTO.setFirstName(firstName);
      personDTO.setLastName(lastName);
      personDTO.setEmail(email);

      // Set the active status
      // TODO These methods are bogus...
//    personDTO.setIsInactive(false);
//    personDTO.setIsActive(true);
      // TODO What do these numbers mean? Is there a constants library to convert these 
codes into something meaningful?
      personDTO.setRecordStateId(1);

      // Upsert the Person
      signOnImportPersonAPI.beginTransaction();
      if (refreshPerson) {
        // Update the existing Person
        // This method updates only Basic Info, LoginInfo, Preferences, Home OU and Person 
Extension
        signOnImportPersonAPI.updatePerson(personDTO);
      } else {
        // Create the Person
        // This creates a Person with Basic Info, LoginInfo, Preferences, Home OU and 
Person Extension
        personDTO = signOnImportPersonAPI.createPerson(personDTO);
        // From here on out it's a refresh
        refreshPerson = true;
      }
      signOnImportPersonAPI.commitTransaction();
    } catch (Exception e) {
      log.error("importPerson: Exception during Import Person", e);
      try {
        // Rollback Transaction
        signOnImportPersonAPI.rollbackTransaction();
      } catch (SignOnImportPersonAPIException se) {
        log.error("importPerson: Error while Rolling back transaction", se);
      }
    } finally {
1-61
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample View/Usage of the API 
      // Release Transaction
      signOnImportPersonAPI.releaseTransaction();
    }

    IExtUserDTO extUserDTO = PersonFactory.createExtUserDTO();
    extUserDTO.setPersonDTO(personDTO);

    IEUIPersonSearchOperationResult psor = 
euiPersonSearchOperationContext.getEUIPersonSearchOperationResult();
    psor.setImportedPersonExtDTO(extUserDTO);

    log.debug("importPerson: Leaving importPerson method...");

    return psor;
  }

  /**
   * Implement Import Manager Operation and Import all the Supervisors chain
   * of the Person being imported
   *
   * @param euiOperationDTO       .
   * @param euiPersonSearchOperationContext
   *                              .
   * @param request               .
   * @param signOnImportPersonAPI
   * @param ldapApi
   * @return .
   * @throws EUIException .
   */
  public IEUIPersonSearchOperationResult importManager(IEUIEventImportManagerOperationDTO 
euiOperationDTO,
                                                       IEUIPersonSearchOperationContext 
euiPersonSearchOperationContext,
                                                       HttpServletRequest request,
                                                       ISignOnImportPersonAPI 
signOnImportPersonAPI, ILDAPApi ldapApi)
      throws EUIException {
    return null;
  }

  /**
   * Implement any Custom Operation
   *
   * @param euiOperationDTO       .
   * @param euiPersonSearchOperationContext
   *
   * @param request               .
   * @param signOnImportPersonAPI
   * @param ldapApi
   * @return .
   * @throws EUIException .
   */
  public IEUIPersonSearchOperationResult performCustom(IEUIEventCustomOperationDTO 
euiOperationDTO,
                                                       IEUIPersonSearchOperationContext 
euiPersonSearchOperationContext,
                                                       HttpServletRequest request,
                                                       ISignOnImportPersonAPI 
signOnImportPersonAPI, ILDAPApi ldapApi)
      throws EUIException {
    return null;
  }
}

1-62
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Supported Time Zones
Supported Time Zones
The supported time zone values when mapping time zones are listed below.

Time Zone Name GMT Equivalent
Etc/GMT+12 (GMT-12:00) International Date Line West

Pacific/Apia (GMT-11:00) Samoa

US/Hawaii (GMT-10:00) Hawaii

US/Aleutian (GMT-10:00) Hawaii Aleutian Daylight Time

US/Alaska (GMT-09:00) Alaska

America/Tijuana (GMT-08:00) Pacific Time (US and Canada); Tijuana

America/Chihuahua (GMT-07:00) Chihuahua, La Paz, Mazatlan

US/Arizona (GMT-07:00) Arizona

Canada/Mountain (GMT-07:00) Mountain Time (US and Canada)

Canada/Saskatchewan (GMT-06:00) Saskatchewan

US/Central (GMT-06:00) Central America

Canada/Central (GMT-06:00) Central Time (US and Canada)

America/Mexico_City (GMT-06:00) Guadalajara, Mexico City, Monterrey

America/Bogota (GMT-05:00) Bogota, Lima, Quito

Canada/Eastern (GMT-05:00) Eastern Daylight Time (US and Canada)

America/Jamaica (GMT-05:00) Eastern Time (US and Canada)

US/East-Indiana (GMT-05:00) Indiana (East)

America/Antigua (GMT-04:00) Atlantic Time (Canada)

Canada/Atlantic (GMT-04:00) Atlantic Daylight Time (Canada)

America/Manaus (GMT-04:00) Manaus

America/Santiago (GMT-04:00) Santiago

America/Caracas (GMT-04:30) Caracas

America/La_Paz (GMT-04:00) La Paz (Bolivia)

America/Sao_Paulo (GMT-03:00) Brasilia

America/Godthab (GMT-03:00) Greenland

America/Argentina/Buenos_Aires (GMT-03:00) Buenos Aires

America/Guyana (GMT-04:00) Georgetown

America/St_Johns (GMT-03:30) Newfoundland and Labrador

Atlantic/South_Georgia (GMT-02:00) Mid-Atlantic

Atlantic/Azores (GMT-01:00) Azores

Atlantic/Cape_Verde (GMT-01:00) Cape Verde Islands

Etc/Greenwich (GMT) Greenwich Mean Time: Dublin, Edinburgh, 

Africa/Casablanca (GMT) Casablanca, Monrovia

Europe/Sarajevo (GMT+01:00) Sarajevo, Skopje, Warsaw, Zagreb

Europe/Brussels (GMT+01:00) Brussels, Copenhagen, Madrid, Paris

Africa/Brazzaville (GMT+01:00) West Central Africa

Europe/Amsterdam (GMT+01:00) Amsterdam, Berlin, Bern, Rome, 

Europe/Belgrade (GMT+01:00) Belgrade, Bratislava, Budapest, 
1-63
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Supported Time Zones
Africa/Cairo (GMT+02:00) Cairo

Europe/Helsinki (GMT+02:00) Helsinki, Kiev, Riga, Sofia, Tallinn, 

Europe/Minsk (GMT+02:00) Minsk

Europe/Athens (GMT+02:00) Athens, Bucharest, Istanbul

Asia/Jerusalem (GMT+02:00) Jerusalem

Africa/Windhoek (GMT+02:00) Windhoek

Africa/Harare (GMT+02:00) Harare, Pretoria

Asia/Baghdad (GMT+03:00) Baghdad

Africa/Nairob (GMT+03:00) Nairobi

Europe/Moscow (GMT+03:00) Moscow, St. Petersburg, Volgograd

Asia/Kuwait (GMT+03:00) Kuwait, Riyadh

Asia/Tehran (GMT+03:30) Tehran

Asia/Baku (GMT+04:00) Baku

Asia/Muscat (GMT+04:00) Abu Dhabi, Muscat

Asia/Yerevan (GMT+04:00) Yerevan

Asia/Tbilisi (GMT+04:00) Tbilisi

Asia/Kabul (GMT+04:30) Kabul

Asia/Karachi (GMT+05:00) Islamabad, Karachi, Tashkent

Asia/Yekaterinburg (GMT+05:00) Ekaterinburg

Asia/Kolkata (GMT+05:30) Chennai, Kolkata, Mumbai, New Delhi

Asia/Kathmandu (GMT+05:45) Kathmandu

Asia/Dhaka (GMT+06:00) Astana, Dhaka

Asia/Novosibirsk (GMT+07:00) Novosibirsk

Asia/Colombo (GMT+05:30) Sri Jayawardenepura

Asia/Rangoon (GMT+06:30) Yangon (Rangoon)

Asia/Bangkok (GMT+07:00) Bangkok, Hanoi, Jakarta

Asia/Krasnoyarsk (GMT+08:00) Krasnoyarsk

Asia/Irkutsk (GMT+09:00) Irkutsk

Asia/Kuala_Lumpur (GMT+08:00) Kuala Lumpur, Singapore

Asia/Taipei (GMT+08:00) Taipei

Australia/Perth (GMT+08:00) Perth

Asia/Chongqing (GMT+08:00) Beijing, Chongqing, Hong Kong SAR, 

Asia/Seoul (GMT+09:00) Seoul

Asia/Tokyo (GMT+09:00) Osaka, Sapporo, Tokyo

Asia/Yakutsk (GMT+09:00) Yakutsk

Australia/Darwin (GMT+09:30) Darwin

Australia/Adelaide (GMT+09:30) Adelaide

Australia/Hobart (GMT+10:00) Hobart

Australia/Canberra (GMT+10:00) Canberra, Melbourne, Sydney

Australia/Brisbane (GMT+10:00) Brisbane

Asia/Vladivostok (GMT+10:00) Vladivostok

Time Zone Name GMT Equivalent
1-64
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample build.xml File
Sample build.xml File
<?xml version="1.0" ?>
<project name="Sample Project" default="all" basedir=".">
- <!-- Main target -->
  <target name="all" depends="init,build,deploy" />
  <!- Set the following properties to point to appropriate folders -->
  <property name="rcwar.dir" value="<apps server path where Request Center application WAR 
file is deployed>" />
  <property name=" javax.servlet.dir" value="<path where 
jboss-servlet-api_3.0_spec-1.0.0.Final.jar is available in the app server>" />
  <property name="rcwar_webinf_classes.dir"value="${rcwar.dir}/WEB-INF/classes" />
  <target name="init">
    <property name="dirs.base" value="${basedir}" />
    <mkdir dir="${dirs.base}/out" />
    <property name="src" value="${dirs.base}/src" />
    <property name="out" value="${dirs.base}/out" />
  </target>
  <path id="classpath">
    <fileset dir="${rcwar.dir}" includes="*.jar" />
    <fileset dir="${javax.servlet.dir}" 
includes="jboss-servlet-api_3.0_spec-1.0.0.Final.jar" />
    <pathelement path="${rcwar_webinf_classes.dir}" />
  </path>
- <!-- Compile Java Files -->
  <target name="build" depends="init">
    <javac srcdir="${src}" destdir="${out}" debug="true" includes="**/*.java" 
classpathref="classpath" deprecation="true" fork="true" memoryinitialsize="256M" 
memorymaximumsize="512M" />
  </target>
  <target name="deploy" depends="init">
    <copy todir="${rcwar_webinf_classes.dir}">
      <fileset dir="${out}">
        <include name="**/*.class" />
      </fileset>
    </copy>
  </target>
</project>

Pacific/Guam (GMT+10:00) Guam, Port Moresby

Pacific/Guadalcanal (GMT+11:00) Solomon Islands, New Caledonia

Pacific/Auckland (GMT+12:00) Auckland, Wellington

Pacific/Fiji (GMT+12:00) Fiji Islands

Pacific/Tongatapu (GMT+13:00) Nuku alofa

Time Zone Name GMT Equivalent
1-65
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 1      Directory Integration and API
  Sample build.xml File
1-66
Cisco Service Portal Integration Guide

OL-26390-02



 

OL-26390-02
C H A P T E R 2

Service Link

• Overview, page 2-1

• Service Link Design and Development, page 2-4

• Monitoring Service Link Transactions, page 2-34

• Service Link Adapters, page 2-42

• Integration Wizard, page 2-60

• Service Link Troubleshooting and Administration, page 2-66

• Prebuilt Functions, page 2-69

Overview

Introduction
Service Link is the Service Portal module that provides integration with external systems. It supplies a 
framework for configuring interfaces that allow delivery tasks, authorizations or reviews defined within 
a Service Portal workflow to be performed by other systems and a user interface for monitoring the 
operation of these interfaces. 

The most common scenario for the use of Service Link is where data associated with a delivery plan task 
needs to be passed outside of Service Portal in order to ensure that the service is delivered satisfactorily. 
For example, a message might be passed to a hardware vendor for a procurement action or to an 
inventory or asset management system for a data record update. The external application may then send 
one or more messages back to Service Portal. Each message, in turn, could update Service Portal with 
the current status of the task within the external system, eventually indicating that the task has been 
completed and that the Service Portal workflow (delivery plan) can continue with subsequent tasks. 

Service Link provides a number of built-in adapters to facilitate communication with external 
applications using different transport mechanisms including the interchange of files; database updates; 
web communication via http post requests or web services; and queue-based messaging. In addition to 
these default adapters, developers may use the Service Link Adapter Development Kit (ADK) to develop 
and deploy custom adapters. Additional adapter kits designed to interface to third-party products such 
as HP Open View Service Desk, BMC Remedy and IBM Identity Management are available from Cisco 
Advanced Services. 
2-1
Cisco Service Portal Integration Guide



 

Chapter 2      Service Link
  Overview
Service Link Prerequisites
Developing Service Link integrations requires a range of technical skills. These include:

• Understanding of service design, including how to configure dictionary usage in Active Form 
Components (AFCs) and how to design tasks in a delivery plan.

• A thorough knowledge of the target third-party system, including the servers hosting the application. 

• For all adapters but the VMware adapter, a basic understanding of XML tag structure since Service 
Link operates by sending XML messages between Service Portal and the external system.

• For all adapters but the VMware adapter, an intermediate grasp of configuring XML Stylesheet 
Language (XSL) transformations, to supplement the XML transformations which can be applied by 
use of the Service Link wizards. 

• If database adapters are to be used, SQL knowledge is also needed.

• If an http/web services adapter is to be used to pass messages between Service Portal and a web 
service, knowledge of web services components like SOAP, WSDL, and web service security is 
helpful.

Service Link Design Methodology and Components
Service Portal offers two approaches to designing integrations. 

• The Integration wizard, available in Service Designer, provides a wizard-driven approach for 
creating web services integration. 

• The Service Link module provides capabilities for creating and maintaining all integrations, 
regardless of the messaging protocols used to communicate with the external system. 

Once an integration has been created, it may be viewed and maintained through the advanced 
configuration capabilities available through Service Link. Advanced users may create even web services 
integrations using this functionality, bypassing the wizards if desired.

Administrators also use Service Link to administer and troubleshoot integrations in a production 
environment.

An integration consists of the following components:

• Adapters

An adapter is a logical representation of a transport component by which Service Portal sends XML 
documents or other messages to third-party systems. Prepackaged adapters support different 
message transport protocols; including file, http/web service, JMS, IBM MQ, and database.

Adapters are composed of two components:

– An inbound adapter

Inbound adapters manage messages coming from an external system. The external system 
message may be altered into a “standard” nsXML (formerly known as newScale XML) format 
through the use of transformations so that the data can be interpreted by Request Center. 

There are two types of inbound adapters: pollers and listeners. A poller is a thread that 
periodically wakes up and looks for incoming messages, while a listener waits and is awakened 
by an incoming external message. An example of a poller is the inbound file adapter, which 
needs to periodically check for messages. An example of a listener adapter is the Web Services 
Listener Adapter which waits until an HTTP response is received.

– An outbound adapter
2-2
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Overview
Outbound adapters manage the XML messages coming out of Service Portal and send them to 
the configured external system. A “standard” nsXML outbound message comes to Service Link 
which may then alter the message through the use of transformations, so that it meets the 
expected format of messages directed to the external system. The outbound adapters then apply 
the correct protocol and logic to send the messages to the external system.

• Agents

An agent is a logical representation of a transport mechanism by which Service Portal communicates 
to/from a third-party system. Agents may be used by service designers to direct tasks to their proper 
third-party destination. In addition to tasks, authorizations and reviews can be externalized by 
specifying an agent to direct this action to an external system.

An agent is composed of an inbound and outbound adapter, optional message transformation 
(XSLT) components, optional parameters, and other settings to address error conditions.

• Transformations

XML stylesheet (XSL) transformations transform outgoing messages into a format understood by a 
third-party system, and transform incoming messages into a format understood by Service Portal.

An agent which includes an outbound adapter automatically creates an nsXML message, containing 
information relevant to the current requisition and task. A transformation associated with the agent 
may then transform that message into an external message, which are delivered to the external 
system via the outbound adapter configured for the agent. Similarly, an inbound agent receives an 
external message via the associated adapter. A transformation must then transform the message into 
an incoming message type that is recognized and processed by the Business Engine, the Workflow 
Manager for Service Portal.

• Dictionaries and Active Form Components

A dictionary is the service design component that holds fields of data required to fulfill a specific 
service request. Agent parameters mapped to dictionary fields (or other data available in the service 
request) provide a standard outbound message format easily understood by external systems. Agent 
parameters in an inbound message received from an external system instruct Service Link to update 
the value of the dictionary fields mapped to those parameters. The changed form data is immediately 
available in the service form. The active form component in which the dictionary is included must, 
in turn, be included in the service that implements the Service Link integration.

The Integration Wizard automatically creates an agent and transformation, as well as an integration 
dictionary and active form component to complete the agent configuration. Once these components have 
been created, they are maintained through Service Link and Service Designer.

Business Engine and nsXML
The key to understanding Service Link is to understand its interaction with the Business Engine. The 
Business Engine is the component that is responsible for all workflow. Workflow actions include:

• Starting tasks in the correct sequence in a delivery plan.

• Marking a task as complete when all requirements for completion have been met.

• Sending emails as configured when the triggering event occurs. 

In a task plan that doesn't use Service Link (that is, where all tasks are internal to Service Portal), the 
operation of the Business Engine is largely invisible. The use of the Business Engine becomes apparent 
in Service Link, because Service Link must handle or generate messages that the Business Engine 
understands in order for the status of external tasks to be changed.
2-3
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
When the Business Engine starts an external task (that is, a task which is to be handled by Service Link), 
it generates an outbound nsXML message. The Service Link agent that is handling the outbound task is 
then responsible for transforming that nsXML message into a format that can be understood by target 
system and delivering that message to the target system via the outbound transport mechanism (adapter) 
specified in the agent.

Similarly, if Service Link is configured to receive an inbound message from an external system, it must 
transform that message into an inbound nsXML message that can be understood by the Business Engine. 
Inbound messages are available to update the service form data for the current request; to complete the 
current task; or to add user comments to the current request.

Valid nsXML messages are discussed in more detail in the following section. 

Service Link Design and Development

Overview
Request Center offers two approaches for designing, developing and deploying Service Link integrations 
with third-party systems:

• Integration Wizard: If the integration is via a web service, you can use the Integration Wizard via 
Service Designer to create all Request Center integration components. The Web Service Definition 
Language file (wsdl) must be available to use this approach.

• Service Link configuration: If the integration uses any other transport mechanism or you wish to 
review or modify components originally created via the Integration Wizard, use the screens provided 
by Service Link and Service Designer to configure the integration components.

Service Link and Service Designer configuration uses the following methodology to design, develop and 
deploy integrations with third-party systems:

• Design the communication protocol to be used with the third-party target system. This includes 
inbound and outbound adapter selection, message format and content.

• If necessary create and deploy a custom Service Link adapter. 

• Use Service Designer to design the service that implements the Service Link integration. The design 
components typically include one or more dictionaries, which contain data to be passed to the 
external system via agent parameters, as well as the active form components that include those 
dictionaries and configure the display properties for the fields in those dictionaries. 

• Create agents, selecting appropriate outbound and inbound adapters, defining the properties of each, 
together with parameters passed in either direction. Service Link includes wizards and drop-down 
lists to partially automate the definition of agent parameters.

• Create transformations, if needed, for Service Portal to understand messages from third-party 
systems, and for third-party systems to understand messages from Service Portal. 

• Use Service Designer to associate the agent with a task in the service's delivery plan. If applicable, 
ensure that agent parameters are properly mapped to dictionary fields used in that service.

• Test the configuration by requesting the service containing your task and then monitoring messages 
and external tasks via the corresponding Service Link pages.

This process is discussed in more detail in the following sections.

The Integration Wizard is described in the “Integration Wizard” section on page 2-60.
2-4
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Accessing Service Link
To access Service Link, choose Service Link from the Module Menu.

The Service Link home page appears, as shown below.
2-5
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
The Service Link home page contains the elements shown in Table 2-1 below.

Table 2-1 Service Link Home Page Elements

Element Description

Menu Bar Located at the top of the page, contains the tabs used to administer a Service 
Link environment and to develop and maintain Service Link integrations.

Common Tasks Located on the left side of the page, contains quick links to view a complete 
list of failed messages and to create an agent.

Service Link Status Located on the left side of the page, shows the current status of Service Link.

Messages (Last 30 days) Located in the right pane of the page, this graph summarizes message 
volume for the most recent 30-day period.

Recent Failed Messages Located on the bottom right of the page, this grid lists the most recent 
Service Link messages that were not delivered successfully. Hyperlinks are 
provided to the message, requisition, and agent details.
2-6
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Managing the Service Link Screens

Like the home page, most Service Link pages consist of a list pane on the left and a content pane on the 
right. The list pane can be collapsed and expanded by clicking the collapse and expand pane icons. Even 
with the list pane displayed, the width of the content pane can be changed by dragging the divider. 

You can also control the appearance of the Recent Failed Messages grid (and other grids displayed 
presented by Service Link):

1 Collapse pane icon 3 Content pane

2 Divider 4 List pane

2 3

4

1

1 Drop-down icon 3 Columns submenu

2 Sort options 4 Width cursor

41

2

3

2-7
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
• To change the width of a column, position the cursor on the line between that column and the next. 
The cursor changes to a double line with two arrows pointing in opposite directions. Once the new 
cursor appears you can drag holding down the left mouse button to adjust the column width.

• To sort the display, move the mouse over the header of the column to sort by. A drop-down icon 
appears to the right of the header. Click the icon to show the sort options, then click the desired 
option.

• To change the columns shown in the grid, click the Columns submenu in the drop-down list, then 
check a column to display it, or uncheck the column to remove it from the grid.

• To change the order of the columns in the grid, click the mouse in the label of the column to be 
moved, drag the mouse and release it at the desired position for the column.

Designing the Communication Protocol
In addition to the configuration and testing work that are executed in Service Link, equivalent work must 
be undertaken by the technical resources responsible for the third-party system. A well considered 
design is essential if the interface is to operate robustly.

The interfacing capabilities of the system to be communicated to will normally dictate the basic design 
of the integration, that is, which adapters will be used. 

File and database adapters are the simplest to configure. If JMS, MQ or http/web service adapters are 
deployed, some expertise from network management teams may be involved to ensure that connectivity 
issues do not prevent the data from moving from one system to the other. Data security concerns are 
likely to be a factor if the target system exists outside your company's network—for example, to use a 
SOAP message sent via http or https to communicate with an outside vendor. If a custom adapter is 
required, more technical resources will be required and more time to complete the integration should be 
budgeted for.

Normally the data required for the outbound Service Link communication would be assessed first. 
Consideration needs to be given to what fields are readily available (via the nsXML outbound message) 
and what additional data needs to be provided (via form data and agent parameters). While outbound 
communications only occur once per task (when the task starts), multiple separate inbound 
communications can be supported. On receiving its instruction to perform work, a third-party system 
may issue a single (inbound) communication on completion. Alternatively, multiple updates could be 
sent before the work is complete. Examples include where a reference ID may be communicated, textual 
status updates have to be sent back and finally the completion confirmation is communicated.

Adapters
Service Link adapters are preconfigured for use. Additional adapters may be developed using the 
Adapter Development Kit. You may review the available adapters using the Adapters page of the Manage 
Integrations tab in Service Link.

Step 1 From the Service Link home page, click Manage Integrations. Then click the Adapters subtab.

The Adapters page appears, as shown below.
2-8
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Step 2 In the Name column, click the desired adapter.

The Manage Adapter page appears for the chosen adapter. The details for the Database Adapter are 
shown below.

Most of these general properties should typically not be changed by Service Link developers. The 
“Polling Interval”, “Retry interval” and “Maximum Attempts” may need to be changed as per 
requirement. Any changes are inherited by all agents that use this adapter type. 

Additional outbound and inbound properties are specified when the adapter is used in an agent. These 
properties are described in the “Service Link Adapters” section on page 2-42.
2-9
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Agents
The Create Agent Wizard walks you through configuring an agent. The wizard consists of eight pages; 
some pages may be skipped, depending on options chosen on the previous pages. 

The pages of the Create Agent Wizard are summarized in Table 2-2 below.

To create an agent:

Step 1 From the Common Tasks area of the Service Link home page, click Create Agent, or choose Manage 
Integrations > Agents > Create Agent. 

The General Information page of the Create Agent wizard appears. This is the first of eight pages that 
comprise the wizard. Some pages might not be relevant for a particular agent configuration, and can be 
skipped.

Provide values for the fields described in Table 2-3 below, then click Next.

Table 2-2 Create Agent Wizard Pages

Page Description/Usage

General Information The name, action, and description for the agent, as well as other general 
information regarding its configuration and behavior

End Points Adapters and transformations used by the agent

Outbound Adapter Detailed configuration options for the outbound adapter

Inbound Adapter Detailed configuration options for the inbound adapter

Outbound Request 
Parameters

Outbound parameters for all adapter types except the VMware adapter

Outbound Response 
Parameters

Parameters that are received in a synchronous response to an outbound 
message send to an http/ws adapter

Inbound Parameters Parameters received as part of the inbound message

Summary Summary page displaying all information previously entered
2-10
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Failed Email

The Failed Email notification can be generated in case an outbound message cannot be delivered. In 
addition to the standard sets of namespaces available for all task-related emails, Service Link Failed 
Emails can include details about the message being generated at the time of the failure. Including these 
namespaces in the email template may help in diagnosing the problem. Details on available namespaces 
are given in the Cisco Service Portal Designer Guide.

Failed email is not applicable to inbound messages; a notification is not generated when Service Link 
fails to process an inbound message.

Outbound Message Content

The outbound adapter generates an nsXML message that is stored in the Service Portal database. This 
message is then subject to a transformation, and the resultant external message is delivered via the 
specified adapter to the desired destination.

The format of the message is documented in Chapter 3, “Service Link Adapter Development Kit” and 
by the corresponding XML schema available on the application server at 
ISEE.war/WEB-INF/classes/nsxml.xsd. The complete message includes all information about the 
service request. Such messages can get quite large (easily exceeding 500 K, depending on the number 
of dictionaries and fields used in the service) and consequently consume large amounts of storage within 
the database, as well as consuming significant amounts of CPU to produce. 

To reduce resource consumption, Service Portal offers the following options. 

• The Administration Setting to “Compress messages” can compress Service Link messages stored in 
the database. This greatly reduces storage requirements, but potentially complicates 
troubleshooting, since messages are no longer human readable by a DBA or support personnel.

Table 2-3 Creating Agents – General Attributes

Setting Description

Name A name for the agent. The name must be unique.

Action A description of the action performed by the agent, for example, “Service 
Portal To Remedy - Create Ticket”. Although uniqueness is not enforced, 
actions should be unique, since they are presented in a pick-list when you 
are asked to assign the agent to a task.

Outgoing Content An option for specifying which nodes of the outbound nsXML message 
should be generated for this agent. More details are given below.

Failed Email An email template that is sent if the outbound message cannot be delivered 
to its destination. Email templates must be defined via the Notifications 
option of the Administration module.

Context Type The type of agent. Service Link agents are “Service Tasks”, to allow the 
agent to be used as an external task in a delivery plan. “Service Item” agents 
are used to import the definition or data or service items as configured via 
Service Item Manager.

Description A detailed description of the agent. A full description here can assist with 
supporting the integration.
2-11
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
• Service Link Message Purge scripts are available. These scripts can purge messages for completed 
tasks from the transactional database. This reduces storage requirements for the messages in the 
database. Details on using the Message Purge scripts are given in the “Service Link Troubleshooting 
and Administration” section on page 2-66.

• The outgoing content can be configured to include only selected nodes of the nsXML message by 
manipulating the “Outgoing message content” property. This reduces memory and CPU 
requirements for processing outbound messages.

The default message content is “Data and parameters; no Service Details (small),” which generates a 
nsXML message that does not include content nodes describing the service requested. Agent parameters 
and transformation must be designed with the outgoing content type in mind, to ensure that all required 
content is included in the nsXML message. Specifically, if eliminating the dictionary data from the 
outbound message, agent parameters must be mapped to appropriate form fields (or constants). In cases 
where a service has many form fields that are not needed for an external task, the XML size reduction 
and associated CPU utilization reduction are substantial.

Outgoing content options are summarized in Table 2-4 below.

Adapter Selection

An agent may be configured to manage both outbound and inbound communications; just outbound 
communications; or just inbound data. It is possible to use different adapter types for each direction, for 
example, a database adapter could be used to write data outbound but that system would then respond 
by writing files into a directory that would be read by an inbound file adapter. 

Once an adapter type is chosen, subsequent pages of the wizard are adjusted to display properties 
relevant to the adapter type and usage (outbound or inbound). Property values must be supplied as part 
of the agent definition. 

The End Points page of the Create Agent wizard (page 2 of 8) allows you to designate the adapters to be 
used in the agent as well as any transformations to be applied to the outgoing or incoming message. 
Transformations must have previously been defined using the Transformations subtab of the Manage 
Integrations option.

Table 2-4 Outgoing Message Content – Options

Option Description

All Message Details 
(large)

The complete Service Link message is generated.

Data, Form and 
Parameters 
(medium-large)

Information about the service and its tasks is omitted. The message is 
restricted to data (field values on the service form), form (complete 
metadata about the dictionaries and fields on the service form) and 
parameters (values supplied to agent parameters).

Data and Parameters 
(medium)

The message is restricted to information about the requisition, all data 
values entered on the service form and parameter values. 

Data and Parameters; No 
Service Details (small)

The message is restricted to information about the requisition, all data 
values entered on the service form and parameter values (the default). The 
“small” option must be specified for the VMware adapter.

Only Parameters 
(minimal)

The message is restricted to information about the requisition and the agent 
parameters.
2-12
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Properties applicable to each type of adapter are described later in this chapter. In fact, the next two pages 
of the wizard, dedicated to configuring the outbound and inbound adapters, will vary, depending on 
which adapter has been chosen. However it is worth discussing two special cases: Dummy adapters and 
the auto complete option.

Dummy adapters can be configured within an agent as either the outbound or inbound adapter. If a 
dummy adapter is chosen, it means that the agent is only operating in a single direction. For example, 
an agent configured with a dummy inbound adapter means that the agent is only responsible for 
outbound communications. In turn, there could be a separate (inbound only) agent configured that would 
be dedicated to updating and closing tasks.

The auto complete option is available only as the choice for the inbound adapter part of the agent. Its 
effect is similar to choosing “Dummy adapter”, that is, the agent will only be managing outbound 
communications. The key difference is that after the outbound communication associated with the task 
has been sent, the task will automatically be completed and the rest of the delivery plan will continue to 
be executed. 

Agent Parameters

Agent parameters may be used in conjunction with both outbound and inbound adapters.

Parameter mappings specified as part of the agent definition provide default value to be used. These 
mappings can be overridden on a service-by-service basis by editing the task definition for the service 
in Service Designer.

Table 2-5 Creating Agents – End Point Properties

Setting Description

Outbound Adapter The default or custom adapter used for sending a message from Service 
Portal to the external system.

Outbound 
Transformation

The transformation (or none) to apply to the nsXML message produced by 
the outbound adapter, in order to generate an external message which can be 
understood by the external system

Inbound Adapter The adapter to be used for receiving messages from an external system, or 
“Auto Complete” if no inbound message is expected.

Inbound 
Transformation

A transformation (or none) to apply to the incoming message in order to 
produce a nsXML message understood by the Business Engine; applicable to 
Service Tasks only.
2-13
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Outbound Request Parameters

Agent parameters used in an outbound message provide a way to supplement the content nodes in the 
standard nsXML outbound message with additional data and to organize content nodes in an 
easy-to-address format. The parameters are easily accessible via the XSL transformation, to allow their 
inclusion in the external message. 

A parameter mapping is assigned by typing the source elements in the Service Data Mapping area, or by 
building an expression by using the elements available in the drop-down lists to the left of the Parameter 
Mappings pane. A mapping may consist of a combination of:

• A constant value

• A dictionary field on a service form

• A nsXML element

• A prebuilt function applied to one of the above elements 

Mapping an agent parameter has the following advantages:

• A transformation that extracts that parameter value does not need to refer to the name of the 
dictionary field in which the value was supplied, but may refer simply to the agent parameter by 
name. This encourages agent reuse across different services and dictionaries.

• A smaller outbound message content type may be used, provided all other content required in the 
message is supported, since parameters are included in all content types.

• nsXML elements and XPATH operations that would not be accessible without using a 
transformation can be included in the external message.

To create an outbound parameter:

Step 1 On the Outbound Request Parameters page, click Add Mapping. 

The Edit Parameter Values dialog box appears at the bottom of the page.
2-14
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Step 2 Enter a name for the parameter. 

Parameter names can include spaces, but should not include special characters (such as “>” or “&”), 
which have significance in XML messages.

Step 3 Specify the value/mapping for the parameter, using the guidelines given below.

Constant Values

Sometimes a constant value that is not dependent on the requisition or service details must be passed to 
the external system. For example, if the system needs a name for the source of the external system, 
“Service Portal” or “Request Center” can simply be typed as the Service Data Mapping (without the 
quotation marks). 

Outbound nsXML Mappings

Selected elements of the standard nsXML outbound message are available to be mapped to agent 
parameters. These are summarized in the table below.

Dictionary Mappings

To map an agent parameter to a dictionary field:

Step 1 Expand the Dictionaries node so that the “Select a dictionary” option appears.

Step 2 Click the Select a dictionary drop-down menu to display a list of all Request Center dictionaries.

Table 2-6 Outbound nsXML Mappings

nsXML Element Contents/Description

Customer The login name of the customer for the requisition

Initiator The login name of the requestor (initiator) of the requisition

requisition-entry-id Number that uniquely identifies a service request within a requisition; 
typically used to differentiate multiple services within a shopping cart

expected-cost Transactional price for the service

expected-duration Service standard duration

requisition-id Number that uniquely identifies the requisition; referenced in My 
Services and Service Manager

channel-id Globally unique identifier (GUID) that identifies an external task
2-15
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Step 3 Choose the dictionary containing the field to be mapped to the agent parameter. A list of all fields in the 
dictionary appears.

Step 4 Click the field to be mapped to the agent parameter and drag it to the Service Data Mapping text area. 
When the drag icon changes to a green check mark, release the mouse. A lightweight namespace for the 
selected field appears.
2-16
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Since the agent is defined independent of a service, with the exception of grid dictionaries, any 
dictionary field can be chosen. It is the responsibility of the service designer to ensure that the referenced 
dictionary is, in fact, included in the service in which this agent is used.

For any integration that passes the contents of one or more grid dictionaries, you will need a 
transformation to handle the rows in each grid dictionary, which are stored as multiple dictionary 
instances. They follow the naming convention of “DictionaryName-n”, where n is the grid row number, 
in the <data-values> section of the outbound nsXML. For example, if a grid dictionary named 
VMOperation has two rows of data in the service request, the values are represented as below:

<data-values>
   <data-value multi-valued="true">
      <name>VMOperation-1.Name</name>
      <value>vmgw01</value>
   </data-value>
   <data-value multi-valued="false">
      <name>VMOperation-1.GuestOS_Name</name>
      <value>winNetStandardGuest</value>
   </data-value>
   <data-value multi-valued="false">
      <name>VMOperation-1.CPUCount</name>
      <value>1</value>
   </data-value>
   <data-value multi-valued="false">
      <name>VMOperation-1.Memory</name>
      <value>2048 MB</value>
   </data-value>
   <data-value multi-valued="true">
      <name>VMOperation-2.Name</name>
      <value>vmgw01</value>
   </data-value>
   <data-value multi-valued="false">
      <name>VMOperation-2.GuestOS_Name</name>
      <value>winNetStandardGuest</value>
   </data-value>
   <data-value multi-valued="false">
      <name>VMOperation-2.CPUCount</name>
      <value>1</value>
   </data-value>
   <data-value multi-valued="false">
      <name>VMOperation-2.Memory</name>
      <value>2048 MB</value>
   </data-value>
</data-values>

There is no support for inbound agent parameter mapping and update to grid dictionary fields.

Prebuilt Functions

Prebuilt functions can be applied to the mapped elements, so that the parameter value fits the semantics 
or formatting requirements expected in the target system. For example, a field may be shortened, by 
applying a substring function, if the data definition for the field in the target system accommodates fewer 
characters than are maintained in Service Portal. Prebuilt functions are summarized below and explained 
in more detail in the “Prebuilt Functions” section on page 2-69.
2-17
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
To apply a prebuilt function to an agent parameter:

Step 1 Expand the Prebuilt Functions node so that the function names appear.

Step 2 Highlight the function you want to use—notice that Help appears, explaining function usage, at the 
bottom of the pane.

Step 3 Drag the function into the Service Data Mapping box for the parameter. When the drag icon changes to 
a green check mark, release the mouse.

Table 2-7 Prebuilt Functions

Function Usage/Description

trim Trims leading or trailing spaces from the value; especially useful for form data and for 
incoming messages from the database adapter, which encloses values in CDATA tags.

replace Replaces all occurrences of one character or pattern with another.

substring Selects a portion of the string, specified by a starting point and optional length.

lowerCase Converts the value to all lower case.

upperCase Converts the value to all capital letters.

length Returns the number of characters in the string.

indexOf Returns the index within this string of the first occurrence of the specified substring.

lastIndexOf Returns the index within this string of the last occurrence of the specified substring.
2-18
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Step 4 The function is defined, with $Parameter$ as a placeholder for the actual value.

Step 5 Replace the placeholder with the dictionary field or element of the nsXML message to be used. You need 
to drag the field or nsXML element to the Service Data Mapping text box, then manually edit the 
parameter definition.

Outbound nsXML with Agent Parameters

Agent parameters are added to the end of the outbound nsXML message. For example, agent parameters 
shown below generate the nsXML snippet immediately following.
2-19
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
<agent-parameter multi-valued="false">
    <name>Initiator</name><value>ltierstein</value></agent-parameter>
<agent-parameter multi-valued="false">
    <name>Transactional Price</name><value>0.0</value></agent-parameter>
<agent-parameter multi-valued="false">
    <name>Customer</name><value>Customer</value></agent-parameter>

Outbound Response Parameters

Outbound response parameters may be used in conjunction with an outbound http/web service adapter. 
If the adapter's Process Response setting is true, the response to the original request is processed. That 
response may include a “Send Parameters” message type. Parameters are defined as for Inbound Agent 
Parameters.

Inbound Agent Parameters

When used in conjunction with an inbound “Send Parameters” message type, agent parameters allow the 
external task to update the dictionary field to which the parameter is mapped.

Transformations
To create a transformation:

Step 1 On the Manage Integrations tab, click the Transformations subtab. 

Step 2 Click Create Transformation.

The Create Transformation page appears. 

Table 2-8 Inbound Agent Parameter Settings

Setting Description

Parameter The parameter name.

Dictionary Field Select a dictionary field from the drop-down list that displays a list of all 
dictionary fields. The field name is in the format:

DictionaryName.FieldName

without enclosing hash marks (#).

Mapping A prebuilt function applied to derive the value that should be used to update 
the specified dictionary field. 

Mandatory Check Mandatory if the field must be present in the Inbound message. This 
check box is typically unchecked if a change is made to a service and the 
parameter is no longer required. Obsolete parameters should not be deleted.
2-20
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
A transformation may be applied to either an outbound and inbound message, by designating the 
Direction. Two transformations may need to be used for web services outbound messages—one is 
applied to the outbound request and the second may be applied to a response to that request, if the 
Process Response setting is turned on. 

The Validate button parses the XSLT to ensure that the transformation is well-formed. If it is not (for 
example, if an XML tag is misspelled or missing), a diagnostic message appears. You need to fix the 
error before saving the transformation. 

However, Service Link does not validate the transformation. For example, no error is detected if a 
transformation refers to an element that does not exist in the source message; a well-formed XML 
message would be produced, but it would not be valid for the target system. Therefore, a runtime error 
would be produced if Service Link produced an external message that was not recognizable by the target 
application or an inbound message that was not recognizable to the Business Engine. 

If you have access to an XML development environment and are familiar with its usage, it may be 
efficient to use that environment to test the transformation. For an outbound transformation, simply copy 
the nsXML produced by the agent (before you apply a transformation) into the XML development 
environment and use this as the source XML. Once you have validated the transformation, copy and 
paste the XSLT code into a Service Link transformation and associate it with the appropriate agent.

The process of manually developing and debugging a transformation is eliminated for outbound web 
service integrations that are developed using the Integration Wizard. A transformation is automatically 
created that will transform outbound nsXML into a format compatible with the specified WSDL for the 
web service. However, if the wsdl or integration requirements change, you will need to follow the steps 
outlined above to update the transformation.
2-21
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Step 3 Provide values for the fields described in Table 2-9 below.

Step 4 Click Validate to check that the transformation contains well-formed XSL.

Step 5 Click Save.

Reviewing Agent Definitions and Property Sheets
You can review or revise any agent definition, whether the agent was created in Service Link or via the 
Integration Wizard. Once the Agents subtab of the Manage Integrations tab appears, you can either:

• Use the List pane on the left-hand side of the page and click the agent name.

• Scroll through agent information listed on the right-hand side of the page and click the agent name.

The Agent entry in the list pane is expanded. Click the property sheet for that portion of the agent 
definition to be edited or reviewed. Once the property sheet appears, enter any changes and click Save 
to save them.

Clicking on the agent name provides an overview of the agent definition:

Table 2-9 Transformation Settings

Setting Description

Name A name for the transformation. Transformation names should be 
descriptive of the nature of the interface. They may include the names of 
the source and target systems, for example “Service Portal To Remedy”.

Direction Inbound or Outbound.

Description A description of the transformation; required.

Request subtab The XSLT code which is applied to the nsXML message for outbound 
adapters and to the external message for inbound adapters.

Response subtab The XSLT code that is applied to the response received from an http/web 
service request if the Process Response setting for the agent is set to true.
2-22
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
This page is read-only except for the button to Reset Agent Parameters. 

Configuring a Task to use a Service Link Agent
Once the agent has been defined, it can be used in a service by creating an external task whose workflow 
invokes the agent. Once the workflow has been configured, you may review or override any agent 
parameters defined for the included agent.

Creating an External Task

To direct a task to an external (third-party) application using a Service Link agent:

Step 1 Start Service Designer. Select the service that is to include the external task. Click the Plan tab.

Step 2 You can use either the Tasks subtab or the Graphical Designer subtab to specify the external task.

• Using the Tasks subtab for the service, define the task and place it in the correct sequence in the 
delivery plan. 

• Using the Graphical Designer subtab, create a task on the diagram, and place it in the correct 
sequence in the diagram using the Associate tools. Double-click the task to display its property 
sheet. 

Step 3 Using the Workflow Type drop-down list on the General tab, select the desired action from the 
drop-down list. Note that it is the defined actions in the Service Link module and not the agent names 
that are listed in this drop-down.

Step 4 Save the workflow/task plan. If you were using the Workflow Designer, return to the Tasks subtab.

Step 5 Once you have saved the external task, an ellipsis button appears next to the Workflow Type. Clicking 
the ellipsis allows you to review the parameter mappings currently in effect for the agent (if any) or to 
change these mappings for this specific service. Click the ellipsis button.
2-23
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Step 6 The Agent Parameter Override popup window appears. Review the agent parameters or change the 
mapping for one or more parameters. Be sure to click Apply as you change each parameter and Save 
before closing the window.

Step 7 You may wish to define a performer (person, queue, or functional position) on the Participants tab. The 
calendar of that performing entity will then be used to calculate the Due Date of the task. If you do not 
set a value on the Participants tab for external tasks, the calendar of the Default Service Queue is used 
to calculate the Due Date. In this fashion, due dates are set in the plan and Service Portal can calculate 
delivery Operating Level Agreement (OLA) compliance for external tasks and compliance with the 
Service Level Agreement (SLA) for services containing such tasks. 

Synchronizing Agent Mappings and Service Definitions

When you create and save a task that uses an agent, the agent parameter mappings specified for the agent 
are automatically inherited by that individual task. As described above, a service designer may override 
any of the agent mappings at the task level. 

However, if the agent is subsequently modified, to include a different set of agent parameter mappings, 
such changes are not automatically inherited by tasks that were previously defined to use the agent. Such 
changes may include:

• Adding an agent parameter

• Deleting an agent parameter 

• Changing the mapping of an existing agent parameter 

Propagating these changes to services that use the agent can be automated, by following the procedure 
below:
2-24
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Step 1 From the Service Link Manage Integrations tab, click the Agents subtab. 

Step 2 Click the name of the agent whose parameter mappings have been changed. 

The Agent Information page appears.

Step 3 Choose the service or services whose agent parameter mappings need to be resynchronized with the 
updated agent definition.

Step 4 Click Reset Selected Tasks. This button automatically resets all parameter mappings to their agent 
defaults, so any task-specific mappings would need to be reapplied.

nsXML Messages
The transformation must not only contain well-formed XML, it must produce a well-formed and valid 
nsXML message. All nsXML messages must conform to the nsXML schema (an XML document that 
describes the structure of an XML document). The schema is available on the application server at 
ISEE.war/WEB-INF/classes/xsl/nsxml.xsd.

Outbound nsXML Message

When an external task moves to a status of Ongoing, an outbound nsXML message is generated. 

The generated nsXML for each message can be viewed in the Service Link module, by clicking on the 
nsXML message in the Message Details page. It contains task related data as well as data associated with 
the parent requisition.

The most important element within the nsXML is the channel-id, an ID that uniquely identifies the 
external task. This ID is provided to the third-party system and needs to appear in their response if the 
corresponding data update is to be successfully applied by the business engine.

The channel-id is formatted as a Globally Unique Identifier (GUID). GUIDs are most commonly written 
in text as a sequence of hexadecimal digits such as:

3F2504E0-4F89-11D3-9A0C-0305E82C3301

This text notation consists of 5 sets of data, each separated by a hyphen. The GUID consists of 32 
characters plus 4 hyphens, for a total length of 36 characters. 
2-25
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
There are two outbound message types.

task-started

The task-started message type is generated when an external task is started. A detailed description of the 
elements of the task-started message is available in Chapter 3, “Service Link Adapter Development Kit”. 

<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301">
    <task-started task-type="task"> 
       <task> 
       .   .    .

task-canceled

The task-canceled message type is generated when request which includes an external task is cancelled. 
If the user is not allowed to cancel a request once the external task has been performed (via the 
corresponding setting in the service's delivery plan), this message would never be generated. If, however, 
canceling the request is allowed, the transformation used in the agent responsible for the external task 
must be “smart enough” to handle both a task-started and task-canceled message. The transformation 
would need to test for the task-canceled message type and to send an appropriate message to the external 
system:

<xsl:if test="/message/task-started">
    <-- Original XSLT goes here/>
</xsl:if>

<xsl:if test="/message/task-canceled">
    <-- XSLT for the cancel message goes here/>
</xsl:if>

Inbound nsXML Message

Two types of operations are supported for inbound messages from the third-party system—requisition 
operations and service item operations. Requisition operations are used for the update of request data 
and task status. Service item operations are used for the addition, modification, deletion, and retrieval of 
service items associated with the request. Certain operations may be combined in one inbound message, 
known as a “Composite Message”. The details and restrictions for each operation are described in the 
following sections.

Requisition Operations

The third-party system may send one or multiple inbound messages for an external task by referencing 
the channel-id of the corresponding outbound message. The external task is completed when one of the 
take-action operations is sent and this allows the next task in the authorization/delivery plan to proceed.

take-action

A take-action message may be applied to an authorization or delivery task, to change the status of the 
task. The action attribute of the take-action tag identifies the action to be taken. Valid actions are 
summarized in Table 2-10 below.
2-26
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
When the last delivery task in a task plan is marked as done, the requisition is closed (completed). An 
approval task can be marked as Approved or Rejected, by setting the “action” attribute of the take-action 
tag to the corresponding value.

<?xml version="1.0" encoding="UTF-8"?> 
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301">
    <take-action action="done"/> 
</message>

send-parameters

Parameters are data elements that are bound to dictionary fields within the agent definition. The 
send-parameters message type allows one or more specified parameters to be updated which, in turn, 
updates the corresponding dictionary fields in the service. Using this type of inbound message is the 
preferred way for the external system to update dictionary fields used in a service request.

<?xml version="1.0" encoding="UTF-8"?> 
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301"> 

<send-parameters> 
       <agent-parameter> 

    <name>Status</name> 
          <value>Resolved</value> 
       </agent-parameter> 
       <agent-parameter> 

    <name>ResolvedBy</name> 
    <value>Help Desk</value> 

       </agent-parameter> 
</send-parameters> 

</message>

add-comments

An add-comments message is used to add comments to the System Comments section of the requisition.

<?xml version="1.0" encoding="UTF-8"?> 
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301"> 

<add-comments> 
<comment>Test Comment</comment> 

</add-comments> 
</message>

Table 2-10 Take-action Messages

Action Task Type Description

done Delivery task Mark the delivery task as completed.

cancel Delivery task Cancel the delivery task.

ok Review task Mark the review as completed.

reject Authorization task Reject the authorization.

approve Authorization task Approve the authorization.
2-27
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Service Item Operations

Service items are entities defined in Lifecycle Center. Their lifecycles are associated with service 
requests—from the point the service item instances are provisioned, to the point when they are 
decommissioned. In the cases when the service item lifecycle events are handled by external systems, 
service item data can be synchronized with Lifecycle Center via Service Link service item create, 
update, delete, and get messages. These message types are supported only through the web service-based 
Service Item Listener Adapter (see the “Service Item Listener Adapter” section on page 2-56).

One or more service item types and service item instances can be included in these messages. Multiple 
service item operations cannot be combined in a message. In other words, create, update, or delete 
operations have to be sent in separate inbound messages. Whenever an error condition is encountered, 
all the service item operations in the same message are rolled back. 

Service item attributes of datetime type must be specified in the format YYYY-MM-DD HH:MI:SS or 
YYYY-MM-DD. All times are stored as UTC time.

create

Service item subscriptions can be included optionally at the time a service item instance is created. If no 
subscription information is provided in the create operation, the item is assigned to the customer of the 
requisition and that person's Home Organizational Unit. If values for either the customer login ID or 
Organizational Unit name are specified in the subscription section of the message, those values are used 
to override the default service item assignment. For more details about subscription processing rules, see 
the Service Designer chapter in the Cisco Service Portal Designer Guide.

<?xml version="1.0" encoding="UTF-8"?>
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301">
<create>
      <serviceitem>
         <name>LaptopComputer</name>
         <serviceItemData>
            <serviceItemAttribute name="Name">LT-LENVT60-17032</serviceItemAttribute>
            <serviceItemAttribute name="Model">Thinkpad T60</serviceItemAttribute>
            <serviceItemAttribute name="Brand">LENOVO</serviceItemAttribute>
            <serviceItemAttribute name="Price">899.99</serviceItemAttribute>
            <serviceItemAttribute name="Memory">3</serviceItemAttribute>
            <serviceItemAttribute name="ManufactureDate">2009-04-15 
12:00:00</serviceItemAttribute>
            <subscription>
               <loginID>jsmith</loginID>
               <ouname>Finance</ouname>
            </subscription>
         </serviceItemData>
      </serviceitem>
      <serviceitem>
         <name>DesktopComputer</name>
         <serviceItemData>
            <serviceItemAttribute name="Name">DT-DELLV200-02274</serviceItemAttribute>
            <serviceItemAttribute name="Model">Vostro 200</serviceItemAttribute>
            <serviceItemAttribute name="Brand">DELL</serviceItemAttribute>
            <serviceItemAttribute name="Price">755.99</serviceItemAttribute>
            <serviceItemAttribute name="Memory">4</serviceItemAttribute>
            <serviceItemAttribute name="ManufactureDate">2010-03-01 
12:00:00</serviceItemAttribute>
         </serviceItemData>
      </serviceitem>
   </create>
</message>
2-28
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
update

In update messages, omitting a service item attribute results in no change to the attribute value. When 
an attribute is explicitly specified in the message but contains no value, the value of the attribute for the 
service item is set to blank for text fields and zero for numeric fields.

<?xml version="1.0" encoding="UTF-8"?>
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301">
<update>
      <serviceitem>
         <name>LaptopComputer</name>
         <serviceItemData>
            <serviceItemAttribute name="Name">LT-LENVT60-6122</serviceItemAttribute>
            <serviceItemAttribute name="Memory">4</serviceItemAttribute>
            <subscription>
               <loginID>dcohen</loginID>
            </subscription>
         </serviceItemData>
      </serviceitem>
      <serviceitem>
         <name>DesktopComputer</name>
         <serviceItemData>
            <serviceItemAttribute name="Name">DT-DELLV200-00394</serviceItemAttribute>
            <subscription>
               <loginID></loginID>
               <ouname></ouname>
            </subscription>
         </serviceItemData>
      </serviceitem>
   </update>
</message>

delete

Delete service item requests require only the names for the service item type and instance. Additional 
service item attribute and subscription information is ignored.

<?xml version="1.0" encoding="UTF-8"?>
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301">
<delete>
      <serviceitem>
         <name>LaptopComputer</name>
         <serviceItemData>
            <serviceItemAttribute name="Name">LT-TOSH900-0021</serviceItemAttribute>
         </serviceItemData>
      </serviceitem>
      <serviceitem>
         <name>DesktopComputer</name>
         <serviceItemData>
            <serviceItemAttribute name="Name">DT-DELLV100-0394</serviceItemAttribute>
         </serviceItemData>
      </serviceitem>
   </delete>
</message>

getRequest

The getRequest operation is used for retrieving service item instances. The channel-id and topic-id 
attributes are optional, unlike the create/update/delete service item requests. Each inbound message may 
contain only one getRequest operation and within it, only one service item type. There is no logging of 
the request as seen in the Service Link user interface.
2-29
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
Service item instances are retrieved according to the search filters specified in the request XML, using 
the service item attributes and subscription data (that is, Customer Login ID and Organizational Unit 
Name). Up to five filters may be used in a getRequest and they are interpreted as AND joins. Table 2-11 
below shows the operators that are supported in search filters.

The response data from the getRequest contains service item attribute names and values, as well as its 
subscription information. The maximum number of records returned in each getRequest operation is 
100. The next set of records can be retrieved by specifying the ‘startRow’ and ‘count’ elements in the 
request. The startRow element indicates the beginning row number of the result set. The count element 
indicates the number of records to be returned. The ‘startRow’ and ‘count’ values are defaulted to 1 and 
100, respectively, if they are absent in the request XML. The value for count is limited to 100 for 
performance reasons.

Here is an example of the getRequest XML:

<getRequest>
   <serviceItemType>LaptopComputer</serviceItemType>
   <startRow>1</startRow>
   <count>1</count>  
   <subscription> 
      <loginID>jsmith</loginID>
      <ouname>Finance</ouname>
   </subscription>
   <filters>
   <!--1 to 5 repetitions:-->
      <filter attributeName="Name" operator="Equals" value="LT-LENVT60-17032" />
      <filter attributeName="Price" operator="GreaterThan"  value="800"/>
      <filter attributeName="ManufactureDate" operator="GreaterThan"  value="2004-04-10"/>           
   </filters>
</getRequest>
 

Response for the above request:

Table 2-11 Search Filter Operators for getRequest

Datatype Supported Filter Operators

STRING(32) Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo, 
StartsWith, EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo

STRING(128) Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo, 
StartsWith, EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo

STRING(512) Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo, 
StartsWith, EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo

INTEGER Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo, 
StartsWith, EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo

MONEY Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo, 
StartsWith, EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo

LONG INTEGER Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo, 
StartsWith, EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo

DOUBLE FLOAT Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo, 
StartsWith, EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo

DATE TIME Equals, LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo,  
EqualsIgnoreCase, isNull, isNotNull, Between, NotEqualsTo
2-30
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <soap:Body xmlns:ns1="http://externaltask.api.newscale.com">
      <response channel-id="CHANNELID not retrieved" 
xmlns="http://externaltask.api.newscale.com">
         <status-code>success</status-code>
         <status-message>Service item data read successfully.</status-message>
         <getResponse>
            <serviceitem>
               <name>LapTopComputer</name>
               <serviceItemData>
                  <serviceItemAttribute 
name="Name">LT-LENVT60-17032</serviceItemAttribute>
                  <serviceItemAttribute name="Brand">LENOVO</serviceItemAttribute>
                  <serviceItemAttribute name="Memory">3</serviceItemAttribute>
                  <serviceItemAttribute name="Model">Thinkpad T60</serviceItemAttribute>
                  <serviceItemAttribute name="Price">899.99</serviceItemAttribute>
                  <serviceItemAttribute name="ManufactureDate">Fri Apr 16 00:00:00 
GMT+05:30 2004</serviceItemAttribute>
                  <subscription>
                     <loginID>jsmith</loginID>
                     <ouname>Finance</ouname>
                     <requisitionID>0</requisitionID>
                     <requisitionEntryID>0</requisitionEntryID>
                     <assignedDate>2012-07-20T05:21:29.187+05:30</assignedDate>
                     <submittedDate>2012-07-20T05:17:21.503+05:30</submittedDate>
                  </subscription>
               </serviceItemData>
            </serviceitem>
         </getResponse>
      </response>
   </soap:Body>
</soap:Envelope>

getDefinitionRequest

The getDefinitionRequest operation is used for retrieving the metadata or definition of a service item 
type. Like the getRequest operation, the channel-id and topic-id attributes are optional. Each inbound 
message may contain only one getRequestDefinition operation, and within it, only one service item type. 
There is no logging of the request as seen in the Service Link user interface.

Here is an example of the service item getDefinitionRequest:

<getDefinitionRequest>
   <serviceItemType>LaptopComputer<serviceItemType>
<getDefinitionRequest>
 

Response for the above request:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <soap:Body xmlns:ns1="http://externaltask.api.newscale.com">
      <response channel-id="" xmlns="http://externaltask.api.newscale.com">
         <status-code>success</status-code>
         <status-message>Service item definition read successfully.</status-message>
         <getDefinitionResponse>
            <serviceItemDef>
               <name>LaptopComputer</name>
               <classification>Laptops</classification>
               <displayName>LaptopComputer</displayName>         
               <serviceItemProperty name="Name" type="string" />
               <serviceItemProperty name="Model" type="string" />                                
2-31
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
               <serviceItemProperty name="Brand" type="string" />
               <serviceItemProperty name="Price" type="real64" />
               <serviceItemProperty name="Memory" type="sint32" />
               <serviceItemProperty name="ManufactureDate" type="datetime" />
            </serviceItemDef>
         </getDefinitionResponse>
      </response>
   </soap:Body>
</soap:Envelope>

Composite Messages

The above message types can be combined in a single inbound message. Such a combination is known 
as a “composite” message. The order of execution matters; you must send the parameters or add 
comments before including the take-action tag, and place the service item operation tags last.

<?xml version="1.0" encoding="UTF-8"?> 
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301"> 

<add-comments> 
      <comment>Task closed per override …</comment> 
</add-comments> 
<send-parameters> 
       <agent-parameter> 

    <name>Status</name> 
          <value>Resolved</value> 
       </agent-parameter> 
</send-parameters> 
<take-action action="done"/>

<update>
      <serviceitem>
         <name>LaptopComputer</name>
         <serviceItemData>
            <serviceItemAttribute name="Name">LT-LENVT60-6122</serviceItemAttribute>
            <serviceItemAttribute name="Memory">4</serviceItemAttribute>
            <subscription>
               <loginID>dcohen</loginID>
            </subscription>
         </serviceItemData>
      </serviceitem>
   </update>
</message>

SIM Import Messages

A Service Item Manager (SIM) Import message type supports importing service item and standards 
definitions and data from an external system into Service Portal. Unlike the service item 
create/update/delete operations, SIM import is based on the File Adapter protocol which polls for 
incoming files located in a specific directory. In addition to service item instance operations, SIM Import 
also supports the maintenance of service item groups and service item types. For details on Service Item 
Manager imports, see the Cisco Service Portal Designer Guide.

Transformations and nsXML

Outbound nsXML messages will typically be quite large and complex, often in excess of 500 KB. 
Although it is not mandatory to use transformations to alter the message format, it is unlikely that 
external systems would be configured to read nsXML. Consequently using transformations to alter the 
outbound message formats is normally unavoidable.
2-32
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Design and Development
However as formats for inbound messages will probably be negotiated with those responsible for the 
third-party system, it is quite possible that a specification could be agreed that aligns closely to the 
nsXML message formats. If this is the case, the Inbound transformation could be much simpler than the 
corresponding outbound one.

Although we refer to XSL Transformations (XSLT), the technology used is actually called eXtensible 
Stylesheet Language and also includes XPATH. XPATH is a language for finding information and 
navigating through elements and attributes in an XML document. XPATH includes built-in functions for 
string values, numeric values, date and time comparison, sequence manipulation, Boolean values and 
other methods.

Creating and Deploying a Service Link Agent
The procedure below shows the typical sequence of tasks required to deploy a Service Link integration 
using a file adapter. It can also be used to validate a Service Link installation.

Step 1 From the Common Tasks area of the Service Link home page, create an agent that uses an outbound file 
adapter by clicking the Create Agent wizard, filling in the location fields and supplying other outbound 
adapter properties. (Details on these properties are explained in the “File Adapter” section on 
page 2-49.)

Step 2 Start the agent by navigating to the Control Agents tab, locating the agent, choosing it by clicking the 
mouse anywhere on that line except on the agent name (which is a link to the agent definition) and 
clicking Start Selected at the upper right of the page. Did it start? If not, one of your Service Link 
configuration settings is wrong or the Integration Server (ISEE) did not start correctly. 

Step 3 Verify that the file directories you entered exist on the application server; if not, create them. Assure that 
both Service Portal and the external application have appropriate access (write or read) to the directories. 
If these conditions are not met, file transmission will fail at runtime.

Step 4 Go to Service Designer and create a service to use this agent.

Step 5 Go to My Services and order the service.

Step 6 If the requisition is created successfully, congratulations! the ISEE outbound queue is working. If you 
get an “our apologies” page, the JMS queues are not working.

Step 7 Go to the Messages page, accessible from the View Transactions tab. If you see messages from the 
requisition you just created, congratulations. Your message should have status of “Message sent”.

Step 8 Go to the outbound files directory (for example, C:\cisco\SL\OutboundFiles). If there is an XML file 
there (verify the date time stamp of the XML file to make sure that it is a new one corresponding to your 
requisition), your outbound trip for the file agent is completed. Congratulations! The outbound XML file 
would be a valid nsXML message. 

Step 9 For your requisition in the Message Type column, click the Execute Task link. The Message Details 
page appears.

Step 10 Verify that the Requisition ID is correct. Copy the “Channel ID” from the message details screen.

Step 11 Create an XML file named SampleInbound.xml as follows. Where it says “insert your Channel ID here”, 
paste the value of the Channel ID that you copied in the last step. (Leave the double-quotes intact).

<?xml version="1.0" encoding="UTF-8"?>
<message channel-id="insert your Channel ID here">
    <take-action action="done"/>
</message>
2-33
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
For example, after pasting the Channel ID value, the SampleInbound.xml file would look something 
similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<message channel-id="3F2504E0-4F89-11D3-9A0C-0305E82C3301">
    <take-action action="done"/>
</message>

Step 12 Put the SampleInbound.xml file in the inbound files directory (for example, C:\cisco\SL\InboundFiles).

Step 13 When the File Agent polls for input, it will automatically pick up the inbound file. (The default setting 
for the File Adapter's Polling Interval Time is every 10 seconds.) If the SampleInbound.xml file is 
processed successfully, it will disappear from the directory.

Step 14 Go to the Messages page of the View Transactions tab and look for your requisition. If there is another 
message for your requisition with the Type=Take Action, and the Status=Inbound Message Completed, 
then you have achieved a roundtrip.

Step 15 Click the Requisition ID link to open the Requisition Status page. Verify that your requisition has the 
status of “Closed (1 of 1 completed)”. 

Monitoring Service Link Transactions
There are multiple ways to monitor Service Link usage:

• The Service Link home page shows a graph of message volume over the last 30 days and provides 
Common Tasks and the View Transactions tab to access other monitoring options.

• The option to view Recent Failed Messages, also on the Service Link home page, shows all messages 
that could not be delivered.

• The option to view Messages, accessible from the View Transactions tab, shows all messages sent 
to or received by Service Link, and allows administrators to filter and search to show messages of 
interest.

• The option to view External Tasks, accessible from the View Transactions tab, shows all tasks that 
remain ongoing because a Service Link message could not be delivered, and allows administrators 
to filter and search to show tasks of interest.

All Service Link monitoring/administration pages are displayed using configurable “data tables”. The 
appearance of these tables (the columns displayed, the width of each column and the order in which data 
is presented) can be customized. In addition, Filter and Search capabilities allow administrators to view 
only those rows which are of interest.

Viewing Messages from the Service Link Home Page
The Recent Failed Messages pane of the Service Link home page displays Service Link messages that 
could not be delivered to their destination within the past 30 days. By default, messages are displayed in 
reverse chronological order based on the date and time when they were sent.
2-34
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
Click one of the column links in the Failed Messages grid to view associated information:

The Messages page, available from the View Transactions tab, allows you to view all messages, both 
inbound and outbound, regardless of their status; to explicitly filter the messages that appear on the page; 
and to search messages which fit specified search criteria.

Viewing Messages
The Messages page displays all or selected Service Link messages, depending on which filters have been 
set. To display the Messages page, click the View Transactions tab from the Service Link home page. 
Then click the Messages subtab. The View Failed Messages link in the Common Tasks area of the 
Service Link home page also displays the Messages page, with a filter set to show only messages with a 
status of “Failed”.

The Messages page appears, as shown below.

Table 2-12 Service Link Failed Messages Clickable Columns

Column Link

Message Type Message details on Service Link Message Details popup pages

Req ID Requisition details 

Agent Agent details in Service Link Agents page
2-35
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
Message Details

The Message Details popup pages allows you to view both the Service Portal and external messages. 
This page also displays the channel Id, which uniquely identifies the task in this requisition. You can use 
this Id when working out issues with the third-party system.

Table 2-13 Service Link Messages Clickable Columns

Column Link

Message Type Message details on the Service Link Message Details popup pages.

Status Text For failed messages, a link is available to the error messages written to the 
adapter-specific log file and the server log. See the “Service Link 
Troubleshooting and Administration” section on page 2-66 for more 
details. 

Req ID Requisition details.

Agent Agent details in the Service Link Agents page.

Task Subject Task details in Service Manager.
2-36
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
Click one of the tabs on the Message Details popup page to view associated information.

Filter and Search

You can use the search functionality to view a subset of messages, for example, all messages with a 
Failed status. Search allows you to specify one of the columns in the Messages window as the search 
target and to select or type a value to be matched. 

Click Filter and Search (at the top of the Messages page).

Table 2-14 Service Link Message Details Subtabs

Column Link

Message Details Details about the message.

nsXML Message For outbound messages, the message produced by the Business Engine, to 
be processed (transformed) by the Service Link agent; for inbound 
messages, the message received from the external system, transformed by 
the agent transformation (if any), and to be processed by the Business 
Engine.

External System 
Message

For outbound messages, the message after the transformation associated 
with the agent has been applied; for inbound messages, the message as it 
was received from the external system.
2-37
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
The Filter and Search dialog box also allows you to:

• Filter a particular column by using any relational operator appropriate for the semantics of that 
column. For example, a date range may be chosen, or any status not equivalent to the specified status 
can be chosen.

• Filter by the logical ‘AND’ of all criteria specified for columns.

The Filter and Search dialog box is nonmodal. You can fill out the desired criteria and click Apply to 
view the results of the current settings. If required, simply adjust the settings and Apply again. 
Remember that you can also display the messages in ascending or descending order by any column, or 
change the columns that are displayed by using the techniques explained in the “Managing the Service 
Link Screens” section on page 2-7.

Resending Failed Messages

During Service Link development, you may generate many messages that fail to be delivered because of 
errors in the agent or transformation configuration. These messages should not be resent. Similarly, 
messages generated via a Service Item Import task should not be resent—the import file format should 
be adjusted, and the import task tried again.

In a production environment, however, messages may fail to be delivered because of an outage of the 
external system or other external factor that can be corrected. Once the cause of the delivery failure has 
been corrected, failed messages can be resent.

To resend failed messages:

Step 1 In the Messages page of the View Transactions tab, click the row containing the Failed message or 
messages.

Step 2 In the bottom left corner of the Messages page, click Resend Message. 

Service Link will attempt to resend the message to its designated destination. If the resend succeeds, the 
message status and date are updated, and the resend date is recorded and displayed in the Resent On 
column.
2-38
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
Transformations are not reapplied while resending a message. The agent tries to send the already 
transformed message to its destination.

Resending of failed inbound messages for service item operations is not supported. The process attempts 
to retry task actions. Hence the destination for those messages is the Business Engine, not the Service 
Item import processor. 

Viewing External Tasks
To view External Tasks:

Step 1 From the Service Link home page, click View Transactions. Then click the External Tasks subtab.

The External Tasks page appears, as shown below.

Step 2 Click one of the following column links to view associated information.

:
Table 2-15 Service Link External Tasks Clickable Columns

Column Link

Task Subject Task details in Service Manager

Req ID Requisition overview in My Services

Agent Name Agent details in the Service Link Agents page
2-39
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
Filter and Search

Like the Messages display, the External Tasks page offers the ability to customize the columns and order 
of data displayed in the data table and to filter and search on that data. 

Sending a Manual Message

A task that has been started and is expecting to receive an inbound message is in an “Ongoing” state. 
The incoming message will typically update the task or change its status. No subsequent tasks in the 
requisition's delivery plan can be performed until a message is received and the task is completed. If you 
suspect (or can confirm by conferring with administrators of the external system) that the expected 
message has already been sent, but has somehow been “lost”, you can emulate receipt of the message by 
sending a manual message.

Manual messages cannot be used to emulate failed service item operations.

Note Use this feature carefully. This feature overrides all the communication protocols in the system, and 
using it may leave artifacts in the third-party system to which Service Link may no longer be able to 
respond. Also, if you use this feature to cancel a requisition, for example, Service Link will not notify 
the interested parties, so you will have to follow up on your own.

To send a manual message to the Business Engine:

Step 1 From the Service Link Home page, click View Transactions. Then click External Tasks.

The External Tasks page appears.

Step 2 In the bottom left corner of the External Tasks page, click the line containing the task for which you want 
to send a manual message.

Step 3 Click Send Manual Message.

The Send Manual Message dialog box appears, as shown below.
2-40
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Monitoring Service Link Transactions
Step 4 Click the button corresponding to the type of message you want to send—Add Comment, Add 
Parameter, Update Values or Take Action.

Step 5 Respond to the associated popup dialog boxes (turn off your popup blocker) for the message type chosen. 
This will populate the message window with a well-formed XML message of the appropriate type. An 
<add-comments> message will also be included, to indicate that this message was not received through 
normal channels, but manually generated.

Step 6 If desired, you may edit the generated message. When you have constructed the entire message, click 
Send. An inbound message is sent to the Business Engine.

Action Description

Add Comment Send an add-comments message, to add a system comment to the 
requisition.

Add Parameter Send a send-parameters message. Modify one or more inbound agent 
parameter values and the value of the corresponding dictionary field to 
which the parameter is bound.

Update Values Send a message to modify the contents of the specified dictionary field. 
(This message type is provided primarily for backward compatibility with 
previous versions; field contents should typically be updated via inbound 
agent parameters.)

Take Action Send a take-action message. Mark the task as done (completed) or 
canceled; approve or reject an authorization; or mark a review as OK.
2-41
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Republishing Service Link Messages
In the rare occasion of extended outage or incorrect configurations of the Service Link application, 
external tasks might not have corresponding outbound messages created in Service Link.

Once the underlying issue is resolved in Service Link and the application is up and running again, the 
problem external tasks can be republished to Service Link to allow the outbound messages to be created 
and the delivery process to resume. 

To republish outbound messages:

Step 1 From the Service Link Home page, click View Transactions. Then click Message Republish. 

Step 2 On the left-hand pane, enter the Requisition ID for the requests which have one or more missing 
outbound Service Link messages. All authorization and delivery tasks associated with the requisition are 
evaluated and only those tasks that require republishing are processed for outbound message creation. 
Up to 20 requisitions can be entered at a time.

Step 3 Click Republish.

Step 4 Review the processing status on the right-hand pane once the republish process is completed.

Service Link Adapters
All Service Link adapters support nsXML as the data exchange format. For more information about the 
nsXML format, see Chapter 3, “Service Link Adapter Development Kit”.

All poller-based adapters support processing on only one message per invocation.

The Service Link Adapters installed in all application instances are:

• Dummy Adapter

• Database Adapter

• File Adapter

• HTTP/WS Adapter

• JMS Adapter

• MQ Adapter

• Service Item Listener Adapter

• VMware Adapter

• Web Service Listener Adapter

In addition to these adapters, Service Link supports an Auto-Complete Adapter.

Additional adapters may be installed and configured using the Service Link Adapter Development Kit 
(ADK). Any such custom adapters also appear on the Adapters page, and their properties may be 
reviewed. For details on building and installing custom adapters, see Chapter 3, “Service Link Adapter 
Development Kit”.

The following sections describe these adapters.
2-42
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Auto-Complete Adapter
The Auto-Complete adapter allows an agent to send an outbound message and to mark the task as 
complete without waiting to receive an acknowledgement from the external system. If the outbound 
message is successfully sent (for example, a file is written to the specified directory by an outbound file 
adapter), the auto-complete adapter generates an incoming message for the same task. That incoming 
message has the message type “take-action”. This message is processed normally by the Business 
Engine, marking the action as done and completing the external task.

Dummy Adapter
The Dummy Adapter is a placeholder. It can be used in several processing scenarios:

• Using the dummy adapter as the inbound adapter allows an external task initiated by Service Link 
to remain in Ongoing status. 

• Using the dummy adapter as an outbound adapter and the auto-complete adapter as the inbound 
adapter allows service designers to implement Auto-Complete Agents in external tasks. The task can 
then be used in part of the workflow, for example, to generate an email to participants, or to close a 
request which has no other tasks. This combination can also be used to verify if communications 
between Request Center and Service Link are working correctly.

Database Adapter
The Database (DB) adapter uses one or more tables in a database to pass data between Service Portal 
and external applications.

Database Connection

Inbound and outbound database adapters are capable of communicating with any JDBC-compliant 
relational database that supports ANSI-standard SQL. Valid connection criteria must be provided, as 
well as the JDBC URL, and a database driver. If the external database is SQLServer or Oracle, 
Cisco-provided drivers may be used. Drivers available from Cisco are: 

com.newscale.jdbc.sqlserver.SqlServerDriver
com.newscale.jdbc.oracle.OracleDriver
com.newscale.jdbc.UnifiedDriver

The unified driver supports all Service Portal supported databases (SQLServer and Oracle) and should 
be used in preference to database-specific drivers. The database-specific drivers are supported to provide 
backward compatibility with previous versions of Service Portal.

The JDBC URL has the format:

jdbc:newscale:dbtype://machine:port;DatabaseName=dbname
jdbc:newscale:dbtype://machine:port;SID=sid

where

• dbtype is sqlserver or oracle 

• machine is the name of the database server

• port is the port through which to connect to the database; typically 1433 for SQLServer and 1521 
for Oracle
2-43
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
• The database name must be specified for SQLServer; the SID (System Identifier) must be specified 
for Oracle

EXAMPLES:

jdbc:newscale:sqlserver://localhost:1433;DatabaseName=RCDev

jdbc:newscale:oracle://PRODSRVR2:1521;SID=RCProd

A user-supplied driver may be used if supporting jar files are installed on the directory 
ISEE.war/WEB-INF/lib in the Request Center directory structure.

Step 1 Obtain the appropriate third-party JDBC driver. For example, the Sybase JDBC Driver can be 
downloaded from Sybase's website. Oracle drivers are available online or as part of the Oracle 
distribution.

Step 2 Copy any required jars to the ISEE.war/WEB-INF/lib folder. 

Step 3 Modify the Agent settings to use the custom driver and the correct JDBC URL format. For example, the 
format for the JDBC URL for the Sybase driver is:

jdbc:sybase:Tds:host:port/database

The format for the Oracle thin driver would be 

jdbc:oracle:thin:@host:port

Step 4 Restart the Service Link and Request Center services. 

The format of the JDBCUrl may also be influenced by the application server on which Service Link is 
deployed. For example, a possible JDBC URL to establish a connection to SQLServer database from a 
WebSphere application server would be:

jdbc:newscale:sqlserver://hostname;DatabaseName=databasename;selectMethod=direct;alwaysRep
ortTriggerResults=true;insensitiveResultSetBufferSize=16384;useServerSideUpdatableCursors=
false;maxPooledStatements=0

Inbound Properties

When the database adapter is used as an inbound adapter, the agent properties include a SQL statement 
to be executed against the specified database connection. The SQL is typically a select command which 
returns a set of rows. These rows are then formatted into an external XML message. The message must 
be transformed via an inbound transformation (specified in the agent) into a valid nsXML inbound 
message. That message is, in turn, passed to the Business Engine. If the Business Engine finds an open 
task identified by the Channel ID specified in the inbound message, the inbound message is processed 
and the specified action taken.

The Property sheet for the database inbound adapter prefixes the property names given below with 
“DBInboundAdapter”.
2-44
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Inbound Message and Work Flow

The process flow for the inbound database adapter is shown below:

For each row in the result set, the adapter generates an XML message with the following structure:

• The root element of the message is <inbound-results>.

• The required child element is <row>. Each message has exactly one <row> element.

• Each <row> element has multiple <column> elements, one for each column included in the 
InboundSQL statement specified for the adapter.

Table 2-16 DB Adapter Inbound Properties

Property Description

DBPassword Password for the specified user.

DBUserName Database user name. 

InboundSql The SQL statement to be executed for the inbound transaction. This should 
be a SELECT statement that returns a set of rows. Transactional SQL (that 
is, a procedure) is not supported. 

InboundSuccessSql The SQL to be executed on success of the inbound transaction, typically a 
SQL update or delete statement which marks the current row as 
successfully processed.

InboundFailureSql The SQL to be executed on failure of the inbound transaction typically a 
SQL update or delete statement which marks the current row as 
successfully processed.

JDBCUrl JDBC URL to connect to the database. 

JDBCDriverClass The class name of the driver to be used to connect to the database. 

��		�������
�
�
0
��

����
����	0�
	��1�2
����
��	�����
�����

 �����	������'
�	����
�����

 ���
���
�


���	0�
	��3���

����
��

.�
	�"����3������
	�3�������
��

��	������
������
4
��	�����	��	�

����
���
�
������1�

"����
���	����'

����
��
 
��
���1�

"����
���	����'

��'�
 �
	�5 �	�

�
�����5

6�� !�

6��

!�
2-45
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
• The <row> element has attributes for the column name (<name>) and JDBC data type (<type>; 12 
for character and 1 for numeric).

• The value of each <column> element is the value returned for the corresponding column in the SQL 
statement.
2-46
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
For example, the SQL statement

SELECT channelId, task, status, processType FROM rcInterface
  WHERE status = 'UPDATED'

might yield an XML stream like the following:

<?xml version='1.0' encoding='UTF-8'?>
<inbound-results>
    <row>
       <column name="channelid" type="12" > 
            "3F2504E0-4F89-11D3-9A0C-0305E82C3301" 
       </column>
       <column name="task" type="12" >Task</column>
       <column name="status" type="12" >UPDATED</column>
       <column name="processtype" type="1" >null</column>
    </row>
</inbound-results>

A transformation must then be applied to this XML stream to produce a valid nsXML inbound message. 
For example, a transformation which would complete an ongoing task might include the following code:

<xsl:template match="/inbound-results/row">
   <xsl:variable name="status"  select="column[@name='status']" /> 
   <xsl:choose>http://www.w3schools.com/xsl
      <xsl:when test="$status='Complete'">http://www.w3schools.com/xsl
      <message>http://training2.cisco.com/RequestCenter
      <xsl:attribute name="channel-id">
          <xsl:value-of select="column[@name='channelId']" /> 
      </xsl:attribute>http://training2.cisco.com/ServiceLink
      <take-action action="done" /> 
      </message>
   <xsl:otherwise> 
     .       .          .

The Business Engine processes the resultant nsXML message. If the message was applied successfully, 
the SuccessSQL specified in the agent is executed. The SuccessSQL typically updates the columns in 
the source table that caused the row to be selected for processing, so that the row will not be found again 
in the next polling interval. To specify that Service Link should update the current row, identify the 
column or columns that comprise the row's unique identifier. Those columns must have been included 
in the inbound SQL statement. For example:

UPDATE rcInterface
   SET status = 'DONE'
 WHERE channelId = #ChannelId#

Similarly, the FailureSQL is executed if the Business Engine failed to apply the nsXML message-for 
example, if an error occurred during processing of the message. The FailureSQL typically updates the 
status of the current row to indicate that the row was not correctly processed. For example:

UPDATE rcInterface
   SET status = 'FAILED'
 WHERE channelId = #ChannelId#
2-47
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Outbound Properties

When the database adapter is used as an outbound adapter, it provides a “staging table” style interface 
between Service Portal and the external system. The nsXML outbound message which is provided to the 
agent by the Business Engine must be transformed into an external message containing one or more SQL 
statements. These SQL statements are then executed in the specified database, using the specified 
connection.

The Property sheet for the DB outbound adapter prefixes the property names given below with 
“DBOutboundAdapter”.

Outbound Message and Workflow

The process flow for the outbound database adapter is shown below:

The outbound message produced by the XSLT transformation must have the format:

<?xml version="1.0" encoding="UTF-8"?>
<outbound-message>
    <execute-sql-list>

    <execute-sql> SQLStatement
       </execute-sql>
    </execute-sql-list>
</outbound-message>

The message can contain multiple SQL statements, each within an <execute-sql> tag. These statements 
typically insert or update rows in SQL tables. Any SQL statement supported by the JDBC driver 
specified for the adapter can be used. Stored procedures (in SQLServer Transact-SQL or Oracle 
PL/SQL) are not supported, although the SQL statement can include user-defined functions. Since each 
external task is uniquely identified by a Channel ID, the target table for the outbound SQL statement 
must include a column for the Channel ID in order for that task to be updateable by an inbound message. 

Table 2-17 DB Adapter Outbound Properties

Property Description

DBPassword Database User password

DBUserName Database user name 

JDBCUrl JDBC URL to connect to the database 

JDBCDriverClass The class name of the specific driver to be used to connect to the database 

���7���8�
�����	
��.
�9

���	�8�
���
���.
�9:��
����

	�3��

�
�0�
	�
�
�
0
��
��
����

����/�3��. ;�
�0�
	������
��<
�����	
����� �
�
0
��
2-48
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
File Adapter
The File Adapter provides support for reading files from a specified directory or writing files to a 
specified directory.

• The adapter cannot be configured for processing files from multiple directories or sub directories of 
a specified directory.

• The oldest file of a set of files of a directory would be processed by an inbound file adapter when 
invoked.

• Only one agent should be configured for a specified directory to process the files.

• The directories (locations) specified must be on the file system of the application server where 
Request Center is installed or accessible from the application server. All directories must be on the 
same physical device, since files are moved from one directory to another as Service Link processing 
proceeds.

File Adapter Inbound Properties

Following are the properties with the default values for the File Adapter. 

The Property sheet for the File inbound adapter prefixes the property names given below with 
“FileInboundAdapter”.

File Adapter Outbound Properties

The outbound file adapter produces an XML file on the specified file location. The name of the file 
contains the channel-id, a unique identifier for the external task that included the agent and created the 
message. The file name ends with the date format specified as an outbound property.

Table 2-18 File Adapter Inbound Properties

Property Description

BackupLocation Location where the files are backed up after they have been processed, 
if the Final Resolution or OnError property is “Preserve”.

BackupSuffix File extension for the backup files; default is .bak.

FileLocation Location (directory) that is polled for inbound files to be read; a unique 
location should be used for each inbound file adapter.

FileNameDateFormat Date format for the files; default is .yyyyMMddHHmmssSSS.

FinalResolution Action to take on the file after transaction completion. Options are:

• Preserve – Moves the file to the backup location

• Delete – Deletes the file

default is Preserve.

OnError Action to take on the file when an error occurs. Options are:

• Preserve – Moves the file to the backup location

• Delete – Deletes the file 

default is Preserve.

TempLocation Temporary folder used for processing inbound files.
2-49
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
The Property sheet for the File outbound adapter prefixes the property names given below with 
“FileOutboundAdapter”.

HTTP/WS Adapter
The HTTP/WS adapter is used to send or receive HTTP requests or web service requests and responses. 
HTTPS is also supported. 

The use of a proxy server in connecting to the web service is not supported.

When used to call web services, only synchronous calls are possible. The outbound transformation must 
be configured such that a SOAP wrapper is placed around the message.

Outbound Properties

The HTTP/WS Adapter outbound properties specify the behavior of the outbound adapter. 

The Property sheet for the http/ws outbound adapter prefixes the property names given below with 
“HttpOutboundAdapter”.

Table 2-19 File Adapter Outbound Properties

Property Description

BackupLocation Outbound files backup location; may be any valid file system directory 
accessible from the application server.

BackupSuffix File extension for the backup files; default is .bak.

ConflictResolution Action to take in case of conflict in the outbound file names. Options are:

• Preserve – Moves the file to the backup location

• Delete – Deletes the file

Default is Rename.

FileLocation Location to which the file is written; may be any directory accessible from 
the application server.

FileNameDateFormat Date format for the file name; default is: .yyyyMMddHHmmssSSS.

OnError Action to take on the file when an error occurs. Options are:

• Preserve – Moves the file to the backup location

• Delete – Deletes the file

Default is Preserve.

TempLocation Temporary folder used for processing the outbound file.

Table 2-20 HTTP/WS Adapter Outbound Properties

Property Description

WsdlURL The URL of the wsdl that includes the operation to be performed; used 
only with the Integration Wizard.

WsdlOperation The operation to be performed by the web service; documentation only 
except when using the Integration Wizard. A drop-down list of all 
operations included in the specified WSDL is available. 
2-50
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
RoutingURL URL to route all outbound messages to be posted; the web service end 
point.

AcceptUntrustedURL Option to allow accepting untrusted certificates from external systems; 
default is true.

ContentType Content type; default is text/xml; charset=ISO- 8859-1.

TimeOut Timeout to get the http url connection; default is 180,000 microseconds.

ProcessResponse Option to treat the result of the post or the response to a SOAP message 
as an inbound message; default is false.

RequestHeaders Any custom header parameters that must be included in the HTTP request 
header, typically in the form of name-value pairs, with parameters 
separated by ampersands (&). For example, a SOAPAction might be 
entered in the format:

SOAPAction=OpCreate

A SOAPAction and a custom header called “referrer” might be entered in 
the format:

SOAPAction=OpCreate&referrer=www.test.com

AuthenticationSchema The type of authentication to be used to request the web service or post 
to the URL; options are basic, anonymous, digest, or NTLM; details 
explanations of these options are given below.

AuthenticationScopeHost The host to which the authentication credentials apply. May be left empty 
if credentials are applicable to any host.

AuthenticationScopePort The port to which the authentication credentials apply. May be left empty 
if credentials are applicable to any port.

AuthenticationScopeRealm The realm to which the authentication credentials apply. May be left 
empty if credentials are applicable to any realm.

Username User name for authentication to the target system.

Password Password for authentication to the target system.

Host Host credential that may be required for some authentication schemas 
(like NTLM).

Domain Domain credential that may be required for some authentication schemas.

NTLM does not use the concept of realms. The authentication domain 
should be specified as the value of the ‘realm’ attribute. May be left 
empty if credentials are applicable to any domain. 

SaveRefField Boolean used when ProcessResponse is true. Indicates that the response 
will contain a field which the external system uses as a unique identifier 
(or TopicID) for this task; see the “Response to the http/ws Request” 
section on page 2-52 for more information.

RefFieldXPath The XPath expression in the response that identifies the reference field 
(Topic ID).

Table 2-20 HTTP/WS Adapter Outbound Properties (continued)

Property Description
2-51
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Authentication Schemes

Some properties of the outbound http/ws adapter are required only for certain authentication schemes 
and, then, perhaps only for web servers with customized authentication. Table 2-21 below summarizes 
authentication schemes supported by the outbound http/ws adapter.

Response to the http/ws Request

When a request is posted to a web site or a message sent to a web service, the target site typically sends 
a response to the message originator. If that response is unlikely to contain information useful to Service 
Link, you may set the Process Response property to false, to instruct Service Link to ignore any such 
messages. However, such responses might include additional information, such as the external system's 
ticket number or case number assigned to the task that originated in Request Center. In this case, you 
can set both the Process Response and Save Ref Field properties to true and specify the xpath for the 
Reference field for Service Link to capture the reference from the web service response. In addition, a 
transformation can be applied to the response to invoke actions to update the service form with 
information from the external system.

Reference Field and TopicID

External systems generally have their own means for identifying incidents, requests, or other objects, 
whether opened by a third-party system or maintained via the product's user interface. A designated 
Reference Field (TopicID) allows Request Center to maintain a cross-reference between the external 
system's unique identifier and the Request Center Channel-Id. Once the TopicID is identified in the 
initial response to the web service request and saved, further messages from the external system, 
received via the web services listener adapter, can use the TopicID to identify the Request Center 
external task.

RefFieldPattern A regular expression to be applied to be reference field.

CancelIdentifierXPath The XPath expression whose presence specifies that an ongoing task 
should be canceled.

Table 2-20 HTTP/WS Adapter Outbound Properties (continued)

Property Description

Table 2-21 Authentication Schemes

Authentication Type Description

Anonymous The request is not required to supply user credentials; access to the web 
server is typically via a service account.

Basic User name and password are required; password is sent in clear text.

Digest User name and password are required, but password is transmitted as an 
MD5 hash.

NTLM Integrated Windows Authentication on Windows 2003.

NTLMv2 Integrated Windows Authentication on Windows 2008.
2-52
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Inbound Properties

• The HTTP/WS inbound adapter is a listener adapter and does not support polling based invocations.

• Only one HTTP/WS inbound agent should be configured for a given URL. Either the http or https 
protocol may be used.

No properties may be specified for an inbound http adapter. All http posts should be directed to the 
Integration Server’s URL: 

<ServerName>:<Port>/IntegrationServer/ishttplistener?channel-id=<channel-id>

where 

• <ServerName> is the Service Portal application server.

• <Port> is the port on which Service Portal is listening.

• <channel-id> is the channel ID which uniquely identifies the task to be affected by the inbound 
message. Error 503 (Application Error) is returned to the third-party system if the channelID does 
not apply to an ongoing task.

Web Service Invocation

A web service is not-so-simply “XML over HTTP”. For an outbound adapter, an XML message is sent 
via http (or https) to a web service. The message, created by application of a transformation to the 
outbound message, must be enclosed within a SOAP envelope. A sample XML message to a web service 
might look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"  
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"> 
<soap:Header 
  soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 
  <AuthenticationInfo> 
    <userName>ns28sbd</userName> 
    <password>09rbc19</password> 
  </AuthenticationInfo>
</soap:Header> 
<soap:Body  
  soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 
  <OpCreate> 
    <Assigned_To_Group>CSCC</Assigned_To_Group>
    <Case_Type>Problem</Case_Type> 
    <Category>Computer/Printer/Server</Category>

<!-- additional tags as required />    

    <txt_internalticketid/> 
    <txt_requestid >40</txt_requestid > 
    <Type>New Hardware Request</Type> 
  </OpCreate> 
</soap:Body>
</soap:Envelope>
2-53
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
JMS Adapter
The JMS inbound adapter is a listener adapter and does not support polling based invocations.

The JMS adapter can read and write messages from a queue or publish/subscribe to a particular topic. 
Only one JMS inbound agent should be configured for a given queue. It is not possible to use the same 
agent to subscribe to multiple topics. The topic must be fully specified; for example, 
“topic.sample.exported”.

Inbound Adapter Properties

The Property sheet for the JMS inbound adapter prefixes the property names given below with 
“JMSInboundAdapter”.

Outbound Adapter Properties

The Property sheet for the JMS outbound adapter prefixes the property names given below with 
“JMSOutboundAdapter”.

Table 2-22 JMS Adapter Inbound Properties

Name Description

JndiProviderUrl JNDI provider URL for looking up JMS administered objects for the inbound 
agent; default is jnp://localhost:4099.

JndiFactory JNDI Naming factory for inbound agent; default is 
org.jnp.interfaces.NamingContextFactory.

JmsTopicFactory Topic Connection factory for getting JMS Topic Connection for inbound agent; 
not used.

JmsQueueFactory Queue Connection factory for getting JMS Queue Connection for inbound 
agent; default is ConnectionFactory.

MessageMode Whether JMS destination is Queue or Topic. Valid values are Queue or Topic; 
default is Queue.

JmsQueue Named JMS queue if message mode is Queue for inbound agent.

JmsTopic Named JMS topic if message mode is Topic for inbound agent.

MessageType Type of the message for the inbound agent. Valid value is Text

Publisher.isAdapter If the publisher is adapter; default is True.

Listener.UseCallback Whether to use callbacks; default is True.

UserName User name for JNDI Security credentials for the inbound agent.

Password Password for JNDI Security credentials for the inbound agent.

Table 2-23 JMS Adapter Outbound Properties

Name Description

JndiProviderUrl JNDI provider URL for looking up JMS administered objects for the outbound 
agent; default is jnp://localhost:4099.

JndiFactory JNDI Naming factory for the outbound agent; default is 
org.jnp.interfaces.NamingContextFactory.
2-54
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
MQ Adapter
The MQ inbound adapter is a poller adapter which uses the IBM WebSphere Message Queue (MQ) 
system. The adapter supports IBM MQ Series versions 5.x and above. It uses IBM MQ Series Java API 
for the integration. IBM MQ software is not included with Service Portal, and a license must be obtained 
from IBM.

Inbound Properties.

The Property sheet for the MQ inbound adapter prefixes the property names given below with 
“MQInboundAdapter”.

Outbound Properties

The Property sheet for the MQ outbound adapter prefixes the property names given below with 
“MQOutboundAdapter”.

JmsTopicFactory Topic Connection factory for getting JMS Topic Connection for outbound 
agent; not used.

JmsQueueFactory Queue Connection factory for getting JMS Queue Connection for outbound 
agent; default is ConnectionFactory.

MessageMode Whether JMS destination is Queue or Topic. Valid values are Queue | Topic.

JmsQueue Named JMS queue if message mode is Queue for outbound agent.

JmsTopic Named JMS topic if message mode is Topic for outbound agent.

MessageType Type of the Message for the outbound agent. Valid value is Text.

Publisher.isAdapter If the publisher is adapter; default is True.

UserName User name for JNDI Security credentials for outbound agent. 

Password Password for JNDI Security credentials for outbound agent. 

Table 2-23 JMS Adapter Outbound Properties (continued)

Name Description

Table 2-24 IBM MQ Inbound Adapter Properties

Name Description

ManagerName Name of the IBM MQ Manager 

HostName Host name of the IBM MQ Server 

Port Port for the IBM MQ Server for Inbound

UserName User Name for authentication 

Password Password for authentication

ChannelName IBM MQ Channel Name for inbound messages

QueueName Queue Name for inbound messages

MsgFormat Message Format for inbound messages; default is Text
2-55
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Service Item Listener Adapter
Similar to the Web Service Listener Adapter (see the “Web Service Listener Adapter” section on 
page 2-58), the Service Item Listener Adapter provides a Web service (SOAP) end point to be used by 
external systems to send updates to external tasks. In addition to task updates, the adapter allows the 
creation, update, and deletion of service items in Lifecycle Center as part of the inbound SOAP message. 
The adapter also allows the retrieval of service item metadata and the data for service item instances.

The SOAP message sent by an external system must invoke the “processMessage” operation. The 
message content within the soap body is transformed into a message that Service Link understands, then 
segregated based on the operation type, and forwarded to the Business Engine and Service Item Import 
processor, respectively. Up to two messages may result in the View Transactions page for an inbound 
SOAP message—one for task update operations (take-action, add-comments, send-parameters) and one 
for service item operations (create, update, delete). The latter has “Service Item” as the message type.

Authentication for inbound messages can be enabled optionally by turning on the site setting "Inbound 
HTTP Requests Authentication" in the Administration module. For more information, see Web Service 
Listener Adapter, page 2-58.

Inbound Properties

The Property sheet for the Service Item Listener inbound adapter prefixes the property names given 
below with “ServiceItemListenerInboundAdapter”.

Table 2-25 IBM MQ Adapter Properties

Name Description

ManagerName Name of the IBM MQ Manager for outbound messages

HostName Host name of the IBM MQ Server 

Port Port for the IBM MQ Server 

UserName User Name for authentication 

Password Password for authentication 

ChannelName IBM MQ Channel Name for outbound messages

QueueName Queue Name for outbound messages

MsgFormat Message Format for Outbound; default value is Text
2-56
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
Outbound Properties.

The Service Item Listener Adapter is unidirectional—inbound only. Therefore, there are no Outbound 
Properties.

VMware Adapter
A Lifecycle Center license is required to use the VMware adapter. The VMware adapter integrates with 
vSphere 4.1 vCenter server, using the VMware API.

The use of the VMware adapter to process grid dictionaries is not currently supported.

Outbound Properties

The Property sheet for the VMware outbound adapter prefixes the property names given below with 
“VMwareOutboundAdapter”.

Table 2-26 Service Item Listener Inbound Adapter Properties

Property Description

Wsdl The URL of the wsdl that describes the Request Center inbound Service Item for the 
current installation has the format:

<Protocol>://<ServerName>:<Port>/IntegrationServer/webservices/wsdl/ServiceItem
TaskService.wsdl

where:

<Protocol> is either http or https.

<ServerName> is the server where Service Link is installed.

<Port> is the communication port specified for Service Link.

For example,

http://ccp-prod.cisco.com:8089/IntegrationServer/webservices/wsdl/ServiceItemTaskS
ervice.wsdl

This property is read-only. It is made available so that designers can consult the WSDL, 
which is useful in understanding the services and writing a webservice client.

RoutingURL The URL to which the SOAP message should be sent has the format:

<Protocol>://<ServerName>:<Port>/IntegrationServer/services/TaskService

This property is read-only. It is made available so that external systems integrators can 
write clients that post SOAP messages to this URL.

Table 2-27 VMware Outbound Adapter Properties

Name Description

VMServerURL The complete URL of the vCenter server with which the adapter needs to 
communicate, for example, https://<ServerName>/sdk. See below for 
more information. 

UserName User name for login in the format <network domain>\<network userid>. 
2-57
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
VMware Server URL

Https is enabled in most vCenter installations. Please check with the VMware administrator to ensure 
you have specified the correct protocol.

You will need a separate agent for each vCenter server. Further, if there are different logins for managing 
different types of activities or different data centers of the same vCenter server, you will have to define 
one agent for each login.

VMware Adapter and Agent Architecture

The architecture of the VMware adapter, and agents which use this adapter, differs from the architecture 
of the other Service Link adapters. The VMware adapter communicates directly with the VMware API. 
Data required by the operations supported by the API is provided via dictionaries used in the service 
which includes the VMware integration. 

For configuring an agent that uses the VMware adapter:

• The outgoing message content must be set to “small” (the default).

• A user-specified transformation is not used. The nsXML message is always identical to the 
“external” message. The contents of that message are used to produce a call to the VMware API.

• The integration designer must specify one outbound request parameter for the agent, indicating the 
name of the dictionary which contains the fields required for the VMware operation. The outbound 
parameter must be named “Dictionary_Lookup_Name” with its value set to the appropriate 
dictionary name.

• The VMware adapter is outbound only. The results of the VMware operation performed, and an error 
message, if applicable, are returned in response to the outbound message.

For details on configuring the VMware adapter, see the Cisco Service Portal Designer Guide. 

Web Service Listener Adapter
The Web Service Listener Adapter provides a Web service (SOAP) end point to be used by external 
systems to send updates to external tasks. The SOAP message sent by an external system must invoke 
the “processMessage” operation. The message content within the soap body is transformed into a 
message that Service Link understands, then forwarded to the HTTP/WS inbound adapter to be 
processed further. 

Password Password of the user.

TimeOut Timeout, in seconds.

IgnoreVMServerCertificate Parameter indicating if invalid server certificates should be ignored. 
Leave this set to false.

AutoInstallCertificate Leave this set to true.

ServerCertificate String containing the X.509 server certificate, if SSL connections should 
be honored for servers with invalid/self-signed certificates. You can leave 
this blank when the AutoInstallCertificate option is set to true.

Table 2-27 VMware Outbound Adapter Properties

Name Description
2-58
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Adapters
The Web service Listener Adapter uses an underlying Web Service Listener. Authentication for inbound 
messages can be enabled optionally by turning on the site setting "Inbound HTTP Request 
Authentication" in the Administration module. Once enabled, a valid username and the corresponding 
password are required to be passed in the request header for the inbound message to be processed. If 
desired, the "Accept Encrypted Password" setting can be enabled to enforce the use of encrypted 
password only. An encryption utility is available for users with the Site Administrator role to obtain the 
encrypted value of a password. To access this utility, open the browser page:

  http://<server>:<port>/RequestCenter/EncryptedPassword.jsp

Inbound Properties.

The Property sheet for the Web Service Listener inbound adapter prefixes the property names given 
below with “WSListenerInboundAdapter”.

Outbound Properties.

The Web Service Listener Adapter is unidirectional—inbound only. Therefore, there are no Outbound 
Properties. 

Table 2-28 Web Service Listener Inbound Adapter Properties

Property Description

WsdlURL The URL of the wsdl that describes the Request Center inbound Web Service for 
the current installation has the format:

<Protocol>://<ServerName>:<Port>/IntegrationServer/webservices/wsdl/TaskS
ervice.wsdl

where:

<Protocol> is either http or https.

<ServerName> is the server where Service Link is installed.

<Port> is the communication port specified for Service Link.

For example,

http://ccp-prod.cisco.com:8089/IntegrationServer/webservices/wsdl/TaskService.
wsdl

This property is read-only. It is made available so that designers can consult the 
WSDL, which is useful in understanding the services and writing a webservice 
client. 

WsdlRoutingURL The URL to which the SOAP message should be sent has the format:

<Protocol>://<ServerName>:<Port>/IntegrationServer/services/TaskService

This property is read-only. It is made available so that external systems integrators 
can write clients that post SOAP messages to this URL
2-59
Cisco Service Portal Integration Guide

OL-26390-02

http://ccp-prod.cisco.com:8089/IntegrationServer/webservices/wsdl/TaskService.wsdl


 

Chapter 2      Service Link
  Integration Wizard
Integration Wizard

Overview
The Integration Wizard automates many of the steps involved in creating an integration between Request 
Center and web services. The Integration Wizard works by retrieving the wsdl and operation to be 
invoked by the web service integration. Based on that definition of the integration, the integration wizard 
creates all components required to support the integration.

• The Service Link agent that can be used in an external task to perform the integration is created and 
referenced in the delivery plan of the current service.

• A transformation to transform nsXML into the SOAP message required by the web service is created 
and referenced in the Outbound Adapter of the agent.

• Agent parameters for all data required both in the initial web service request and the response are 
added to the agent definition.

• A dictionary containing fields to hold agent parameter values is created, and dictionary fields are 
mapped to corresponding agent parameters.

• An active form component containing the dictionary is created and included in the current service.

The Integration Wizard uses some default options in defining the authentication method and behavior of 
the integration. If these settings are not appropriate, or if the integration must be modified after it has 
been created, the advanced configuration options available in Service Link Manage Integration pages 
can be used to edit the agent definition.

The Integration Wizard is available only to those service designers who have been granted a role that 
allows creation of Service Link agents and transformations.

Wsdl's to be accessed by the Integration Wizard must comply with Web Services Operability (WS-I) best 
practices.

Using the Integration Wizard
To use the Integration Wizard:

Step 1 Edit the service in Service Designer.

Step 2 Go to the General subtab of the Plan tab for the service. Optionally fill in other data relating to the task.

Step 3 Click Create Agent.
2-60
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Integration Wizard
The first page of the Integration Wizard appears. The wizard may consist of up to eight pages, depending 
on how the agent is configured. As each page is completed, click Next to advance to the next page, or 
Previous to return to a previous page. When you are finished, click Save to save the definition of the 
agent (and other design components) or Cancel to exit without saving your work.

General Information

Start by specifying general information about the agent:

The dictionary and active form component to be created will have the same name as the agent. Therefore, 
since naming standards for dictionaries are more stringent than for agents, the agent name can contain 
only letters, numbers and the underscore, and cannot start with a number. 

All other settings on this screen match those available in the Agents page of Service Link.

Click Next to proceed to the next page of the wizard.
2-61
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Integration Wizard
Outbound Properties

Enter the location of the WSDL containing the operation to be performed by the integration. This will 
typically be the URL where the WSDL resides.

The Integration Wizard reads the wizard and displays a list of supported operations. Select the desired 
operation. The attributes specified for the operation will drive the definition of agent parameters on 
subsequent pages of the wizard.

If the wsdl includes a routing url, that, too, is displayed.

If desired, click the Advanced Properties drop-down button to display additional settings for the 
integration. These may be entered now or specified later via Service Link. Only basic authentication can 
be specified via the wizard.
2-62
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Integration Wizard
Outbound Request Parameter Mappings

The wizard parses the wsdl and, in the sample shown, determines that it includes two attributes that must 
be used in the web service outbound request. Therefore, it creates two agent parameters whose names 
match the names of the attributes in the wsdl. 

The agent parameters are mapped to dictionary fields. The field names match the names of attributes in 
the wsdl, and the dictionary name matches the agent name. This dictionary is automatically created when 
you save the agent.

If desired, you can change the Service Data Mapping to refer to a dictionary and field that have 
previously been defined in Service Designer. This effectively changes the agent parameter mapping. 
However, the dictionary created by the wizard will still contain the original field. You may remove this 
by editing the dictionary definition.

A short digression might be useful here about structuring and using dictionaries in services. The primary 
purpose of a Request Center dictionary is to structure the data to be shown to users on a service form. 
Therefore, service designers typically design dictionaries with the user interface in mind, grouping and 
arranging fields to optimize the experience of both customers and service team members.

In principle, an outbound message might need to include data that has been entered (or defaulted or 
computed) in fields in many dictionaries. However, this would make maintaining the agent parameter 
mappings more complicated and prone to error—integration designers would have to be well acquainted 
with the design of the service form and its dictionaries. Therefore, it is recommended practice to create 
a dictionary solely for the purpose of containing integration data. Some fields in the dictionary may be 
redundant with fields displayed on the service form. In this case, the service designer should supply 
conditional rules to copy the value of the field from the displayed dictionary to the integration dictionary. 
Further, the integration dictionary is not displayed on the service form (it is typically hidden via an active 
form rule); however, it can be kept visible during development to facilitate debugging.
2-63
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Integration Wizard
Outbound Response Parameter Mappings
By default, the Integration Wizard assumes that a response received from the target system will be 
processed. Any attributes sent in the response have corresponding agent attributes that are mapped to 
dictionary fields. 

In addition to a agent-to-field correspondence, the mapping may include simple XSLT operations, 
available via the Prebuilt Functions drop-down arrow to the left of the page. 

As for outbound parameters, the inbound parameter could also be mapped to an alternative dictionary 
field. All dictionaries can be browsed via the Dictionaries drop-down arrow to the left of the page.

Integration Summary
The last page of the wizard summarizes the integration as defined. You may return to any previous page 
to make corrections or click Save to save the agent and all other integration components created. By 
default, the agent is started when the integration is saved. You can alter this behavior by unchecking the 
“Start agent upon saving” check box.
2-64
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Integration Wizard
All components are now available for editing via Service Link and Service Designer screens. These 
components are shown in Table 2-29.

Table 2-29 Integration Components

Integration Component Description

Agent An agent using an http/ws outbound adapter, with agent parameters and an 
associated transformation.

Transformation The transformation required to convert outbound nsXML to the expected 
format for the WSDL operation selected.

Dictionary Dictionary containing fields corresponding to all outbound and inbound 
parameters. The dictionary is created in the Integration group; it can be 
moved if desired.

Active Form Component Active form component containing the dictionary created. The form 
component is created in the Integration group; it can be moved if desired.
2-65
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Troubleshooting and Administration
Service Link Troubleshooting and Administration

Checking Service Link Status
The starting point for checking the operational status of Service Link is the Service Link Status display. 
The Service Link status is always displayed beneath the Common Tasks area of the Service Link Home 
page.

This feature helps you verify that Service Link is communicating with the Request Center service via its 
assigned port.

The Service Link Status display indicates whether the Service Link connection status is operational, and 
shows the port and protocol being used.

Starting and Stopping Agents
Agents can be started and stopped individually by using the Control Agents page. 

If the Service Link service is stopped and restarted, all agents that were running when the service was 
stopped are automatically restarted.

Logging
All adapters log their activities into the server log file.

In addition, each standard adapter has its own log file on the Service Link\log directory. The degree of 
detail written to the log is configurable; instructions for doing so are application-server specific.

For details on managing both server and adapter-specific log files, see the Cisco Service Portal 
Configuration Guide.

JBoss Logging

In a JBoss installation, Service Link adapter logs can be segregated from the server log into separate files 
by modifying the logging.properties file under the “<JBOSS_DIR>\standalone\configuration” directory. 
Examples of such configurations can be found in the sample property files “\preinstall\jboss\templates” 
directory in the product package.
2-66
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Troubleshooting and Administration
WebLogic Logging

WebLogic does not allow separation of log files per adapter, and the IntegrationServer component is 
configured to use the WebLogic logger by default. If separation of logs is desired, edit the file 
newscalelog.properties under ISEE.war/WEB-INF/classes. Uncomment the line that specifies commons 
logging as the logging mechanism. It is also very important that you uncomment and set a valid value 
for logger.directory to a valid and existing directory in the system, where the user that is used to run 
IntegrationServer has full write access. The file newscalelog.properties has additional instructions. In 
addition, if additional settings for other adapters are desired, edit the file log4j.xml and use the 
FILE_ADAPTER appender and category as a base and adjust the appender name and reference, the 
package of the appender and the file name.

WebSphere Logging

WebSphere logging of Service Link is based by default on log4j as included in the WebSphere 
application server. The log4j implementation in WebSphere is powerful and configurable through the 
administration console and other tools. However, it does not allow for easy separation of log files. If you 
want to separate log files per adapter in WebSphere, follow the steps below:

Step 1 Under “ISEE.war/WEB-INF/classes/config”, locate the file newscalelog.properties and open it with an 
editor. 

Step 2 Uncomment the line: 

logger.class.name=com.newscale.bfw.logging.LogUtilCommonsImpl

Step 3 Locate the line for logger.directory. Specify the log directory; for example:

logger.directory=I:/logfiles/servicelinkserver2

It is very important that you enter a valid directory where these log files reside and the user that is used 
to run IntegrationServer has full write access to it.

Step 4 Under the “ISEE.war/META-INF/” directory, manually create a folder named “services”.

Step 5 Under this services folder, manually create a text file named 
“org.apache.commons.logging.LogFactory”. Within the file, add one line as follows:

org.apache.commons.logging.impl.Log4jFactory

Message Purging
Utilities to purge Service Link messages are available as a database script. To execute the purge script, 
access the RequestCenter database with a SQL tool appropriate for your database as a DML user, and 
execute the procedure “sp_CleanUpSlMessageContent”. You will need to provide the number of 
calendar days of messages to retain as the input parameter for this script. The utility actually does not 
purge message data, but sets the message content to “Message has been purged” for all completed or 
failed messages older than ninety days.
2-67
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Service Link Troubleshooting and Administration
Application Server Configuration Files
You can analyze the following files when troubleshooting.

• rcjms.properties file – This file contains the information about the integration outbound JMS queue 
and can be located in the “/RequestCenter.war/WEB-INF/classes/config” directory. The business 
engine puts the message in the queue specified in this file. The values for the following properties 
should match with those in the integrationserver.properties file in the ISEE.war file:

ISEEOutbound.JndiProviderUrl

ISEEOutbound.JndiFactory

ISEEOutbound.JmsTopicFactory

ISEEOutbound.JmsQueueFactory

ISEEOutbound.JmsQueue

ISEEOutbound.JmsTopic

• integrationserver.properties file – This file contains the information about inbound and outbound 
JMS queues and can be located in the “/ISEE.war/WEB- INF/classes” directory. Verify the JMS 
properties specified in this folder.

• newscale.properties file – This file contains the property for isee.base.url. Ensure that it points to 
the Service Link server url.

Online Error Log
In addition to the server log file and adapter-specific log files, any errors detected by Service Link can 
also be viewed online. The message text for a failed message shown on the Messages page is a hyperlink 
to the detailed error for that message. 

The error messages are exactly those that appear in the server logs and may be highly technical. Some 
sample error messages, and an explanation, are given below.

com.newscale.is.core.RoutingException: Routing exception found: Reference Field not 
retrieved from response

An outbound web services message was sent, but the inbound response could not be processed because 
the specified referenced field was not in the response message.

com.newscale.is.core.TransformationException: javax.xml.transform.TransformerException: 
javax.xml.transform.TransformerException: Tag is not allowed in this position in the 
stylesheet!

The transformation produced an invalid XML message.
2-68
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Prebuilt Functions
Prebuilt Functions

Overview
Prebuilt functions provide the ability to manipulate the values of agent parameters included in a nsXML 
message. 

Prebuilt functions were developed using the FreeMarker template engine, version 2.3.12, available as 
open source software and developed by the Visigoth Software Society. Cisco has certified only those 
functions documented below and available in the drop-down list when building agent parameters. Other 
functions supported by the FreeMarker framework may be used, but should be extensively tested.

Function Usage
Basic function usage consists of applying to the function to an expression, specifying an argument list 
for the function if required. In general terms:

${Expression?function(argumentList)}

For Service Link, the expression is typically either a dictionary field, specified via lightweight 
namespace syntax, or an nsXML element. It must be enclosed in quotes:

${"#Customer_Information.Login_ID#"?upper_case}

Two or more functions can be chained-applied to the same expression-by using the syntax:

${Expression?function1(argumentList)}${"$Parameter$"?function2}

For example, the service data mapping below first trims any leading or trailing spaces from the 
designated dictionary field, then converts the result to lower case.

Multiple elements can be combined in one mapping, as shown below. The elements are implicitly 
concatenated together to form one string. 
2-69
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Prebuilt Functions
This scenario also shows another coding technique—the use of “temporary” fields to hold input values 
so they can be used in a mapping expression. 

Function Synopsis

substring

The substring function has the syntax:

exp?substring(from, toExclusive), also callable as exp?substring(from)

A substring of the string. from is the index of the first character. It must be a number that is at least 0 and 
less than or equal with toExclusive, or else an error will abort the template processing. The toExclusive 
is the index of the character position after the last character of the substring, or with other words, it is 
one greater than the index of the last character. It must be a number that is at least 0 and less than or 
equal to the length of the string, or else an error will abort the template processing. If the toExclusive is 
omitted, then it defaults to the length of the string. If a parameter is a number that is not an integer, only 
the integer part of the number is used.

index_of 

Returns the index within this string of the first occurrence of the specified substring. For example, 
“abcabc”?index_of(“bc”) will return 1 (don't forget that the index of the first character is 0). Also, you 
can specify the index to start the search from: “abcabc”?index_of(“bc”, 2) will return 4. There is no 
restriction on the numerical value of the second parameter: if it is negative, it has the same effect as if it 
were zero, and if it is greater than the length of this string, it has the same effect as if it were equal to 
the length of this string. Decimal values are truncated to integers.

If the 1st parameter does not occur as a substring in this string (starting from the given index, if you use 
the second parameter), then it returns –1.
2-70
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Prebuilt Functions
last_index_of 

Returns the index within this string of the last (rightmost) occurrence of the specified substring. It returns 
the index of the first (leftmost) character of the substring. For example: “abcabc”?last_index_of(“ab”) 
will return 3. Also, you can specify the index to start the search from. For example, 

“abcabc”?last_index_of(“ab”, 2) 

will return 0. Note that the second parameter indicates the maximum index of the start of the substring. 
There is no restriction on the numerical value of the second parameter: if it is negative, it has the same 
effect as if it were zero, and if it is greater than the length of this string, it has the same effect as if it 
were equal to the length of this string. Decimal values are truncated to integers.

If the first parameter does not occur as a substring in this string (before the given index, if you use the 
second parameter), then it returns –1.

length 

The number of characters in the string.

lower_case 

The lower case version of the string. For example, “GrEeN MoUsE” becomes “green mouse”.

replace 

It is used to replace all occurrences of a string in the original string with another string. It does not deal 
with word boundaries. For example:

${“this is a car acarus”?replace(“car”, “bulldozer”)} 
 

will print:

 this is a bulldozer abulldozerus 
 

The replacing occurs in left-to-right order. This means that this:

${“aaaaa”?replace(“aaa”, “X”)} 
 

will print:

Xaa 
 

If the first parameter is an empty string, then all occurrences of the empty string are replaced, like 
“foo”?replace(“”,"|") will evaluate to “|f|o|o|”.

replace accepts an optional flags parameter, as its third parameter.

upper_case 

The upper case version of the string. For example, “GrEeN MoUsE” becomes “GREEN MOUSE”.
2-71
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 2      Service Link
  Prebuilt Functions
2-72
Cisco Service Portal Integration Guide

OL-26390-02



 

OL-26390-02
C H A P T E R 3

Service Link Adapter Development Kit

• Overview, page 3-1

• Getting Started, page 3-1

• What is an Adapter?, page 3-4

• Example Adapter, page 3-6

• nsXML Format, page 3-13

• Sample Inbound and Outbound Documents, page 3-24

Overview
This chapter describes how to use the Service Link Adapter Development Kit (ADK) to develop Service 
Link adapters. The ADK is the set of components that allow the production of adapters for the Service 
Link subsystem of Request Center. Service Link provides external communications for Request Center 
and provides for coordinated externalization of workflow tasks with other systems.

To achieve this communication, Service Link supports installable adapters. Service Link ships with 
standard adapters, but developers can create others. This chapter describes the process of writing 
adapters.

Intended Audience
This chapter is intended for:

• Administrator. The administrator has access to the product packages and can install Service Portal 
products in a customer system.

• Adapter Developer. The adapter developer is a person that is well versed in java technologies, 
including ANT, and it is a subject matter expert of the integration required.

In development environments, the same person may fill both these roles.

Getting Started
This section describes the installation of the ADK, its structure, compiling adapters, and adapter 
deployment.
3-1
Cisco Service Portal Integration Guide



 

Chapter 3      Service Link Adapter Development Kit
  Getting Started
Installing the JDK
Follow the instructions from Sun or IBM to install the Java Development Kit. Service Portal is certified 
with Sun JDK 6 for installation on WebLogic 10.3 or JBoss 7.1.1, and with IBM Java 1.6 for installation 
on WebSphere 7.0.0.17.

Installing the ADK
To install the ADK:

1. Administrator: Expand the context of the product packages, locate the adk.zip under the 
image/isee/dist folder, and inform the adapter developer of the location.

2. Adapter developer: Obtain the file adk.zip (or adk.tar.gz) from the administrator.

3. Adapter developer: Expand the ADK package in a local machine, in C:\ADK. It does not have to 
be the C drive, nor the ADK directory. However, the examples in this chapter use C:\ADK.

ADK Structure
After installing the ADK, the following subdirectories exist:

An adapter is a subdirectory in the main ADK structure. After installing, example is one such adapter. 
Adapter code has to be structured in the following way:

In the example provided, only src and deploy exist.

Directory Description

<root> Contains the build procedure files.

ant Complete ANT build system. This ANT is the standard Apache ANT build system, 
with some added extensions.

doc Contains the java doc subdirectory. You may place the ADK documentation here.

doc\javadoc The help for the ADK in javadoc format.

example Contains our example adapter.

example\src Contains the source java files for the example adapters.

example\deploy Contains adapter.xml, which describes this adapter.

lib Contains the ADK libraries needed for compilation.

Directory Description

<adapter> The short name of the adapter. In the case of the example adapter, this is 
example.

<adapter>\src Mandatory. The root for the source java files.

<adapter>\deploy Mandatory. The deployment directory. This should contain a file called 
adapter.xml.

<adapter>\lib Optional. Additional libraries to be added to the lib directory of ISEE.war.

<adapter>\config Optional. Additional files to be copied to the classes directory of ISEE.war.
3-2
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Getting Started
After compiling the files, create a staging directory (see the following sections for a description on how 
to build adapters). The staging directory can be deleted and recreated with the build procedure later.

Creating Adapter Source Structures
The procedure to create new adapters is:

Step 1 Create the directory structure as defined above.

Step 2 Create the source and place it in the structure.

Step 3 Create adapter.xml and place it in the deploy directory. For more information, see the “Understanding 
the adapter.xml Descriptor” section on page 3-10.

Step 4 Optionally add additional libraries and configuration files.

Step 5 Modify build.properties and add your adapter to the adapters line. This configures ANT to look for the 
created directories.

The compilation steps allow for adding the build to version control, and later compiled before 
installation.

Compiling Adapters
After creating the adapter, build it by executing:

build.cmd (or ./build.sh for unix systems)

The final product appears under staging/dist/isee.adapters. This file needs to be provided to the 
administrator for deployment.

Directory Description

staging The root of the production directory.

staging\classes The compiled java classes for the adapters.

staging\adapters Contains the built jars for each of the adapters. The adapters appear with the 
name adapter_<adaptershortname>.jar.

staging\config The files from each config subdirectories for each adapter.

staging\deploy The files from each of the deploy subdirectories, renamed as 
<adaptershortname>.xml.

staging\lib The files from each of the lib subdirectories for each adapter.

staging\dist The final isee.adapters deployable file.
3-3
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  What is an Adapter?
Deploying Adapters
To deploy an adapter, the administrator performs the following procedures:

Step 1 Obtain the Service Link custom adapter package. It should be in the form of a zip file.

Step 2 Unzip the adapter to a temporary directory (for example, c:\temp\adapter). This directory is hereinafter 
referred to as <AH>.

Step 3 Copy the <AH>/adapters/<ADAPTER_NAME>.jar to the deployed “ISEE.war/WEB-INF/lib” 
directory.

Step 4 Copy the <AH>/lib/* files (if any) to the deployed “ISEE.war/WEB-INF/lib” directory.

Step 5 Copy the <AH>/config/* files (if any) to the deployed “ISEE.war/WEB-INF/classes” directory. 

Step 6 Copy the <AH>/udk/* files (if any) to the deployed “ISEE.war/WEB-INF/classes” directory. 

Step 7 If the custom adapter is not developed internally using the Adapter Development Kit, obtain the adk.zip 
from the "<ServicePortal_Software_Dir>/adk" folder, where <ServicePortal_Software_Dir> is the 
extracted software image of the Service Portal application. Extract the adk.zip to c:\adk (for Windows) 
or /opt/adk (for UNIX/Linux). This directory is hereinafter referred to as <ADK>.

Step 8 Set the JAVA_HOME environment variable if it is not already configured in the environment.

Step 9 Open a command window and cd into the <ADK>/lib folder. Execute adapter_dbinstaller.sh or 
adapter_dbinstaller.cmd as appropriate to your environment. Use --help or -? as the argument to the 
adapter installer to see the list of required input arguments. When prompted for the Adapter Deployment 
Descriptor file, enter the xml file name under the <AH>/deploy directory with the full path (for example, 
/opt/<AH>/deploy/custom_adapter.xml).

Step 10 For each udk file that was installed (Step 6), add the file’s name to the “UDConfig” property inside the 
integrationserver.properties file. The UDConfig property is a comma-delimited list of all udconfig files. 
Append the adapters udconfig files to this list.

Step 11 Start the Request Center and Service Link servers. Verify the new adapter exists.

What is an Adapter?

Concepts
An adapter is the vehicle by which Service Link connects with external systems (often referred as 
third-party systems). Adapters are composed of three pieces:

• An inbound piece, referred to as the inbound adapter

• An outbound piece, referred to as the outbound adapter

• An error handler

The inbound adapter manages incoming communications into Request Center. It processes the XML 
messages coming into the system. There are two types of inbound adapters: pollers and listeners. A 
poller is a thread that periodically wakes up and looks for incoming messages, while a listener waits and 
3-4
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  What is an Adapter?
is awakened by an external event. An example of a poller is the inbound file adapter, which needs to 
periodically check for messages. An example of a listener is the HTTP adapter which waits until an 
HTTP XML event is posted.

Outbound adapters manage the XML messages coming out of Request Center. There is only one type of 
outbound adapter.

An agent is a logical element that protects service designers from having to know all the complexities of 
adapter and connection properties. And agent defines an inbound adapter and an outbound adapter. The 
inbound adapter is optional and can be specified as “Auto complete”. “Auto complete” is a mode 
whereby the system does not need a reply from a third party for the workflow to proceed, and is mostly 
associated with unreliable, or shoot-and-forget protocols, such as an email-based system. The 
administrator configures agents and their associations with adapters for the service designers to use.

In addition, XML transformations can be applied to messages before they go to a third-party system, or 
after they are received from a third-party system and delivered to Service Link.

The message system uses a common XML dialect known as nsXML, which is a schema that defines the 
valid XML that Service Link can process or produce. nsXML currently consists of six operations:

• task-started – outgoing

• task-cancelled – outgoing

• take-action – incoming

• update-data – incoming

• send-parameters – incoming

• add-comment – incoming

When outgoing, Service Link can transform these operations to a destination. The same is true for 
incoming messages, and the XSL transformations can convert the external format into the nsXML 
dialect.

See the “nsXML Format” section on page 3-13 for more information about these nsXML operations.

Types of Adapters
The adapters are of two types:

• Transport Adapters

Transport adapters are specific to a given transport, such as HTTP, file, JMS, or some proprietary 
network socket implementation.

• Application Adapters

Application adapters have an element of transport but are better understood by the specific 
third-party application, such as Remedy and Siebel. In many cases native APIs are provided through 
jars. In this version of Service Link, transport adapters cannot yet be extended to create application 
adapters.

Agents may use different adapters for inbound and outbound messages. 

Adapter Components

In addition to java code, an adapter is composed of:

• Jar libraries (for example, Remedy java API)
3-5
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Example Adapter
• Static configuration files. These are highly discouraged as most customers may not allow changing 
of text files once deployed.

• Deployment descriptor. An XML file that describes the adapter. 

Properties
In order to connect to third-party systems, adapters may expose connection properties that the Service 
Link module exposes to administrators. They are described in the XML deployment descriptor, and their 
values can be retrieved by the java code to a well established API.

Example Adapter
This section illustrates how to implement a simple adapter. The example adapter is a file adapter that 
communicates with the external world. 

The simple file adapter contains:

• An outbound adapter that creates a file, whose file name is specified through adapter properties.

• An Inbound adapter that reads a file, whose file name is specified through adapter properties.

• A simple exception handler.

This adapter is not very useful in real life, because multiple calls override the outbound file, and 
similarly with the inbound file. However, it demonstrates the process that needs to be followed to create 
an adapter.

Directory Structure
First, create the adapter’s directory structure. In the ADK directory structure, create a directory named 
simple, and create the following directory structure under it:

Under src notice the source package representing the java package com.newscale.is.adapter.filetest. 
Any other package can be used, but this example uses this one.

Outbound Adapter Class
Secondly, create the outbound adapter class. The name is FileOutboundAdapter and this class file 
should be placed in the package described in step one. Its skeleton is shown below, without the 
implementation of the methods.
3-6
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Example Adapter
import com.newscale.is.adk.AdapterContext;
import com.newscale.is.adk.base.OutboundAdapter;
import com.newscale.is.adk.exceptions.AdapterException; 
public class  FileOutboundAdapter extends OutboundAdapter {
  public FileOutboundAdapter (AdapterContext context) {
    super(context);
  }
  public void initiate (AdapterContext context) throws AdapterException {
  }
  public void processMessage (String message, String channelId)throws AdapterException {
  }
  public void terminate () throws AdapterException {
  }
  public void commit() throws AdapterException {
  } 
  public void rollback() throws AdapterException {
  } 
}

To create an outbound adapter, the class needs to extend the class 
com.newscale.is.adk.base.OutboundAdapter as shown above.

Implement a constructor that receives a com.newscale.is.adk.AdapterContext as a parameter. The 
recommended way to implement this constructor is also shown above: calling the super constructor.

Implement the initiate method as shown above. This method is called when an agent using the adapter 
is started. If this method is empty, you can omit it.

Implement the processMessage method. This method is called when a message is ready to be sent. If a 
transformer is specified in the agent, the transformer has transformed the message.

Implement the terminate method. Call this method is when the agent stops. If this method is empty, you 
can omit it.

Implement the commit method. Call this method when the agent is about to complete its transaction. If 
this method is empty, you can omit it. This method is used so that a transaction can be started in the 
processMessage, and later completed.

Implement the rollback method. This method is called when the agent is about to rollback its 
transaction. If this method is to be left empty, it can be omitted. This method is used so that a transaction 
can be started in the processMessage, and later recalled.

More information about transaction support can be found in the “Transaction Support” section on 
page 3-9.

In our case, the file outbound class writes a file with the contents of the xml. To achieve that, first set up 
a variable that keeps the file name where the file is stored. For this purpose, use the agent properties.

 String path = null;
  public void initiate (AdapterContext context)
    throws AdapterException {
    Properties properties = context.getProperties();
    this.path = properties.getProperty("OB_FILE_DIR") + "/" +
        properties.getProperty("OB_FILE_NAME");
  }

When the string is received, writing it to the file is trivial.

  public void processMessage (String message, String channelId)
    throws AdapterException {
    try {
      Writer w = new FileWriter(path);
      w.write(message);
      w.close();
3-7
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Example Adapter
    } catch (Exception e) {
      e.printStackTrace();
      throw new AdapterException(1, "Problem while writing to a file: " +
          e.getMessage());
    }  
}

Of course, this code has been oversimplified for the sake of explanation.

Poller Inbound Adapter Class
The skeleton for our inbound adapter is as follows:

public class FileInboundAdapter extends InboundAdapter {
  public FileInboundAdapter (AdapterContext context) {
    super(context);
  }
  public void initiate (AdapterContext context) throws AdapterException {
  }
  public String receiveMessage () throws AdapterException {
      return null;
    }
  }
  public void terminate () throws AdapterException {
  }
  public void commit() 
    throws AdapterException {
  } 
  public void rollback() 
    throws AdapterException {
  } 
}

The semantics of the methods are just like the ones in the outbound adapter. The only exception is the 
receiveMessage method. The receiveMessage method is called periodically in the case of a poller 
adapter. If data is found, then the method returns a valid xml in third-party format. If no data is found, 
null is returned. The code for the inbound adapter is as follows (just like the outbound adapter, the 
initialization is done with the correct parameters):

  String path = null;
  public void initiate (AdapterContext context)
    throws AdapterException {
    Properties properties = context.getProperties();
    this.path = properties.getProperty("IB_FILE_DIR") + "/" +
        properties.getProperty("IB_FILE_NAME");
  }

Processing of the file is done as follows:

 public String receiveMessage () throws AdapterException {
    String receivedMessage = "";
    char data[] = {};
    try {
      StringBuffer buffer = new StringBuffer();
      FileInputStream fis = new FileInputStream(path);
      InputStreamReader isr = new InputStreamReader(fis, "UTF8");
      Reader in = new BufferedReader(isr);
      int ch;
      while ((ch = in.read()) > -1) {
        buffer.append((char) ch);
      }
      in.close();
3-8
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Example Adapter
      String requestString = buffer.toString();
      boolean success = (new File(path)).delete();
      return requestString;
    } catch (Exception e) {
      return null;
    }
  }

Listener Inbound Adapter
A listener adapter is created by virtue of an ad-hoc process. Two classes are in play: the inbound adapter 
class, and an actual receiver class, like a servlet. The receiver class is required to obtain the channel ID. 
The receiver class locates the InboundAdapter class as follows:

 ChannelInfoVO chVo = AgentDAO.getInstance().getChannelInfo(channelId);
  if(chVo != null){
    Adapter adapter = 
        AgentManager.getInstance().getAdapter(chVo.getAgentId());
    ((InboundAdapter).receiverProcess(xml);
  }

The inbound adapter has a method called receiverProcess that should be called with the message, or an 
object whose toString() method returns the text of the message. The example does not provide a listener 
inbound adapter.

Exception Handler
Once the two adapters are done, the exception handler needs to be implemented. In our case it is a very 
simple class, where all we do is output the error. The complete class is shown here:

public class FileExceptionHandler implements ITransportExceptionHandler {
  public FileExceptionHandler () {
  }
  public void handleException (Map props, String message) {
    System.out.println("Outbound Message Failed to deliver: " + message);
  }
}

Transaction Support
Transaction support has been provided to the adapters so that agents get notified before they undo their 
own transactions. The methods commit and rollback have been added for that purpose. 

Note No logic code should be added to these methods, as the system is in the middle of committing or rolling 
back a transaction. These methods should only rollback or commit their resources.

To track resources to be committed or rolled back, an adapter can use this common technique:

Create a static map. Once the processing method is called (either processMessage or receiveMessage) 
the method can add: 

  private static Map resources = new HashMap();
  public void processMessage (String message, String channelId)
    throws AdapterException {
3-9
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Example Adapter
    Connection con = … // obtain a connection to external resource
    Map.put(Thread.getCurrentThread(), con);
  }

  public void commit() throws AdapterException {
    con = (Connection) map.get(Thread.getCurrentThread());
    map.remove(Thread.getCurrentThread());
    con.commit();
  }

Understanding the adapter.xml Descriptor
The adapter descriptor contains information for the deployment of the adapter and its properties.

The Adapter Schema

The adapter schema is as follows:

Description of “adapter” Element Fields

name: Name of the adapter

description: Description of the adapter
3-10
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Example Adapter
adapter-flow: 

Valid values for this are:

• “inbound” 

• “outbound”

inbound-model:

Valid values are:

• “listener”

• “poller”

• “extendedpoller”

inbound-class: Absolute class name of inbound adapter

outbound-class: Absolute class name of outbound adapter

exception-class: Absolute class name of exception handler for this adapter

poll-interval: Poll interval (applicable for “poller” type adapter) in milliseconds

max-retry: Max number of retries in case of message failure

retry-interval: Interval between retries in milliseconds

Description of “property” (Adapter Properties) Element Fields

name: Name of the adapter property

default-value: Default value for the property

is-required: Whether this is a mandatory or optional property. Valid values are “true” or “false”

property-type: The type of property. Valid values are “string” for now.

property-presentation: Valid values are “text” and “password”

adapter-flow:

Valid values are:

• “inbound” 

• “outbound”

• “both”

Adapter.xml Example

<?xml version="1.0" encoding="UTF-8"?>
<adapter>
<property-list>
<property>
<name>InboundFinalResolution</name>
<default-value>Preserve</default-value>
<is-required>true</is-required>
<adapter-flow>inbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>InboundFileLocation</name>
<default-value>C://SL2//InboundFiles</default-value>
3-11
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Example Adapter
<is-required>true</is-required>
<adapter-flow>inbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>OnError</name>
<default-value>Preserve</default-value>
<is-required>true</is-required>
<adapter-flow>inbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>InboundBackupLocation</name>
<default-value>c://SL2//InboundBackup</default-value>
<is-required>true</is-required>
<adapter-flow>inbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>BackupSuffix</name>
<default-value>.bak</default-value>
<is-required>true</is-required>
<adapter-flow>inbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>FileNameDateFormat</name>
<default-value>.yyyyMMddHHmmssSSS</default-value>
<is-required>true</is-required>
<adapter-flow>inbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>InboundTempLocation</name>
<default-value>C://SL2//InboundTemp</default-value>
<is-required>true</is-required>
<adapter-flow>inbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>OutboundConflictResolution</name>
<default-value>Rename</default-value>
<is-required>true</is-required>
<adapter-flow>outbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>OutboundFileLocation</name>
<default-value>C://SL2//InboundFiles</default-value>
<is-required>true</is-required>
<adapter-flow>outbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>OutboundBackupLocation</name>
<default-value>c://SL2//InboundBackup</default-value>
3-12
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
<is-required>true</is-required>
<adapter-flow>outbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
<property>
<name>OutboundTempLocation</name>
<default-value>C://SL2//InboundTemp</default-value>
<is-required>true</is-required>
<adapter-flow>outbound</adapter-flow>
<property-type>string </property-type>
<property-presentation>text</property- presentation>
</property>
</property-list>
<name>File Adapter</name>
<description>Read/write the external data from/to external file system</description>
<adapter-flow>inbound</adapter-flow>
<inbound-model>poller</inbound-model>
<inbound-class>com.newscale.is.adapter.file.FileInboundAdapter</inbound-class>
<outbound-class>com.newscale.is.adapter.file.FileOutboundAdapter</outbound-class>
<exception-class>com.newscale.is.adapter.file.FileExceptionHandler</exception-class>
<poll-interval>10000</poll-interval>
<max-retry>0</max-retry>
<retry-interval>0</retry-interval>
</adapter>

nsXML Format
This section describes the details of the communication message content and structure. The message 
content is encapsulated in XML documents which are sent between Request Center and third-party 
systems over various carrier protocols such as HTTP, SOAP, or JMS. For easier understanding of the 
structures and substructures of messages, a graphical notation is used. 
3-13
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Message

The outbound \has a top level element message which contains the element “task-started” or 
“task-canceled”. The inbound document has a top level element message which contains one or many 
elements “add-comments,” “send-parameters,” “update-data,” or “take-action”. The message tag has a 
mandatory attribute which is called channel-id and is of type string. It is a unique string value created 
by Service Link for any outbound message created. The third-party system needs to reply back the 
message with the corresponding channel-id. This ID has to be carried on both the Service Portal and 
third-party system sides.

Task Started or Task Cancelled

Task started kicks off an external activity in the third-party system. The design strategy followed for this 
operation is to incorporate all the information that may be required by the third-party system to execute 
the task. This element holds all the required details about the task and the requisition it belongs to. It 
may also contain one or more optional agent parameters. The context element describes the task in 
context of service delivery plan. This node does not contain values for Requisition-level reviews and 
approvals.
3-14
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Task
3-15
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Element Description

actual-duration Empty because the task has just become ongoing.

calendar-entries The calendar entry of the person who requested a service.

check-lists Task check list.

completed-date Empty because the task has not yet been completed.

context-id The object id of the context object in which the task gets initiated.

context-type The object context, for example, Requisition Entry.

due-date The due date for the task.

effort Expected task effort in hours (how many working hours are expected to 
be required by one person to complete the task?).

estimated-date Estimated completion date and time of the task.

expected-duration Expected task duration in hours (how many working hours are expected 
to pass from the beginning of the task to the end?)/.

flag-id Color indicator for the UI.

is-sharable Boolean value indicating whether the task is sharable or not.

is-shared Boolean value indicating whether the task is shared or not.

next-action-id What is the next possible action for the task?

performer The performer of the task. The performer element has an associated 
person object/.

performer-actual-duration Empty because the task has not yet been completed/.

performer-role What is the process role the performer is fulfilling?

priority Task priority: 1, 2 or 3 for high, medium, or low, respectively/.

queue Description of the queue to which this task has been assigned.

scheduled-start-date Date on which the task is scheduled to be started/.

start-date Date on which the task was started/.

state-id Which state the task is in/.

subject Subject of the task.The subject changes with the service definition, not 
with the requisition entry/.

supervisor The supervisor of the task.The supervisor element has an associated 
person object.

supervisor-role The process role the supervisor is fulfilling.

task-id An integer used to uniquely identify this task instance. A new number is 
generated for each task of a requisition entry.

waiting An indicator that represents the dependencies of this task including sub 
tasks and third-party systems.
3-16
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Requisition

The requisition element encapsulates all requisition and requisition entry data that can be used for 
integration purposes when executing an external activity.

Element Description

services Number of services (or requisition entries) requested.

actual-cost Actual cost of the requisition.

actual-duration Actual duration of the requisition.

closed-on Empty, as the requisition has not yet been completed.

comments Comment on the requisition.

cost-center-code Not used.

customer The person for whom the requisition was ordered. It holds the person object data.

due-on Date and time when the delivery of the requisition is due.

expected-cost Expected cost of the requisition.

expected-duration Expected duration in hours for handling the whole requisition.
3-17
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Requisition Entry

external Boolean value indicating whether the requisition has been initiated from an 
external system.

initiator The person who ordered this requisition. It holds the person object data.

invocations Attributes set up through RAPI (Requisition API).

organizational-unit The organizational unit of the requestor (initiator).

requisition-entry The requisition entry data.

requisition-id Integer id of the submitted requisition. This is the same ID that can be seen in My 
Services and Service Manager after submitting a requisition manually.

requisition-step The requisition authorization/delivery steps and status.

started-on The date on which the requisition started.

status State the requisition is currently in. While executing an external activity, this is 
ongoing.

Element Description
3-18
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
This tag encapsulates all the data of one requisition entry that can be used for integration purposes. 

Data Values

The data-values element can have one or more data values comprised of dictionary data. The data-value 
name indicates the “Dictionaryname.FieldName” and value is the value entered by the user while 
ordering the service. If the value is a multi-select drop down list, then one data-value element can have 
multiple values.

Element Description

closed-date Date and time when the requisition entry’s status was changed from ongoing 
to completed. It is empty because the requisition is not closed when the task is 
ongoing.

data-values Requisition entry data value.

due-date Date on which this requisition is supposed to finish.

item-number Item number of the requisition entry within the requisition.

price-per-unit Unit price of the service requested.

priced True if the price has been established and false if pricing is not done on the 
requisition.

quantity Quantity ordered.

rejected Indicates whether the requisition entry is approved or rejected.

rejected-date If it is rejected, on what date.

rejector Indicates the person who rejected the requisition.

requisition-entry-id Entry ID.

revision-number If the revision is made it indicates the revision number.

service Element related to the service which this requisition entry belongs to.

start-after Delayed start date.

start-date The date on which the requisition entry got started.

start-mode Specifies if the requisition entry starts immediately or late.

status Status of the requisition entry: closed or ongoing.
3-19
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Service

Element Description

dictionary A service element can have zero or more dictionaries.

estimated-cost The estimated cost of the service.

form Element which holds all the field elements of the service form.

name Name of the service.

parameters Parameters defined for this service.

pricing-schema Specifies if the service is a bid, pricing task or fixed price.

quantity How many quantities were ordered?

service-id Id of the service in Request Center.

version Last modified version number of the service.

standard-duration Standard duration for the service.
3-20
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Dictionary

Element Description

caption A string value containing the caption data within the dictionary.

data The data elements within the dictionary. The data element holds values 
for the data element name, maximum length, data type and other 
metadata.

dictionary-id The dictionary id of a dictionary within Request Center.

dictionary-template-type-id The template used for creating the dictionary (for example, 2 for 
person-based dictionaries).

classification-id The dictionary classification (applicable to Service Item dictionaries 
only).

mdr-data-type-id The dictionary service item type (applicable to Service Item dictionaries 
only).

display-order An integer value containing the display order of the dictionary.

is-external A Boolean value which indicates whether the dictionary is an internal 
Request Center dictionary or is external.

is-reportable A Boolean value stating whether the dictionary has been marked as 
reportable for use with the Advanced Reporting module’s Ad-Hoc 
reporting feature.

is-shared A Boolean value which indicates whether the dictionary is a shared 
dictionary or not.

is-template A Boolean value which indicates whether the dictionary is a template; 
the value is always false.

logic-name Internal name of the dictionary (applicable to reserved dictionaries 
only).

name Name of the dictionary.
3-21
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Form
3-22
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  nsXML Format
Agent Parameter

The agent parameter represents the external parameters specified for the agent. It has the Boolean 
attribute called multi-valued which is either true or false based on whether this parameter has multiple 
values selected by user. The name represents the name of the agent parameter and value represents its 
value.

Element Description

fields Fields have one or many field elements inside a requisition form.

advanced-prompt – Rich html prompt.

data – holds the data for the field which has data type, name, length, and so on.

dictionary-display-order – The value for dictionary-display-order is the value of 
DefObjectDictionaries.DisplayOrder for the Dictionary associated with the 
DataElement associated with the Field.

display-order – the value for display-order is the value of 
DefObjectDataHTML.DisplayOrder for the field.

field-id – Field Id within the Request Center database.

input-type – Input type of the field (for example, text, option, and so on).

label – Label specified for the field.

mandatory – The field data is mandatory in the service.

max-length – Maximum length specified for the field.

max-value – If it is a number range specified.

min-value

multi-select – Whether the input type is a multi-select box.

options – The option list available for this data field.

permission – 

validated – Should it be validated or not.

user-id
3-23
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
Sample Inbound and Outbound Documents

task-started or task-cancelled (outgoing)
<?xml version="1.0" encoding="UTF-8"?>
<message channel-id="18071221:1124919814742:-32752" 
xmlns:fo="http://www.w3.org/1999/XSL/Format">
    <task-started task-type="task">
        <task>
            <actual-duration>0.0</actual-duration>
            <calendar-entries>
                <calendar-entry>
                    <calendar-entry-id>2</calendar-entry-id>
                    <date>Thu Aug 25 17:00:00 PDT 2005</date>
                    <end-time>Fri Aug 26 21:40:37 PDT 2005</end-time>
                    <is-blocked>false</is-blocked>
                    <is-break>false</is-break>
                    <is-read>false</is-read>
                    <person>
                        <company-address/>
                        <email>admin@company.com</email>
                        <fax/>
                        <first-name>admin</first-name>
                        <home-ou>
                            <name>&lt;s ID=&quot;847&quot;/&gt;</name>
                            <organizational-unit-id>1</organizational-unit-id>
                        </home-ou>
                        <home-phone/>
                        <last-name/>
                        <login-name>admin</login-name>
                        <person-id>1</person-id>
                        <personal-address/>
                        <supervisor-name/>
                        <timezone>Pacific Standard Time</timezone>
                        <work-phone/>
                    </person>
                    <sequence>0</sequence>
                    <start-time>Thu Aug 25 21:40:37 PDT 2005</start-time>
                    <subject>External Task</subject>
                </calendar-entry>
            </calendar-entries>
            <check-lists>
                <check-list-entry>
                    <display-order>1</display-order>
                    <is-mandatory>true</is-mandatory>
                    <last-date/>
                    <last-person/>
                    <name>Make sure you wake up</name>
                    <status>false</status>
                </check-list-entry>
                <check-list-entry>
                    <display-order>2</display-order>
                    <is-mandatory>true</is-mandatory>
                    <last-date/>
                    <last-person/>
                    <name>Make sure you take a shower</name>
                    <status>false</status>
                </check-list-entry>
                <check-list-entry>
                    <display-order>3</display-order>
3-24
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
                    <is-mandatory>true</is-mandatory>
                    <last-date/>
                    <last-person/>
                    <name>Make sure you have breakfast</name>
                    <status>false</status>
                </check-list-entry>
            </check-lists>
            <completed-date/>
            <context-id>1</context-id>
            <context-type>Requisition Entry</context-type>
            <due-date>Fri Aug 26 21:40:37 PDT 2005</due-date>
            <effort>10.0</effort>
            <estimated-date/>
            <expected-duration>10.0</expected-duration>
            <flag-id>0</flag-id>
            <is-sharable>false</is-sharable>
            <is-shared>false</is-shared>
            <next-action-id>2</next-action-id>
            <performer>
                <company-address/>
                <email>admin@company.com</email>
                <fax/>
                <first-name>admin</first-name>
                <home-ou>
                    <name>&lt;s ID=&quot;847&quot;/&gt;</name>
                    <organizational-unit-id>1</organizational-unit-id>
                </home-ou>
                <home-phone/>
                <last-name/>
                <login-name>admin</login-name>
                <person-id>1</person-id>
                <personal-address/>
                <supervisor-name/>
                <timezone>Pacific Standard Time</timezone>
                <work-phone/>
            </performer>
            <performer-actual-duration>0.0</performer-actual-duration>
            <priority>2</priority>
            <scheduled-start-date>Thu Aug 25 21:40:37 PDT 2005</scheduled-start-date>
            <start-date>Wed Aug 24 21:42:15 PDT 2005</start-date>
            <state-id>2</state-id>
            <subject>External Task</subject>
            <supervisor>
                <company-address>Foo Bar 25 Suite 300 Foo City CA  94404  
USA</company-address>
                <email>internal@company.com</email>
                <fax/>
                <first-name>Monkey</first-name>
                <home-ou>
                    <name>&lt;s ID=&quot;847&quot;/&gt;</name>
                    <organizational-unit-id>1</organizational-unit-id>
                </home-ou>
                <home-phone/>
                <last-name>McBride</last-name>
                <login-name>monkey</login-name>
                <person-id>3</person-id>
                <personal-address>Fuchi Caca 16 Apartment C Fuchi Minn OR  78787  
USA</personal-address>
                <supervisor-name/>
                <timezone>Pacific Standard Time</timezone>
                <work-phone/>
            </supervisor>
            <task-id>3</task-id>
            <waiting>1</waiting>
3-25
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
        </task>
        <requisition>
            <actual-cost>0.0</actual-cost>
            <actual-duration>0.0</actual-duration>
            <closed-on/>
            <comments>
                <comment>
                    <comment-date>Wed Aug 24 21:42:06 PDT 2005</comment-date>
                    <comment-id>1</comment-id>
                    <comment-text>I am adding a comment and I cannot think of a better 
comment</comment-text>
                    <component-id>3</component-id>
                    <component-name>Request Center Component</component-name>
                    <person>
                        <company-address/>
                        <email>admin@company.com</email>
                        <fax/>
                        <first-name>admin</first-name>
                        <home-ou>
                            <name>&lt;s ID=&quot;847&quot;/&gt;</name>
                            <organizational-unit-id>1</organizational-unit-id>
                        </home-ou>
                        <home-phone/>
                        <last-name/>
                        <login-name>admin</login-name>
                        <person-id>1</person-id>
                        <personal-address/>
                        <supervisor-name/>
                        <timezone>Pacific Standard Time</timezone>
                        <work-phone/>
                    </person>
                    <source-object-id>2</source-object-id>
                    <source-object-inst-id>1</source-object-inst-id>
                </comment>
            </comments>
            <cost-center-code/>
            <customer>
                <company-address/>
                <email>admin@company.com</email>
                <fax/>
                <first-name>admin</first-name>
                <home-ou>
                    <name>&lt;s ID=&quot;847&quot;/&gt;</name>
                    <organizational-unit-id>1</organizational-unit-id>
                </home-ou>
                <home-phone/>
                <last-name/>
                <login-name>admin</login-name>
                <person-id>1</person-id>
                <personal-address/>
                <supervisor-name/>
                <timezone>Pacific Standard Time</timezone>
                <work-phone/>
            </customer>
            <due-on>Fri Aug 26 21:40:37 PDT 2005</due-on>
            <expected-cost>0.0</expected-cost>
            <expected-duration>0.0</expected-duration>
            <external>false</external>
            <initiator>
                <company-address/>
                <email>admin@company.com</email>
                <fax/>
                <first-name>admin</first-name>
                <home-ou>
3-26
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
                    <name>&lt;s ID=&quot;847&quot;/&gt;</name>
                    <organizational-unit-id>1</organizational-unit-id>
                </home-ou>
                <home-phone/>
                <last-name/>
                <login-name>admin</login-name>
                <person-id>1</person-id>
                <personal-address/>
                <supervisor-name/>
                <timezone>Pacific Standard Time</timezone>
                <work-phone/>
            </initiator>
            <invocations/>
            <organizational-unit>
                <name>&lt;s ID=&quot;847&quot;/&gt;</name>
                <organizational-unit-id>1</organizational-unit-id>
            </organizational-unit>
            <requisition-entry>
                <closed-date/>
                <data-values>
                    <data-value>
                        <name>Requester</name>
                        <value>John McGarzafi</value>
                    </data-value>
                    <data-value>
                        <name>RemedyStuff.TicketID</name>
                        <value>None yet</value>
                    </data-value>
                    <data-value>
                        <name>RemedyStuff.AssetNumber</name>
                        <value>123456789</value>
                    </data-value>
                </data-values>
                <due-date>Fri Aug 26 21:40:37 PDT 2005</due-date>
                <item-number>1</item-number>
                <price-per-unit>0.0</price-per-unit>
                <priced>true</priced>
                <quantity>1</quantity>
                <rejected>false</rejected>
                <rejected-date/>
                <rejector>
                    <company-address/>
                    <email/>
                    <fax/>
                    <first-name/>
                    <home-phone/>
                    <last-name/>
                    <login-name/>
                    <person-id>0</person-id>
                    <personal-address/>
                    <supervisor-name/>
                    <timezone/>
                    <work-phone/>
                </rejector>
                <requisition-entry-id>1</requisition-entry-id>
                <revision-number>5</revision-number>
                <service>
                    <dictionary>
                        <data>
                            <data-id>3</data-id>
                            <data-type>Person</data-type>
                            <is-dictionary-external>false</is-dictionary-external>
                            <max-length>100</max-length>
                            <name>Requester</name>
3-27
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
                        </data>
                        <dictionary-id>1</dictionary-id>
                        <is-external>false</is-external>
                        <is-shared>false</is-shared>
                        <name>Monkey Service (private)</name>
                    </dictionary>
                    <dictionary>
                        <data>
                            <data-id>1</data-id>
                            <data-type>Text</data-type>
                            <is-dictionary-external>false</is-dictionary-external>
                            <max-length>50</max-length>
                            <name>TicketID</name>
                        </data>
                        <data>
                            <data-id>2</data-id>
                            <data-type>Text</data-type>
                            <is-dictionary-external>false</is-dictionary-external>
                            <max-length>50</max-length>
                            <name>AssetNumber</name>
                        </data>
                        <dictionary-id>2</dictionary-id>
                        <is-external>false</is-external>
                        <is-shared>true</is-shared>
                        <name>RemedyStuff</name>
                    </dictionary>
                    <estimated-cost>0.0</estimated-cost>
                    <form>
                        <fields>
                            <field>
                                <advanced-prompt/>
                                <data>
                                    <data-id>2</data-id>
                                    <data-type>Text</data-type>
                                    <is-dictionary-external>false</is-dictionary-external>
                                    <max-length>50</max-length>
                                    <name>AssetNumber</name>
                                </data>
                                <field-id>2</field-id>
                                <input-type>text</input-type>
                                <label>AssetNumber</label>
                                <mandatory>false</mandatory>
                                <max-length>50</max-length>
                                <max-value>0.0</max-value>
                                <min-value>0.0</min-value>
                                <multi-select>false</multi-select>
                                <options>
                                    <available-keys/>
                                    <available-labels/>
                                    <current-values/>
                                    <multivalued>false</multivalued>
                                </options>
                                <permission>4</permission>
                                <validated>true</validated>
                            </field>
                            <field>
                                <advanced-prompt/>
                                <data>
                                    <data-id>1</data-id>
                                    <data-type>Text</data-type>
                                    <is-dictionary-external>false</is-dictionary-external>
                                    <max-length>50</max-length>
                                    <name>TicketID</name>
                                </data>
3-28
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
                                <field-id>1</field-id>
                                <input-type>text</input-type>
                                <label>TicketID</label>
                                <mandatory>false</mandatory>
                                <max-length>50</max-length>
                                <max-value>0.0</max-value>
                                <min-value>0.0</min-value>
                                <multi-select>false</multi-select>
                                <options>
                                    <available-keys/>
                                    <available-labels/>
                                    <current-values/>
                                    <multivalued>false</multivalued>
                                </options>
                                <permission>4</permission>
                                <validated>true</validated>
                            </field>
                            <field>
                                <advanced-prompt>Give the name!</advanced-prompt>
                                <data>
                                    <data-id>3</data-id>
                                    <data-type>Person</data-type>
                                    <is-dictionary-external>false</is-dictionary-external>
                                    <max-length>100</max-length>
                                    <name>Requester</name>
                                </data>
                                <field-id>3</field-id>
                                <input-type>text</input-type>
                                <label>Requester Name</label>
                                <mandatory>false</mandatory>
                                <max-length>100</max-length>
                                <max-value>0.0</max-value>
                                <min-value>0.0</min-value>
                                <multi-select>false</multi-select>
                                <options>
                                    <available-keys/>
                                    <available-labels/>
                                    <current-values>
                                        <string>John McGarzafi</string>
                                    </current-values>
                                    <multivalued>false</multivalued>
                                </options>
                                <permission>4</permission>
                                <validated>true</validated>
                            </field>
                        </fields>
                        <user-id>0</user-id>
                    </form>
                    <name>Monkey Service</name>
                    <parameters>
                        <default-duration>0.0</default-duration>
                        <priority>2</priority>
                        <start-date/>
                        <start-mode>0</start-mode>
                    </parameters>
                    <pricing-schema>0</pricing-schema>
                    <quantity>1</quantity>
                    <service-id>1</service-id>
                    <version>5</version>
                </service>
                <start-after/>
                <start-date>Wed Aug 24 21:40:50 PDT 2005</start-date>
                <start-mode>0</start-mode>
                <status>1</status>
3-29
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
            </requisition-entry>
            <requisition-id>1</requisition-id>
            <started-on>Wed Aug 24 21:40:32 PDT 2005</started-on>
            <status>1</status>
            <requisition-step>
                <completed-on/>
                <due-on>Fri Aug 26 21:40:37 PDT 2005</due-on>
                <estimated-on>Fri Aug 26 21:40:37 PDT 2005</estimated-on>
                <name>Delivery project for Monkey Service</name>
                <status>2</status>
            </requisition-step>
        </requisition>
        <agent-parameter multi-valued="false">
            <name>Ticket</name>
            <value>None yet</value>
        </agent-parameter>
        <agent-parameter multi-valued="false">
            <name>Asset</name>
            <value>123456789</value>
        </agent-parameter>
    </task-started>
</message>

take-action (incoming)
<?xml version="1.0" encoding="UTF-8"?>
<message  channel-id="18071221:1124919814742:-32752">    
            <take-action action="done"/>
</message>

send-parameters (incoming)
<?xml version="1.0" encoding="UTF-8"?>
<message  channel-id="18071221:1116468068789:-32360">   
    <send-parameters>
      <agent-parameter>
         <name>Param1</name>
             <value>cat</value>
      </agent-parameter>
      <agent-parameter>
         <name>Param2</name>
             <value>catlitter</value>
       </agent-parameter>
     </send-parameters>
</message>

update-data (incoming)
<?xml version="1.0" encoding="UTF-8"?>
<message  channel-id="32580443:1116278520968:-32460">   
            <update-data>
               <data-value multi-valued="false">
                        <name>Name</name>
                        <value>Rasesh Shah</value>
                </data-value> 
                <data-value multi-valued="true">
                        <name>TestDict1.foo</name>
3-30
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
                        <value>value1</value>
                        <value>value2</value>
                </data-value>
            </update-data>
</message>

add-comments (incoming)
<?xml version="1.0" encoding="UTF-8"?>
<message  channel-id="32580443:1116276793649:-32629">   
            <add-comments>
               <comment>Test Comment</comment>
            </add-comments>
</message>
3-31
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 3      Service Link Adapter Development Kit
  Sample Inbound and Outbound Documents
3-32
Cisco Service Portal Integration Guide

OL-26390-02



OL-26390-02
C H A P T E R 4

Remedy Service Adapter

• Overview, page 4-1

• Prerequisites, page 4-4

• BMC Remedy Configuration Steps (Sample), page 4-4

• Obtaining the Adapter, page 4-4

• Installing the Adapter, page 4-5

• Viewing the Adapter, page 4-5

• Configuring the Agent, page 4-5

• Configuring the Transformation, page 4-7

• Designing a Service for a Request Handled by the Remedy Adapter , page 4-11

• Test Scenario, page 4-12

• Log Messages, page 4-12

Overview
The Cisco Service Adapter for BMC® Remedy® IT Service Management is a bidirectional integration 
between the two products. It allows you to provide a single customer portal within the Service Portal My 
Services module for both service requests and incident/change management. Prior to Release 9.3, it was 
licensed as a standard adapter for Service Portal. It is currently available from Advanced Services as a 
custom adapter.

With the Service Adapter for BMC Remedy IT Service Management, you can: 

• Create one or more tickets at the task level in the Remedy system after customers create requests in 
My Services. One or more tasks within a service request process can be integrated with the Remedy 
system. As part of the fulfillment process for a requisition, a ticket would be created at the individual 
task level and sent to the Remedy system by the Remedy Adapter. 

• Receive updates on the status of the Remedy ticket and other Remedy tasks. Once a ticket has been 
created in the AR System, corresponding workflow is executed. Upon successful completion of the 
workflow, the AR System sends back the status update to Service Portal. Alternately, Service Portal 
can poll the AR System for status updates.

The Service Link Adapter for BMC Remedy is completely noninvasive. No components must be 
installed into the AR System. A simple Remedy Interface form has to be created and a midtier 
configuration with Web Services needs to be enabled in the AR System for the Interface form. 
4-1
Cisco Service Portal Integration Guide



 

Chapter 4      Remedy Service Adapter
  Overview
Once the AR System midtier is configured for Web Services, Service Portal and Service Link 
communicate to the AR System with simple AR System client connections through the Web Services. 
Appropriate AR System licensing is required for access to the AR System Midtier Web Services. A 
workflow needs to be created in the Remedy System so that messages sent to the Interface Form through 
the Web Service create a ticket in the actual Remedy forms. 

For the Service Link database access to the AR System RDBMS, a JDBC connection is required. 
Appropriate read permissions are required to the interface corresponding database view of the Interface 
form which are used to read information from the AR System to Service Portal. 

The following diagram illustrates the system level integration between Service Portal and the AR 
System: 

Integration Scenarios

Scenario 1: Request is created in Service Portal and submitted to the AR System for Fulfillment 

Step 1 The user submits a request in Service Portal. 

Step 2 Service Portal processes the workflow and identifies the target external application as the AR System, 
based on the request attributes. 

• Service Portal posts a message on the agent-specific queue for Service Link to pick up and forward 
to the appropriate adapter. In this case, it is the Remedy adapter with SOAP Web Services 
capabilities built into it.

Step 3 Service Link forwards the message to the Remedy adapter. The Remedy adapter takes the outbound 
document and applies an XSL transformation (XSLT) on the outbound document to create a 
SOAP-aware document. This adapter then uses the connection information contained in the Agent 
definition to make the appropriate communications calls to the Web Service as described in the WSDL 
document that was exported from the Remedy AR System using the Remedy Tools. 

��=
���
��	���

��=
���

�����/
��
����

 ����>��'

���7���
�
�


���7���
��	9

3��.

����/��������/����
'�������7���

�	���"
��
 ���

�����/� �����
�


?��
�����
�


�	�
�
�
�


�
��
�
�
�


��	�

?��
���?����>
�
��

?��
��@��
	����
�


��
�
����
�� ���
���.��9��

.��9���������/�#����%�7�	��

�����/�?����

�
������
4-2
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Overview
• The invocation of the web service is a single synchronous call. If the web service cannot be invoked, 
an error is returned to the Integration Server (Service Link). 

• The Integration Server will execute a preconfigured number of retries to call the web service. If all 
retries become exhausted, the task is pushed into a “Troubleshooting” state. 

• Once in a “Troubleshooting” state, the task can be sent again using manual processes provided by 
Service Link (“Send Manual Message”). 

Step 4 The server side of the web service is invoked by the client-side call executed by the SOAP message from 
the Remedy Adapter. This server side of the web service is within the Remedy AR System. 

Step 5 The Remedy AR System will process the request and return either a SOAP Fault or SOAP Success. 

Step 6 The Remedy Adapter has been waiting for the reply to the web service invoked, since it was configured 
with “ProcessResponse” set to true. 

• If the response timeout has expired, an Error is returned to the Integration Server, which will retry 
the invocation, if retries remain. If the response timeout has not expired, the returning message is 
passed through another configured XSL transformation to create a Business Engine response 
message. The message updates information related to the task. 

Step 7 If the response contains a SOAP Success, there is at minimum a Ticket ID that has been returned by the 
AR System. This Ticket ID is used to update a corresponding field in the service data relevant to the task. 
If the response contains a SOAP Error, the Comment section of the task is updated with the Error 
information returned by the AR System.

Scenario 2: Receive status update from the AR System 

Step 1 An AR System user changes the status of an opened ticket, and the status change now needs to be 
forwarded to Service Portal. 

Step 2 The AR System workflow ensures that the changed data that is relevant to Service Portal is updated to 
the corresponding database table of the Interface form. The database view is created as part of form 
configuration in the Remedy system.

Step 3 The Remedy Inbound Poller periodically polls the corresponding view in the AR database for new 
records that need to be processed into Service Portal. The newly updated records are fetched by 
comparing the last polled date and modified date of each record in the database view. The database view 
holds one row for each ticket created.

Step 4 For each database record changed, the information from the database view is read and processed into a 
Business Engine message. The Business Engine will receive the message and update the task 
information appropriately.
4-3
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Prerequisites
Prerequisites

Service Portal Requirements 
• Service Link module installed

• JDBC access to the BMC AR System database 

BMC Requirements
• Remedy AR System 5.X or higher 

• Remedy Mid Tier with Web Services enabled

• Supported Remedy database platforms: Oracle 10g or higher; SQL Server 2005 or higher

BMC Remedy Configuration Steps (Sample)
To configure BMC Remedy:

Step 1 Create an Interface form using the out-of-box option which creates a corresponding table in the Remedy 
database. Add custom fields where required.

Step 2 Create a Web Service for that Interface form.

Step 3 Configure the mapping between the interface form fields and the Web Service fields for both input and 
output fields.

Step 4 Generate a WSDL for the Web Service.

Step 5 Create workflow which sends data from the interface form to the Remedy Ticketing form (Change 
Management form or Incident Management form). Use filters where required in the workflow for prefills 
(and so on) of the Remedy Ticketing form.

Step 6 Create workflow which passes the data back to the Interface form from the Remedy Ticketing System as 
defined in the Web Service outbound response. Usually it is status, priority or any other updates based 
on business requirements. Filters may also be used here.

Step 7 Test the Remedy workflow by making a request from the Interface form to check that the system is 
working before Service Portal can send out messages.

Step 8 Make sure the licensing of the midtier servlet engine supports multiple sessions.

Obtaining the Adapter
The Service Adapter for BMC Remedy was available as a packaged adapter prior to Release 9.3. 
Beginning from Release 9.3, Remedy Service Adapters are only available through Cisco Advanced 
Services. 
4-4
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Installing the Adapter
Installing the Adapter
See the “Deploying Adapters” section on page 3-4 for instructions on how to install the custom adapters.

Viewing the Adapter
After installing the Service Adapter for BMC Remedy, to confirm that it has been successfully installed, 
check the following Service Link pages.

To view the installed adapter, start Service Portal, choose Service Link, choose Manage Integrations 
> Adapters, and then click Remedy Adapter. The adapter home page appears, as shown below.

Configuring the Agent
As with any Service Link integration, an agent is the key component that configures the adapter and 
relates the service definitions and their data to the transformations and third-party system you wish to 
integrate with.

The Remedy Agent requires mandatory properties in order to function as well as meet the requirements 
for ticket creation within the Remedy system. The following table contains the set of required properties 
with default values for the Remedy Adapter. For more information on the usage of some of these 
properties, see Chapter 2, “Service Link”.
4-5
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Configuring the Agent
In addition to the required properties, you should add additional agent parameters that you will collect 
from the service form and want to send to Remedy for display on the Remedy ticket. These are 
customer-specific values that are important for your business process and requirements.

The following figures show an example of a configured Remedy Agent containing the mandatory values.

Name Description Default Value

ContentType Outbound SOAP message content type text/xml

RoutingURL SOAP URL where the message is routed to Available from the Remedy 
WSDL

AcceptUntrustedURL Indicates whether a security certificate is 
required for the target URL

false

TimeOut 18000

ProcessResponse Indicates whether Service Link should 
accept the SOAP response from the web 
service

true

Username Integrated Windows Authentication (IWA) 
username for the SOAP message to be 
authenticated by the web server where the 
web service is running

Only if IWA is enforced

Password IWA user password

Domain IWA domain of the user

Realm NTLM Realm If required when IWA is 
enforced

SOAPAction SoapAction Header as defined in the WSDL 
with input map type as CreateInputMap

JDBCUrl JDBC URL to connect to the Remedy 
database to read updated data

for example, 
jdbc:newscale:sqlserver://lo
calhost:1433;DatabaseName
=ARSystem

JDBCDriverClass Driver class to make the connection to the 
database

com.newscale.jdbc.Unified
Driver

DBUserName Database username

DBPassword Database password

FormName Interface form name or the corresponding 
DB view name

FieldName_ModifiedDate Column name in the view that holds the 
modified date of the Remedy ticket

FieldName_CaseID Column name in the view that holds the 
Remedy ticket ID

FieldName_Status Column name in the view that holds the 
status data
4-6
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Configuring the Transformation
Outbound Properties

Inbound Properties

The Service Designer Integration Wizard partially automates creating agent definitions for web 
services-based agents. In addition, Cisco Advanced Services has tools that can assist customers in 
creating Remedy Agent definitions. Please contact Cisco to inquire into the availability.

Configuring the Transformation
The Service Link outbound and inbound transformations define the XSLT that converts the raw Service 
Portal data into the data that the Remedy WSDL can consume, and the XSLT that converts the response 
from Remedy back to Cisco messages. After configuring the agent and understanding the properties 
passed between the two systems, the following steps are required to create the transformation:

Step 1 Author the XLST in the editor of your choice.

Step 2 Create the transformations in Service Link by choosing Manage Integrations > Transformations.

Step 3 Add a transformation and set the direction to “Outbound”. Enter the XLST for converting nsXML to 
Remedy SOAP request on the Request subtab.
4-7
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Configuring the Transformation
Step 4 Add another transformation and set the direction to “Inbound”. Enter the XLST for converting Remedy 
SOAP response to nsXML on the Request subtab.

The following sections describe sample XSLTs that transform Service Portal data into the basic required 
fields for Remedy ticket creation.

Inbound Transformation Details
A sample inbound transformation is shown below.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<xsl:template match="/">
<xsl:apply-templates select="inbound-results" />
<xsl:apply-templates select="soapenv:Envelope" />
</xsl:template>
<xsl:template match="inbound-results">
<message>
<xsl:attribute name="channel-id">
<xsl:value-of select="row/column[@name='sl_channelid']" />
</xsl:attribute>
<send-parameters>
  <xsl:if test="row/column[@name='request_id']!='' and 
row/column[@name='request_id']!='null' ">
    <agent-parameter>
      <name>Request_ID</name>
      <value><xsl:value-of select="row/column[@name='request_id']" /></value>
    </agent-parameter>
  </xsl:if>
  <xsl:if test="row/column[@name='short_description']!='' and 
row/column[@name='short_description']!='null' ">
    <agent-parameter>
      <name>Short_Description</name>
      <value><xsl:value-of select="row/column[@name='short_description']" /></value>
    </agent-parameter>
  </xsl:if>
</send-parameters>
<xsl:if test="row/column[@name='status']='4' or row/column[@name='status']='3'">
<take-action action="done" />
</xsl:if>
</message>
</xsl:template>
<xsl:template match="soapenv:Envelope">
<message>
<xsl:attribute name="channel-id">
<xsl:value-of select="//*[local-name()='SL_CHANNELID']" />
</xsl:attribute>
<send-parameters>
  <xsl:if test="//*[local-name()='Request_ID']!=''">
    <agent-parameter>
      <name>Request_ID</name>
      <value><xsl:value-of select="//*[local-name()='Request_ID']" /></value>
    </agent-parameter>
  </xsl:if>
</send-parameters>
</message>
</xsl:template>
</xsl:stylesheet>
4-8
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Configuring the Transformation
Outbound Transformation Details
A sample outbound request transformation is shown below.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template name="main" match="/message/task-started">
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Header soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<AuthenticationInfo>
<userName>Demo</userName>
<password></password>
</AuthenticationInfo>
</soap:Header>
<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<OpCreate>
<Assigned_To><xsl:value-of 
select="/message/task-started/agent-parameter[name='Assigned_To']/value" /></Assigned_To>
<Short_Description><xsl:value-of 
select="/message/task-started/agent-parameter[name='Short_Description']/value" 
/></Short_Description>
<Status><xsl:value-of select="/message/task-started/agent-parameter[name='Status']/value" 
/></Status>
<Submitter><xsl:value-of 
select="/message/task-started/agent-parameter[name='Submitter']/value" /></Submitter>
</OpCreate>
</soap:Body>
</soap:Envelope>
</xsl:template>
<xsl:template name="taskcancelled" match="/message/task-canceled">
</xsl:template>
<xsl:template name="date_format">
<xsl:param name="text"/>
<!-- Break up the string into components -->
<xsl:variable name="date" select="substring-before($text,' ')"/>
<xsl:variable name="time" select="substring-after($text,' ')"/>
<xsl:variable name="hour" select="substring-before($time,':')"/>
<xsl:variable name="minute" select="substring-after($time,':')"/>
<!-- Reassemble the components applying rules -->
<xsl:value-of select="$date"/>
<!-- Add a T between date and time-->
<xsl:text>T</xsl:text>
<xsl:if test="not(string-length($hour)=2)">
<!-- Add leading 0 to hour if needed -->
<xsl:text>0</xsl:text>
</xsl:if>
<xsl:value-of select="$hour"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="$minute"/>
<!-- Add seconds -->
<xsl:text>:00</xsl:text>
</xsl:template>
</xsl:stylesheet>

The Service Designer Integration Wizard can assist customers in creating Remedy transformations.
4-9
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Configuring the Transformation
Outbound and Inbound Date Format Transformations
The date format has to be set to international date/UTC in the outbound and inbound transformations for 
both outbound and inbound messages. Further, the date format needs to be converted from seconds in 
the database view, as described in the “Converting the Date in the Remedy Interface Form Database 
View” section on page 4-11.

The following table describes the required international date formats for the Remedy and Service Portal 
systems. 

Transformation XSL template

Outbound Transformation

The transformation may not already have a template that converts the date value to international date 
format. “Z” is appended to the new date value in the transformation as shown below:

<xsl:template name="intl_date_format">
<xsl:param name="remedy_date"/>
<!-- Break up the string into components -->
<xsl:variable name="date" select="substring-before($remedy_date,' ')"/>
<xsl:variable name="time" select="substring-after($remedy_date,' ')"/>
<xsl:variable name="hour" select="substring-before($time,':')"/>
<xsl:variable name="minute" select="substring-after($time,':')"/>
<!-- Reassemble the components applying rules -->
<xsl:value-of select="$date"/>
<!-- Add a T between date and time-->
<xsl:text>T</xsl:text>
<xsl:if test="not(string-length($hour)=2)">
<!-- Add leading 0 to hour if needed -->
<xsl:text>0</xsl:text>
</xsl:if>
<xsl:value-of select="$hour"/>
<xsl:text>:</xsl:text>
<xsl:value-of select="$minute"/>
<!-- Add seconds -->
<xsl:text>:00Z</xsl:text>
</xsl:template>

This template may be used as follows:

<xsl:call-template name="date_format"><xsl:with-param name=" remedy_date" 
select="/message/task-started/agent-parameter[name='Start_Date']/value" />

System International Date Format

Remedy YYYY-MM-DDThh:mm:ssZ

Any date that is sent to Remedy has to be in this format. The “Z” is appended at 
the end informs Remedy that this is a UTC date.

Service Portal YYYY-MM-DDThh:mm:ss

Any date sent to Service Portal from Service Link must be in this international 
format. Service Portal assumes the date to be in UTC, avoiding the need for the 
trailing “Z.”
4-10
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Designing a Service for a Request Handled by the Remedy Adapter 
Inbound Transformation

The transformation may not already have a template that converts the date value to international date 
format. The template converts the date value that comes from Remedy inbound message.

<xsl:template name="intl_date_format">
<xsl:param name="remedy_date"/>
<xsl:value-of select="translate(substring-before($remedy_date, '.'),' ','T')" 
/></xsl:template>

This template may be used as follows:

<xsl:call-template name="intl_date_format"><xsl:with-param name="remedy_date" 
select="row/column[@name='end_date']" /></xsl:call-template>

Converting the Date in the Remedy Interface Form Database View

You must customize the Remedy DB View in the Remedy database to which the Service Link Remedy 
Agent connects. The column that holds the date value in the DB view is stored in seconds rather than as 
a date value. This has to be converted to a date value in the view’s SQL, as described in the following 
table:

Designing a Service for a Request Handled by the Remedy 
Adapter 

Now that you have all of the Service Link components created, you are ready to build a service in Service 
Designer that uses the agent. These steps can be automated by using the Service Designer Integration 
Wizard. See Chapter 2, “Service Link” for detailed information about creating web services-based 
Service Link agents.

Step 1 Create a dictionary in Service Designer that will be used to collect the information to be sent and 
received from Remedy. 

Step 2 Create an Active Form Component (AFC) in Service Designer that includes the Remedy dictionary 
created in the previous step.

Step 3 Create a service in Service Designer that you will use for the Remedy adapter activity.

Step 4 Choose the service you just created, and then click the Forms tab, and add the Active Form Component 
to the service.

Step 5 Click the Plan tab, and then create an external task that will orchestrate the Remedy workflow.

Step 6 Change any of the agent value mappings as required in the Service Definition using the task agent 
mapping popup.

Step 7 Save the service.

RDBMS SQL Statement

Microsoft SQL Server DATEADD(s, DBCOLUMN, '1970-01-01')

Oracle (TO_DATE('01-JAN-1970') + DBCOLUMN / 86400)
4-11
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 4      Remedy Service Adapter
  Test Scenario
Test Scenario
Now that all of your Remedy Adapter components have been created and you have bound them to a 
Service Definition, you are ready to test your integration. The following describes simple steps to 
confirm that your integration is functional:

Step 1 Create a requisition in Service Portal for the service associated to the Remedy Agent.

Step 2 Verify the receipt of the Execute Task message in Service Link corresponding to the requisition. This is 
the outbound SOAP request from Service Portal to Remedy, containing the fields as defined in the 
outbound agent parameter mapping.

Step 3 Verify the receipt of the Send Parameters HTTP response message in Service Link. This is the SOAP 
response of the Remedy web service. The message is processed in Service Portal only when the 
ProcessResponse flag in the Remedy Agent is set to “True”. 

Step 4 Verify the corresponding request in the Remedy form. The Remedy ticket should contain the matching 
information included in the SOAP request.

Step 5 Make changes to the Remedy form. Modify the form field values and the ticket status.

Step 6 Verify the receipt of the Send Parameters messages in Service Link. The corresponding requisition entry 
should have the form data updated based on the inbound agent parameter mapping.

Step 7 Verify the receipt of the Take Action (or Composite) message in Service Link when the status in Remedy 
is set to Resolved, Closed, or Rejected. The take-action operation generated through the inbound 
transformation sets the external task status to Completed.

Log Messages

Message Description Recommended Action

INFO Message Information about the tasks being 
performed. 

Follow the information in the log.

DEBUG Message Information about the tasks being 
performed to enable debugging. 

Follow the debug message for the 
details of a certain task.

Message Routing Exception An error in routing of the message. Verify the Routing URL is 
correct. Open the URL in a 
browser and a Remedy screen 
should appear.

Internal System Error Error in the Remedy midtier or 
Remedy System.

Check for a SOAP response 
message which indicates the error 
messages from the midtier.
4-12
Cisco Service Portal Integration Guide

OL-26390-02



OL-26390-02
C H A P T E R 5

Web Services

• Overview, page 5-1

• Prerequisites for Web Services, page 5-2

• Web Services for Request Management, page 5-5

• Web Services for Task Management, page 5-16

• Web Services for Portfolio Management, page 5-19

• Sample Requests and Responses, page 5-21

• Web Services Error Messages, page 5-40

Overview
This chapter documents the use of web services for Service Portal. These include services which 
implement the Requisition API (RAPI 2), an API which allows an external system to create and manage 
service requests within Request Center. The web services include additional requests, to allow the 
management of delivery and authorization tasks within a service request; and to review the contents of 
the Request Center service catalog or the Demand Center service portfolio.

Audience
The intended audience for this chapter comprises programmers and designers who are responsible for 
implementing a RAPI interface between Request Center and an external application. Knowledge of the 
following methodologies and technologies are helpful in understanding and making best use of this 
documentation:

• Service design and configuration in Request Center

• Web Services, including SOAP messages and Web Service Descriptive Language (WSDL)

Web Services
Web Services provide a means for an external application to create or update requisitions (service 
requests) and tasks which comprise those requisitions. The external application may perform all or part 
of the request fulfillment process, starting from the submission of the service request to a Service Portal 
5-1
Cisco Service Portal Integration Guide



 

Chapter 5      Web Services
  Prerequisites for Web Services
installation; incorporating any approval or review tasks; and performing any service delivery tasks. The 
external application does this by sending a SOAP message to Service Portal and processing the response 
received. 

Prerequisites for Web Services
Detailed prerequisites for developing and implementing web services are given below. These include

• A Service Portal installation, configured to support web services.

• An environment for developing a client to submit the web service requests and receive the responses.

• An environment for testing the code.

Service Portal Installation and Configuration
Service Portal must be configured to support web services.

Administration Settings

The global setting “Enable Web services” in Administration > Settings needs to be turned on. This is 
a global switch for all the web services in the system. If this global setting is off, no web service in 
Request Center is accessible. By default, this setting is turned off.

WSDLs

To validate any request developed, the web services WSDLs must be available. The WSDLs can be found 
at:

http://<ServerName>/RequestCenter/webservices/wsdl/

Available WSDLs are summarized in the table below.

WSDL Contents

AuthenticationService.wsdl A request to authenticate the specified user to Service Portal.

RequisitionService.wsdl Requests to submit a requisition, cancel a requisition, or get its 
status.

ServiceCatalog.wsdl For internal use only.

ServiceManagerTaskService.wsdl Requests to approve or reject an authorization or to signify a 
review has been performed.

ServicePortfolio.wsdl Requests to manage Demand Center service offerings and 
associated costs.
5-2
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Prerequisites for Web Services
Roles and Capabilities

The web services can be accessed by users who have a role which includes appropriate capabilities for 
the Web Services module. No prebuilt roles include these capabilities, so administrators will need to use 
Organization Designer to create one or more custom roles. Once the role is created, you can add Web 
Services capabilities:

The web services capabilities are:

• Requisition Access: users having this capability alone can access the RequisitionService web 
service requests for themselves. The authenticated user and the initiator will have to be the same. If 
not, an appropriate fault response is thrown.

• Requisition System Account: users having this capability can access the RequisitionService web 
service requests for themselves as well as anybody else. The authenticated user and the initiator can 
be different.

• Task Access: users having this capability alone can access the ServiceManagerTaskService web 
service requests for themselves. 
5-3
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Prerequisites for Web Services
• Task System Account: users having this capability can access the ServiceManagerTaskService web 
service requests for themselves as well as anybody else. The authenticated user and the initiator can 
be different.

• Service Catalog Access: users having this capability can access the Service Catalog web service 
requests.

• Financial Management Access: users having this capability can access the Service Portfolio web 
service requests.

Testing and Development Environment
The examples in this chapter were developed using soapUI, a tool for developing and testing web 
services. A free version of this tool is available from the soapUI website. A professional version is also 
available. The steps outlined below may vary depending on the version of the tool you use.

Once soapUI is downloaded and installed, you may create a workspace for developing the web services. 
You can create a project to include the WSDLs that will be used to construct sample requests and to 
validate requests sent to Service Portal. An initial WSDL is required when a project is created. More 
WSDLs may be added to the same project later on. Keeping the Create Requests option checked during 
project creation will allow sample requests to be generated.

Generating Code
The client for the web services can be coded with tools like CXF or Axis from Apache.

Generating Client Code using Axis 2

Detailed instructions and user guide for generating web service client using Axis 2 can be found in the 
Apache website.

Here are the high-level steps for creating the axis2 client using soapUI: 

Step 1 Download the Axis 2 library.

Step 2 Set the Axis 2 library location in the soapUI Preferences menu.

Step 3 Generate the client code by going to Tools > Axis 2 Artifacts.

When generating the client code, you should choose adb, the Axis default binding, as the databinding 
method. You should also generate a test case option. 

The client code is generated. Method stubs are created in the test case. You will need to populate the 
objects properly. 

Generating Client Code using Apache CXF

Instructions for generating web service client using CXF can also be found in the Apache website.

Here are the steps needed to create a CXF client using soapUI:
5-4
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
Step 1 Download the Apache CXF library.

Step 2 Set the CXF library location in soapUI Preferences menu.

Step 3 Generate the client code by going to Tools > Apache CXF.

The client code is generated. The class of interest is:

RequisitionServicePortType_RequisitionServiceHttpPort_Client.java

This class has a main method and all the operations defined in the WSDL can be invoked from here. The 
code for invoking these operations will already be present. All that needs to be done is to populate the 
various variables needed. 

Method stubs are created. All that is needed is to populate the objects properly.

Web Services for Request Management

Overview
The operations that can be performed via RAPI 2 request management are summarized in the table 
below:

Sample Service Definition
The samples given in this chapter show the XML required for submitting a request for the New Standard 
Laptop Computer service. The service form for ordering this service looks like the following when 
ordered by an administrative user. (For a nonadministrative user, the New Laptop dictionary at the top 
of the form would not be visible.) 

Request Description

addComment Add a comment to an open requisition.

cancelRequisition Cancel an open requisition, including all service requests in 
the requisition.

cancelRequisitionEntry Cancel a service request. If this is the last service request in 
the requisition, cancel the requisition.

getOpenRequisitions Get a list of all open requisitions.

getRequisitions Get a list of open requisitions, optionally restricting the 
contents of the list.

getRequisitionStatus Get the status of the specified requisition.

getServiceDefinition Get the definition of the service for which a requisition is to 
be entered.

submitRequisition Submit a new requisition.
5-5
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
Authentication
Any web service exposed by Request Center needs to be authenticated. Unauthenticated web service 
calls need to be intercepted and stopped.

Authentication via web services in Request Center can be done in the following ways:

• Authenticate per session

• Authenticate per request

Nonauthenticated users cannot make any successful web services call. If the global setting “Enable Web 
Services” is turned off, no web service in Request Center is accessible. By default, this setting is turned 
off. 
5-6
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
Authenticate per Session

In this approach the user first makes an Authentication web service call and authenticates the user. The 
server then establishes a session for this user. As long as this session is valid, this user can make 
additional web service calls. The authenticate per session request is included in the 
AuthenticationService WSDL.

The authenticate request has the following format:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:aut="http://authentication.api.newscale.com">
  <soapenv:Header/>
  <soapenv:Body>
   <aut:authenticate>
     <aut:userName>?</aut:userName>
     <aut:password>?</aut:password>
   </aut:authenticate>
  </soapenv:Body>
</soapenv:Envelope>

Authenticate per Request

In this approach, there is no separate call to the authentication web service. Instead the user sends the 
authentication information in the SOAP header as part of each web service call. The Authentication 
handler for the web service in Request Center checks whether the user is authenticated. If no session has 
been established for this particular user, this handler retrieves the authentication information from the 
SOAP header. If the authentication information is present, this handler tries to authenticate the user. If 
the authentication information is missing or is not valid, this handler throws an exception to the client 
with the proper error code and error message.

Encryption

The password specified in the SOAP header may be configured to accept encrypted format only. To 
enforce encrypted passwords, update the "Accept Encrypted Password" setting in the Administration 
module. An encryption utility is available for users with the Site Administrator role to obtain the 
encrypted value of a password. To access this utility, open the browser page:

http://<server>:<port>/RequestCenter/EncryptedPassword.jsp

RBAC Check for Web Service Access

Each web service exposed in Request Center has an associated system capability. The authentication 
handler also checks to see whether the specified user can access (or execute) the web service. If the user 
has the appropriate system capability, the user is allowed to proceed further. Otherwise, an exception is 
thrown to the client with the proper error code and message.

Interaction of SOAP Authentication with Directory Integration

If Directory Integration is not enabled, the user specified must exist in the personnel directory before the 
SOAP request is issued.

If Directory Integration is enabled and the Login event includes an Import Person operation, an external 
directory is consulted to retrieve the person's profile, and that information is inserted into the personnel 
directory. In taking this approach, the directory information must include a role granting appropriate web 
services capabilities, or such a role must have been previously assigned to the business unit (or service 
5-7
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
teams) of which the user is a member. Consequently, it is recommended that prospective SOAP accounts 
be prepopulated in the database and assigned appropriate privileges before these accounts submit 
requests.

If Directory Integration is enabled and the Login event is configured to do only Single Sign-on (SSO), 
there is an option to bypass the directory events altogether and fall back to simple authentication against 
the personnel directory. By default, when the SOAP request hits the web server and SSO happens 
successfully, the SSO user becomes the web service session user. For this to happen, the SOAP header 
should not contain any user credentials. But if any overriding credentials are specified in the SOAP 
request header, the credentials will be used to authenticate against the personnel directory instead of the 
external directory. In other words, the presence of user credentials in the SOAP header controls whether 
the authentication should be local versus external.

If Directory Integration for the Login event includes the External Authentication step (with or without 
SSO coupled with it), the authentication always goes against the Directory datasource.

Getting the Service Definition
The getServiceDefinition request returns metadata describing the specified service. This metadata is 
required to submit a request. The use of this operation for services that include grid dictionaries is not 
supported in this release. An error is returned when the operation is invoked against such services.

getServiceDefinition Request

The request specifies the name of the service whose definition is needed.

In soapUI, right-click the sample request (Request1) under the getServiceDefinition node, then click 
Show Request Editor. The request appears, as it was generated. A question mark (?) indicates all XML 
elements where a value is expected.
5-8
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
You must supply an endpoint for the SOAP request. If you consult the properties of this request (and the 
menu bar above), you will see that the Endpoint has not yet been defined. Replace this with the endpoint 
for the RAPI 2 services:

http://<ServerName>/RequestCenter/services/RequisitionService

where RequisitionService is the wsdl name.

You can then copy the request, using the Creates a copy of this request icon ( ) in the menu bar of 
the Request Editor, leaving the prototype request for reference. In your copy, replace the question marks, 
supplying authentication criteria, as well as the initiator and customer login names and the name of the 
service you are interested in:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:req="http://requisition.api.newscale.com">
  <soapenv:Header>
   <req:AuthenticationToken>
     <req:Username>admin</req:Username>
     <req:Password>admin</req:Password>
   </req:AuthenticationToken>
  </soapenv:Header>
  <soapenv:Body>
   <req:getServiceDefinition>
     <req:initiatorLoginName>admin</req:initiatorLoginName>
     <req:customerLoginName>mthurston</req:customerLoginName>
     <req:serviceName>New Standard Laptop Computer</req:serviceName>
   </req:getServiceDefinition>
  </soapenv:Body>
</soapenv:Envelope>
5-9
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
getServiceDefinition Response

To submit the getServiceDefinition request, click the Submit request to specified URL button ( ) at the 
top left of the Request Editor window. The response appears within the Request Editor, to the right of 
the request.

The response to getServiceDefinition returns the metadata that describes the service, as summarized in 
the table below:

Each dictionary is described, as well as each field within the dictionary. The access control specified for 
the dictionary in the ordering moment is critical for writing a well-formed submitRequisition request. 
Only those dictionaries which are readable or writeable by the customer in the ordering moment are 
included in the response and need to be included in the submitRequisition request.

  <name>Customer_Information</name>
  <readable>true</readable>
  <writable>true</writable>
</Dictionary>

XML Element (with document hierarchy) Description

Service

name Name of the service

pricingmodel

quantity Quantity of service to be ordered

version The version number of the service

Dictionaries >

Dictionary Each service contains one or more dictionaries

name Name of the dictionary

readable True if the is dictionary readable as per the Access Control 
in the Service Designer Active form component for the 
ordering moment; false otherwise

writable True if the dictionary editable as per the Access Control in 
the Service Designer Active form component for the 
ordering moment; false otherwise

Fields >

DictionaryField Each dictionary contains one or more fields

canSelectMultiple Can multiple values be selected for this field?

defaultValue The default value of the field

fieldDataType The data type of the field (numeric, date, and so on)

fieldName The name of the field

inputType The html input type of the field

label The label of the field

mandatory True if the field is mandatory; false otherwise

maxLength Maximum length of the field

selectableValues Selectable values for the field
5-10
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
The complete getServiceDefinitionResponse for the “New Standard Laptop Computer” is given in the 
“Sample Requests and Responses” section on page 5-21.

Submitting a Requisition
Technically speaking, it is not required to perform a getServiceDefinition request before sending a 
submitRequisition request. However, the getServiceDefinition returns information that is critical to 
formulating a valid submitRequisition message for the current version of the service.

• The current version of the service is required. The version number is incremented whenever the 
service definition itself or any of the included Active Form Components or dictionaries is updated.

• The getServiceDefinition request specifies which fields are mandatory; the submit request can be 
certain to include data for all mandatory fields. 

• All mandatory dictionaries and fields must be listed in the submit request. The dictionaries, or the 
fields within the respective dictionaries, may appear in any order. 

• The getServiceDefinition request also returns default values assigned to any fields, included 
resolved lightweight namespaces for Customer and Initiator information. These values are typically 
mandatory and need to be supplied in the submitRequisition request.

• The getServiceDefinition request can be used to submit a request for a service whose definition 
includes fields with options (single-select, multi-select, and radio buttons) when those options are 
defined using the Active Form Component's Display Options (HTML Representation) pages. When 
the options are specified via a data retrieval rule, the service request can be submitted; however, it 
is the responsibility of the submitting program to ensure that the value for the field is a valid option.

The submitRequisition request basically bypasses the ordering moment which occurs when a request is 
submitted via My Services. No conditional rules, data retrieval rules, or ISF is executed in conjunction 
with the submitted request. Therefore, if these facilities are used to provide values for dictionary fields 
or to perform validations, an alternate means must be found of providing these values. The use of this 
operation for services that include grid dictionaries is not supported in this release. An error is returned 
when the operation is invoked against such services.

submitRequisition Request

Any dictionary viewable or editable in the ordering moment must be included as a <section> node in the 
submitrequisition request. All mandatory fields and their values must be specified. No value need be 
included for the optional fields (but be sure to remove the question marks inserted by soapUI). The order 
of the dictionaries and the order of the fields does not have to match the order in the service definition 
but the fields have to appear under the correct dictionary node.

XML Element (and document hierarchy) Description

initiatorLoginName The initiator’s login name

customerLoginName The customer’s login name

serviceRequests > ServiceRequest There can be multiple service requests.

name The name of the service

quantity Quantity of services to be ordered

version The version of the service

Sections > Section Each service can have multiple dictionaries (sections).

name The name of the dictionary
5-11
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
For example, XML setting the value of the ZipCode field in the dictionary RC_ServiceLocation to be 
“07201” would look like this:

<req:Section>
. . .

<req:fields>
. . .

<req:Field>
<req:name>ZipCode</req:name>
<req:value>

<req:string 07201/>
</req:value>

</req:Field>
</req:fields>
<req:name>RC_ServiceLocation</req:name>

</req:Section>

submitrequisition Response

If the request to submit the requisition succeeds, the response with include the requisition ID of the 
created request, as well as several other attributes of the request.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <ns1:submitRequisitionResponse xmlns:ns1="http://requisition.api.newscale.com">
     <ns1:submitRequisitionResult ns1:customer="admin admin" 
         ns1:dueDate="2009-05-08T16:14:26.267-07:00" 
         ns1:requisitionId="186" 
         ns1:initiator="admin admin" 
         ns1:startedDate="2009-04-30T18:14:26.110-07:00" 
         ns1:status="Ongoing"/>
   </ns1:submitRequisitionResponse>
  </soap:Body>
</soap:Envelope>

The attributes of the submitRequisitionResult response are summarized in the table below:

Fields > Field Each dictionary can have multiple fields.

name The name of the field

value > string The value to be set for this field

XML Element Description

submitRequisitionResponse > 
submitRequisitionResult

The response will contain as many entries as there are 
services in the service request

customer The customer name for the requisition

dueDate The due date for the requisition

requisitionId The requisition ID for the requisition

initiator The initiator for the requisition

startedDate The date the requisition was started

status The status of the requisition
5-12
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
If the request fails, an error message is returned. Possible errors are shown in Appendix B: RAPI Error 
Messages. The error message is always in the format of a “SOAP fault”, as shown in the sample below:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <soap:Fault>
     <faultcode>soap:Server</faultcode>
     <faultstring>The version specified in the request does not match the version in the 
database for service 'New Standard Laptop Computer'. Please get the latest service 
definition.</faultstring>
     <detail>
      <RequisitionFault xmlns="http://requisition.api.newscale.com">
        <errorCode>REQ_0018</errorCode>
        <errorMessage>The version specified in the request does not match the version in 
the database for service 'New Standard Laptop Computer'. Please get the latest service 
definition.</errorMessage>
      </RequisitionFault>
     </detail>
   </soap:Fault>
  </soap:Body>
</soap:Envelope>

Getting a List of Requisitions
The getRequisitions and getOpenRequisitions operations return information about open requisitions. 
They differ in the arguments that can be included in the request. 

These operations might be useful in managing requisitions. For example, a list of open requisitions might 
be returned, and those of a particular type (for a particular service) whose past due date exceeds some 
user-defined threshold may be noted.

getOpenRequisitions Request

getOpenRequisitions returns all open requisitions, up to a specific maximum number of requisitions. 
The requisitions are returned in descending order by Requisition ID. This request is supported only for 
backward compatibility of certain retired Request Center integration points and should not be used in 
web services.

getRequisitions Request

getRequisitions returns all requisitions, up to a specific maximum number of requisitions. It also allows 
you to specify the view type and status of the requisitions to be returned. This request is supported only 
for backward compatibility of certain retired Request Center integration points and should not be used 
in web services.

Getting the Requisition Status
The getRequisitionStatus operation returns information on the authorizations and task plan status for the 
specified requisition. The level of detail is similar to that shown to the My Services user, when he/she 
views the delivery plan:
5-13
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
getRequisitionStatus Request

The request returns information on the current status of a requisition.

GetRequisitionStatus Response

If the request to get the requisition succeeds, the response with include information about the requisition.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
  </soap:Body>
</soap:Envelope>

The attributes of the get*RequisitionsResult response are summarized in the table below:

XML Element (and document hierarchy) Description

loginUserName The name of the user requesting the information. This user 
must have privileges to view the requisition.

requisitionid The id of the requisition to be interrogated.

XML Element Description

getRequisitionStatusResponse > 
get*RequisitionsResult 

RequisitionEntryStatuses > 
RequisitionEntryStatus

One status block for each service in the request

itemNumber Sequence assigned to the service within the requisition

quantity Number of services order

requisitionEntryId Requisition Entry ID for the service

serviceName Name of the service

status Current status of the requisition entry

requisitionStepStatuses > 
RequisitionStepStatus

One StepStatus for each moment configured in the delivery 
plan for the service

dueDate Date the current authorization, review or task is due

name Moment in the delivery plan; for example “Service Group 
Authorization” or “Delivery project for <service name>”

stepStatus Status of the task; for example, “In Progress”, “Pending” or 
“Completed”
5-14
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Request Management
Adding Comments to a Requisition
The addComments operation adds a user comment to the specified requisition. 

addComments Request

The request adds the specified comment to the specified requisition. The user specified must have 
permission to access the requisition.

Cancelling a Requisition
The cancelRequisition operation is used to cancel the specified service request. All services that 
comprise the requisition are canceled.

The cancelrequisitionentry operation cancels the specified service (requisition entry) within a service 
request. If this is the only (or last) service in the requisition, the requisition is canceled. Otherwise, its 
status remains unchanged.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:req=>
  <soapenv:Header>
   <req:AuthenticationToken>
     <req:Username>admin</req:Username>
     <req:Password>admin</req:Password>
   </req:AuthenticationToken>

XML Element (and document hierarchy) Description

loginUserName The name of the user adding the comment

requisitionid The id of the requisition to be affected

commentText The text of the user comment
5-15
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Task Management
  </soapenv:Header>
  <soapenv:Body>
   <req:cancelRequisition>
     <req:loginUserName>ltierstein</req:loginUserName>
     <req:requisitionId>99</req:requisitionId>
   </req:cancelRequisition>
  </soapenv:Body>
</soapenv:Envelope>
The response is shown below (with formatting added for clarity):
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <ns1:cancelRequisitionResponse xmlns:ns1="http://requisition.api.newscale.com">
     <ns1:cancelRequisitionResult 
       ns1:closedDate="2009-06-02T12:04:32.837-07:00" 
       ns1:customer="Leslie Tierstein" 
       ns1:dueDate="2009-04-03T15:00:00-07:00" 
       ns1:id="99" 
       ns1:initiator="Leslie Tierstein" 
       ns1:startedDate="2009-04-03T09:55:54.843-07:00" 
       ns1:status="Cancelled"/>
   </ns1:cancelRequisitionResponse>
  </soap:Body>
</soap:Envelope>

Web Services for Task Management

Overview
The operations that can be performed via task management web services are summarized in the table 
below:

Getting a List of Authorizations
The getAuthorizations and getMyAuthorizations operations return information about authorizations that 
are “In Progress”. They differ in the arguments that can be included in the request. 

Request Description

approveTask Approve an authorization/approval.

getAuthorizations Retrieve authorizations

getAuthorizationsForUser Retrieve authorizations for a specified user

getMyAuthorizations Retrieve authorizations assigned to the specified person

rejectSelectedReqEntry Reject the specified service (requisition entry)

rejectTask Reject an authorization/approval

reviewTask Mark a “review” task as reviewed 
5-16
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Task Management
Unlike the Requisition Service operations, which have provisions for separate Web Services 
Administrative users (specified in the SOAP Header) and the Request Center user to which the operation 
applies, these Task Service operations allow the specification of only one user, in the SOAP header. 
Therefore, the user whose authorizations are to be retrieved or processed must have the Task Access 
capability of the Web Services module. To do this:

• Create a role which includes that capability. Since the ability to perform authorizations is included 
in the My Services Professional role, create a child of that role:

• Assign that role (either in addition to or instead of My Services Professional) to people whose 
authorizations need to be reviewed or processed via web services:

getMyAuthorizations Request

getMyAuthorizations returns all open requisitions, up to a specific maximum number of requisitions for 
the person whose Request Center credentials are specified in the SOAP header. The requisitions are 
returned in descending order by Requisition ID. This request is supported only for use in the 
JSR168-compliant Authorizations portlet and should not be used in web services.
5-17
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Task Management
getAuthorizations Request

getAuthorizations returns all authorizations, up to a specific maximum number of authorizations, 
starting with a specified authorization in the list. It also allows you to specify the view type and status 
of the requisitions to be returned. This request is supported only for use in the JSR168-compliant 
Authorizations portlet and should not be used in web services.

getAuthorizationsForUser Request (internal only and unsupported)

Very similar to getAuthorizations described above, but adds a userLoginName parameter you can use to 
specify the user for whom you want to get authorizations. 

Sample getAuthorizationsForUser SOAP Request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:smt="http://smtask.api.newscale.com">   <soapenv:Header>
      <smt:AuthenticationToken>
         <smt:Username>admin</smt:Username>
         <smt:Password>admin</smt:Password>
      </smt:AuthenticationToken>
   </soapenv:Header>
   <soapenv:Body>
      <smt:getAuthorizationsForUser>
         <smt:userLoginName>qreviewer</smt:userLoginName>
         <smt:startRow>0</smt:startRow>
         <smt:numberOfRows>5</smt:numberOfRows>
         <smt:status>1</smt:status>
         <smt:viewType>2</smt:viewType>
      </smt:getAuthorizationsForUser>
   </soapenv:Body>
</soapenv:Envelope>

Useful Parameters for getAuthorizations and getAuthorizationsForUser Requests

Approving or Rejecting an Authorization
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:smt="http://smtask.api.newscale.com">
  <soapenv:Header>
   <smt:AuthenticationToken>
     <!--Optional:-->

Parameter Values

Status Ongoing –1

Cancelled – 2

Approved – 3

Rejected – 4

Reviewed – 5 

All – 6

ViewType My Authorizations – 1 

My Assigned and Unassigned – 2
5-18
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Portfolio Management
     <smt:Username>admin</smt:Username>
     <!--Optional:-->
     <smt:Password>admin</smt:Password>
   </smt:AuthenticationToken>
  </soapenv:Header>
  <soapenv:Body>
   <smt:approveTask>
     <smt:approverLoginName>maria</smt:approverLoginName>
     <smt:taskID>281</smt:taskID>
   </smt:approveTask>
  </soapenv:Body>
</soapenv:Envelope>

The response is shown below (with formatting added for clarity):

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <ns1:approveTaskResponse xmlns:ns1="http://smtask.api.newscale.com">
     <ns1:approveTaskResult 
       ns1:actionID="5"     
       ns1:requisitionId="103" 
       ns1:status="approved" 
       ns1:taskName="Computer Memory - Upgrade - APPROVAL NEEDED"/>
   </ns1:approveTaskResponse>
  </soap:Body>
</soap:Envelope>

Web Services for Portfolio Management

Overview

Exporting Offering Cost Data
The exportOfferingCostData operation exports the costing information on one or more services.

Retrieving Service Offerings and their Status
The getAllServiceOfferingStatus operation retrieves the name of all service offerings and their current 
status. 

Request Description

exportOfferingCostData Export the costing information on one or more offerings

getAllServiceOfferingStatus Get the name and current status of all service offerings

getServiceOfferingStatus Get the name and current status of all service offerings whose 
names match the specified search string

importOfferingCostData Import the costing information
5-19
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services for Portfolio Management
The getServiceOfferingStatus operation retrieves the name and status of all services whose name meets 
the search criteria specified. Search criteria may consist of any string; the search is not case sensitive.

getServiceOfferingStatus Request

A sample getServiceOfferingStatus request is shown below.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:fin="http://financialmanagement.api.newscale.com">
  <soapenv:Header>
   <fin:AuthenticationToken>
     <fin:Username>admin</fin:Username>
     <fin:Password>admin</fin:Password>
   </fin:AuthenticationToken>
  </soapenv:Header>
  <soapenv:Body>
   <fin:getServiceOfferingStatus>
     <fin:searchString>EMAIL</fin:searchString>
   </fin:getServiceOfferingStatus>
  </soapenv:Body>
</soapenv:Envelope>

getAllServiceOfferingStatus Request

No user-supplied parameters are required in the message body. 

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:fin="http://financialmanagement.api.newscale.com">
  <soapenv:Header>
   <fin:AuthenticationToken>
     <fin:Username>admin</fin:Username>
     <fin:Password>admin</fin:Password>
   </fin:AuthenticationToken>
  </soapenv:Header>
  <soapenv:Body>
   <fin:getAllServiceOfferingStatus/>
  </soapenv:Body>
</soapenv:Envelope>

getServiceOfferingStatus Response

For each service offering, the response includes the offering name and its status.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <ns1:getServiceOfferingStatusResponse 
xmlns:ns1="http://financialmanagement.api.newscale.com">
     <ns1:getServiceOfferingsResult>
      <ns1:ServiceOfferingStatus>
        <serviceOfferingName xmlns="http://financialmanagement.api.newscale.com">Email and 
Calendaring - FY08</serviceOfferingName>
        <status xmlns="http://financialmanagement.api.newscale.com">draft</status>
      </ns1:ServiceOfferingStatus>
     </ns1:getServiceOfferingsResult>
   </ns1:getServiceOfferingStatusResponse>
  </soap:Body>
</soap:Envelope>
5-20
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
Sample Requests and Responses

getServiceDefinition Response 
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <ns1:getServiceDefinitionResponse xmlns:ns1=>
     <ns1:getServiceDefinitionResult>
      <dictionaries>
        <Dictionary>
         <fields>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>ModelNumber</fieldName>
            <inputType>text</inputType>
            <label>Model Number</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>AssetTag</fieldName>
            <inputType>text</inputType>
            <label>Asset Tag</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
         </fields>
         <name>NewLaptop</name>
         <readable>true</readable>
         <writable>true</writable>
        </Dictionary>
        <Dictionary>
         <fields>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>admin</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>First_Name</fieldName>
            <inputType>text</inputType>
            <label>First Name</label>
            <mandatory>false</mandatory>
5-21
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
            <maxLength>100</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>admin</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Last_Name</fieldName>
            <inputType>text</inputType>
            <label>Last Name</label>
            <mandatory>false</mandatory>
            <maxLength>100</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>admin</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Login_ID</fieldName>
            <inputType>hidden</inputType>
            <label>Login ID</label>
            <mandatory>false</mandatory>
            <maxLength>200</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Personal_Identification</fieldName>
            <inputType>text</inputType>
            <label>Personal_Identification</label>
            <mandatory>false</mandatory>
            <maxLength>510</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>ed @cisco.com</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Email_Address</fieldName>
            <inputType>text</inputType>
            <label>Email Address</label>
            <mandatory>false</mandatory>
            <maxLength>1024</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
5-22
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>Site Administration</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Home_Organizational_Unit</fieldName>
            <inputType>text</inputType>
            <label>Department</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Company_State</fieldName>
            <inputType>text</inputType>
            <label>State</label>
            <mandatory>false</mandatory>
            <maxLength>100</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Supervisor</fieldName>
            <inputType>hidden</inputType>
            <label>Supervisor</label>
            <mandatory>false</mandatory>
            <maxLength>100</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Supervisor_Email</fieldName>
            <inputType>hidden</inputType>
            <label>Supervisor Email</label>
            <mandatory>false</mandatory>
            <maxLength>1024</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
5-23
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Custom_1</fieldName>
            <inputType>text</inputType>
            <label>Custom_1</label>
            <mandatory>false</mandatory>
            <maxLength>200</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Custom_2</fieldName>
            <inputType>text</inputType>
            <label>Custom_2</label>
            <mandatory>false</mandatory>
            <maxLength>200</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
         </fields>
         <name>Customer_Information</name>
         <readable>true</readable>
         <writable>true</writable>
        </Dictionary>
        <Dictionary>
         <fields>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>admin</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>First_Name</fieldName>
            <inputType>text</inputType>
            <label>First Name</label>
            <mandatory>false</mandatory>
            <maxLength>100</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>admin</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Last_Name</fieldName>
            <inputType>text</inputType>
            <label>Last Name</label>
            <mandatory>false</mandatory>
            <maxLength>100</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
5-24
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>admin</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Login_ID</fieldName>
            <inputType>text</inputType>
            <label>Login ID</label>
            <mandatory>false</mandatory>
            <maxLength>200</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Personal_Identification</fieldName>
            <inputType>hidden</inputType>
            <label>Personal Identification</label>
            <mandatory>false</mandatory>
            <maxLength>510</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>ed @cisco.com</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Email_Address</fieldName>
            <inputType>text</inputType>
            <label>Email Address</label>
            <mandatory>false</mandatory>
            <maxLength>1024</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>Site Administration</string>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Home_Organizational_Unit</fieldName>
            <inputType>text</inputType>
            <label>Department</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
         </fields>
         <name>Initiator_Information</name>
         <readable>false</readable>
         <writable>false</writable>
5-25
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
        </Dictionary>
        <Dictionary>
         <fields>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string>Yes</string>
            </defaultValue>
            <fieldDataType>Boolean</fieldDataType>
            <fieldName>PerformWork</fieldName>
            <inputType>radio</inputType>
            <label>Will work be performed at the customer location?</label>
            <mandatory>false</mandatory>
            <maxLength>0</maxLength>
            <selectableValues>
              <string>Yes</string>
              <string>No</string>
            </selectableValues>
           </DictionaryField>
         </fields>
         <name>RC_PerformWork</name>
         <readable>true</readable>
         <writable>true</writable>
        </Dictionary>
        <Dictionary>
         <fields>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Street1</fieldName>
            <inputType>text</inputType>
            <label>Street</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Street2</fieldName>
            <inputType>hidden</inputType>
            <label>Street2</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Floor</fieldName>
            <inputType>hidden</inputType>
5-26
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
            <label>Floor</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>OfficeCubeRoom</fieldName>
            <inputType>text</inputType>
            <label>OfficeCubeRoom</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Building</fieldName>
            <inputType>hidden</inputType>
            <label>Building</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>City</fieldName>
            <inputType>text</inputType>
            <label>City</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>State</fieldName>
            <inputType>text</inputType>
            <label>State</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
5-27
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>PostalCode</fieldName>
            <inputType>text</inputType>
            <label>Zip Code</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Country</fieldName>
            <inputType>hidden</inputType>
            <label>Country</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>MailStop</fieldName>
            <inputType>hidden</inputType>
            <label>MailStop</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Region</fieldName>
            <inputType>hidden</inputType>
            <label>Region</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
5-28
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>District</fieldName>
            <inputType>hidden</inputType>
            <label>District</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>LocationName</fieldName>
            <inputType>hidden</inputType>
            <label>LocationName</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>LocationCode</fieldName>
            <inputType>hidden</inputType>
            <label>LocationCode</label>
            <mandatory>false</mandatory>
            <maxLength>50</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
         </fields>
         <name>RC_RequestorLocation</name>
         <readable>true</readable>
         <writable>true</writable>
        </Dictionary>
        <Dictionary>
         <fields>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Street</fieldName>
            <inputType>text</inputType>
            <label>Street</label>
            <mandatory>false</mandatory>
            <maxLength>40</maxLength>
            <selectableValues>
              <string/>
5-29
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>OfficeCubeRoom</fieldName>
            <inputType>text</inputType>
            <label>OfficeCubeRoom</label>
            <mandatory>false</mandatory>
            <maxLength>40</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>State</fieldName>
            <inputType>text</inputType>
            <label>State</label>
            <mandatory>false</mandatory>
            <maxLength>40</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>City</fieldName>
            <inputType>text</inputType>
            <label>City</label>
            <mandatory>false</mandatory>
            <maxLength>40</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>BuildingName</fieldName>
            <inputType>hidden</inputType>
            <label>BuildingName</label>
            <mandatory>false</mandatory>
            <maxLength>40</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
5-30
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>Floor</fieldName>
            <inputType>hidden</inputType>
            <label>Floor</label>
            <mandatory>false</mandatory>
            <maxLength>40</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
           <DictionaryField>
            <canSelectMultiple>false</canSelectMultiple>
            <defaultValue>
              <string/>
            </defaultValue>
            <fieldDataType>Text</fieldDataType>
            <fieldName>ZipCode</fieldName>
            <inputType>text</inputType>
            <label>Zip Code</label>
            <mandatory>false</mandatory>
            <maxLength>15</maxLength>
            <selectableValues>
              <string/>
            </selectableValues>
           </DictionaryField>
         </fields>
         <name>RC_ServiceLocation</name>
         <readable>true</readable>
         <writable>true</writable>
        </Dictionary>
      </dictionaries>
      <estimatedpriceperunit>1500.0</estimatedpriceperunit>
      <name>New Standard Laptop Computer</name>
      <pricingmodel>0</pricingmodel>
      <quantity>0</quantity>
      <serviceId>5</serviceId>
      <version>32</version>
     </ns1:getServiceDefinitionResult>
   </ns1:getServiceDefinitionResponse>
  </soap:Body>
</soap:Envelope>

Sample submitRequisition Request
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:req=>
  <soapenv:Header>
   <req:AuthenticationToken>
     <req:Username>admin</req:Username>
     <req:Password>admin</req:Password>
   </req:AuthenticationToken>
  </soapenv:Header>
  <soapenv:Body>
   <req:submitRequisition>
     <req:initiatorLoginName>admin</req:initiatorLoginName>
     <req:customerLoginName>admin</req:customerLoginName>
     <req:serviceRequests>
      <req:ServiceRequest>
        <req:name>New Standard Laptop Computer</req:name>
        <req:quantity>1</req:quantity>
5-31
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
        <req:sections>
         <req:Section>
           <req:fields>
            <req:Field>
              <req:name>ModelNumber</req:name>
              <req:value>
               <req:string>T60</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>AssetTag</req:name>
              <req:value>
               <req:string>ABC123</req:string>
              </req:value>
            </req:Field>
           </req:fields>
           <req:name>NewLaptop</req:name>
         </req:Section>
         <req:Section>
           <req:fields>
            <req:Field>
              <req:name>First_Name</req:name>
              <req:value>
               <req:string>admin</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Last_Name</req:name>
              <req:value>
               <req:string>admin</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Login_ID</req:name>
              <req:value>
               <req:string>admin</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Personal_Identification</req:name>
              <req:value>
               <req:string />
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Email_Address</req:name>
              <req:value>
               <req:string>training3@cisco.com</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Home_Organizational_Unit</req:name>
              <req:value>
               <req:string>Site Administration</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Company_State</req:name>
              <req:value>
               <req:string />
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Supervisor</req:name>
5-32
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
              <req:value>
               <req:string />
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Supervisor_Email</req:name>
              <req:value>
               <req:string />
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Custom_1</req:name>
              <req:value>
               <req:string />
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Custom_2</req:name>
              <req:value>
               <req:string />
              </req:value>
            </req:Field>
           </req:fields>
           <req:name>Customer_Information</req:name>
         </req:Section>
         <req:Section>
           <req:fields>
            <req:Field>
              <req:name>First_Name</req:name>
              <req:value>
               <req:string>admin</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Last_Name</req:name>
              <req:value>
               <req:string>admin</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Login_ID</req:name>
              <req:value>
               <req:string>admin</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Personal_Identification</req:name>
              <req:value>
               <req:string />
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Email_Address</req:name>
              <req:value>
               <req:string>training3@cisco.com</req:string>
              </req:value>
            </req:Field>
            <req:Field>
              <req:name>Home_Organizational_Unit</req:name>
              <req:value>
               <req:string>Site Administration</req:string>
              </req:value>
            </req:Field>
           </req:fields>
5-33
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
           <req:name>Initiator_Information</req:name>
         </req:Section>
        </req:sections>
        <req:version>32</req:version>
      </req:ServiceRequest>
     </req:serviceRequests>
   </req:submitRequisition>
  </soapenv:Body>
</soapenv:Envelope>

Sample getMyAuthorizations Response

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <ns1:getMyAuthorizationsResponse xmlns:ns1="http://smtask.api.newscale.com">
     <ns1:getMyAuthorizationsResult>
      <ns1:Activity>
        <activityFormId xmlns="http://smtask.api.newscale.com">2</activityFormId>
        <activityTypeId xmlns="http://smtask.api.newscale.com">2</activityTypeId>
        <actualDuration xmlns="http://smtask.api.newscale.com">0.0</actualDuration>
        <agentId xmlns="http://smtask.api.newscale.com">0</agentId>
        <clientOrganizationalUnit xmlns="http://smtask.api.newscale.com">
         <authorizationStructure>0</authorizationStructure>
         <billable>true</billable>
         <costCenterCode xsi:nil="true"/>
         <description xsi:nil="true"/>
         <GUID>3C921968-6474-45B2-8D65-A1822E52782F</GUID>
         <id>6</id>
         <localeId>1</localeId>
         <managerId>0</managerId>
         <managerName xsi:nil="true"/>
         <name>Field Sales</name>
         <organizationalUnitTypeId>2</organizationalUnitTypeId>
         <parentId>0</parentId>
         <parentName xsi:nil="true"/>
         <parentOrganizationalUnitGuid xsi:nil="true"/>
         <placeId>0</placeId>
         <placeName xsi:nil="true"/>
         <recordStateId>1</recordStateId>
         <tenantId>1</tenantId>
        </clientOrganizationalUnit>
        <clientOuId xmlns="http://smtask.api.newscale.com">6</clientOuId>
        <creatorObjectId xmlns="http://smtask.api.newscale.com">57</creatorObjectId>
        <creatorObjectInstId 
xmlns="http://smtask.api.newscale.com">9</creatorObjectInstId>
        <customer xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <customerId xmlns="http://smtask.api.newscale.com">12</customerId>
        <customerName xmlns="http://smtask.api.newscale.com">Terry Training</customerName>
        <customerRoleId xmlns="http://smtask.api.newscale.com">0</customerRoleId>
        <customerRoleName xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <defActivityId xmlns="http://smtask.api.newscale.com">0</defActivityId>
        <depth xmlns="http://smtask.api.newscale.com">0</depth>
        <displayOrder xmlns="http://smtask.api.newscale.com">0</displayOrder>
        <dueOn xmlns="http://smtask.api.newscale.com">2009-06-03T23:00:00-07:00</dueOn>
        <dueOnTz xmlns="http://smtask.api.newscale.com">149</dueOnTz>
        <effort xmlns="http://smtask.api.newscale.com">0.5</effort>
        <escalationLevel xmlns="http://smtask.api.newscale.com">0</escalationLevel>
        <expectedDuration xmlns="http://smtask.api.newscale.com">8.0</expectedDuration>
        <flagId xmlns="http://smtask.api.newscale.com">0</flagId>
        <formURL xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
5-34
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
        <group xmlns="http://smtask.api.newscale.com">0</group>
        <hasChildren xmlns="http://smtask.api.newscale.com">false</hasChildren>
        <icon xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <id xmlns="http://smtask.api.newscale.com">422</id>
        <instructions xmlns="http://smtask.api.newscale.com"/>
        <isBusy xmlns="http://smtask.api.newscale.com">0</isBusy>
        <isLast xmlns="http://smtask.api.newscale.com">false</isLast>
        <lastChannelId xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <listCount xmlns="http://smtask.api.newscale.com">-1</listCount>
        <nextActionId xmlns="http://smtask.api.newscale.com">5</nextActionId>
        <overbookTime xmlns="http://smtask.api.newscale.com">0</overbookTime>
        <parentId xmlns="http://smtask.api.newscale.com">0</parentId>
        <performerActualDuration 
xmlns="http://smtask.api.newscale.com">0.0</performerActualDuration>
        <performerId xmlns="http://smtask.api.newscale.com">11</performerId>
        <performerName xmlns="http://smtask.api.newscale.com">Jared 
Roberts</performerName>
        <performerOfficeId xmlns="http://smtask.api.newscale.com">0</performerOfficeId>
        <performerRoleId xmlns="http://smtask.api.newscale.com">331</performerRoleId>
        <performerRoleName xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <performerSharable 
xmlns="http://smtask.api.newscale.com">false</performerSharable>
        <performerShared xmlns="http://smtask.api.newscale.com">false</performerShared>
        <priority xmlns="http://smtask.api.newscale.com">0</priority>
        <priorityName xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <processId xmlns="http://smtask.api.newscale.com">0</processId>
        <projectActivityId xmlns="http://smtask.api.newscale.com">0</projectActivityId>
        <reqId xmlns="http://smtask.api.newscale.com">170</reqId>
        <retryCount xmlns="http://smtask.api.newscale.com">0</retryCount>
        <scheduledStart 
xmlns="http://smtask.api.newscale.com">2009-06-03T15:00:00-07:00</scheduledStart>
        <startedOn 
xmlns="http://smtask.api.newscale.com">2009-06-03T12:09:41.443-07:00</startedOn>
        <startedOnTz xmlns="http://smtask.api.newscale.com">149</startedOnTz>
        <stateId xmlns="http://smtask.api.newscale.com">6</stateId>
        <stateName xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <stepId xmlns="http://smtask.api.newscale.com">4</stepId>
        <stepLogicName xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <subject xmlns="http://smtask.api.newscale.com">Computer Memory - Upgrade - 
APPROVAL NEEDED</subject>
        <taskUrl xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
        <ticketId xmlns="http://smtask.api.newscale.com">175</ticketId>
        <ticketObjectId xmlns="http://smtask.api.newscale.com">37</ticketObjectId>
        <totalCost xmlns="http://smtask.api.newscale.com">0.0</totalCost>
        <waiting xmlns="http://smtask.api.newscale.com">0</waiting>
        <WDDXCheckList xsi:nil="true" xmlns="http://smtask.api.newscale.com"/>
      </ns1:Activity>
     </ns1:getMyAuthorizationsResult>
   </ns1:getMyAuthorizationsResponse>
  </soap:Body>
</soap:Envelope>

Sample exportOfferingCostData Response
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soap:Body>
   <ns1:exportOfferingCostDataResponse 
xmlns:ns1="http://financialmanagement.api.newscale.com">
     <ns1:exportOfferingCostDataResult>
      <ns1:ServiceOffering>
5-35
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
        <componentServices xmlns="http://financialmanagement.api.newscale.com">
         <ComponentService>
           <category>Infrastructure</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Internet</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           <quantityIncludedPerAgreementPeriod/>
           <unitPrice>0.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Hardware</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>CD Burner - Add</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*0.9</quantityIncludedPerAgreementPeriod>
           <unitPrice>87.45</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Hardware</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Computer Memory - Upgrade</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*0.15</quantityIncludedPerAgreementPeriod>
5-36
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
           <unitPrice>300.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Hardware</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Desktop Printer - Black and White Inkjet</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*0.05</quantityIncludedPerAgreementPeriod>
           <unitPrice>87.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Hardware</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>New Desktop Computer - Add</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*0.05</quantityIncludedPerAgreementPeriod>
           <unitPrice>1260.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Hardware</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>USB Flash Drive</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
5-37
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
           
<quantityIncludedPerAgreementPeriod>Users.units*1</quantityIncludedPerAgreementPeriod>
           <unitPrice>41.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Software</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Adobe Photoshop - Add</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*0.25</quantityIncludedPerAgreementPeriod>
           <unitPrice>239.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Software</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Microsoft Office - Add</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*1</quantityIncludedPerAgreementPeriod>
           <unitPrice>133.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Support</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Service Desk Level 1 Support</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
5-38
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Sample Requests and Responses
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*5</quantityIncludedPerAgreementPeriod>
           <unitPrice>15.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Support</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Service Desk Level 2 Support</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*2</quantityIncludedPerAgreementPeriod>
           <unitPrice>50.0</unitPrice>
         </ComponentService>
         <ComponentService>
           <category>Support</category>
           <estimatedQuantityPerPeriod>0.0</estimatedQuantityPerPeriod>
           <name>Virus Removal</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
           
<quantityIncludedPerAgreementPeriod>Users.units*0.9</quantityIncludedPerAgreementPeriod>
           <unitPrice>42.0</unitPrice>
         </ComponentService>
        </componentServices>
        <costDrivers xmlns="http://financialmanagement.api.newscale.com">
         <CostDriver>
           <benchmarkUnitPrice>850.0</benchmarkUnitPrice>
           <estimatedTotalCost>69.46</estimatedTotalCost>
           <estimatedUnitsPerPeriod>1.00</estimatedUnitsPerPeriod>
           <margin>0.0</margin>
           <name>Users</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
5-39
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services Error Messages
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
         </CostDriver>
         <CostDriver>
           <benchmarkUnitPrice>0.0</benchmarkUnitPrice>
           <estimatedTotalCost>0.83</estimatedTotalCost>
           <estimatedUnitsPerPeriod>1.00</estimatedUnitsPerPeriod>
           <margin>0.0</margin>
           <name>Gigabytes</name>
           <objectiveMultiplierList>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Bronze Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Gold Support</objectivename>
            </ObjectiveMultiplier>
            <ObjectiveMultiplier>
              <multiplier>1.0</multiplier>
              <objectivename>Silver Support</objectivename>
            </ObjectiveMultiplier>
           </objectiveMultiplierList>
         </CostDriver>
        </costDrivers>
        <name xmlns="http://financialmanagement.api.newscale.com">Employee Desktop 
Computing</name>
        <status xsi:nil="true" xmlns="http://financialmanagement.api.newscale.com"/>
      </ns1:ServiceOffering>
     </ns1:exportOfferingCostDataResult>
   </ns1:exportOfferingCostDataResponse>
  </soap:Body>
</soap:Envelope>

Web Services Error Messages
In the error messages below, the symbol of a number enclosed in curly brackets (for example, ‘{0}’) is 
replaced in the actual error message with the name or identifier of the object that caused the error.

AUTH_0001 The user has not been authenticated yet or the session has timed out. 

AUTH_0002 Authentication failed for user '{0}'. 

AUTH_0003 Request Center is configured for SSO but some configuration problems are 
preventing the SSO from working correctly. 

AUTH_0005 The user name header is invalid. It is either not present or empty. Please send a 
valid header. 

AUTH_0006 Access to web services has been turned off. 

AUTH_0007 User does not have access to this web service. 
5-40
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services Error Messages
INFRA_0001 Cannot submit the requisition as the Request Center Business Engine queue is not 
available and the Administration setting for asynchronous submission has been 
turned on. Please try later or contact your administrator.

REQ_0001 Initiator '{0}' is not found in the system. 

REQ_0002 Customer '{0}' is not found in the system. 

REQ_0003 Service '{0}' is not found in the system. 

REQ_0004 User '{0}' is not found in the system. 

REQ_0005 RequisitionID '{0}' is not found in the system. 

REQ_0006 Cannot cancel requisition entry '{0}' as the specified requisition id '{1}' does not 
match.

REQ_0007 Cannot cancel requisition entry '{0}' as the specified service '{1}' does not match. 

REQ_0008 User does not have permission to cancel this requisition. Only the requisition 
owner can cancel a requisition.

REQ_0009 This requisition has already been cancelled. 

REQ_0010 The customer '{0}' does not have permission to order the service '{1}'. 

REQ_0011 The service '{0}' is not orderable. 

REQ_0012 User does not have permission to add comments to this requisition. 

REQ_0013 Service Form Mandatory Field '{0}' is not filled. 

REQ_0014 Service Form Field '{0}' exceeds maximum length allowed. 

REQ_0015 Please enter a valid Number in the Field '{0}'.

REQ_0016 Service Form Field '{0}' should have only one value.

REQ_0017 User does not have permission to access this requisition. 

REQ_0018 The version specified in the request does not match the version in the database 
for service '{0}'. Please use the latest service definition. 

REQ_0019 The initiator '{0}' does not have Order on Behalf permission for this customer 
'{1}'. 

REQ_0020 The authenticated user '{0}' does not have web service Requisition System 
Account capability.

REQ_0021 The value you passed for this Field '{0}' does not exist in the option list. 

REQ_0022 The values for this Field '{0}' have more data than designed values. 

REQ_0023 The value you passed for this Field '{0}' does not exist in the option list. 

REQ_0024 Service Form Field '{0}' has a Date format issue.

REQ_0025 Service Form Field '{0}' has a DateTime format issue.

REQ_0026 Service Form Field '{0}', you provided the login as '{1}' does not exist in the 
system. Please input the login name.

REQ_0027 You cannot cancel this Requisition ID '{0}'. The requisition is closed. 

REQ_0028 The Requisition ID '{0}' is in “point of no return” status. You cannot cancel this 
requisition.

REQ_0029 You cannot cancel this Requisition Entry Id '{0}'. The Requisition Entry is 
closed. 

REQ_0030 The status of service '{0}' is Inactive.
5-41
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 5      Web Services
  Web Services Error Messages
REQ_0031 You cannot cancel this Requisition Entry Id '{0}'. The Requisition Entry is 
already cancelled. 

REQ_0032 The value you passed for this Field '{0}' does not exist in the option list. 

REQ_0033 The value you passed for this Field '{0}' does not exist in the option list. 

REQ_0034 The values for this Field '{0}' have more data than designed values. 

REQ_0035 The dictionary name '{0}' does not exist for this service. Please correct the field 
name.

REQ_0036 The dictionary field '{0}' does not exist for this dictionary '{0}'. Please correct 
the field name.

REQ_0037 User does not have permission to cancel this requisition entry. 

REQ_0038 Some of the fields are missing in this dictionary'{0}'.

REQ_0100 Runtime Exception occurred. This can be caused by a legitimate Business Engine 
workflow exception (for example, the task is not allowed to be cancelled as 
defined in Service Designer). User should check the task definition.

REQ_0101 Runtime error occurred while reading the service form data. 

REQ_0101 Runtime error occurred while reading the service form data. 

TASK_0005 The task '{0}' cannot be rejected.

TASK_0008 The task '{0}' doesn't exist in the system.

TASK_0001 The user '{0}' doesn't have permission to approve the task '{1}'.

TASK_0002 The user '{0}' doesn't have permission to reject the task '{1}'.

TASK_0003 The user '{0}' doesn't have permission to review the task '{1}'.

TASK_0004 The task '{0}' is not an approval task.

TASK_0005 The task '{0}' cannot be rejected.

TASK_0006 The task '{0}' is not a review task.

TASK_0008 The task '{0}' does not exist in the system.

TASK_0009 The requisition entry id '{0}' for the specified task id '{1}' does not match.

TASK_0010 The task '{0}' does not contain more than one requisition entries.

TASK_0011 The task '{0}' does not have financial or OU authorization.

TASK_0012 The user'{0}' does not have permission to reject partial requisition entry for this 
task '{1}'.

TASK_0013 The task '{0}' has already been rejected.
5-42
Cisco Service Portal Integration Guide

OL-26390-02



 

OL-26390-02
C H A P T E R 6

REST API

• Overview, page 6-1

• Invoking REST API, page 6-9

• Detailed API Reference, page 6-16

• Error Messages, page 6-48

• Quick Reference, page 6-49

Overview
Cisco offers a set of standard REST (Representational State Transfer) APIs and Java stubs for accessing 
entities defined in Service Portal. They are collectively known as nsAPI.

Authentication is enforced in the nsAPI with session support provided. Access permissions to the entities 
are governed by the Role-Based Access Control (RBAC) object-level permissions defined for the user 
in the Service Portal application. 

For integrating with external applications, as well as the Portal Manager solution, nsAPI can be used. 
The portal features support the design and rendering of portlets created using Java, JavaScript, HTML, 
or Ext JS—the UI framework for the portal. Within such portlets, nsAPI can be invoked to retrieve the 
required entity information, and allow users to update the data for certain types of entities. More 
information about the portal module can be found in the Cisco Service Portal Designer Guide.

Supported Entities
The entities supported by nsAPI come under the following categories:

Entity Group Entity Type

Definitional Data Categories
Services
Service Offerings
Agents

Directory Data Organizational Units
Persons
Groups
Accounts
6-1
Cisco Service Portal Integration Guide



 

Chapter 6      REST API
  Overview
Operations
The following types of operations are supported by the nsAPI:

• HTTP GET operations for core entities predefined in the Service Portal application

• HTTP GET operations for user-defined entities in Lifecycle Center and Portal Designer

• HTTP POST operations for specific entities:

– Person – Create person, update person details

– Tasks – Perform task actions (done/approve/reject/review)

The GET operations fetch data for the entity specified whereas PUT operations allow modifications to 
be made on the entity details or status. The user invoking the operations must have the necessary 
read/write permissions to the affected entity instances.

Conventions and Syntax
• The REST URL follows this convention:

http(s)://<serverURL>/RequestCenter/nsapi/<entityGroup>/<entityType>/<filters>?sortBy=
<columnName>&sortDir=<sortOrder>?startRow=<x>&recordSize=<y>

where elements enclosed in angle brackets (<>) indicate that an appropriate parameter or parameter 
value must be substituted.

• Filters, sorting and paging controls and actions are passed as optional parameters in the REST 
URLs. Filters may include one or multiple expressions as explained in the “Filters” section below. 
When filters are absent, all instances found for the entity are returned.

• Multiple filters can sometimes be combined. In this case, second and subsequent instances of the 
parameter are optional, and the syntax diagram indicates this by enclosing the parameter syntax 
within square brackets ([]). The optional parameters must be enclosed in separators (|).

• Unless otherwise noted, all URLs are case-sensitive.

• Versioning is built into the nsAPI. For the base version 1.0, the REST URLs do not have the version 
number as a parameter. However, this may change in the future releases.

• HTTP status codes and error messages are returned in the REST responses to show whether the 
requested operation succeeded or failed.

• nsAPI Java binding packages are named com.newscale.nsapi.*.

Transactional Data Agreements
Requisitions
Requisition Entries
Authorizations
Tasks

Lifecycle Center Data Service Item Details
All Service Items
Standards

Portal Designer Data Custom content tables

Entity Group Entity Type
6-2
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Overview
Filters
nsAPI supports a variety of filters for GET operations based on the entity type:

Entity Type Available Filters/Syntax REST URL Examples

All Entities Id

/id/<value>

http://serverURL/RequestCenter/nsapi/defini
tion/servicedefs/id/16

Name – exact match

/name/<value>

http://serverURL/RequestCenter/nsapi/defini
tion/servicedefs/name/Create%20Custom%2
0VM

Name – wildcard search

?name=<value>

http://serverURL/RequestCenter/nsapi/defini
tion/servicedefs?name=Create%20Custom*

Standards, 
Service Items, 
Custom Content

Any table column, with up to three 
filter expressions comprised of the 
following elements:

• Comparison Operators: =, >, <, 
>=, <=

• Relational Operators: AND, 
OR (case-insensitive, order 
precedence is not supported)

• Separator: |

/<columnName1><operator1><val
ue1>[|<AND|OR>|]<columnName2
><operator2><value2>][|<AND|O
R>|<columnName3><operator3><v
alue3>]

Date field values should be in 
mm-dd-yyyy format.

http://serverURL/RequestCenter/nsapi/standa
rd/StOperatingSystem/Custom1=Linux|AND|
Custom2=64

which can also be written as:

http://serverURL/RequestCenter/nsapi/standa
rd/StOperatingSystem/Custom1=Linux|Custo
m2=64

http://serverURL/RequestCenter/nsapi/standa
rd/StOperatingSystem/Custom1=Linux|OR|C
ustom2=64

http://serverURL/RequestCenter/nsapi/servic
eitems/serviceitemsubscription/SubmitDate>
=03-01-2011

http://serverURL/RequestCenter/nsapi/custo
mcontent/UcAnnouncementObj/Category=C
orporate

Service Items View Name

?ViewName=<value>

where possible View Names are:

• My ServiceItems (as seen in My 
Services)

• Manage ServiceItems (as seen 
in Service Item Manager)

http://serverURL/RequestCenter/nsapi/servic
eitem/SiDesktop?ViewName=My%20Servic
eItems

http://serverURL/RequestCenter/nsapi/servic
eitem/SiDesktop?ViewName=Manage%20Se
rviceItems

Organizational 
Units

OU Type

?type=<all/businessUnit/serviceTea
m>

http://serverURL/RequestCenter/nsapi/direct
ory/organizationalunits?type=serviceTeam
6-3
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Overview
Person Login Name

?loginname/<value>

http://serverURL/RequestCenter/nsapi/direct
ory/people?loginname/dsmith

OU Name

?ouname=<value>

http://serverURL/RequestCenter/nsapi/direct
ory/people?ouname=Operations

Group Name

?groupname=<value>

http://serverURL/RequestCenter/nsapi/direct
ory/people?groupname=Approvers

Role Name

?rolename=<value>

Inherited roles are not available for 
filtering.

http://serverURL/RequestCenter/nsapi/direct
ory/people?rolename=Service%20Performer

Categories Category Type

?catalogType=<serviceCatalog/offe
ringCatalog>

http://serverURL/RequestCenter/nsapi/defini
tion/categories?catalogType=serviceCatalog

Services Category Name

?categoryName=<value>

http://serverURL/RequestCenter/nsapi/defini
tion/servicedefs?categoryName=Manage%20
Physical%20Servers

Keyword

?keywordName=<value>

http://serverURL/RequestCenter/nsapi/defini
tion/servicedefs?keywordName=server

Requisitions and 
Authorizations

View Name, Status

/ViewName=<value1>[| 
Status=<value2>]

The view names available for 
filtering correspond to the list of 
views in the My Services 
Requisitions and Authorizations 
tabs.

The status filter must be used in 
conjunction with the view name 
filter and cannot be used on its own.

http://serverURL/RequestCenter/nsapi/transa
ction/requisitions/ViewName=Ordered%20fo
r%20Self

http://serverURL/RequestCenter/nsapi/transa
ction/authorizations/ViewName=Authorizati
ons%20for%20Self

http://serverURL/RequestCenter/nsapi/transa
ction/authorizations/ViewName=Authorizati
ons%20for%20Self| Status=Approved

Entity Type Available Filters/Syntax REST URL Examples
6-4
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Overview
For POST operations, the following filters are supported: 

About Name Search

For wildcard search in entity name filters (for example, ?name=<value>), leading wildcard characters 
such as “*” or “%” in the search string are ignored. If these characters are located in the middle or at the 
end of the string, they are applied in wildcard matching.

To enable the use of a leading wildcard character in name search, locate the property 
ContainsQueryInFnS in the newscale.properties file (under 
RequestCenter.war/WEB-INF/classes/config) and set the value to true: 

ContainsQueryInFnS=true

This property also controls full wildcard search support in the Service Manager and Service Link 
modules. Such search operations may negatively impact system performance and are generally not 
recommended in production environments.

Tasks View Name

?viewName=<value>

The view names available for 
filtering correspond to the list of 
system-defined views in Service 
Manager. User-defined views are 
not available for filtering.

http://serverURL/RequestCenter/nsapi/transa
ction/tasks?viewName=AvailableWork

Tasks – for a 
specific 
requisition entry

Task Type

?taskType=<value>

where possible Task Types are: all, 
delivery, authorization

Task Status (Skipped)

?showSkippedTasks=<false|true>

http://<ServerURL>/RequestCenter/nsapi/tra
nsaction/tasks/RequisitionEntryNumber=123
4?taskType=delivery&showSkippedTasks=tr
ue

Entity Type Available Filters/Syntax REST URL Examples

Entity Type Available Filters REST URL Examples

Person Login Name or Id

The filter is implicit in the 
operation and the person 
identifier is obtained from the 
request XML.

http://serverURL/RequestCenter/nsapi/dire
ctory/people/update

The same URL is used for both create and 
update actions. No person attribute needs to 
be passed in the URL.

Tasks Id

/<value>/<done |approve |reject | 
review>

The “|” indicates that exactly one 
of the possible options must be 
chosen.

http://serverURL/RequestCenter/nsapi/tran
saction/tasks/215/approve
6-5
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Overview
Associated entities are nested entities that are fetched in conjunction with the primary entity —for 
example, the OU of which a person is a member. Associated entity name filters do not support wildcard 
search. Searches on those filters return only results with an exact match, and are case-sensitive. In other 
words, wildcard characters in the search string are treated as literals during matching. For example,

/nsapi/directory/people?ouname=star*OU

returns people in the organization unit literally named “star*OU”.

/nsapi/directory/people?groupname=starGroup*

returns people in the group literally named “starGroup*”.

Sorting
Sorting controls are available for operations that return more than one row of data. As with filters, sorting 
controls are specified as parameters in the REST URL:

?sortBy=<columnName>&sortDir=<sortOrder>

• sortBy – The field name by which sorting is to be done.

• sortDir – The direction of sorting. Possible values are asc (ascending) and desc (descending).

When no sorting parameter is passed in the REST URL, the default sort field and sort order are assumed, 
as shown in the table below.

Row Id is the physical order in which the records are inserted into the service item, standard and custom 
content tables. This corresponds to the column named PrimaryID in those tables.

Entity Type Default Sort Field and Sort Order

Categories Name (Asc)

Services Name (Asc)

Offerings Name (Asc)

Agents Name (Asc)

People First Name (Asc)

Organizational Units Name (Asc)

Groups Name (Asc)

Accounts Name (Asc)

All Service Items Row Id* (Asc)

Service Item Details Row Id* (Asc)

Standards Row Id* (Asc)

Custom Content Row Id* (Asc)

Requisitions Submit Date (Asc), Requisition Id (Asc)

Requisition Entries Requisition Entry ID (Asc)

Tasks Task Name (Asc), Task Id (Asc)

Authorizations Requisition Id (Asc), Task Id (Asc)

Agreements Agreement Name (Asc)
6-6
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Overview
Service Items, Standards and Custom Content entities support sorting for all columns. Other entities 
support sorting for specific fields only. See the “Detailed API Reference” section on page 6-16 for more 
information.

Examples

/nsapi/directory/people?sortBy=lastName&sortDir=asc

returns person records listed in ascending order by their last name.

/nsapi/directory/people?sortBy=login&sortDir=desc

returns person records listed in descending order by their login name.

Paging
Paging controls are available for operations that return more than one row of data. They are also specified 
as parameters in the REST URL:

?startRow=<x>&recordSize=<y>

• startRow – The starting row from which to fetch the records. The default value is 1.

• recordSize – Number of records to be fetched at a time. The default value is set in the Portal 
Designer common settings. The maximum number of records allowed is 50.

The above parameters and the total number of records returned are shown as attributes in the root tag of 
the REST XML response, as shown in the example below:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?> 
<categories totalCount="11" recordSize="10" startRow="1">
  <category>
    <categoryId>1</categoryId> 
    <categoryName><b>Consumer Services</b></categoryName> 
    <description />
    .  .   .

If you specify a startRow greater than the number of records which would be retrieved, an HTTP 500 
error is returned. If you specify a recordSize greater than the number of records which would be 
retrieved, all rows are returned.

Examples

In the following examples, assume there are 60 services defined in Service Designer and the maximum 
number of records specified for the nsAPI setting in Portal Designer is 30.

Example 1:

/nsapi/definition/servicedefs

returns the first 30 services. Here is the how the response would look like for such a request:

<services totalCount="60" recordSize="30" startRow="1">
  .  .  . 
</services>  

Example 2:

/nsapi/definition/servicedefs?startRow=4
6-7
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Overview
returns 30 services, starting from the fourth one. Here is the how the response would look like for such 
a request:

<services totalCount="60" recordSize="30" startRow="4">
  .  .   .
</services>

Example 3:

/nsapi/definition/servicedefs?startRow=4&recordSize=5

returns 5 services, starting from the fourth one. Here is the how the response would look like for such a 
request:

<services totalCount="60" recordSize="5" startRow="4">
  .  .   .
</services>

Example 4:

/nsapi/definition/servicedefs?startRow=4&recordSize=35

returns 30 services, starting from the fourth one. Here is the how the response would look like for such 
a request:

<services totalCount="60" recordSize="30" startRow="4">
.  .   .
</services>

Nested Entities
Certain entities contain a nested structure. The retrieval of only the first-level children or associated 
entities are supported by nsAPI. Parent entities and their child entities are summarized in the table below.

For category, service or person searches that return more than one row of data in the result set, the 
associated entities are not fetched for performance reasons. The associated entities are available only in 
GET by Id or Name operations on the individual entities.

Examples

/nsapi/directory/people/loginname/<value>

returns the groups of which the person is a member:

<person>
  .  .   .
  <associatedGroups>
    <associatedGroup>

Parent Entity Child Entity (Entities)

Categories Subcategories, Included Services, and Offerings for a category

Services Categories, Keywords, and Bundled Services associated with a service

Service Offerings Categories, Keywords, Objectives, Cost Drivers, and Component Services 
associated with a service offering

Person OUs, Groups, Roles, Addresses, Contacts, Preferences, and Delegates 
associated with a person
6-8
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Invoking REST API
      <id>2</id> 
      <name>group2</name> 
    </associatedGroup>
    <associatedGroup>
  <id>5</id> 
      <name>group5</name> 
    </associatedGroup>
  </associatedGroups>
</person>

/nsapi/directory/people/id/<value>

returns the groups to which the person belongs.

/nsapi/directory/people

does not return the groups the person belongs to.

/nsapi/directory/people?ouname=<value>

does not return the groups the person belongs to.

Invoking REST API

Using nsAPI with HTTP Clients
Application authentication is required for invoking nsAPI through browsers or other HTTP clients. 

Upon successful login to Service Portal, enter a valid nsAPI REST URL in the browser address bar; for 
example: 

http://<serverURL>/RequestCenter/nsapi/definition/categories/id/3

The response XML, like the one below, is shown in the browser:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<category>
  <categoryId>3</categoryId>
  <categoryName>Workplace Services</categoryName>
  <description>Services for voice and data communications, desktop, mobile devices, and 
application access.</description>
  <topDescriptionEnabled>false</topDescriptionEnabled>
  <topDescription />
  <middleDescriptionEnabled>false</middleDescriptionEnabled>
  <middleDescription />
  <bottomDescriptionEnabled>false</bottomDescriptionEnabled>
  <bottomDescription />
  <catalogTypeId>1</catalogTypeId>
  <catalogType>Consumer Services Catalog</catalogType>
  <isRoot>false</isRoot>
  <associatedServices>
    <associatedService>
      <description>Order a new or refurbished laptop. Manager approval 
required.</description>
      <id>20</id>
      <name>New Laptop</name>
      <status>Active</status>
    </associatedService>
    <associatedService>
6-9
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Invoking REST API
      <description>Order a new iPhone or Blackberry, configured and maintained under 
corporate policy.</description>
      <id>22</id>
      <name>New Mobile Device</name>
      <status>Active</status>
    </associatedService>
  </associatedServices>
  <includedCategories>
    <includedCategory>
      <id>8</id>
      <name>Email</name>
    </includedCategory>
    <includedCategory>
      <id>9</id>
      <name>Laptops</name>
    </includedCategory>
  </includedCategories>
  <categoryURLSc>
    <a 
href='/RequestCenter/myservices/navigate.do?categoryid=3&amp;query=catalog&amp;layout=popu
p_p' onclick="return GB_showFullScreen('Category', this.href)">Workplace Services</a>
  </categoryURLSc>
  <categoryURLOnlySc>/RequestCenter/myservices/navigate.do?categoryid 
=3&amp;query=catalog</categoryURLOnlySc>
</category>

If a REST API request was executed before logging into the application, the URL would return the 
following error:

HTTP Error 401 Unauthorized

For HTTP requests made through other clients, the authentication credentials can be passed as HTTP 
header parameters to the nsAPI Login URL: 

http://<serverURL>/RequestCenter/nsapi/authentication/login

The HTTP Header must include the following parameters:

username=<username>

password=<password>

Upon successful authentication, a JSessionID cookie is returned in the HTTP response. Subsequent 
invocations of nsAPI should include the same JSessionID cookie in the request to retain the session 
without having to authenticate again.

Using nsAPI with JavaScript Portlets
nsAPI calls can be invoked in JavaScript portlets developed on the Portal Designer module. Using 
JavaScript, REST URL, AJAX, or Ext JS components, a portlet can be created to retrieve the data for the 
desired entities and rendered in a grid format.

Render Data in Ext JS Grid

Here is an example of using Ext JS to render a list of categories:

/* create the Data Store */
var store = new Ext.data.Store(<
     /* load using HTTP */
6-10
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Invoking REST API
     URL : 
'http://<serverURL>/RequestCenter/nsapi/definition/servicecatalog/categories',

     /* the return is XML, so let’s set up a reader */
     reader : new Ext.data.XmlReader(<
      root : "categorys",
      record : "category"
       >, [<
        name : "id"
         >, <
        name : "name"
         >, <
        name : "description"
         >])
  >);

/* create the grid */
var grid = new Ext.grid.GridPanel(<
     store : store,
     columns : [<
      header : "Category ID",
      dataIndex : 'id',
      sortable : true
       >, <
      header : "Category Name",
      dataIndex : "name",
      sortable : true
       >, <
      header : "Description",
      dataIndex : "description",
      sortable : true
       >],
     renderTo : '#divName#',
     width : "100%",
     autoHeight : true,
     layout : 'fit',
     viewConfig : <
    forceFit : true
     >,
     bbar : new Ext.PagingToolbar(<
      pageSize : 25,
      store : store,
      displayInfo : true,
      displayMsg : 'Displaying topics <0> - <1> of <2>',
      emptyMsg : "No topics to display"
       >)
  >);

store.load();

Get Logged-In User

Namespace variables for the currently logged-in user are available to be used in the JavaScript portlet; 
for example:

Ext.onReady(function() {
  /* Demonstrate JavaScript to get Logged-In user details */
  alert(‘PersonId: ’ +nsAPP_CurrentUserId);
  alert(‘Login name: ’ +nsAPP_CurrentUserLoginName);
  alert(‘First name: ’ +nsAPP_CurrentUserFirstName);
  alert(‘Last name: ’ +nsAPP_CurrentUserLastName);
6-11
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Invoking REST API
  alert(‘HomeOUId: ‘ +nsAPP_CurrentUserHomeOuId);
}

Using nsAPI with JSR Portlets

Authentication

When accessed through JSR portlets, the nsAPI Java client can be used to invoke the login and logout 
operations.

import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClient;
.  .   .
NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter","username",   "password" ); // Login 
by username, password.
.  .   .
.  .   .
nsApiClient.logout(); // Logout

.  .   .
NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter", 
sessionId); // Login using current session id.
.  .   .
.  .   .
nsApiClient.logout();

Get Logged-In User

Here is an example of Spring-based JSR Portlet Controller to get the details of the logged-in user:

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import org.springframework.ui.Model;
import org.springframework.stereotype.Controller;
import com.newscale.nsapi.directory.person.Person;
… 
@Controller
public class MyJSRController {
private NSApiClient nsApiClient = getNSApiClient();
public NSApiClient getNsApiClient() {
return nsApiClient;
  }
public void setNsApiClient(NSApiClient nsApiClient) {
this.nsApiClient = nsApiClient;
}
@RequestMapping("VIEW")
@RenderMapping("NORMAL")
public String viewNormal(RenderRequest request, RenderResponse response, Model model) {
 nsApiClient.login(“http://<AppServer host>:<port>/RequestCenter”, 
request.getPortletSession().getId());
// Get Currently Logged-in user from nsAPI client
Person persons  = nsApiClient.getDirectory().getCurrentUser();
// Get user info
long personId = persons.getPersonId());
long homeOUId = persons.getHomeOrganizationalUnitId());
String firstName =persons.getFirstName());    
6-12
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Invoking REST API
String lastName =persons.getLastName());  
String username =persons.getLogin());
  }
}

Get Operations

Here are some sample code snippets that illustrate the methods for fetching entities. For further details 
on these methods, see the Javadoc for the individual entity classes.

• Get person by Id

package com.newscale.nsapiclient.directory;
import com.newscale.nsapiclient.directory.person.Person;
import com.newscale.nsapi.NSApiConstants;
import com.newscale.nsapiclient.directory.Directory;
import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClient;
.  .   .

NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter","username","password");

Person person = nsApiClient.getDirectory().getPersonById(123);

/* This is the equivalent of REST URL
http://<serverURL>/RequestCenter/nsapi/directory/people/id/123
*/
.  .   .
nsApiClient.logout();

• Get person by Name

package com.newscale.nsapiclient.directory;
import com.newscale.nsapiclient.directory.person.Person;
import com.newscale.nsapi.NSApiConstants;
import com.newscale.nsapiclient.directory.Directory;
import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClient;
.  .   .
NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter","username","password");
Person person = nsApiClient.getDirectory().getPersonByLoginName("jsmith");
/* 
This is the equivalent of REST URL
http://<serverURL>/RequestCenter/nsapi/directory/people/loginname/jsmith
*/

.  .   .
nsApiClient.logout();

• Get all people

package com.newscale.nsapiclient.directory;
import com.newscale.nsapiclient.directory.person.Person;
import com.newscale.nsapi.NSApiConstants;
import com.newscale.nsapiclient.directory.Directory;
import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClient;
import java.util.List;
import org.apache.commons.collections.map.MultiValueMap;
.  .   .
NSApiClient nsApiClient = NSApiClientFactory.getInstance();
6-13
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Invoking REST API
nsApiClient.login("http://<serverURL>/RequestCenter","username","password");

PersonList persons = nsApiClient.getDirectory().getPeople(null);

/*
 This is the equivalent of REST URL
    http://<serverURL>/RequestCenter/nsapi/directory/people
*/
.  .   .
nsApiClient.logout();

• Get person with query filter

package com.newscale.nsapiclient.directory;
import com.newscale.nsapiclient.directory.person.Person;
import com.newscale.nsapi.NSApiConstants;
import com.newscale.nsapiclient.directory.Directory;
import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClientConstants;
import com.newscale.nsapiclient.NSApiClient;
import org.apache.commons.collections.map.MultiValueMap;

import java.util.List;

NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter","username","password");

MultiValueMap filterMap = new MultiValueMap();//this can be used to specify multiple 
filter criteria
filterMap.put(NSApiClientConstants.QUERYPARAM_NAME, "John");
PersonList persons = nsApiClient.getDirectory().getPeople(filterMap);

/*
 This is the equivalent of REST URL
http://<serverURL>/RequestCenter/nsapi/directory/people?name=John
*/
.  .   .
nsApiClient.logout();

• Get person with multiple query filters

package com.newscale.nsapiclient.directory;
import com.newscale.nsapiclient.directory.person.Person;
import com.newscale.nsapi.NSApiConstants;
import com.newscale.nsapiclient.directory.Directory;
import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClientConstants;
import com.newscale.nsapiclient.NSApiClient;
import org.apache.commons.collections.map.MultiValueMap;

import java.util.List;
.  .   .
NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter","username","password");

MultiValueMap filterMap = new MultiValueMap();
filterMap.put(NSApiClientConstants.QUERYPARAM_NAME, "John");
filterMap.put(NSApiClientConstants.QUERYPARAM_SORTBY, "lastName");
filterMap.put(NSApiClientConstants.QUERYPARAM_SORTDIR, "asc");
PersonList persons = nsApiClient.getDirectory().getPeople(filterMap);

// This is the equivalent of REST URL
//    http://<serverURL>/RequestCenter/nsapi/directory/people?name 
//    =John&sortBy=lastName&sortDir=asc 
6-14
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Invoking REST API
// search for people by the name John, 
// sort the result set by Last Name in ascending order
.  .   .
nsApiClient.logout();

Post Operations

Here are some sample code snippets that illustrate the methods for creating/updating a person and taking 
actions on tasks. For further details on these methods, see the Javadoc for the individual entity classes.

• Update person

package com.newscale.nsapiclient.directory;
import com.newscale.nsapiclient.directory.person.Person;
import com.newscale.nsapi.NSApiConstants;
import com.newscale.nsapiclient.directory.Directory;
import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClient;
.  .   .
NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter","username","password");
Person person = NSApiClient.getDirectory().getPersonById(123);
person.setLastName("Smith");
Person persons = NSApiClient.getDirectory().updatePerson(person);
/* 
This is the equivalent of posting XML of person 123 with last name changed to "Smith" to 
the REST URL
http://<serverURL>/RequestCenter/nsapi/directory/people/update
*/
.  .   .
nsApiClient.logout();

• Complete delivery task

package com.newscale.nsapiclient.transaction;
import com.newscale.nsapiclient.transaction.task.TaskAction;
import com.newscale.nsapi.NSApiConstants;
import com.newscale.nsapiclient.transaction.Transaction;
import com.newscale.nsapiclient.NSApiClientFactory;
import com.newscale.nsapiclient.NSApiClientConstants;
import com.newscale.nsapiclient.NSApiClient;
import org.apache.commons.collections.map.MultiValueMap;

import java.util.List;
.  .   .
NSApiClient nsApiClient = NSApiClientFactory.getInstance();
nsApiClient.login("http://<serverURL>/RequestCenter","username","password");

// This is the equivalent of REST URL
//    http://<serverURL>/RequestCenter/nsapi/tasks/10/done

NSApiClient.getTransaction().completeTask(10);
.  .   .
nsApiClient.logout();
6-15
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Detailed API Reference
The javadoc for nsAPI can be located in the Image folder of the product installer. Examples for invoking 
the nsAPI through REST URL and Java client are provided below for each of the supported entities.

Definitional Data

Categories

Area Examples

Core API Get all categories

By default only categories of type “Service Catalog” are returned.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/categories

Java Example:

CategoryList categories = NSApiClient.getDefinition().getCategories(null);

Gets all consumer service categories

Returns all categories of “Consumer Services” type.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/categories

Java Example:

CategoryList categories =  
NSApiClient.getDefinition().getCategories("serviceCatalog");

Gets all service offering categories

Returns all categories of “Service Offerings” type

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/categories?catalogType 
=offeringCatalog

Java Example:

CategoryList categories =  
NSApiClient.getDefinition().getCategories("offeringCatalog");

Get consumer service category by Name

Returns a service catalog category with the name specified. Nested entities 
(subcategories and included services) are fetched.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/categories/name/<categoryName>

Java Example:

Category categories = 
NSApiClient.getDefinition().getCategoryByName("<categoryName>");
6-16
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Gets consumer service category by Id

Returns a service catalog category with the Id specified. Nested entities (subcategories 
and included services) are fetched.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/categories/id/<categoryId>

Java Example:

Category categories = NSApiClient. 
getDefinition().getCategoriesById(<categoryId>);

Gets service offering category by Name

Nested entities (subcategories and included offerings) are included. Returns a service 
offering category with the name specified.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/categories/name/<categoryName>
?catalogType=offeringCatalog 

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put(QUERYPARAM_CATALOG_TYPE, "offeringCatalog");
Category categories = 
NSApiClient.getDefinition().getCategoryByName("<categoryName>");

Filters Category Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard is 
applied.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/categories?name=<wildcardValue
>&catalogType=serviceCatalog

Java Example:
MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put(QUERYPARAM_CATALOG_TYPE, "serviceCatalog");
paramsMap.put(QUERYPARAM_NAME, "<wildcardValue>");
CategoryList categories =  
NSApiClient.getDefinition().getCategories(paramsMap);

Area Examples
6-17
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Services

Sort 
Column(s)

Category Name

Response 
XML

<categories totalCount="x" recordSize="y" startRow="z">
  <category>
    .  .   .
    <associatedServices>
   .  .   .
  <associatedService>
    <description> </description> 
    <id></id> 
    <imageURL></imageURL> 
    <name> </name> 
    <status> </status> 
  </associatedService>
      .  .   .
     </associatedServices>
       .  .   .
  </category>
</categories>

Area Examples

CoreAPI Get all services

Returns all services.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/servicedefs

Java Example:

ServiceList services = NSApiClient.getDefinition().getServices(null);

Get all services by service catalog wildcard search

Returns all services with service name, service description, category, or keyword that 
matches the search string. Leading wildcard is not supported.

REST URL: 

http://<ServerURL>/RequestCenter/nsapi/definition/servicedefs?search={wildcardValue
*}

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("search", "<wildcardValue*>");
ServiceList services = NSApiClient.getDefinition().getServices(paramsMap);

Area Examples
6-18
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Get service by Id

Nested entities (associated categories and keywords) are fetched for getById and 
getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/servicedefs/id/<serviceId>

Java Example:

Service services = NSApiClient.getDefinition().getServiceById(<serviceId>);

Get service by Name

Nested entities (associated categories and keywords) are fetched for getbyId and 
getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/servicedefs/name/<serviceName>

Java Example:

Service services = 
NSApiClient.getDefinition().getServiceByName("<serviceName>");

Get all services in a category

Returns all services associated with the category

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/servicedefs?CategoryName=<categ
oryName>

Java Example:

ServiceList services 
=NSApiClient.getDefinition().getServiceByCategoryName("<categoryName>");

Gets all services by keyword

Returns all services associated with the keyword

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/servicedefs?KeywordName=<keyw
ord>

Java Example:

ServiceList services = 
NSApiClient.getDefinition().getServiceByKeyword("<keyword>");

Area Examples
6-19
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Filters Services Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard should be 
supplied if needed.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/servicedefs?name=<wildcardValue>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("name","<wildcardValue*>");
ServiceList servicesList = NSApiClient.getDefinition().getServices(paramsMap)

Sort 
Column(s)

Service Name

Response 
XML

<services totalCount="x" recordSize="y" startRow="z"> 
  <service>
    .  .   .
    <includedServices>
      .  .   .
      <includedService>
    <id></id> 
    <name> </name> 
      </includedService>
      .  .   .
    </includedServices>
    .  .   .
  </service>
</services>

Area Examples
6-20
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Service Offerings

Area Examples

CoreAPI Get all service offerings

Returns all service offerings.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/serviceofferings

Java Example:

BusinessServiceList offerings = 
NSApiClient.getDefinition().getBusinessServices(null);

Get service offering by Id

Nested entities (associated categories and keywords) are fetched for getById and 
getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/serviceofferings/id/<offeringId>

Java Example:

BusinessService offerings = 
NSApiClient.getDefinition().getBusinessServiceById(<offeringId>);

Get service offering by Name

Nested entities (associated categories and keywords) are fetched for getById and 
getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/serviceofferings/name/<offeringNa
me>

Java Example:

BusinessService of= 
NSApiClient.getDefinition().getBusinessServiceByName("<offeringName>");

Filters Offering Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard should be 
supplied if needed.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/serviceofferings?name=<wildcardV
alue>

Java Example:

BusinessServiceList offer = 
NSApiClient.getDefinition().getBusinessServicesByFilter("<wildcardValue>");
6-21
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Agents

Sort 
Column(s)

Offering Name

Response 
XML

<serviceOfferings totalCount="x" recordSize="y" startRow="z">
  <serviceOffering>
    .  .   .
  </serviceOffering>
</serviceOfferings>

Area Examples

CoreAPI Get all agents

Returns all agents.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agents

Java Example:

AgentList agents = NSApiClient.getDefinition().getAgents(null);

Get agent by Id

Outbound and inbound properties are fetched for getById and getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agents/id/<agentId>

Java Example:

Agent agents = NSApiClient.getDefinition().getAgentById(<agentId>);

Get agent by Name

Outbound and inbound properties are fetched for getById and getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agents/name/<agentName>

Java Example:

Agent Agents = NSApiClient.getDefinition().getAgentByName("<agentName>");

Filters Agent Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard should be 
supplied if needed.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agents?name=<wild cardValue>

Java Example:

AgentList agents = 
NSApiClient.getDefinition().getAgentsByFilter("<wildcardValue>");

Area Examples
6-22
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Agreements

Sort 
Column(s)

Agent Name

Response 
XML

<agents totalCount="x" recordSize="y" startRow="z">
  <agent>
    .  .   .
  </agent>
</agents>

Area Examples

CoreAPI Gets all agreements

Returns all agreements.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agreements

Java Example:

AgreementList agreements = NSApiClient.getDefinition().getAgreements(null);

Get agreement by Id

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agreements/id/<agreementId>

Java Example:

Agreement agreements = 

NSApiClient.getDefinition().getAgreementById(<agreementId>);

Get agreement by Name

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agreements/name/<agreementName>

Java Example:

Agreement agreements = 
nsclient.getDefinition().getAgreementByName("<agreementName>");

Filters Agreement Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard should be 
supplied if needed.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/definition/agreements?name=<wildcardValue>

Java Example:

AgreementList agreements = NSApiClient.getDefinition().getAgreementsByFilter 
("<wildcardValue>");

Area Examples
6-23
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Directory Data

Person

Sort 
Column
(s)

Agreement Name

Response 
XML

<agreements totalCount="x" recordSize="y" startRow="z">
  <agreement>
    .  .   .
  </agreement>
</agreements>

Area Examples

CoreAPI Get all people

Returns all people.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/people

Java Example:

PersonList person = NSApiClient.getDirectory().getPeople(null);

Get person by Id

Returns the person with the specified Person Id.

Nested entities (OUs, Groups, Roles, Addresses, Contact, and Preferences) are fetched.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/people/id/<personId>

Java Example:

Person persons = NSApiClient.getDirectory().getPersonById(<personId>); 

Get person by LoginName

Returns the person with the LoginName specified.

Nested entities (OUs, Groups, Roles, Addresses, Contact, and Preferences) are fetched. 

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/people/loginname/<loginName>

Java Example:

Person persons = 
NSApiClient.getDirectory().getPersonByLoginName("<loginName>");

Area Examples
6-24
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Get logged-in user

Returns the person who is currently logged in.

REST URL:

http://<serverURL>/RequestCenter/nsapi/directory/people/currentuser

Java Example:

Person person  = NSApiClient.getDirectory().getCurrentUser();

Special 
Conditions

Create/Update Person

Obtain person XML from the response of any of the GET person REST URLs mentioned 
above.

POST person XML to the update person REST URL to create or modify a person.

If the person exists (identified by login or personId in the XML), an update operation is 
performed; otherwise a new person is created.

In the create operation, the following five elements are required:

• firstName

• lastName

• homeOrganizationalUnitName

• email

• login 

In the create operation, the password of the person is the set to the login name.

Changes to the Home OU in update operation replace the Home OU of the Person. Other 
associated OUs, Groups, and Roles are ignored in both the create and update operations.

For Home OU, TimeZone, Locale, Supervisor, Authorization Delegate, Login Module, 
Contact, and Address attributes, the following rules apply:

• If an id element is sent in the XML but not found in the database, an exception with 
proper message is thrown.

• If the id element is not found, the Name element sent in the XML is used instead. An 
exception is thrown if the name is not found in the database.

• If neither id nor name element is in the XML and the attribute is optional, the attribute 
is ignored in the create/update operation (HomeOU is mandatory).

• If the create/update operation fails due to incorrect or missing data sent in the XML, 
the HTTP status code returns “422 Unprocessable Entity”.

POST REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/people/update

Java Example:

Person person = NSApiClient.getDirectory().getPersonById(<personId>);
person.setLastName("<lastName>");
Person persons = NSApiClient.getDirectory().updatePerson(person);

Area Examples
6-25
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Filters OU Name Filters

Search is case sensitive and uses exact match .

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/people?ouname=<ouName>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("ouname", "<ouName>");
PersonList person = NSApiClient.getDirectory().getPeople(paramsMap);

Group Name Filters

Search is case sensitive and uses exact match.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/people?groupname=<groupName>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("groupname", "<groupName>");
PersonList person = NSApiClient.getDirectory().getPeople(paramsMap);

Role Name Filters

Search is case sensitive and uses exact match.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/people?rolename=<roleName>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("rolename", "<roleName>");
PersonList person = NSApiClient.getDirectory().getPeople(paramsMap);

Sort 
Column(s)

First Name, Last Name, Login Name

XML 
Response

<people totalCount="x" recordSize="y" startRow="z">
  <person>
    .  .   .
    <contacts>
      .  .   .
      <contact>
        <contactId></contactId> 
        <contactType></contactType> 
        <contactTypeId></contactTypeId> 
        <value></value> 
      </contact>
        .  .   .
    </contacts>
    .  .   .
  </person>

</people>

Area Examples
6-26
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Organizational Unit

Area Examples

CoreAPI Get all organizational units

Returns all organizational units.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/organizationalunits

Java Example:

OrganizationalUnitList Ou = 
NSApiClient.getDirectory().getOrganizationalUnits(null);

Get organizational unit by Id

Nested entities (suborganizational units) are fetched for getById and getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/organizationalunits/id/<ouId>

Java Example:

OrganizationalUnit Ou = 
NSApiClient.getDirectory().getOrganizationalUnitById(ouId); 

Get organizational unit by Name

Nested entities (suborganizational units) are fetched for getById and getByName only.

The Service Team OU is returned if two OUs with the same name but of different types 
are found.

The optional parameter ?type=<businessUnit/serviceTeam> may also be specified (“all” is 
not allowed in the type parameter value).

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/organizationalunits/name/<ouName>

Java Example:

OrganizationalUnit Ou = 
NSApiClient.getDirectory().getOrganizationalUnitByName("<ouName>");

Get OUs by Type

Returns all organizational units of the OU type specified.

Possible values: “all”, “businessUnit”, “serviceTeam”.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/organizationalunits?type=<ouType>

Java Example:

OrganizationalUnitList Ou = 
NSApiClient.getDirectory().getOrganizationalUnitByType("<ouType>");
6-27
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Groups

Filters Organizational Unit Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard should be 
supplied if needed.

The option parameter ?type=<businessUnit/serviceTeam> may also be specified with 
wildcard name search.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/organizationalunits?name=<wildcard
Value>

Java Example:

OrganizationalUnitList Ou = 
NSApiClient.getDirectory().getOrganizationalUnitsByFilter("<wildcardValue>");

Sort 
Column(s)

Organizational Unit Name

Response 
XML

<organizationalunits totalCount="x" recordSize="y" startRow="z">
  <organizationalunit>
     .  .   .
  </organizationalunit>
</organizationalunits>

Area Examples

CoreAPI Get all groups

Returns all groups.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/groups

Java Example:

GroupList groups = NSApiClient.getDirectory().getGroups(null);

Get group by Id

Nested entities (subgroups) are fetched for getById and getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/groups/id/<groupId>

Java Example:

Group groups = NSApiClient.getDirectory().getGroupsById(<groupId>);

Area Examples
6-28
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Get group by Name

Nested entities (subgroups) are fetched for getById and getByName only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/groups/name/<groupName>

Java Example:

Group groups = NSApiClient.getDirectory().getGroupsByName("<groupName>");

Filters Group Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard should be 
supplied if needed.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/groups?name=<wild cardValue>

Java Example:

GroupList groups = 
NSApiClient.getDirectory().getGroupsByFilter("<wildcardValue>");

Sort 
Column(s)

Group Name

Response 
XML

<groups totalCount="x" startRow="y" recordSize="z">
  <group>
    .  .   .
  </group>
<groups>

Area Examples
6-29
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Accounts

Area Examples

CoreAPI Get all Accounts

Returns all accounts.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/accounts

Java Example:

AccountList accounts = NSApiClient.getDirectory().getAccounts(null);

Get account by Id

Nested entities (associated organizational units) are fetched for getById and getByName 
only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/accounts/id/<accountId>

Java Example:

Account accounts = NSApiClient.getDirectory().getAccountsById(<accountId>);

Get account by Name

Nested entities (associated organizational units) are fetched for getById and getByName 
only.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/accounts/name/<accountName>

Java Example:

Account accounts = 
NSApiClient.getDirectory().getAccountsByName("<accountName>");

Filters Group Name Filters

Search is case sensitive.

StartsWith (ContainsQueryInFnS=false in newscale.properties): leading wildcard is 
ignored.

Contains (ContainsQueryInFnS=true in newscale.properties): leading wildcard should be 
supplied if needed.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/directory/accounts?name=<wild cardValue>

Java Example:

AccountList accounts = 
NSApiClient.getDirectory().getAccountsByFilter("<wildcardName>");

Sort 
Column(s)

Account Name

Response 
XML

<accounts totalCount="x" startRow="y" recordSize="z">
  <account>
    .  .   .
  </account>
</accounts>
6-30
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Transactional Data

Requisitions

Area Examples

CoreAPI Get requisitions for the current user

Get requisitions with the default filter, that is:

ViewName = Ordered for Self

Status = Ongoing

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/requisitions

Java Example:

RequisitionList requisitions = 
NSApiClient.getTransaction().getRequisitions(null);

Get requisition by Id

RBAC checking is applied against logged-in user.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/requisitions/id/<requisitionId>

Java Example:

Requisition requisitions = 
NSApiClient.getTransaction().getRequisitionsById(<requisitionId>);
6-31
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Filters View and Status Filters

The views and statuses available for filtering correspond to those in the My Services 
Requisitions tabs.

If Status is not specified, “Ongoing” is used.

If ViewName is not specified, “Ordered for Self” is used.

Possible values for ViewName:

• Ordered for Self – Requisitions for the current user.

• Ordered for Others – Requisitions submitted by the current user for others (via Order 
on Behalf).

• Ordered for my unit – Requisitions for people in the OUs the current user belongs to 
(the view returns data for other people only if the user has the “See Requisitions for 
My Business Units” capability).

Possible values for Status: Ongoing, Preparation, Ordered, Closed, Cancelled, Rejected, 
All.

If an incorrect value is given, the default values (“Ongoing” and “Ordered for Self”) are 
used.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/requisitions/ViewName=<viewNa
me>[|AND|Status=<status>]

Java Example:

String filterString = "ViewName=<viewName>|AND|Status=<status>";
RequisitionList requisitons = 
NSApiClient.getTransaction().getRequisitionsByFilter(filterString);

Sort 
Column(s)

Customer Name, Owner (Initiator) Name, Requisition ID, Service Name, Started Date, 
Status, Submit Date

Response 
XML

<requisitions totalCount="x" recordSize="y" startRow="z">
  <requisition>
    .  .   .
  </requisition>
</requisitions>

Area Examples
6-32
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Requisitions Entries

Area Examples

CoreAPI Get Requisition Entry By Id

RBAC checking is applied against the current user.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/requisitionentries/id/<reqEntryId>

Java Example:

RequisitionEntry requisitonEntry = 
NSApiClient.getTransaction().getRequisitionEntryById(<reqEntryId>);

Get Requisition Entries By Requisition Id

RBAC checking is applied against the current user.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/requisitionentries/RequisitionNum
ber=<reqId>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("startRow", "1"); //optional
paramsMap.put("recordSize","10"); //optional
String filterString = "RequisitionNumber=" + <reqId>;
RequisitionEntryList requisitonEntries = 
NSApiClient.getTransaction().getRequisitionEntries(paramsMap, filterString);

Filters Not applicable

Sort 
Column(s)

Due On, Requisition Entry ID

Response 
XML

<requisitionEntries totalCount="x" recordSize="y" startRow="z">
   <requisitionEntry>
      . . .
   </requisitionEntry>
</requisitionEntries>
6-33
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Authorizations

Area Examples

CoreAPI Get authorizations for the current user

Gets authorizations with the default filter, that is:

ViewName = Authorizations for Self

Status = Ongoing

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/authorizations

Java Example:

AuthorizationList authorizations = 
NSApiClient.getTransaction().getAuthorizations(null);

Get authorization by Id

RBAC checking is applied against the current user.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/authorizations/id/<taskId>

Java Example:

Authorization authorizations = 
NSApiClient.getTransaction().getAuthorizationsById(<taskId>);

Get related authorization tasks (approval chain) by Id

RBAC checking is applied against the current user.

If the Id passed is for an authorization task at the requisition level (departmental 
authorization, departmental review, financial authorization), all requisition-level 
authorization tasks of that particular requisition are returned.

If the Id passed is for an authorization task at the requisition entry level (service group 
authorization, service group review), all requisition entry-level authorization tasks of that 
particular requisition entry are returned.

The default sorting is in descending order of Due On.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/authorizations?taskId=<taskId>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("startRow", "" + 1);    //optional
paramsMap.put("recordSize", "" +10);  //optional
paramsMap.put("sortBy", "dueOn");     //optional
paramsMap.put("sortDir", "asc"); //optional
paramsMap.put("taskId", "<taskId>");
Authorization authorizations =
NSApiClient.getTransaction().getAuthorizations (paramsMap);
6-34
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Filters View and Status Filters

The views and statuses available for filtering correspond to those in the My Services 
Authorizations tabs.

If Status is not specified, it is set to “Ongoing”.

If ViewName is not specified, it is set to “Authorizations for Self”.

Possible values for ViewName:

• Authorizations for Self – Authorizations assigned to the current user.

• Assigned and Unassigned Authorizations for Self – Authorizations assigned to the 
current user or the queues which the user has access to.

• Authorizations for Others – Authorizations assigned to people in the OUs the current 
user belongs to (the view returns data only if the user has the “See Authorizations for 
My Business Units” capability).

Possible values for Status: Ongoing, Approved, Rejected, Canceled, Reviewed, All. 

If an incorrect value is given the default values (“Ongoing” and “Authorizations for Self”) 
are used.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/authorizations/ViewName=<view
Name>[|AND|Status=<status>]

Java Example:

String filterString = "ViewName=<viewName>|AND|Status=<status>";
AuthorizationList authorizations =
NSApiClient.getTransaction().getAuthorizationsWithFilters(filterString);

Sort 
Column(s)

Customer Name, Due On, Performer Name, Priority, Requisition ID

Response 
XML

<authorizations totalCount="x" recordSize="y" startRow="z" />
  <authorization>
     .  .   .
  </authorization>
</authorizations>

Area Examples
6-35
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Tasks

Area Examples

CoreAPI Get tasks for in the current user

Gets tasks with the default filter, that is:

ViewName = AvailableWork

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks

Java Example:

TaskList tasks = NSApiClient.getTransaction().getDeliveryTasks(null);

Get task by Id

RBAC checking is applied against the current user.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks/id/<taskId>

Java Example:

TaskFull tasks = NSApiClient.getTransaction().getDeliveryTaskById(<taskId>);

Get tasks by Requisition Entry Id

RBAC checking is applied against the current user.

The default sorting is in ascending order of Activity Id.

Parameters and possible values:

• showSkippedTasks: false (default), true

• taskType: all (default), delivery, authorization

• showNestedTasks: false, true (default)

When the parameter is set to true, delivery tasks are returned with the nested 
parent-child hierarchy maintained in the XML structure.

• showChildDeliveryPlan: false (default), true

This applies to bundle services only. When the parameter is set to true, the delivery 
tasks for all included services are also returned.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks/RequisitionEntryNumber=
<reqEntryId>?taskType=<taskType>&showSkippedTasks=<false|true>&showNestedT
asks=<false|true>&showChildDeliveryPlan=<false|true>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("taskType", "delivery"); //optional
paramsMap.put("showSkippedTasks", "true"); //optional
paramsMap.put("showNestedTasks", "true"); //optional
paramsMap.put("sortBy", "dueOn"); //optional
paramsMap.put("sortDir", "desc"); //optional
String filterString = "RequisitionEntryNumber=" + <reqEntryId>;
TaskList tasks = NSApiClient.getTransaction().getAuthAndDeliveryTasks 
(paramsMap, filterString);
6-36
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Get milestones by Requisition Id

RBAC checking is applied against the current user.

Delivery process milestones (reviews, authorizations, delivery projects) are returned in 
the chronological order. No sorting and paging is supported.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks/RequisitionNumber=<reqI
d>

Java Example:

String filterString = "RequisitionNumber=" + <reqId>;
MilestoneList milestones = 
NSApiClient.getTransaction().getDeliveryProcessForMilestone (filterString);

Special 
Conditions

Approve Tasks

Perform an HTTP POST with the action and task Id in the REST URL. 

POST REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks /<taskId>/approve

Java Example:

TaskAction approve = NSApiClient.getTransaction().approveTask(<taskId>);

Reject Tasks

Perform an HTTP POST with the action and task Id in the REST URL.

POST REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks/<taskId>/reject

Java Example:

TaskAction Reject = NSApiClient.getTransaction().rejectTask(<taskId>);

Complete Tasks

Perform an HTTP POST with the action and task Id in the REST URL.

POST REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks/<taskId>/done

Java Example:

TaskAction Complete = NSApiClient.getTransaction().completeTask(<taskId>);

Review Tasks

Perform an HTTP POST with the action and task Id in the REST URL.

POST REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks/<taskId>/review

Java Example:

TaskAction Review = NSApiClient.getTransaction().reviewTask(<taskId>);

Area Examples
6-37
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Filters View Filters

The views available for filtering correspond to those in the Service Manager module. 
User-defined views may not be used.

If the ViewName filter is not specified, it is set to AvailableWork.

Possible values for ViewName: AvailableWork, MyWork, MyLateWork, WorkForeCast 

If an incorrect value is given the default value is used.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/transaction/tasks?viewName=<viewName>

Java Example:

MultiValueMap paramsMap = new MultiValueMap();
paramsMap.put("ViewName", "<viewName>");
TaskList tasks = NSApiClient.getTransaction().getDeliveryTasks(paramsMap);

Sort 
Column(s)

Activity ID, Completed On, Customer Name, Customer OU Name, Due On, Effort, 
Initiator Name, Performer Name, Priority, Requisition ID, Scheduled Start Date, Service 
Name, Task Name, Task Type

Response 
XML

<tasks totalCount="x" recordSize="y" startRow="z">
  <task>
    .  .   .
  </task>
</tasks>

Area Examples
6-38
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Lifecycle Center Data

Service Item Details

Area Examples

CoreAPI Get by Name

Returns the details and subscription data of service item instances assigned to the current 
user for the service item name specified.

If the user also has the capability “View Service Items for My Business Units”, the 
services items for people in all the OUs to which the user belongs are returned. 

The service item name parameter accepts the internal table name of the service item as 
shown in the Name field on the Design Service Item page (for example, 
SiVirtualMachine).

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitem/<serviceItemName>

Java Example:

ServiceItemDTO serviceItems = 
NSApiClient.getServiceItem().getServiceItemData("<serviceItemName>", null);

View Filters

The views available for filtering correspond to what the user sees in My Services and 
Service Item Manager modules.

Possible values for ViewName:

• My ServiceItems – All instances of the service item the current user owns. Users who 
have the “View Service Items for My Business Units” capability also may view the 
items owned by other people in the OUs they belong to.

• Manage ServiceItems – All instances of the service item (the view returns the data 
only if the user has the “Manage Service Item Instances” capability).

The ViewName argument should be placed at the end if other arguments such as sort order 
or page size are also specified.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitem/<serviceItemName>?ViewName=
<viewName>

Java Example:

ServiceItemDTO serviceItems = 
NSApiClient.getServiceItem().getServiceItemDataWithFilters("<serviceItemName>
", "<viewName>");
6-39
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Filters Service item attribute filters

Supports up to 3 filters.

Supports all service item and subscription columns.

Does not support filter by Service Item Classification Name (group) or Service Item Type 
(Cisco reserved or user-defined).

REST URL:

Comparison Operators:

Number/Date columns: =, >, <, >=, <= 

String columns: = (case-sensitive; like, contains and starts-with operators are explained 
below)

Relational Operators: AND, OR (case-insensitive, order precedence is not supported)

Separator = |

Allowed Columns: All columns in service item and subscription

http://<ServerURL>/RequestCenter/nsapi/serviceitem/<serviceItemName> 
/<columnName1><operator1><value1>[|<AND|OR>|<columnName2><operator2><val
ue2>][|<AND|OR>|<columnName3><operator3><value3>]

Java Example:

String filter = 
"<columnName1><operator1><value1>|<and|or>|<columnName2><operator2><value2>|<
and|or>|<columnName3><operator3><value3>";
ServiceItemDTO serviceItems = 
NSApiClient.getServiceItem().getServiceItemDataWithFilters("<serviceItemName>
", filter);

String column filters

Filter for % (starts with ) operator.

Filter for * (Contains) operator.

Does not support (ends with) operator.

Examples:

Name=service* 

Name=*g* 

Name=*g – not allowed

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitem/<serviceItemName> 
/<columnName>=<wildcardValue>

Java Example:

ServiceItemDTO serviceItems = 
NSApiClient.getServiceItem().getServiceItemDataWithFilters("<serviceItemName>
",

Area Examples
6-40
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Date column attributes

Date field values should be in mm-dd-yyyy format.

Comparison Operators: =, >, <, <=, >=  

Example:

SubmittedDate=12-10-2010

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitem/<serviceItemName> 
/<columnName><operator><mm-dd-yyyy>

Java Example:

ServiceItemDTO serviceItems = 
NSApiClient.getServiceItem().getServiceItemDataWithFilters("<serviceItemName>
", "<columnName><operator><mm-dd-yyyy>");

Sort 
Column(s)

Service item attributes: All table columns.

Subscription: Assigned Date, Display Name, ID (internal ID), Requisition ID, Submit 
Date.

Response 
XML

<serviceitem totalCount="x" recordSize="3" startRow="1" id="62">
  <logicName></logicName>
  <name></name>
  <subscription>
      .  .   .
    <assignedDate> </assignedDate> 
    <assignedDateRaw></assignedDateRaw> 
    <customerID></customerID> 
    <customerName> </customerName> 
    <displayName> </displayName> 
    <id></id> 
    <organizationalUnitID></organizationalUnitID> 
    <organizationalUnitName> </organizationalUnitName> 
    <requisitionEntryID></requisitionEntryID> 
    <requisitionID></requisitionID> 
   <serviceItemClassificationID></serviceItemClassificationID>
   <serviceItemTypeID></serviceItemTypeID> 
   <serviceItemTypeName> </serviceItemTypeName> 
   <submittedDate> </submittedDate> 
   <submittedDateRaw></submittedDateRaw> 
     .  .   .
  </subscription>
</serviceitem>

Area Examples
6-41
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
All Service Items

Area Examples

CoreAPI Get all items

Shows all Subscription and Service Item data.

By default, filters only the Service Items assigned to the current user. If the user also has 
the “View Service Items for My Business Units” capability, the service items for other 
people in all the OUs the user belongs to are also returned.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitems/serviceitemsubscription

Java Example:

ServiceItemSubscriptionList AllserviceItems = 
NSApiClient.getServiceItemSubscription().getServiceItemSubscriptionData(null)
;

Filters View Filters

The views available for filtering correspond to what user sees in My Services and Service 
Item Manager modules respectively.

Possible values for ViewName:

• My ServiceItems – All service items the current user owns. Users who have the “View 
Service Items for My Business Units” get also the items owned by other people in the 
OUs they belong to.

• Manage ServiceItems – All service items (the view returns the data only if the user has 
the “Manage Service Item Instances” capability).

The ViewName argument should be placed at the end if other arguments such as sort order 
or page size are also specified.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitems/serviceitemsubscription?ViewNa
me=<viewName>

Java Example:

ServiceItemSubscriptionList AllserviceItems = 
NSApiClient.getServiceItemSubscription().getServiceItemSubscriptionFilterData
("<viewName>"); 
6-42
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Subscription filters

Filters for all Service Item Subscription table columns.

Supports up to 3 filters.

REST URL:

Comparison Operators:

• Number/Date columns: =, >, <, >=, <= 

• String columns: = (case-sensitive; like, contains and starts-with operators are 
explained below)

Relational Operators: AND, OR (case-insensitive, order precedence is not supported)

Filter Separator: |

Supported Columns: All columns

http://<ServerURL>/RequestCenter/nsapi/serviceitems/serviceitemsubscription/<column
Name1><operator1><value1>[|<AND|OR>|<columnName2><operator2><value2>][|<A
ND|OR>|<columnName3><operator3><value3>]

Java Example:

String filter = " 
<columnName1><operator1><value1>|<and|or>|<columnName2><operator2><value2>|<a
nd|or>|<columnName3><operator3><value3>";
ServiceItemSubscriptionList AllserviceItems = 
NSApiClient.getServiceItemSubscription().getServiceItemSubscriptionFilterData
(filter);

String column filters

Support % (starts with) operator.

Support * (Contains) operator.

Does not support (ends with) operator.

Examples: 

Name=service*                  
Name=*g*
Name=*g -- not allowed

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitems/serviceitemsubscription 
/<columnName>=<wildcardValue>

Java Example:

String filter = "<columnName>=<wildcardValue>";
ServiceItemSubscriptionList AllserviceItems = 
NSApiClient.getServiceItemSubscription().getServiceItemSubscriptionFilterData
(filter);

Area Examples
6-43
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Date column filters

Date field values should be in mm-dd-yyyy format.

Comparison Operators: =, >, <, <=, >=  

Example: 

SubmittedDate=12-10-2010

REST URL:

http://<ServerURL>/RequestCenter/nsapi/serviceitems/serviceitemsubscription 
/<columnName><operator><mm-dd-yyyy>

Java Example:

String filter = "<columnName><operator><mm-dd-yyyy>";
ServiceItemSubscriptionList AllserviceItems = 
NSApiClient.getServiceItemSubscription().getServiceItemSubscriptionFilterData
(filter);

Sort 
Column(s)

Assigned Date, Customer ID, Display Name, Organizational Unit ID, Requisition ID, 
Requisition Entry ID, Service Item Classification ID, Service Item ID, Service Item Type 
ID, Service Item Type Name, Submitted Date

Response 
XML

<AllServiceItems totalCount="x" recordSize="y" startRow="z">
  <serviceitemsubscription displayName=" " id="">
      .  .   .
    <serviceItemTypeName> </serviceItemTypeName> 
    <organizationalUnitID></organizationalUnitID> 
    <assignedDate> </assignedDate> 
    <requisitionID></requisitionID> 
    <submittedDate> </submittedDate> 
    <submittedDateRaw></submittedDateRaw> 
    <assignedDateRaw></assignedDateRaw> 
    <customerID></customerID> 
    <requisitionEntryID></requisitionEntryID>  
    <serviceItemID></serviceItemID> 
    <serviceItemTypeID></serviceItemTypeID> 
    <organizationalUnitName> </organizationalUnitName> 
    <customerName> </customerName> 
    <serviceitem id="">
    <logicName> </logicName> 
    <name> </name> 
    <serviceItemData rowId="">
    <serviceItemAttribute name=" "> </serviceItemAttribute> 
      .  .   .
  </serviceitemsubscription>
</AllServiceItems>

Area Examples
6-44
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Standards

Area Examples

CoreAPI Get by Name

By default returns the first 50 entries for the specified Standard.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/standard/<standardName>

Java Example:

StandardDTO standards = 
NSApiClient.getStandard().getStandardData("<standardName>", null);

Filters Supports up to three filters.

REST URL:

Comparison Operators:

• Number/Date columns: =, >, <, >=, <= (case-sensitive)

• String columns: = (like, contains and starts-with operators are explained below)

Relational Operators: AND, OR (case-insensitive, order precedence is not supported)

Filter Separator: |

Supported Columns: All columns

http://<ServerURL>/RequestCenter/nsapi/standard/<standardName>/<columnName1><
operator1><value1>[|<AND|OR>|<columnName2><operator2><value2>][|<AND|OR>|
<columnName3><operator3><value3>]

Java Example:

String filter: 
"<columnName1><operator1><value1>|<and|or>|<columnName2><operator2><value2>|<
and|or>|<columnName3><operator3><value3>";
StandardDTO standards = 
NSApiClient.getStandard().getStandardDataWithFilters("<standardName>", 
filter); 
6-45
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
String column filters

Support % (starts with) operator.

Support * (Contains) operator.

Does not support (ends with) operator.

Examples: 

Name=service*                  
Name=*g*
Name=*g -- not allowed

REST URL:

http://<ServerURL>/RequestCenter/nsapi/standard/<standardName>/<columnName>=<
wildcardName>

Java Example:

StandardDTO standards = 
NSApiClient.getStandard().getStandardDataWithFilters("<standardName>", 
"<wildcardName>");

Date column filters

Date field values should be in mm-dd-yyyy format.

Comparison Operators: =, >, <, <=, >=  

Example: 

SubmittedDate=12-10-2010

REST URL:

http://<ServerURL>/RequestCenter/nsapi/standard/<standardName>/<columnName><o
perator><mm-dd-yyyy>

Java Example:

StandardDTO standards = 
NSApiClient.getStandard().getStandardDataWithFilters("<standardName>", 
"<columnName><operator><mm-dd-yyyy>");

Sort 
Column(s)

All table columns.

Response 
XML

<standard totalCount="x" startRow="y" recordSize="z" id="a">
  <loginName></loginName>
  <name></name>
    <standardData rowId="">
    .  .   .
    <standardAttribute name="id" /> 
   .  .   .
    <standardURL><a ></a></standardURL> 
    <standardURLOnly> </standardURLOnly> 
  .  .   .
  </standardData>
</standard>

Area Examples
6-46
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Detailed API Reference
Service Portal Data

Custom Content

Area Examples

CoreAPI Get by Name

By default returns the first 50 entries in the specified table.

REST URL:

http://<ServerURL>/RequestCenter/nsapi/customcontent/<customContentName>

Java Example:

CustomContentDTO customs = 
NSApiClient.getCustomContent().getcontentData("<customContentName>", null);

Filters Support all custom content columns.

Support % (starts with) operator.

Do not support (ends with) operator.

Examples:

Name=custom*
Name=*g -- not allowed

REST URL:

Comparison Operators: =, >, <, >=, <= (case-sensitive)

Relational Operators: AND, OR (case-insensitive)

Filter Separator: |

Supported Columns: All columns

http://<ServerURL>/RequestCenter/nsapi/customcontent/<customContentName>/<colu
mnName1><operator1><value1>[|<AND|OR>|<columnName2><operator2><value2>][|
<AND|OR>|<columnName3><operator3><value3>]

http://<ServerURL>/RequestCenter/nsapi/customcontent/<customContentName>/<colu
mnName>=<wildcardName>

http://<ServerURL>/RequestCenter/nsapi/customcontent/<customContentName>/<colu
mnName><operator><mm-dd-yyyy>

Java Example:

String filter = "<columnName><operator><value>";
CustomContentDTO customs = 
NSApiClient.getCustomContent().getcustomContentDataWithFilters("CoPortalConte
nt", filter);
6-47
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Error Messages
The complete list of column names and descriptions for the entities can be found in the “Reference Data” 
section in the Portal Manager chapter of the Cisco Service Portal Designer Guide.

Error Messages
Different HTTP response codes are returned by nsAPI depending on the nature of the exceptions:

• HTTP Status code 401 (Unauthorized) and XML error response message “User does not have 
proper authentication.” – Invalid or no authentication parameters.

• HTTP Status code 404 (Not Found) and XML error response message “Requested resource could 
not be found.” – Data could not be fetched for the specified parameter/URL values.

EXAMPLES:

nsapi/directory/people/id/-1
nsapi/directory/people/id/foo
nsapi/directory/people/id/1000 (there is no person with id = 1000)
nsapi/directory/people/name/<non existent person>
nsapi/directory/people/idxyz/1

• HTTP Status code 403 (Forbidden) and XML error response message “The user does not have 
sufficient permissions to perform the operation this object.” – Data could not be fetched because 
the user does not have sufficient permissions to perform the specified operation on the object.

• HTTP Status 500 (Internal Error) and XML error response message “Internal Error: Invalid 
parameter values specified or unexpected error.” – Incorrect parameters, any other exceptions 
that occur within nsAPI or any other general server error.

EXAMPLES:

nsapi/directory/people?startRow=5000 (non-existent 5000 row)
nsapi/directory/people?sortBy=wrongColumn&sortDir=Asc (unsupported column)
nsapi/directory/people?recordSize=-1 (negative or  zero value for recordSize)

• Http Status 422 (Unprocessable Entity) and XML validation error response message for post/update 
operations – The request data does not have values for mandatory fields or contains invalid values 
for the fields.

nsAPI does not return any error if no result is found for the filters provided; for example,

nsapi/directory/people?name=<non-existent person>

nsAPI throws an NSAPIException from Java for all exceptions encountered when executing methods in 
nsAPI.

Sort 
Column(s)

All table columns

Response 
XML

<customContent totalCount="x" startRow="y" recordSize="z" id="a">
  <logicName></logicName>
  <name></name>
      .  .   .
  <customContentData rowId="">
    <customContentAttribute name=" "></customContentAttribute>
      .  .   .
  </customContentData>
</customContent>

Area Examples
6-48
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Quick Reference
Quick Reference
The chart below provides a summary of operations supported for the different entity types.

Entity Name

G
et

 b
y 

Id

G
et

 b
y 

N
am

e

G
et

 a
ll

W
ild

ca
rd

 N
am

e 
Se

ar
ch

So
rt

in
g

Pa
gi

ng

Co
nv

er
t R

ES
T 

Fi
lte

rs
 to

 J
av

a 
Cl

ie
nt

 m
et

ho
ds

U
pd

at
e

Filters Nested Entities

Authentication

Authentication - 
Login/Logout

X X

Definitional Data

Categories X X X X X X X Catalog Type Subcategories, 
Included Services, 
Included Offerings

Services X X X X X X X Categoryid, 
Category Name, 
Keyword

Categories, 
Keywords, Included 
Services

Service Offering X X X X X X X Name Categories, 
Keywords, 
Objectives, Cost 
Drivers, Component 
Services

Agents X X X X X X X Name

Transactional Data

Agreement X X X X X X X Name

Requisition X X X X X View Name, Status

Requistion Entry X X X X

Authorization X X X X X View Name, Status

Task X X X X X View Name

Task – Tasks for a 
specific requistion entry

X X X X Task Type, Status 
(Skipped)

Included Service 
Tasks

Task – Milestones for a 
specific requisition

X

Task – Actions X
6-49
Cisco Service Portal Integration Guide

OL-26390-02



 

Chapter 6      REST API
  Quick Reference
Directory Data

Organizational Units X X X X X X X OU Type

Person X X X X X X X X OU Name, Group 
Name, Role Name

OU, Group, Roles,
Address, Contact, 
Preferences, 
Delegates

Groups X X X X X X X Name

Accounts X X X X X X X Name

Lifecycle Center Data

All Service Items X X X Any column

Service Items X X X X Any column

Standards X X X X Any column

Service Portal Data

Custom Content X X X X X X Any Column

Entity Name

G
et

 b
y 

Id

G
et

 b
y 

N
am

e

G
et

 a
ll

W
ild

ca
rd

 N
am

e 
Se

ar
ch

So
rt

in
g

Pa
gi

ng

Co
nv

er
t R

ES
T 

Fi
lte

rs
 to

 J
av

a 
Cl

ie
nt

 m
et

ho
ds

U
pd

at
e

Filters Nested Entities
6-50
Cisco Service Portal Integration Guide

OL-26390-02



OL-26390-02
C H A P T E R 7

JSR Portlets

• Overview, page 7-1

• Portlet Structure and Packaging, page 7-1

• Portlet Development, page 7-6

• Compiling JSR Portlet Controller, page 7-27

• Portlet Deployment, page 7-28

Overview
The Portal Manager solution within Service Portal provides a rich platform for integrating with external 
applications through JSR Portlets. The portal front-end uses Apache Pluto 1.1 libraries as the framework. 
Portlets developed using APIs which meet the Java Portlet Specification (JSR168, JSR286) standards 
may be deployed along with Service Portal. Once deployed, these will appear in Portal Designer as 
“Third-Party Portlets” and can be added to portal pages. For more information on how to maintain JSR 
portlets and other content in the Portal Manager solution, see the Cisco Service Portal Designer Guide.

This chapter covers some guidelines on the development and deployment of JSR portlets for the Portal 
Manager solution. A sample portlet named “MyJSR” is used throughout the chapter as an illustration. 
The portlet is developed with Spring 3.0 Annotation-based Controller and Sencha’s Ext JS—the 
JavaScript framework for the portal front-end.

Portlet Structure and Packaging
The portlet files should be packaged according to the JSR 168 or 286 specifications, in the form of web 
application (war) files appropriate for the application server used. A typical portlet war file may include 
servlets, resource bundles, images, html, jsp, css files, and so on.

JBoss Application Server
Here is the anatomy of a simple portlet named “MyJSR.war”: 

1. css
MyJSR.css

2. images
<Custom Images that the Portlet needs can be placed here>

3. js
7-1
Cisco Service Portal Integration Guide



   

Chapter 7      JSR Portlets
  Portlet Structure and Packaging
MyJSRCreatePersonView.js
MyJSREdit.js
MyJSRHelp.js
MyJSRView.js

4. WEB-INF
classes

com
myjsr

MyJSRController.class
config

spring
MyJSRApplicationContext.xml

jsrportlet.properties
log4j.properties

jsp
MyJSREdit.jsp
MyJSRHelp.jsp
MyJSRView_listperson.jsp
MyJSRView_updateperson.jsp

lib
newscale_appclient.jar
newscale_core.jar
cxf-2.2.7.jar
pluto-portal-driver-2. 0.2.jar
org.springframework.aop-3.1.0.RELEASE.jar
org.springframework.asm-3.1.0.RELEASE.jar
org.springframework.aspects-3.1.0.RELEASE.jar           
org.springframework.beans-3.1.0.RELEASE.jar  
org.springframework.context-3.1.0.RELEASE.jar           
org.springframework.context.support-3.1.0.RELEASE.jar           
org.springframework.core-3.1.0.RELEASE.jar              
org.springframework.expression-3.1.0.RELEASE.jar                
org.springframework.instrument-3.1.0.RELEASE.jar                
org.springframework.instrument.tomcat-3.1.0.RELEASE.jar         
org.springframework.jdbc-3.1.0.RELEASE.jar              
org.springframework.jms-3.1.0.RELEASE.jar               
org.springframework.orm-3.1.0.RELEASE.jar           
org.springframework.oxm-3.1.0.RELEASE.jar              
org.springframework.test-3.1.0.RELEASE.jar               
org.springframework.transaction-3.1.0.RELEASE.jar
org.springframework.web-3.1.0.RELEASE.jar               
org.springframework.web.portlet-3.1.0.RELEASE.jar    
org.springframework.web.servlet-3.1.0.RELEASE.jar
org.springframework.web.struts-3.1.0.RELEASE.jar 

tld
c.tld
pluto.tld
portlet.tld
portlet_2_0.tld
portlet-el.tld
portlet-el_2_0.tld

portlet.xml
web.xml
jboss-deployment-structure.xml

In this sample portlet, the nsAPI java client—newscale_appclient.jar—is included in the lib folder as the 
portlet invokes the REST API to retrieve data from Service Portal. Pluto libraries and other libraries that 
the nsAPI java client depends on need to be included in the lib folder. In addition, the 
jboss-deployment-structure.xml is included to describe the dependencies on the JBoss modules.

An additional descriptor—portlet.xml—must be present to specify the portlet-related configurations.
7-2
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Structure and Packaging
Weblogic Application Server
On WebLogic, the JSR portlet war structure is similar except that it must contain all the libraries the 
portlet uses because it is deployed outside of the Service Portal application.

Some of the libraries included below are required for invoking the nsAPI java client and to read portlet 
common settings. Certain libraries are needed here because the portlet uses JSTL tags in JSPs and Spring 
portlets MVC.

1. css
MyJSR.css

2. images
<Custom Images that the Portlet needs can be placed here>

3. js
MyJSRCreatePersonView.js
MyJSREdit.js
MyJSRHelp.js
MyJSRView.js

4. WEB-INF
classes

com
myjsr

MyJSRController.class
config

spring
MyJSRApplicationContext.xml

jsrportlet.properties
log4j.properties

jsp
MyJSREdit.jsp
MyJSRHelp.jsp
MyJSRView_listperson.jsp
MyJSRView_updateperson.jsp

lib
newscale_appclient.jar
newscale_core.jar
newscale_udkernel.jar
newscale_compbeans.jar  
newscale_conf.jar       
castor-0.9.5.4.jar
commons-beanutils-1.8.3.jar
commons-httpclient-3.1.jar
commons-logging-1.0.4.jar
cxf-2.2.7.jar
ezmorph-1.0.4.jar
json-lib-2.2.2-jdk13.jar
jsr311-api-1.0.jar
neethi-2.0.4.jar
oscache-2.4.jar
standard.jar
wsdl4j-1.6.1.jar
XmlSchema-1.4.6.jar
commons-collections-3.2.1.jar   
commons-lang-2.4.jar
neethi-2.0.4.jar              
castor-0.9.5.4.jar    
jstl.jar       
org.springframework.aop-3.0.2.RELEASE.jar
org.springframework.asm-3.0.2.RELEASE.jar
org.springframework.aspects-3.0.2.RELEASE.jar           
org.springframework.beans-3.0.2.RELEASE.jar  
org.springframework.context-3.0.2.RELEASE.jar           
org.springframework.context.support-3.0.2.RELEASE.jar           
7-3
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Structure and Packaging
org.springframework.core-3.0.2.RELEASE.jar              
org.springframework.expression-3.0.2.RELEASE.jar                
org.springframework.instrument-3.0.2.RELEASE.jar                
org.springframework.instrument.tomcat-3.0.2.RELEASE.jar         
org.springframework.jdbc-3.0.2.RELEASE.jar              
org.springframework.jms-3.0.2.RELEASE.jar               
org.springframework.spring-library-3.0.2.RELEASE.libd           
org.springframework.test-3.0.2.RELEASE.jar              
org.springframework.transaction-3.0.2.RELEASE.jar               
org.springframework.web-3.0.2.RELEASE.jar
org.springframework.web.portlet-3.0.2.RELEASE.jar               
org.springframework.web.servlet-3.0.2.RELEASE.jar    
org.springframework.web.struts-3.0.2.RELEASE.jar        

tld
c.tld
pluto.tld
portlet.tld
portlet_2_0.tld
portlet-el.tld
portlet-el_2_0.tld

portlet.xml
web.xml

WebSphere Application Server
The portlet war for WebSphere is also deployed as a web application outside of the Service Portal 
application. 

Here notice that some different library versions are used to work with WebSphere.

1. css
MyJSR.css

2. images
<Custom Images that the Portlet needs can be placed here>

3. js
MyJSRCreatePersonView.js
MyJSREdit.js
MyJSRHelp.js
MyJSRView.js

4. WEB-INF
classes

com
myjsr

MyJSRController.class
config

spring
MyJSRApplicationContext.xml

jsrportlet.properties
log4j.properties

jsp
MyJSREdit.jsp
MyJSRHelp.jsp
MyJSRView_listperson.jsp
MyJSRView_updateperson.jsp

lib
newscale_appclient.jar
castor-0.9.5.4.jar
commons-beanutils-1.8.3.jar
commons-collections-3.2.1.jar
commons-httpclient-3.1.jar
commons-lang-2.4.jar
commons-logging-1.0.4.jar
7-4
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Structure and Packaging
cxf-2.2.12.jar
ezmorph-1.0.4.jar
json-lib-2.2.2-jdk13.jar
jsr311-api-1.0.jar
neethi-2.0.4.jar
newscale_compbeans.jar
newscale_conf.jar
newscale_core.jar
newscale_udkernel.jar
oscache-2.4.jar
standard.jar
wsdl4j-1.6.1.jar
XmlSchema-1.4.6.jar
jstl.jar
org.springframework.aop-3.0.2.RELEASE.jar
org.springframework.asm-3.0.2.RELEASE.jar
org.springframework.aspects-3.0.2.RELEASE.jar           
org.springframework.beans-3.0.2.RELEASE.jar  
org.springframework.context-3.0.2.RELEASE.jar           
org.springframework.context.support-3.0.2.RELEASE.jar           
org.springframework.core-3.0.2.RELEASE.jar              
org.springframework.expression-3.0.2.RELEASE.jar                
org.springframework.instrument-3.0.2.RELEASE.jar                
org.springframework.instrument.tomcat-3.0.2.RELEASE.jar         
org.springframework.jdbc-3.0.2.RELEASE.jar        
org.springframework.jms-3.0.2.RELEASE.jar      
org.springframework.spring-library-3.0.2.RELEASE.libd           
org.springframework.test-3.0.2.RELEASE.jar              
org.springframework.transaction-3.0.2.RELEASE.jar               
org.springframework.web-3.0.2.RELEASE.jar
org.springframework.web.portlet-3.0.2.RELEASE.jar               
org.springframework.web.servlet-3.0.2.RELEASE.jar      
org.springframework.web.struts-3.0.2.RELEASE.jar            

tld
c.tld
pluto.tld
portlet.tld
portlet_2_0.tld
portlet-el.tld
portlet-el_2_0.tld

portlet.xml
web.xml

Dependent Libraries
The set of libraries required for inclusion in the JSR Portlet war file are available in either the deployed 
RequestCenter application on the application server or the Service Portal installer image, as described 
in the table below:

File Name JBoss WebLogic WebSphere

newscale_appclient.jar RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

newscale_compbeans.jar — RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

newscale_conf.jar — RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib
7-5
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
Portlet Development
A typical JSR portlet should cover the three rendering modes —View, Edit, and Help. In addition, the 
portlet would support different window states—Normal, Minimized, and Maximized.

The MyJSR portlet example shown below provides a user interface that supports two functionalities:

1. List Service Portal users in a grid.

newscale_core.jar RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

commons-beanutils-1.8.3
.jar

— RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

commons-collections-3.2.1
.jar

— RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

commons-lang-2.4.jar — RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

cxf-2.2.7.jar RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

—

cxf-2.2.12.jar — — preinstall/websphere/jsrportlet 
(located in the product image)

json-lib-2.2.2-jdk13.jar — RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

org.springframework*.jar RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

pluto-container-2.0.2.jar — RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

pluto-portal-driver-2.0.2.jar RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

pluto-portal-driver-impl-2.0
.2.jar

— RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

pluto-taglib-2.0.2.jar — preinstall/weblogic/cisco_lib 
(located in the product image)

preinstall/websphere/lib_ext 
(located in the product image)

portlet-api_2.0_spec-1.0.jar — RequestCenter.war/WEB-INF
/lib

RequestCenter.war/WEB-INF
/lib

File Name JBoss WebLogic WebSphere
7-6
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
2. Allow user to be added/updated.

To achieve the above requirements, the sample code that follows includes these high-level operations:

• Retrieval of Service Portal users using nsAPI java client

• Returning the user details in JSON format to the user interface

• Rendering the list of users in a Ext JS grid on the browser

• Display/entry of user details in a form designed using Ext JS

• Adding/updating user details in the Service Portal repository using nsAPI java client
7-7
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
MyJSR.css
#Code Custom Styles for the portlet can be designed here.

Now let us examine the content of each of the components within the MyJSR.war.

MyJSRCreatePersonView.js
Example code using Ext JS to display a form for creating a user.

/* Code custom JavaScript for the portlet here */

Ext.onReady(function() {
var tab2 = new Ext.FormPanel({
id : 'personEditForm',
labelAlign : 'top',
title : 'Person Details - Add',
bodyStyle : 'padding:5px',
width : 600,
renderTo : MyJSREditDiv,
items : [{
layout : 'column',
border : false,
items : [{
columnWidth : .5,
layout : 'form',
border : false,
items : [{
xtype : 'textfield',
fieldLabel : 'First Name',

value : personListObj.firstName,
name : 'firstName',
anchor : '95%'
                              }, {
xtype : 'textfield',
fieldLabel : 'Login Name',

value : personListObj.login,
name : 'login',
anchor : '95%'
                              }, {
xtype : 'textfield',
fieldLabel : 'Home OU',
name : 'homeOrganizationalUnitName',

value : personListObj.homeOrganizationalUnitName,
anchor : '95%'
                              }, {
xtype : 'textfield',
fieldLabel : 'Timezone',
name : 'timeZoneName',

value : personListObj.timeZoneName,
anchor : '95%'
                              }]
                     }, {
columnWidth : .5,
layout : 'form',
border : false,
items : [{
xtype : 'textfield',
fieldLabel : 'Last Name',
name : 'lastName',

value : personListObj.lastName,
7-8
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
anchor : '95%'
                              },{
xtype : 'textfield',
fieldLabel : 'Email',
name : 'email',

value : personListObj.email,
vtype : 'email',
anchor : '95%'
                              }, {
xtype : 'textfield',
fieldLabel : 'Language',
name : 'languageName',

value : personListObj.languageName,
anchor : '95%'
                              }]
                     }]
            }, {
xtype : 'tabpanel',
plain : true,
activeTab : 0,
height : 235,
defaults : {
bodyStyle : 'padding:10px'
               },
items : [{
title : 'Address',
layout : 'form',
defaults : {
width : 230
                        },
defaultType : 'textfield',
items : [{
fieldLabel : 'Business',
name : 'businessAddress',
disabled : true
                              }, {
fieldLabel : 'Home',
name : 'homeAddress',
disabled : true
                              }]
                     }, {
title : 'Contacts',
layout : 'form',
defaults : {
width : 230
                        },
defaultType : 'textfield',
items : [{
fieldLabel : 'Business',
name : 'businessPhone',
disabled : true
                              }, {
fieldLabel : 'Home',
name : 'homePhone',
disabled : true
                              }, {
fieldLabel : 'Mobile',
name : 'mobilePhone',
disabled : true
                              }, {
fieldLabel : 'Fax',
name : 'faxNumber',
disabled : true
                              }]
7-9
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
                     }]
            }],

buttons : [{
text : 'Save',
handler : function() {
Ext.getCmp("personEditForm").getForm().submit({                     
url : addPersonActionUrl,
params : {},
success : function(form, action) {
var responseObj = Ext.util.JSON.decode(action.response.responseText);
if(responseObj.success == "true")
Ext.Msg.alert('Success', responseObj.successMsg);  
else
Ext.Msg.alert('Error', responseObj.errorMsg);
                    }
                   });
                }
             },{
text : 'Cancel',
handler : function() {
window.location=viewPersonUrl;
                 }
                 }]
   });
});

MyJSREdit.js
This JavaScript can be used to add any custom code for portlet edit mode.

/* Code custom JavaScript for the Portlet here */

Ext.onReady(function() {

});

MyJSRHelp.js
This JavaScript can be used to add any custom code for portlet edit mode.

/* Code custom JavaScript for the Portlet here */

Ext.onReady(function() {

});

MyJSRView.js
Example JavaScript to display users in Ext JS grid.

/* Code custom JavaScript for the Portlet here */
Ext.onReady(function() {
// Demonstrates how to getUser info from Java Script and set it to div
varLogin=document.getElementById('MyJSRLoginNameDiv');
7-10
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
  Login.innerHTML=nsAPP_CurrentUserLoginName;
varFirstName=document.getElementById('MyJSRFirstNameDiv');
  FirstName.innerHTML=nsAPP_CurrentUserFirstName;
varLastName=document.getElementById('MyJSRLastNameDiv');
  LastName.innerHTML=nsAPP_CurrentUserLastName;
varHomeOU=document.getElementById('MyJSRHomeOUDiv');
  HomeOU.innerHTML=nsAPP_CurrentUserHomeOuId;
var PersonID=document.getElementById('MyJSRPersonIDDiv');
  PersonID.innerHTML=nsAPP_CurrentUserId;

var pid = portletId.substr(pidPrefix.length);
if (Ext.getCmp(pid).height && Ext.getCmp(pid).height >= 29) {
var gridHeight = Ext.getCmp(pid).height - 29;
  }

var gridStore = new Ext.data.JsonStore({
proxy : new Ext.data.HttpProxy({
url : pagingUrl,
timeout : connectionTimeOut
             }),
autoLoad: {params:{start: 0, limit: defaultRecordSize}},
root: 'rows',
totalProperty: 'results',
fields : [{
name : 'firstName',
type : 'string'
                  }, {
name : 'lastName',
type : 'string'
                  }, {
name : 'email',
type : 'string'
                  }, {
name : 'homeOrganizationalUnitName',
type : 'string'
                  }, {
name : 'login',
type : 'string'
                  }, {
name : 'timeZoneName',
type : 'string'
                  }, {
name : 'languageName',
type : 'string'
                  }, {
name : 'businessPhone',
type : 'string'
                  }, {
name : 'homePhone',
type : 'string'
                  }, {
name : 'mobilePhone',
type : 'string'
                  }, {
name : 'faxNumber',
type : 'string'
                  }, {
name : 'businessAddress',
type : 'string'
                  }, {
name : 'homeAddress',
type : 'string'
                  }]
         });
7-11
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
gridStore.load();

var expander = new Ext.ux.grid.RowExpander({
tpl : new Ext.Template(
'<h2 class="title">Address</h2><table>',
'<tr><td width=400><b>Business</b> {businessAddress}</td>',
'<td width=400><b>Home</b>{homeAddress}</td></tr></table>',
'<h2 class="title">Contact</h2><table>',
'<tr><td width=400><b>Business</b> {businessPhone}</td>',
'<td width=400><b>Home</b> {homePhone}</td></tr>',
'<tr><td width=400><b>Mobile</b> {mobilePhone}</td>',
'<td width=400><b>Fax</b> {faxNumber}</td></tr></table>')
         });

var gridColModel = new Ext.grid.ColumnModel({
defaults : {
sortable : true,
autoWidth : true
            },
columns : [{
header : "First Name",
dataIndex : 'firstName'
                  }, {
header : "Last Name",
dataIndex : 'lastName'
                  }, {
header : "Email",
dataIndex : 'email'
                  }, {
header : "Home OU",
dataIndex : 'homeOrganizationalUnitName'
                  }, {
header : "Login Name",
dataIndex : 'login'
                  }, {
header : "Timezone",
dataIndex : 'timeZoneName'
                  }, {
header : "Language",
dataIndex : 'languageName'
                  }]
         });

var gridConfig = {
renderTo :  MyJSREditDiv,
width : "100%",
layout : 'fit',
store : gridStore,
cm : gridColModel,
loadMask: true,
autoWidth : true,
plugins : expander,
tbar : [{
text : 'Create Person',
iconCls : 'add',
handler : function() {
window.location=createNewPersonActionUrl;
                 }
                 },'-'],
bbar : new Ext.PagingToolbar({
pageSize : defaultRecordSize,
store : gridStore,
displayInfo : true,
params:{
7-12
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
start: 0,
limit: defaultRecordSize
                            }
                  })
         };

if ('maximized' == portletWindowState) {
gridConfig.height = document.documentElement.clientHeight - 188;
   } elseif ('normal' == portletWindowState) {
var viewConfig = {
forceFit : true
    };
gridConfig.viewConfig = viewConfig;

if (gridHeight && gridHeight > -1) {
gridConfig.height = gridHeight;
    } else {
gridConfig.autoHeight = true;
    }
   }

var grid = new Ext.grid.GridPanel(gridConfig);
});

portlet.xml
Example of the portlet specification. The portlet-class needs to be set along with a pair of 
init-params—contextConfigLocation and nsContentPortlet (nsContentPortlet is always set to “false”).

<?xmlversion="1.0"encoding="UTF-8"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License.  You may obtain a copy of the License at

http:www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed  under the  License is distributed on an "AS IS" BASIS,
WITHOUT  WARRANTIES OR CONDITIONS  OF ANY KIND, either  express  or
implied.

See the License for the specific language governing permissions and
limitations under the License.
-->
<portlet-app
xmlns="http:java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
version="1.0"
xmlns:xsi="http:www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http:java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
                        http:java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">
<portlet>
<description>MyJSR Description</description>
<portlet-name>nsMyJSR</portlet-name>
<display-name>My JSR Portlet</display-name>
<portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>
<init-param>
<name>contextConfigLocation</name>
7-13
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
<value>/WEB-INF/classes/config/spring/MyJSRApplicationContext.xml</value>
</init-param>
<init-param>
<name>nsContentPortlet</name>
<value>false</value>
</init-param>
<expiration-cache>-1</expiration-cache>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>VIEW</portlet-mode>
<portlet-mode>EDIT</portlet-mode>
<portlet-mode>HELP</portlet-mode>
</supports>
<portlet-info>
<title>My JSR Portlet</title>
</portlet-info>
</portlet>
</portlet-app>

web.xml
Example deployment descriptor with the servlet and servlet mapping is required by the portal server; in 
this case, Apache Pluto.

<?xmlversion="1.0"encoding="UTF-8"?>
<!DOCTYPEweb-appPUBLIC"-Sun Microsystems, Inc. DTD Web Application 
2.3EN""http:java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<display-name>My JSR Portlet Application</display-name>
<description>My JSR Portlet</description>

<!-- Resources bundle base class -->
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
         /WEB-INF/classes/config/spring/MyJSRApplicationContext.xml
</param-value>
</context-param>

<context-param>
<param-name>parameter-name</param-name>
<param-value>parameter-value</param-value>
</context-param>

<servlet>
<servlet-name>ViewRendererServlet</servlet-name>
<servlet-class>
org.springframework.web.servlet.ViewRendererServlet
</servlet-class>
</servlet>

<servlet>
<servlet-name>MyJSR</servlet-name>
<servlet-class>org.apache.pluto.container.driver.PortletServlet</servlet-class>
<init-param>
<param-name>portlet-name</param-name>
<param-value>MyJSR</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
7-14
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
<servlet-mapping>
<servlet-name>ViewRendererServlet</servlet-name>
<url-pattern>/WEB-INF/servlet/view</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>MyJSR</servlet-name>
<url-pattern>/PlutoInvoker/nsMyJSR</url-pattern>
</servlet-mapping>

<!- Declare Tag libraries that are used in which are going to use in JSP pages-->
<taglib>
<taglib-uri>http://portals.apache.org/pluto</taglib-uri>
<taglib-location>/WEB-INF/tld/pluto.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://java.sun.com/portlet_2_0</taglib-uri>
<taglib-location>/WEB-INF/tld/portlet_2_0.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/WEB-INF/tld/c.tld</taglib-uri>
<taglib-location>/WEB-INF/tld/c.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://java.sun.com/portlet</taglib-uri>
<taglib-location>/WEB-INF/tld/portlet.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://portals.apache.org/pluto/portlet-el</taglib-uri>
<taglib-location>/WEB-INF/tld/portlet-el.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://portals.apache.org/pluto/portlet-el_2_0</taglib-uri>
<taglib-location>/WEB-INF/tld/portlet-el_2_0.tld</taglib-location>
</taglib>

</web-app>

MyJSREdit.jsp
JSP for portlet edit mode.

<%
/**
 * Copyright (c) 2012, Cisco Systems, Inc. All rights reserved.
 */
%>

<%@tagliburi="http:java.sun.com/portlet"prefix="portlet"%>
<%@taglibprefix="portlet2"uri="http:java.sun.com/portlet_2_0"%>
<%@taglibprefix="c"uri="/WEB-INF/tld/c.tld"%>

<% String contextPath = request.getContextPath(); %>

<!-- This is for IE -->
<scripttype="text/javascript">
7-15
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
if(document.createStyleSheet) {
document.createStyleSheet('<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>');
}
else {
var styles = "@import url('<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>');";
var newSS=document.createElement('link');
newSS.rel='stylesheet';
newSS.href='data:text/css,'+escape(styles);
document.getElementsByTagName("head")[0].appendChild(newSS);
}
</script>

<!-- This is foFirefox -->
<linkrel="stylesheet"type="text/css"href="<%= response.encodeURL(contextPath + 
"/css/MyJSR.css") %>"></link>

<script>
var head = document.getElementsByTagName('head')[0];
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = '<%= response.encodeURL(contextPath + "/js/MyJSREdit.js") %>';
head.appendChild(script);
</script>

<!-- Write your JSP Code for Portlet Edit here -->
<c:iftest="${portletWindowState == 'NORMAL' or portletWindowState == 'normal'}">
Portlet Mode = <c:outvalue='${portletMode}'/>
Portlet Window State = <c:outvalue='${portletWindowState}'/>
</c:if>

<c:iftest="${portletWindowState == 'MINIMIZED' or portletWindowState == 'minimized'}">
Portlet Mode = <c:outvalue='${portletMode}'/>
Portlet Window State = <c:outvalue='${portletWindowState}'/>
</c:if>

<c:iftest="${portletWindowState == 'MAXIMIZED' or portletWindowState == 'maximized'}">
Portlet Mode = <c:outvalue='${portletMode}'/>
Portlet Window State = <c:outvalue='${portletWindowState}'/>
</c:if>

<divid="MyJSREditDiv-<portlet:namespace/>"class="x-grid-mso"></div>

<script>
var MyJSREditDiv = 'MyJSREditDiv-<portlet:namespace/>';
var addPersonActionUrl = '<portlet2:resourceURL id="addPersonData" escapeXml="false" />';
var personListObj = Ext.util.JSON.decode('<c:out value="${PersonData}" 
escapeXml="false"/>');
</script>

MyJSRHelp.jsp
JSP for portlet help mode.

<%
/**
 * Copyright (c) 2012, Cisco Systems, Inc. All rights reserved.
 */
%>

<%@tagliburi="http:java.sun.com/portlet"prefix="portlet"%>
<%@taglibprefix="c"uri="/WEB-INF/tld/c.tld"%>
7-16
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
<% String contextPath = request.getContextPath(); %>

<!-- This is for IE -->
<scripttype="text/javascript">
if(document.createStyleSheet) {
document.createStyleSheet("<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>");
}
else {
var styles = "@import url('<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>');";
var newSS=document.createElement('link');
newSS.rel='stylesheet';
newSS.href='data:text/css,'+escape(styles);
document.getElementsByTagName("head")[0].appendChild(newSS);
}
</script>

<!-- This is foFirefox -->
<linkrel="stylesheet"type="text/css"href="<%= response.encodeURL(contextPath + 
"/css/MyJSR.css") %>"></link>

<script>
var head = document.getElementsByTagName('head')[0];
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = '<%= response.encodeURL(contextPath + "/js/MyJSRHelp.js") %>';   
head.appendChild(script);
</script>

<!-- Write your JSP Code for Portlet Help here -->
<c:iftest="${portletWindowState == 'NORMAL' or portletWindowState == 'normal'}">
Portlet Mode = <c:outvalue='${portletMode}'/>
Portlet Window State = <c:outvalue='${portletWindowState}'/>
</c:if>

<c:iftest="${portletWindowState == 'MINIMIZED' or portletWindowState == 'minimized'}">
Portlet Mode = <c:outvalue='${portletMode}'/>
Portlet Window State = <c:outvalue='${portletWindowState}'/>
</c:if>

<c:iftest="${portletWindowState == 'MAXIMIZED' or portletWindowState == 'maximized'}">
Portlet Mode = <c:outvalue='${portletMode}'/>
Portlet Window State = <c:outvalue='${portletWindowState}'/>
</c:if>

<divid="MyJSRHelpDiv-<portlet:namespace/>"class="x-grid-mso"></div>

<script>
var MyJSRHelpDiv = 'MyJSRHelpDiv-<portlet:namespace/>';
</script>

MyJSRView_listperson.jsp
JSP code for portlet view mode.

<%
/**
 * Copyright (c) 2012, Cisco Systems, Inc. All rights reserved.
 */
%>
7-17
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
<%@tagliburi="http:java.sun.com/portlet"prefix="portlet"%>
<%@taglibprefix="portlet2"uri="http:java.sun.com/portlet_2_0"%>
<%@taglibprefix="c"uri="/WEB-INF/tld/c.tld"%>

<% String contextPath = request.getContextPath(); %>

<!-- This is for IE -->
<scripttype="text/javascript">
if(document.createStyleSheet) {
document.createStyleSheet('<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>');
}
else {
var styles = "@import url('<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>');";
var newSS=document.createElement('link');
newSS.rel='stylesheet';
newSS.href='data:text/css,'+escape(styles);
document.getElementsByTagName("head")[0].appendChild(newSS);
}
var portletId = 'portlet-container-<c:out value="${portlet}"/>';
var pidPrefix = "portlet-container-";
var portletWindowState = "<c:out value='${portletWindowState}'/>";
var portletMode = "<c:out value='${portletMode}'/>";
var defaultRecordSize = <c:out value='${defaultRecordSize}'/>;
var nsappPersonViewDiv = 'nsappPersonViewDiv-<portlet:namespace/>';
var pagingUrl = '<portlet2:resourceURL escapeXml="false" />';
var connectionTimeOut = <c:out value='${connectionTimeOut}'/>;
</script>

<!-- This is foFirefox -->
<linkrel="stylesheet"type="text/css"href="<%= response.encodeURL(contextPath + 
"/css/MyJSR.css") %>"></link>

<script>
var head = document.getElementsByTagName('head')[0];
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = '<%= response.encodeURL(contextPath + "/js/MyJSRView.js") %>';
head.appendChild(script);
</script>

<!-- Write your JSP Code for Portlet Edit here -->
<c:iftest="${portletWindowState == 'NORMAL' or portletWindowState == 'normal'}">
<!--PortletMode = <c:out value='${portletMode}'/>
Portlet Window State = <c:out value='${portletWindowState}'/> -->
</c:if>

<c:iftest="${portletWindowState == 'MINIMIZED' or portletWindowState == 'minimized'}">
<!--Portlet Mode = <c:out value='${portletMode}'/>
Portlet Window State = <c:out value='${portletWindowState}'/> -->
</c:if>

<c:iftest="${portletWindowState == 'MAXIMIZED' or portletWindowState == 'maximized'}">
<!--Portlet Mode = <c:out value='${portletMode}'/>
Portlet Window State = <c:out value='${portletWindowState}'/>-->
</c:if>

<!-Un-comment this to get User Info from the Portlet Controller that sets user info in 
model
Logged In User (<c:out value="${userName}" escapeXml="false"/>): <c:out 
value="${firstName}" escapeXml="false"/>&nbsp;,&nbsp; <c:out value="${lastName}" 
escapeXml="false"/>&nbsp;,&nbsp;<c:out value="${PersonId}" 
escapeXml="false"/>&nbsp;,&nbsp;<c:out value="${HomeOUId}" escapeXml="false"/>
-->
7-18
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
<!-Write declare divs to display user info -->
<div>Logged In User (<div id="MyJSRLoginNameDiv" 
style="text-align:right;display:inline;width:100%;"><span 
style="padding-left:20px;"></span></div>)&nbsp;:&nbsp;<div id="MyJSRFirstNameDiv" 
style="text-align:right;display:inline;width:100%;"><span></span></div>&nbsp;,&nbsp;
<divid="MyJSRLastNameDiv" style="text-align:right;display:inline;width:100%;"><span 
style="padding-left:20px;"></span></div>
</div>
<div>HomeOUId&nbsp;:&nbsp;<div id="MyJSRHomeOUDiv" 
style="text-align:right;display:inline;width:100%;"><span 
style="padding-left:20px;"></span></div>&nbsp;,&nbsp;
PersonId&nbsp;:&nbsp;<div id="MyJSRPortletPersonIDDiv" 
style="text-align:right;display:inline;width:100%;"><span 
style="padding-left:20px;"></span>
</div>

<divid="MyJSREditDiv-<portlet:namespace/>"class="x-grid-mso"></div>

<script>
var MyJSREditDiv = 'MyJSREditDiv-<portlet:namespace/>';
var createNewPersonActionUrl = '<portlet:renderURL><portlet:param name="formAction" 
value="createNewPerson" /></portlet:renderURL>';
var addPersonActionUrl = '<portlet2:resourceURL id="addPersonData" escapeXml="false" />';
var personListObj = Ext.util.JSON.decode('<c:out value="${PersonData}" 
escapeXml="false"/>');
</script>

MyJSRView_updateperson.jsp
Example JSP code to demonstrate update user operation.

<%
/**
 * Copyright (c) 2012, Cisco Systems, Inc. All rights reserved.
 */
%>

<%@tagliburi="http:java.sun.com/portlet"prefix="portlet"%>
<%@taglibprefix="portlet2"uri="http:java.sun.com/portlet_2_0"%>
<%@taglibprefix="c"uri="/WEB-INF/tld/c.tld"%>

<%String contextPath = request.getContextPath(); %>

<!-- This is foFirefox -->
<linkrel="stylesheet"type="text/css"href="<%= response.encodeURL(contextPath + 
"/css/MyJSR.css") %>"></link>

<!-- This is for IE -->
<scripttype="text/javascript">
if(document.createStyleSheet) {
document.createStyleSheet("<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>");
   }
else {
var styles = "@import url('<%= response.encodeURL(contextPath + "/css/MyJSR.css") %>');";
var newSS=document.createElement('link');
newSS.rel='stylesheet';
newSS.href='data:text/css,'+escape(styles);
document.getElementsByTagName("head")[0].appendChild(newSS);
   }
</script>
7-19
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
<script>
var head = document.getElementsByTagName('head')[0];
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = '<%= response.encodeURL(contextPath + "/js/MyJSRCreatePersonView.js") %>';
head.appendChild(script);
</script>

<!-- Write your JSP Code for Portlet View here -->
<c:iftest="${portletWindowState == 'NORMAL' or portletWindowState == 'normal'}">
<!--Portlet Mode = <c:out value='${portletMode}'/>
Portlet Window State = <c:out value='${portletWindowState}'/> -->
</c:if>

<c:iftest="${portletWindowState == 'MINIMIZED' or portletWindowState == 'minimized'}">
<!--Portlet Mode = <c:out value='${portletMode}'/>
Portlet Window State = <c:out value='${portletWindowState}'/> -->
</c:if>

<c:iftest="${portletWindowState == 'MAXIMIZED' or portletWindowState == 'maximized'}">
<!--Portlet Mode = <c:out value='${portletMode}'/>
Portlet Window State = <c:out value='${portletWindowState}'/>-->
</c:if>

<divid="MyJSREditDiv-<portlet:namespace/>"class="x-grid-mso"></div>
<script>
var MyJSREditDiv = 'MyJSREditDiv-<portlet:namespace/>';
var addPersonActionUrl = '<portlet2:resourceURL id="addPersonData" escapeXml="false" />';
var viewPersonUrl = '<portlet:renderURL></portlet:renderURL>'; 
var personListObj = Ext.util.JSON.decode('<c:out value="${PersonData}" 
escapeXml="false"/>');
</script>

MyJSRController.java
The steps for developing java portlet controllers typically include:

Step 1 Write handler code for the three portlet modes—View, Edit, and Help.

Step 2 Write handler code for the three portlet views—Normal, Minimized, and Maximized.

Step 3 For JSR portlets that process/display Service Portal entities, the nsAPI client can be used to invoke the 
related REST APIs in the portlet controller.

a. Get reference to nsAPI client API.

b. Call nsAPI client to get a list of the instances for the required Service Portal entity.

c. Optionally get the details for the currently logged-in user; for example, Person ID, First Name, Last 
Name.

Step 4 Render the instances in a grid or other format (this example also demonstrates how to do paging in nsAPI 
for a Ext JS Grid).

package com.myjsr;

importjava.io.IOException;
importjava.util.ArrayList;
importjava.util.HashMap;
7-20
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
importjava.util.Iterator;
importjava.util.List;
import java.util.Map;
importjava.util.Properties;

importjavax.portlet.RenderRequest;
importjavax.portlet.RenderResponse;
importjavax.portlet.ResourceRequest;
importjavax.portlet.ResourceResponse;

importnet.sf.json.JSON;
importnet.sf.json.JSONSerializer;
importjavax.portlet.ActionRequest;
importjavax.servlet.http.HttpSession;
importjavax.portlet.PortletURL;
importorg.apache.commons.collections.map.MultiValueMap;
importorg.apache.commons.lang.StringEscapeUtils;
importorg.apache.commons.lang.StringUtils;
importorg.springframework.ui.Model;
importorg.springframework.web.portlet.ModelAndView;
importorg.springframework.web.bind.annotation.ModelAttribute;
importorg.springframework.web.bind.annotation.RequestMapping;
importorg.springframework.web.portlet.bind.annotation.ResourceMapping;
importorg.springframework.web.bind.annotation.RequestParam;

importcom.newscale.comps.conf.domain.AppParamUtil;
importcom.newscale.nsapi.directory.person.Person;
importcom.newscale.nsapi.directory.person.PersonList;
importcom.newscale.nsapiclient.NSApiClient;
importcom.newscale.nsapiclient.NSApiClientConstants;
importcom.newscale.nsapiclient.NSApiClientFactory;
importcom.newscale.portlets.GenericNewScaleSpringPortletBase;

/**
*MyJSRController
*/
publicclass MyJSRController extends GenericNewScaleSpringPortletBase  {
privatestaticfinal String configPropsFile = "jsrportlet.properties";
privatestaticfinal String viewPageList = "MyJSRView_listperson";
privatestaticfinal String viewPageUpdate = "MyJSRView_updateperson";
privatestaticfinal String editPage = "MyJSREdit";
privatestaticfinal String helpPage = "MyJSRHelp";
private NSApiClient nsApiClient = getNSApiClient();

public NSApiClient getNsApiClient() {
return nsApiClient;
  }

public void setNsApiClient(NSApiClient nsApiClient) {
this.nsApiClient = nsApiClient;
  }

public String viewNormal(RenderRequest request, RenderResponse response, Model model) {
try {
super.viewNormal(request, response, model);

getLoginUsername(request , model);
    } catch(Exception e){
e.printStackTrace();
    }

return doView(request, response, model);
  }
7-21
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
public String viewMinimized(RenderRequest request, RenderResponse response, Model model) {
try {
super.viewMinimized(request, response, model);
   } catch(Exception e){
e.printStackTrace();
   }
return viewPageList;
  }

public String viewMaximized(RenderRequest request, RenderResponse response, Model model) {
try {
super.viewMaximized(request, response, model);

getLoginUsername(request , model);
   } catch(Exception e){
e.printStackTrace();
   }

return doView(request, response, model);
  }

private void getLoginUsername(RenderRequest request , Model model){
Properties properties = getConfigProperties(configPropsFile);

nsApiClient.login(properties.getProperty("BASE_URL"), 
request.getPortletSession().getId());
             // Get Currently Logged-in user from nsAPI client

     Person persons  = nsApiClient.getDirectory().getCurrentUser();

// Set user info into model so that JSP can access it
model.addAttribute("PersonID",  persons.getPersonId());

model.addAttribute("HomeOUId",  persons.getHomeOrganizationalUnitId());
model.addAttribute("firstName",  persons.getFirstName());    
model.addAttribute("lastName",  persons.getLastName());  
model.addAttribute("userName",  persons.getLogin());

  }

private String doView(RenderRequest request, RenderResponse response, Model model) {
try {
    Properties properties = getConfigProperties(configPropsFile);
nsApiClient.login(properties.getProperty("BASE_URL"), 
request.getPortletSession().getId());

int defaultRecordSize = AppParamUtil.getInstance().getMaxMaxPagingSizeInNSApi();
model.addAttribute("defaultRecordSize", "" + defaultRecordSize);
int connectionTimeOut = 0;
if (AppParamUtil.getInstance().isParamExists((AppParamUtil.SESSION_TIMEOUT))) {
connectionTimeOut = 
AppParamUtil.getInstance().getIntegerParam(AppParamUtil.SESSION_TIMEOUT);
    }
if (connectionTimeOut < 1) {
connectionTimeOut = 20;
    }
model.addAttribute("connectionTimeOut", "" + connectionTimeOut * 1000 * 60);

    String formAction = request.getParameter("formAction");
    String personIdStr = request.getParameter("personId");

if (null != formAction && formAction.equals("createNewPerson") ) {
showAddPersonPage(request, response, model);
return viewPageUpdate;

    } elseif(null != personIdStr){
editPerson(request, response, model, new Integer(personIdStr).intValue());
return viewPageUpdate;

    } else {
return viewPageList;
7-22
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
    }
 } catch (Exception e){

e.printStackTrace();
 }
returnnull;

  }

@RequestMapping("VIEW")
  @ResourceMapping
public ModelAndView doPagingOrSavePerson(ResourceRequest request, ResourceResponse 
response, Person person) 
throws Exception {
    String instanceName= getInstanceName(request.getWindowID());
 Save Button is clicked while adding person
if ("createNewPerson".equals(request.getParameter("formAction")) || null != 
request.getParameter("personId")) { 
addPersonData(person ,request, response );
    } elseif (null != request.getParameter("start") &&null != 
request.getParameter("limit")) {  Paging
int startInt = Integer.parseInt(request.getParameter("start")) + 1; extjs sends 1 less 
than what nsAPI wants
int limit = Integer.parseInt(request.getParameter("limit")) + 1; extjs sends 1 less than 
what nsAPI wants
try {
if (request.getWindowState().equals(request.getWindowState().NORMAL)) {
doPagingInternal(request, response, instanceName, 1, startInt, limit);
        }
if (request.getWindowState().equals(request.getWindowState().MAXIMIZED)) {
doPagingInternal(request, response, instanceName, 2, startInt, limit);
        }
      } catch (Exception e) {
e.printStackTrace();
      }
    }
returnnull;
  }

private void doPagingInternal(ResourceRequest request, ResourceResponse response, String 
portletInst,
int windowStateInt, int start, int limit) throws Exception {
    Map<String, Object> jsonMap = new HashMap<String, Object>();
    List recordList = newArrayList();
int totalCount = 1;
    String editPersonUrl = request.getParameter("editPersonUrl");
 MultiValueMap paramsmap = new MultiValueMap();
    paramsmap.put(NSApiClientConstants.QUERYPARAM_START_ROW, "" + start);
    paramsmap.put(NSApiClientConstants.QUERYPARAM_RECORD_SIZE, "" + limit);
    PersonList personList = nsApiClient.getDirectory().getPeople(paramsmap);
if(personList.getPeople() != null) {
for(Iterator iterator = personList.getPeople().iterator(); iterator.hasNext();) {
        Person portalPerson = (Person) iterator.next();
portalPerson.setPersonURL(StringEscapeUtils.escapeXml(portalPerson.getPersonURL()));
        PortletURL editPersonURL = response.createRenderURL();
editPersonURL.setParameter("personId", "" + portalPerson.getPersonId());
        String firstNameUrl = "<a href='" + editPersonURL.toString() + "'>" + 
portalPerson.getFirstName() + "</a>";
        String lastNameUrl = "<a href='" + editPersonURL.toString() + "'>" + 
portalPerson.getLastName()  + "</a>";
portalPerson.setFirstName(firstNameUrl);
portalPerson.setLastName(lastNameUrl);
recordList.add(portalPerson);
      }
jsonMap.put("success", "true");
jsonMap.put("results", personList.getTotalCount());
7-23
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
jsonMap.put("rows", recordList);
      JSON json = (JSON) JSONSerializer.toJSON(jsonMap);
      String jsonStr = json.toString();

response.setContentType("text/plain");
response.getPortletOutputStream().write(jsonStr.getBytes());
response.getPortletOutputStream().flush();
    }
  }

private ModelAndView addPersonData(@ModelAttribute("personData") Person person,
      ResourceRequest request, ResourceResponse response) throws Exception {
 Add Person from Form Data in Request
    Map jsonMap = newHashMap();
try {
Person  Updateperson = nsApiClient.getDirectory().updatePerson(person);
jsonMap.put("success", "true");
jsonMap.put("successMsg", "Person Added/Updated Successfully");
jsonMap.put("rows", Updateperson);
      JSON json = (JSON) JSONSerializer.toJSON(jsonMap);
      String jsonStr = json.toString();

response.setContentType("text/plain");
response.getPortletOutputStream().write(jsonStr.getBytes());
response.getPortletOutputStream().flush();
    } catch (Exception e) {
e.printStackTrace();
jsonMap.put("success", "false");
jsonMap.put("errorMsg", "Person Add/Update Failed : " + e.getMessage());

      JSON json2 = (JSON) JSONSerializer.toJSON(jsonMap);
      String jsonStr2 = json2.toString();

response.setContentType("text/plain");
response.getPortletOutputStream().write(jsonStr2.getBytes());
response.getPortletOutputStream().flush();
    }

returnnull;
  }

private void editPerson(RenderRequest request, RenderResponse response, Model model, int 
personId) {
int person = personId;
    Map<String, Object> jsonMap = new HashMap<String, Object>();
try {
Person  persons = nsApiClient.getDirectory().getPersonById(person);
persons.setPersonURL(StringEscapeUtils.escapeXml(persons.getPersonURL()));
     JSON json = (JSON) JSONSerializer.toJSON(persons);
     String jsonStr = json.toString();
model.addAttribute("PersonData", jsonStr);
    } catch (Exception e) {
e.printStackTrace();
    }
  }

private String showAddPersonPage(RenderRequest request, RenderResponse response, Model 
model) {
    Person DummyPerson = newPerson();
DummyPerson.setPersonURL(StringEscapeUtils.escapeXml(DummyPerson.getPersonURL()));
    JSON json1 = (JSON) JSONSerializer.toJSON(DummyPerson);
    String jsonStr1 = json1.toString();
model.addAttribute("PersonData", jsonStr1);
7-24
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
return viewPageUpdate;
  }

public String editNormal(RenderRequest request, RenderResponse response, Model model) {
try {
super.editNormal(request, response, model);
    } catch(Exception e){
e.printStackTrace();
    }
return editPage;
  }

public String editMinimized(RenderRequest request, RenderResponse response, Model model) {
try {
super.editMinimized(request, response, model);
    } catch(Exception e){
e.printStackTrace();
    }

return editPage;
  }

public String editMaximized(RenderRequest request, RenderResponse response, Model model) {
try {
super.editMaximized(request, response, model);
   } catch(Exception e){
e.printStackTrace();
   }
return editPage;
  }

public String helpNormal(RenderRequest request, RenderResponse response, Model model) {
try {
super.helpNormal(request, response, model);
    } catch(Exception e){
e.printStackTrace();
    }
return helpPage;
  }

public String helpMinimized(RenderRequest request, RenderResponse response, Model model) {
try {
super.helpMinimized(request, response, model);
    } catch(Exception e){
e.printStackTrace();
    }
return helpPage;
  }

public String helpMaximized(RenderRequest request, RenderResponse response, Model model) {
try {
super.helpMaximized(request, response, model);
    } catch(Exception e){
e.printStackTrace();
    }
return helpPage;
  }

private NSApiClient getNSApiClient() {
return NSApiClientFactory.getInstance();
  }
}

7-25
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Development
MyJSRApplicationContext.xml
Spring application context XML for the portlet.

<?xmlversion="1.0"encoding="UTF-8"?>
<beansxmlns="http:www.springframework.org/schema/beans"
xmlns:xsi="http:www.w3.org/2001/XMLSchema-instance"xmlns:p="http:www.springframework.org/s
chema/p"
xmlns:context="http:www.springframework.org/schema/context"
xsi:schemaLocation="
    http:www.springframework.org/schema/beans 
http:www.springframework.org/schema/beans/spring-beans-2.5.xsd
    http:www.springframework.org/schema/context 
http:www.springframework.org/schema/context/spring-context-2.5.xsd">

<beanid="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<propertyname="cache"value="true"/>
<propertyname="viewClass"
value="org.springframework.web.servlet.view.JstlView"/>
<propertyname="prefix"value="/WEB-INF/jsp/"/>
<propertyname="suffix"value=".jsp"/>
</bean>
<context:annotation-config/>
<bean
class="org.springframework.web.portlet.mvc.annotation.DefaultAnnotationHandlerMapping">
<propertyname="interceptors">
<bean
class="org.springframework.web.portlet.handler.ParameterMappingInterceptor"/>
</property>
</bean>
<beanid="MyJSRController"class="com.myjsr.MyJSRController">
</bean>
</beans>

jsrportlet.properties
URL of the MyJSRerver for the use by nsAPI.

Note In a clustered environment, if the portlet references the Service Portal application URL, then specify the 
URL as “http://localhost:<port>/RequestCenter” where <port> is the port number used by each node in 
the cluster. In other words, do not specify the URL as “http:<host_name>/RequestCenter” where 
<host_name> is the computer name of the web server or one of the hosts within the cluster.

#(Port number and host has to changed as per the application server).
BASE_URL=http:localhost:8088/RequestCenter

Log4j.properties
log4j.rootCategory=INFO,CONSOLE

log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%d{ABSOLUTE}%-5p[%c{1}:%L]%m%n
7-26
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Compiling JSR Portlet Controller
jboss-deployment-structure.xml
<jboss-deployment-structure>
  <deployment>
     <dependencies>
          <module name="javax.portlet" slot="main" export="true"/>
          <module name="org.apache.pluto.container.om" export="true"/>
          <module name="org.apache.pluto.container.driver" export="true"/>
          <module name="org.apache.pluto.tags" export="true"/>
      </dependencies>
  </deployment>
</jboss-deployment-structure>

Compiling JSR Portlet Controller
Include the following libraries in the classpath when compiling the portlet controller:

1. newscale_compbeans.jar
2. newscale_conf.jar
3. newscale_core.jar
4. newscale_appclient.jar
5. pluto-container-2.0.2.jar
6. pluto-portal-driver-2.0.2.jar
7. pluto-portal-driver-impl-2.0.2.jar
8. pluto-container-api-2.0.2.jar
9. pluto-container-driver-api-2.0.2.jar
10. pluto-taglib-2.0.2.jar
11. org.springframework.aop-3.0.2.RELEASE.jar  
12. org.springframework.asm-3.0.2.RELEASE.jar               
13. org.springframework.aspects-3.0.2.RELEASE.jar           
14. org.springframework.beans-3.0.2.RELEASE.jar             
15. org.springframework.context-3.0.2.RELEASE.jar           
16. org.springframework.context.support-3.0.2.RELEASE.jar         
17. org.springframework.core-3.0.2.RELEASE.jar              
18. org.springframework.expression-3.0.2.RELEASE.jar                
19. org.springframework.instrument-3.0.2.RELEASE.jar                
20. org.springframework.instrument.tomcat-3.0.2.RELEASE.jar         
21. org.springframework.jdbc-3.0.2.RELEASE.jar     
22. org.springframework.jms-3.0.2.RELEASE.jar               
23. org.springframework.orm-3.0.2.RELEASE.jar               
24. org.springframework.oxm-3.0.2.RELEASE.jar               
25. org.springframework.spring-library-3.0.2.RELEASE.libd           
26. org.springframework.test-3.0.2.RELEASE.jar              
27. org.springframework.transaction-3.0.2.RELEASE.jar               
28. org.springframework.web-3.0.2.RELEASE.jar               
29. org.springframework.web.portlet-3.0.2.RELEASE.jar               
30. org.springframework.web.servlet-3.0.2.RELEASE.jar               
31. org.springframework.web.struts-3.0.2.RELEASE.jar   
32. commons-collections-3.2.1.jar
33. commons-lang-2.4.jar
34. j2ee.jar
35. json-lib-2.2.2-jdk13.jar
36. portlet-api_2.0_spec-1.0.jar
7-27
Cisco Service Portal Integration Guide

OL-26390-02



   

Chapter 7      JSR Portlets
  Portlet Deployment
Portlet Deployment
The deployment procedures vary with the application server used. As a general note, a JSR portlet can 
be deployed like any typical web application through the application server administrator console.

For detailed instructions on how to deploy the JSR portlet, and how to use the portlet on a portal page 
after deployment, see the Cisco Service Portal Designer Guide.
7-28
Cisco Service Portal Integration Guide

OL-26390-02



 

OL-26390-02
I N D E X
A

Adapters 2-8, 2-42 to 2-59

Auto-Complete Adapter 2-43

Components 3-5

Database 2-43

Defined 2-2, 3-4

Dummy Adapter 2-43

File Adapter 2-49

HTTP/WS 2-50

JMS Adapter 2-54

MQ Adapter 2-55

Properties 3-6

Remedy 4-1

Service Item Listener Adapter 2-56

Types 3-5

VMware Adapter 2-57

Web Service Listener Adapter 2-58

ADK. See Service Link Adapter Development Kit (ADK).

Agents 2-10

Adapter Selection 2-12

Creating 2-10 to 2-11

Defined 2-3

Dictionary Mappings 2-15

Failed Email Notification 2-11

Outbound Message Content 2-11

Parameters 2-13

Prebuilt Functions 2-17

Starting and Stopping Agents 2-66

Apache CXF 5-4

Apache Pluto 7-1

Application Programming Interface (API) 1-2

Authentication, Web Services 5-6 to ??
Authentication Method 1-3

Auto-Complete Adapter 2-43

Axis 2 5-4

B

BindDN 1-3

BMC Remedy Adapter. See Remedy Adapter.

Business Engine 2-3

C

Capability, Manage Global Settings 1-2

Certificates, Configuring 1-24

Configuration Files, Application Server 2-68

Connection Mechanism 1-3

Custom Code 1-36 to 1-48

Coding Guidelines 1-49

Configuring in the Administration Module 1-49

Deploying 1-51

Operation Interfaces 1-38

Operations 1-19, 1-37

Custom Java Class Mapping Interface 1-44

Custom Mappings 1-8

D

Database Adapter 2-43

Database Connection 2-43

Datasources

Adding or Editing 1-22

Configuring 1-22

Configuring Certificates 1-24
IN-1
Cisco Service Portal Integration Guide



 

Index
Configuring Connection Information 1-23

Configuring Referral Datasources 1-25

Defining 1-3

SQL 1-51

Testing the Connection 1-25

Dictionaries, Defined 2-3

Directory Attribute 1-5

Directory Integration 1-1

Configuring 1-20, 1-22 to 1-34

Configuring Events 1-34

Enabling 1-20

Operations 1-36, 1-37

Using Custom Code 1-36 to 1-48

Directory Map Testing, Enabling 1-31

Directory Server API 1-45

Dummy Adapter 2-43

E

Email, Failed Email Notification 2-11

Enable Web Services 5-2

Encryption, Web Services 5-7

Error Messages, Web Services 5-40 to 5-42

Events 1-9

Configuring 1-34

Configuring Events 1-35

Sample Event Configuration 1-54

Expression Mapping 1-28

External Authentication Operation 1-9

External Tasks

Creating 2-23 to 2-24

Filter and Search 2-40

Viewing 2-39 to 2-41

External User Authentication (EUA) Operation 1-12

Ext JS 6-1
IN-2
Cisco Service Portal Integration Guide
F

Failed Messages, Resending 2-38

File Adapter 2-49

Filter and Search 2-37, 2-40

Filters, nsAPI 6-3 to 6-6

H

HTTP/WS Adapter 2-50

I

Import/Refresh Person API 1-47

Import Manager Operation 1-9, 1-16 to 1-19

Import Person Operation 1-9, 1-16

Inbound and Outbound Documents, Sample 3-24 to 3-31

Integration

Components 2-65

Events 1-9

Operations 1-9

Integration Wizard 2-2, 2-3, 2-4, 2-60 to 2-65

Integration Summary 2-64

Outbound Request Parameter Mappings 2-63

Outbound Response Parameter Mappings 2-64

Using 2-60

J

Java Development Kit (JDK) 3-2

Java Portlet Specification 7-1

JDK. See Java Development Kit (JDK).

JMS Adapter 2-54

JSR Portlets 7-1

Deployment 7-28

Development 7-6

Structure and Packaging 7-1
OL-26390-02



 

Index
L

LDAP 1-1, 1-3

Logging 2-66

JBoss 2-66

Online Error Log 2-68

Remedy Adapter Messages 4-12

WebLogic 2-67

WebSphere 2-67

Login Event 1-9, 1-10

Custom Code 1-39

M

Mappings

Configuring 1-26 to 1-31

Custom 1-8

Custom Java Class Mapping Interface 1-44

Data Mapping Test Controls 1-33

Defined 1-4

Expression Mapping 1-28

Java Class Mapping 1-31

Mandatory 1-5

Optional 1-6

Sample Mapping Configuration 1-53

Simple and Composite 1-28

Testing 1-31 to 1-34

Time Zones 1-6, 1-63

Types 1-28

Message Details Popup 2-36

Messages

Filter and Search 2-37

Purging 2-67

Sending a Manual Message 2-40

MQ Adapter 2-55

N

Name Search 6-5
OL-26390-02
nsAPI 6-1

Conventions and Syntax 6-2

Filters 6-3 to 6-6

Nested Entities 6-8 to 6-9

Operations 6-2

Paging 6-7 to 6-8

Sorting 6-6 to 6-7

Supported Entities 6-1

nsXML 2-3

Messages 2-25

Transformations 2-32

nsXML Format 3-13 to 3-23

Agent Parameter 3-23

Data Values 3-19

Dictionary 3-21

Form 3-22

Message 3-14

Requisition 3-17

Requisition Entry 3-18

Task 3-15

Task Started or Task Cancelled 3-14

O

Online Error Log 2-68

OOB. See Order-On-Behalf (OOB).

Operations 1-9

Custom Code 1-37

Directory Integration 1-36

nsAPI 6-2

Order-On-Behalf (OOB) 1-1

P

Person Lookup

Custom Code 1-43

Event 1-9, 1-13

Person Search Operation 1-9, 1-13 to 1-15
IN-3
Cisco Service Portal Integration Guide



 

Index
Portal Manager 7-1

Portfolio Management, Web Services 5-19 to 5-20

Portlets

JSR 7-1

Third-Party 7-1

Prebuilt Functions 2-17, 2-69 to 2-71

Protocol 1-3

Purge, Messages 2-67

R

RAPI 2. See Requisition API.

RBAC. See Role-Based Access Control (RBAC).

Recent Failed Messages 2-6, 2-7, 2-34

Remedy Adapter 4-1

Configuration Steps 4-4

Configuring the Agent 4-5 to 4-7

Configuring the Transformation 4-7 to 4-11

Designing a Service 4-11

Installation 4-5

Integration Scenarios 4-2

Log Messages 4-12

Viewing 4-5

XSL Transformation (XSLT) 4-2

Representational State Transfer. See REST API.

Requisition API 5-1

REST API 6-1

API Reference 6-16 to 6-48

Invoking 6-9 to 6-15

Quick Reference 6-49

Role-Based Access Control (RBAC) 1-5, 6-1

S

SASL (Simple Authentication and Security Layer) 1-3

Server Log File 2-66

Service Item Listener Adapter 2-56

Service Link
IN-4
Cisco Service Portal Integration Guide
Accessing 2-5

Adapters 2-8, 2-42 to 2-59

Agents 2-10

Business Engine 2-3

Components 2-2

Configuring a Task to use a Service Link 
Agent 2-23 to 2-25

Creating and Deploying a Service Link 
Agent 2-33 to 2-34

Defined 2-1

Home Page 2-6

Integration Wizard 2-60 to 2-65

Logging 2-66

nsXML 2-3

Prebuilt Functions 2-69 to 2-71

Recent Failed Messages 2-7, 2-34

Resending Failed Messages 2-38

Screens 2-7

Status 2-6, 2-66

Viewing Messages 2-35

Service Link Adapter Development Kit (ADK) 2-1, 3-1

Compiling Adapters 3-3

Creating Adapter Source Structures 3-3

Deploying Adapters 3-4

Example Adapter 3-6 to 3-13

Installing 3-2

Subdirectories 3-2

Single Sign-On (SSO) 1-1, 1-2, 1-9, 1-10 to 1-12

Administrative Bypass 1-11

Customizing 1-39

SQL-Based Person Lookup, Sample Code 1-55

SQL Datasource 1-51

SSO. See Single Sign-On (SSO).

Status, Service Link 2-6, 2-66

T

Third-Party Portlets 7-1

Time Zones
OL-26390-02



 

Index
Mappings 1-6, 1-63

Supported 1-63

Transformations 2-3

Creating 2-20 to 2-22

V

VMware Adapter 2-57

W

Web Service Listener Adapter 2-58

Web Services 5-1

Adding Comments to a Requisition 5-15

Approving or Rejecting an Authorization 5-18

Authentication 5-6 to ??

Cancelling a Requisition 5-15

Enabling 5-2

Encryption 5-7

Error Messages 5-40 to 5-42

Generating Code 5-4

Getting a List of Authorizations 5-16

Getting a List of Requisitions 5-13

Getting the Requisition Status 5-13

Getting the Service Definition 5-8 to 5-11

Portfolio Management 5-19 to 5-20

Roles and Capabilities 5-3

Sample Requests and Responses 5-21 to 5-40

Sample Service Definition 5-5

Submitting a Requisition 5-11 to 5-13

Task Management 5-16 to 5-19

Testing 5-4

WSDL 5-2

Wildcard Character 1-15, 6-5

WSDL 5-2
OL-26390-02
 IN-5
Cisco Service Portal Integration Guide



 

Index
IN-6
Cisco Service Portal Integration Guide
OL-26390-02


	Cisco Service Portal Integration Guide
	Contents
	About this Guide
	Directory Integration and API
	Overview
	Introduction
	Prerequisites
	Purpose and Scope
	Intended Audience

	Gathering Directory Integration Requirements
	Overview
	Defining Datasources
	Defining Mappings
	Mandatory Mappings
	Optional Mappings
	Custom Mappings

	Defining Integration Events, Operations and Steps
	Events
	Operations
	Login Event
	Single Sign-On Operation
	External User Authentication (EUA) Operation
	Person Lookup Events
	Person Search Operation
	Import Person Operation
	Import Manager Operation
	Custom Code Operations


	Configuring Directory Integration
	Enabling Directory Integration
	Configuring Directory Integration
	Configuring Datasource Information
	Adding or Editing a Datasource
	Configuring Connection Information
	Configuring Certificates
	Configuring Referral Datasources
	Testing the Connection

	Configuring Mappings
	Mapping Types
	Simple and Composite Mappings
	Expression Mapping
	Java Class Mapping

	Testing Mappings
	Enabling the Directory Map Testing Feature
	Using the Data Mapping Test Controls

	Configuring Directory Integration Events

	Using Custom Code in Directory Integration
	Custom Code Operation Interfaces
	Custom Code Interface for Login Event – ISignOn
	Custom Code Interface for Person Lookup – IPersonSearch

	Custom Java Class Mapping Interface
	Custom Java Class for Attribute Mapping – IEUIAttributeMapping

	Directory Server API
	Getting an Instance of ILDAPApi – API Implementation
	Directory Integration Utility (EUIUtil) Class
	LDAP Configuration Info (LDAPConfigInfo) Class
	Main interface of the API – ILDAPApi
	LDAPEntryBean

	Import/Refresh Person API
	Import/Refresh Person API Interface – ISignOnImportPersonAPI


	Best Practices
	Compiling Custom Code Java Files
	Coding Guidelines
	Package Names
	Logging
	Exception Handling

	Configuring Custom Code in the Administration Module
	Step 1: Configure Global Settings
	Step 2: Configure Datasources
	Step 3: Configure Attribute Mappings
	Step 4: Configure Events/Customized Events

	Deploying Custom Code

	Sample View/Usage of the API
	SQL Datasource
	Datasource Definition
	Sample Mapping
	Sample Event Configuration
	Sample Code for SQL-Based Person Lookup

	Supported Time Zones
	Sample build.xml File

	Service Link
	Overview
	Introduction
	Service Link Prerequisites
	Service Link Design Methodology and Components
	Business Engine and nsXML

	Service Link Design and Development
	Overview
	Accessing Service Link
	Managing the Service Link Screens

	Designing the Communication Protocol
	Adapters
	Agents
	Failed Email
	Outbound Message Content
	Adapter Selection
	Agent Parameters

	Transformations
	Reviewing Agent Definitions and Property Sheets
	Configuring a Task to use a Service Link Agent
	Creating an External Task
	Synchronizing Agent Mappings and Service Definitions

	nsXML Messages
	Outbound nsXML Message
	Inbound nsXML Message
	Transformations and nsXML

	Creating and Deploying a Service Link Agent

	Monitoring Service Link Transactions
	Viewing Messages from the Service Link Home Page
	Viewing Messages
	Message Details
	Filter and Search
	Resending Failed Messages

	Viewing External Tasks
	Filter and Search
	Sending a Manual Message

	Republishing Service Link Messages

	Service Link Adapters
	Auto-Complete Adapter
	Dummy Adapter
	Database Adapter
	Database Connection
	Inbound Properties
	Inbound Message and Work Flow
	Outbound Properties
	Outbound Message and Workflow

	File Adapter
	File Adapter Inbound Properties
	File Adapter Outbound Properties

	HTTP/WS Adapter
	Outbound Properties
	Web Service Invocation

	JMS Adapter
	Inbound Adapter Properties
	Outbound Adapter Properties

	MQ Adapter
	Inbound Properties.
	Outbound Properties

	Service Item Listener Adapter
	Inbound Properties
	Outbound Properties.

	VMware Adapter
	Outbound Properties
	VMware Server URL
	VMware Adapter and Agent Architecture

	Web Service Listener Adapter
	Inbound Properties.
	Outbound Properties.


	Integration Wizard
	Overview
	Using the Integration Wizard
	General Information
	Outbound Properties

	Outbound Request Parameter Mappings
	Outbound Response Parameter Mappings
	Integration Summary

	Service Link Troubleshooting and Administration
	Checking Service Link Status
	Starting and Stopping Agents
	Logging
	JBoss Logging
	WebLogic Logging
	WebSphere Logging

	Message Purging
	Application Server Configuration Files
	Online Error Log

	Prebuilt Functions
	Overview
	Function Usage
	Function Synopsis
	substring
	index_of
	last_index_of
	length
	lower_case
	replace
	upper_case



	Service Link Adapter Development Kit
	Overview
	Intended Audience

	Getting Started
	Installing the JDK
	Installing the ADK
	ADK Structure
	Creating Adapter Source Structures
	Compiling Adapters
	Deploying Adapters

	What is an Adapter?
	Concepts
	Types of Adapters
	Adapter Components

	Properties

	Example Adapter
	Directory Structure
	Outbound Adapter Class
	Poller Inbound Adapter Class
	Listener Inbound Adapter
	Exception Handler
	Transaction Support
	Understanding the adapter.xml Descriptor
	The Adapter Schema
	Description of “adapter” Element Fields
	Description of “property” (Adapter Properties) Element Fields
	Adapter.xml Example


	nsXML Format
	Message
	Task Started or Task Cancelled
	Task
	Requisition
	Requisition Entry
	Data Values
	Service
	Dictionary
	Form
	Agent Parameter

	Sample Inbound and Outbound Documents
	task-started or task-cancelled (outgoing)
	take-action (incoming)
	send-parameters (incoming)
	update-data (incoming)
	add-comments (incoming)


	Remedy Service Adapter
	Overview
	Integration Scenarios
	Scenario 1: Request is created in Service Portal and submitted to the AR System for Fulfillment
	Scenario 2: Receive status update from the AR System


	Prerequisites
	Service Portal Requirements
	BMC Requirements

	BMC Remedy Configuration Steps (Sample)
	Obtaining the Adapter
	Installing the Adapter
	Viewing the Adapter
	Configuring the Agent
	Outbound Properties
	Inbound Properties

	Configuring the Transformation
	Inbound Transformation Details
	Outbound Transformation Details
	Outbound and Inbound Date Format Transformations
	Transformation XSL template
	Converting the Date in the Remedy Interface Form Database View


	Designing a Service for a Request Handled by the Remedy Adapter
	Test Scenario
	Log Messages

	Web Services
	Overview
	Audience
	Web Services

	Prerequisites for Web Services
	Service Portal Installation and Configuration
	Administration Settings
	WSDLs
	Roles and Capabilities

	Testing and Development Environment
	Generating Code
	Generating Client Code using Axis 2
	Generating Client Code using Apache CXF


	Web Services for Request Management
	Overview
	Sample Service Definition
	Authentication
	Authenticate per Session
	Authenticate per Request
	Encryption
	RBAC Check for Web Service Access
	Interaction of SOAP Authentication with Directory Integration

	Getting the Service Definition
	getServiceDefinition Request
	getServiceDefinition Response

	Submitting a Requisition
	submitRequisition Request
	submitrequisition Response

	Getting a List of Requisitions
	getOpenRequisitions Request
	getRequisitions Request

	Getting the Requisition Status
	getRequisitionStatus Request
	GetRequisitionStatus Response

	Adding Comments to a Requisition
	addComments Request

	Cancelling a Requisition

	Web Services for Task Management
	Overview
	Getting a List of Authorizations
	getMyAuthorizations Request
	getAuthorizations Request
	getAuthorizationsForUser Request (internal only and unsupported)
	Useful Parameters for getAuthorizations and getAuthorizationsForUser Requests

	Approving or Rejecting an Authorization

	Web Services for Portfolio Management
	Overview
	Exporting Offering Cost Data
	Retrieving Service Offerings and their Status
	getServiceOfferingStatus Request
	getAllServiceOfferingStatus Request
	getServiceOfferingStatus Response


	Sample Requests and Responses
	getServiceDefinition Response
	Sample submitRequisition Request
	Sample getMyAuthorizations Response

	Sample exportOfferingCostData Response

	Web Services Error Messages

	REST API
	Overview
	Supported Entities
	Operations
	Conventions and Syntax
	Filters
	About Name Search

	Sorting
	Paging
	Nested Entities

	Invoking REST API
	Using nsAPI with HTTP Clients
	Using nsAPI with JavaScript Portlets
	Render Data in Ext JS Grid
	Get Logged-In User

	Using nsAPI with JSR Portlets
	Authentication
	Get Logged-In User
	Get Operations
	Post Operations


	Detailed API Reference
	Definitional Data
	Categories
	Services
	Service Offerings
	Agents
	Agreements

	Directory Data
	Person
	Organizational Unit
	Groups
	Accounts

	Transactional Data
	Requisitions
	Requisitions Entries
	Authorizations
	Tasks

	Lifecycle Center Data
	Service Item Details
	All Service Items
	Standards

	Service Portal Data
	Custom Content


	Error Messages
	Quick Reference

	JSR Portlets
	Overview
	Portlet Structure and Packaging
	JBoss Application Server
	Weblogic Application Server
	WebSphere Application Server
	Dependent Libraries

	Portlet Development
	MyJSR.css
	MyJSRCreatePersonView.js
	MyJSREdit.js
	MyJSRHelp.js
	MyJSRView.js
	portlet.xml
	web.xml
	MyJSREdit.jsp
	MyJSRHelp.jsp
	MyJSRView_listperson.jsp
	MyJSRView_updateperson.jsp
	MyJSRController.java
	MyJSRApplicationContext.xml
	jsrportlet.properties
	Log4j.properties
	jboss-deployment-structure.xml

	Compiling JSR Portlet Controller
	Portlet Deployment

	Index


