
Cisco ParStream

Cisco ParStream Manual

<November 14, 2019>

© 2019 Cisco and/or its affiliates.

Document Information:
Title: Cisco ParStream Manual
Version: 6.2.1
Date Published: <November 14, 2019>
Date Printed: November 14, 2019

© 2019 Cisco and/or its affiliates.
All rights reserved.
This document is Cisco Public.

www.cisco.com

Table of Contents

Cisco ParStream Manual i

Table of Contents iii

1 Preface 1

1.1 About Cisco ParStream . 1

1.2 License . 1

1.3 Key Features . 1

1.4 Document Audience . 1

1.5 Prerequisites . 2

1.6 Typographical Conventions . 2

1.7 Command Conventions . 2

1.8 Administrator/User . 2

2 Installation 4

2.1 Installation Overview and Checklist . 4

2.2 Supported Platforms and Packages . 4

2.3 Hardware Requirements . 5

2.4 Configuring Linux OS for Cisco ParStream . 7

2.5 Installing Cisco ParStream Server . 10

2.6 PAM Authentication . 11

2.7 Cisco ParStream Installation Directory Tree . 11

2.8 Administrative User ’parstream’ . 11

2.9 Systemd . 12

3 Getting Started Tutorial 15

3.1 Cisco ParStream Database Software . 15

3.2 Database Data Storage Location . 15

3.3 Additional Packages Required to Run the Tutorial . 15

3.4 General Directory Structure . 15

3.5 Create a Minimal Cluster Configuration . 16

3.6 Provide a Table Definition . 17

3.7 Start the Cluster . 17

3.8 View Processes and Open Ports . 19

Page iii

3.9 Using Interactive SQL Utility . 20

3.10 Connect and View Cluster Information . 21

3.11 Defining a Table . 21

3.12 Start the Importer to Load Data . 22

3.13 Run Queries . 24

3.14 Stop the Cisco ParStream Server and the Cisco ParStream Importer 24

3.15 Cleanup the Cluster and Restore the Tutorial Environment 25

4 Important Constraints Using Cisco ParStream 26

4.1 Important General Constraints with Data Types . 26

4.2 Important General Constraints with SQL Commands 26

4.3 Important General Constraints when Importing Data 27

4.4 Data Loss Prevention . 27

5 Database Design 29

5.1 Data Partitioning . 29

5.2 Schema/Metadata Versioning . 34

5.3 Bitmap Indices . 35

6 Clustering and Distribution 40

6.1 High Availability and Scalability . 40

6.2 Running Cisco Parstream with Multiple Server Nodes 40

6.3 Partition Distribution . 53

7 Dynamic Columns 61

7.1 Motivation for Dynamic Columns . 61

7.2 Using Dynamic Columns . 62

8 Database Configuration 73

8.1 Conf Directories and INI Files . 73

8.2 Internationalization (I18N) . 74

9 Server Administration 76

9.1 Starting the Servers . 76

9.2 User Authentication . 78

9.3 DBMS Scheduler . 81

9.4 Stored Procedures . 83

Page iv

9.5 Monitoring, Logging, and Debugging . 84

10 Importing Data 88

10.1 Overview of Data Import . 88

10.2 General Import Characteristics and Settings . 89

10.3 General Format of CSV Import Files . 89

10.4 CSV File Format of Specific Types . 93

10.5 Using the CSV Importer . 99

10.6 ETL Import . 104

10.7 Import Data with INSERT INTO . 107

11 Deleting Data 109

11.1 Delete Statements . 109

12 Client Applications and Tools 110

12.1 Database Clients pnc and netcat . 110

12.2 PSQL client . 115

13 Options Reference 116

13.1 Commandline Arguments . 116

13.2 Global Options . 119

13.3 Server-Section Options . 134

13.4 Import-Section Options . 146

13.5 Optimization Options . 149

14 Merging Partitions 151

14.1 Merging Partitions . 151

14.2 ETL Merge . 154

15 Performance Optimizations 158

15.1 Execution Control . 158

15.2 Careful Partitioning . 163

15.3 Partition Exclusion . 163

15.4 ORDER BY Bitmap Index Optimization . 165

15.5 Optimizing the Partition Access Tree . 166

15.6 Smart Query Distribution . 167

15.7 JOIN Optimizations . 168

Page v

15.8 Query Rewrite Optimizations . 172

15.9 Small Optimizations . 175

15.10 Column Store Compressions . 177

15.11 LIMIT optimization . 181

15.12 Parallel Sort . 182

15.13 Controlling the Number of Mapped Files . 184

15.14 Disable Tracking of Access Times in File System . 185

15.15 Separation Aware Execution . 186

16 Socket Client Interface 199

16.1 Security . 199

16.2 Tooling . 199

16.3 Output Format . 199

16.4 Control Commands . 200

16.5 ASCII Interface . 204

16.6 XML Interface . 205

16.7 JSON Interface . 207

17 ODBC Client Interface 209

17.1 ODBC Configuration Brief . 209

17.2 Installing ODBC Driver on Linux . 210

17.3 Configuring Cisco ParStream ODBC Connection on Linux 211

17.4 Installing ODBC Driver on Windows . 211

17.5 Configuring Cisco ParStream ODBC Connection on Windows 212

18 JDBC Client Interface 214

18.1 Installing JDBC Driver . 214

18.2 Configuring JDBC Connections . 215

19 Java Streaming Import Interface (JSII) 216

19.1 Introduction . 216

19.2 General Concept . 216

19.3 Java Driver Limitations . 218

19.4 Using the Java Streaming Import Interface . 218

19.5 Java driver for Streaming Import Interface Reference 223

Page vi

20 External User-Defined Table Operators (xUDTO) 232

20.1 Concept of Using User-Defined Table Operators (UDTO) 232

20.2 Enabling External Processing of xUDTOs . 233

20.3 Using External User-Defined Table Operators . 235

20.4 Integrating R Scripts as xUDTOs . 238

21 SQL Coverage 244

21.1 Supported Keywords, Functions, and Operators . 244

21.2 Commands . 247

21.3 Optimization Settings . 260

21.4 Data Types . 260

22 SQL Language Elements 263

22.1 Cisco ParStream SQL . 263

22.2 Supported SQL Keywords . 263

23 SQL Data Types 267

23.1 Supported Data Types . 267

23.2 Integral Types . 267

23.3 Floating-Point Types . 268

23.4 Date and Time Types . 268

23.5 String and Character types . 272

23.6 Blob Types . 274

23.7 Bit-Field Types . 274

23.8 MultiValues (Numeric Arrays) . 275

24 Table Statements 277

24.1 Overview of Table Statements . 277

24.2 CREATE TABLE Statements . 278

24.3 ALTER TABLE Statements . 295

24.4 DROP TABLE Statements . 297

25 SQL Functions 299

26 System Tables 306

26.1 Introduction of System Tables . 306

26.2 Static Tables . 308

Page vii

26.3 Schema and Configuration Tables . 309

26.4 Runtime Tables . 316

27 SQL Grammar 325

27.1 BNF Notation . 325

27.2 SQL Statements . 325

27.3 SELECT Statements . 327

27.4 INSERT Statements . 360

27.5 DELETE Statements . 361

27.6 INSPECT Statements . 362

27.7 Schema Definition Statements . 364

27.8 Schema Manipulation Statements . 370

27.9 CALL Statement (Control Statements) . 372

27.10 SET Statements (Session Statements) . 373

27.11 ALTER SYSTEM Statements (System Statement) . 375

27.12 User Administration Statements . 377

27.13 DBMS Job Scheduler . 377

28 Reserved Keywords 378

28.1 Reserved Standard SQL Keywords . 378

28.2 Reserved Cisco ParStream Keywords . 381

29 Release Notes 384

29.1 Release Notes Version 6.2 . 384

29.2 Release Notes Version 6.1 . 384

29.3 Release Notes Version 6.0 . 385

29.4 Release Notes Version 5.4 . 386

29.5 Release Notes Version 5.3 . 386

29.6 Release Notes Version 5.2 . 387

29.7 Release Notes Version 5.1 . 388

29.8 Release Notes Version 5.0 . 389

29.9 Release Notes Version 4.4 . 390

A Examples 392

A.1 Example ‘cluster’ . 392

Page viii

A.2 Example ’multivalue’ . 392

A.3 Example ‘dynamiccolumns’ . 392

A.4 Example ‘stringdistr’ . 393

A.5 Example ‘xUDTO’ Defining External User-Defined Table Operators 393

B API Examples 394

B.1 Example ‘importapi_java’ Using the Streaming Import Interface by a JAVA Client . . 394

B.2 Example ‘jdbc’ Using the JDBC Driver . 394

Glossary 395

Index 397

Page ix

Preface

Welcome to the Cisco ParStream Manual. This manual describes the Cisco ParStream database.

Note:
Ensure you are familiar with the “Important Constraints Using Cisco ParStream” (see chapter 4,
page 26) before using Cisco ParStream.

About Cisco ParStream

Cisco ParStream is a massively parallel (MPP) shared-nothing data management system designed to
run complex analytical queries over extremely large amounts of data on a cluster of commodity servers.
Cisco ParStream is specifically designed to exploit advantages of modern processor architectures.

License

Cisco ParStream is licensed as a component of the Cisco Kinetic Edge & Fog Processing Module
(EFM). Licensing is managed through the Kinetic EFM Smart Licensing Tool.

Key Features

Cisco ParStream can be seamlessly added to your existing environment and processes. Key features
include:

• Fast setup (tools support structure and data migrations)

• Fast import, transformation and indexing (file and stream interface)

• All ordinary data types supported (integer, floating-point, date, time, timestamp, string, blob, etc.)

• Easy querying (SQL 2003 Select is supported)

• Advanced analytics (easily extended via user-defined functions /C++ API)

• Schema-based (multi-dimensional partitioning, single and multi-table support, columns and indices)

• Infrastructure independent (running on single servers, dedicated clusters and virtualized private
and public clouds)

• Platform independent (many Linux distributions supported)

• Software-only product (no need for special hardware as it runs on standard CPUs, RAM, SSDs,
and spinning disks)

Document Audience

The following installation guide is targeted at experienced database and Linux system administrators.

Page 1

1 Preface 1.5 Prerequisites

Prerequisites
This document assumes that you have:

• Expertise in SQL and Linux

• A supported Linux operating system

• A hardware platform that meets the minimum requirements

Typographical Conventions
This document uses the following typographical conventions to mark certain portions of text:

Conventions Description
Italics New terms, foreign phrases, and other important passages are emphasized

in italics.
Monospaced Everything that represents input or output of the computer, in particular

commands, program code, and screen output, is shown in a monospaced
font.

Monosp.italics Within such passages, italics indicate placeholders; you must insert an actual
value instead of the placeholder.

Bold On occasion, parts of program code are emphasized in bold face if they have
been added or changed since the preceding example.

Command Conventions
The following conventions are used in the synopsis of a command:

Conventions Description
Brackets ([and]) Indicates optional parts.
Braces ({, }) Indicates that you must choose one alternative.
Vertical lines (|) Indicates that you must choose one alternative.
Dots (’...’) The preceding element can be repeated.
Prompt (=>) SQL commands are preceded by the prompt =>, where it enhances the clarity.
Prompt ($) Shell commands are preceded by the dollar prompt.

Normally, prompts are not shown in code examples.

Administrator/User
The following defines how the terms administrator and user are used in this document:

• An administrator is generally a person who is in charge of installing and running the Cisco ParStream
Server.

• A user can be anyone who is using, or wants to use, any part of the Cisco ParStream system.

Page 2

1.8 Administrator/User 1 Preface

Note:

The terms administrator and user should not be interpreted too narrowly. This document
does not have fixed presumptions about system administration procedures.

Page 3

Installation

Installation Overview and Checklist

Pre-Installation Checklist

Ensure you have the following before beginning the installation tasks:

• Obtain superuser (root) permissions or sudo access to all servers in your cluster to perform the
installation.

• Download the Cisco ParStream installation package that is part of the Cisco Kinetic Edge & Fog
Processing Module.

Installation Tasks

The following is a list of required Cisco ParStream installation tasks. Each task is described in later
chapters of this guide:

• Procure and configure the servers and networking equipment in accordance with hardware
requirements provided in this guide (see section 2.3, page 5).

• Configure Linux OS per Cisco ParStream installation pre-requisites on each node in the cluster
(see section 2.4, page 7).

• Install Cisco ParStream Server software by running the installer on each node in the cluster
(see section 2.5, page 10).

• Configure the Administrative User account “parstream” (see section 2.8, page 11).

• Follow the Getting Started Tutorial section in this guide (optional; see section 3, page 15).

Securing the Installation

Every install of a Cisco ParStream instance will have to meet specific requirements for performance
and security. It is generally advisable, to configure the underlying platform Linux OS as tight as
possible by minimizing the number of amount and privileges of processes running and services
offered. Suggested is adherence to general hardening guidelines as provided by the NSA hardening
guide collection at https://www.nsa.gov/ or platform specific formulations (as noted below in
section 2.2, page 4). To enable educated decisions, when the grade of security impacts performance,
and where to strike a balance acceptable for the local install, the sections in this chapter (starting with
section 2.3, page 5) offer helpful information and relations.

Supported Platforms and Packages

This section provides important information about Cisco ParStream supported platforms and lists
associated software package information for installation, development and drivers.

Page 4

2.3 Hardware Requirements 2 Installation

Server Packages

Cisco ParStream Server is supported on the following 64-bit Operating Systems on the x86_64
architecture:

Operating System Cisco ParStream Server Installation Packages
(64-bit, x86_64 architecture)
Red Hat Enterprise Linux 7 parstream-database-<version>.el7.x86_64.rpm
CentOS 7 parstream-authentication-<version>.el7.x86_64.rpm

JDBC Package

ParStream JDBC Driver is provided on the following 32-bit and 64-bit Operating Systems on x86 and
x64 architectures:

Java Platform Cisco ParStream JDBC Driver Package
Java 8, all editions parstream-jdbc-<version>.el7.noarch.rpm

JSII Package

ParStream Java SSI Driver is provided on the Operating Systems on x86 and x64 architectures:

Operating System Cisco ParStream Server Installation Packages
(64-bit, x86_64 architecture)
Red Hat Enterprise Linux 7 parstream-sii-<version>.el7.x86_64.rpm
CentOS 7

Security Guidelines

Installs of Cisco ParStream are expected to rely on a system adhering to platform specific security
guidelines, where offered by vendor / distributor. The places where to find normative information are
subject to change, thus only sample URLs are given here:

Operating System Security Guidelines Sample URL
Red Hat Enterprise Linux 7 https://access.redhat.com/documentation/en-US/...

Red_Hat_Enterprise_Linux/7/pdf/Security_Guide/...
Red_Hat_Enterprise_Linux-7-Security_Guide-en-US.pdf

Red Hat Enterprise Linux 7 https://wiki.centos.org/HowTos/OS_Protection/

CentOS7

Hardware Requirements
This section provides the Cisco ParStream requirements, as well as important details and
considerations.

Note:

Page 5

2 Installation 2.3 Hardware Requirements

To eliminate potential resource contention, do not run any 3rd party applications on any
Cisco ParStream node.

x86_64 Processor Architecture

Cisco ParStream Server software runs on x86-64 architecture hardware. Cisco ParStream software
will run on any compliant platform, including virtualized.

Note:

A processor’s clock speed directly affects the Cisco ParStream database response time.

• A larger number of core processors enhance the cluster’s ability to simultaneously
execute multiple massively parallel processing (MPP) queries and data loads.

• A popular, proven, and cost effective platform for the Cisco ParStream cluster node is
2-socket industry-standard server with Intel® Xeon® 6- or 8-core processors, such as
Xeon E5-2600 or Xeon 5600 Series.

• The minimum acceptable total number of core processors (not HT) in a server node
(e.g., a virtual machine) is 4.

RAM

A sufficient amount of memory is required to support high-performance database operations,
particularly in environments with high concurrency and/or mixed workload requirements.

Cisco ParStream requires a minimum of 2GB per physical CPU core, however 4GB or more
per CPU is recommended. For example, the minimum amount of RAM for a server node with 2
hyper-threaded eight-core CPUs is 32GB (2 CPUs * 8 cores * 2GB), though 64GB is recommended.

This guidance provides a degree of flexibility enabling you to provision RAM in compliance with DIMM
population rules to maintain the highest supported RAM speed. On modern Intel Xeon architectures
this typically means:

• To utilize the highest supported DIMM speed, all channels should be loaded similarly, i.e., no
channel should be left completely blank.

• The maximum number of DIMMs per channel is 2.

Storage

Since Cisco ParStream is designed as a shared-nothing MPP system, Cisco ParStream cluster nodes
can utilize any storage type – internal or shared/attached (SAN, NAS, DAS) as long as the storage
is presented to the host as a Cisco ParStream supported file system and provides a sufficient I/O
bandwidth. Internal storage in a RAID configuration offers the best price/performance/availability
characteristics at the lowest cost.

The following are guidelines for internal storage provisioning:

• To maximize I/O performance, spread the I/O across multiple individual drives. Cisco ParStream
requires at least 4 individual drives dedicated to the Cisco ParStream Data Storage Location. For

Page 6

2.4 Configuring Linux OS for Cisco ParStream 2 Installation

production environments, provisioning 8 or more drives to the Cisco ParStream Data Storage
Location is recommended.

• All internal drives used for Cisco ParStream data storage should be connected to a single RAID
controller and presented to the host as one contiguous RAID device. This means that a single
RAID controller must "see" all available internal drives.

Note:
Some servers with multiple internal drive cages requiring separate RAID controllers may
have design limitations and are not recommended as Cisco ParStream nodes.

• Select a RAID controller with 1GB or more cache, with write caching enabled.

• Ensure that the storage volume for Cisco ParStream Data Directory is no more than 60% utilized
(i.e., has at least 40% free space).

Network

Cisco ParStream software forms a cluster of server nodes over an Ethernet network and uses TCP
P2P communications.

The network provisioned for operating a Cisco ParStream cluster should be 1GB or greater. In addition

• For best performance, all cluster nodes should reside on the same subnet network.

• IP addresses for the cluster nodes must be assigned statically and have the same subnet mask.

• We recommend that the cluster network is provisioned with Ethernet redundancy. Otherwise, the
network (specifically the switch) could be a single point of a cluster-wide failure.

Power Management and CPU Scaling

CPU scaling may adversely affect the database performance.

Note that due to the internal architecture of Cisco ParStream it is important to disable any BIOS option
for efficient dynamic power management or frequency scaling of CPU’s. The reason is that updates
due to the dynamic management react too slow so that such a feature is even highly counter-productive
for an efficient usage of Cisco ParStream. Thus:

Disable any dynamic management of CPU frequencies (which is more and more
enabled by default).

As a result, you should not see different CPU frequencies in /proc/cpuinfo.

Although CPU scaling can also be controlled via governors in the Linux kernel, CPU scaling control is
usually hardware specific. For background information, see
http://en.wikipedia.org/wiki/Dynamic_frequency_scaling.

Configuring Linux OS for Cisco ParStream
This section details the steps that must be performed by the root user on each server in the cluster.

Page 7

http://en.wikipedia.org/wiki/Dynamic_frequency_scaling

2 Installation 2.4 Configuring Linux OS for Cisco ParStream

Note:

All nodes in the cluster must be identically configured.

After making all the changes outlined in this section, restart the servers and verify that the
recommended settings are implemented.

Swap Space

Cisco ParStream recommends allocating, at minimum, the following swap space:

System Ram Size (GB) Min Swap Space (GB)
4 or less 2
4 to 16 4
16 to 64 8
64 to 256 16

The swap file or partition should not be co-located on the same physical volume as the Cisco ParStream
data directory.

Data Storage Location

The Cisco ParStream Data Directory should be placed on a dedicated, contiguous storage volume. If
internal storage is used, the physical data drives should form one hardware RAID device presented to
the host as one contiguous volume.

ext4 is the recommended Linux file system for the Data Storage Location.

Due to performance and reliability considerations, Cisco ParStream does not recommend using
LVM in the I/O path to the Data Storage Location. Further, Cisco ParStream does not support Data
Storage Location on logical volumes that have been extended beyond their initially configured capacity.

IPTables (Linux Firewall)

You should allow access in the firewall for ports used by ParStream depending on your
configuration/usage.

For client access use (only open the one you need):� �
$ firewall-cmd --zone=public --add-service=parstream-netcat

$ firewall-cmd --zone=public --add-service=parstream-postgresql� �
If you have configured a cluster, you need additional ports for intercluster communication (you have to
open all of the following ports):� �
$ firewall-cmd --zone=public --add-service=parstream-cluster-messages

$ firewall-cmd --zone=public --add-service=parstream-partition-activation

$ firewall-cmd --zone=public --add-service=parstream-find-nodes

$ firewall-cmd --zone=public --add-service=parstream-registration-port� �
Page 8

2.4 Configuring Linux OS for Cisco ParStream 2 Installation

You should limit access to the intercluster communcation ports using appropriate firewall rules only
allowing access to / from necessary machines (all cluster nodes) or if necessary protect against denial
of service attacks using connection rate limits.

See section 13.3.1, page 135 for an overview of the ports Cisco ParStream uses.

SELinux

SELinux is not recommended on cluster nodes as it may complicate cluster operations.

If it is enabled:

• If it doesn’t violate your security practices, in the file /etc/sysconfig/selinux change the
setting for SELINUX to disabled:� �
SELINUX=disabled� �

• Immediately change the current mode to permissive (until SELinux is permanently disabled upon
the next system restart):� �
$ setenforce 0� �

To check the current settings, you can call:� �
$ getenforce� �

Clock Synchronization

When using the date/time functions, the clocks on all servers in the cluster must be synchronized to
avoid inconsistent query results.

Ensure the NTP package is installed and the system is configured to run the NTP daemon on
startup:� �
$ chkconfig ntpd on

$ service ntpd restart� �
To check the current settings:� �
$ chkconfig --list ntpd

$ service ntpd status� �
Verify the level of server’s clock synchronization:� �
$ ntpq -c rv | grep stratum� �

A high stratum level, e.g., 15 or greater, indicates that the clocks are not synchronized.

Note:

Page 9

2 Installation 2.5 Installing Cisco ParStream Server

These instructions are intended for RHEL/CentOS which names the NTP daemon process
ntpd.

Maximum Number of Open Files

If the error "too many file open" appears, the setting for the maximal number of open files must be
increased. Cisco ParStream will print a warning if the value is less than 98,304.

To change the setting, add the following to the file /etc/security/limits.conf:� �
* hard nofile 131072

* soft nofile 131072

root hard nofile 131072

root soft nofile 131072� �
Logout and log back in for the changes to take immediate effect.

To check the current settings, call:� �
$ ulimit -n� �

max_map_count Kernel Parameter

If the error "cannot allocate memory" appears, the Linux kernel parameter vm.max_map_count must
be increased.

To change the setting, add the following to the file /etc/sysctl.conf:� �
vm.max_map_count = 1966080� �

and reload the config file for the changes to take immediate effect:� �
$ sysctl -p� �

Check the current settings as follows:� �
$ cat /proc/sys/vm/max_map_count� �

Installing Cisco ParStream Server

This section details the steps that must be performed by the root user on each server in the cluster.

Cisco ParStream Server software depends on supplemental Linux packages that may or may not
already be installed on your servers. For this reason, your servers should be able to download and
install additional Linux packages from official repositories while installing this software.

Page 10

2.6 PAM Authentication 2 Installation

CentOS, RHEL

Install Cisco ParStream Server software:� �
$ yum install parstream-database-<version>.el7.x86_64.rpm� �

PAM Authentication
The installer will install a new PAM configuration file for the authentication to the Cisco ParStream
Server. It will be installed as /etc/pam.d/parstream. In order to login with the user parstream,
you have to follow the instructions in section 2.8.1, page 12.

Cisco ParStream authenticates users via an external application called parstream-

authentication. This application is provided by an additional software package, that has to
be installed separately. For each supported platform, a different package has to be installed. See
section 9.2, page 78 for further information about user authentication.

CentOS, RHEL

To install Cisco ParStream authentication software:� �
$ yum install parstream-authentication-<version>.el7.x86_64.rpm� �

Cisco ParStream Installation Directory Tree
The Cisco ParStream installation directory tree is organized as follows:

Path Description
/opt/cisco/kinetic/parstream-database Cisco ParStream installation

directory, pointed to by the
$PARSTREAM_HOME
environment variable

/opt/cisco/kinetic/parstream-database/bin Executable binaries and scripts
/opt/cisco/kinetic/parstream-database/lib Shared libraries
/opt/cisco/kinetic/parstream-database/examples Examples
/var/log/parstream Message logs

Administrative User ’parstream’
This section provides parstream login and account information.

The Cisco ParStream Server installation procedure automatically creates a Linux user parstream if it
doesn’t exist. The user parstream is:

Page 11

2 Installation 2.9 Systemd

• The owner of the product installation in /opt/cisco/kinetic/parstream-database

• The Administrative user of the Cisco ParStream database. The configuration and administration
tasks in the Cisco ParStream database environment, including starting and stopping the database
server, should be performed by this user.

Note:

The Cisco ParStream database processes should not be started with root user privileges.

Enabling Interactive Login for ’parstream’

The installation procedure creates the user parstream without a pass phrase. You can start an
interactive shell session as parstream user with su command from root account. However, all other
logins as user parstream are disabled until a pass phrase is set.

You can set a pass phrase for the user parstream by running the following command as root:� �
$ passwd parstream� �

Useful Environment Variables

Define PARSTREAM_HOME which is mostly used by the example execution scripts:� �
export PARSTREAM_HOME=/opt/cisco/kinetic/parstream-database� �

The PATH variable should be extended by the bin folder of the installation to be able to use commands
like pnc directly from your shell:� �
export PATH=/opt/cisco/kinetic/parstream-database/bin:$PATH� �

When executing the parstream-server

or parstream-importer manually, the LD_LIBRARY_PATH should be set as we use dynamic
linking for our executables:� �
export

LD_LIBRARY_PATH=/opt/cisco/kinetic/parstream-database/lib:$LD_LIBRARY_PATH� �

Systemd

Setting up systemd for Cisco ParStream

Before starting the Cisco ParStream server you need to configure the packaged parstream systemd
daemon.

To configure the daemon put the following into

Page 12

2.9 Systemd 2 Installation

/usr/lib/systemd/system/parstream-database@srv1.service.d/local.conf:

� �
[Unit]

AssertPathExists=/psdata/tutorial

[Service]

WorkingDirectory=/psdata/tutorial� �
You can now control the service using systemctl using the servicename
parstream-database@srv1.

Use systemctl status to check its status.

� �
* parstream-databasesrv1.service - Cisco ParStream database - srv1Loaded:

loaded (/usr/lib/systemd/system/parstream-database.service; disabled;
vendor preset: disabled)

Drop-In:

/usr/lib/systemd/system/parstream-databasesrv1.service.d|-local.confActive:
inactive (dead)� �

Use systemctl start to start the server. If it fails to start it will not show you any errors - you need
to use systemctl status afterwards to check its status.

Use systemctl stop to stop the server.

Note:

If the initial start of the cluster fails, you have to clean-up any temporary files created for
the first failed cluster setup before you start the cluster initialization again. Beware that
this will remove all metadata and wipe all data from the server and is not recommened
once the system has been running correctly. (there are other options, which go beyond
this initial tutorial):� �
$ cd /psdata/tutorial

$ rm -rf journals� �
More information on systemd and how to use and configure it can be found under
https://www.freedesktop.org/software/systemd/man/systemd.html

Configuring the Cisco ParStream daemon to start automatically

The packaged systemd allows the server to be configured to automatically start and stop with the
system.

To register the service use the systemctl enable command (it will not implicitly start the server):� �
$ systemctl enable parstream-databasesrv1� �

Page 13

https://www.freedesktop.org/software/systemd/man/systemd.html

2 Installation 2.9 Systemd

Use systemctl disable to unregister the server (it will not implicitly stop the server).

Note:

If you stop the server using systemctl stop it will be restarted on the next reboot. If
you use systemd to start your server, you should only use systemctl to stop your parstream
server. If you use an ALTER SYSTEM CLUSTER shutdown command, the systemd service
will immediately restart the server, which might leave it in an undefined state.

Page 14

Getting Started Tutorial

This tutorial provides instructions for typical tasks used when operating a Cisco ParStream database.
It covers initial setup, loading data, running queries, and basic performance tuning optimizations.

Cisco ParStream Database Software
Before proceeding, ensure that Cisco ParStream is installed on a node or a cluster of nodes according
to this installation guide. That is:

• Cisco
ParStream database software is installed in /opt/cisco/kinetic/parstream-database

(see section 2.5, page 10),

• The installed software shall be owned by the user parstream (see section 2.8, page 11).

• Environment variables such as $PARSTREAM_HOME are set-up (see section 2.8.2, page 12).

Database Data Storage Location
Each Cisco ParStream server node must be configured with a storage volume for database data files.
This storage volume should be provisioned as recommended in section 2.4.2, page 8.

In this tutorial, we presume the databases will be created on a dedicated storage volume mounted as
/psdata. The user parstream must have read-write privileges in the directory /psdata.

Additional Packages Required to Run the Tutorial
Running this tutorial requires some Linux packages to be installed as follows:

CentOS7 / RHEL 7 / Oracle Linux 7� �
yum install python-argparse nc telnet PyGreSQL� �

General Directory Structure
Cisco ParStream uses the following directory layout for each instance. Data and journal directories
are created by Cisco ParStream if necessary.

Path Description
conf Directory containing configuration files
import Staging directory for the import process
journals Directory containing server metadata
partitions-[srvname] Default directory for data stored inside Cisco ParStream

Page 15

3 Getting Started Tutorial 3.5 Create a Minimal Cluster Configuration

Create a Minimal Cluster Configuration

All of the following steps in this tutorial are performed by the user parstream. First, we need to
create the conf directory:� �
mkdir -p /psdata/tutorial/conf� �

Secondly, we create a configuration file called parstream.ini in this directory.

An example of a minimal configuration file for this tutorial is provided here:� �
clusterId = ParStreamTutorial

registrationPort = 9040

[server.srv1]

host = localhost

port = 9210

rank = 1

datadir = partitions-srv1

[server.srv2]

rank = 2

host = localhost

port = 9220

datadir = partitions-srv2

[server.srv3]

rank = 3

host = localhost

port = 9230

datadir = partitions-srv3

[import.imp1]

host = localhost

leaderElectionPort = 9099

rank = 9999

sourcedir = import

targetdir = partitions-imp1� �
This configuration file defines:

• a cluster ’ParStreamTutorial’ to manage all server and import nodes of this tutorial:

– All servers and importer use the common registration port ’9040’.
– To start the database, we give 120 seconds time (this is especially necessary to start clusters

with multiple servers; as we only have one server here, you can set this value to 20).

• a couple of settings for each server, called ’srv1’, ’srv2’, and ’srv3’. listening for client
connections (for the moment we need only the first server, but we provide all definitions so
that we can keep this INI file when we run the database with multiple servers)

– Each server has to define a host, i.e., a network address to bind to listen on.

Page 16

3.6 Provide a Table Definition 3 Getting Started Tutorial

– Each server has to define an initial port (internally servers use up to 5 ports starting with this
port).

– Each server needs its own rank, which is used to define, which server is the initially preferred
server for cluster management

– Each server defines where to keep the database files (the so-called partitions).

• a local data importer ’imp1’ that will automatically load CSV data files from the specified staging
directory

– Each importer has to define a ’leader election port’ for the cluster management and a rank.
– Each importer needs to define where to find the CSV files to import data from and a partition

directory used to temporarily store data while it is being transferred to the server(s).

Copy this template to your parstream.ini file.

Provide a Table Definition

To make the server configuration meaningfully complete, we need to define at least one table. Database
tables are defined by submitting CREATE TABLE commands (see section 24.2, page 278). For this
tutorial, we provide a simple CREATE TABLE statement:� �
CREATE TABLE measurements (sensor_id UINT64 INDEX EQUAL,

sensor_name VARSTRING(255) COMPRESSION HASH64

INDEX EQUAL,

value float)

PARTITION BY sensor_id

DISTRIBUTE OVER sensor_id

IMPORT_FILE_PATTERN 'measure.*';� �
Partitioning a table is a way of organizing data. Each unique value of a partitioning column will be
used to organize the data physically. Hence, filtering on a partitioning column will greatly reduce the
amount of data that needs to be inspected by Cisco ParStream.

The distribution over statement controls how the data is distributed among the cluster nodes. Each
value of the column will be assigned round-robin to a different cluster node. Therefore, it would be
ideal if the data is distributed evenly among all the different values of that column. For a more in-depth
explanation, see section 6.3, page 53.

Start the Cluster

The recommended way to start Cisco ParStream is to use the provided systemd scripts described
in section 2.9, page 12. Alternatively, you can start the Cisco ParStream server process from the
tutorial’s base directory with the following command:� �
/opt/cisco/kinetic/parstream-database/bin/parstream-server <srvname>� �

Page 17

3 Getting Started Tutorial 3.7 Start the Cluster

To start a cluster for the first time, promptly start the Cisco ParStream servers on all cluster nodes
within 60 seconds (half of the default time set for option clusterInitTimeout).

So start the first server, ’srv1’:� �
cd /psdata/tutorial

/opt/cisco/kinetic/parstream-database/bin/parstream-server srv1� �
server ’srv2’:� �
cd /psdata/tutorial

/opt/cisco/kinetic/parstream-database/bin/parstream-server srv2� �
and server ’srv3’:� �
cd /psdata/tutorial

/opt/cisco/kinetic/parstream-database/bin/parstream-server srv3� �
Wait until all log files contain lines that the cluster is successfully started, which take about two minutes
by default. During this period, the log files end with messages such as:� �
...

[2018-10-11T14:42:25]:srv1-144224:PROT-77065: Running cluster leader

detection (limited until 2015-Mar-13 14:44:25)� �
When the servers are up and running, you should see output similar to this:� �
...

[2018-10-11T14:43:25.321578]:srv1-144224:PROT-77066: Cluster leader detected:

leader = 'srv1' I AM THE LEADER (elapsed time = 00:01:00)

[2018-10-11T14:43:25.587458]:srv1-144224:INFO-77063: Registration of cluster

node 'srv1' done

...

[2018-10-11T14:43:39.456872]:srv1-144224:PROT-77018: Activating node srv1

[2018-10-11T14:43:39.758525]:srv1-144224:PROT-77011: Starting to listen on

port 9010 for client connections� �
and this:� �
...

[2018-10-11T14:42:34.654425]:srv2-144233:PROT-77065: Running cluster leader

detection (limited until 2015-Mar-13 14:44:34)

[2018-10-11T14:43:25.214547]:srv2-144233:PROT-77066: Cluster leader detected:

leader = 'srv1' (elapsed time = 00:00:51)

[2018-10-11T14:43:25.578975]:srv2-144233:INFO-77063: Registration of cluster

node 'srv2' done

[2018-10-11T14:43:35.133581]:srv2-144233:PROT-77093: Cluster follower

detected: follower = 'srv2' I AM A FOLLOWER

[2018-10-11T14:43:38.577258]:srv2-144233:PROT-77011: Starting to listen on

port 9020 for client connections� �
Page 18

3.8 View Processes and Open Ports 3 Getting Started Tutorial

As the messages indicate, the Cisco ParStream servers are up and ready for client connections.

View Processes and Open Ports

To view the processes, run the command:� �
ps x� �� �

PID TTY STAT TIME COMMAND

...

98440 pts/0 Sl 0:00

/opt/cisco/kinetic/parstream-database/bin/parstream-server srv1

98443 pts/0 Sl 0:00

/opt/cisco/kinetic/parstream-database/bin/parstream-server srv2

98447 pts/0 Sl 0:00

/opt/cisco/kinetic/parstream-database/bin/parstream-server srv3

...� �
You can also verify that the processes are listening on the defined ports by running the command:� �
lsof -i� �

If the lsof command is not available on your platform, you might have to install the corresponding
package, which usually has the same name (e.g., calling yum install lsof on CentOS).� �
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

parstream 98440 parstream 6u IPv4 1229966 0t0 TCP *:9210 (LISTEN)

parstream 98440 parstream 10u IPv4 1229967 0t0 TCP *:9211 (LISTEN)

parstream 98443 parstream 6u IPv4 1229966 0t0 TCP *:9220 (LISTEN)

parstream 98443 parstream 10u IPv4 1229967 0t0 TCP *:9221 (LISTEN)

parstream 98447 parstream 6u IPv4 1229966 0t0 TCP *:9230 (LISTEN)

parstream 98447 parstream 10u IPv4 1229967 0t0 TCP *:9231 (LISTEN)� �
• 9010 is the default listening port for pnc/netcat ASCII character connections of srv1

• 9011 is the default listening port for ODBC and JDBC client connections of srv1

• 9020 is the default listening port for pnc/netcat ASCII character connections of srv2

• 9021 is the default listening port for ODBC and JDBC client connections of srv2

• 9030 is the default listening port for pnc/netcat ASCII character connections of srv3

• 9031 is the default listening port for ODBC and JDBC client connections of srv3

Page 19

3 Getting Started Tutorial 3.9 Using Interactive SQL Utility

Using Interactive SQL Utility

Even though no data has been loaded into the database yet, you can start the Cisco ParStream
interactive SQL utility pnc and create some practice SQL queries to familiarize yourself with the
environment.

You can connect to any query node of the cluster to issue queries. To call pnc you have to pass a user
name. By default, a user parstream is created, so that pnc should be called as follows (passing
user name and port of srv1):� �
pnc -U parstream -p 9010� �

The output will be:� �
password:

Connecting to localhost:9010 ...

Connection established.

Encoding: ASCII� �
After typing in your pass phrase, the prompt signals it is ready to submit commands or queries:� �
Cisco ParStream=>� �

For example, you can get the list of tables in the database by querying a system table:� �
Cisco ParStream=> SELECT table_name FROM ps_info_table;� �

Output:� �
#table_name� �

We receive an empty list because we did not create any table, yet.

Similarly, you can query for details about the current configuration:� �
Cisco ParStream=> SELECT * FROM ps_info_configuration;

...� �
To exit the pnc utility, either press Ctrl-D or type quit at the prompt:� �
Cisco ParStream=> quit;� �

Output:� �
Lost connection.� �

Page 20

3.10 Connect and View Cluster Information 3 Getting Started Tutorial

Connect and View Cluster Information
Connect to any node of the cluster, for example node ’srv1’, with the pnc utility:� �
\$ pnc -U parstream -p 9010

password:

Connecting to localhost:9010 ...

Connection established.

Encoding: ASCII

Cisco ParStream=>� �
and type at the prompt:� �
Cisco ParStream=> SELECT name, type, host, port, node_status, leader,

follower FROM ps_info_cluster_node ORDER BY port;� �
which if everything is up and running should print:� �

#name;type;host;port;node_status;leader;follower
"srv1";"QUERY";"localhost";9210;"active";1;0

"srv2";"QUERY";"localhost";9220;"active";0;1

"srv3";"QUERY";"localhost";9230;"active";0;0

[0.001 s]� �
This confirms that all query nodes are active and online and that one node is the leader (i.e., currently
managing the cluster) and that one of the other two nodes is a so-called follower (backup for the
leader).

Defining a Table
Using pnc, we can create a first table. We can interactively submit a corresponding CREATE TABLE

command, but we can also call pnc again, processing the contents of a corresponding SQL file with
the table definition as input:� �
pnc -U parstream -p 9010 < table.sql� �

After connecting and asking for the pass phrase again, the resulting output is:� �
Cisco ParStream=>

Table 'measurements' successfully created.� �
If we repeat our query for a list of tables now:� �
Cisco ParStream=> SELECT table_name FROM ps_info_table;� �

we get the output:� �
#table_name

Page 21

3 Getting Started Tutorial 3.12 Start the Importer to Load Data

"measurements"� �
View the definitions of the columns in our sample table with the following query:� �
Cisco ParStream=> SELECT column_name, column_type, sql_type, column_size

FROM ps_info_column WHERE table_name='measurements'

ORDER BY column_name;� �
Output:� �
#column_name;column_type;sql_type;column_size
"sensor_id";"numeric";"UINT64";<NULL>

"sensor_name";"numeric";"VARSTRING";255

"value";"numeric";"FLOAT";<NULL>� �
You can also confirm that our sample table has no data:� �
Cisco ParStream=> SELECT COUNT(*) AS cnt FROM measurements;� �

Output:� �
#cnt
0� �

Start the Importer to Load Data

We have configured the import data directory in /psdata/tutorial/conf/parstream.ini:� �
...

[import.imp1]

...

sourcedir = /psdata/tutorial/import

...� �
Additionally, there are also importer-related parameters configured in each table definition:� �
CREATE TABLE measurements

(

...

)

PARTITION BY sensor_id

DISTRIBUTE OVER sensor_id

IMPORT_FILE_PATTERN 'measure.*';� �
Once started, the importer monitors the import directory for new data files with names matching
the specified IMPORT_FILE_PATTERN. In this tutorial, the importer ’imp1’ is configured to

Page 22

3.12 Start the Importer to Load Data 3 Getting Started Tutorial

continuously load CSV files matching the ’measure.*’ pattern from any directory in or below
/psdata/tutorial/import into the table measurements.

You can create an example csv file and store it in the /psdata/tutorial/import directory with a
name starting with measure, e.g., measurement01.csv:� �
1;'temp-01';23.3

2;'humid-01';13.23

3;'vibr-01';25.23

1;'temp-01';25.3

2;'humid-01';11.23

3;'vibr-01';29.23� �
Verify that the directory contains the created CSV file and then start the importer as follows:� �
cd /psdata/tutorial

\$PARSTREAM_HOME/bin/parstream-import imp1� �
You should see output similar to this:� �
Import Process ID: 14989

Output is written to: /var/log/parstream/import-14987-20181013-1324.log� �
Monitor the importer’s log file to view the output’s progress:� �
tail -f /var/log/parstream/import-14987-20181013-1324.log� �

You should see a line stating the import of the csv files. If you had multiple csv files, the importer would
import them in packs of three files by default.� �
...

[2018-10-11T13:24:41.234123]:imp1-132441-0:PROT-77061: **** import file:

".../import/measurements01.csv"� �
After some time, the output will be:� �
...

[2018-10-11T13:26:10.142643]:imp1-132441:PROT-77064: Distributing created partition

'1Z_2018-10-13T12:24:41_imp1_0_PM'

[2018-10-11T13:26:10.647825]:imp1-132441:PROT-77064: Distributing created partition

'2Z_2018-10-13T12:24:41_imp1_0_PM'

...

[2018-10-11T13:26:11.357618]:imp1-132441:PROT-77064: Distributing created partition

'3Z_2018-10-13T12:24:41_imp1_0_PM'

[2018-10-11T13:26:11.876354]:imp1-132441:PROT-77041: Will sleep for 6 seconds...� �
The example data is loaded entirely when you see repeated log file messages similar to this:� �
...

[2018-10-11T13:28:02.255485]:imp1-132441:PROT-77046: Table measurements': no files

with pattern 'measure.*' found to import

[2018-10-11T13:28:02.678525]:imp1-132441:PROT-77041: Will sleep for 6 seconds...

Page 23

3 Getting Started Tutorial 3.13 Run Queries

...� �
You can stop the importer with Ctrl-C. All successfully imported csv files will be moved to a hidden
.backup directory below the import directory. Additionally, all malformed rows that could not be
imported will be placed in a secondary hidden folder .rejected below the import directory.

Run Queries
To run SQL queries, start the Cisco ParStream interactive SQL utility pnc and at the prompt type:� �
Cisco ParStream=> SELECT COUNT(*) FROM measurements;� �� �
#auto_alias_1__
6

[0.009 s]� �
This confirms the data was loaded correctly.

Stop the Cisco ParStream Server and the Cisco ParStream
Importer

Stop the Cisco ParStream Cluster

To stop the cluster, connect to any server via pnc and issue the following command:� �
Cisco ParStream=> ALTER SYSTEM CLUSTER SHUTDOWN;� �

Output:� �
ALTER OK� �

Or, just start pnc by typing this command only:� �
echo 'ALTER SYSTEM CLUSTER SHUTDOWN;' | pnc -U parstream� �

Stop a single Cisco ParStream Server

To stop a single server, connect to the server via pnc and issue the following command:� �
Cisco ParStream=> ALTER SYSTEM NODE SHUTDOWN;� �

Output:� �
ALTER OK

Page 24

3.15 Cleanup the Cluster and Restore the Tutorial Environment 3 Getting Started Tutorial

� �
Or, just start pnc by typing this command only:� �
echo 'ALTER SYSTEM NODE SHUTDOWN;' | pnc -U parstream� �

Stop the Cisco ParStream Importer

To stop the importer, stop the corresponding process by pressing Ctrl-C or killing the process with
kill pid.

Cleanup the Cluster and Restore the Tutorial Environment

To clean up the example and restore the tutorial environment:

Stop any running Cisco ParStream servers and the Cisco ParStream importer (see section 3.14,
page 24).

Delete the database that was created in previous steps:� �
rm -rf /psdata/tutorial� �

Page 25

Important Constraints Using Cisco ParStream

Cisco ParStream is optimized to provide incredible performance (especially speed) when analyzing a
huge amount of data, concurrently imported. These optimizations are only possible with a specific
design that leads to some constraints that might be surprising for ordinary database administrators
and users.

Some of these constraints violate the usual expectations in key concepts of databases and SQL. So,
everybody dealing with Cisco ParStream should know them to avoid buggy assumptions, design, or
computation.

This chapter lists these overall constraints, where common expectations are not met. Note also the
limitations and constraints for specific Cisco ParStream features, mentioned where the features are
introduced and described.

Important General Constraints with Data Types

• Special Values
All numeric types have special values to deal with NULL. These special values can’t be used as
ordinary values. Numeric values usually use the largest positive value as NULL.
For example:

– For a type INT8 the value 127 can’t be used as ordinary value.
– For a type UINT8 the value 255 can’t be used as ordinary value.

If the values may occur, use a type with a larger value range. See section 23.2, page 267 for details.

• Empty Strings and NULL

Strings use the empty string internally as NULL. Thus, imported empty strings become NULL and
are or have to be handled as NULL in queries.
See section 23.5.1, page 273 for details.

• BLOBs
A Cisco ParStream BLOB is technically a CLOB.

Important General Constraints with SQL Commands

• UNIQUE and PRIMARY KEY

Columns marked with UNIQUE or PRIMARY KEY do not guarantee uniqueness of the data. The
keywords are a hint that the Cisco ParStream engine can assume that data is unique, but this
assumption has to be ensured by the user importing data. Thus, UNIQUE means “assume that the
data is unique.”
The reason for this behavior is that checking, whether a value already exists in the database, would
take too long and slow down imports significantly.

• DEFAULT

Page 26

4.3 Important General Constraints when Importing Data 4 Important Constraints Using Cisco ParStream

DEFAULT values for columns are only effective when columns are added, or when streaming import
is used.
CSV imports and INSERT INTO imports currently require also to pass data for columns with default
values.

Important General Constraints when Importing Data

• No imports of rows containing only NULL/empty values
Cisco ParStream never imports data, where all values of all columns/fields are NULL or empty
strings.
See section 10.2, page 89 for details.

• Imports and UNIQUE and PRIMARY KEY

As mentioned above, the same value can be imported even if a column is marked as UNIQUE or
PRIMARY KEY.
The reason for this behavior is that checking, whether a value already exists in the database, would
take too long and slow down imports significantly.

Data Loss Prevention
The persistent storage of data is one of the most crucial tasks for a database system. Once the
database signals that data has been imported correctly, the database has to make certain that data
has been stored in such a way that even in the case of a complete power outage, the data will be
available to the user in the future. Therefore, the database system stores the data in non-volatile
memory, e.g., a hard drive. Unfortunately, this is a costly operation and over the course of time, many
optimizations and caching layers were introduced to alleviate the long waiting time for disk access.
Hence, we need to take a closer look at these caching layers to understand when data is really stored
persistently and which steps we have to take to guarantee a smooth operation.

Every write operation by a process uses an API of the operating system. The operating system
in turn signals back when it has stored the data. The operating system caches multiple writes in
memory to reorder and write them more efficiently to disk, even though it has already signaled to the
process that the data was written successfully. From the processes point of view, the data has been
written to persistent storage and the operating system will fulfill that contract even if the process is
killed, quits, or crashes. However, if the operating system loses power (or a hard reset is performed),
the contract can no longer be fulfilled and data is lost. Therefore, we recommend equipping your
servers with Uninterruptable Power Supply (UPS) units that bridge the short amount of time of the
power loss and if that is not possible, initiate a proper shutdown of the system. The API of the operating
system provides different options to prevent data loss in the case of an interrupted service by allowing
a process to signal the operating system to circumvent the caching and directly write the data to disk.
One of these options are the fsync operations, which only return once the data is persisted. This is
a costly operation and can be enabled in Cisco ParStream using the “synchronizeFilesystemWrites”
config option. However, beneath the operating system are even more caching layers that play a crucial

Page 27

4 Important Constraints Using Cisco ParStream 4.4 Data Loss Prevention

role in persisting data correctly.

Following the caching of the operating system, the data is sent to the RAID or hard drive controller
which in turn usually provides a caching to improve write rates. There are different kinds of hard drive
caches that behave differently in the case of a power loss. We will only focus on one property that is
most important for our analysis: Battery Backed Write Cache. If the RAID controller is equipped with a
battery, all write operations that are cached will be written to the disk even if the system loses power.
We recommend to only use battery backed RAID controllers. If your RAID controller is not equipped
with a battery for the write cache, all the data still contained in the write cache will be lost in the case
of a power outage. Therefore, you need to disable the write cache in such RAID controllers at the cost
of performance.

The persistent storage should be set up as a RAID to reduce the risk of data loss in case of disk
failure. Each RAID mode offers different performance and fault tolerance characteristics. Additionally,
the system administrator should monitor the remaining disk size regularly to react early to the risk of
running out of storage space.

Page 28

Database Design

The name ParStream reflects the main concepts of the Cisco ParStream system:

• Par - from the word parallel, representing the nature of parallel executions of a single query

• Stream - for streamed query execution, similar to an assembly line or pipelining within a CPU

This chapter describes some of the design concepts and features of Cisco ParStream uses to produce
high performance for huge amounts of data. Understanding these features is useful for you, a
sophisticated user of Cisco ParStream. These include:

• Management of its data in partitions

• Management of schema changes with metadata versions

• The fundamental concept of bitmap indices

Data Partitioning

Cisco ParStream physically splits the data of a table into data partitions. Partitioning allows new data
can be appended to a table and allows a single query to be executed by multiple CPU cores.

There are two types of partitions, logical and physical:

• Logical partitions are distinct parts of the same table. Combined, all logical partitions of a single
table comprise the complete table data.

• Physical partitions are used to manage and manipulate logical partitions. In fact, a logical partition
can consist of multiple physical partitions. Some advantages of multiple physical partitions are:

– Each import creates separated physical partitions. If data of a logical partition is imported in
multiple steps (with different imports and/or multiple times), it will produce multiple physical
partitions.

– If a logical partition is too large to be managed as one physical partition, you can split it by
configuring the limit of physical partitions.

– Temporarily, you might need multiple physical partitions to merge or replace data. In that case,
the physical partitions reflecting the current state are activated while the other physical partitions
are not activated.

The way Cisco ParStream creates logical partitions is data dependent instead of "basically randomly"
splitting data according to its size. In fact, the different partitions of one table rarely have the same
size.

Having partitions with different size sounds counterproductive to query latency; however, this approach
is an important improvement in data processing speed. By analyzing queries, Cisco ParStream can
exclude partitions in query processing that do not match the SELECT clause in an SQL statement.
For example, if you have data about humans, and most queries ask for data about men, partitioning
by gender would make a lot of sense, so that the women’s data partition need not be analyzed. In
addition, the compression ratio of a partition is usually better if the data within it is somehow related.
For example: Men tend to be taller than women, so partitioning by gender produces two data groups

Page 29

5 Database Design 5.1 Data Partitioning

with people whose heights are closer together and are thus more compressible than those with random
partitioning.

You can specify as many partitioning columns as you want using the PARTITION BY clause:� �
CREATE TABLE MyTable

(

dt DATE INDEX RANGE INDEX_GRANULARITY DAY,

user VARSTRING COMPRESSION HASH64 INDEX EQUAL,

)

PARTITION BY dt, user

...� �
You can even use expressions as partition criterion:� �
CREATE TABLE MyTable

(

num UINT32 INDEX EQUAL,

name VARSTRING COMPRESSION HASH64 INDEX EQUAL,

PARTITION BY (num MOD 25), name

...� �
The number of partitions created by that partitioning column is the number of distinct values in that
column.

Although there are no technical limits to the number of partitioning columns, it is reasonable to limit
their number to 2-15, depending on the number of distinct values of the used columns: Using a column
representing floating point values is less desirable than using a Boolean or integral column. If only
using Boolean columns, with 20 partitioning columns you create about one million partitions (2ˆ20).

Currently, Cisco ParStream requires the database administrator (DBA) to choose suitable partitioning
criteria. Inefficient partitioning criteria can significantly increase the query response time, or decrease
the performance of the Cisco ParStream import.

Ideally,

• there should be at least as many partitions as there are CPU cores,

• the partitions should be of similar size, and

• there should be no partitions that contain less than a few thousand rows.

Because continuously appending data to a table is an intended usage scenario for Cisco ParStream,
there is a mechanism that aggregates small partitions into larger partitions at regular intervals.

Information:

For tables with few data rows, logical data partitioning can be disabled.

Page 30

5.1 Data Partitioning 5 Database Design

Merging Partitions

When new data is appended to a table, this data is always put into new physical data partitions, even if
logical data partitions with the same values in partitioning columns already exist. To avoid generating
more and more physical data partitions, Cisco ParStream can merge physical data partitions that
belong to the same logical partition at regular intervals.

Cisco ParStream has two default merges: hourly, that merges new partitions that were created over
the course of the previous hour (24 hourly merges per day), and daily, that merges partitions that were
created over the course of the previous day.

The merge intervals are just abstractions and are configurable. Thus, an “hourly” merge might happen
after 5 minutes or 10 hours. You can also have “weekly” and “monthly” merges. So, you have 4 level of
configurable merges.

Please note that for Java Streaming Import (see chapter 19, page 216) partitions are even merged
every minute. This is because external sources might create partitions every second, which might
result into poor performance if these partitions are only merged after one hour.

You can limit the maximum number of rows of a partition, partitionMaxRows (see section 13.2.1,
page 126) to avoid getting partitions that are too large. For a merge, the criteria for
partitionMaxRows is the number of rows in the source partitions. That ensures that the merge
result is never split up into multiple partitions and avoids merges that may be partially performed or
even skipped.

During a merge, the data can be transformed or purged using ETL merge statements. The number
of rows can be reduced by combining multiple rows using a GROUP BY clause (see section 14.2,
page 154 for an example). Using this, merges are never skipped and might result in one source
partition being replaced by a (possibly smaller) transformed partition.

Partition merge commands leave behind unused partition directories. These are deleted shortly after
the merge as soon as a rollback of the merge is no longer possible.

See chapter 14, page 151 for further details about merging partitions.

Partitioning by Functions

It is possible to specify a function instead of a real column for a partitioning value. This is especially
useful for timestamp columns where you only want to use part of the date and time information. The
example below uses only the month part of a timestamp for the partitioning.� �
CREATE TABLE MyTable

(

dt DATE INDEX RANGE INDEX_GRANULARITY DAY,

user_group UINT32 INDEX EQUAL,

)

PARTITION BY DATE_PART('month',dt), user_group

...� �
You can use all available SQL functions and expressions. Note that you have to use parentheses for
an expression:

Page 31

5 Database Design 5.1 Data Partitioning

� �
CREATE TABLE MyTable

(

lon DOUBLE INDEX EQUAL INDEX_BIN_COUNT 360 INDEX_BIN_MIN 0 INDEX_BIN_MAX

360,

lat DOUBLE INDEX EQUAL INDEX_BIN_COUNT 180 INDEX_BIN_MIN -90 INDEX_BIN_MAX

90,

point_in_time UINT32 INDEX EQUAL,

)

PARTITION BY (lon MOD 90), (lat MOD 45), (point_in_time MOD 43800)

...� �
Note:

• A partitioning value that is calculated by a function or expression is not allowed as distribution
column.

• A column appearing as function argument in a "partitions" expression must be unique within that
expression. Otherwise the partitioning behavior is undefined.

Partitions Layout

Cisco ParStream data is stored in regular files in the filesystem. In fact, each physical partition is
stored as a directory with a path and filename according to the current partitioning.

Path of Partition Directories

For example, if you import data

• into datadir ./partitions

• into table Hotels

• logically partitioned by

– a hashed string for the column city

– a Boolean value (integer 0 or 1) for column seaview

– a hashed string for the column bedtype

each import creates a partition directory, as in this example:� �
./partitions/Hotels/12129079445040/0/12622392800185Z_2012-09-05T15:09:04_first_42_PM� �

In this instance, the path has the following elements:

• the name of the targetdir/datadir.

• the table name (Hotels)

• the “path” of the logical partition values:

– 12129079445040 as hash value for the city
– 0 as for the Boolean value for the “seaview”
– 12622392800185 as hash value for the “bedtype”

Page 32

5.1 Data Partitioning 5 Database Design

• a Z_

• followed by the timestamp of the creation 2012-09-05T15:09:04 of the physical partition,

• followed by the node that created the physical partition (name of the importing or merging process)

• followed by the sequence number, an increasing number greater than 0 for an imported partition
(or 0 if this partition was created by merge)

• and a final suffix for the partition type (here: _PM).

If you later import additional data for the same logical partition, you will get another directory for
the corresponding physical partition having the same path with a different timestamp and a different
sequence number.

If you get multiple physical partitions due to size limits (i.e., partitions that have the same import date
and the same import process), the name of the partition directory is extended by “_1”, “_2”, and so on.

If no logical partitioning is defined, the physical partition files would be named something like:� �
./partitions/Hotels/Z_2012-09-05T15:09:04_first_43_PM� �

That is, all data of an import would be stored in one physical partition having the timestamp and
importing process as (directory) name.

Partition File Naming Conventions

Imported partitions might have one of two partition name suffixes:

• _PM, stands for “minute” partitions, which are initially created by CSV imports and INSERT INTO

(see chapter 10, page 88).

• _PS stands for “seconds” partitions, which is used if data is imported via Java Streaming Imports
(see chapter 19, page 216).

Different partition name suffixes exist because of Cisco ParStream’s merge concept (see section 5.1.1,
page 31). Partition merges can merge:

• “seconds” partitions to “minute” partitions,

• “seconds” and “minute” partitions to “hour” partitions,

• “seconds”, “minute”, and “hour” partitions to “day” partitions,

• and analogously for “week” and “month” partitions combining data of a “week” or a “month”.

See section 14.1, page 151 for details.

Note that the names “minute”, “hour”, etc. are just pure abstractions for initial imports and merged
partitions. You can define when merges from one level to the next apply and therefore indirectly define
your understanding of an “hour” or “day”.

Merged partitions might also have a filename ending with other suffixes, such as _PH for “minute
partitions” that have been merged into “hour partitions”. In that case the name before the suffix is the
name of the node that caused the merge. The following suffixes are provided:

Page 33

5 Database Design 5.2 Schema/Metadata Versioning

Partition Suffix Meaning
_PS initial “seconds” partitions (only created by streaming imports)
_PM “minute” partitions which are initially created by CSV imports and INSERT

INTO, and are the result of merging _PS partitions
_PH “hour” partitions (merged _PS and _PM partitions)
_PD “day” partitions (merged _PS/_PM/_PH partitions)
_PW “week” partitions (merged _PS/_PM/_PH/_PD partitions)
_PF “month” or “final” partitions (merged _PS/_PM/_PH/_PD/_PW partitions)

The sequence number will always be 0 for merged partitions.

Contents of Partition Directories

Inside partition directories, you can have several files on different levels:

Filename Meaning
partition.smd general partition information (status, number of rows, versions)
colName column store file of the partition (name according to column name)
*.pbi bitmap index files (prefix has column name)
*.sbi bitmap index (old format)
*.map value map for variable length data such as non-hashed strings and multivalues
*.hs hashed string lookup data
*.hsm hashed string lookup map
nrows.bm file to deal with rows having only NULL values

Note that the system table ps_info_mapped_file (see section 26.4, page 320) lets you see which
of these files is currently mapped into the database.

Partition State

A partition can have one of the following states:

Partition State Meaning
incomplete The partition gets created and is not ready for usage yet.
active The partition is active
disabled-by-merge The partition is disabled by a merge (see section 5.1.1, page 31)
disabled-by-unload The partition is disabled by an unload command (see section 16.4.2,

page 204)
offline The partition is not activated yet

Schema/Metadata Versioning
Cisco ParStream can modify its schema by calling statements such as CREATE TABLE and ALTER

TABLE to add and modify tables (see chapter 24, page 277) or by calling CREATE FUNCTION to
register user-defined functionality (see section 20, page 232). These modifications illustrate the
versioning concept of the Cisco ParStream schema/metadata.

Page 34

5.3 Bitmap Indices 5 Database Design

To handle different schema states, Cisco ParStream internally uses metadata versions. Currently,
these versions use integral numbers which increase with each schema modification. Thus, the first
table definition, Cisco ParStream’s metadata version has the value 1, with a seconds table definition
the metadata version becomes 2, after adding a column to a table, the metadata version becomes 3,
and so on.

Note that the fact that currently integral values for metadata versions are used, might change over
time. Therefore, if exported, the version is exported as string.

The schema and all its versions are stored in journals, located in journal directories, and are defined
by the global option journaldir (see section 13.2.1, page 122).

If data is written into partitions, the metadata version used is stored within the partitions.

Note that the version stored for a partition is the version with the last definition for the table.

• You can query the metadata version of existing tables with the system table ps_info_table (see
section 26.3, page 309).

• You can query the metadata version of loaded partitions with the system table
ps_info_partition (see section 26.4, page 316).

Bitmap Indices

Cisco ParStream uses bitmap indices, which are stored into the physical partitions as index files
(e.g., with suffix .pbi or .sbi, see section 5.1.3, page 34). This is one of the basic features Cisco
ParStream uses to produce its excellent performance.

For a general introduction of the bitmap index concept, see, for example,
http://en.wikipedia.org/wiki/Bitmap_index. That page also provides links to get additional
information.

This section presents a few simple examples, which are important to aid in understanding other topics
in this manual. You can use the bitmap optimizations by specifying a specific index. See section 24.2.6,
page 293 for details.

Equal Index

The equal bitmap index is suited for queries that use one or a small number of values. The indices of
different fields can be combined.

Page 35

http://en.wikipedia.org/wiki/Bitmap_index

5 Database Design 5.3 Bitmap Indices

row field1, field2 a b c d e 1 2 3 4
1 a, 1 x x
2 b, 2 x x
3 c, 3 x x
4 a, 4 x x
5 b, 1 x x
6 a, 2 x x
7 c, 3 x x
8 a, 4 x x
9 a, 1 x x
10 a, 2 x x
11 b, 3 x x
12 c, 4 x x
13 d, 1 x x
14 e, 2 x x

Now let’s look what happens on queries on this index type.

If we select one index:� �
SELECT * WHERE field1 = 'b';� �

the index b is used to select rows 2, 5, 11:� �
"b";2

"b";1

"b";3� �
But if we select two indices:� �
SELECT * WHERE field1 = 'b' AND field2 = 2;� �

the AND of the two indices is computed:

row b 2 result
1
2 x x x
3
4
5 x
6 x
7
8

Page 36

5.3 Bitmap Indices 5 Database Design

9
10 x
11 x
12
13
14 x

and row 2 is returned:� �
"b";2� �

Range Index

The range bitmap index works the same as the equal indices but with the columns representing values
within a range:

row field1, field2 <= a <= b <= c <= d <= e 1 2 3 4
1 a, 1 x x x x x x
2 b, 2 x x x x x
3 c, 3 x x x x
4 a, 4 x x x x x x
5 b, 1 x x x x x
6 a, 2 x x x x x x
7 c, 3 x x x x
8 a, 4 x x x x x x
9 a, 1 x x x x x x
10 a, 2 x x x x x x
11 b, 3 x x x x x
12 c, 4 x x x x
13 d, 1 x x x
14 e, 2 x x

Binned Index

Two or more values are binned into one index. The distribution of values into one index can be equally
distributed or custom defined. Custom defined bins should be used if you are always querying the
same values.

row field1, field2 a b, c d, e 1 2 3 4
1 a, 1 x x
2 b, 2 x x

Page 37

5 Database Design 5.3 Bitmap Indices

3 c, 3 x x
4 a, 4 x x
5 b, 1 x x
6 a, 2 x x
7 c, 3 x x
8 a, 4 x x
9 a, 1 x x
10 a, 2 x x
11 b, 3 x x
12 c, 4 x x
13 d, 1 x x
14 e, 2 x x

Sorting criteria

An index for unsorted data is larger than an index for sorted data. This effect is influenced by the
selected compression algorithm. But even using a very simple RLE (Run Length Encoding) produces
a much smaller index on sorted data. You can sort on additional fields, but the effect on the index is
not as big.

row (in
CSV)

field1, field2 a b c d e 1 2 3 4

1 a, 1 x x
9 a, 1 x x
6 a, 2 x x
10 a, 2 x x
4 a, 4 x x
8 a, 4 x x
5 b, 1 x x
2 b, 2 x x
11 b, 3 x x
3 c, 3 x x
7 c, 3 x x
12 c, 4 x x
13 d, 1 x x
14 e, 2 x x

See section 15.4, page 165 for an approach to use this benefit.

Examples for Bitmap Indices

IPv4 Address

The IPv4 Address (see http://en.wikipedia.org/wiki/Ipv4) is a 32-bit, unsigned integer value.

Page 38

http://en.wikipedia.org/wiki/Ipv4

5.3 Bitmap Indices 5 Database Design

Cisco ParStream allows you to import IPv4 Addresses in several formats:

Import as 4 uint16/uint8 fields according to the dot notation

Warning:

If one or more parts of the address can be set to 255 (0xFF), uint16 must be used, because
UINT8_MAX is used as NULL inside Cisco ParStream.

Query examples: Find all rows with an IP address� �
SELECT * FROM ip WHERE ip_1=192 AND ip_2=168 AND ip_3=178 AND ip_4=32;� �

Import as uint64/uint32

Warning:

If the address 255.255.255.255 (0xFFFFFFFF) is needed as a representation, uint64 must
be used, because UINT32_MAX is used as NULL inside Cisco ParStream.

Sales Volume

If you have a large number of companies stored inside your table and use an equal index, you will get
one index per value inside your data. However, you use limiting values in your query most of the time.

Query examples: Selecting all companies where the sales volume is greater or equal to the limiting
value of 10,000:� �
SELECT * FROM company WHERE sales_volume >= 10000;� �

Because your query hits exactly a limiting value, Cisco ParStream does an AND on two bitmap indices
(first >= 10000 => < 20000, second: >= 20000) and can return the result set after one bitmap
operation. If you have more indices configured, additional bitmap operations are necessary.

Selecting all companies where the sales volume is greater or equal to the non limiting value� �
SELECT * FROM company WHERE sales_volume >= 15000;� �

The same code is executed, but with an additional filter step which excludes the values < 15000.

Page 39

Clustering and Distribution

Cisco ParStream is a database designed for big data scenarios. This means that it must be able to
scale and to be highly available:

• Scalability can be reached by being able to distribute requests over multiple servers and providing
load balancing.

• High availability can be reached by providing backup servers and providing failover support.

Both features are supported by the “clustering” abilities of Cisco ParStream.

High Availability and Scalability

To support high availability and scalability, Cisco ParStream uses the following concepts:

• Because any Cisco ParStream database provides the ability to run with multiple servers, you can
have both failover and load balancing, where imports and merges are even possible when nodes
are temporarily offline. You can even add new servers (cluster nodes) at runtime.

• Partition Distribution lets you define how values are distributed in the cluster according to the value
of a specific column. This provides both failover and load balancing.

Note the following general remarks:

• High availability can be achieved by using partition distribution lists with backup servers. Depending
on how many redundant backup servers are used for each partition hash, one or more query-slaves
can become inoperative without affecting the availability. Nevertheless, the query performance will
begin to degrade, if the optimal parallelism cannot be achieved with the remaining servers.

• Replication of data can be achieved by using partition distribution lists with backup servers.
Depending on how many redundant backup servers for each partition hash are used, one or
more query-slaves can become inoperative without affecting the availability.

• For the configuration of partition distribution lists, see section 6.3, page 53.

Running Cisco Parstream with Multiple Server Nodes

• Enhanced redundancy and fault tolerance:
As long as at least half of the nodes are operational, the cluster will work continuously. This means,
it can import data and answer queries. However, queries can be processed successfully only if the
operational nodes have all partitions that are required to answer that query.

• Continuous import:
Even when some cluster nodes are down, it is now possible to continuously import data as long as
at least one target node for every partition distribution value is still online. If an importer finds that
for a given partition distribution value there is no distribution target node left online, it will temporarily
stop importing and wait until one of the offline nodes rejoins the cluster.

• Automatic resynchronization of nodes after a downtime:

Page 40

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

When a node receiving partitions from an importer fails, it will miss data which was imported during
its downtime. Therefore, before the node is reintegrated into the cluster, it will be automatically
synchronized, i.e., it downloads the missing data partitions from one of the other nodes. This is
automatically initiated by the leader node.

• Adding new servers/nodes:
After the initial setup and while the cluster is up and running, you can add new nodes to distribute
newly imported data over more servers.

Note the limitations at the end of this section (see section 6.2.6, page 52).

See section A.1, page 392 for a complete example.

Terminology and Basic Concepts

Note the following basic concepts and terminology for clustering:

• A cluster consists of cluster nodes or, in this context, just nodes, which represent a logical process
instance in the cluster that can fulfill query requests, import data, and/or manage the cluster. Nodes
can run on the same or different hosts, but when they use the same host the server nodes have to
use different ports (note that up to 5 consecutive ports are used; see section 13.3.1, page 135).

• A cluster node can either be

– a query node (server), which you can use to send query statements, or
– an import node (importer), which you can use to import new data.

A cluster node can’t be both.

• Each cluster node can have different states:

– offline: The node is not available for cluster management or for queries.
– online: The node is available for cluster management but not for queries.

This state is used to allow cluster nodes to synchronize data and metadata so that they are in a
valid state, when they become active

– active: The node is available for both cluster management and for queries.

• At any time a cluster has one leader node, also referred to as just leader, which organizes the
cluster:

– Informs all nodes about the current state of the cluster
– Initializes merges (see section 14.1, page 152)
– Deals with partially failed imports or failed merges

The functionality of the leader node is not used to query data or to import data (unless the data
import partially failed). Normal queries and imports are completely distributed and scale well.

• A query node can be a follower node, also referred to as just a follower, if it is used as fallback
for the leader. Any online query node can become a follower. The minimum number of follower
nodes that must exist to run the cluster is n/2 query nodes.

• The question which query node becomes a leader (or follower) is determined according to a
so-called rank, which is an integral value. The lower the rank, the more likely the node is to become
a leader. Initially, the query node with the lowest rank becomes the leader and the nodes with the

Page 41

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

next lowest ranks become followers. If due to a failure other nodes become leaders or followers
they keep those roles even if the failed nodes become available again.

• All nodes, in the cluster, including import nodes, must have a

– unique name
– unique rank

• The query nodes of the cluster are usually specified and elected during the initial start-up of the
cluster. After the cluster is initialized the set of query nodes in a cluster is rather stable, though you
may have “known” nodes that are (temporarily) unavailable.

• New query nodes can be added while the cluster is running. This does not lead to a redistribution
of existing data. Instead, newly imported data will be distributed to this node, provided new values
get imported and dynamic partition distribution is used.

• New import nodes can be added/used at any time after the cluster is initialized and running.

Several options allow to influence the behavior of clusters. See section 13.2.2, page 130 for details.

Setting-Up and Starting a Cluster

To start a cluster you need the necessary configurations (see section 6.2.3, page 45) and then have to
start all query nodes (servers) within a given timeframe. During this initial timeframe all nodes get in
contact with each other to find out which leader node manages the cluster (as long it is online). This is
described in the next subsection.

Note that in the cluster example (see section A.1, page 392) there is a shell script run_servers.sh,
which you can use as example to start and run multiple servers of a cluster. It starts multiple servers,
checks whether and when they are up and running, prints possible errors, and stops the servers with
<return> or Ctrl-C. Note that stopping the servers is done just by killing them all with kill -9, which
you should not do in your mission-critical database control scripts (see section 6.2.6, page 51). See
section 9.2, page 78 for how to use user authentication in a cluster.

Leader Election

As just introduced as terminology and basic concept, the cluster management uses a “leader-follower”
approach:

• A leader manages the relevant cluster state data and propagates it to the followers.

• A follower will take over in case of the failure of the leader.

That is, while the cluster is in operation, exactly one of the nodes is the leader. The leader is
responsible for managing cluster metadata and distributing it to the other nodes, for dealing with
partially failed imports and for merges. For redundancy purposes, the leader has exactly n/2 followers
which replicate all the metadata so that they can take over when the leader goes down, where n is the
known number of query nodes in the cluster.

In order to determine the leader of a cluster the option rank (see section 13.3.1, page 134 and
section 13.4.2, page 147) is used. When the cluster starts for the very first time, a leader election
takes place. During this election phase, each node announces its rank to all other nodes. Then an

Page 42

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

elimination algorithm is used: If two nodes compare their rank, the node with the higher rank gets
eliminated for the leader election. This is done until the leader election phase ends.

The following figure shows what happens when a cluster node is started:

Thus, in each started query node you have the following phase:

1. The first period is used to let the nodes register to each other. Thus, a node sends out and
receives registration requests. Each node with a rank higher than another node gets eliminated,
so that finally the leader node becomes clear.

2. Then, each node registers itself to the leader node and the leader distributes the initial state of
the cluster.

3. Then, each cluster node has time to establish its local state.

4. Finally, the cluster node gets activated.

You can control, how long the first two phases, which are used for cluster initialization, take with the
global option clusterInitTimeout (see section 13.2.2, page 131).

The following figure shows how multiple cluster nodes register to each other happens when a cluster
node is started:

Page 43

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

Thus, to initially start a cluster:

• You have to start all servers (query nodes) within the first half of clusterInitTimeout
period so that they have time to register to each other. Thus, this option should be set to a value
that is twice the time you need to start all cluster nodes plus some seconds for the handshake.

• Option clusterInitTimeout also applies as default to cluster reinitializations (cluster restarts).
However, you can specify an alternative period with option clusterReinitTimeout for such a
reinitialization (see section 6.2.2, page 45).

• You can control the interval for sending out registration messages to the other nodes with the
option claimLeadershipMessageInterval. The default value is every five Seconds with a
maximum of an eighth of the whole cluster initialization period to ensure that at least four registration
messages go out during the registration phase.

As written, the node with the lowest rank will initially become the leader. However, if a leader goes
offline/down, another node will become the leader and will remain to be the leader until it gets offline.
Thus, the rank is only a hint for becoming the leader, but any query node can become a leader and
then remains to be a leader as long as it is online. For this reason, it can happen that not the query
node with the lowest rank is the leader. This strategy was chosen to minimize leader changes.

Again, please note, that the configured rank must be unique within a cluster. If the rank is ambiguous
or not specified, you can’t start a node inside the cluster. This also applies to import nodes.

Page 44

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

Cluster Reinitialization and Leader Re-Election

If the leader is no longer available, leader re-election is triggered, which roughly uses the
same mechanisms as described above. However, unlike the first initialization the actual current
cluster nodes are already known by the former leader and all followers. For this reason, you
can give clusterReinitTimeout (see section 13.2.2, page 131) a smaller duration than for
clusterInitTimeout (the default is that both intervals are equal).

During re-election the preference is not to change leadership (even if the former leader was not the
initial leader). Thus, leadership only changes if the leader is not available.

To prevent from a “split brain” situation, where two leaders in a cluster evolve, a new leader can only
be successfully elected if more than half of the query nodes of the cluster accept the new leader. This
means that

• A cluster reinitialization or leader re-election can only be successful if at least n/2 + 1 query nodes
are available, where n is the number of known query nodes.

• For a cluster with 2 query nodes, reinitialization or re-election can only be successful, if both nodes
are available.

If leader re-election fails (not enough nodes available after the first half of clusterReinitTimeout
seconds), another trial is triggered. Thus, leader re-election is always performed in an endless loop
until it is successful.

Runtime Split-Brain Prevention

As explained above a leader will only establish when a majority of nodes registers with it after the
election. This way only one leader can be established in this fashion. However it is possible that an
established leader loses contact with a number of nodes such that it no longer has a majority of nodes
registered with it. Subsequently a new leader could establish with a new majority, while the old leader
is still running. To prevent this a running leader will automatically resign leadership when it no longer
has contact to a majority of nodes (including itself).

Furthermore it has to be ensured that during a change of leadership no leader-relevant information
such as distribution tables, sync states, etc. is lost. To ensure this the leader always chooses exactly
n/2 nodes to be followers, such that this information always resides on a majority of nodes. Together
with itself this means that this information resides on a majority of nodes, and thus the majority
establishing the new leader will always contain a node with the newest version of this information
which will then become leader.

Configuration of the Clusters

Activating Clustering

By default, clustering is always enabled for Cisco ParStream servers. You have to start each process
(server and importer) with the same cluster ID (unique in your network), which is usually defined in an
corresponding INI file:� �
clusterId = MyTestCluster� �

Page 45

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

A server or importer can not connect with a server having a different ID. (Importers will wait forever
when the cluster ID is wrong, expecting/hoping that, because no server is available at the moment,
this will change soon.)

Next, you have to configure a registration port:� �
registrationPort = 9040� �

The leader will open this TCP port to accept connections from the other nodes.

There are a lot of additional options you can set, which are described in section 13.2.2, page 130.

Note that for very small clusters having only one or two query nodes, or if (almost) no redundancy is
required, you have to set a couple of options so that operations are not (temporarily) blocked due to
missing query nodes.

Update Redundancy

In case of clusters where the redundancy is higher than 1, you have to set the global option
minUpdateRedundancy (see section 13.2.2, page 130). For example, to have all data on 2 nodes
(one redundant node), you have to set:� �
minUpdateRedundancy = 2� �

The default minimum update redundancy is 1.

This option influences the merge and import behavior. If the affected distribution group has less nodes
available than the number specified in minUpdateRedundancy, then

• merges are skipped and

• imports are blocked until enough nodes are available again (a retry of the import is scheduled after
1, 2, 4, 8, seconds).

Specify Servers

For each query node, add a server section to your INI files. The section must be named
[server.servername] and must contain at least the node’s rank, hostname, and port number.

For example:� �
[server.srv1]

rank = 30

port = 9010

host = castor.example.com

datadir = ./partitions

[server.srv2]

rank = 40

port = 9015

host = pollux.example.com

datadir = ./partitions� �
Page 46

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

Make sure that each node has its own distinct rank, otherwise the leader election will fail.

Also note that servers sharing the same directory for their data results in undefined behavior. Thus,
you have to ensure that each server has its own physical database directory. You can do that by

• running the servers on different hosts (as in the example above) or

• by specifying different directories as datadir.

Specify Importers

For each import node, in addition to general cluster settings you have to configure a section named
[import.importername] as follows:� �
[import.imp1]

host = calypso.example.com

sourcedir = ./csv

targetdir = ./import

rank = 99� �
Note again that even import nodes need a unique rank, although they never can become a leader.

Note also that you don’t have to start and/or register importers during the initial cluster setup or leader
election. You can start importers (with or without a new rank) at any time the cluster is up and running.

Configuring the Leader Election Ports

For the leader election, Cisco ParStream technically establishes communication channels between all
cluster nodes using TCP ports.

For this, all nodes in the cluster need a common unique registration port, which is used by each leader
to manage the cluster. It should be set using the global option registrationPort. For example:� �
registrationPort = 9040� �

In addition, each node needs an individual “leaderElectionPort” for the leader election. For servers,
port+4 will be used (see section 13.3.1, page 135).

For importers, you have to set it as leaderElectionPort:� �
[import.imp1]

leaderElectionPort = 4712� �
Note the following when using TCP channels for leader election:

• In this mode a lot of initial communication channels are opened during the leader election so that
each node can communication with other nodes.

• For this reason, all processes have to know all ports of all servers in this mode. That is, if you
start your processes with passing the ports via commandline options, you have to specify all ports
in all processes.

• Running two clusters with the same ports (but different cluster IDs) is not possible.

Page 47

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

For example, when starting a cluster with servers srv1, srv2, and srv3, all servers have to know all
ports of all other servers:� �
parstream-server srv1 --clusterId=MyClusterId

--server.srv1.port=8855 --server.srv2.port=8860 --server.srv3.port=8865

--registrationPort=9040

parstream-server srv2 --clusterId=MyClusterId

--server.srv1.port=8855 --server.srv2.port=8860 --server.srv3.port=8865

--registrationPort=9040

parstream-server srv3 --clusterId=MyClusterId

--server.srv1.port=8855 --server.srv2.port=8860 --server.srv3.port=8865

--registrationPort=9040� �
In addition, each importer has to know all ports of all servers and define a leaderElectionPort:� �
parstream-import imp1 --clusterId=MyClusterId

--server.srv1.port=8855 --server.srv2.port=8860 --server.srv3.port=8865

--registrationPort=9040 --leaderElectionPort=8890� �
A corresponding INI file shared by all nodes might contain the following rows:� �
clusterId = MyClusterId

registrationPort = 9040

[server.srv1]

port = 8855

...

[server.srv2]

port = 8860

...

[server.srv3]

port = 8865

...

[import.imp1]

leaderElectionPort = 8890

...� �
Configuring the Table Distribution

For each table, the distribution must be configured as described in Section “Partition Distribution” (see
section 6.3, page 53).

Page 48

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

State of a Cluster

Note that a Cisco ParStream database using a cluster with distributed data and failover support has a
distributed state. In fact the state of the database as a whole consists out of:

• The INI files of each query node and each import node, containing basic configurations.

• The partitions distributed over and used by all query nodes, containing all imported data.

• The journal files of each query node and each import node, containing the (distributed) schema.
They contain all table definitions and modifications, distribution lists, and data necessary to
synchronize nodes that were temporarily offline.
The files are located in a node specific sub-directory of the journal directory, which is specified
by the journaldir option (see section 13.2.1, page 122). Thus, multiple nodes can share the
same journal directory. The default value for the journaldir option is ./journals. Journal
sub-directories might have a prefix such as import.

To be able to query the state of a cluster, a couple of system tables are provided:

• ps_info_cluster_node (see section 26.4, page 317
allows to list all nodes, their type, and whether they are online, active, leader, or follower (see
section 6.2.1, page 41).
For example:� �
SELECT name, host, port, type, leader, follower, active

FROM ps_info_cluster_node

ORDER BY leader DESC, follower DESC, type DESC;� �
might have the following output:� �
#name;host;port;type;leader;follower;active
"srv1";"localhost";9110;"query";1;0;1

"srv2";"localhost";9120;"query";0;1;1

"srv3";"localhost";9130;"query";0;1;1

"srv4";"localhost";9140;"query";0;0;1

"srv5";"localhost";9150;"query";0;0;1

"imp1";"";0;"import";0;0;1� �
Note that during a (re-)election the result might be something like (after establishing a connection,
being online is enough to get these information):� �
#name;host;port;type;leader;follower;active
"srv1";"localhost";9110;"query";0;0;0

"srv2";"localhost";9120;"query";0;0;0

"srv3";"localhost";9130;"query";0;0;0

"srv4";"localhost";9140;"query";0;0;0

"srv5";"localhost";9150;"query";0;0;0

"imp1";"";0;"import";0;0;0� �
• ps_info_partition_sync_backlog (see section 26.4, page 318)

allows to query from the leader information about open (re-)synchronizations.

Page 49

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

For example:� �
SELECT node_name,type,table_name,relative_path FROM

ps_info_partition_sync_backlog;� �
might have the following output:� �
#node_name;type;table_name;relative_path
"srv3";"import";"Hotels";"0/10865448114464928962Z_2013-09-09T17:45:34_imp1_PM"

"srv3";"import";"Hotels";"0/7295227430346185111Z_2013-09-09T17:45:34_imp1_PM"

"srv3";"import";"Hotels";"2/590598305913432875Z_2013-09-09T17:45:34_imp1_PM"

"srv3";"import";"Hotels";"2/6332577679151947647Z_2013-09-09T17:45:34_imp1_PM"

"srv3";"import";"Hotels";"2/921786917744982206Z_2013-09-09T17:45:34_imp1_PM"

"srv3";"import";"Hotels";"4/17149388985709726001Z_2013-09-09T17:45:34_imp1_PM"� �
signaling that node “srv3” has open synchronizations for an import of table “Hotels” with the listed
physical partitions.
An empty result signals no open synchronizations.
Note, that you have to send this request to the leader. Otherwise, the result will be empty although
open synchronizations exist or not up-to-date.1

• ps_info_partition_distribution (see section 26.4, page 323)
allows to query from the leader (or a follower) information about which value gets distributed to
which node.

Adding Cluster Nodes

You can add new query nodes while the cluster is running. This does not lead to a redistribution of
existing data. Instead, newly imported data will be distributed to this node, provided new values get
imported and dynamic partition distribution is used.

To add/register a new node, you have to start the new node as usual with the command
parstream-server, but with the option --registerNode For example, if you want to add srv4

as new cluster node start this server with the following command:� �
start server srv4, registering it as new cluster node
parstream-server --registerNode srv4� �

Of course, as usual for the new server/node the corresponding INI file settings have to be provided.

Note that this call is a pure registration. After the registration, the process will immediately terminate.
If the registration was successful, the exit status of the registration is 0 (EXIT_SUCCESS). You can
find further information in the log output, such as (the detailed wording might change):� �
[2013-11-04T13:56:40]:srv4-135640:INFO(77063) Registration of cluster node

'srv4' done

[2013-11-04T13:56:40]:srv4-135640:PROT(77018) node 'srv4' registered in

cluster 'cluster_xyz', terminate now� �
1You can also send the request to other nodes. However, followers might return a state that is not up-to-date.

Page 50

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

Note that the new node gets only registered, not started. To use the server in the cluster, you have to
start it again this time as usual (without --registerNode) to let it become active and online:� �
start server for node srv4 after registration
parstream-server srv4� �

Note the following limitations:

• Adding a node to a cluster that has a table with EVERYWHERE distribution (see section 6.3.1,
page 58) is currently not supported.

Stopping, Restarting, and Upgrading a Cluster

Cluster Control Commands

The following subsection describes how to maintain a cluster. For this purpose cluster control
commands are used which are described in section 16.4.1, page 200.

Stopping and Restarting a Cluster

To stop and restart a running cluster, it is necessary to ensure that no inconsistencies are created or
unnecessary cluster reorganizations happen (for example by stopping the leader before other nodes,
so that a leader re-election is initiated).

The usual way to shut down a cluster is the high-level cluster shutdown command� �
ALTER SYSTEM CLUSTER SHUTDOWN;� �

This is roughly equivalent to the following manual sequence:

1. Find out, which nodes are leader and followers:� �
−− find out leader:
SELECT name, host, port FROM ps_info_cluster_node

WHERE leader = 1;

−− find out followers:
SELECT name, host, port FROM ps_info_cluster_node

WHERE follower = 1;� �
2. Stop import(er)s.

3. Stop query nodes that are neither leaders nor followers.

4. Stop query nodes that are followers.

5. Stop the leader node.

To restart the cluster, you should use the opposite order:

1. Restart the former leader node.

Page 51

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

2. Restart the query nodes that have been followers.

3. Restart all remaining query nodes.

4. Restart importers.

Checking for Open Synchronizations

In order to check for open synchronizations, you should send� �
SELECT * from ps_info_partition_sync_backlog;� �

to the leader. As long as there are entries in the table, there are open synchronizations left to be
processed. If you want to make sure that there are no more open synchronizations, you should
deactivate imports and merges and wait until ps_info_partition_sync_backlog has no more
entries.

Backup a Cluster

As explained in section 6.2.4, page 49, you should always backup all the INI files, the partitions, and
the journal files if you want to save the state of the cluster. In addition, we recommend to stop the
cluster at least partially so that no merges are running (see section 16.4.1, page 201), no imports are
running (see section 16.4.1, page 200), and all open synchronizations are done (see section 6.2.6,
page 52),� �
ALTER SYSTEM CLUSTER DISABLE MERGE;

ALTER SYSTEM CLUSTER DISABLE IMPORT;

−− should return zero before backup of the node is started
SELECT COUNT(*) FROM ps_info_partition_sync_backlog GROUP BY node_name;� �

Upgrading a Cluster

Sometimes it is necessary to upgrade a Cisco ParStream cluster to a new version. For performing a
version upgrade in a cluster environment, please perform the following steps.

• Stop the cluster (see section 6.2.6, page 51).

• Install the new Cisco ParStream package.

• Make any necessary configuration changes (Check the incompatibilities section in the Release
notes).

• Restart the cluster (see section 6.2.6, page 51).

Limitations for Clustering

Note the following limitations for the clustering of Cisco ParStream databases:

Page 52

6.3 Partition Distribution 6 Clustering and Distribution

• Currently, the set of cluster nodes should usually be defined at the first startup. While you can add
nodes later on, you can’t dynamically remove nodes (nodes can only be down, which means that
they are still considered for new data, distribution values, and merges).

• The relocation of cluster nodes to a different host requires manual activity i.e. to adjust the
configured host names. You especially have to transfer the state (partitions and journal files)

• To re-setup a cluster from scratch you have to remove both partition and journal files/directories.

• The partition directories of different servers can’t be shared. Thus, you have to ensure that the
partition directories (option datadir) are on different hosts or have different names.

Partition Distribution
Cisco ParStream provides load balancing in form of partition distribution.

It means that the data gets partitioned across multiple servers/nodes so that each server/node is
responsible for a different set of data. A query sent to one server, say srv1, will try to distribute
the request over the servers assigned as primary (or fallback) query nodes according to the current
distribution table. The other servers send their partial results to srv1, where it is consolidated into the
final result, which is send back to the client.

In Cisco ParStream, the values are distributed according to the current distribution table, that each
node internally has. Each table has exactly one column for which it manages a list of query nodes,
which defines where the data is stored for each possible value for that column. All lists for all tables
compose the distribution table. For any query sent to a query node, the query node hands the
request over to the primary or (if not available) to the fallback nodes, which are listed for the value in
the distribution table.

The distribution table is a dynamic table that grows with every new value not already registered,
appending its distribution (primary and fallback nodes) determined by a shifting round robin algorithm.

In addition, note the following:

• The distribution criterion has to be one of the table’s partitioning columns.

• Currently, only integral and date/time column types are allowed as distribution values. See
section 6.3.1, page 59 for details about how to distribute over (non-hashed) strings and other
types.

• It is not possible to configure a function partition value as distribution criterion. However you can
use an ETL column instead.

• It is possible to configure more than one server for a given value of the distribution criterion. The
first configured server is the primary server for this value. All other servers are backup servers
for this partition. If the primary server is down, one of the backup servers will be used for this
partition. The querying client will not take notice of this fallback situation. If the query node the
client connects to cannot find a query node for a partition (i.e. neither the primary node the backup
nodes are available), the request cannot be fulfilled and an error is send to the client.

The following subsections explain these features in detail with typical examples. See chapter 24,
page 277 for details of the exact syntax.

Page 53

6 Clustering and Distribution 6.3 Partition Distribution

Dynamic Partition Distribution

You can distribute your partitions dynamically. That means, that you don’t have to specify for each
possible value the nodes where it gets distributed. Instead, new values, for which the distribution is
not clear yet, are distributed according to a certain policy (which is described below).

To be able to use dynamic partition distribution when switching from older Cisco ParStream versions
you can define an initial static distribution for a limited set of values.

You can specify a DISTRIBUTION clause in one of the following formats:

• DISTRIBUTE OVER col

distribution according to column col with 1 fallback node

• DISTRIBUTE OVER col WITH REDUNDANCY num

distributed according to column col with num-1 fallback nodes

• DISTRIBUTE OVER col WITH INITIAL DISTRIBUTION dlist

distributed according to column col with 1 fallback node and an initial static distribution dlist

• DISTRIBUTE OVER col WITH REDUNDANCY num WITH INITIAL DISTRIBUTION dlist

distributed according to column col with num-1 fallback nodes and an initial static distribution dlist

• DISTRIBUTE OVER col BY COLOCATION WITH tab

distributed according to the distribution that the value of column col would have in table tab

• DISTRIBUTE EVERYWHERE

distributed over all query nodes

If the REDUNDANCY is not specified, the default value 2 is used, so that we have 1 fallback node. The
maximum redundancy allowed is 9.

In addition you can explicitly specify the default policy for new values, BY ROUND_ROBIN, which isn’t
necessary yet because this is the only policy yet.

Note the following restrictions:

• If old imported data violates any internal distribution rules, you run into undefined behavior. Note
that you can query the existing distribution policy (see section 6.3.1, page 59).

The clause will be explained in details in the following subsections. See section 27.7.2, page 365 for
the grammar specified in Backus-Naur-Form (BNF).

Note that you can use this approach to benefit from the Separation Aware Execution optimizations
(see section 15.15, page 186 for details).

Simple Dynamic Distribution

The simple example for a dynamic partition distribution is just to specify the column, which is used as
distribution criterion.

For example:� �
CREATE TABLE MyTable (

zip INT16 ... INDEX EQUAL ...

...

)

PARTITION BY zip, ...

Page 54

6.3 Partition Distribution 6 Clustering and Distribution

DISTRIBUTE OVER zip

...� �
Note the following:

• The distribution column (specified with DISTRIBUTE OVER) has to be a partition column (specified
in the column list for PARTITION BY) that has to have an EQUAL index.

• Currently, only integral and date/time types are supported. See section 6.3.1, page 59 for details
about how to distribute over strings and date/time types.

Note that for performance reasons the column to distribute over should have a small/limited number
of possible values. For this reason, you might use an ETL column as distribution column. For
example:� �
CREATE TABLE MyTable (

userid UINT32,

...

usergroup UINT64 INDEX EQUAL CSV_COLUMN ETL

)

PARTITION BY usergroup, zip

DISTRIBUTE OVER usergroup

...

ETL (SELECT userid MOD 20 AS usergroup

FROM CSVFETCH(MyTable)

);� �
By default, the distribution uses a default redundancy of 2, which means that 1 fallback node is
required. You can change this default by specifying a different REDUNDANCY:� �
CREATE TABLE MyTable (

zip INT16 ... INDEX EQUAL ...

...

)

PARTITION BY zip, ...

DISTRIBUTE OVER zip WITH REDUNDANCY 3

...� �
Note that the value specified as REDUNDANCY has to be possible. If you specify a REDUNDANCY

of 3, an import requires 3 query nodes. Thus, the redundancy should not exceed the number of
query nodes in the cluster. In fact, if you have a cluster with only 1 query node, you have to set the
REDUNDANCY to 1.

Note also that the importer blocks until at least one of the assigned distribution nodes for a value
encountered during a CSV import is available.

Details of the Distribution Policy

To provide distributions for new values, Cisco ParStream uses an approach that should provide failover
and load balancing without much internal effort. The principal algorithm is as follows:

Page 55

6 Clustering and Distribution 6.3 Partition Distribution

• If the redundancy covers all existing query nodes all permutations of distribution lists are used. For
example, if we have a redundancy of 3 with 3 servers, each new distribution value gets the next
entry of the following list:� �
srv1 srv2 srv3

srv2 srv3 srv1

srv3 srv1 srv2

srv1 srv3 srv2

srv3 srv2 srv1

srv2 srv1 srv3� �
• If the redundancy is smaller than the current number of nodes, we iterate a window of

numberOfRedundant servers over the list of all servers and use all permutations in that window.
That is, if we have 8 servers and a redundancy of 3, then we iterate with the following window states
of 3 servers over all 8 servers:� �
srv1 srv2 srv3

srv2 srv3 srv4

srv3 srv4 srv5

srv4 srv5 srv6

srv5 srv6 srv7

srv6 srv7 srv8

srv7 srv8 srv1

srv8 srv1 srv2� �
and use all 6 permutations in each window (as demonstrated by the following figure):

That is, for a specific number of servers, we have
numberOfServers * redundancy!

different distribution list entries (here: 8 * 3*2*1, thus 48).

Note that the possible distribution lists for new values change, when the number of nodes change.
For example, the window [srv1 srv2 srv4] is possible with 4 nodes, but not with 5 or more
nodes. Thus, with 4 nodes new distributions might use this window, while after adding an additional
node this window won’t be used again for new distribution values. As a consequence, the number of
different distribution lists can be higher with the number of nodes over time raised to 8 than with a
stable number of 8 nodes from the beginning.

Page 56

6.3 Partition Distribution 6 Clustering and Distribution

INITIAL Distributions

You can specify an initial static distribution for a limited set of values. This feature is especially provided
to be able to deal with data imported in older versions where only a static distribution was possible. In
addition, this allows to re-initialize the whole database with dynamic distribution with partitions that
were already distributed (to query the existing distribution, see section 6.3.1, page 59).

To specify an initial static distribution, you have to use an INITIAL DISTRIBUTION clause. In that
clause you can specify the query nodes, data should be distributed to, for each value.

For example:� �
CREATE TABLE MyTable (

zip INT16 ... INDEX EQUAL ...

...

)

PARTITION BY zip, ...

DISTRIBUTE OVER zip WITH INITIAL DISTRIBUTION (

(0 TO srv1,srv2,srv3),

(1 TO srv2,srv3,srv1),

(2 TO srv3,srv1,srv2),

(3 TO srv1,srv3,srv2),

(4 TO srv2,srv1,srv3),

(5 TO srv3,srv2,srv1),

)� �
Note that in the lists of servers you should always use all permutations to avoid bad load balance
situations when a server is not available. This ensures that during a failure of one server, the requests
are equally distributed among all other servers. For example, if with the configuration above srv1

fails, the requests are distributed to srv2 for value 0 and to srv3 for value 3. A setup such as:� �
...

DISTRIBUTE OVER zip WITH INITIAL DISTRIBUTION (

−− bad distribution !
(0 TO srv1,srv2,srv3),

(1 TO srv2,srv3,srv1),

(2 TO srv3,srv1,srv2),

(3 TO srv1,srv2,srv3),

(4 TO srv2,srv3,srv1),

(5 TO srv3,srv1,srv2),

)� �
would be a lot worse because with srv1 not being available all requests are distributed to srv2 only.

You can assign the same nodes for multiple values (but again keep in mind to specify all
permutations):� �
CREATE TABLE MyTable (

zip INT16 ... INDEX EQUAL ...

...

)

Page 57

6 Clustering and Distribution 6.3 Partition Distribution

PARTITION BY zip, ...

DISTRIBUTE OVER zip WITH INITIAL DISTRIBUTION (

(0,6,12,18 TO srv1,srv2,srv3),

(1,7,13,19 TO srv2,srv3,srv1),

(2,8,14, TO srv3,srv1,srv2),

(3,9,15 TO srv1,srv2,srv3),

(4,10,16 TO srv2,srv3,srv1),

(5,11,17 TO srv3,srv1,srv2),

)� �
Note that the initial distribution is independent from the specified or default redundancy. That is, the
previous statement would lead to a redundancy of 3 for each value from 1 to 19 and to a redundancy
of 2 for all new values.

To specify a redundancy of 3 for all values, you have to specify:� �
CREATE TABLE MyTable (

zip INT16 ... INDEX EQUAL ...

...

)

PARTITION BY zip, ...

DISTRIBUTE OVER zip WITH REDUNDANCY 3 WITH INITIAL DISTRIBUTION (

(0,3,6,9,12,15,18 TO srv1,srv2,srv3),

(1,4,7,10,13,16,19 TO srv2,srv3,srv1),

(2,5,8,11,14,17 TO srv3,srv1,srv2),

)� �
EVERYWHERE Distributions

You can specify that a distribution provides full redundancy. That is, all data is distributed over all
nodes.

For example:� �
CREATE TABLE MyTable (

zip INT16 ... INDEX EQUAL ...

...

)

PARTITION BY zip, ...

DISTRIBUTE EVERYWHERE

...� �
This feature will especially be useful when small tables are used in JOINs of distributed tables. By
replicating the data to all query nodes, these small tables are always locally available when queries for
the distributed table are processed. This leads to a better performance because the whole query is
processed inside one node.

Note that adding a node to a cluster (see section 6.2.5, page 50) that has a table with EVERYWHERE

distribution is currently not supported.

Page 58

6.3 Partition Distribution 6 Clustering and Distribution

COLOCATION Distributions

You can also specify that a distribution according to one column in one table has to follow the
distribution of another column in another table. This is useful for JOINs where it is an performance
improvement that typically the data of the joined tables is co-located on the same query node.

For example:� �
CREATE TABLE MyTable1 (

no INT16 ... INDEX EQUAL ...

...

)

PARTITION BY no, ...

DISTRIBUTE OVER no

...

CREATE TABLE MyTable2 (

zip INT16 ... INDEX EQUAL ...

...

)

PARTITION BY zip, ...

DISTRIBUTE OVER zip BY COLOCATION WITH MyTable1

...� �
Here, the values of MyTable2 are distributed according to the distribution the value of zip would
have as distribution value of table MyTable1. That is, the zip code 34500 in MyTable2 has the same
distribution as the value 34500 as no would have in MyTable1.

Note:

• The distribution columns of both tables have to have the same type.

• The basic table referred to with COLOCATION WITH has to be a table that has a directly specified
round robin policy specified with DISTRIBUTE OVER. That is, the table referred to is not allowed to
have a DISTRIBUTE EVERYWHERE or DISTRIBUTE ... BY COLOCATION distribution policy.
However, a basic table might have multiple tables that co-locate their distribution with it.

Querying the Current Distribution

You can query the current distribution via the system tables ps_info_table (for the distribution
configuration) and ps_info_partition_distribution (for the distribution of the imported
values). See section 26.4, page 323 for details.

Distribution over String and Date/Time Values

There are restrictions regarding the type of the distributed column: You need an integral or date/time
type. However, indirectly you can still use other types for distribution. Note also that for hashed string
you have to pass NULL instead of the empty string as distribution value.

To be able to use other types, the general approach is to provide an ETL column (see section 10.6,
page 104), which is filled by a function transforming another import column into an integral value. If you

Page 59

6 Clustering and Distribution 6.3 Partition Distribution

need a limited value range, you can also use MOD. Note however, that you can’t MOD for non-numeric
types (except DATE and SHORTDATE).

Thus, you have the following options:

• For non-hashed strings (type VARSTRING without compression HASH64) you should provide a
ETL statement calling HASH64() (see section 25, page 303) for the string value.
For example:� �
CREATE TABLE Hotels

(

City VARSTRING,

...

distr UINT64 INDEX EQUAL CSV_COLUMN ETL,

)

PARTITION BY distr, Hotel

DISTRIBUTE OVER distr

ETL (

SELECT HASH64(City) AS distr

FROM CSVFETCH(Hotels)

);� �
If you need a limited value range, you have to call MOD on the value returned by HASH64().
For example:� �
CREATE TABLE Hotels

(

City VARSTRING,

...

distr UINT64 INDEX EQUAL CSV_COLUMN ETL,

)

PARTITION BY distr, Hotel

DISTRIBUTE OVER distr

ETL (

SELECT HASH64(City) MOD 7 AS distr

FROM CSVFETCH(Hotels)

);� �
• For floating-point types, you can call TRUNC() or FLOOR() (and MOD).

• For hashed strings (type VARSTRING with compression HASH64) you also can use the HASH64()
function, which yields the hash value of the string (see section 25, page 303). But if you need a
limited value, you can call MOD on the hashed string directly.

Page 60

Dynamic Columns

This section describes the usage of the Cisco ParStream database feature for dealing with dynamic
columns.

Corresponding example code can be found in examples/dynamiccolumns (see section A.3,
page 392).

Motivation for Dynamic Columns

One problem of databases running against a fixed schema is that adding a new column is a significant
change. When tracking data and states, what or how something is being measured might change over
time. For example, sensors might be added, enabled, modified, disabled, or removed. Having a static
column for each device or point of measurement would lead to a lot of schema changes.

A better approach to have a specific column for each specific point of measurement is to collect data
in a generic way, having a key identifying what or how something was measured and a corresponding
value. However, the SQL expressions to analyze data for such a generic approach become very
complex, using JOINs and other features.

For this reason, Cisco ParStream provides an approach to capture/import data in a raw generic format,
while allowing to map raw data to Dynamic Columns when analyzing/processing data.

For example, you can measure raw data over time as follows:

Timestamp Region ID Attribute val_uint8 val_int64 val_double
2015-07-07 12:00:00 1 us16x power 77
2015-07-07 12:00:00 1 us771 humidity 67
2015-07-07 12:00:00 1 us771 pressure 1234.3
2015-07-07 12:01:02 2 ca224 rpm 86500
2015-07-07 12:02:22 1 us771 humidity 64
2015-07-07 12:02:22 1 us771 pressure 1237.1
2015-07-07 12:02:22 1 us771 rpm 86508
2015-07-07 12:02:22 2 ca224 rpm 86433
2015-07-07 12:03:44 1 us771 pressure 1240.7
2015-07-07 12:03:44 2 ca224 rpm 86622
2015-07-07 12:04:00 1 us16x power 99
2015-07-07 12:04:00 1 us990 humidity 63
2015-07-07 12:04:00 1 us16y power 98

Here, for certain points in time, we then can specify

• the Region code and ID of a sensor, representing where, how, and/or by what a value was
measured,

• the Attribute that was measured, and

• the value the attribute had when it was measured, using different value columns for different data
types.

Page 61

7 Dynamic Columns 7.2 Using Dynamic Columns

Using the dynamic columns feature, you can deal with such a raw table as if it would have the different
attributes imported as individual columns:

Timestamp Region ID Humidity Power Pressure RPM
2015-07-07 12:00:00.000 1 us16x 77
2015-07-07 12:00:00.000 1 us771 67 1234.3
2015-07-07 12:01:02.000 2 ca224 86500
2015-07-07 12:02:22.000 1 us771 64 1237.1 86508
2015-07-07 12:02:22.000 2 ca224 86433
2015-07-07 12:03:44.000 1 us771 1240.7
2015-07-07 12:03:44.000 2 ca224 86622
2015-07-07 12:04:00.000 1 us16x 99
2015-07-07 12:04:00.000 1 us16y 98
2015-07-07 12:04:00.000 1 us990 63

The resulting “dynamic table” has a column for each attribute with the corresponding type that was
used to store the values. Rows with values for different attributes of the same timepoint and sensor
are combined.

Similarly, if you just care for the values of a specific region, you can get:

Timestamp Region Humidity Power Pressure RPM
2015-07-07 12:00:00.000 1 67 77 1234.3
2015-07-07 12:01:02.000 2 86500
2015-07-07 12:02:22.000 1 64 1237.1 86508
2015-07-07 12:02:22.000 2 86433
2015-07-07 12:03:44.000 1 1240.7
2015-07-07 12:03:44.000 2 86622
2015-07-07 12:04:00.000 1 63 99
2015-07-07 12:04:00.000 1 63 98

As you can see, the first two rows were joined because they have the same region and distinct
attributes. In fact, because two different sensors in the same region did yield different values at the
same time, we have one joined row in the dynamic table for region “1” of 12:00:00. In addition, the
last three rows were combined into two rows because we join both values for power with the value for
humidity.

These dynamic tables are created on the fly as temporary tables and can be used as a table in arbitrary
queries, which makes handling of this generic approach a lot easier.

Using Dynamic Columns
To be able to use the dynamic columns approach, you have to

• Define a generic raw table that can be used with dynamic columns.

• Use the DYNAMIC_COLUMNS operator to use the corresponding “dynamic table,” temporarily
generated from the source table and its data.

Page 62

7.2 Using Dynamic Columns 7 Dynamic Columns

Defining Generic Raw Tables for the Dynamic Columns Approach

To define a generic table that can be used for the dynamic columns feature, the table has to have the
following special constraints:

• There must be exactly one column marked with DYNAMIC_COLUMNS_KEY, defining the dynamic
columns key. This column stores the name that is used as column name when using the table as
dynamic table. The column type must be a hashed string.

• There must be one or more columns marked with DYNAMIC_COLUMNS_VALUE, that can be used
for dynamic columns values associated with the dynamic columns key. Here, multiple value
columns are possible to be able to handle different value types, index configurations. etc. Thus, for
each possible value type there should be a corresponding value column. However, multiple keys
can share the same value column, if the value type is the same.

In addition, the following constraints apply:

• The table must have an ORDER BY clause, which specifies at least one physical column, which is
neither a dynamic columns key nor a dynamic columns value. Cisco ParStream uses the columns
listed there as JOIN_COLUMNS in a dynamic table to be able to decide how to construct the logical
rows inside a dynamic columns operator (without such join columns, Cisco ParStream would always
combine all rows with all other rows, which would not be useful).
The first ORDER BY column should be THE most coarse-grained attribute you want to analyze
over, because this column always has to be used in the JOIN_COLUMNS of a dynamic table using
this raw table. In most cases, it will be a timestamp attribute if you aggregate data over time (as
shown in the initial example on page 62 in Section 7.2).

Here is a first example, specifying a table for the motivating example above (with slightly more technical
names such as ts instead of Timestamp):� �
CREATE TABLE RawData

(

ts TIMESTAMP NOT NULL INDEX EQUAL,

region UINT64 NOT NULL INDEX EQUAL,

id VARSTRING(255) NOT NULL COMPRESSION HASH64 SEPARATED BY region INDEX

EQUAL,

attribute VARSTRING(255) NOT NULL COMPRESSION HASH64 INDEX EQUAL

DYNAMIC_COLUMNS_KEY,

val_uint8 UINT8 INDEX EQUAL DYNAMIC_COLUMNS_VALUE,

val_int64 INT64 INDEX EQUAL DYNAMIC_COLUMNS_VALUE,

val_double DOUBLE INDEX EQUAL DYNAMIC_COLUMNS_VALUE,

)

PARTITION BY region, id

DISTRIBUTE OVER region

ORDER BY ts, id

ETL (SELECT LOWER(attribute) AS attribute FROM CSVFETCH(RawData))� �
Here, over time (defined in ts), we collect and analyze different data, identified by the name in the
key column attribute. The data is provided by a sensor identified with id. These sensors are
located in different regions, defined by integral values, which are used to distribute the data over

Page 63

7 Dynamic Columns 7.2 Using Dynamic Columns

different servers. For the values of the dynamic columns, we provide three possible types: one for
small unsigned integral values, one for large signed integral values, and one for floating-point values.

Note the following:

• Any source table for the dynamic columns feature is still an ordinary table that can be used
directly as if the DYNAMIC_COLUMNS_KEY and DYNAMIC_COLUMNS_VALUE attributes would not
have been set.

• There is only one DYNAMIC_COLUMNS_KEY column allowed per table.

• The DYNAMIC_COLUMNS_KEY column must be defined as VARSTRING with COMPRESSION

HASH64 INDEX EQUAL. In addition, the following constraints for key columns apply:

– The column may not be a primary key.
– The column may not be defined as UNIQUE column.
– The column may not be defined as SKIPed column.

• We strongly suggest that the DYNAMIC_COLUMNS_KEY column has a NOT NULL constraint to
ensure that no rows without any key may get imported.

• We also suggest that the columns to partition or join over are also NOT NULL, because joining with
NULL values sometimes results into surprising results.

• The values provided for the dynamic columns keys should be valid column names and differ not
only regarding case-sensitivity. Ideally, they should follow a common convention such as using
uppercase or lowercase letters only (see section 7.2.2, page 68 for details). Otherwise, we have a
mixture of case-sensitive values that define different columns although column names are normally
case-insensitive. This results into undefined behavior when using dynamic columns queries (see
below).
To ensure that no different spelling of the same attribute causes this undefined behavior, we strongly
recommend to use an ETL statement that converts all attributes to lowercase or uppercase letters
as it is done in this example:� �
ETL (SELECT LOWER(attribute) AS attribute FROM CSVFETCH(RawData))� �

(See section 10.6, page 105 for details of modifying ETL statements).

• A DYNAMIC_COLUMNS_VALUE column must not have a default value other than NULL. For this
reason, it also must not have a NOT NULL constraint.

• Neither a DYNAMIC_COLUMNS_KEY nor a DYNAMIC_COLUMNS_VALUE column may be used as
partitioning columns (used in the PARTITION BY clause of the raw table) or as first field in the
ORDER BY clause of the raw table.

Using Dynamic Tables

To be able to use tables supporting the dynamic columns approach as dynamic tables (in the mode
where the generic key entries are handled as columns), you have to use the DYNAMIC_COLUMNS

operator. It yields a dynamic table as temporary table, which can be used like any other table.
However, when using the DYNAMIC_COLUMNS operator you have to specify some attributes and some
restrictions apply.

Page 64

7.2 Using Dynamic Columns 7 Dynamic Columns

For example, with the following SQL expression, you can convert the raw table defined above to a
dynamic table having all values assigned to a specific timestamp:� �
DYNAMIC_COLUMNS(ON RawData PARTITION BY id JOIN_COLUMNS(ts))� �

Here, we create a dynamic table based on the data in RawData, which is partitioned by column
id, and join the data in each partition over column ts. Because the raw table has the distribution
column region, the PARTITION BY clause is necessary (using the distributed column or a column
separated by it). The JOIN_COLUMNS clause has to have at least the first column in the ORDER BY

clause of the raw table. The resulting table will have all columns used in the PARTITION BY and the
JOIN_COLUMNS clauses plus the columns derived from the dynamic column key values.

As a result, a query such as� �
SELECT * FROM DYNAMIC_COLUMNS(ON RawData PARTITION BY id JOIN_COLUMNS(ts))

ORDER BY ts� �
will generate a table having a column for each attribute imported as dynamic columns keys. In this
table, for each point in time, the rows will have the corresponding values (or NULL).

For example (according to the motivating example above, see section 7.1, page 61), if you import the
following data (e.g., via CSV import):� �
ts; region; id; attribute; values (different types)
2015-07-07 12:00:00; 01; us16x; power ;77; ;

2015-07-07 12:00:00; 01; us771; humidity ;67; ;

2015-07-07 12:00:00; 01; us771; pressure ; ; ;1234.3

2015-07-07 12:01:02; 02; ca224; rpm ; ;86500;

2015-07-07 12:02:22; 01; us771; humidity ;64; ;

2015-07-07 12:02:22; 01; us771; pressure ; ; ;1237.1

2015-07-07 12:02:22; 01; us771; rpm ; ;86508;

2015-07-07 12:02:22; 02; ca224; rpm ; ;86433;

2015-07-07 12:03:44; 01; us771; pressure ; ; ;1240.7

2015-07-07 12:03:44; 02; ca224; rpm ; ;86622;

2015-07-07 12:04:00; 01; us16x; power ;99; ;

2015-07-07 12:04:00; 01; us990; humidity ;63; ;

2015-07-07 12:04:00; 01; us16y; power ;98; ;� �
the query� �
SELECT * FROM DYNAMIC_COLUMNS(ON RawData PARTITION BY id JOIN_COLUMNS(ts))

ORDER BY ts, id� �
will yield the following data (spaces added to make it more readable):� �

#ts;id;humidity;power;pressure;rpm
2015-07-07 12:00:00.000; "us16x"; <NULL>; 77; <NULL>; <NULL>

2015-07-07 12:00:00.000; "us771"; 67; <NULL>; 1234.3; <NULL>

2015-07-07 12:01:02.000; "ca224"; <NULL>; <NULL>; <NULL>; 86500

2015-07-07 12:02:22.000; "ca224"; <NULL>; <NULL>; <NULL>; 86433

2015-07-07 12:02:22.000; "us771"; 64; <NULL>; 1237.1; 86508

Page 65

7 Dynamic Columns 7.2 Using Dynamic Columns

2015-07-07 12:03:44.000; "ca224"; <NULL>; <NULL>; <NULL>; 86622

2015-07-07 12:03:44.000; "us771"; <NULL>; <NULL>; 1240.7; <NULL>

2015-07-07 12:04:00.000; "us16x"; <NULL>; 99; <NULL>; <NULL>

2015-07-07 12:04:00.000; "us16y"; <NULL>; 98; <NULL>; <NULL>

2015-07-07 12:04:00.000; "us990"; 63; <NULL>; <NULL>; <NULL>� �
Because data with the attributes humidity, pressure, rpm, and power was inserted, the resulting
dynamic table has these columns. If we add additional data afterwards with a new attribute, the
resulting dynamic table would automatically have one more column, if the same query is processed
again.

The rows contain all values we have for a particular sensor for a particular point in time, because we
join explicitly over ts. However, different sensors always have different rows, because we partition
over the sensors (column id). Thus, for each attribute there is only a column with multiple entries if
multiple rows have values for different attributes of the same ID.

To see and join over both ID and region, you have to request the following:� �
SELECT ts, id, region, *

FROM DYNAMIC_COLUMNS(ON RawData

PARTITION BY id

JOIN_COLUMNS(ts, region))

ORDER BY ts, id� �
or:� �
SELECT ts, id, region, *

FROM DYNAMIC_COLUMNS(ON RawData

PARTITION BY id, region

JOIN_COLUMNS(ts))

ORDER BY ts, id� �
which will both yield the following data:� �

#ts;id;region;humidity;power;pressure;rpm
2015-07-07 12:00:00.000; "us16x"; 1; <NULL>; 77; <NULL>; <NULL>

2015-07-07 12:00:00.000; "us771"; 1; 67; <NULL>; 1234.3; <NULL>

2015-07-07 12:01:02.000; "ca224"; 2; <NULL>; <NULL>; <NULL>; 86500

2015-07-07 12:02:22.000; "ca224"; 2; <NULL>; <NULL>; <NULL>; 86433

2015-07-07 12:02:22.000; "us771"; 1; 64; <NULL>; 1237.1; 86508

2015-07-07 12:03:44.000; "ca224"; 2; <NULL>; <NULL>; <NULL>; 86622

2015-07-07 12:03:44.000; "us771"; 1; <NULL>; <NULL>; 1240.7; <NULL>

2015-07-07 12:04:00.000; "us16x"; 1; <NULL>; 99; <NULL>; <NULL>

2015-07-07 12:04:00.000; "us16y"; 1; <NULL>; 98; <NULL>; <NULL>

2015-07-07 12:04:00.000; "us990"; 1; 63; <NULL>; <NULL>; <NULL>� �
Note that you can specify region both as additional partition column or as additional join column.1

1 There is small difference between using region as partitioning or join column, though: For PARTITIONING BY we
apply the rules for GROUP BY, while for JOIN_COLUMNS we apply the rules for JOIN. This has different effects if input rows
contain NULL as values for these partitioning or join columns, which can become pretty confusing. For this reason, we
recommend to declare partitioning and joining columns to be NOT NULL, so that both forms have the same effect.

Page 66

7.2 Using Dynamic Columns 7 Dynamic Columns

To partition over regions only, the query should look like the following:� �
SELECT ts, region, * FROM DYNAMIC_COLUMNS(ON RawData PARTITION BY region

JOIN_COLUMNS(ts)) ORDER BY ts, region� �
It joins the data of rows that have the same timepoint and the same region. As a result, we now also
join the first two rows and combine the last three rows into two rows:� �
#ts;region;humidity;power;pressure;rpm
2015-07-07 12:00:00.000; 1; 67; 77; 1234.3; <NULL>

2015-07-07 12:01:02.000; 2; <NULL>; <NULL>; <NULL>; 86500

2015-07-07 12:02:22.000; 1; 64; <NULL>; 1237.1; 86508

2015-07-07 12:02:22.000; 2; <NULL>; <NULL>; <NULL>; 86433

2015-07-07 12:03:44.000; 1; <NULL>; <NULL>; 1240.7; <NULL>

2015-07-07 12:03:44.000; 2; <NULL>; <NULL>; <NULL>; 86622

2015-07-07 12:04:00.000; 1; 63; 98; <NULL>; <NULL>

2015-07-07 12:04:00.000; 1; 63; 99; <NULL>; <NULL>� �
Note that because two different sensors in the same region did yield a value for the same attribute
power at the same time 12:04:00, we now have two joined rows in the dynamic table combining these
values with the humidity value for the same timepoint and region.

To get same column names as the motivating example (see section 7.1, page 62), we can use aliases
for both the regular static columns and the dynamic columns in the dynamic table as follows:� �
SELECT "Timestamp", Region, *
FROM DYNAMIC_COLUMNS(ON RawData

PARTITION BY region

JOIN_COLUMNS(ts)

DYNAMIC_COLUMN_NAMES(humidity AS Humidity,

"power" AS "Power",

pressure AS Pressure,

rpm AS RPM)

STATIC_COLUMN_NAMES(ts AS "Timestamp",

region as Region)

) ORDER BY "Timestamp", Region� �
Note that as keywords such as power and timestamp have to get quoted here.

The output would be then as follows (spaces added to make it more readable):� �
#Timestamp;Region;Humidity;Power;Pressure;RPM
2015-07-07 12:00:00.000; 1; 67; 77; 1234.3; <NULL>

2015-07-07 12:01:02.000; 2; <NULL>; <NULL>; <NULL>; 86500

2015-07-07 12:02:22.000; 1; 64; <NULL>; 1237.1; 86508

2015-07-07 12:02:22.000; 2; <NULL>; <NULL>; <NULL>; 86433

2015-07-07 12:03:44.000; 1; <NULL>; <NULL>; 1240.7; <NULL>

2015-07-07 12:03:44.000; 2; <NULL>; <NULL>; <NULL>; 86622

2015-07-07 12:04:00.000; 1; 63; 98; <NULL>; <NULL>

2015-07-07 12:04:00.000; 1; 63; 99; <NULL>; <NULL>� �
Page 67

7 Dynamic Columns 7.2 Using Dynamic Columns

Note that in dynamic tables it can happen that rows exist even if the columns selected have no valid
entries. For example, if you only select for entries with the attribute rpm:� �
SELECT ts, rpm FROM DYNAMIC_COLUMNS(ON RawData

PARTITION BY id

JOIN_COLUMNS(ts))

ORDER BY ts, rpm� �
the output will be as follows:� �
#ts;rpm
2015-07-07 12:00:00.000;<NULL>

2015-07-07 12:00:00.000;<NULL>

2015-07-07 12:01:02.000;86500

2015-07-07 12:02:22.000;86433

2015-07-07 12:02:22.000;86508

2015-07-07 12:03:44.000;<NULL>

2015-07-07 12:03:44.000;86622

2015-07-07 12:04:00.000;<NULL>

2015-07-07 12:04:00.000;<NULL>

2015-07-07 12:04:00.000;<NULL>� �
To skip the rows with NULL values, use a corresponding WHERE condition. For example:� �
SELECT ts, rpm FROM DYNAMIC_COLUMNS(ON RawData

PARTITION BY id

JOIN_COLUMNS(ts))

WHERE rpm IS NOT NULL

ORDER BY ts, rpm� �
Here, the output is as follows:� �
#ts;rpm
2015-07-07 12:01:02.000;86500

2015-07-07 12:02:22.000;86433

2015-07-07 12:02:22.000;86508

2015-07-07 12:03:44.000;86622� �
Note that such a WHERE clause is especially necessary if you only are requesting for columns that
were added recently. For all data, before the new dynamic column was added, you would otherwise
get rows with NULL values.

Dynamic Column Names

There are certain requirements and constraints regarding dynamic column names, because on one
hand the dynamic columns key values can in principle be any string, while column names have some
restrictions.

Note the following:

Page 68

7.2 Using Dynamic Columns 7 Dynamic Columns

• If a dynamic columns key is not a valid column name (see section 24.2.1, page 281), it is not listed
in dynamic tables.

• The dynamic columns are automatically sorted according to their case-sensitive name (using ASCII
order)

• Because in general column names are case-insensitive in Cisco ParStream, it is undefined
behavior if column names differ but are case-insensitively equal. (e.g. having the value/name
’Height’, ’height’, and ’HEIGHT’). It is not guaranteed whether a * yields multiple or just one column
and what happens if one of the columns is explicitly requested.

• A static column name hides a dynamic column with the same name. Use aliasing to make them
visible (see section 7.2.3, page 71).

NOTE: For this reason, it is a strong recommendation to establish/force a general convention for
values of dynamic columns keys to be valid column names:

• The string values should have at least two letters and no special characters.

• The string values should follow a general convention regarding case-sensitivity, such as using only
capital letters or using only lowercase letters.

• To ensure that no different spelling of the same attribute causes undefined behavior, we strongly
recommend to use an ETL statement that converts all attributes to lowercase or uppercase letters.
For example:� �
CREATE TABLE RawData

(

...

attribute VARSTRING(255) NOT NULL COMPRESSION HASH64 INDEX EQUAL

DYNAMIC_COLUMNS_KEY,

...

)

...

ETL (SELECT LOWER(attribute) AS attribute FROM CSVFETCH(RawData))� �
You can check, whether dynamic column keys are valid or conflict by using the system table
ps_info_dynamic_columns_mapping (see below).

System Table Support

We provide a system table ps_info_dynamic_columns_mapping (See section 26.4, page 316),
which lists the actual dynamic columns combined with some information about whether column names
are invalid or conflict with each other.

A request such as� �
SELECT * FROM ps_info_dynamic_columns_mapping ORDER BY table_name,

dynamic_name� �
after importing the data listed above, will correspondingly have the following output:� �
#table_name;dynamic_name;key_column;value_column;is_valid;is_conflicting

Page 69

7 Dynamic Columns 7.2 Using Dynamic Columns

"RawData";"HEIGHT";"attribute";"val_uint8";"TRUE";"TRUE"

"RawData";"Height";"attribute";"val_uint8";"TRUE";"TRUE"

"RawData";"height";"attribute";"val_uint8";"TRUE";"TRUE"

"RawData";"humidity";"attribute";"val_uint8";"TRUE";"FALSE"

"RawData";"x";"attribute";"val_int64";"FALSE";"FALSE"� �
Thus, column humidity is the only dynamic columns name, where no problems exist, because it is a
valid column name and not conflicting.

Whether columns play a role regarding dynamic columns is also listed in the attribute
dynamic_columns_type of the ps_info_column system table. See section 26.3, page 309
for details.

Dealing with Multiple Values for a Measurement

A row may have multiple values for multiple or different DYNAMIC_COLUMNS_VALUE columns. In that
case, the first row having exactly one DYNAMIC_COLUMNS_VALUE value defines the dynamic mapping
used.

For example, if the following data is imported:� �
ts; reg.; id; attribute; values (different types)
2015-07-08 15:01:00; 01; us771; humidity; 22; ; 44.0

2015-07-08 15:02:00; 01; us771; humidity; 67; ;

2015-07-08 15:03:00; 03; pow16; humidity; ; 142;

2015-07-08 15:04:00; 03; pow16; humidity; 133; ;� �
the second data row defines that in the corresponding dynamic table the column humidity maps to
the value in the first value column. As a consequence, the values of the dynamic table are:� �
#ts;id;humidity
2015-07-08 15:01:00.000;"us771";22

2015-07-08 15:02:00.000;"us771";67

2015-07-08 15:03:00.000;"pow16";<NULL>

2015-07-08 15:04:00.000;"pow16";133� �
As you can see, because the second data row maps humidity to the first value column, all values
are taken from that column (even from the first row, which did define two values). In cases where no
value exists, the corresponding rows only contain NULL values (that way you can see that there may
be some conflicts).

If there is only input defining multiple values for a key, there will be no clear mapping yet. In that
case, the row (with the timestamp) will exist in the dynamic table, but without any column listing the
corresponding value. Thus, all visible dynamic columns will have null values in the row. In that case,
the column will also have no entry yet in ps_info_dynamic_columns_mapping.

Details of DYNAMIC_COLUMNS Operators

The DYNAMIC_COLUMNS operator might have the following clauses (in that order):

Page 70

7.2 Using Dynamic Columns 7 Dynamic Columns

• An optional PARTITION BY clause

• A mandatory JOIN_COLUMNS clause

• An optional DYNAMIC_COLUMN_NAMES clause

• An optional STATIC_COLUMN_NAMES clause

The clauses have the following meaning:

• The optional PARTITION BY clause is necessary for distributed tables (see section 6.3, page 53)
that have no EVERYWHERE distribution. In that case, the PARTITION BY clause must contain at
least the distribution column or a column separated by the distribution column.
The effect of the PARTITION BY clause is that the data is split into buckets depending on the
PARTITION BY field similar to GROUP BY semantics. This means that NULL values may be
grouped together and are not added implicitly to the JOIN_COLUMNS.
If you have an EVERYWHERE distribution or a table with multiple partitioning columns, using a
PARTITION BY clause increases the amount of parallelization used internally. For example, if a
table has a partitioning column id a query such as� �
SELECT ts, id, humidity, pressure

FROM DYNAMIC_COLUMNS(ON RawData

JOIN_COLUMNS(ts, id))

ORDER BY ts, id� �
will usually perform better if the fact that id is a partitioning column is taken into account in the
DYNAMIC_COLUMNS clause:� �
SELECT ts, id, humidity, pressure

FROM DYNAMIC_COLUMNS(ON RawData

PARTITION BY id

JOIN_COLUMNS(ts))

ORDER BY ts, id� �
All PARTITION BY fields must either be partitioning columns of the table or separated by one.

• The mandatory JOIN_COLUMNS clause as described above (see section 7.2.1, page 63) must
contain the first ORDER BY column of the raw table and may contain additional columns. It is used
to decide which data to join in the resulting dynamic table.
Any physical column that shall be visible in the resulting dynamic table and is neither a dynamic
key nor a dynamic value column nor part of the PARTITION BY clause must be listed here. All
columns listed in this clause must be physical columns of the table and must be no MULTI_VALUE

columns.

• The optional DYNAMIC_COLUMN_NAMES and STATIC_COLUMN_NAMES clauses allow to define
alias names for the dynamic and for the static columns of the dynamic table. This allows for
dynamic columns names of existing static columns, while still using the static columns under a
different name. For example:� �
SELECT ts, raw_id, *

FROM DYNAMIC_COLUMNS(ON RawData

PARTITION BY id

Page 71

7 Dynamic Columns 7.2 Using Dynamic Columns

JOIN_COLUMNS(ts)

DYNAMIC_COLUMN_NAMES(humidity AS id, rpm AS dz)

STATIC_COLUMN_NAMES(id AS raw_id))

ORDER BY ts, raw_id� �
maps the dynamic columns with the name humidity to the name id, dynamic columns with the
name rpm to the name dz, while giving the existing static column name id the name raw_id. If
columns with dynamic aliases don’t exist, they are simply ignored.

Note that all physical columns of the raw table that shall be visible in the resulting dynamic table must
be columns in the JOIN_COLUMNS clause or the PARTITION BY clause.

Current Restrictions

The following general restrictions apply regarding the dynamic columns feature:

• Physical MULTI_VALUE columns can’t be part of dynamic tables generated with the
DYNAMIC_COLUMNS operator (although they can be part of the raw tables).

• All values of key columns should be transformed to lower case prior to importing them due to
planned incompatible changes in future versions.

Page 72

Database Configuration

Conf Directories and INI Files

Conf Directories

The Cisco ParStream database configuration can be split into multiple files to ease the setup of
multiple servers. These files must be located in the same directory, the so-called conf directory.

On startup, Cisco ParStream checks the following locations to find the conf directory:

1. The containing directory if passed the --inifile filepath option

2. The directory passed with --confdir dir

3. The sub-directory ./conf in the current working directory

4. The directory conf in the directory of the Cisco ParStream executable

5. The directory /etc/parstream

Within these directories, Cisco ParStream searches for the general configuration file parstream.ini
and additional configuration files, which can be:

• INI files for server and distribution definitions

The general format of the INI files is described in the following sections of this chapter.

In the past (until Version 4.0) you could also define PSM files in the conf directory, which were used to
define the schema used by the database. These files had the suffix .psm and contained in essence
CREATE TABLE statements plus possible comments with leading -- (see section 24.2, page 278).
For backward compatibility these files are still processed the first time you start a server and no
existing schema definition is found. After this initial usage, they are ignored. The details about how to
create and define tables are described in Chapter 24, page 277.

INI File Format

Cisco ParStream configuration files are supplied in the INI file format. A single entry to set an option is
formatted as follows:� �
name = value� �

The entry might be global or inside a section. At the beginning, the INI file has global scope (note:
before Version 2.0 this only applies to the file parstream.ini; see the warning below).

Sections within a hierarchy are defined using square brackets:� �
[section]

name = value� �
Deeper levels of a hierarchy are denoted by a . character in the section name.

Page 73

8 Database Configuration 8.2 Internationalization (I18N)

� �
[section.subsection]

name = value� �
Since Version 2.0, you can switch back to the global scope with an empty section name:� �
[]

globaloption = value� �
Warning:

Before Version 2.0, if you have multiple INI files, global options should be set only
at the beginning of the file parstream.ini. The reason is that after processing
parstream.ini the order of the other INI files is undefined and further INI files continue
with the scope the previous INI file ends with (this was fixed with Version 2.0).

Warning:

If you have any duplicate entries inside your INI files, Cisco ParStream will give you a
warning, i.e.: !! WARNING: duplicate config entry ’server.first.port’:

old value: ’9951’, using new value: ’33333’ and use the last value read
from the file or from the command line. Commandline parameters are preferred over INI
file parameters.

Examples

Example: The port of a Cisco ParStream server named first, should be reachable on port 1234.� �
[server.first]

port = 1234� �
A # character at the beginning of a line denotes a comment. For example:� �

comment name = value� �
For all these settings in INI files you can pass command line arguments when the server gets started.

These command line arguments overwrite the corresponding INI file setting.

See Starting the Server#commandline-args and Commandline Arguments for details.

Internationalization (I18N)
Different countries have different character sets, character encodings, and conventions. This section
describe the features Cisco ParStream provide for internationalization.

In principle, Cisco ParStream supports different character sets (7-bit, 8-bit with different encodings,
UTF8).

Page 74

8.2 Internationalization (I18N) 8 Database Configuration

However, string sorting depends on which character set and encoding is used. For this reason, since
Version 2.0, you can to specify the locale to use.

This is a global Cisco ParStream option, which can be specified in the corresponding INI file (see
Global Options):� �
locale = C� �

or passed as an option (see Commandline Arguments):� �
--locale=C� �

The only portable locale is the locale called C, which is default. Other locales depend on your operating
system. Usually you can call� �
$ locale -a� �

to query the supported locales on your platform. For example, the following might be supported:� �
locale = C # ANSI-C conventions (English, 7-bit, provided on all platforms)
locale = POSIX # POSIX conventions (English, 7-bit)
locale = en_US # English in the United States
locale = en_US.utf8 # English in the United States with UTF8 encoding
locale = de_DE # German in Germany
locale = de_DE.ISO-8859-1 # German in Germany with ISO-Latin-1 encoding
locale = de_DE.ISO-8859-15 # German in Germany with ISO-Latin-9 encoding (having the

Euro-Symbol)
locale = de_DE.utf8 # German in Germany with UTF8 encoding� �

Note:

If in a cluster different locales are used so that sorting is not consistent, Cisco ParStream
will run into undefined behavior.

Page 75

Server Administration

To setup and start a Cisco ParStream database, a couple of steps are necessary:

• You should define a database configuration. This is usually done in INI files in the conf directory
(see section 8.1.1, page 73).

• You have to start the servers.

• You might also want to import data, which is described in Chapter 10, page 88.

This chapter describes how to start a Cisco ParStream server with parstream-server and how to
deal with authorization and logging.

Starting the Servers

Starting a Cisco ParStream Server

After installing Cisco ParStream and providing a corresponding configuration, the easiest way to start
a Cisco ParStream server is to perform the following steps:

1. Set variable PARSTREAM_HOME:� �
export PARSTREAM_HOME=/opt/cisco/kinetic/parstream-database� �

and add Cisco ParStream libraries to your library search path:� �
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PARSTREAM_HOME/lib� �

2. Go to the directory, where your Cisco ParStream database configuration is located. Usually, this
should be a directory containing:

• a sub-directory conf which typically contains the INI file for the basic configuration

• a sub-directory partitions or any other datadir specified in the INI file of the
corresponding server.

3. The INI file has to contain the minimum options that are required to run a server:

• a global clusterId

• a global registrationPort

• server-specific host and port

• a server-specific rank

Note that clusterId, registrationPort and rank are required because any Cisco
ParStream server can sooner or later be extended to a multi-node cluster (see chapter 6,
page 40).

You might typically also set:

Page 76

9.1 Starting the Servers 9 Server Administration

• a global clusterInitTimeout, which defines the time in seconds to wait for a cluster of
multiple nodes to establish. If you know that the database is running with only one server/node
you can/should set to just 1.

• the server-specific datadir

For example, an INI file for a server called first might look as follows:� �
basic cluster settings for single-node clusters:
clusterId = exampleCluster

registrationPort = 9040

clusterInitTimeout = 1

[server.first]

host = localhost

port = 9042

server rank in multi-node clusters:
rank = 1

directory that contains the data partitions:
datadir = ./partitions� �

4. Start the Cisco ParStream server parstream-server. The only required argument is the
name of the server to start, which identifies the corresponding section in the INI files for the other
settings.

For example:� �
\$PARSTREAM_HOME/bin/parstream-server first� �

Now, the server is ready to process queries sent to the configured host and port.

If you add $PARSTREAM_HOME/bin to your search path, starting the server as follows is
enough:� �
parstream-server first� �

For more sophisticated ways to start a Cisco ParStream server (e.g. logging all output into a
file), see the systemd daemon, the shell script start.sh in $PARSTREAM_HOME/bin or the
run_example.sh scripts in the various examples, Cisco ParStream provides.

Note:

• The Cisco ParStream server uses multiple ports. For this reason, the server option port has to be
set. This port and up to four consecutive ports will be used by Cisco ParStream. See section 13.3.1,
page 135 for details.

• The server uses journal files to store cluster metadata. See section 6.2.4, page 49 for details.

Page 77

9 Server Administration 9.2 User Authentication

Cisco ParStream Server Command Line Parameters

The Cisco ParStream server provides the ability to pass several commandline arguments, to configure
and influence the behavior of the server.

On one hand you can pass several standard arguments:

Argument Effect
--help print syntax including all commandline options
--version print version
--confdir dir use dir as the conf-directory with the configuration (INI files)
--configcheck just check the configuration without starting the server
--inifile filepath use filepath as the configuration (INI) file
--verbosity arg change verbosity (0: minimum, 5: maximum)

In addition, all values of the configuration file can be overwritten by command line parameters. The
prefix of a parameter string depends on the section, in which it is defined.

For example, to overwrite the parameter port of the server with the name first with the value 9088,
the command line parameter must be formulated as follows:� �
--server.first.port=9088� �

User Authentication
Cisco ParStream provides the ability to enable user authentication to restrict access to the database.
By default, users have to authenticate to the server by providing login credentials if they want to
retrieve data . Access to the server is only granted if the authentication is successful.

Note the following:

• User authentication is only enabled for the external communication via the first two server ports
(see section 13.3.1, page 135). For this reason, to secure the communication in a Cisco ParStream
cluster, you should disable the access to all internal ports for the average user.

• Clients send pass phrases currently in clear text so that you should use secure network connections
for connected clients.

• There is currently no authorization management established by Cisco ParStream providing different
roles and responsibilities. Any successfully logged in user can perform any remote valid database
operation.

While pass word is the widely established common term, we use pass phrase to remind people that
the length of such a secret is the most important factor, and the effort needed to crack simple words or
short secrets is reducing dramatically with every new hardware generation.

User Authentication Approach

The authentication approach Cisco ParStream uses is based on PAM (the Pluggable Authentication
Modules), which is usually supported by all Linux distributions. Thus, this means that

Page 78

9.2 User Authentication 9 Server Administration

• PAM provides user management and authentication. By default Cisco ParStream uses system
users for authentication. However, you can configure Cisco ParStream to use any other PAM
module that meets your requirements.

• Cisco ParStream allows to register these users as database users via DDL commands so that
Cisco ParStream uses the PAM user with its pass phrase to grant access to the database. Doing
this, you can even map a PAM user name to a different database login name.

Cisco ParStream authenticates users via an external application called
parstream-authentication. This application is provided by an additional software package,
that has to be installed separately. For each supported platform, a different package has to be installed
(see section 2.6, page 11).

By default, the installation of Cisco ParStream creates a system and database user parstream.
After you have followed the instructions in section 2.8.1, page 12 and set a pass phrase for the user
parstream, you can log into the Cisco ParStream database using this user. For this to work, the
Cisco ParStream database has to be started from this user. Currently it is only possible to log into
Cisco ParStream with the system user that has started the database. However, you can create alias
database users (see section 9.2.3, page 80) that share the same system user and pass phrase.

Thus, after installing Cisco ParStream to enable authentication for a new user, you have to

• Create a corresponding PAM user if not using the default Cisco ParStream PAM module. See the
documentation of the selected PAM module how to create new users.

• Create a database user that maps to the PAM user, using the CREATE USER command (see
section 9.2.3, page 80). As an effect, the database user has the pass phrase of the associated
PAM user.

• Pass login name of the database user and the same pass phrase of the associated PAM user with
each client that connects to Cisco ParStream:

– See section 12.1.1, page 110 for authentication with pnc.
– See section 12.1.2, page 113 for authentication with netcat (note however that you should

prefer pnc because netcat doesn’t hide the pass phrase input).
– See section 19.5.22, page 229 for authentication with the Java Streaming Import Interface (JSII).
– See section 18, page 214 for authentication with JDBC.

Note the following:

• Multiple database users can map to the same PAM user (but not vice versa).

• A database user can map to a PAM user that does not exist (yet). But, it can only be used to login
with clients after the underlying PAM user was created. This way, you can temporarily remove a
PAM user and create a new PAM user with the same user name to change the pass phrase.

• There is no authentication necessary to import data with the CSV importer. Authentication is only
required for streaming imports and when retrieving data from clients.

• You can choose between different PAM service configurations. By default, the ParStream
configuration is installed, which defines the following options with its default values:� �
[authentication]

pamService = parstream

Page 79

9 Server Administration 9.2 User Authentication

authenticationWrapperExecutable =

/opt/cisco/kinetic/parstream_authentication_1/parstream-authentication� �
You can define other service configurations using different names and specify its name here.

Migrating from Previous Database Versions

If you migrate from a previous Cisco ParStream database version, the system will not create the
parstream database user upon first startup automatically. As authentication is on by default, you will
not be able to authenticate and thus use the database. The following steps have to be taken to setup
your database for authentication:

• Shutdown the database cluster

• Disable authentication for all database servers in the cluster. See section 9.2.4, page 81 for details.

• Start the database cluster. You can now log into the database without user authentication.

• Create the parstream database user. See section 9.2.3, page 80 for details.

• Shutdown the database cluster.

• Enable authentication for all database servers in the cluster.

• Start the database cluster. You can now log into the database with your newly created user.

This procedure has to be performed once for each migrated cluster.

Managing Database Users

Creating a Database User

To create a database user that maps to a PAM user jdoe you have to call:� �
CREATE USER 'jdoe'� �

The effect is, that provided the PAM user jdoe exists, the database user jdoe can login to the
database when starting a client connection using the associated PAM user pass phrase.

Alternatively, you can map the PAM user name to a different database user name:� �
CREATE USER 'jdoe' WITH LOGIN 'john'� �

Here, the database user john will map to the PAM user jdoe, using its associated pass phrase to
establish client connections.

Note:

• The database user is shared among all nodes of a cluster, thus it is up to the database administrator
to ensure that all cluster nodes provide a corresponding PAM user consistently.

• Multiple database user can map to the same PAM user.

Page 80

9.3 DBMS Scheduler 9 Server Administration

Removing a Database User

To drop a database user you have to call DROP USER with the database user name. For example:� �
DROP USER 'jdoe'� �

or:� �
DROP USER 'john'� �

Note:

• Any user who is logged into the database using its authentication credentials can drop any other
user. If the user is currently connected to the database, the user can finish its queries, but can’t
login again.

• Even if the user is still connected, it is no longer listed in the list of database users see section 26.4,
page 316.

• To avoid to be able to connect to the database again, you can’t drop the last user.

• You can also drop the default user parstream provided it is not the last user.

Listing all Database Users

The system table ps_info_user lists all current database users:� �
SELECT * FROM ps_info_user� �

Users already dropped but still connected are not listed.

See section 26.4, page 316 for details.

Disabling Authentication

To disable user authentication at all, you have to set the global option userAuthentication

(section 13.2.1, page 120):� �
userAuthentication = false� �

As with any option, you can pass this option via command line:� �
parstream-server --userAuthentication=false ...� �

DBMS Scheduler

The DBMS Scheduler allows users to define tasks that are executed periodically. A task consists of a
unique name, an action to be performed, a timing that defines when the task is to be executed, an

Page 81

9 Server Administration 9.3 DBMS Scheduler

optional comment, and an ’enabled’ flag that defines whether the newly created job should be active
immediately.

The task is executed by the cluster according to the defined timing. Should any errors occur during the
execution of a job, an error message is logged in the leader’s log file. Please note that failing tasks will
not be automatically disabled by Cisco ParStream.

If an action of a job uses a table that is removed via a DROP TABLE command, the job will be removed
as well.

Listing all Jobs

All configured jobs along with their actions, timings, and whether they are enabled or disabled, are
listed in the system table ps_info_job.

Creating a Job

You can create a job by using the CREATE JOB command followed by a unique identifier for the job
name and a description of the job in the json format. By default, a job is enabled and starts running
once the next configured point in time is reached.

To create a job named "exampleJob" that inserts the value 1 every second into a table named
"exampleTable" with the only column "id", you would use the following statement:� �
CREATE JOB exampleJob { "action": "INSERT INTO exampleTable SELECT 1 AS id;",

"timing": "* * * * *" };� �
Please note that the name of a job follows the rules of SQL identifiers. Hence, all name matching is
done in a case-insensitive way unless the identifier is quoted.

The ’comment’ and ’enabled’ json fields are optional. The ’comment’ field allows you to add a
description to the job. The ’enabled’ field defines whether the job should be enabled after creation. By
default, all newly created jobs are enabled.

Disabling a Job

You can disable an enabled job by using the DISABLE JOB statement:� �
DISABLE JOB exampleJob;� �

A disabled job will no longer be executed automatically until it is re-enabled.

Enabling a Job

You can enable a disabled job by using the ENABLE JOB statement:� �
ENABLE JOB exampleJob;� �

Page 82

9.4 Stored Procedures 9 Server Administration

Manually Running a Job

Apart from the automatic execution of a job according to its configured schedule, you can execute a
job manually by using the RUN JOB statement:� �
RUN JOB exampleJob;� �

Removing a Job

You can remove a job from the system by using the DROP JOB statement:� �
DROP JOB exampleJob;� �

Stored Procedures
Stored procedures can be used to store SQL statements and reuse them by using a routine identifier.

Create a Stored Procedure

CREATE PROCEDURE defines a new stored procedure. A procedure is defined by a unique identifier,
an argument list and a procedure definition.

The following example defines a procedure named ageFilter and has three parameters:� �
CREATE PROCEDURE ageFilter(

firstNameFilter VARSTRING,

minAge UINT8,

maxAge UINT8)

LANGUAGE SQL AS

SELECT age

FROM persons

WHERE first_name = firstNameFilter

AND age >= minAge

AND age <= maxAge;� �
The Cisco ParStream implementation of stored procedures has the following functional properties:

• The procedure identifier must be unique.

• No function overloading is possible.

• The parameter list can be empty.

• Default values for parameters are not supported.

• Routine characteristics are restricted to SQL only.

• Only single statements in the procedure definition are accepted.

• Only input parameters are supported.

Page 83

9 Server Administration 9.5 Monitoring, Logging, and Debugging

Execute a Stored Procedure

To execute a previously defined stored procedure the CALL command can be used like:� �
CALL ageFilter('John', 18, 30);� �

where ageFilter is the routine identifier which was used to define the procedure in the CREATE

PROCEDURE command. Additional arguments are defined in parentheses and separated by commas.

Drop a Stored Procedure

To remove no longer required procedures the following command can be used:� �
DROP PROCEDURE ageFilter;� �

Monitoring, Logging, and Debugging

Monitoring

To ease analysis of performance problems in Cisco ParStream, detailed event logs of the following
processes are potentially recorded:

• Start of a server or importer

• Query execution (according to ExecTree option MonitoringMinLifeTime, see section 13.3.4,
page 141).

• Import execution (according to ExecTree option MonitoringImportMinLifeTime, see
section 13.3.4, page 141).

• Merge execution (according to ExecTree option MonitoringMergeMinLifeTime, see
section 13.3.4, page 141).

Whenever execution of any of these exceeds the given threshold (or for server starts all the time)
events are written to files in the directory specified by the global option performanceLoggingPath

see section 13.2.1, page 129.

The following files are (potentially) written:

• monitoring_username_date.log recording per-execution query, merge and import events,
persisted after each execution exceeding the given runtime limit.

• serverStart_username_date.log recording server start events, persisted after each server
start.

• execthreadpool_username_date.log recording statistics and events of the global execution
scheduler, persisted during server shutdown.

Here, username and date are replaced by the current username (usually the value of the USER

environment variable) and date upon the time of persisting.

Page 84

9.5 Monitoring, Logging, and Debugging 9 Server Administration

The detail level of the execution related event logs can be controlled by the ExecTree options
QueryMonitoringTimeDetailLevel, MergeMonitoringTimeDetailLevel,
ImportMonitoringTimeDetailLevel, for query, merge, and import execution, respectively (see
section 13.3.4, page 141).

The detail level of the global scheduler event log can be controlled by the global/server option
executionSchedulerMonitoringTimeDetailLevel (see section 13.2.1, page 129 and see
section 13.3.2, page 139).

When you encounter performance problems you can use the mentioned options to generate event
logs.

Logging

Cisco ParStream provides four different types of protocol messages, written by servers and importers:

Type Meaning
ERROR All errors that occur in Cisco ParStream server or importer
PROT All types of information that are important to the user, e.g. version of Cisco ParStream,

incoming requests, ...
WARN Minor errors that occur and can be handled within Cisco ParStream server and importer
INFO Minor information for the user, e.g. Cisco ParStream configuration

These messages have a unique output format:� �
[_timestamp_]:_Unique query ID_:_message type_(_message number_): _message

text_ (optional: function that emit this message, file, line)� �
For example:� �
[2012-07-23T12:59:50]:server3-125949:PROT(77011): Starting to listen on port

9042 for client connections

[2012-07-23T14:42:45]:server3-125949:ERROR(70024): Unknown command: slect *
from Address (function: EQueryResultType

parstream::ParStreamServer::executeCommand(const std::string&,

parstream::ClientConnection&) file: src/server/ParStreamServer.cpp,

line: 1625)� �
All of these four message types are logged to stderr.

Verbosity

Using the global option verbosity (see section 13.2.1, page 120 you can enable more verbose
output of servers and importers. For example:� �
verbosity = 2� �

The effect for higher verbosity is for example as follows:

• Servers print list of loaded dynamic libraries.

Page 85

9 Server Administration 9.5 Monitoring, Logging, and Debugging

• Servers log complete results instead of just the beginning.

• Importers print more details about available tables.

Debugging

For debugging and analysis support, you can use global option and class specific settings.

Note: The class names internally used are not standardized and may change from version to version.

The global options defaultDebugLevel (see section 13.2.1, page 120) defines the default debug
level.

Debugging Support at Start Time

You can specify default debug level in the global configuration section of an INI file:� �
defaultDebugLevel = 1� �

Value 0 means that no debug output is written. Values 1 (minimum) to 5 (maximum) enabled debug
output of all internal behavior.

A class specific debug level may also be configured in the INI file in the subsection ”DebugLevel”. The
class name is case sensitive.

For example:� �
[DebugLevel]

ClientConnection=5

PartitionManager=1

ExecThreadPool=2� �
Granularity of the class debug switches are different for each class. For example all execution nodes
use the following debug levels:

Level Debug Output
1 Class instance specific like construction, destruction and parameters
2 Blockspecific like block processing, finished, etc.
3 Rowspecific like processing or filtering of rows
4 Valuespecific like Calculation, Assignment, etc.

Debugging Support at Running Time

You can also change the general or specific debug level at runtime using an ALTER SYSTEM SET

command.

For example, the following command changes the global debug level of the server that receives the
command:� �
ALTER SYSTEM SET DebugLevel.defaultDebugLevel=3� �

Page 86

9.5 Monitoring, Logging, and Debugging 9 Server Administration

For example, the following command changes a class specific debug level of the server that receives
the command:� �
ALTER SYSTEM SET DebugLevel.ClientConnection=3� �

To reset a debug level back to default (i.e. tracking the see section 13.2.1, page 120 again):� �
ALTER SYSTEM SET DebugLevel.ClientConnection TO DEFAULT� �

Note that the default for defaultDebugLevel is 0.

Detailed Exception Information

You can use the debugging feature to enable more detailed reporting of process information in case of
exceptions. If the debug level of the exception class is set to a value greater than 0, a file with process
info is created every time an exception occurs.

The file is named after the pattern ParStream-ProcInfo-<PID>-<TIMESTAMP>.txt and is
placed in the server’s working directory. It contains the following information:

• timestamp

• version info

• process status

• open file descriptors

• memory maps

It must be enabled in the INI files as follows:� �
[DebugLevel]

Exception = 1� �

Page 87

Importing Data

Cisco ParStream provides different efficient ways to import (huge amount of) data. The general import
concepts, the executables, their options and possibilities, the format of import data and the format of
the resulting partition data are introduced and explained in this chapter.

Overview of Data Import

In principle, Cisco ParStream can import data into the database as follows:

• The schema for the table to import has to be defined via CREATE TABLE statements and sent to
one cluster node (See chapter 24, page 277 for details).

• The data to import can be provided by three ways:

– You can use the CSV importer parstream-import, which reads data (in a loop) provided as
CSV files.
The format of CSV files is explained in section 10.3, page 89.
parstream-import is described in section 10.5, page 99.

– You can use the Java Streaming Import Interface.
This allows to implement your own importing executables using a Java API provided by Cisco
ParStream to import the data.
The Java Streaming Import Interface is described in Chapter 19, page 216.

– You can use the INSERT INTO statement.
This allows to insert data inside Cisco ParStream from one table to another.
The INSERT INTO feature is described in section 10.7, page 107.

• The imported data is stored into partitions, which discussed in section 5.1, page 29.

• You can import data, while tables are modified. See section 24.3.1, page 295 discussed in
section 5.1, page 29.

Page 88

10.2 General Import Characteristics and Settings 10 Importing Data

When importing data from external sources, you can use so called ETL statements (“extract”,
“transform”, and “load”) to transform the data you read into the format of the database columns
For example, you can add additional columns for better partitioning or filter rows according to a
WHERE clause. Note, however, that ETL import statements don’t apply to INSERT INTO statements.
See section 10.6, page 104 for details.

General Import Characteristics and Settings

General Import Characteristics

Please note the following general characteristics of any import in Cisco ParStream:

• NULL handling:

– Note that for strings and integral data types specific values represent NULL. For example, empty
strings or the value 255 for type UINT8.

– You can’t import rows containing only NULL values. Rows must have at least one column having
a non-NULL value.

• When processing schema updates or servers are about to shut down, running imports are first
finished. Thus, schema updates and regular shutdowns take effect after a running import is
committed.

General Import Settings

The general ability to import can be controlled by the following options and commands:

• Using the global server option enableImport (see section 13.2.1, page 122) you can initially
enable or disable imports. The default value is true.

• By calling CLUSTER DISABLE IMPORT or CLUSTER ENABLE IMPORT (see section 16.4.1,
page 200) you can (temporarily) disable and enable imports in cluster scenarios.

General Format of CSV Import Files
One major source of input data for the Cisco ParStream database are comma separated value (CSV)
files. The types of the values in each column are specified with the CREATE TABLE statement (see
section 24.2, page 278). Every table is filled by a separate CSV file. That is, the CSV files serve
basically as a human readable representation of the initial state of the table or additional state an
import brings into the database.

Each row needs to have the same number of column entries, separated by the column separator
(default: “;”).

The CSV File Format in General

CSV files have the following general format:

Page 89

10 Importing Data 10.3 General Format of CSV Import Files

• Columns are separated by the column delimiter, which is the semicolon (“;”) by default.

• Rows are delimited by the end of an input row.

• The character # at the beginning is used for comments (introduces rows that are ignored).

Thus, the following CSV file content defines two rows with four columns:� �
A simple CSV example having two rows with four columns:
string; int; double; date
first line;42;12.34;1999-12-31

second line;77;3.1415;2000-12-24� �
Values, are validated during CSV import. Thus, the example above has to match a corresponding
table definition such as the following:� �
CREATE TABLE MyTable (

myString VARSTRING,

myInt INT64,

myFloat DOUBLE,

myDate DATE,

)

...� �
If values don’t fit, the whole row is ignored and stored in a special file containing all rejected rows (see
section 10.5.2, page 101). The same applies if the number of fields in the CSV input does not match
the number of columns.

Basic Processing of CSV Fields

For the individual values, specified between the column delimiter or the beginning/end of row, the
following rules apply:

• Leading and trailing spaces of values are always skipped.

• With leading and trailing spaces removed, the empty value, the value “\N”, and the value “<NULL>”
always represents NULL. This is not the case if additional characters (except leading/trailing
spaces) exist or the value is quoted. See section 10.3.2, page 93 for details.

• You can put the whole value (inside leading and trailing spaces) within double quotes. This applies
to any type. By this feature, you can have leading or trailing spaces inside the value. You can also
use double quotes to have the column separator as part of the value. Double quotes in the middle
of a value have no special effect.

• A backslash (outside or within double quotes) disables any special handling of the following
character. The following character is taken as it is. Thus:

– “\"” makes the double quote character part of the value instead of beginning/ending a quoted
value.

– “\;” is not interpreted as column separator even without quoting the value.
– “\x”, “\t”, and “\n” are just the characters “x”, “t”, and “n” (the leading backslash is ignored).
– “\\” is just the backslash character as part of the value.

Page 90

10.3 General Format of CSV Import Files 10 Importing Data

For example, if you have input for two columns, a line number and a string:� �
line;string
1; nospaces

2;" withspaces "

3;"\"with quotes\""

4;\;

5;\"

6;"\""� �
the strings specified as second field are:

• in line 1: the string “nospaces” (leading and trailing spaces are skipped)

• in line 2: the string “ withspaces ” (leading and trailing spaces are not skipped)

• in line 3: the string “"with quotes"” (leading and trailing spaces are not skipped)

• in line 4: a semicolon.

• in line 5: just the character “"”

• in line 6: also just the character “"”

Note that queries for this data by default will escape the double quotes.

Skipped CSV Columns

To be able to process CSV files with more fields/columns than necessary, you can declare tables
to have SKIPed columns. By this, you define a column that from the point of the database schema
does not exist, except that they are listed in the system table ps_info_column (see section 26.3,
page 309).

For example:� �
CREATE TABLE MyTable (

id UINT64,

name VARSTRING,

ignored VARSTRING SKIP TRUE,

value DOUBLE,

)

...� �
defines MyTable to have 3 columns, id, name, and value, using the first, second, and fourth CSV
input field of each row of the following CSV file:� �
id; name; ignored; value
1; AA-143;some additional ignored information;1.7

1; AA-644;other additional ignored information;7.3

...� �
Note that you still have to specify the correct column type of skipped columns, because even ignored
input fields have to match the format (simply, use type VARSTRING if the format doesn’t matter).

Page 91

10 Importing Data 10.3 General Format of CSV Import Files

The Column Separator

You can use other characters than the semicolon as CSV column separator with the importer option
columnseparator (see section 13.4.2, page 146).

For example, when a dot is used as separator:� �
[import.imp]

columnseparator = .� �
you have to specify floating-point values and other values using a dot within double quotes:� �
A simple CSV example having two rows with four columns:
string; int; double; date
first line.42."12.34".1999-12-31

second line.77."3.1415".2000-12-24� �
Again, you can also simply put double quotes around all values:� �

A simple CSV example having two rows with four columns:
string; int; double; date
"first line"."42"."12.34"."1999-12-31"

"second line".77"."3.1415"."2000-12-24"� �
This is especially necessary if you define a columns separator that also might be part of a value.

You can also define non-printable characters as column separators in different ways:

• You can either specify the column separator with a backslash. To specify other non printable
character you can define it as the following escaped characters: \a, \b, \f, \t, \v, \?, or \’.
For example, you can define a tabulator as column separator as follows:� �
[import.imp]

columnseparator = \t� �
• You can define the octal or hexadecimal value of the column separator: \x##, 0x##, or a octal

value defined with only a leading 0.
For example, you can define a tabulator as column separator as follows:� �
[import.imp]

columnseparator = 0x09� �
The following characters are not allowed to be column separators: “\”, “"”, space, and newline.

Note that when using a comma as column separator, you can import multivalues only if they with all
their elements are quoted as a whole, because they also use the comma as internal separator (see
section 10.4.6, page 98).

Page 92

10.4 CSV File Format of Specific Types 10 Importing Data

Compression of Import Files

The CSV import files can be uncompressed, or they can be compressed by using either bzip2 or gzip.
The compression type will be determined by examining the file extension .bz2 or .gz respectively.

If none of those extensions is used, uncompressed text is assumed.

Note that .tgz is not supported.

Importing NULL Values

CSV values can be empty. In that case the values are always interpreted as NULL values.

Note that rows where all values are NULL are never imported.

In the following example, the last column of the first row and the second column of the second row are
initialized by NULL values.� �
two rows with 3 columns with NULL values:
first line;42;

second line;;date'2000-12-24'� �
In addition, one can use \N or <NULL> in CSV files as NULL values. This only applies if the whole
value except leading and trailing spaces has the corresponding characters. Any additional character
or double quotes let the value have the corresponding two or six characters.

To clarify that for strings and MultiValues:

• Strings: The empty string is interpreted as a NULL string (see section 23.5.1, page 273). Importing
\N and <NULL> is interpreted as importing an empty/NULL string. Importing "\N" and "<NULL>"

results in strings containing exactly that characters. Note that this means that rows having only
empty string values are never imported.

• MultiValues: Importing \N and <NULL> or an empty CSV input value will be interpreted as NULL.
Currently there is no difference between an empty multivalue and a multivalue containing exactly
one NULL element. IS NULL is TRUE if the multivalue is empty. IS NOT NULL is the opposite
(non-empty).

This table summarizes the special cases:

Type IS NULL IS NOT NULL Valid NULL import
String Any empty string Any string that is not empty empty string, with or

without "", \N, <NULL>
Multivalue empty non-empty empty multivalue, \N,

<NULL>

CSV File Format of Specific Types

Page 93

10 Importing Data 10.4 CSV File Format of Specific Types

Importing Integers

Values for unsigned and signed integer typed columns will be parsed from integer values with decimal
base.

Format Examples
[-]digits 42

-12

NULL <NULL>

\N

As usual, an empty CSV value also is interpreted as NULL.

Note that you have to put the value within double quotes if the minus character is defined as column
separator (see section 10.3.1, page 92).

Importing Floating-Point Numbers

Floating-point numbers can be parsed for the value types FLOAT and DOUBLE from the following
formats:

Format Examples
[-]digits.digits[e(+/-)digits] -1.2

3.24e+23

NULL <NULL>

\N

As usual, an empty CSV value also is interpreted as NULL.

Note that you have to put the value within double quotes if the dot, minus, plus or ‘e’ character is
defined as column separator (see section 10.3.1, page 92).

Importing Date and Time Formats

Date/time values have a default import format, you can use. However, since Version 2.2, you can
specify any other date/time import format specified by a CSV_FORMAT clause, which is described
below (see page 95).

Supported default import formats for type date are:

Format Examples Remark
YYYY-MM-DD 2010-11-23
DD.MM.YYYY 23.11.2010 Supported until Version 2.2. Use CSV_FORMAT ’DD.MM.YYYY’ instead,

then.
MM/DD/YYYY 11/23/2010 Supported until Version 2.2. Use CSV_FORMAT ’MM/DD/YYYY’ instead,

then.
NULL <NULL>

\N

Supported formats for type shortdate are:

Page 94

10.4 CSV File Format of Specific Types 10 Importing Data

Format Examples Remark
YYYY-MM-DD 2010-11-23

unix timestamp 1287059484

DD.MM.YYYY 23.11.2010 Supported until Version 2.2. Use CSV_FORMAT ’DD.MM.YYYY’

instead, then.
MM/DD/YYYY 11/23/2010 Supported until Version 2.2. Use CSV_FORMAT ’MM/DD/YYYY’

instead, then.
NULL <NULL>

\N

Supported formats for type time are:

Format Examples
HH24:MI:SS 12:30:21

HH24:MI:SS.MS 12:30:21.865

NULL <NULL>

\N

Supported formats for type timestamp are:

Format Examples
YYYY-MM-DD HH24:MI:SS 2010-11-23 12:30:21

YYYY-MM-DD HH24:MI:SS.MS 2010-11-23 12:30:21.865

NULL <NULL>

\N

For all date/time types, as usual, an empty CSV value also is interpreted as NULL.

Note that you have to put the value within double quotes if one of the characters “-”, “:”, or “.” is
defined as column separator (see section 10.3.1, page 92).

Supporting other Date and Time Formats with CSV_FORMAT

Since Version 2.2., the CSV_FORMAT clause inside the CREATE TABLE statement (see section 24.2.5,
page 289) allows to define how date/time types are interpreted by CSV importer. The format mask
can not be used for ETL (see section 10.6, page 104) generated CSV columns.

An example for a CREATE TABLE statement including a column specific format mask could look like
the following:� �
CREATE TABLE dateTable

(

dateColumn DATE ... CSV_FORMAT 'DD.MM.YYYY'

)

...� �
Now, import values such as 24.12.2013 are supported (instead of the default format 2013-12-24).

The following table contains all supported format specifiers which can be used in Cisco ParStream to
define a format mask:

Page 95

10 Importing Data 10.4 CSV File Format of Specific Types

Specifier Range Length Def. Description
HH 01-12 1-2 0 Note: Default is 12 hour format
HH12 01-12 1-2 0 Hour with 12 hour format
HH24 00-23 1-2 0 Hour with 24 hour format
MI 00-59 1-2 0 Minute
SS 00-59 1-2 0 Second
MS 000-999 1-3 0 Millisecond
AM or PM AM, PM, A.M., P.M. 2 or 4 AM Meridian indicator for HH and HH12 (both

AM and PM allow all values)
YYYY 0000-9999 (date) 1-4 0 Year (4 digits)

2000-2187 (shortdate)
YY 00-99 1-2 0 Two digit year; Includes years 1930-1999

and 2000-2029.
MM 01-12 1-2 1 Month number
DD 01-31 1-2 1 Day of month
EPOCH 0-253450598399 1-12 Unix/POSIX Time which covers all

information (time and date) (e.g.
15148801). Max is 253450598399 which
is the 31. Dec. 9999 23:59:59

EPMS 0-253450598399999 4-15 Like EPOCH. This format uses
milliseconds as smallest unit (instead of
Unix timestamp typical seconds).

In addition you can use any other character, which is required then at the specified position and can
be used as separator to separate different value items. Thus, a format such as day: DD. would
successfully read in “day: 23.” (requiring the characters ’d’, ’a’, ’y’, ’:’, and a space, followed by the
day value, followed by a dot). The characters are case sensitive.

Note the following:

• If a format mask allows a variable length of digits, you either need separators to detect the end
or the maximum number of digits are processed. For example, for the format mask ’DDMMYYYY’
a value such as ’111970’ is not allowed; you have to pass ’01011970’ instead (thus, leading
zeros are required because no separators are given).

Other examples for format mask are:

Example Input Format Mask Description
01.01.99 MM.DD.YY Using the two digit year with “.” separators.
11:59:59.999 PM HH12:MI:SS.MS AM Time with milliseconds and meridian given.
2007-08-31T16:47 YYYY-MM-DDTHH24:MI Timestamp using ’T’ as a date-time separator.
13284555.999 EPOC.MS Unix timestamp with given milliseconds.
date 2013-12-31 date YYYY-MM-DD Date with character literals

Page 96

10.4 CSV File Format of Specific Types 10 Importing Data

Importing Strings

As introduced as the general import format in section 10.3.1, page 89, strings are imported by removing
leading and trailing spaces. As for all types, you can encapsulate the value with double quotes ("),
which allows to have leading and trailing spaces and the column separator inside the string. With and
without enclosing double quotes, you can also escape any character by a backslash, which disables
any special meaning.

Note that in ASCII query output the strings are enclosed by double quotes and any special character
inside the string (double quote or column separator character) is escaped by a backslash. This ensures
a round-trip capability of string: String returned by query results are always valid for imports resulting
in the same value.

For example, the CSV input:� �
#no;string
1; hello

2;" \"world tn\" "

3;

;last� �
defines in the second column the input strings (value between > and <) >hello<, > "world tn" <,
the empty string (NULL) and >last<. In the first column, the last row defines NULL as value.

A query will output the lines as follows:� �
#no;string
1;"hello"

2;" \"world tn\" "

3;""

<NULL>;"last"� �
Thus, NULL strings are printed as empty strings and for other types the output for
NULL values by default is <NULL> (which can be modified via the global option
asciiOutputNullRepresentation; see section 13.2.1, page 122). This output can be used
as input again and will result to the same internal values.

Again, note that importing an empty string or the values \N and <NULL> without additional characters
except leading and trailing spaces results in a string being NULL. (see section 10.3.2, page 93).

Note also:

• With MAPPING_TYPE PROVIDED you can define the hash values yourself, using the following
syntax: “hash:value” (see section 24.2.6, page 294)

Importing Blobs

Values for blobs can be specified as values for strings (see section 10.4.4, page 97).

Page 97

10 Importing Data 10.4 CSV File Format of Specific Types

Importing MultiValues

Numeric columns can be stored as multivalues by specifying a MULTI_VALUE singularity (see
section 24.2.4, page 284). These types roughly correspond to arrays and imply certain indexing
options.

Note the following about multivalues:

• Multivalue elements are separated by commas in CSV files.

• Multivalue values are NULL if they are empty, defined as <NULL> or \N (see section 10.3.2,
page 93).

For example, the following import file provides values for a multivalue as second column:� �
lineno;multivalue
1;81,82,83,84,85

2;

3;0

4;1

5;1,2

6;3,4,5

7;6,7,8,9,10

8;� �
Note that when using a comma as column separator (or any other character that might be part of the
multivalue elements), you can import multivalues only if they are quoted as a whole. For example:� �
lineno;multivalue
1,"81,82,83,84,85"

2,""

3,"0"

4,"1"

5,"1,2"

6,"3,4,5"

7,"6,7,8,9,10"

8,""� �
Importing Bitvectors

Bitvectors are currently parsed like integers. For example, the input value 3 initializes the bitvector
00000011.

Page 98

10.5 Using the CSV Importer 10 Importing Data

Using the CSV Importer

Starting the CSV Importer

After installing Cisco ParStream and providing a corresponding configuration, the easiest way to start
the Cisco ParStream importer is to perform the following steps:

1. Set the variable PARSTREAM_HOME:� �
export PARSTREAM_HOME=/opt/cisco/kinetic/parstream-database� �

and add Cisco ParStream libraries to your library search path:� �
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PARSTREAM_HOME/lib� �

2. Go to the directory, where your Cisco ParStream database configuration is located. Usually, this
should be a directory containing:

• a sub-directory conf which typically contains the INI file for the basic configuration

• a import sub-directory or any other sourcedir specified in the INI file of the corresponding
server.

3. The INI file has to contain the minimum options that are required to run an importer:

• a global clusterId

• a global registrationPort

• importer-specific host and leaderElectionPort

• an importer-specific rank

• an importer-specific targetdir

Note that clusterId, leaderElectionPort and rank are required because any Cisco
ParStream server can sooner or later be extended to a multi-node cluster (see chapter 6,
page 40).

You might typically also set:

• a global clusterInitTimeout, which defines the time in seconds to wait for a cluster of
multiple nodes to establish. If you know that the database is running with only one server/node
you can/should set to just 1.

• the importer-specific sourcedir

For example, an INI file for an importer called imp might look as follows:� �
basic cluster settings for single-node clusters:
clusterId = exampleCluster

registrationPort = 9040

clusterInitTimeout = 1

[import.imp]

Page 99

10 Importing Data 10.5 Using the CSV Importer

host = localhost

leaderElectionPort = 9051

rank (any number is fine):
rank = 99

directory that contains the raw data (CSV files) to import:
sourcedir = ./import

temporary directory that contains read partitions before transferred to the server:
targetdir = ./import-partitions� �

4. Start the Cisco ParStream importer parstream-import. The only required argument is the
name of the importer to start, which identifies the corresponding section in the INI Files for the
other setting (you can pass this name also with --importername).

For example:� �
$PARSTREAM_HOME/bin/parstream-import imp� �

If you add $PARSTREAM_HOME/bin to your search path, starting the importer as follows is enough:� �
parstream-import imp� �

By default, the importer reads for each table the files that match the specified subdirectory and file
pattern. For example, here for table MyTable all files ending with .csv are processed:� �
CREATE TABLE MyTable (

...

)

IMPORT_DIRECTORY_PATTERN '.*'

IMPORT_FILE_PATTERN '.*\.csv';� �
The default is to look for all files that begin with the name of the table and end with .csv. Thus,
with� �
CREATE TABLE Hotel (

...

);� �
the importer will read all CSV files, where the file name starts with Hotel.

By default, the importer runs in an endless loop. Thus, it does not end when all files in the import
directory are processed. Instead, it checks again and again whether new files for import exist and
processes them.

Note that CSV import files provided by some processes should in general have different names. If
you just write CSV files using the same name, ensure a file was processed before providing a new file.
For this, it is not enough to find the imported data in the database, you also should have the imported
file in the backup directory (see section 10.5.2, page 101).

Page 100

10.5 Using the CSV Importer 10 Importing Data

The interval to check for new import files is something to configure as global entry in the configuration
file (see section 13.2, page 119):� �
Time to wait for the importer between searches for new data (in seconds)
reimportInterval = 1� �

When importing data, the data gets parsed and transferred into partitions, which are stored then in a
target directory. This can bet set via the option targetdir:� �
[import.imp]

targetdir = ./import-partitions� �
For more sophisticated ways to start a Cisco ParStream importer (e.g. logging all output into a file),
see the shell script import.sh in $PARSTREAM_HOME/bin.

Note:

If an importer has to connect to a server, then the port specified in the server configuration
and the port above it must be open. If e.g. port 4002 is configured, then both the ports
4002 and 4003 must be available. See section 13.3.1, page 135 for details.

.backup and .rejected folders

Imported CSV files are by default moved into the backup directory of the import directory. For each
import file, the backup directory is the sub-directory .backup.

You can disable the move of the imported files with the importer option csvreadonly (see
section 13.4.2, page 146). This, of course, only makes sense, if the importer is not running in
a loop. Note that you can’t define an alternative directory for the backup folder, because if the backup
folder is on a different device, this is a significant performance drawback. Use symbolic links instead.

Because CSV files can contain about everything (including illegal data), it will be filtered by the
importer. Every line of the CSV file that cannot be imported into the database will be put into a file
in the subdirectory .rejected. The name of the file is <csvfilename>.rejected.txt, where
csvfilename is the complete CSV file name including any compression suffixes. This file may contain
empty or comment lines in addition to the ones containing illegal data or a wrong number of columns.
That file is never compressed, even though the imported CSV file was compressed.

Importer and Schema/Metadata Changes

Normally the CSV importer periodically checks for schema/metadata changes i.e. for a CREATE

TABLE or ALTER TABLE statement issued to the server (see chapter 24, page 277). Importing for a
newly created table works automatically, but for an ALTER TABLE to work seamlessly you need to do
the following steps:

1. Stop creating CSV-files

2. Make sure the CSV importer runs out of CSV files

Page 101

10 Importing Data 10.5 Using the CSV Importer

3. Issue ALTER TABLE command(s)

4. Provide CSV-files in new format

CSV Importer Command Line Parameters

The Cisco ParStream CSV importer provides the ability to pass several commandline arguments, to
configure and influence the behavior of the importer.

On one hand you can pass several general arguments. For example:

Option Arg Description Default
--help Prints how to start the Cisco ParStream

server/importer and exits
--version Prints the version of the Cisco ParStream

server/importer and exits
--confdir string Defines the configuration directory, where INI files

are searched
./conf

--configcheck Check configuration (INI file and commandline
options) and end the program

--importername string Defines the name of the importer to start servername
--inifile string Constrains to only one configuration (INI) file being

used
--servername string Defines the name of the server to start importername
--sourcedir string overwrites a sourcedir specified in the INI files

(see Import-Options)
--targetdir string overwrites a targetdir specified in the INI files (see

Import-Options)
--verbosity integer change verbosity (0: minimum, 5: maximum) 0
--iterations integer Set maximum number of iterations before ending

the importer (0: endless)
0 (endless)

--finite Start the import with exactly one iteration, which
should import all CSV files. Sets the default for the
number of iterations to 1 and the default for
maximum number of CSV files processed to
"unlimited".

false

In addition, you can pass some table specific arguments. For example:

Option Arg Description
--table.tabname.directorypattern string overwrites the

IMPORT_DIRECTORY_PATTERN for import
of table tabname.

--table.tabname.filepattern string overwrites the IMPORT_FILE_PATTERN for
import of table tabname.

--table.tabname.etl string overwrites the ETL query for an import of
table tabname.

Page 102

10.5 Using the CSV Importer 10 Importing Data

See section 13.1, page 116 for a complete list of all commandline arguments.

Finally, all values of the configuration INI file can be overwritten by command line parameters. The
prefix of a parameter string depends on the section, in which a specific parameter was defined.

For example, to overwrite the parameter rank of the server with the name imp with the value 999, the
command line parameter must be formulated as follows:� �
--import.imp.rank=999� �

Page 103

10 Importing Data 10.6 ETL Import

ETL Import

By default, each column in a CSV file results in exactly one column in the database. However, you can
use so called ETL statements (“extract”, “transform”, and “load”) to transform the data you read from
CSV files into the format of the database columns. Typical applications of this features are:

• Adding additional columns for better partitioning

• Filtering rows read from CSV files according to a WHERE clause

Note that ETL import transformations don’t apply to INSERT INTO statements (see section 10.7,
page 107). Instead to have to provide the corresponding ETL values with an INSERT INTO statement.

To define a ETL import transformation, you need to provide some additional information when defining
the table:

• In the corresponding CREATE TABLE statement you must define a corresponding ETL statement.

• In addition, columns additionally filled by the ETL statement must have been declared with
CSV_COLUMN ETL.

Note also that you can specify the ETL import statement via the command line with option
--table.tabname.etl (see section 10.5.4, page 102).

Additional ETL Columns

For example, a ETL clause such as� �
ETL (SELECT id MOD 3 AS etlColumn1

FROM CSVFETCH(MyTable)

)� �
means that the resulting import will be all columns from table MyTable plus a column etlColumn1

becoming the value from column id consisting of values between 0 and 2, computed as modulo on
the column id in the same input row.

The keyword CSVFETCH instructs the importer to use the CSV import file as input. Its argument is the
name of the table, the ETL statement applies to.

It’s also possible to specify other column names or wildcards in the SELECT statement, but that’s not
necessary or useful because:

• A wildcard representing “all remaining columns” is implicitly added to the ETL statement anyway,
having the same effect as:� �
ETL (SELECT id MOD 3 AS etlColumn1, *

FROM CSVFETCH(MyTable)

)� �
• Specifying only a fixed list of names would become a problem if later on additional columns are

added to the table.

The columns filled by ETL statements should usually should be defined in the CREATE TABLE

statement with CSV_COLUMN ETL:

Page 104

10.6 ETL Import 10 Importing Data

� �
CREATE TABLE MyTable

(

id ...

etlColumn1 ... CSV_COLUMN ETL,

)� �
Strictly speaking, CSV_COLUMN ETL means that the column does not have a CSV index (as it is the
default for CSV_COLUMN, see section 24.2.4, page 284), which means that this column doesn’t get
values from corresponding CSV import files.

Modifying Existing Columns

You can even have ETL import conversions for columns that are not marked with CSV_COLUMN ETL.
Then, there must be a value in the import file, which is overwritten then during the import according to
the ETL statement.

For example, the following statement ensures that all values of a VARSTRING column valString

only have lowercase letters:� �
ETL (SELECT LOWER(valString) AS valString FROM CSVFETCH(MyTable))� �

Filtering CSV Rows

To filter data read out of CSV files, you simple have to provide a WHERE clause in the ETL statement.
All rows, where the WHERE clause does not match, are ignored. Note that filtered lines will neither be
found in the .rejected folder nor in logfiles.

For example:� �
ETL (SELECT * FROM CSVFETCH(etlTable)

WHERE last_access > date '2013-01-31'

)� �
imports all lines from CSV files for table etlTable where the date read from the column
last_access is after 01/31/2013. All rows not matching this definition (this includes rows where
last_access is NULL in this example) will be ignored.

A Complete Example for an ETL Import

The following table definition:� �
CREATE TABLE etlTable

(

id UINT32 INDEX EQUAL,

street VARSTRING (100),

zip UINT32 INDEX EQUAL,

city VARSTRING (100) COMPRESSION HASH64 INDEX EQUAL,

−− an artificial column created by the ETL process as "id MOD 3":

Page 105

10 Importing Data 10.6 ETL Import

partitionId UINT32 INDEX EQUAL CSV_COLUMN ETL,

)

PARTITION BY partitionId

ETL (SELECT id MOD 3 AS partitionId,

FROM CSVFETCH(etlTable)

WHERE city = 'San Francisco'

);� �
reads input rows with columns id, street, zip, and city, ignoring rows where the city is not “San
Francisco,” and adds an additional column partitionId to partition the data according to the ID’s
read.

For other examples, see the section about table distribution (section 6.3, page 53) or the Separation
Aware Execution optimization (section 15.15.1, page 188).

Page 106

10.7 Import Data with INSERT INTO 10 Importing Data

Import Data with INSERT INTO

An existing table can be filled by an INSERT INTO statement. The INSERT INTO statement has the
following format (for grammar details see section 27.4, page 360):

INSERT INTO <table-name> <select-statement>

Note the following:

• You have to provide values for all columns of the destination table, except those marked with SKIP

TRUE. This includes values for ETL columns (see below).

• The columns are identified by their name, not by the order. For this reason you usually need aliases
in the SELECT part of INSERT INTO statements (unless you read data from a source table having
the same column name(s)).

• For each import you need an available thread. Thus, for each node/server you have to specify
with option maxImportThreads (see section 13.2.1, page 127) how many imports are possible in
parallel (which might also require to set socketHandlingThreads, see section 13.3.2, page 138).

Also, note the limitations below.

Example

Consider we have the following two tables:� �
CREATE TABLE Hotels

(

city VARSTRING (1024) COMPRESSION HASH64 INDEX EQUAL,

hotel VARSTRING (100) COMPRESSION HASH64 INDEX EQUAL,

price UINT16 INDEX RANGE,

"week" UINT8

)

...

CREATE TABLE AveragePrices

(

city VARSTRING (1024) COMPRESSION HASH64 INDEX EQUAL,

price UINT16 INDEX RANGE,

quarter UINT8 INDEX EQUAL

)

...� �
After inserting data into table Hotels you can fill the table for the average prices for example as
follows:� �
INSERT INTO AveragePrices

SELECT city, SUM(price)/COUNT(*) AS price, 1 AS quarter

FROM Hotels

WHERE week BETWEEN 1 AND 13

Page 107

10 Importing Data 10.7 Import Data with INSERT INTO

GROUP BY city;� �
If this command is successful, it returns INSERT, a 0 and the number of successfully inserted rows.
For example:� �
#OK

INSERT 0 64� �
Note that to insert NULL for specific columns you can’t pass NULL for a hashed string column. Instead,
you have to pass the empty string. For example, the following is possible (provided street is a
non-hashed string and city is a hashed string):� �
INSERT INTO Address SELECT 777 AS id, NULL AS street, NULL AS zip, '' AS city;� �

Note however, that in general using INSERT INTO to insert single rows is not a good idea, because
for each row a new partition is created. (This is the reason, why Cisco ParStream provides a INSERT
INTO statement for results of queries but not for single rows.)

Limitations

Note the following limitations:

• INSERT INTO statements writes data directly into the target table without any ETL transformation
(see section 10.1, page 88). For this reason, you also have to provide the values for ETL
columns. Of course, you have to ensure that the integrity of ETL columns is not violated by this.
That is, either the values for ETL columns already match the ETL statement or you have to apply
the same function to them.

• When inserting data, the column types have to match. This especially means that you can’t insert a
column of hashed strings into a column of non-hashed strings or vice versa.

• Currently, no parentheses are allowed around the inner SELECT statement.

• System tables ps_info_import and ps_info_query_history are only partly supported yet.

Page 108

Deleting Data

Cisco ParStream supports deleting data from a table using standard SQL commands. The possibilities
and limitations of the delete command are introduced and explained in this chapter.

Delete Statements
Cisco ParStream supports standard SQL DELETE statements. The data is removed by evaluating the
filter provided in the DELETE statement for each record. If a record matches this filter, the records will
be removed from the system. Once the records are removed from the table, the statement will return
with the number of deleted records.

For example, a query deleting every record with the value ’42’ in column ’value’ of a table
’measurements’ would look like this:� �
DELETE FROM measurements WHERE value = 42;� �

If the filter is omitted from the query, all data of the table is deleted:� �
DELETE FROM measurements;� �

Limitations

Please note the following general limitations of DELETE statements in Cisco ParStream:

• Filter statements in WHERE clauses are only allowed on partitioning columns. The consequence of
this limitation is that only complete partitions can be deleted. If a filter contains any non-partitioning
columns, an error will be reported.

• In the case of parallel IMPORT and DELETE operations, where the filter of the DELETE statement
matches data of the IMPORT statement, it is undefined whether the newly imported data is deleted
or not. The only guarantee is that the cluster retains a consistent view of the data.

• DELETE statements and merges cannot run in parallel. If a merge is already running on the table
specified in the DELETE statement, the DELETE will wait for the merge to complete. Hence, the
DELETE statement can take a long time to complete if a merge is running in parallel.
Any merge on a table will be postponed until the DELETE statement on the table has finished.

Page 109

Client Applications and Tools

This chapter describes the client applications and tools of Cisco ParStream:

• The socket interfaces pnc and netcat/nc (see section 12.1, page 110)

• The PSQL Client (see section 12.2, page 115)

Database Clients pnc and netcat

To connect to a Cisco ParStream server, you can use any client that can serve as socket interface
(see chapter 16, page 199). A typical example is netcat, but Cisco ParStream provides a more
convenient tool called pnc, which is described first.

pnc

Cisco ParStream provides a python client, called pnc, as a more comfortable alternative to working
directly with netcat. It’s features resemble that of a PQSL client but pnc connects to Cisco ParStream
via the socket interface. After installation, pnc is located at $PARSTREAM_HOME/bin.

Features of pnc

pnc provides some advantages about simple socket interfaces such as netcat:

• Multi-line queries are supported

– Queries cover multiple input lines until a semicolon is reached
– Comment lines, starting with -- are ignored

• Seeing responses without additional options.

• Measuring execution time.

• Options to execute queries from a file.

• Options to write results to a file.

Note that Cisco ParStream servers currently only accept single-line commands. pnc converts multi-
line commands in one single-line command, which especially makes it easier to process complex
commands such as CREATE TABLE commands read from batch files (SQL files).

Invocation of pnc

The invocation corresponds to PSQL.

For example:� �
pnc -h <host> -p <port> -U <loginname> --auto-reconnect --ssl� �

pnc has the following options:

Page 110

12.1 Database Clients pnc and netcat 12 Client Applications and Tools

Option Short Effect
--host -h Hostname to connect to (default: localhost)
--port -p Port to connect to (default: port 9042)
--username -U Login name to use as defined by the CREATE USER command

(see section 9.2.3, page 80). If you use this option, you will be
prompted for a pass phrase. Without this option, pnc assumes
that your server does not use authentication, which by default is
not the case.

--auto-reconnect -r With this option pnc transparently reconnects to the Cisco
ParStream server when it loses the connection.

--ssl -s pnc creates an ssl encrypted connection.
--help -h help

All the command-line arguments are optional.

Performing Queries with pnc

By default, pnc reads command lines line by line with Cisco ParStream=> as prompt. Commands
have to end with ;. Lines, started with -- are ignored.

Thus after starting pnc (here connecting to port 9042):� �
$ pnc -p 9042� �

the tool will establish a connection (if possible) and ask for the commands using its prompt:� �
Connecting to localhost:9042 ...

Connection established.

Encoding: ASCII

Cisco ParStream=>� �
The you can type any command including standard SQL queries, CREATE TABLE commands, and
the additional commands described in section 16.4, page 200.

For example, you can get the list of columns in the database by querying a system table typing at the
pnc prompt the following:� �
Cisco ParStream=> SELECT table_name, column_name FROM ps_info_column;� �

This results into the following output:� �
#table_name;column_name
"MyTable";"name"

"MyTable";"value"

...

[0.241 s]� �
The end of the request usually is the time the request took.

Page 111

12 Client Applications and Tools 12.1 Database Clients pnc and netcat

To exit the pnc utility, either press Ctrl-D or use the quit command (see section 16.4.2,
page 201):� �
Cisco ParStream=> quit;� �

which results in the following output:� �
Lost connection.� �

Performing Scripts with pnc

You can also use pnc to read commands from standard input. For example, the following command
performs a SELECT command passed with echo on a Cisco ParStream server listening on port 9988
of the local host:� �
echo 'SELECT * FROM ps_info_column;' | pnc -p 9988 -U loginname� �

This can also be used to send the contents of full command/batch files, such as SQL files with CREATE
TABLE commands:� �
pnc -p 9988 -U loginname < MyTable.sql� �

pnc converts the commands read into single-line commands, while removing comment lines. For
example, if the contents of MyTable.sql is the following multi-line command:� �

−− create a first table
CREATE TABLE MyTable

(

col UINT32

);� �
this command is sent as the following single-line command to Cisco ParStream:� �
CREATE TABLE MyTable (col UINT32)� �

This is what you’d have to send to Cisco ParStream servers if a standard command line tool such as
netcat is used (see section 12.1.2, page 114).

Note that inside a command no comments should be used. You should place them before or after the
commands.

Key Combinations and Commands of pnc

pnc allows the following key combinations:

Page 112

12.1 Database Clients pnc and netcat 12 Client Applications and Tools

Key (Combination) Effect
<ENTER> newline
; <ENTER> execute SQL query
<CTRL>+<C> kill

pnc provides the following commands (no “;” is required):

Command Effect
\q <ENTER> quit
\t <ENTER> toggle timing (timing is enabled at startup)
\o output.csv <ENTER> write all output to the file output.csv

\d <ENTER> describe: List of all tables
\d mytable <ENTER> describe: List columns for table mytable

netcat / nc

netcat or nc is a standard tool you can use to send statements to Cisco ParStream servers.

Note however: If using netcat all authorization credentials (login name and pass phrase) should be
passed as environment variables to minimize exposure of credentials (login name and pass phrase)
to tools like top, ps and bind the lifetime of these secrets to the session. A common useful rule is
to export HISTCONTROL=ignorespace and then define these environment variable values in a
command line starting with a space, so it will not be written into command line history. It is alternatively
possible to use pnc instead of netcat. With pnc pass phrase input hides typed pass phrases. In
addition, pnc provides some additional features. See section 12.1.1, page 110 for details about pnc.

Performing Queries with netcat

After connecting with netcat, you enter queries followed by return. The results are displayed inline.

The first command usually is the login request, because by default Cisco ParStream requires user
authentication (see section 9.2, page 78):� �
LOGIN 'username' 'pass phrase'� �

The server should respond with:� �
#INFO-77060: Authentication successful� �

The login lasts until the end of your connection to the Cisco ParStream server.

Then you can send any SQL command, which is terminated by a newline. For example:� �
SELECT table_name, column_name, column_type, column_size FROM ps_info_column� �

The command might might produce the following output:� �
#table_name;column_name;column_type;column_size
"Address";"year";"numeric";"UINT64";<NULL>

"Address";"month";"numeric";"UINT64";<NULL>

Page 113

12 Client Applications and Tools 12.1 Database Clients pnc and netcat

"Address";"day";"numeric";"UINT64";<NULL>

"Address";"state";"string";"VARSTRING";100

...� �
You can use all SQL commands as well as the additional command described in section 16.4,
page 200.

To end the connection to the server, you can send the quit command (see section 16.4.2,
page 201):� �
quit� �

Note again that each statement has to end with a newline.

Performing Scripts with netcat

You can pipe input into the standard netcat, which might come from other commands or files. This
can be used to script queries.

This way, you can send complete scripts. For example:� �
export HISTCONTROL=ignorespace username='login_name'; pw='pass phrase'

echo -e "LOGIN '${username}' '${pw}'\nSELECT * FROM ps_info_column\nquit\n" |

nc localhost 9950 -w 10� �
Note the following:

• You have to send commands on lines that end with a newline.

• You should use an option such as -w sec, which waits the specified number of seconds and then
quit, to see responses (on some platforms this option might not be available).

You can also send the content of SQL command files via netcat. For example, you can create create
tables that way:� �
cat MyTable.sql | grep -v '^--' | tr '\n' ' ' | tr ';' '\n' | netcat

localhost 9077� �
Note that you have to

• remove comment lines because they are currently not correctly ignored

• transform newlines into spaces because the input has to be one line

• transform the ending semicolon into a newline because commands have to end with a newline

Again note that usually user authentication is required, which makes the command more complicated
or part of the SQL file. By using pnc instead of netcat/nc performing commands from SQL/batch
files is a lot easier (see section 12.1.1, page 112).

Page 114

12.2 PSQL client 12 Client Applications and Tools

PSQL client
To use the PSQL Postgres client in conjunction with Cisco ParStream, install package postgresql

of your Linux distribution. Then enter at the command prompt (a simple example only):� �
psql -h localhost -p 1112 -W "sslmode=disable" username� �

Note that one can use any pass phrase, but it may not be empty.

If the user authentication is disabled (see section 9.2, page 78), you can provide a dummy password
to the command. Then enter at the command prompt:� �
psql -h localhost -p 1112 "sslmode=disable password=x"� �

The connect parameters can also be stored in environment variables (necessary for "sslmode" and
"password" in older versions of psql):� �
export PGHOST=localhost

export PGPORT=1112

export PGSSLMODE=disable

export PGPASSWORD=x

export PGUSER=username� �
This is the preferred way of submitting credentials as other users may see the issued command line,
e.g. via ps.

Note that within PSQL, a command must be terminated by a semicolon ";" before it is executed when
pressing the return key.

To quit type “\q”.

Here are the most important commands:

Command Effect
\q quit
\r reset (clear current query)
\h command help
\timing enable timing queries

For further information, see man psql or:
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet

Page 115

http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet

Options Reference

This chapter describes the details of all options you can set for Cisco ParStream servers and importers.
It describes the commandline options as well as the options you can set via INI files (or via the
commandline).

Commandline Arguments
For both importer and server, you can specify a couple of commandline options.

Pure Commandline Options

On one hand, there are the pure commandline options listed in Table 13.1 that only can be passed via
the commandline (in the For column, “S” means that the option applies to servers and “I” means that
this option applies to importers).

Note the following:

• Instead of etlMergeHour, etlMergeDay, etlMergeWeek, etlMergeMonth you can also
pass the options etlMergeLevel1, etlMergeLevel2, etlMergeLevel3, etlMergeLevel4,
respectively.

If you pass a positional parameter that is not an argument of an option, it is used as servername by
the server and importername by the importer.

For example, the following three calls are equivalent for starting a server first:� �
parstream-server --confdir MyProject/conf first

parstream-server --confdir MyProject/conf --servername=first

parstream-server --confdir MyProject/conf --servername first� �
Passing INI-File Options as Commandline Options

In addition, you can pass all INI file options as commandline arguments. This applies to global options
(see section 13.2, page 119) as well as section-specific options. Note that in fact a couple of global
options are typically passed as commandline options.

For example, the following command starts the importer first with a verbosity level of 3:� �
parstream-import --verbosity=3 first� �

Here, the verbosity argument of the commandline overwrites the global INI file entry for option
verbosity (if specified):� �
verbosity = 0� �

Page 116

13.1 Commandline Arguments 13 Options Reference

As another example, the following command starts the server first with the port passed via command
line:� �
parstream-server first --server.first.port=1234� �

Thus, the port argument of the commandline overwrites the following INI file entry (if specified):� �
[server.first]

port = 2345� �
Importer Commandline Options

For the importer, the following options can be defined as commandline arguments:

Option Arg. Description Default
--verbosity integer Controls the output verbosity (0: min, 5: max) false
--iterations integer Set maximum number of iterations before ending the importer (0: endless)
--finite Start the import with exactly one iteration, which should import

all CSV files. Sets the default for the number of iterations to 1
and the default for maximum number of CSV files processed to
"unlimited".

false

It is usually not necessary to specify an option because the option clusterId is usually set in the INI
file.

The default for iterations is 0 (endless).

Page 117

13 Options Reference 13.1 Commandline Arguments

Option Arg. Description Default For
--help Prints how to start the Cisco

ParStream server/importer and exits
S/I

--version Prints the version of the Cisco
ParStream server/importer and exits

S/I

--confdir string Defines the configuration directory,
where INI files are searched

./conf S/I

--configcheck Check configuration (INI file and
commandline options) and end the
program

S/I

--inifile string Constrains to only one configuration
(INI) file being used

S/I

--servername string Defines the name of the server to
start/use

importername S/I

--importername string Defines the name of the importer to
start

servername I

--sourcedir string overwrites a sourcedir specified in the
INI files (see section 13.4, page 146)

I

--targetdir string overwrites a targetdir specified in the
INI files (see section 13.4, page 146)

I

--table.tab.directorypattern string overwrites the
IMPORT_DIRECTORY_PATTERN for
imports of table tab.

I

--table.tab.filepattern string overwrites the
IMPORT_FILE_PATTERN for imports
of table tab.

I

--table.tab.etl string overwrites the ETL query for imports
of table tab.

I

--table.tab.etlMergeMinute string overwrites the ETLMERGE clause for
an “minute” ETL merge of table tab.

S

--table.tab.etlMergeHour string overwrites the ETLMERGE clause for
an “hourly” ETL merge of table tab.

S

--table.tab.etlMergeDay string overwrites the ETLMERGE clause for
an “daily” ETL merge of table tab.

S

--table.tab.etlMergeWeek string overwrites the ETLMERGE clause for
an “weekly” ETL merge of table tab.

S

--table.tab.etlMergeMonth string overwrites the ETLMERGE clause for
an “monthly” ETL merge of table tab.

S

Table 13.1: Pure Commandline Options for Servers (“S”) and Importers (“I”)

Page 118

13.2 Global Options 13 Options Reference

Global Options

Global options are defined at the beginning of the configuration file "parstream.ini". These settings are
thus not located within any section. They might apply to the server or the importer or both.

Note that you can also pass these options alternatively via the command line. For example:� �
parstream-server --locale=C first� �

would set (or overwrite) the setting of the global option locale.

Global Options in Detail

Cisco ParStream provides many global options so that they are presented in multiple tables:

• Mandatory global options

• Functional global options

• Non-functional global options

• Functional global options for multi-node clusters

• Nonfunctional global options for multi-node clusters

Again, in the For column, “S” means that the option applies to servers and “I” means that this option
applies to importers. fileBlockTransferTimeout also has an effect on partition swaps.

Mandatory Global Options

The following options have to be set for each Cisco ParStream database (either in an INI file or by
passing them as command-line arguments).

Option: clusterId
Type: string
Default:
Effect: Defines the unique ID, which is used by all servers and importers to identify the cluster.
Affects: S/I

Option: registrationPort
Type: integer
Default:
Effect: TCP port number used for the registration of cluster nodes and exchanging status information with

the cluster leader. All servers and importers in a cluster have to use the same registration port.
Affects: S/I

Page 119

13 Options Reference 13.2 Global Options

Functional Global Options

Option: verbosity
Type: integer
Default: 0
Effect: Controls the output verbosity (0: min, 5: max). See section 9.5.3, page 85 for details.
Affects: S/I

Option: defaultDebugLevel
Type: integer
Default: 0
Effect: Debugging level (0: off, 1: min, 5:max). You can change the value for a running server with an

ALTER SYSTEM SET DebugLevel.defaultDebugLevel=value command (see
section 27.11.1, page 375). See section 9.5.4, page 86 for details.

Affects: S

Option: debugMessageTimestamp
Type: Boolean
Default: true
Effect: Format DEBUG messages with an preceding timestamp similar to PROT, WARN and INFO

messages.
Affects: S/I

Option: reimportInterval
Type: integer
Default: 6
Effect: Seconds to wait until the importer tries to import again data from the specified sourcedir (>= 0).
Affects: I

Option: limitQueryRuntime
Type: integer
Default: 0
Effect: Interrupt queries running for longer than this time in milliseconds and return an error, to help save

server resources. A value of 0 disables the time limit. You can overwrite this value for each
session (see section 27.10.1, page 373).

Affects: S

Option: numBufferedRows
Type: integer
Default: 32
Effect: Size of the buffer for output. You can overwrite this value for each session (see section 27.10.1,

page 373).
Affects: S

Page 120

13.2 Global Options 13 Options Reference

Option: userAuthentication
Type: Boolean
Default: true
Effect: Enables/disables user authentication (see section 9.2, page 78).
Affects: S/I

Option: locale
Type: string
Default: C
Effect: Locale for string sorting. Use the shell command locale -a to get a full list of supported locales

on your box (see section 8.2, page 74)
Affects: S

Option: ignoreBrokenPartitions
Type: bool
Default: false
Effect: Ignore broken partitions resulting from power outages during start up. If a broken partition is

detected, the system will try to restore the partition from another cluster node. If no cluster node
holds an intact copy of the partition, the partition will be dropped.

Affects: S

Option: validatePartitions
Type: bool
Default: false
Effect: Detect broken partitions resulting from power outages during start up. This might slow down the

node start up.
Affects: S

Option: iterations
Type: integer
Default: 0 (endless)
Effect: Set maximum number of iterations before ending (0: endless)
Affects: I

Option: outputformat
Type: string
Default: ASCII
Effect: Set the default output format for queries (ASCII, JSON, XML). You can overwrite this value for

each session (see section 27.10.1, page 373). See section 16.3, page 199 for details about the
different output formats.

Affects: S

Page 121

13 Options Reference 13.2 Global Options

Option: asciiOutputColumnSeparator
Type: string
Default: ;
Effect: Set the string that separates columns in the ASCII output format. You can overwrite this value for

each session (see section 27.10.1, page 373). See section 16.3, page 199 for details about the
different output formats.

Affects: S

Option: asciiOutputMultiValueSeparator
Type: string
Default: ,
Effect: Set the string that separates multivalue entries in the ASCII output format. You can overwrite this

value for each session (see section 27.10.1, page 373). See section 16.3, page 199 for details
about the different output formats.

Affects: S

Option: asciiOutputNullRepresentation
Type: string
Default: <NULL>
Effect: Set the string that represents NULL values in the ASCII output format. You can overwrite this

value for each session (see section 27.10.1, page 373). See section 16.3, page 199 for details
about the different output formats.

Affects: S

Option: journaldir
Type: string
Default: ./journals
Effect: path for journal files (see section 6.2.4, page 49)
Affects: S/I

Option: udfLibraryPath
Type: string
Default: ./udf

Effect: Basic path for user-defined functionality. May be a relative or absolute path. Currently, it is used:
• For external user-defined table operators (xUDTO) in a way that scripts for xUDTO functionality

have to be placed here (see section 20.2.2, page 234)..
Affects: S

Option: enableImport
Type: boolean
Default: true
Effect: Initially enable or disable imports. See section 16.4.1, page 200 for how to enable and disable

imports in a cluster at runtime.
Affects: S

Page 122

13.2 Global Options 13 Options Reference

Option: enableMerge
Type: boolean
Default: true
Effect: Initially enable or disable partition merging. The option was formerly called just merge accepting

boolean values and the values node and reimport, which is still supported to use (See
section 14.1.1, page 152 for details). See section 16.4.1, page 201 for how to enable and disable
merges in a cluster at runtime.

Affects: S/I

Option: minutemergeschedule
Type: string
Default: 0 * * * * (each full minute)
Effect: The times at which the merging of seconds- to minute-partitions should be performed. Note that

the value is interpreted according to UTC timestamps. See section 14.1.2, page 154. Note also
that seconds-partitions are only created for streaming imports.

Affects: S/I

Option: hourlymergeschedule
Type: string
Default: 0 0 * * * (each full hour)
Effect: The times at which the merging of minute-partitions to hour-partitions should be performed. Note

that the value is interpreted according to UTC timestamps. See section 14.1.2, page 154.
Affects: S/I

Option: dailymergeschedule
Type: string
Default: 0 0 0 * * (each midnight UTC)
Effect: The times at which the merging of hour-partitions to day-partitions should be performed. Note that

the value is interpreted according to UTC timestamps. See section 14.1.2, page 154.
Affects: S/I

Option: weeklymergeschedule
Type: string
Default: disabled
Effect: The times at which the merging of day-partitions to week-partitions should be performed. Note

that the value is interpreted according to UTC timestamps. See section 14.1.2, page 154. If not
explicitly configured, the merge of week-partitions is disabled.

Affects: S

Option: monthlymergeschedule
Type: string
Default: disabled
Effect: The times at which the merging of week-partitions to month-partitions should be performed. Note

that the value is interpreted according to UTC timestamps. See section 14.1.2, page 154. If not
explicitly configured, the merge of month-partitions is disabled.

Affects: S

Page 123

13 Options Reference 13.2 Global Options

Option: highResolutionLogtime
Type: Boolean
Default: true
Effect: Format timestamps of DEBUG, PROT, WARN, and INFO messages with fractional seconds.
Affects: S/I

Option: blobbuffersize
Type: integer
Default: 1,048,576 (220)
Effect: Maximum number of bytes a single blob and string value may contain. Rows that contain longer

values are not imported. The value must be >= 64. The value is automatically adjusted if this is
not the case. If this value is set, it might also make sense to set the import option
inputFileBufferSize (see section 13.4.3, page 148).

Affects: S/I

Option: ipVersion
Type: string
Default: IPv4
Effect: Specifies the accepted IP protocols for network communication. Possible options are IPv4,

IPDualStack, and IPv6.

IPv4 will use IPv4 addresses only. The incoming accept port is bound to all IPv4 interfaces.
Hostnames in the cluster configuration will be resolved to IPv4 addresses only. IPv6 addresses
are not allowed in this configuration. For outgoing connections from one cluster member or the
importer to other cluster members, only IPv4 connections are used. Clients may only connect
using IPv4 connections.

IPDualStack allows for usage of both types of IP addresses, but IPv6 has to be configured on
all hosts running a server process. The incoming accept port is bound to all interfaces, allowing
IPv4 and IPv6 connections. Hostnames in the cluster configuration will be resolved to IPv4 and
IPv6. Both types of IP addresses are allowed in the configuration. For outgoing connections from
one cluster member or the importer to other cluster members, IPv4 and IPv6 connections will be
used (no preference of the IP version). Clients may connect using IPv4 and IPv6 addresses.

IPv6 will use IPv6 addresses only. The incoming accept port is bound to all IPv6 interfaces.
Hostnames in the cluster configuration will be resolved to IPv6 addresses only. IPv4 addresses
are not allowed in the configuration. For outgoing connections from one cluster member or the
importer to other cluster members, only IPv6 connections are used. Clients may only connect
using IPv6 connections.

Affects: S/I

Page 124

13.2 Global Options 13 Options Reference

Option: sslMode
Type: string
Default: none
Effect: Enable TLS encryption for network connections. The available options include: - none: no

connections will use TLS encryption - client: all database clients will communicate over SSL/TLS
encrypted connections - server: all internal cluster connections will communicate over SSL/TLS
encrypted connections - all: All connections will communicate over SSL/TLS encrypted
connections Note: Only TLS encryption is supported as SSL is deprecated.

Affects: S/I

Option: sslKeyFile
Type: string
Default: conf/server.key
Effect: Private key file of the server used for SSL/TLS encryption.
Affects: S/I

Option: sslCertFile
Type: string
Default: conf/server.crt
Effect: Certificate file of the server used for SSL/TLS encryption.
Affects: S/I

Option: sslCaFile
Type: string
Default:
Effect: Trusted certificate authorities file of the server. The option will be ignored if it is empty.
Affects: S/I

Option: sslDhFile
Type: string
Default:
Effect: Diffie-Hellman parameter file of the server. The option will be ignored if it is empty.
Affects: S/I

Option: sslCiphers
Type: string
Default: HIGH:!aNULL
Effect: List of SSL/TLS ciphers accepted by the server.
Affects: S/I

Option: sslMinimumTlsVersion
Type: string
Default: 1.2
Effect: Minimum version of TLS to use for the encryption, e.g., 1.2, 1.1, or 1.0.
Affects: S/I

Page 125

13 Options Reference 13.2 Global Options

Option: overrideProcessRequirements
Type: Boolean
Default: false
Effect: Override the requirements of mapped files and number of open file handles and only issue a

warning instead of an error.
Affects: S/I

Option: clientConnectionTimeout
Type: integer
Default: 0
Effect: Configure the time in seconds after which an inactive connection will be dropped by the server. (0:

off)
Affects: S

Note:

• The format of the ...schedule merge options is described in section 14.1.2, page 154. See
section 14.1, page 151 for details.

Non-Functional Global Options

Option: partitionMaxRows
Type: integer
Default: 10*1024*1024
Effect: Maximum number of rows a partition can have. If the number of rows exceeds this limit, a logical

partition is split up into multiple physical partitions (see section 5.1, page 29). This option also
impacts whether merges are performed (see section 5.1.1, page 31).

Affects: S/I

Option: partitionMaxRowsForMinuteMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows an minute merge can have (see section 14.1, page 151).
Affects: S/I

Option: partitionMaxRowsForHourlyMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows an hourly merge can have (see section 14.1, page 151).
Affects: S/I

Option: partitionMaxRowsForDailyMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows a daily merge can have (see section 14.1, page 151).
Affects: S/I

Page 126

13.2 Global Options 13 Options Reference

Option: partitionMaxRowsForWeeklyMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows a weekly merge can have (see section 14.1, page 151).
Affects: S/I

Option: partitionMaxRowsForMonthlyMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows a monthly merge can have (see section 14.1, page 151).
Affects: S/I

Option: maxExecutionThreads
Type: integer
Default: 1.5 times the number of hardware threads rounded up
Effect: Maximum number of threads to use for execution in total (must be set to a value >0, see

section 15.1, page 158). Influences the default value of maxMergeThreads and
maxImportThreads.

Affects: S/I

Option: maxQueryThreads
Type: integer
Default: 0 (same as maxExecutionThreads)
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

queries. Value 0 means to use the value of maxExecutionThreads.
Affects: S

Option: maxMergeThreads
Type: integer
Default: maxExecutionThreads / 4, at least 1
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

merging partitions (Chapter 14, page 151). Value 0 means to use the value of
maxExecutionThreads.

Affects: S/I

Option: maxImportThreads
Type: integer
Default: maxExecutionThreads / 4, at least 1
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

server-sided import jobs, such as Java Streaming Imports (Chapter 19, page 216) and INSERT

INTO’s (section 10.7, page 107). Value 0 means to use the value of maxExecutionThreads.
Affects: S/I

Option: maxExternalProcesses
Type: integer
Default: maxExecutionThreads

Effect: Maximum number of concurrent external processes for execution of UDT statements, see
section 20.2.2, page 234.

Affects: S/I

Page 127

13 Options Reference 13.2 Global Options

Option: defaultQueryPriority
Type: string/integer
Default: medium (same as 4)
Effect: Execution priority of query tasks unless another value is specified via the SET command (see

section 27.10, page 373). The value can be passed as string or as integral value (low/8,
medium/4, high/2). In all outputs and queries the integral value is used. Can be overridden by
the server section option with the same name (see section 13.3.2, page 136). See section 15.1,
page 158 for documentation of the possible values.

Affects: S

Option: defaultImportPriority
Type: string/integer
Default: medium (same as 4)
Effect: Execution priority of query tasks unless another value is specified via the SET command (see

section 27.10, page 373) for INSERT INTO statements or via the Java Streaming Import Interface
(see section 19, page 216). The value can be passed as string or as integral value (low/8,
medium/4, high/2). In all outputs and queries the integral value is used. Can be overridden by
the server and import section option with the same name (see section 13.3.2, page 136 and see
section 13.4.3, page 148). See section 15.1, page 158 for documentation of the possible values.

Affects: S/I

Option: defaultMergePriority
Type: string/integer
Default: medium (same as 4)
Effect: Execution priority of merge tasks. The value can be passed as string or as integral value (low/8,

medium/4, high/2). In all outputs and queries the integral value is used. Can be overridden by
the server and importer section option with the same name (see section 13.3.2, page 136 and see
section 13.4.3, page 148). See section 15.1, page 158 for documentation of the possible values.

Affects: S/I

Option: queryThrottlingInterval
Type: integer
Default: 500
Effect: Milliseconds of thread time scaled by number of available threads of after which a query is

considered “long running” and will get its effective priority reduced (section 15.1, page 158). Value
0 means the effective priority remains stable.

Affects: S

Option: fileBlockTransferTimeout
Type: float
Default: 10.0
Effect: Timeout (seconds) of one file data block transfer.
Affects: I

Option: fileBlockTransferBuffersize
Type: integer
Default: 2*1024*1024
Effect: Buffersize (bytes) for file data block.
Affects: I

Page 128

13.2 Global Options 13 Options Reference

Option: columnStoreSegmentSize
Type: integer
Default: 65536
Effect: Maximum size in bytes of segments when writing sparse or dictionary column stores (> 0). (see

section 15.10.1, page 178) .
Affects: I

Option: queryHistoryMaxSeconds
Type: integer
Default: 600 (10 minutes)
Effect: Maximum duration (in seconds) queries are kept for the query history system table

ps_info_query_history (See section 26.4, page 321). 0 means that no duration limit exists.
Affects: S

Option: queryHistoryMaxEntries
Type: integer
Default: 1000
Effect: Maximum number of queries kept for the query history system table ps_info_query_history

(See section 26.4, page 321). 0 means that no quantity limit exists, so that all queries are kept.
Affects: S

Option: importHistoryMaxEntries
Type: integer
Default: 1000
Effect: Maximum number of historic imports kept for the imports system table ps_info_import (See

section 26.4, page 322). 0 means that the maximum is really 0, so that no imports are kept at all.
Affects: S

Option: performanceLoggingPath
Type: string
Default: /var/log/parstream

Effect: The directory into which monitoring information is logged (See section 9.5.1, page 84).
Affects: S/I

Option: executionSchedulerMonitoringTimeDetailLevel
Type: string
Default: summary

Effect: Control the detail level of the global execution scheduler event log (See section 9.5.1, page 84).
Possible values are summary and intervals, where the latter causes logging of each execution
slice (ca every 20ms) and may therefore generate very large logs. Is overridden by the server
option of the same name.

Affects: S/I

Page 129

13 Options Reference 13.2 Global Options

Option: synchronizeFilesystemWrites
Type: Boolean
Default: false
Effect: Synchronizes file changes with the storage device, which prevents data loss in case of a power

outage for merges and partition transfers. This option should be set to true if the system where the
database is running on has no emergency protection like an uninterruptible power supply (UPS)
and no clean shutdown of the operating system can be guaranteed. Enabling this option will slow
down the operation of the database.

Affects: S

Global Options for Multi-Node Clusters

By default, Cisco ParStream is running with clustering abilities (see chapter 6, page 40). Several
additional options are provided to influence the behavior of such a cluster, which matters if it has more
than one server/node.

Again, these options are presented in multiple tables:

• Functional global options for multi-node clusters

• Nonfunctional global options for multi-node clusters

Note that usually all cluster node should have the same cluster option value to ensure that when the
leader changes the same policies are used.

Functional Global Options for Multi-Node Clusters

Option: minUpdateRedundancy
Type: integer
Default: 1
Effect: The leader submits merges to all available nodes of a distribution group only, when the number of

participating nodes is not below this value. Imports stop distributing partitions for a distribution
group that has less than this number of members available. Hint: If you have a cluster where you
want to enforce redundancies greater than 1, you have to set this value explicitly (e.g. set this
value to 2 to have a redundancy of 2, having 1 backup copy of all the data; see section 6.2.3,
page 46)

Affects: S/I

Note:

• Note that currently import and merge operations are blocked for tables that declare a redundancy
value smaller than this global start-time value. Note that Cisco ParStream can’t fix the options
automatically because the value might be useful if additional nodes will be added (see section 6.2.5,
page 50).

Non-Functional Global Options Multi-Node Clusters

These options are mainly options for timers and intervals, which are used to establish the cluster,
detect errors, and recover.

Page 130

13.2 Global Options 13 Options Reference

Option: maxSchedulerConcurrencyLevel
Type: integer
Default: 5
Effect: Limits the number of asynchronous tasks a cluster node processes concurrently. The minimum

value is 1.
Affects: S/I

Option: maxSyncConcurrencyLevel
Type: integer
Default: 10
Effect: Limits the number of asynchronous partition synchronisation tasks the cluster processes

concurrently. The minimum value is 1.
Affects: S/I

Option: maxActivationDeletionConcurrencyLevel
Type: integer
Default: 3
Effect: Limits the number of asynchronous partition activation or delete tasks the cluster processes

concurrently. The minimum value is 1.
Affects: S/I

Option: clusterInitTimeout
Type: integer
Default: 120
Effect: Time (seconds) within cluster start-up for finding all nodes in the subnet and electing the leader.

Note that you have to start all nodes in the first half of this period. The minimum for
clusterInitTimeout is 20 seconds. See section 6.2.2, page 42 for details.

Affects: S/I

Option: clusterReinitTimeout
Type: integer
Default: clusterInitTimeout
Effect: Time (seconds) within cluster reinitialization for finding all nodes in the subnet and electing the

leader if the cluster already exists. Note that you have to start all nodes in the first half of this
period. The minimum for clusterReinitTimeout is 10 seconds. See section 6.2.2, page 42
for details.

Affects: S/I

Option: claimLeadershipMessageInterval
Type: integer
Default: 5
Effect: Interval (in Seconds) to send out registration messages during the first half of the cluster

initialization. The minimum for claimLeadershipMessageInterval is 1 second. The
maximum for claimLeadershipMessageInterval is clusterInitTimeout / 8 or
clusterReinitTimeout / 8, respectively, to have at least four claim leadership requests
during the node registration period (first half of cluster (re)initialization timeout). See section 6.2.2,
page 42 for details.

Affects: S/I

Page 131

13 Options Reference 13.2 Global Options

Option: nodeRegistrationTimeout
Type: integer
Default: 30
Effect: Timeout (seconds) for the registration and deregistration of a cluster node at the leader.
Affects: S/I

Option: nodeAliveMessageInterval
Type: integer
Default: 10
Effect: Interval (seconds) for sending alive notifications from cluster nodes to the leader.
Affects: S/I

Option: nodeResynchronizationInterval
Type: integer
Default: 60
Effect: Interval (seconds, min. 30) for checking partition synchronization backlog of active nodes for

entries and initiate a resynchronization if needed.
Affects: S

Option: partitionSearchTimeout
Type: integer
Default: 30
Effect: Maximum time (seconds) the cluster leader waits for the response of a partition search request.
Affects: S/I

Option: partitionMergeRequestTimeout
Type: integer
Default: 60
Effect: Maximum time (seconds) the cluster leader waits for the response of a partition merge request.
Affects: S/I

Option: synchronizePartitionRequestTimeout
Type: integer
Default: 120
Effect: Maximum time (seconds) a cluster node waits for the response of a request to synchronize

partitions between nodes. The expected processing time depends strongly on the number of
columns and the size of the partitions and should be increased appropriately.

Affects: S/I

Option: requestDefaultTimeout
Type: integer
Default: 60
Effect: Generic maximum duration (seconds) a cluster node waits for the response of a request with an

average expected processing time.
Affects: S/I

Page 132

13.2 Global Options 13 Options Reference

Option: dhsgbConnectionTimeout
Type: integer
Default: 255
Effect: Timeout (seconds) to establish inter cluster connections for DHSGB (see section 15.15.2,

page 189).
Affects: S

Authentication Options

For authentication (see section 9.2, page 78), the options described in this section are provided under
the section authentication. For example:� �
[authentication]

pamService = parstream

authenticationWrapperExecutable =

/opt/cisco/kinetic/parstream_authentication_1/parstream-authentication� �
Option: pamService
Type: string
Default: parstream

Effect: PAM service configuration used for authentication. Corresponds to a PAM module configuration
file with the same name located in /etc/pam.d.

Option: authenticationWrapperExecutable
Type: string
Default: /opt/cisco/kinetic/parstream_authentication_1/parstream-authentication

Effect: External authentication application for PAM authentication including path. If the application cannot
be found by the Cisco ParStreamserver, no authentication is possible.

Page 133

13 Options Reference 13.3 Server-Section Options

Server-Section Options

In INI files, server-specific options are usually located in the section of the corresponding server.
Thus, each server has its own subsection, which can be given any alphanumeric name used as the
"servername".

For example:� �
[server.MyServer]

host = localhost

port = 6789� �
As usual, you can pass these options as commandline options, which override the INI file options. For
example:� �
parstream-server --server.MyServer.host=localhost --server.MyServer.port=7777

MyServer� �
There are many server-specific options so that they are presented in multiple tables:

• Functional server-specific options

• Non-functional server-specific options

Note that the behavior of the server is also influenced by the ExecTree option, described in
section 13.3.4, page 140.

Functional Server-Section Options

Option: host
Type: string
Default: localhost
Effect: Server IP address.

Option: port
Type: integer
Default: 9042
Effect: Server port number. Note: Cisco ParStream opens this and consecutive ports (see

section 13.3.1, page 135 for details).

Option: datadir
Type: string
Default: ./

Effect: Directory that contains the data partitions. In a remote server setup the specified path must be an
absolute path.

Page 134

13.3 Server-Section Options 13 Options Reference

Option: rank
Type: integer
Default: 0
Effect: The rank (between 0 and 65535) defines the basic order for electing the cluster leader. The node

with the lowest rank is the preferred leader. Each node rank has to be unique within the configured
cluster to avoid ambiguities. Nodes with an duplicate rank will be excluded from the cluster and
terminate. For more details see section 6.2.2, page 42

Ports

Cisco ParStream servers (or query nodes) always open the following public ports:

Port Service Description
port parstream-netcat Basic port as specified in the INI file and used for netcat

connections
port+1 parstream-postgresql Port for Postgres connections (i.e. psql and JDBC), and file

transfer between Cisco ParStream servers and importers.

For an importer to connect successfully to a remote server, both of these ports must be open.

For managing clustering Cisco ParStream servers also open the following internal ports:

Port Service Description
port+2 parstream-cluster-messages A TCP port used for partition synchronization and slave

queries
port+3 parstream-partition-activation A TCP port used for partition activation and load
port+4 parstream-find-nodes A TCP port for the cluster leader election (see

section 6.2.3, page 47)

In addition, within the following global ports might be shared among all nodes of a cluster:

Port Service Description
registrationPort parstream-registration-port A TCP port for the node registration at the

leader, exchanging cluster node status
information and health checking.

Even importers have to open a port, the leaderElectionPort. See section 6.2.3, page 47 for
details.

Note that user authentication is used for the first two external ports. See section 9.2, page 78 for
details.

Page 135

13 Options Reference 13.3 Server-Section Options

Non-Functional Server-Section Options

Option: maxExecutionThreads
Type: integer
Default: Value of the global option maxExecutionThreads (see section 13.2.1, page 127)
Effect: Maximum number of threads to use for execution in total (> 0, section 15.1, page 158). Influences

the default value of maxMergeThreads and maxImportThreads.

Option: maxQueryThreads
Type: integer
Default: Value of the global option maxQueryThreads (see section 13.2.1, page 127)
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

queries. Value 0 means maxExecutionThreads.

Option: maxMergeThreads
Type: integer
Default: Value of the global option maxMergeThreads (see section 13.2.1, page 127)
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

merging partitions (Chapter 14, page 151). Value 0 means maxExecutionThreads.

Option: maxImportThreads
Type: integer
Default: Value of the global option maxImportThreads (see section 13.2.1, page 127)
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

server-sided import jobs, such as Java Streaming Imports (Chapter 19, page 216) and INSERT

INTO’s (section 10.7, page 107). Value 0 means maxExecutionThreads.

Option: defaultQueryPriority
Type: string/integer
Default: Value of the global option defaultQueryPriority (see section 13.2.1, page 128)
Effect: Execution priority of query tasks unless another value is specified via the SET command (see

section 27.10, page 373).

Option: defaultImportPriority
Type: string/integer
Default: Value of the global option defaultImportPriority (see section 13.2.1, page 128)
Effect: Execution priority of query tasks unless another value is specified via the SET command (see

section 27.10, page 373) for INSERT INTO statements or via the Java Streaming Import Interface
(see section 19, page 216).

Option: defaultMergePriority
Type: string/integer
Default: Value of the global option defaultMergePriority (see section 13.2.1, page 128)
Effect: Execution priority of merge tasks.

Page 136

13.3 Server-Section Options 13 Options Reference

Option: queryThrottlingInterval
Type: integer
Default: Value of the global option queryThrottlingInterval (see section 13.2.1, page 128)
Effect: Milliseconds of thread time scaled by number of available threads of after which a query is

considered “long running” and will get its effective priority reduced (section 15.1, page 158). Value
0 means the effective priority remains stable.

Option: preloadingthreads
Type: integer
Default: Value of the global option maxExecutionThreads (see section 13.2.1, page 127)
Effect: Number of preloading threads. Usually we use number of maxExecutionThreads. When your

I/O subsystem isn’t fast, reduce this number to increase performance

Option: preloadcolumns
Type: string
Default: nothing
Effect: How to preload all columns (complete, memoryefficient, nothing). See section 15.9.3,

page 177

Option: preloadindices
Type: string
Default: nothing
Effect: How to preload all indices (complete, nothing). See section 15.9.3, page 177

Option: blockqueriesonpreload
Type: boolean
Default: false
Effect: If set to true, no further queries are accepted until all configured columns and indices marked for

preloading have been loaded.

Option: maxConnectionsJdbc
Type: integer
Default: 250
Effect: Limits the number of concurrent connections to the server via the jdbc/odbc/postgres interface.

The sum of maxConnectionsSocket and maxConnectionsJdbc should be well below the ulimit.

Option: maxConnectionsSocket
Type: integer
Default: 250
Effect: Limits the number of concurrent connections to the server via the socket interface. The sum of

maxConnectionsSocket and maxConnectionsJdbc should be well below the ulimit.

Option: jdbcHandlingThreads
Type: integer
Default: 8
Effect: Number of threads executing requests over the postgres (jdbc, odbc) connection in parallel. If

there are more requests coming in over the pooled connections, they will be queued until the next
jdbcHandlingThread is free for executing the query.

Page 137

13 Options Reference 13.3 Server-Section Options

Option: socketHandlingThreads
Type: integer
Default: 8
Effect: Number of threads executing requests over the socket connection in parallel. If there are more

requests coming in over the pooled connections, they will be queued until the next
socketHandlingThread is free for executing the query.

Option: mappedFilesCheckInterval
Type: integer
Default: 10
Effect: Time in seconds the check for whether the maximum of mapped files is reached, so that

unmapping should happen. A value of 0 disables the unmapping mechanism (allows unlimited
mapped files). You can change the value for a running server as a whole with an ALTER SYSTEM

SET command (see section 27.11.1, page 375). See section 15.13, page 184 for details.

Option: mappedFilesMax
Type: integer
Default: 80,000
Effect: Maximum number of mapped files before unmapping starts. If the number of memory mapped

column and index files exceeds this value and a check for the number of mapped files happens,
unmapping of (parts of) these files from memory is triggered. A value of 0 forces unmapping of all
unused files with each unmapping check. You can change the value for a running server as a
whole with an ALTER SYSTEM SET command (see section 27.11.1, page 375). See
section 15.13, page 184 for details.

Option: mappedFilesAfterUnmapFactor
Type: floating-point
Default: 0.8
Effect: General factor for unmapping mapped files if the limit of maximum number of mapped files is

reached. The goal is to have less or equal than mappedFilesMax *
mappedFilesAfterUnmapFactor mapped files after unmapping. Possible values have to be
between 0.0 (all unused files are unmapped with each unmapping check) and 1.0 (after
unmapping we should have mappedFilesMax mapped files). Because unmapping happens in
chunks and mapped files that are used are not unmapped, the factor might not exactly be reached
when unmapping happens. You can change the value for a running server as a whole with an
ALTER SYSTEM SET command (see section 27.11.1, page 375). See section 15.13, page 184
for details.

Option: mappedFilesOutdatedInterval
Type: integer
Default: 3600
Effect: If unmapping happens, all mapped files with no access for this amount of seconds are always

unmapped. Note that as long as the limit mappedFilesMax is not reached, even outdated files
are not unmapped. You can change the value for a running server as a whole with an ALTER

SYSTEM SET command (see section 27.11.1, page 375). See section 15.13, page 184 for details.

Page 138

13.3 Server-Section Options 13 Options Reference

Option: mappedFilesMaxCopySize
Type: integer
Default: 16384
Effect: Maximum size of files in bytes that will be copied completely into heap memory upon first request

instead of using a memory mapped approach. The files with sizes smaller than or equal to the
value of mappedFilesMaxCopySize but will still be managed by the LRU approach in the same
way as mapped files. and will therefore still be visible in the ps_info_mapped_files system
table (see section 26.4, page 320). See section 15.13, page 184 for more details.

Option: fileBlockTransferTimeout
Type: float
Default: Value of the global option fileBlockTransferTimeout

Effect: Timeout of one file data block transfer in seconds used for this server

Option: maxscanpartitionconcurrencylevel
Type: integer
Default: Value of the server option maxExecutionThreads

Effect: Degree of parallelism for scanning partitions in the server startup phase (between 0 and
maxExecutionThreads). Set value 0 to disable parallel partition scanning. The value is
automatically limited to maxExecutionThreads

Option: logscanpartitionprogressinterval
Type: integer
Default: 10000
Effect: Interval (number of partitions) for logging the partition scanning progress. Set value 0 to disable

partition scanning progress.

Option: mergeConcurrency
Type: integer
Default: 1
Effect: Number of parallel merges. (see section 14.1.1, page 153)

Option: executionSchedulerMonitoringTimeDetailLevel
Type: string
Default: summary

Effect: Control the detail level of the global execution scheduler event log (See section 9.5.1, page 84).
Possible values are summary and intervals, where the latter causes logging of each execution
slice (ca every 20ms) and may therefore generate very large logs. Overrides the global options of
the same name.

Connection Pool Options

For the connection pool (see section 15.1, page 162), a couple of options are provided, which can be
used by servers and importers.

Page 139

13 Options Reference 13.3 Server-Section Options

Option: connectionPool.numConnectionsPerNode
Type: integer
Default: 4
Effect: Number of connections pre-allocated by a cluster for upcoming queries to each other node. This

number should correlate with the typical number of queries that occur in parallel. Note that with
distributed hash separations such as DHSGB (see section 15.15.2, page 189) you always need 2
connections per query on the query master, so that the default 4 provides fast query support for 4
incoming parallel queries without DHSGB or 2 incoming parallel queries with DHSGB. The
minimum is 1.

Option: connectionPool.nodeErrorRetryInterval
Type: integer
Default: 100
Effect: Minimal interval in milliseconds to wait before attempting to connect to a server that had a

connection error with the last trial.

Option: connectionPool.connectionFetchTimeout
Type: integer
Default: 5000
Effect: Timeout in milliseconds for a query waiting for a connection, if not enough connections are

available.

Option: connectionPool.staleConnectionCheckInterval
Type: integer
Default: 5000
Effect: Interval in milliseconds to double check the availability of a pre-allocated connection.

Deprecated Server-Section Options

Execution Engine Options

Some parameters that influence the performance of query execution are configurable. The
corresponding options are definable in the INI section with the name [ExecTree]. Additionally,
these options can be changed inside a session of a running server using a SQL SET statement (see
section 27.10, page 373). Future releases may expose additional parameters.

Page 140

13.3 Server-Section Options 13 Options Reference

Option: BitmapAggregationLimit
Type: integer
Default: 40000
Effect: The limit for the cardinality of values in aggregations up to which bitmap indices are used for the

aggregation. If this parameter is set to 0 then bitmap indices are never used for aggregations.
Applies to: bitmap indices

Option: MonitoringMinLifeTime
Type: integer
Default: 0
Effect: Threshold for writing out monitoring information of queries. Queries with execution times above

this threshold (milliseconds in realtime mode) will be written to the monitoring log (see
section 9.5.1, page 84). A value of 0 disables this feature. Applies to: server

Option: MonitoringImportMinLifeTime
Type: integer
Default: 0
Effect: Threshold for writing out monitoring information of imports. Imports with execution times above

this threshold (milliseconds in realtime mode) will be written to the monitoring log (see
section 9.5.1, page 84). A value of 0 disables this feature. Applies to: server/importer

Option: MonitoringMergeMinLifeTime
Type: integer
Default: 0
Effect: Threshold for writing out monitoring information of merges. Merges with execution times above

this threshold (milliseconds in realtime mode) will be written to the monitoring log (see
section 9.5.1, page 84). A value of 0 disables this feature. Applies to: server

Option: QueryMonitoringTimeDetailLevel
Type: string
Default: summary
Effect: Detail level of the per-query event log (see section 9.5.1, page 84). Can be set to either summary

or intervals (case insensitive) to record only summaries or each execution slice interval. Take
care not to leave this option on all the time as it can produce potentially very large event logs.
Applies to: server

Option: MergeMonitoringTimeDetailLevel
Type: string
Default: summary
Effect: Detail level of the per-merge event log (see section 9.5.1, page 84). Can be set to either summary

or intervals (case insensitive) to record only summaries or each execution slice interval. Take
care not to leave this option on all the time as it can produce potentially very large event logs.
Applies to: server

Page 141

13 Options Reference 13.3 Server-Section Options

Option: ImportMonitoringTimeDetailLevel
Type: string
Default: summary
Effect: Detail level of the per-import event log (see section 9.5.1, page 84). Can be set to either summary

or intervals (case insensitive) to record only summaries or each execution slice interval. Take
care not to leave this option on all the time as it can produce potentially very large event logs.
Applies to: server/importer

Option: SeparationAwareExecution
Type: boolean
Default: true
Effect: In general, enable/disable all separation aware execution optimizations (see section 15.15,

page 186 for details).

Option: SeparationEnableDSGB
Type: boolean
Default: true
Effect: Enable/disable Data Separated GROUP BY (DSGB) (see section 15.15.1, page 186 for details).

Note that this optimization is only enabled if also the general option
SeparationAwareExecution is enabled.

Option: SeparationEnableHSGB
Type: boolean
Default: true
Effect: Enable/disable Hash Separated GROUP BY (HSGB) (see section 15.15.2, page 189 for details).

Note that this optimization is only enabled if also the general option
SeparationAwareExecution is enabled.

Option: SeparationEnableDSFA
Type: boolean
Default: true
Effect: Enable/disable Data Separated Function Aggregations (DSFA) (see section 15.15.3, page 190 for

details). Note that this optimization is only enabled if also the general option
SeparationAwareExecution is enabled.

Option: SeparationEnableDSJ
Type: boolean
Default: true
Effect: Enable/disable Data Separated JOIN (DSJ) (see section 15.15.4, page 191 for details). Note that

this optimization is only enabled if also the general option SeparationAwareExecution is
enabled.

Option: SeparationEnableHSJ
Type: boolean
Default: true
Effect: Enable/disable Hash Separated JOIN (HSJ) (see section 15.15.4, page 191 for details). Note that

this optimization is only enabled if also the general option SeparationAwareExecution is
enabled.

Page 142

13.3 Server-Section Options 13 Options Reference

Option: SeparationEnableDSI
Type: boolean
Default: true
Effect: Enable/disable Data Separated IN (DSI) (see section 15.15.5, page 197 for details). Note that this

optimization is only enabled if also the general option SeparationAwareExecution is enabled.

Option: SeparationEnableDHS
Type: boolean
Default: true
Effect: Enable/disable all distributed hash separated optimizations, i.e. DHSGB. (see section 15.15.2,

page 189 for details). Note that this optimization is only enabled if also the general option
SeparationAwareExecution and option SeparationEnableHSGB are enabled.

Option: NumHashSeparatedStreamsPerNode
Type: integer
Default: 16
Effect: Number of hash generated separated streams per participating node on group by columns with

many different values. Must be greater than zero.

Option: NumAggregationChildren
Type: integer
Default: 32
Effect: Split a long running aggregation node in small parallelized partial aggregations. Applies to:

parallelization of aggregation

Option: GroupByBitmapLimit
Type: integer
Default: the value of BitmapAggregationLimit
Effect: Number of bitmap operations allowed in group by of bitmap aggregation. Applies to: bitmap

indices

Option: VectorAggregationEnabled
Type: boolean
Default: true
Effect: Enable vector aggregation. Applies to: bitmap indices

Option: NumValuesVectorPreferred
Type: integer
Default: 64
Effect: The upper bound of values where vector aggregation instead of bitmap aggregation is used.

Applies to: bitmap indices

Option: MaxRhsValuesForLhsJoinBitmapScan
Type: integer
Default: 1024
Effect: Number of bitmap operations allowed on left side of join operation. Applies to: bitmap indices, join

Page 143

13 Options Reference 13.3 Server-Section Options

Option: MaxOutputBufferSize
Type: integer
Default: 1GB (1,073,741,824 bytes)
Effect: Maximum number of bytes which should be written to the output buffer in a single query. This

value is processed by the output buffers for the query result of the socket interface (netcat/pnc), for
transferring data between slaves and the query master, and for all DHSGB related communication
between servers. To remove the limit set the parameter to 0. Applies to: all queries

Option: NumAggregationMapBuckets
Type: integer
Default: 30000
Effect: Number of hash buckets used for aggregation data structures.

Option: NumDistinctAggregationMapBuckets
Type: integer
Default: the value of NumAggregationMapBuckets
Effect: Number of hash buckets used for distinct aggregation data structures. Should be reduced if

distinct aggregations perform slow or use a lot of memory.

Option: ReorderGroupByFields
Type: boolean
Default: true
Effect: If true each ExecBitmapAggregation node tries to reorder the group by fields to speed up the

bitmap operations required for the group by calculation. Because this reordering is based on some
estimations about the bitmap compressions it may degrade the performance in some rare
constellations. Therefore, the option may be switched of if it is better to force the execution engine
to perform the group by bitmap operation in the order of the fields given in the GROUP BY clause.

Option: IterativeGroupByAggregation
Type: boolean
Default: false
Effect: Future use. Don’t set this value without confirmation by Cisco ParStream consultants.

Option: MaxIterativeGroupByFields
Type: integer
Default: 0 (unlimited)
Effect: Future use. Don’t set this value without confirmation by Cisco ParStream consultants.

Option: ExecNodeDataMemoryStatistic
Type: string
Default: CurrentAndMaxStatistic
Effect: Set data memory statistic type of query processing on ExecNode level. Value "NoStatistic"

disables this feature. Note: this option can only be set via the SET command (see section 27.10,
page 373).

Page 144

13.3 Server-Section Options 13 Options Reference

Option: ExecTreeDataMemoryStatistic
Type: string
Default: NoStatistic
Effect: Set data memory statistic type of query processing on ExecTree level. Value

"CurrentAndMaxStatistic" enables this feature. Note: Because monitoring memory usage statistic
on the ExecTree level needs to be thread safe, this option may slow down query processing
significantly. For this reason, this option can only be set via the SET command (see section 27.10,
page 373).

Option: QueueActivateReceiver
Type: integer
Default: 16
Effect: Threshold to force the processing of receiving execution nodes. If at least this many results are in

the input queue of a receiving node, the processing of this node is forced to continue. Note that the
value always should be less than QueueDeactivateSender; otherwise deadlocks will occur.

Option: QueueDeactivateSender
Type: integer
Default: 255
Effect: Threshold to pause the processing of sending execution nodes. If at least this many results are in

the output queue of a sending node, the execution of the node is temporarily stopped. Note that
the value always should be greater than QueueActivateReceiver; otherwise deadlocks will
occur. Note also that the value always should be less than QueueReactivateSender.

Option: QueueReactivateSender
Type: integer
Default: 64
Effect: Threshold to force the re-processing of sending execution nodes. If only up to this many results are

in the output queue of a temporarily stopped sending node, the sending node is forced to continue
its processing. Note that the value always should be greater than QueueReactivateSender.

Note:

• You can query the current value of these options via the system table ps_info_configuration

(see section 26.3, page 312).

Page 145

13 Options Reference 13.4 Import-Section Options

Import-Section Options

Import Definitions

Import-specific definitions are located in the import section of the corresponding server.

Each importer has its own import section, which can be given any alphanumeric name used as the
"importername".

For example:� �
[import.MyImporter]

sourcedir = MyProject/import� �
As usual, you can pass these options as commandline options, which override INI file options. For
example:� �
parstream-import --import.MyImporter.sourcedir=MyProject/import MyImporter� �

Note that the importer counts as cluster node and each cluster node must have a unique name. Hence
its name cannot correspond to any server name.

There are many import-section options so that they are presented in multiple tables:

• Functional import-section options

• Non-functional import-section options

Functional Import-Section Options

Option: sourcedir
Type: string
Default: none
Effect: Directory with raw data. If this parameter is not set, then no raw data will be imported and instead

only partitions will be merged. Can be overwritten in the command line with –sourcedir.

Option: targetdir
Type: string
Default:
Effect: Directory path used to temporarily store the partitions before they are transferred to the servers.

Not setting this option is an error. Can be overwritten in the command line with –targetdir.

Option: columnseparator
Type: string
Default: ;

Effect: Character used as column separator in CSV files. Might be a special character such as “\t”.
Characters “\”, “"”, space, and newline are not allowed. See section 13.4.2, page 146 for details.

Page 146

13.4 Import-Section Options 13 Options Reference

Option: csvreadonly
Type: boolean
Default: false
Effect: If set, imported CSV files are not moved to the .backup folder.

Option: maxnumcsvfiles
Type: integer
Default: 3 (Note, however, that the commandline option --finite changes this default value to 0

(unlimited); See section 13.1.3, page 117 for details.)
Effect: Specifies the maximum number of CSV files that are imported into a single partition in one

importer run. 0 means: no limit. Note that if you have many huge CSV files the value 0 may result
in a server crash, because all CSV files are processes at once.

Option: rank
Type: integer
Default: 0
Effect: The rank (between 0 and 65535) defines the basic order for electing the cluster leader. An

importer never becomes leader, but for reasons of the cluster functionality the rank is required for
importers too and has to be unique within the cluster. For more details see section 6.2.2, page 42

Option: leaderElectionPort
Type: integer
Default: 9046
Effect: A TCP port for the cluster leader election (see section 6.2.3, page 47) for details.

Non-Functional Import-Section Options

Option: writebuffersize
Type: integer
Default: 12 * 1024
Effect: Buffer size for serialized writing of column store data. IF the value is > 0, a central “FileWriterNode”

writes to the different open column store data files chunky of this size. If writebuffersize
equals 0, column stores are written in parallel directly by the import nodes (which can easily
exceed the limit of open files).

Option: indexWriteBufferSize
Type: integer
Default: 64 * 1024
Effect: Buffer size for serialized writing of bitmap index data. If the value is > 0, a central “FileWriterNode”

writes to the different open bitmap index files in chunks of this size. If the value is zero, bitmap
index files are written in parallel directly by the import nodes (which can easily exceed the limit of
open files).

Option: fileBlockTransferBuffersize
Type: integer
Default: 2*1024*1024
Effect: Buffersize (bytes) for file data block.

Page 147

13 Options Reference 13.4 Import-Section Options

Option: numberoffetchnodes
Type: integer
Default: 3
Effect: Number of Fetch Nodes during import (=CSV files read in parallel)

Option: numberOfWriterNodes
Type: integer
Default: 1
Effect: Number of column store File Writers during import (=write column stores in parallel)

Option: inputFileBufferSize
Type: integer
Default: 1,048,576 (220)
Effect: Size of the input file cache. This value should be larger than the longest line in CSV import files. It

has to be >= 32,768 and >= blobbuffersize/2 (see section 13.2.1, page 124). The value is
automatically adjusted if this is not the case.

Option: maxExecutionThreads
Type: integer
Default: Value of the global option maxExecutionThreads (see section 13.2.1, page 127)
Effect: Maximum number of threads to use for execution in total (> 0, section 15.1, page 158). Influences

the default value of maxMergeThreads and maxImportThreads.

Option: maxMergeThreads
Type: integer
Default: Value of the global option maxMergeThreads (see section 13.2.1, page 127)
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

merging partitions (Chapter 14, page 151). Value 0 means maxExecutionThreads.

Option: maxImportThreads
Type: integer
Default: Value of the global option maxImportThreads (see section 13.2.1, page 127)
Effect: Maximum number of threads, out of the total maxExecutionThreads available, to use for

server-sided import jobs, such as Java Streaming Imports (Chapter 19, page 216) and INSERT

INTO’s (section 10.7, page 107). Value 0 means maxExecutionThreads.

Option: defaultImportPriority
Type: string/integer
Default: Value of the global option defaultImportPriority (see section 13.2.1, page 128)
Effect: Execution priority of query tasks unless another value is specified via the SET command (see

section 27.10, page 373) for INSERT INTO statements or via the Java Streaming Import Interface
(see section 19, page 216).

Option: defaultMergePriority
Type: string/integer
Default: Value of the global option defaultMergePriority (see section 13.2.1, page 128)
Effect: Execution priority of merge tasks.

Page 148

13.5 Optimization Options 13 Options Reference

Option: preloadingthreads
Type: integer
Default: Value of the global option maxExecutionThreads (see section 13.2.1, page 127)
Effect: Number of preloading threads. Usually we use number of maxExecutionThreads. When your

I/O subsystem isn’t fast, reduce this number to increase performance.

In addition, you can use option ExecTree.MonitoringImportMinLifeTime to log imports than
run longer than a passed duration in milliseconds (see section 13.3.4, page 141).

Connection Pool Options

For the connection pool (see section 15.1, page 162), a couple of options are provided, which also
can be used by importers. See section 13.3.2, page 139 for details.

Optimization Options

Cisco ParStream provides query rewrite optimizations (see section 15.8, page 172), which can be
enabled and disabled with INI file settings (as described here) and via SET commands on a per-session
basis (see section 21.3.1, page 260).

Theses options belong to the INI file section [optimization] and are designed in a way that you
can enable or disable them as a whole or individually.

For example, the following setting enables all query rewrite optimizations:� �
[optimization]

rewrite.all = enabled� �
As another example, the following setting enables the “joinElimination” optimization only:� �
[optimization]

rewrite.all = individual

rewrite.joinElimination = enabled� �
The optimization options are in detail as follows:

Option: rewrite.all
Type: enabled or disabled or individual
Default: individual

Effect: If this option is enabled, all optimizations are enabled. If the parameter is disabled, all
optimizations are disabled. If the parameter is individual, optimizations can be switched on
and off individually (see below). The value of this option can be changed at runtime (see
section 27.10.1, page 374).

Page 149

13 Options Reference 13.5 Optimization Options

Option: rewrite.joinElimination
Type: enabled or disabled
Default: disabled

Effect: If the optimization option rewrite.all is set to individual, the setting of this parameter
switches the join elimination optimization (see section 15.8.1, page 173) on or off. The value of
this option can be changed at runtime (see section 27.10.1, page 374).

Option: rewrite.mergeJoinOptimization
Type: enabled or disabled
Default: enabled

Effect: If the optimization option rewrite.all is set to individual, the setting of this parameter
switches the merge join optimization (see section 15.8.3, page 174) on or off. The value of this
option can be changed at runtime (see section 27.10.1, page 374).

Option: rewrite.hashJoinOptimization
Type: enabled or disabled
Default: enabled

Effect: If the optimization option rewrite.all is set to individual, the setting of this parameter
switches the hash join optimization (see section 15.8.2, page 174) on or off. The value of this
option can be changed at runtime (see section 27.10.1, page 374).

Option: rewrite.sortElimination
Type: enabled or disabled
Default: enabled

Effect: If the optimization option rewrite.all is set to individual, the setting of this parameter
switches the elimination of sort nodes on or off. If this option is set to on, sort nodes will be
optimized away if the input is already sorted correctly. The value of this option can be changed at
runtime (see section 27.10.1, page 374).

Option: rewrite.validationNodeOptimization
Type: enabled or disabled
Default: enabled

Effect: If the optimization option rewrite.all is set to individual, the setting of this parameter
switches the validation node optimization on or off. If this option is set to on, validation nodes will
be optimized away if no validation is necessary. Currently the validation node checks if not-null
fields are correctly filled and it checks the valid length of length restricted string fields. The value of
this option can be changed at runtime (see section 27.10.1, page 374).

Page 150

Merging Partitions

This chapter explains the features of Cisco ParStream to merge partitions.

Merging Partitions

As introduced in section 5.1.3, page 32, Cisco ParStream imports data in “minute” partitions (or
“seconds” partitions for streaming import),

Servers (leaders) can then initiate the merge of imported partitions (“minute” partitions with suffix _PM,
, or “seconds” partitions with suffix _PS) into aggregated partitions of a higher level (“minute” partitions
with suffix _PM “hour” partitions with suffix _PH, “day” partitions with suffix _PD, “week” partitions with
suffix _PW, or “month”/“final” partitions with suffix _PF).

Note again that the name “seconds”, “minute”, “hour” etc. are just pure abstractions for initial and
further levels of merges. You can define when merges from one level to the next apply and therefore
indirectly define your understanding of an “hour” or “day”.

This is controlled by several options (see chapter 13, page 116):

• Whether to perform merges

• When to perform merges

• And you can specify transformations for your data during merges (so that you can for example
purge your data to have only one row with a sum of the old rows). See section 14.2, page 154 for
details.

Note that you can temporarily disable scheduled server merges by sending the command “ALTER
SYSTEM CLUSTER DISABLE MERGE” to a cluster node (see section 16.4.1, page 201).

In addition, note the following:

• To avoid getting too large partitions, merges also respect the general option to limit the maximum
number of rows of a partition, partitionMaxRows (see section 13.2.1, page 126). For a merge,
the criteria for partitionMaxRows is the number of rows in the source partitions to ensure
that the merge result is never split up into multiple partitions as a consequence of exceeding
the partitionMaxRows limit. For this reason, merges are usually partially performed or even
skipped, if this would result into partitions that might become too large (i.e. if the sum of rows in a a
particular merge would exceed partitionMaxRows). Thus, after a merge “minute to hour”, for
instance, there might still be “minute” partitions.

• To have a fine-grained control for the size of merged partitions, you can also set the
global options partitionMaxRowsForMinuteMerge, partitionMaxRowsForHourlyMerge,
partitionMaxRowsForDailyMerge, partitionMaxRowsForWeeklyMerge, and
partitionMaxRowsForMonthlyMerge (see section 13.2.1, page 126).

• However, if during a merge the data is transformed or purged using ETL merge statements (see
section 14.2, page 154), merges are never skipped and might result in one source partition being
replaced by a transformed partition. The transformed partition might even be smaller then, if the
ETL merge purges the data via a GROUP BY clause (see section 14.2, page 154 for an example).
Thus, after a merge still multiple partitions might be smaller than partitionMaxRows.

Page 151

14 Merging Partitions 14.1 Merging Partitions

Continuous Partition Merge

The “Continuous Partition Merge” ensures partition merging, even when some of the cluster nodes are
offline. Merging is controlled by the cluster leader. The leader ensures that all nodes merge the same
source partitions to guarantee consistent partitions over all nodes. Merging will happen as long as
at least one node (or a configured greater number of nodes) of a distribution group is active (online
and synchronized). The resulting partitions of missed merges are synchronized in the same way as
imported partitions, when a node gets online.

Merging Options

Several options allow to influence the merge behavior.

Merge Policy

The most important option is the global option enableMerge, initially specifying whether merges are
enabled. This option can be set for an importer and for a server (see section 13.2.1, page 122). The
default value is true.

For backward compatibility, also the global option merge is supported, which can have the following
values:

Merge Policy Effect
true merges will be performed (default)
reimport merges will be performed
false no merges will happen
none same

As written, you can enable or disable merges at runtime by sending the command “ALTER SYSTEM

CLUSTER DISABLE MERGE” to a cluster node (see section 16.4.1, page 201).

Basic Merge Options

Merging is orchestrated by the cluster leader node (see section 6.2.1, page 41). Merging is possible
even if the cluster is in a degraded state (node failures) (see section 14.1, page 152).

These merges can be controlled by the following global options, which should be set for all servers
(query nodes) in the cluster because any query node can become a leader:

Page 152

14.1 Merging Partitions 14 Merging Partitions

Option Effect Default
merge defines the merge policy (see section 14.1.1,

page 152)
true

minutemergeschedule The times (UTC) at which the merging of
seconds-partitions to minute-partitions should be
performed. See section 14.1.2, page 154.

0 * * * *

hourlymergeschedule The times (UTC) at which the merging of
minute-partitions to hour-partitions should be
performed. See section 14.1.2, page 154.

0 0 * * *

dailymergeschedule The times (UTC) at which the merging of
hour-partitions to day-partitions should be performed.
See section 14.1.2, page 154.

0 0 0 * *

weeklymergeschedule The times (UTC) at which the merging of
day-partitions to week-partitions should be performed.
See section 14.1.2, page 154. If not explicitly
configured, the merge of week-partitions is disabled.

disabled

monthlymergeschedule The times (UTC) at which the merging of
week-partitions to month-partitions should be
performed. See section 14.1.2, page 154. If not
explicitly configured, the merge of month-partitions is
disabled.

disabled

The format of the ...schedule options is described in section 14.1.2, page 154. The defaults are that
the minute merge is performed every minute, the hourly merges are performed at every full hours and
that the daily merge is performed at midnight UTC. Other merges are disabled by default.

Other Merge Options

There are other options, that influence merges:

• Option maxMergeThreads (see section 13.2.1, page 127) allows to define how many threads may
be used by merges.

• Option partitionSearchConcurrencyLevel limits the number of merges that are composed
in parallel by the leader. This limits the load in the leader and the nodes caused by searching for
mergeable partitions and composing the triggered merges.
The recommended value depends on the number of cluster nodes and the partitioning values and
should be not lower than the number of cluster node. For example:� �
partitionSearchConcurrencyLevel=4� �

• Option mergeConcurrency (see section 13.3.2, page 139) sets how many merges may take
place in parallel. More merges in parallel might result in faster merge operations, but will also use
more resources and can lead to e.g. poorer query performance.

There are further options to adjust the merge behavior. See section 13.2, page 119 for a complete
overview.

Page 153

14 Merging Partitions 14.2 ETL Merge

Cron-Like Schedule Options Syntax

The ...schedule merge options for cluster leaders use a cron-like syntax.

The general syntax is as follows:

<seconds> <minutes> <hours> <days_of_month> <days_of_week>

For these five values, you can specify:

• A comma-separated list of absolute values (such as 17 or 13,15,19) to have your job executed
exactly at second, minute, ... Note that no spaces are allowed inside the comma-separated list.

• A * as a wildcard to have your job executed every second, minute, ...

• For seconds, minutes, hours: An expression */n, such as */6, to have your job executed every
n-th second, minute, ...
Note that n is newly processed for each minute, hour, day. That is, if for minutes */17 is specified,
this is equivalent to specifying 0,17,34,51 (at the end of the hour, the last interval is 9 minutes).

The day of week must be specified numerically, the week starts with 0 for Sunday. That is, 1 stands for
Monday, 2 for Tuesday, 3 for Wednesday, 4 for Thursday, 5 for Friday, and 6 for Saturday.

For example:

Value Meaning

*/6 * * * * Execute a job every six seconds (in every minute, every hour, every day)
13 12 * * * Execute a job hourly at 12 minutes and 13 seconds after the full hour
0 0 0 * 1 Execute a job weekly every Monday at 00:00 AM
0 */30 * 1 * Execute a job every 30 minutes on the first day of each month
0 0 9,13,18 * * Execute a job each day at 9am, 1pm, and 6pm

ETL Merge

With the ETL merge feature, an ETL statement (“extract”, “transform”, and “load”) can be specified to
define data transformations for every merge level (Seconds to minute, minute to hour, hour to day, day
to week, and week to month).

Every supported select SQL statement can be used to define how to merge rows as long as the
column types remain. The new contents after the merge is the result of the passed select statement.

The typical application of this feature is:

• Purging data (combining multiple entries of counters for a short interval into one entry for a longer
interval). This is done via aggregations and GROUP BY clauses (see section 14.2.1, page 155 for
an example).

Note that the merge policy reimport is required:� �
if the cluster performs the ETL merge:
merge=reimport� �

Page 154

14.2 ETL Merge 14 Merging Partitions

Limitations of ETL Merge

Using an ETL merge, it is not allowed to change the partitioning schema or partitioning values. If some
aspect of the partitioning is changed, the database will behave erroneously, because these violations
will not be detected automatically.

Furthermore, an ETL merge SQL select statement has to return all values that are required by the
schema. All values have to have the correct identifier and type. Compatible types can be coerced
automatically. Overflows, type and other schema violations will be reported as errors and no merge
will take place.

Note also that filtering during ETL merges is currently not possible. Using a WHERE clause in an ETL
merge statement will result in an error.

Example for a Purging ETL Merge

A typical example for an ETL merge would be a merge that combines counters such as the number of
hits of a web site.

Guess, we have the following table:� �
CREATE TABLE Hits

(

url VARSTRING COMPRESSION HASH64 INDEX EQUAL,

host VARSTRING(100),

hits UINT64,

)

PARTITION BY url

DISTRIBUTE EVERYWHERE;� �
The column hits contains the number of hits in a given time period. Multiple rows in one or multiple
import files will have entries here. Now if we have multiple import files and a merge is triggered, we
can specify that all rows for a specific url and host are merged to one row containing the sum of all
hits. The corresponding SELECT statement for such a request:� �
SELECT url, host, SUM(hits)

FROM Hits

GROUP BY url, host;� �
has to become a ETLMERGE statement in the table specification:� �
CREATE TABLE Hits

(

url VARSTRING COMPRESSION HASH64 INDEX EQUAL,

host VARSTRING(100),

hits UINT64,

)

PARTITION BY url

DISTRIBUTE EVERYWHERE

ETLMERGE HOUR (

Page 155

14 Merging Partitions 14.2 ETL Merge

SELECT url, host, SUM(hits) as hits

FROM PARTITIONFETCH(Hits)

GROUP BY url, host

)

;� �
Here, we specify a ETL merge statement for the merge to hour partitions (first, respectively second,
merge level). Note that inside the ETL merge statement

• we read the data from table Hits with PARTITIONFETCH()

• the sum of hits (SUM(Hits)) becomes the new entry for column hits (AS hits)

To enable these kinds of merges for all levels, you have to specify:� �
CREATE TABLE Hits

(

url VARSTRING COMPRESSION HASH64 INDEX EQUAL,

host VARSTRING(100),

hits UINT64,

)

PARTITION BY url

DISTRIBUTE EVERYWHERE

ETLMERGE MINUTE (

SELECT url, host, SUM(hits) as hits

FROM PARTITIONFETCH(Hits)

GROUP BY url, host

)

ETLMERGE HOUR (

SELECT url, host, SUM(hits) as hits

FROM PARTITIONFETCH(Hits)

GROUP BY url, host

)

ETLMERGE DAY (

SELECT url, host, SUM(hits) as hits

FROM PARTITIONFETCH(Hits)

GROUP BY url, host

)

ETLMERGE WEEK (

SELECT url, host, SUM(hits) as hits

FROM PARTITIONFETCH(Hits)

GROUP BY url, host

)

ETLMERGE MONTH (

SELECT url, host, SUM(hits) as hits

FROM PARTITIONFETCH(Hits)

GROUP BY url, host

)

;� �
Note:

Page 156

14.2 ETL Merge 14 Merging Partitions

• You can pass the ETL merge strategy also via the command line. For example:� �
parstream-server first --table.Hits.etlMergeHour="SELECT url, host,

SUM(hits) as hits FROM PARTITIONFETCH(Hits) GROUP BY url, host"� �
Before Version 2.2 you had to specify (which is still supported):� �
parstream-server first --table.Hits.meta.etlMergeLevel1="SELECT url, host,

SUM(hits) as hits FROM PARTITIONFETCH(Hits) GROUP BY url, host"� �
See section 13.1.1, page 116 for details.

Page 157

Performance Optimizations

This chapter describes optimizations that can improve query speed or reduce space requirements.

Note that while in some special situations one can influence how queries are processed internally so
that certain queries can execute faster, these manual tunings can lead to worse performance in other
situations. For this reason the trade-offs need to be examined carefully.

by Cisco ParStream. For these situations the queries execute faster, but others might be a little bit
slower. Hence, it is a trade-off which kind of configuration fits best for your situation.

Note:

Be careful! A speedup in one kind of query may result in a performance penalty in another!

Execution Control
Servers offering 12, 24, 48, and even more parallel executing threads on the hardware layer
are available off the shelf for prices well suited even for the mid-level server market. To directly
transform this native low-level independent parallel execution capability into a direct advantage
for Cisco ParStream users, Cisco ParStream manages all compute and I/O intensive execution
tasks – such as queries, imports, and merge tasks – within a pool of parallel running independent
threads. These threads are assigned execution time on the available compute cores. By this, the task
scheduling directly translates the natural parallelism offered by today’s affordable computer hardware
into measurable high-level advantages for database users like scale-out and flexible concurrency
under even heterogeneous query loads.

The strategy that Cisco ParStream implements strikes a balance between executing each and every
individual query as early and fast as possible (using the first-in-first-out (FIFO) principle), while optimally
balancing parallel competing tasks. The selected strategy together with optional parametrization by
the DB administrator and by users allows for fair concurrency, by preventing short-running queries
from being blocked by long running ones.

The principle works roughly as follows:

• You can specify the number of threads the Cisco ParStream database uses in total for task
execution.

• These threads are then used by queries, imports, and merges.

• You can specify limits for each execution type so that imports or merges cannot block queries.

• You can specify the priority queries, imports, and merges initially get, which impacts the initial
minimal number of threads the task gets.

• You can specify the amount of thread execution time after which the priority of long-running tasks
decreases, which is done by reducing the minimal number of threads the task gets (it will always be
at least 1).

• Priority influences how many threads a new tasks gets to execute the request. Priority is not used
to starts tasks in different order. Thus, the tasks scheduler works on a strict FIFO manner.

Page 158

15.1 Execution Control 15 Performance Optimizations

Execution Control in Detail

In detail, there is first the configuration of the total number of threads and for which execution tasks
these threads can be used:

• The total number of threads available for execution is set via the global/server option
maxExecutionThreads. The default is 1.5 times the number of hardware threads rounded
up. The default value should be suitable to absorb I/O related latencies, but if even under heavy
query load the cpu remains idle increasing this value could help.

• To avoid mutual blocking of query, merge, and import tasks the total number of execution
threads can be partitioned via the global/server options maxQueryThreads, maxMergeThreads,
and maxImportThreads, which limit the number of threads which can be allocated to query,
merge, and import task, respectively. The defaults are:

Option Value Meaning
maxQueryThreads 0 all threads can be used for queries
maxMergeThreads maxExecutionThreads/4 at most a quarter of all threads can be used for

merges
maxImportThreads maxExecutionThreads/4 at most a quarter of all threads can be used for

imports

Then, among these threads, you can influence via priorities the fraction of the available threads a
specific task should be assigned:

• For queries, merges, and imports you can specify the following initial priorities:

Numeric Value Convenience
Value

Meaning

2 high highest priority (try to use at least half of all available threads)
4 medium default priority (try to use at least 1

4 of all available threads)
8 low lowest priority (try to use at least 1

8 of all available threads)

The numeric values are provided to be able to easily sort or filter according to priorities when
inspecting relevant system tables. They are used in all system tables and INSPECT statements
(see below). The convenience values are provided to be able to set priorities in a more readable
way.
The default is 4 or medium.

• You can set these initial priorities as global or server-specific options defaultQueryPriority,
defaultImportPriority, or defaultMergePriority (see section 13.2, page 119).

• You can also set the default query or import priority per session via the SQL SET command (see
section 27.10, page 373).

• The effect of these priorities is to set the minimal number of threads that initially are assign
to the task. In fact, the numeric value is used as divisor to process the internal task
attribute min_num_threads, which can be requested for running queries by the system table
ps_info_running_query (see section 26.4, page 321) or the SQL INSPECT command (see
section 27.6, page 362).
For example, if maxQueryThreads is 16, a query with medium priority (value 4) will initially
request 4 as minimum number of threads (16 divided by 4).

Page 159

15 Performance Optimizations 15.1 Execution Control

• Over time the “effective priority” of a task can shrink by using/setting the option
queryThrottlingInterval globally or per server. Setting queryThrottlingInterval to a
value greater than 0, instructs the scheduler to reduce the individual minimum number of threads
for a given task after it has consumed queryThrottlingInterval * maxQueryThreads

milliseconds of the total thread time during the execution time of the query. Total thread time
is the sum of all threads a tasks uses. This means, throttling will only count when a query
actually uses some CPU resources and throttling will happen earlier the more threads work on it
concurrently. The implemented algorithm halves the minimal number of threads before inspection
in every iteration down to a minimal value of 1. This introduces the concept of niceness and also
guarantees completion.

• Based on the resulting minimum number of threads for each task at a certain time, the execution
scheduler then works as follows:

– First, all tasks get all their minimum number of threads, beginning with the oldest task.
– If after assigning all the requested minimum number of threads there are still unassigned threads

(leftovers) all these threads will be assigned to the oldest task (to finish oldest task first according
to the FIFO principle).

– If there are not enough thread to fulfill the minimum requests of all tasks, the youngest tasks are
blocked.

– If for the next tasks there are less threads available than the requested minimum number, the
task will still start but only with the remaining number of available threads.

• In principle, tasks might temporarily not use all their requested threads. If Cisco ParStream detects
this, the threads might be used by other tasks. This for example might happen during a streaming
import, when Cisco ParStream is waiting for data from the client to arrive.

Thus, prioritization is not done by changing the order of tasks. Instead, if threads are available for
an execution type, the tasks start strictly in the order of the statements (FIFO strategy). Priorities
only influence the requested minimum number of threads, so that tasks with higher priority can finish
faster/earlier.

Note that the FIFO strategy is employed cluster-wide, meaning the timestamp used to sort tasks is
taken on the issuing cluster node.

Consequences of Execution Control by Example

The effect of this algorithm can be demonstrated by an example:

• Assume the Cisco ParStream database uses the default values for the number of threads (16 in
total, at most 4 for imports, and at most 4 for merges).

• A first query running alone will get all 16 threads (4 as wished minimum, which is the result of 16
divided by 4, plus 12 not used by any other task). Thus we have the following situation:

– Q1 has 16 threads (initial minimum 4 plus 12 leftovers)

• Assume we SET the query priority to high or 2 and we start a second query, the situation will be:

– Q1 has 8 threads (initial minimum 4 plus 4 leftovers)
– Q2 has 8 threads (initial minimum 8 (16 divided by 2)

• With the query priority SET to low or 8, a third query task will have the following effect:

Page 160

15.1 Execution Control 15 Performance Optimizations

– Q1 has 6 threads (4 as minimum plus 2 leftovers)
– Q2 has 8 threads (initial minimum 8)
– Q3 has 2 threads (initial minimum 2 (16 divided by 8)

• Starting an import with the default priority (medium or 4) will have the following effect:

– Q1 has 5 threads (4 as minimum plus 1 leftover)
– Q2 has 8 threads (initial minimum 8)
– Q3 has 2 threads (initial minimum 2)
– I1 has 1 thread (initial minimum 1 (4 divided by 4)

• After setting query priority back to the default priority (medium or 4) starting another query with
default priority will have the following effect:

– Q1 has 4 threads (4 as minimum)
– Q2 has 8 threads (initial minimum 8)
– Q3 has 2 threads (initial minimum 2)
– I1 has 1 thread (initial minimum 1)
– Q4 has 1 thread (initial minimum 4 (16 divided by 4) but only 1 thread left)

• Trying to process anything else is block until one of these tasks finished, is killed, times out, or is
throttled. Thus:

– Q1 has 4 threads (4 as minimum)
– Q2 has 8 threads (initial minimum 8)
– Q3 has 2 threads (initial minimum 2)
– I1 has 1 thread (initial minimum 1)
– Q4 has 1 thread (initial minimum 4 but only 1 thread left)
– Q5 has 0 thread (initial minimum 4 (16 divided by 4) but no thread left)

• With throttling for the high-priority query Q2 (which might happen first, because throttling depends
on total thread time consumption), the situation will be as follows:

– Q1 has 4 threads (4 as minimum)
– Q2 has 4 threads (initial minimum 8 halved)
– Q3 has 2 threads (initial minimum 2)
– I1 has 1 thread (initial minimum 1)
– Q4 has 4 thread (initial minimum 4)
– Q5 has 1 thread (initial minimum 4 but only 1 thread left)

Thus:

• By default half of the threads are reserved for queries only (a quarter might be used by imports or
queries and a quarter might be used for merges and queries).

• The highest settable priority (high or 2) will lead to only up to halve the number of available threads
to be assigned to the first scheduled task, meaning that one cannot reserve the whole threadpool
for a single task unless no other task is running.

• By default, one import or merge task only gets 1
16 of all threads if there are too much other tasks so

that there are no unassigned threads after fulfilling all requested minimums.

Page 161

15 Performance Optimizations 15.1 Execution Control

• To configure Cisco ParStream to reserve dedicated threads for each task type, you can set
maxExecutionThreads to maxQueryThreads+maxMergeThreads+maxImportThreads.

• Even high priority queries might get blocked by many low priority queries. If this is a problem
and you cannot wait for timeouts (option limitQueryRuntime, see section 13.2.1, page 120) or
throttling, you can kill these queries using the INSPECT and KILL commands described below.

Thread Inspection and KILL Command

Additional inspection and control commands are available to help remedy critical corner cases of query
processing:

• Threadpool inspection
The INSPECT THREADPOOL command (see section 27.6, page 362) offers a quick insight in the
execution engine.
The command is provided to be able to query the state of the running tasks and their associated
threads even if normal queries would be blocked, because it does not use the normal mechanisms
of the execution engine.
The result from this call has the same format as table data returned from query results and system
tables showing the resource consumption of running tasks, identified by their execution_id.

• Abort running queries
Using the ALTER SYSTEM KILL command (see section 27.11, page 375) you can terminate a
running task by passing its execution_id.

Dealing with the Connection Pool

For an efficient and reliable communication between connected nodes a connection pool is provided
for each node, which can be configured via server options (see section 13.3.2, page 139).

The connection pool roughly operates as follows:

• Based on a list of the connected servers each node always has the goal to have a specific number
of connections available to each connected server for immediate use. If one or more of these
available connections is used for a concrete query, new connections are asynchronously requested
to re-establish the desired number of available connections. The number of available connections
can be controlled by option connectionPool.numConnectionsPerNode (see section 13.3.2,
page 139). The default is 4.

• If a trial to establish a new connection fails, the mechanism to request additional
connections is paused for a certain period of time defined by the server option
connectionPool.nodeErrorRetryInterval (see section 13.3.2, page 139). However, the
connections already established still can be used by new queries.

• If a trial to establish new connections fails, this has no direct impact on the existing connections.
Thus, Cisco ParStream does not assume in general that all connections are broken if there is a
problem to establish a new one. If indeed all connections to a node are broken (e.g. because
the node is no longer available), this will be part of the usual error handling when the existing
connections are used again.

Page 162

15.2 Careful Partitioning 15 Performance Optimizations

• In case a new query needs a connection, but the pool is exhausted, the query will be
blocked until a new connection is available or connectionPool.connectionFetchTimeout
(see section 13.3.2, page 139) is reached. This also implies that a query will stall
for remoteNodeConnectionPool.connectionFetchTimeout milliseconds in case the
connection to the remote node cannot be established.

– In clusters with multiple nodes the query might fail or failover to the next redundant node after
the timeout.

• When a query using a connection has finished (i.e. all data from a slave have been
transmitted) the connection is given back into the pool. The pool will never drop such re-used
connections, thus usually after some queries there will be more connections in each pool than
connectionPool.numConnectionsPerNode (see section 13.3.2, page 139). Cisco ParStream
also tries to re-use connections even if an error occurred during processing of sub-selects and
should succeed doing so as long as there is no network failure outside of the Cisco ParStream
server process. Note that currently such error-resilience is not implemented for insert slaves, such
that the connections used to distribute data among the cluster during an INSERT INTO request or
a streaming import will likely be dropped if the request fails or is rolled back. You can observe the
number of connections currently in use as well as the number of re-use successes and failures via
the system table ps_info_remote_node (see section 26.4, page 317).

• Cisco ParStream periodically checks whether available connections still can be used. This can be
controlled by option connectionPool.staleConnectionCheckInterval (see section 13.3.2,
page 139).

• You can check the current state of the connection pool using the system table
ps_info_remote_node (see section 26.4, page 317).
Note that the connection pool internally gets established with the first distributed query. For this
reason, the initial state you can query with this system table might not be valid until the first
distributed query was processed.

Careful Partitioning
Cisco ParStream is a database that is specialized to analyze huge amounts of data. For this, the
data has to be partitioned so that typical queries are able to skip most of the data. Thus, appropriate
partitioning is a key for good performance. Note that you can partition according to both data and
functions over data. See section 5.1, page 29 for details.

Partition Exclusion
A key element for the performance of Cisco ParStream is a technique called partition exclusion. In
order to minimize the amount of data that needs to be accessed by a query, Cisco ParStream uses
different techniques to exclude partitions from the running executions.

A query is always mapped to an execution tree in which fetching leaf nodes read data from different
partitions. The goal is to exclude reads when Cisco ParStream knows that there can’t be data for the
running query. Thus, partition exclusion minimizes the number of leaf nodes (breadth) of the tree by

Page 163

15 Performance Optimizations 15.3 Partition Exclusion

analyzing the given query with respect to the knowledge of the partitioning as well as knowledge about
partition-wise value distribution based on bitmaps

This leads to the consequence that partitioning in Cisco ParStream should be designed in a way that
ideally only the necessary data is read. However, too many partitions can also have drawbacks. Thus,
the goal is to find the right design and granularity for partitioning to benefit from partition exclusion.

So, let’s explain explained the technique by example.

Please note that there is a similar mechanism in place to exclude full cluster nodes from a query (see
section 6.3.1, page 54).

Partition Exclusion by Partition Value

When a query is received, the WHERE condition of the statement is evaluated with respect to conditions
on partitioning columns. In case of multilevel partitioning this is done in an iterative way. For this first
level of exclusion no access to any partition data is necessary, this is purely done based on metadata.

Assuming we have the following table:� �
CREATE TABLE MyTable

(

ts TIMESTAMP INDEX EQUAL,

userId INT64 INDEX EQUAL,

platform VARSTRING,

etlDay DATE INDEX EQUAL CSV_COLUMN ETL,

userIdGroup UINT64 INDEX EQUAL CSV_COLUMN ETL

)

PARTITION BY etlDay, userIdGroup

DISTRIBUTE EVERYWHERE

ETL (SELECT CAST(ts AS DATE) AS etlDay,

userId MOD 12 AS userIdGroup

FROM CSVFETCH(MyTable))

;� �
This yields a partitioning structure where we get a first partition level partitioning by the day the given
timestamp belongs to (etlDay) and a second partition level of 12 partitions based on the value of
userId. Thus, in total we get a partition hierarchy partitioning by the user ID per day.

Receiving a query such as� �
SELECT COUNT(*) FROM MyTable WHERE etlDay = date'2013-04-12';� �

will directly eliminate all partition subtrees for any etlDay not equal to ’2013-04-12’. Thus, all
partitions except the 12 partition in the subtree of ’2013-04-12’ are completely ignored.

This works on all levels, thus� �
SELECT COUNT(*) FROM MyTable WHERE userIdGroup = 5;� �

cannot prune full subtrees, but will exclude all partitions not having value 5 as userIdGroup (i.e.
where the value of userId MOD 12 yields 5).

Page 164

15.4 ORDER BY Bitmap Index Optimization 15 Performance Optimizations

Partition Exclusion via Bitmaps Indexes

Following the metadata based exclusion of partitions, the exclusion is also possible based on details
available via existing bitmap indexes. The general principle is that, if it is possible to conclude that a
partitions cannot contain any rows that are relevant for the query, the whole partition is skipped. For
that, we only need the meta data stored into bitmap files; we doesn’t have to perform the usual bitmap
index processing. This optimization kicks in for all bitmap backed filter operations regardless of them
being a partitioning attribute or not.

Following the example above, exclusion on partitioning relevant attribute� �
SELECT COUNT(*) FROM MyTable WHERE userId = 12345;� �

will exclude all partitions that do not contain a userId with value 12345 based on the existing bitmap
dictionary. With partition exclusion by query analysis described above, we have to access at most
one partition per day (exactly those with a value of 9 for userIdGroup because 12345 MOD 12

yields 9). Now by using bitmaps we can also skip full days, if the userId with value 12345 (or the
corresponding value 9) is not present in all of them.

Consider another example:� �
SELECT COUNT(*) FROM MyTable WHERE platform <> 5;� �

Again partitions on the leaf level are skipped if we can tell by examining the partition level bitmap
dictionary that it contains no relevant data. In this case we simple check if there is a bitmap for value 5
or not.

Following the exclusion of whole subtrees and partitions we further reduce the amount of data being
accessed by utilizing the available indexes to exclude data from column stores or completely skipping
the access to column stores if the required operation can be executed on the bitmap itself (for example
aggregates like SUM / COUNT / AVG ...).

ORDER BY Bitmap Index Optimization
As introduced in section 5.3, page 35, Cisco ParStream supports different bitmap indices. It can be an
advantage if the physical data is internally sorted according to the index value (especially for range
indices). For this reason, Cisco ParStream provides the ability to force a sorting of the imported column
data with a ORDER BY clause (for backward compatibility you can also use SORTED BY instead of
ORDER BY).

That means, ORDER BY can be used to specify one or multiple columns to control the physical sorting
of the data records in each partition during an import or merge.

At first, this has an effect in the size of the bitmaps, because a bitmap on the first order criteria has
minimal size. In addition you can improve the the bitmap operation performance. As in most natural
data of real world scenarios the column are related in some way sorting most times improves operation
speed on the other column, too.

As usual, there are trade-offs. For this reason, you should double check the effect of this option with a
small amount of typical data. However, good candidates for this optimization are columns with many

Page 165

15 Performance Optimizations 15.5 Optimizing the Partition Access Tree

different values (such as timestamps) if you mainly have queries that use WHERE clauses with with
BETWEEN conditions for it. Then using a range index with the data sorted according to the data of
this column, can become a big improvement.

In general, you should try to sort according to columns with biggest indices first. They should become
smaller but you have to find out whether other columns grow.

Optimizing the Partition Access Tree

For a database partitioned according to a specific definition, it can be helpful to optimize partition
access according to other columns. In fact, if we have a WHERE clause, using a column that is not
specified as a partition, it can be helpful to create a partition access tree with this column.

For example, if we have partitioned according to columns A and B:� �
CREATE TABLE MyTable (

A ...,

B ...,

C

)

PARTITION BY A, B

...� �
and typical queries use a WHERE clause for column C:� �
SELECT * FROM MyTable WHERE C = ...;� �

then the following optimization using PARTITION ACCESS might help:� �
CREATE TABLE MyTable (

A ...,

B ...,

C

)

PARTITION BY A, B

PARTITION ACCESS A, C

...� �
Note that all columns listed for partition access have to have an index.

By specifying a LIMIT, you can enable/disable this feature for access tree subnodes that would have
more subnodes than the specified limit. For example:� �
CREATE TABLE MyTable (

A ...,

B ...,

C

)

PARTITION BY A, B

PARTITION ACCESS A, C LIMIT 5

Page 166

15.6 Smart Query Distribution 15 Performance Optimizations

...� �
The default partition access limit is 1. Thus:� �
CREATE TABLE MyTable (

...

)

PARTITION BY A, B

PARTITION ACCESS A, C

...� �
is equivalent to� �
CREATE TABLE MyTable (

...

)

PARTITION BY A, B

PARTITION ACCESS A, C LIMIT 1

...� �

Smart Query Distribution

Since Version 2.2, Cisco ParStream evaluates there WHERE condition attached to a query to determine
the set of known distribution values that can actually match the condition, and given this which nodes
of the cluster it needs to actually involve in the evaluation of the query.

For example, given an initial distribution like the following:� �
CREATE TABLE MyTable (

A ...,

...

)

PARTITION BY A, ...

DISTRIBUTE OVER A WITH INITIAL DISTRIBUTION (

(1 TO node1 node2),

(2 TO node2 node3),

(3 TO node3 node1),

)

...� �
A query with a WHERE condition such as ... WHERE A=1 is processed knowing that node1 is
enough to evaluate it. This leads to a reduction in network traffic as well as robustness against
node failures. So the example query will be evaluated, even if node2 and node3 are down, while
an unconstrained query on the same table would not. This also works with internally generated
distributions and more complex queries such as ... WHERE B>0 AND A=1, which would again
only involve node1.

Page 167

15 Performance Optimizations 15.7 JOIN Optimizations

Note, however, that subqueries with column aliases will break this mechanism. For example the
query� �
SELECT * FROM (SELECT A AS B FROM MyTable) WHERE B = 1;� �

will currently be sent to all cluster nodes, and fail if node2 and node3 are down.

JOIN Optimizations
Cisco ParStream provides a couple of optimizations for JOIN (see section 27.3.1, page 330).

Note that Cisco ParStream executes a join with either a “Hash Join” or a “Nested Loop Join” algorithm
depending on whether the join condition contains an equal predicate (A.a = B.b) or not. The joins
are processed in order of appearance in the SQL statement. That is, Cisco ParStream generates a
left deep join tree.

For example, the following query will produce a join between table tabA and table tabB, and join the
result with table tabC:� �
SELECT * FROM tabA

INNER JOIN tabB ON tabA.id = tabB.id

INNER JOIN tabC ON tabB.id2 = tabC.id;� �
The following sections show the optimizations that can be applied for joins with predicates containing
equality conditions.

Ordering Of Tables

Join queries result in a left deep tree. The query given as introductory example in section 15.7,
page 168 results in the tree shown in figure 15.1.

Due to the tree’s structure the query is processed from the query’s rightmost to its leftmost table.
To achieve an optimal performance you should always make sure, that the table with the least
data being fetched is the query’s rightmost table. The table with the second least data should be
the query’s second rightmost table and so on. This eventually results in the table with the most data
fetched for the query is the leftmost table.

The data fetched from a table can be limited by a condition pushdown (see section 15.7.2, page 168).
Hence, the table having the most data is not necessarily the table, which provides the most data for a
given query.

Condition Pushdowns

The following subsections show the different strategies that are applied to limit the amount of data
being fetched from a given table. Limiting the data fetched from tables eventually limits the amount of
data that must be processed by the join node to calculate the join results.

Page 168

15.7 JOIN Optimizations 15 Performance Optimizations

Figure 15.1: Example of a left deep join tree

WHERE Condition Pushdown

WHERE conditions and JOIN conditions are analyzed for terms that may be pushed down to the
appropriate fetch nodes. This has different advantages:

• The data that must be fetched for a table can be reduced significantly.

• The filter, that must be processed by the join node in order to calculate the join’s result tuples, is
simplified.

However, there is a restriction for LEFT OUTER, RIGHT OUTER and FULL OUTER JOINs: Cisco
ParStream may only push down predicates to the non-preserved table.

To push down terms of a WHERE condition, the WHERE condition is analyzed for sub terms that can
be pushed down. Terms that are pushed down end up as filter in the appropriate FetchNode. Terms
that cannot be pushed down are preserved as post condition filter. The join node will evaluate the post
condition filter. Therefore, an optimal performance is achieved if all terms can be pushed down
to the appropriate FetchNodes, leaving an empty post filter.

You can verify if sub terms of a WHERE condition are pushed down by using the sqlprint command
(see section 16.4.2, page 202). For example, executing the following query:� �
sqlprint SELECT tabA.id, tabB.id FROM tabA INNER JOIN tabB ON tabA.id =

tabB.id WHERE tabB.id = 2;� �
results in the following Preprocessed Tree:1� �
Preprocessed tree:

OutputNode requiredOutputRows: none fields: (tabA.id, tabB.id) uniqueNodeId:

4 limit: none offset: 0 output-format: default

1 The Description Tree and Parametrized Tree are not of interest in order to analyze the WHERE condition pushdown.

Page 169

15 Performance Optimizations 15.7 JOIN Optimizations

JoinNodeSingle requiredOutputRows: none [parallelizable] fields: (tabA.id,

tabB.id) uniqueNodeId: 5 condition: join info: join condition: tabA.id =

tabB.id, join type: INNER

FetchNode requiredOutputRows: none [parallelizable] fields: (tabA.id)

uniqueNodeId: 1 condition: table: tabA fetchtype: eForceBitmapFetch

FetchNode requiredOutputRows: none [parallelizable] fields: (tabB.id)

uniqueNodeId: 2 condition: tabB.id = 2 table: tabB fetchtype: eNoPreset� �
Each of the nodes shown in the Preprocessed Tree above have an condition entry holding all filters
that may be applied by the individual node on the data it processes. In the given example the WHERE
filter is pushed down to the FetchNode for table tabB, limiting the amount of data being fetched from
this table. Because there is no term for tabA in the WHERE filter, nothing is pushed down to tabA’s
FetchNode.

However, even if there is no WHERE condition for tabA the amount of data being fetched for this table
can be significantly limited by a Runtime Condition (See section 15.7.2, page 172).

There are three rules that are applied to calculate the WHERE condition pushdown. The three rules
are explained in the following. For each rule an example is given, showing which condition is pushed
down to the left, which condition is pushed down to the right, and which remaining conditions serve as
postfilter.

• Rule 1: If the node is an AND instruction, each sub-tree may be pushed down if it can be answered
with the subset of the input.
For example:� �
SELECT A.*, B.* FROM tableA A

INNER JOIN tableB B ON A.id = B.id

WHERE (A.x = 12) AND (B.y = 13);� �
results in the following:

– Pushdown left:� �
(A.x = 12)� �

– Pushdown right:� �
(B.y = 13)� �

– Postfilter:� �
nothing� �

• Rule 2: If the node is an OR instruction, the whole tree may be pushed down if it can be answered
with the subset of the input.
For example:� �

Page 170

15.7 JOIN Optimizations 15 Performance Optimizations

SELECT A.*, B.* FROM tableA A

INNER JOIN tableB ON A.id = B.id

WHERE (A.x = 12 AND A.y = 3) OR (A.k > 10);� �
results in the following:

– Pushdown left:� �
(A.x = 12 AND A.y = 3) OR (A.k > 10)� �

– Pushdown right:� �
nothing� �

– Postfilter:� �
nothing� �

• Rule 3: Additionally, Cisco ParStream can push down several terms of OR conditions, which must
remain in the post filter to ensure correct results.
Consider, for example:� �
SELECT A.*, B.* FROM tableA A

INNER JOIN tableB ON A.id = B.id

WHERE (A.x = 12 AND A.y = 3) OR (A.k > 10);� �
This pushdown is easier to understand if Cisco ParStream first builds a Conjunctive Normal Form
(CNF) and then applies the two rules above:� �
SELECT A.*, B.* FROM tableA A

INNER JOIN tableB B ON A.id = B.id

WHERE (A.x > 7 OR A.y < 3) AND (A.x > 7 OR B.k > 4) AND

(B.i = 3 OR A.y < 3) AND (B.i = 3 OR B.k > 4);� �
Thus, this results in the following:

– Pushdown left:� �
(A.x > 7 OR A.y < 3)� �

– Pushdown right:� �
(B.i = 3 OR B.k > 4)� �

– Postfilter:� �
(A.x > 7 OR B.k > 4) AND (B.i = 3 OR A.y < 3)� �

Page 171

15 Performance Optimizations 15.8 Query Rewrite Optimizations

Runtime Condition Pushdown

The order in which the different tables are joined has a huge influence on the performance. Cisco
ParStream employs a feature called Runtime Condition Pushdown, which performs a semi-join of the
qualifying join keys of the right relation with the left relation. To generate this list of possible join keys,
Cisco ParStream executes the right relation first. Hence, the sub-trees in the join tree are executed
from the rightmost to the leftmost.

This allows us to reduce the amount of data that is fetched if the following conditions are met:

• The join column of the left relation has a bitmap index. If there is no bitmap index the Runtime
Condition Pushdown is disabled for this column.

• The number of distinct values of the join key is smaller than MaxRhsValuesForLhsJoinBitmapScan
(see section 13.3.4, page 140).

• It is an inner join or right outer join.

Therefore, the order of appearance of tables in a SQL statement should be from highest
number of rows to lowest number of rows.

Given the following query:� �
SELECT tabA.id, tabB.id FROM tabA

INNER JOIN tabB ON tabA.id = tabB.id

WHERE tabB.id = 1;� �
This query will only fetch rows, where the condition tabB.id=1 is met (See section 15.7.2, page 169).
After these rows have been fetched, Cisco ParStream gets the Runtime Condition tabA.id IN (1),
which limits the amount of data being fetched from tabA significantly.

In a nutshell JOIN condition pushdown works as follows:

• Before execution of the hash join nodes all the right hand side fetches are executed. Currently there
is a known limitation for the right hand side fetches that limit the amount of data per FetchNode on
the right hand side to one million rows.

• In this case it means that Cisco ParStream fetches all ids from tabB where the condition id = 1

is fulfilled.

• These values are cached and, because Cisco ParStream knows by the equi condition tabA.id =

tabB.id the mapping to the respective field in tabA, the matching values are then pushed to the
respective fetch nodes of tabA.

Query Rewrite Optimizations
Cisco ParStream can rewrite JOIN queries to simpler and therefore faster queries if certain edge
conditions hold.

These optimizations are disabled by default. They can be enabled globally or individually using either
INI file options (see section 13.5, page 149) and/or, on a per-session basis, using SET commands
(see section 21.3.1, page 260).

Page 172

15.8 Query Rewrite Optimizations 15 Performance Optimizations

Join Elimination

With the optimizer option rewrite.joinElimination (see section 13.5, page 149) Cisco
ParStream can eliminate an INNER JOIN completely.

For example, the following query:� �
SELECT f.a FROM facts f INNER JOIN dimension d ON d.id = f.d_id� �

would internally be rewritten to:� �
SELECT f.a FROM facts f WHERE f.d_id IS NOT NULL� �

If enabled, this optimization will happen if the following conditions hold:

• Rule 1: It is an inner join. This optimization is not applicable to other join types.

• Rule 2: The join condition consists of a single equal predicate only.

• Rule 3: Let the join condition be LHS_TABLE.X = RHS_TABLE.Y. Then, LHS_TABLE.X must
have been declared as referencing RHS_TABLE.Y. The column definition of LHS_TABLE.X must
look like:� �

CREATE TABLE LHS_TABLE {

...

X ... REFERENCES RHS_TABLE.Y

...

) ...

� �
and RHS_TABLE.Y is declared to be NOT NULL and UNIQUE, or PRIMARY KEY which implies
NOT NULL and UNIQUE. The definition of RHS_TABLE.Y looks like:� �

CREATE TABLE RHS_TABLE {

...

Y ... NOT NULL UNIQUE ...

...

) ...

� �
or� �

CREATE TABLE RHS_TABLE {

...

Y ... PRIMARY KEY ...

...

) ...

� �
• Rule 4: Neither the select-list, nor WHERE, ORDER BY, GROUP BY, HAVING or anything else may

reference columns of the right-hand side table.

Page 173

15 Performance Optimizations 15.8 Query Rewrite Optimizations

The REFERENCES declaration above is a foreign key relation: every non-null value in LHS_TABLE.X

must be contained in RHS_TABLE.Y. Please note that Cisco ParStream does neither check this, nor
the UNIQUE declaration of RHS_TABLE.Y. It is the responsibility of the user to ensure that these
properties hold. Wrong query results are the consequence if the properties do not hold.

Hash Join Optimization

With the optimizer option rewrite.hashJoinOptimization (see section 13.5, page 150) Cisco
ParStream can speed up joins by converting nested loop joins to hash joins.

If enabled, this optimization will happen if the following condition holds:

• Rule 1: The join condition contains at least one equi-condition.

Merge Join Optimization

With the optimizer option rewrite.mergeJoinOptimization (see section 13.5, page 150) Cisco
ParStream can use a merge-join strategy to reduce memory consumption and speed up joins.

If enabled, this optimization will happen if the following conditions hold:

• Rule 1: The join is an inner, left-outer, right-outer or full-outer join.

• Rule 2: The join condition contains at least one equi-condition. Example:� �
SELECT * FROM tabA INNER JOIN tabB ON tabA.a = tabB.c AND tabA.b =

tabB.d

� �
• Rule 3: The tables being joined have a common sorting, considering equi-conditions. In the

example of rule 2, the equi-conditions are tabA.a = tabB.c and tabA.b = tabB.d. Now
consider a table definition like this:� �

CREATE TABLE tabA {

...

)

...

SORTED BY a ASC, b DESC

...

� �� �
CREATE TABLE tabB {

...

)

...

SORTED BY c ASC, d ASC

...

� �
In this case, there is a common sorting containing one column pair tabA.a and tabB.c.

Page 174

15.9 Small Optimizations 15 Performance Optimizations

• Rule 4: One of the following holds true:

– The join can use data separation (see section 15.15.4, page 191 for details).
– The option NumHashSeparatedStreamsPerNode has the value 1 (see section 13.3.4,

page 143).

Sort Elimination

With the optimizer option rewrite.sortElimination (see section 13.5, page 150) Cisco
ParStream can speed up queries by removing unnecessary sorting operations.

If enabled, this optimization will happen if the following condition holds:

• Rule 1: The data being queried is sorted by an ORDER BY statement that is identical to or a subset
of an ORDER BY statement in the CREATE TABLE statement.

Query Rewrite Analysis with ANALYZE REWRITE

The effect that the rewrite optimizer performs can be inspected with the ANALYZE REWRITE command
that can be issued over the netcat interface.

The syntax of the command is:� �
<analyze statement> ::=

"ANALYZE" "REWRITE" [<analysis verbosity] <SQL statement to analyze>

<analysis verbosity> ::=
"ALL"

| "NEARMATCHES"

| "MATCHES"

<SQL statement to analyze> ::=
<dynamic select statement>

| <insert statement>� �
The verbosity determines how much output is generated. ALL is the most verbose output, MATCHES is
the least verbose output. If no verbosity is specified, it defaults to ALL.

Small Optimizations
Several other options allow you to optimize the behavior of the Cisco ParStream database.

ExecTree Options

Note that the performance of the Cisco ParStream server is also influenced by the ExecTree option,
described in section 13.3.4, page 140.

Page 175

15 Performance Optimizations 15.9 Small Optimizations

Threadpool Settings

Cisco ParStream uses several threads organized in thread pools, for which you can specify the size.

For example:

The incoming threads execute one request from all connections. There are a maximum number of
jdbc_handling_threads + socket_handling_threads running and handling queries at the
same time. The SQL parsing and creation of the execution plan is done in this Request Handling
Thread. After the execution plan is created, the query executes in parallel (and also in parallel with
other queries) in the Execution Thread Pool. The number of execution threads can be set with the
option maxExecutionThreads and maxQueryThreads (see section 13.2.1, page 127).

Page 176

15.10 Column Store Compressions 15 Performance Optimizations

Preloading

A couple of options allow to preload data so that queries for this data gets accelerated. The following
server-specific options (see section 13.3, page 134) allow to preload data:

Option Effect Default
preloadcolumns val Whether and how to preload columns.

Possible values are:
nothing

complete: preload all columns and
map files (for strings and blobs)
memoryefficient: preload all
columns, but when column is a string or
blob only the map-files are preloaded
nothing: preload nothing

preloadindices val Whether and how to preload all indices.
Possible values are:

nothing

complete: preload all indices
nothing: preload no indices

preloadingthreads num Number of preloading threads. Usually
Cisco ParStream uses the number of the
option maxExecutionThreads (see
section 13.2.1, page 127), but when your
I/O subsystem isn’t fast, reduce these
number to increase performance

maxExecutionThreads

blockqueriesonpreload bool If set to true, no further queries are
accepted until all configured columns
and indices marked for preloading have
been loaded.

false

For example:� �
[server.srv1]

preloadcolumns = memoryefficient

preloadindices = complete� �
In addition, you can specify for individual columns whether to preload column data and/or indices by
using the PRELOAD_COLUMN and/or PRELOAD_INDICES clause (see section 24.2.4, page 284).

Note that you can query which data is loaded via the system table ps_info_mapped_file (see
section 26.4, page 320).

Column Store Compressions

Column store compression is a technique that can reduce the size of column stores in the file system
and/or in memory.

Cisco ParStream currently supports the following forms of column store compression:

• A Sparse Compression approach, which optimizes column stores when there is a high number of
one typical value (see section 15.10.1, page 178).

Page 177

15 Performance Optimizations 15.10 Column Store Compressions

• A Dictionary Compression approach, which optimizes column stores when there is a hit number of
multiple typical value (see section 15.10.2, page 179).

• A low-level compression that compresses column stores using the LZ4 algorithm (see
section 15.10.3, page 181).

Sparse Column Store Compression

Sparse column store compression is effective on columns with a high number of equal values.

Note that, if there are multiple typical values, then dictionary column compression usually is a better
approach (see section 15.10.2, page 179).

How Sparse Compression Works

The idea of the sparse column store compression is to store one value, the most frequent one in the
column store, once in the column store, as so-called default value.

The values different from the default value are stored together with their row id in segments of the
column store, which are regions of the column store file. How many segments are written to a sparse
column store during import depends, among other things, on a maximum segment size that can be
configured with the global options columnStoreSegmentSize (see section 13.2.1, page 126).

The effectiveness of the sparse compression depends on how often the default value occurs in the
column store. The higher the number of occurrences of the default value compared to the number of
non-default values is, the better will the column store be compressed.

Sparse-compressed column stores are not only smaller in the file system, they also save room when
they are loaded into memory, and due to their smaller size also save IO time.

Sparse column store compression is activated for a column by specifying a COMPRESSION SPARSE

with an optional default value in the CREATE TABLE statement. If no default value is specified, NULL
is used because that is a very frequent case.

Note that only fixed-width column types can use the sparse column compression. These are all integer
and floating-point column types, all datetime types, BITVECTOR8, and hashed strings and blobs of
singularity SINGLE_VALUE.

Note also that one cannot combine SPARSE compression with LZ4 compression.

Examples

A simple example of creating a sparse column store:� �
CREATE TABLE SomeTable (

col1 INT16 COMPRESSION SPARSE

)

DISTRIBUTE EVERYWHERE;� �
Another example, using VAT with a default value of 19 percent (as it is in Germany, for instance):� �
CREATE TABLE Expenses (

Page 178

15.10 Column Store Compressions 15 Performance Optimizations

vat UINT8 COMPRESSION SPARSE SPARSE_DEFAULT 19,

...

)

DISTRIBUTE EVERYWHERE;� �
You can also use a DEFAULT clause to specify the default values used for sparse compression:� �
CREATE TABLE Expenses (

vat UINT8 DEFAULT 19 COMPRESSION SPARSE,

...

)

DISTRIBUTE EVERYWHERE;� �
But note that currently such a DEFAULT clause is no general default value in case no value is give
during imports.

A more complex example of creating sparse columns showing all types for which sparse compression
is available:� �
CREATE TABLE three_segments

(

bitvector8_col BITVECTOR8 COMPRESSION SPARSE,

uint8_col UINT8 COMPRESSION SPARSE,

uint16_col UINT16 COMPRESSION SPARSE,

uint32_col UINT32 COMPRESSION SPARSE,

uint64_col UINT64 COMPRESSION SPARSE,

int8_col INT8 COMPRESSION SPARSE,

int16_col INT16 COMPRESSION SPARSE,

int32_col INT32 COMPRESSION SPARSE,

int64_col INT64 COMPRESSION SPARSE,

float_col FLOAT COMPRESSION SPARSE,

double_col DOUBLE COMPRESSION SPARSE,

shortdate_col SHORTDATE COMPRESSION SPARSE,

date_col DATE COMPRESSION SPARSE,

time_col TIME COMPRESSION SPARSE,

timestamp_col TIMESTAMP COMPRESSION SPARSE,

varstring_col VARSTRING COMPRESSION HASH64, SPARSE,

blob_col BLOB COMPRESSION HASH64, SPARSE,

)

DISTRIBUTE EVERYWHERE;� �
See also section 24.2.4, page 285 for details.

Dictionary Column Store Compression

Dictionary column store compression is most effective on columns with small numbers of distinct
values.

Note that, if there is only one typical value, then sparse column compression usually is a better
approach (see section 15.10.1, page 178).

Page 179

15 Performance Optimizations 15.10 Column Store Compressions

How Dictionary Compression Works

A dictionary-compressed column stores contains a dictionary of all the distinct values in the column
store. Each distinct value has an index in that dictionary.

For each row in the column store, the index of the row’s value in the dictionary is stored in the column
store instead of the value itself. Because indices can be stored as bit-fields that take much less room
than the value itself, this can save a significant amount of memory.

Dictionary-compressed column stores are not only smaller in the file system, they also save room
when they are loaded into memory, and due to their smaller size also save I/O time.

Dictionary column store compression is activated for a column by specifying a COMPRESSION

DICTIONARY in the CREATE TABLE statement (see section 24.2.4, page 284).

Note that only fixed-width column types can use the dictionary column compression. These are all
integer and floating-point column types, all date/time types, BITVECTOR8, hashed strings, and blobs
of singularity SINGLE_VALUE.

Note also that one cannot combine DICTIONARY compression with LZ4 compression.

Examples

A simple example of creating a dictionary column store:� �
CREATE TABLE SomeTable (

col1 INT16 COMPRESSION DICTIONARY

)

...

;� �
A more complex example of creating dictionary columns showing all types for which dictionary
compression is available.� �
CREATE TABLE SomeOtherTable

(

bitvector8_col BITVECTOR8 COMPRESSION DICTIONARY,

uint8_col UINT8 COMPRESSION DICTIONARY,

uint16_col UINT16 COMPRESSION DICTIONARY,

uint32_col UINT32 COMPRESSION DICTIONARY,

uint64_col UINT64 COMPRESSION DICTIONARY,

int8_col INT8 COMPRESSION DICTIONARY,

int16_col INT16 COMPRESSION DICTIONARY,

int32_col INT32 COMPRESSION DICTIONARY,

int64_col INT64 COMPRESSION DICTIONARY,

float_col FLOAT COMPRESSION DICTIONARY,

double_col DOUBLE COMPRESSION DICTIONARY,

shortdate_col SHORTDATE COMPRESSION DICTIONARY,

date_col DATE COMPRESSION DICTIONARY,

time_col TIME COMPRESSION DICTIONARY,

timestamp_col TIMESTAMP COMPRESSION DICTIONARY,

varstring_col VARSTRING COMPRESSION HASH64, DICTIONARY,

Page 180

15.11 LIMIT optimization 15 Performance Optimizations

blob_col BLOB COMPRESSION HASH64, DICTIONARY,

)

...

;� �
See also section 24.2.4, page 285 for details.

LZ4 Compression

This column store compression technique uses LZ4 to reduce the size of column store files in the file
system.

Caution: LZ4 compression has its benefits but can also have significant drawbacks:

• LZ4 shortens import speed if disk I/O is significantly slower than the time to compress the data.

• However, when reading data from the column store to process queries, both more memory and
time is needed to uncompress the data. In fact, a column store is completely mapped into memory
to uncompress it.

That is, never turn LZ4 compression on without evaluating the approach and comparing the
effect both with and without LZ4 compression.

For details how to enable LZ4 compression, see section 24.2.4, page 285.

LIMIT optimization
The LIMIT optimization is an optimization which comes with no user configurations required. The
LIMIT in the OutputNode will be pushed down the expression tree as far as possible, as illustrated
the following examples:� �
SELECT * FROM ... [WHERE ...] LIMIT N� �

Rules for this kind of command:

• no node transmits more than N results

• no buffers of more than N rows are kept

• on each node the query stops once N results have been collected

• due to internal parallelism this does not guarantee that more than N results are ever produced but
from each partition only up to N values are extracted� �
SELECT * FROM ... [WHERE ...] ORDER BY ... LIMIT N� �

Rules for this kind of command:

• no node transmits more than N results

• all data matching WHERE will still be fetched

• sort will be massively parallelized via initial sort/sort merge strategy and sort on slave nodes as
well as query master

Page 181

15 Performance Optimizations 15.12 Parallel Sort

• internal buffers, the number of which is usually on the order of number of selected partitions, are
limited to N rows� �
SELECT sum(...) FROM ... [WHERE ...] GROUP BY ... [HAVING ...] LIMIT N� �

Such queries will not benefit greatly from the optimization done here, because Cisco ParStream does
not optimize inside the aggregations themselves, and the aggregations will only produce results after
all data has been processed.� �
SELECT sum(...) FROM ... [WHERE ...] GROUP BY ... [HAVING ...] ORDER BY ...

LIMIT N� �
As above, but keep in mind that the optimization only applies after the GROUP BY has been executed.� �
SELECT sum(...) FROM ... [WHERE ...] LIMIT N� �

Any limit > 0 will not result in any change in query behavior, because only one row can ever be
expected.

LIMIT 0 will not trigger any actual data processing, but only return the resulting field-list and can
thus be safely used to extract column lists and perform quick validity checks of queries.

Parallel Sort
Sort is parallelized across cluster nodes and partitions. Each partition will get its own SortNode
assigned, which will be generated automatically by the server. Additionally SortMergeNodes will
combine the results of the separate child nodes, which can be SortNodes, other SortMergeNodes or
TransportNodes for distributed queries, as illustrated for a simple example in figure 15.2.

Page 182

15.12 Parallel Sort 15 Performance Optimizations

Figure 15.2: Query processing of the parallel sort.

Page 183

15 Performance Optimizations 15.13 Controlling the Number of Mapped Files

Controlling the Number of Mapped Files

Cisco ParStream tries to hold a useful amount of data in memory to provide the best possible
performance. However, keeping too much data in memory is counter-productive because the system
might start to swap. For this reason, you have the ability to control how much and how long data is
kept in memory.

A mapped file collector is provided to unmap old data if certain conditions are met. The conditions
roughly are:

• A specified limit of maximum mapped files is reached

• The last access to the data files is older than a specified amount of time

The following server options control this behavior in detail:

Option Effect Default
mappedFilesMax maximum number of mapped files before

unmapping happens
80,000

mappedFilesCheckInterval Interval in seconds that limit of maximum number of
mapped files is checked

10

mappedFilesOutdatedInterval If unmapping happens, all files with an access older
than this amount of Seconds are unmapped

3600 (1 hour)

mappedFilesAfterUnmapFactor Factor for mappedFilesMax to compute the
resulting number of mapped files after unmapping.

0.8

mappedFilesMaxCopySize Maximum size of files in bytes that will be copied
completely into heap memory instead of using a
memory mapped approach.

16384

Note:

• In principle the algorithm for unmapping files follows a LRU (least recently used) approach, which
means that if too much files are mapped into memory, the files with the oldest last access are
unmapped. Note however that to optimize this algorithm, individual files are not unmapped strictly
according to their access timestamps.

• Note that as long as the limit mappedFilesMax is not reached, even outdated files are not
unmapped.

• A value of 0 for mappedFilesMax or mappedFilesCheckInterval disables the whole
unmapping algorithm.

• See section 26.4, page 320 for system table ps_info_mapped_file, listing which files are
currently memory mapped.

• The mappedFilesAfterUnmapFactor is used to specify the target number of mapped files
when unmapping applies. With the default 80,000 for mappedFilesMax the default 0.8 for
mappedFilesAfterUnmapFactor means that the goal is to unmap files so that less or equal
64,000 mapped files exist afterwards. Thus, if you had 90.000 mapped files when unmapping
happens, the goal is to unmap at least 26,000 files. A factor of 0 means that all files shall get
unmapped.
Note however, that this factor is only a rough goal. Mapped files are unmapped in chunks so that
more files might get unmapped. It might also happen that less files are unmapped because the
files are still/again in use or new mapped files were added while unmapping happens.

Page 184

15.14 Disable Tracking of Access Times in File System 15 Performance Optimizations

• The mappedFilesMaxCopySize option deals with the fact that loading files as a whole might be
faster than using an memory mapped approach for small files. Usually, the system call mmap()
internally uses pages of 4096 bytes size to manage the file access. Every mmap-segment will add
an additional entry into the processes page table. If the number of entries grows, it may exceed a
threshold, which noticeably slows down every subsequent memory access addressing prior unused
pages (page fault). Therefore using mmap for files smaller than a certain size makes no sense,
because the performance penalty for the page faults is very high and the page only consist of a
small number of pages. For files smaller than one page (4096 bytes) the effect is even worse,
because they will be anyway mapped completely from disk storage into memory. The files with sizes
smaller than or equal to the value of mappedFilesMaxCopySize will therefore be copied from
disk to memory in full, but will be managed by the LRU approach in the same way as mapped files
and will therefore be visible in the ps_info_mapped_files system table (but because they are
not really memory mapped anymore, they will not be visible in the processes /proc/self/maps
system file).

• You can set the values at runtime with a ALTER SYSTEM SET command (see section 27.11.1,
page 375). Note that it might take up to mappedFilesCheckInterval seconds until the new
values are processed. If unmapping was disabled, it might take additional 5 seconds until the first
check is performed.

• You can query the values of these options using the system table ps_info_configuration

(see section 26.3, page 312).

Disable Tracking of Access Times in File System
The file system keeps track of multiple statistics about its managed files. Among others, the last file
access time is updated every time a file is being accessed. Cisco ParStream does not make use
of this information, hence, we can improve file system performance by disabling the tracking of the
access times. You can disable the tracking by adding noatime to the mount options in /etc/fstab.

An example would look like this:� �
/dev/hda1 / ext4 defaults,noatime 1 1� �

Page 185

15 Performance Optimizations 15.15 Separation Aware Execution

Separation Aware Execution
Cisco ParStream provides a couple of optimizations based on the awareness of locally or distributed
separated data.

In general, these separation aware execution optimizations are enabled by the ExecTree option
SeparationAwareExecution (see section 13.3.4, page 142).
If enabled in general, you can disable specific separation aware execution optimizations in case they
are counter-productive with the following options in the [ExecTree] section:

Option Effect Page
SeparationEnableDSGB Enable/disable Data Separated GROUP BY (DSGB) 186
SeparationEnableHSGB Enable/disable Hash Separated GROUP BY (HSGB) 189
SeparationEnableDSFA Enable/disable Data Separated Function Aggregations (DSFA) 190
SeparationEnableDSJ Enable/disable Data Separated JOIN (DSJ) 191
SeparationEnableHSJ Enable/disable Hash Separated JOIN (HSJ) 196
SeparationEnableDSI Enable/disable Data Separated IN (DSI) 197

Several of these optimizations have distributed variants. In fact:

• For Data Separated GROUP BY (DSGB) you can also have Distributed Data Separated GROUP BY
(DDSGB) (see section 15.15.1, page 189).

• For Hash Separated GROUP BY (HSGB) you can also have Distributed Hash Separated GROUP

BY (DHSGB). (see section 15.15.2, page 189).

• For Data Separated JOIN (DSJ) you can also have Distributed Data Separated JOIN (DDSJ) (see
section 15.15.4, page 194).

With the ExecTree option SeparationEnableDHS you can enable/disable all distributed hash
separated optimizations, i.e. DHSGB.

Data Separated GROUP BY (DSGB and DDSGB)

Data Separated GROUP BY (DSGB) is an approach to optimize GROUP BY queries. The basic idea
is to distribute the data of a distinct column into disjoint sets (partitions). When queries address
this/these disjoint column(s) in a GROUP BY clause, you will gain a significant query speed up.

Assume we have a query like SELECT ... GROUP BY userid. Internally, we get an execution
tree like in Figure 15.3. It is easy to see, that the upper aggregation stage does not scale.

When we organize the data in disjoint sets (see Figure 15.4), we are able to build a simpler execution
tree without the bottleneck in the upper stage. In the upper stage, we only concatenate the results of
the stages stated below.

The aim is to distribute the work of an aggregate node into independent nodes. Each node can
accomplish its work in parallel to the other nodes. The result can easily be concatenated by an output
node. Depending on the amount of data the parameter to determine the disjoint portions should be
chosen reasonably. To achieve this you have to tell the import process how to build the disjoint data
sets.

For example, guess we have a table with different user IDs:� �
CREATE TABLE MyTable (

Page 186

15.15 Separation Aware Execution 15 Performance Optimizations

Figure 15.3: Common aggregation execution

Figure 15.4: Data separated execution

Page 187

15 Performance Optimizations 15.15 Separation Aware Execution

userid UINT32 ...

...

)

...� �
To build a disjoint limited set of data, we have to specify an ETL select statement distributing the
userids over 20 usergroups: For example:� �
ETL (SELECT userid MOD 20 AS usergroup

FROM CSVFETCH(MyTable)

)� �
For this new ETL column we need a corresponding column, which we use to partition the data:� �
CREATE TABLE MyTable (

userid UINT32 ...

...

usergroup UINT16 INDEX EQUAL CSV_COLUMN ETL

)

PARTITION BY ... usergroup ...� �
The important point is to tell the database optimizer that queries to column userid can be optimized
because they are distributed (separated) by the newly introduced column:� �
CREATE TABLE MyTable (

userid UINT32 ... SEPARATE BY usergroup

...

usergroup UINT16 INDEX EQUAL CSV_COLUMN ETL

)

PARTITION BY ... usergroup ...� �
Thus, to bring all together in the CREATE TABLE statement we need the following:� �
CREATE TABLE MyTable (

userid UINT32 ... SEPARATE BY usergroup

...

usergroup UINT16 INDEX EQUAL CSV_COLUMN ETL

)

PARTITION BY ... usergroup ...

...

ETL (SELECT userid MOD 20 AS usergroup

FROM CSVFETCH(MyTable)

);� �
Finally, we have to enable this optimization in general with the corresponding INI options:� �
[ExecTree]

SeparationAwareExecution = true

SeparationEnableDSGB = true� �
Page 188

15.15 Separation Aware Execution 15 Performance Optimizations

Distributed Data Separated GROUP BY (DDSGB)

For Data Separated GROUP BY there is also a variant provided, called Distributed Data Separated
GROUP BY (DDSGB). Several of these optimizations have distributed variants. For DDSGB
(Distributed Data Separated GROUP BY) you also have to distribute the data according to the
usergroup column as described in section 6.3, page 53.

Hash Separated GROUP BY (HSGB and DHSGB)

Hash Separated GROUP BY (HSGB) is another approach to optimize GROUP BY queries. A query
with a group by clause results internally in several aggregation stages. You can speed up these
aggregations by building an internal mesh of parallelization. There is also a distributed variant of this
optimization called Distributed Hash Separated GROUP BY (DHSGB).

Figure 15.5: Distributed Hash Separated GROUP BY (DHSGB)

To enable the Hash Separated GROUP BY, the following INI parameters have to be set in the
[ExecTree] section:� �
[ExecTree]

SeparationAwareExecution = true

SeparationEnableHSGB = true� �
This feature works on a cluster as well. To enable the support for DHSGB, the following INI file
parameter must be set additionally:� �
[ExecTree]

SeparationEnableDHS = true

Page 189

15 Performance Optimizations 15.15 Separation Aware Execution

� �
You can control the degree of parallelism per node used by (D)HSGB via another option in the
[ExecTree] section:� �
[ExecTree]

NumHashSeparatedStreamsPerNode = 16� �
For example, the value 16 means to have 16-way-parallelism of inner aggregation stages on each
participating cluster-node.
Finding the right value for NumHashSeparatedStreamsPerNode is not easy. Bear in mind that the
speed up depends on many criteria, such as number of CPUs, number of cores in the CPUs, amount
of memory, and so on. Setting this value to zero or below will yield an error.

With the global option dhsgbConnectionTimeout (see section 13.2.2, page 133) you can define
the timeout when establishing inter cluster connections for DHSGB.

Data Separated Function Aggregation (DSFA)

A query with a DISTINCT clause or a DISTVALUES function can be parallelized even without a GROUP
BY clause. Cisco ParStream leverages the information given by the data separation on a column to
reduce the number of comparisons necessary to get a distinct set of values. The only prerequisites
to enable this feature are that the column in the DISTINCT or DISTVALUES is either a partitioning
column or separated by a partitioning column, and that DSFA is enabled in the INI configuration:� �
[ExecTree]

SeparationAwareExecution = true

SeparationEnableDSFA = true� �
Then, with� �
SELECT DISTINCT city FROM tabA;� �

we assume that city is separated by a partitioning column. Hence, each partition contains a set of
cities that is disjoint to the sets in the other partitions. Therefore, Cisco ParStream calculates all
distinct values per partition and then concatenates the results of all partitions to get a final set of
distinct values.

And with� �
SELECT COUNT(DISTINCT city) FROM tabA;� �

the procedure is identical to the example above. The sole exception is that instead of concatenating
the sets of disjoint values, we sum up the different number of distinct values.

This feature can be extended to work in a cluster if the partitioning column is also the distribution
column. Then, Cisco ParStream can calculate the distinct values on each server independently and
concatenate the result as a final step.

Page 190

15.15 Separation Aware Execution 15 Performance Optimizations

JOIN Parallelization

Cisco ParStream applies different parallelization strategies for JOIN queries. These strategies enable
the optimizer to scale join nodes horizontally to achieve an optimal query performance. The strategies
applied are:

• Data Separated JOIN (DSJ, see page 191)

• Distributed Data Separated JOIN (DDSJ, see page 194)

• Hash Separated JOIN (HSJ, see page 196)

The optimizer always tries to leverage DSJs if possible and falls back to HSJs if DSJ is not applicable.
In a multi-stage join both of these strategies may appear in combination, because the optimizer will
use DSJs as long as possible and fall back to HSJs if DSJ can’t be applied anymore.

Figure 15.6 shows how the optimizer decides which parallelization strategy to use.

Figure 15.6: Decision flow for parallelization strategies

Data Separated JOIN (DSJ)

A JOIN can exploit Data Separation. This enables the optimizer to scale the JOIN horizontally and
join complete partitions pairwise. This feature can be applied when joining:

• two partitioning columns, or

• two columns that are separated by another column, which splits these columns virtually into disjoint
parts (see section 15.15.4, page 192 for details).

Page 191

15 Performance Optimizations 15.15 Separation Aware Execution

To enable Data Separated JOINs the ExecTree options SeparationAwareExecution (see
section 13.3.4, page 142) and SeparationEnableDSJ must be set in the [ExecTree] section:� �
[ExecTree]

SeparationAwareExecution = true

SeparationEnableDSJ = true� �
Tables are implicitly separated by their respective partitioning column. Assume we have two tables
tabA and tabB, both tables are partitioned by the respective id column. Executing the following
query will result in the execution tree shown in figure 15.7 (we assume that both tables have the values
1 and 2 for their individual id column):� �
SELECT * FROM tabA

INNER JOIN tabB ON tabA.id = tabB.id;� �

Figure 15.7: Example of a Separated Join with partitions for column id (in both tables column id has the values
1 and 2, respectively)

To exploit Data Separation for columns that are separated by another column (see section 15.15.1,
page 188 for further details about columns separated by another column) you have to specify a hint
for the optimizer. For this, Cisco ParStream introduces a new column property called “REFERENCES”
(see section 24.2.4, page 284), which allows to exploit a defined Data Separated JOINs similarly to
DSGB (see section 15.15.1, page 186). The new property allows to define that a column in one table
is separated by the same function as another column in another table.

For example: Assume you have two tables tabA and tabB containing user ids. Due to the high
cardinality of your user ids assume further, that you want to group user ids by a column user_group

which is created by an ETL statement during import. The function you may use to create the column

Page 192

15.15 Separation Aware Execution 15 Performance Optimizations

user_group is user_id % 20 to generate 20 groups. These 20 groups contain disjunct sets
of user_ids. The function user_id % 20 is utilized by tabA and tabB in order to create their
respecting user_group column. Now assume you issue the following query:� �
SELECT * FROM tabA INNER JOIN tabB ON tabA.user_id = tabB.user_id;� �

If the optimizer knew that both user_id columns fall into 20 disjunct groups, a DSJ could be executed
directly on the user_group column.

We give an example why here a DSJ is applicable: Assume there is a user_group with the value 1
for tabA which has no counterpart in tabB. Due to the fact that the column user_id falls into disjunct
subsets we know that there exist no matching user_ids in this subset for tabA and tabB. This
allows the optimizer to exclude complete partitions without the need to match the individual user_ids
within the partitions. In order to exploit this knowledge the optimizer needs a hint. This hint is given by
the “REFERENCES” keyword telling the optimizer that both user_id columns are separated by the
same function. It is, due to the rule of transitivity, sufficient if you give this hint in one table definition.
For the sake of this example we’ll show the relevant parts of tabA’s table definition:� �
CREATE TABLE tabA

(

user_id UINT64 SINGLE_VALUE SEPARATE BY user_group REFERENCES tabB.user_id

INDEX EQUAL,

...

user_group UINT64 SINGLE_VALUE INDEX EQUAL CSV_COLUMN ETL

)

PARTITION BY user_group,

...

ETL (SELECT user_id MOD 20 AS user_group FROM CSVFETCH(tabA));� �
Hence, Cisco ParStream can use the existing data separation to parallelize the join locally into multiple
hash joins. Otherwise, Cisco ParStream would have to separate the values manually by a pre-hashing
phase.

Please note:

• Referenced column have to be defined as NOT NULL and UNIQUE.

• You can also reference a table as a whole (i.e. REFERENCES tabB). In that case, the referenced
column is the column marked as PRIMARY KEY in the referenced table (see section 24.2.4,
page 284).

• If tabA.col1 REFERENCES tabB.col2, every value of tabA.col1 has to occur somewhere
in tabB.col2 unless it is NULL. This constraint is not validated by Cisco ParStream, valid data
has to be guaranteed by the customer.

• REFERENCES is a transitive property and cycles will lead to an error.

• A wrong REFERENCES configuration may lead to wrong query results.

• Separation aware execution has to be enabled for this feature to work (see section 13.3.4, page 140).

Page 193

15 Performance Optimizations 15.15 Separation Aware Execution

Distributed Data Separated JOIN (DDSJ)

Cisco ParStream currently only supports Distributed Data Separated Joins. Locally on each cluster
member, Cisco ParStream uses a Data Separated Join (DSJ) to compute partial solutions of the query.
Due to data separation, Cisco ParStream can simply concatenate the results, locally computed, on the
query master to create the final result.

If Cisco ParStream cannot exploit data separation to parallelize a join across cluster members, Cisco
ParStream reverts back to a join on the query master. That means, Cisco ParStream ships all data
to the query master and computes the result locally. In this case, Cisco ParStream may still apply a
hash separation to use a hash join, but using data separation and computing the join on all cluster
members in parallel will yield better performance.

To use a Distributed Data Separated Join, a few conditions have to be fulfilled:

• The join columns are either distribution columns, or they are separated by one of the distribution
columns (see section 6.3, page 53) using the same function (see section 15.15.4, page 192).

• One of the tables is distributed across the cluster. The other tables are either replicated on every
node using distribution everywhere (see section 6.3.1, page 58), or they are collocated with the
distributed table (see section 6.3.1, page 54).

• All requirements from Data Separated Join (DSJ). See section 15.15.4, page 191.

Figure 15.8 shows how the optimizer decides how to distribute a join query.

By the rules above, Cisco ParStream can conduct a join within a cluster in three different ways:

• Rule 1: Assume columns tabA.a and tabB.b are collocated. Then, for example, the following
query:� �
SELECT * FROM tabA

INNER JOIN tabB ON tabA.a = tabB.b;� �
would result in a distributed join, which is executed on each node individually. This is shown in
figure 15.9.

• Rule 2: Assume columns a and b are collocated and a third column c is either collocated to column
a or b, or fully distributed.
For example, the following query:� �
SELECT * FROM tabA

INNER JOIN tabB ON tabA.a = tabB.b

INNER JOIN tabC ON tabB.b = tabC.c;� �
would result in a distributed join, which is executed on each node individually: This is shown in
figure 15.10.

• Rule 3: If the data sets are neither collocated nor at least one of the tables is fully distributed,
concurrent execution of the join across a cluster is not possible. Hence, all work must be done by
the query master after collecting all relevant data.
In this case, for example, the following query:� �
SELECT * FROM tabA

INNER JOIN tabB ON tabA.a = tabB.b;

Page 194

15.15 Separation Aware Execution 15 Performance Optimizations

Figure 15.8: The optimizer’s activities to decide the distribution strategy

Figure 15.9: Columns a and b are collocated which leads to a distributed execution of the join on each cluster
member.

Page 195

15 Performance Optimizations 15.15 Separation Aware Execution

Figure 15.10: Columns a and b are collocated, column c is either collocated to column a or b, or fully distributed,
which leads to a distributed execution of the join on each cluster member.

� �
will result into a situation as shows in figure 15.11.

Figure 15.11: Columns a and b are not collocated, neither is one of the tables fully distributed. This leads to a
local join on the query master.

Hash Separated Join (HSJ)

If a Data Separated JOIN (see section 15.15.4, page 191) is not applicable, the optimizer will fall back to
a Hash Separated JOIN (HSJ). HSJ is applied if the columns within the join condition are not separated
by the same logical attribute. If this is the case the optimizer does not know how the data is distributed.
Still the optimizer is capable to scale the JOIN horizontally by adding HashSeparatingNodes. This
layer distributes data, based on its hash value, to the layer of join nodes above. This eventually allows
the join to be scaled. The support for HSJ can be enabled by the following options:� �
[ExecTree]

SeparationAwareExecution = true

Page 196

15.15 Separation Aware Execution 15 Performance Optimizations

SeparationEnableHSJ = true� �
The number of parent nodes of HashSeparatingNodes is determined by the [ExecTree] option
NumHashSeparatedStreamsPerNode (see section 13.3.4, page 143):� �
[ExecTree]

NumHashSeparatedStreamsPerNode = 16� �
By this configuration entry, 16 HashJoinNodes will be created above 32 HashSeparatingNodes.2

Given the following query:� �
SELECT * FROM tabA INNER JOIN tabB ON tabA.id = tabB.id;� �

which joins over two columns not separated by the same
logical attribute, and NumHashSeparatedStreamsPerNode set to 3, will result in the execution
tree shown in figure 15.12.

Figure 15.12: Simplified example of a JOIN query where the optimizer decided to use hash separation.

Data Separated IN (DSI)

We can leverage data separation to calculate a Data Separated IN (DSI) for queries like in the following
example:� �
SELECT * FROM tabA WHERE tabA.userId IN (SELECT id FROM tabB);� �

The prerequisite to perform a Data Separated IN (DSI) is that the columns used in the IN, in the
example “tabA.userId” and “tabB.id”, are:

• two partitioning columns, or
2 For each JoinNode two HashSeparatingNodes are created: One for the join’s LHS, and one for the join’s RHS children.

Page 197

15 Performance Optimizations 15.15 Separation Aware Execution

• two columns that are separated by another column, which splits these columns virtually into disjoint
parts. See section 15.15.4, page 192 for a detailed explanation.

In this case, Cisco ParStream calculates all relevant keys on a partition level to reduce the size of
unnecessary filter statements and to retrieve only relevant data.

You can enable the support for Data Separated IN (DSI) by using the following ini configuration:� �
[ExecTree]

SeparationAwareExecution = true

SeparationEnableDSI = true� �
If you operate a cluster with multiple nodes, the Data Separated IN can only be applied if the two
columns involved in the IN are co-located, i.e., they are either columns used to distribute the table
over the cluster or they are separated by distribution columns.

If the Data Separated IN is disabled, the only option to use an IN statement involving two tables is to
have one table replicated on every cluster node. Otherwise, the IN query will not be accepted and
return an error message.

Page 198

Socket Client Interface

Client applications can connect to a Cisco ParStream database via a plain character-based socket
interface. Various utilities and tools can utilize this interface.

The socket interface is realized over a TCP/IP connection. All data is transmitted as UTF-8 encoded
text, there is no binary transmission of data. Simultaneous connections are processed within a server
in parallel, using threads. Multiple requests within the same connection are processed sequentially.

Each request consists of one line and is terminated either with a zero-byte or a client’s ("\n"). Every
line of a result set is terminated with a LF ("\n"). The entire result set is terminated with an empty line
followed by a zero-byte.

Security
For a user to authenticate with a Cisco ParStream server via the netcat interface, he needs to issue a
login command using valid login credentials after connecting to Cisco ParStream:� �
login '<username>' '<pass phrase>'� �

Tooling
Users can interact with Cisco ParStream database over the socket interface using these tools:

1. nc (netcat): a standard socket interface client (see section 12.1.2, page 113).

2. pnc: an improved socket interface client provided by Cisco ParStream (see section 12.1.1,
page 110).

In addition to SQL conforming commands, Cisco ParStream also accepts additional control commands
sent through the netcat interface that read or alter system parameters. See section 16.4, page 200 for
details.

SQL commands can also sent to Cisco ParStream with the psql console client using the PostgreSQL
compatible protocol. See section 12.2, page 115 for details.

Output Format
Cisco ParStream can have different interface formats. The default format, ASCII, returns the result of
queries as plain ASCII data. In addition, you can use

• JSON: The output format is JSON (See section 16.7, page 207 for details).

• XML: The output format is XML (See section 16.6, page 205 for details).

The output format can be set in the configuration file as global option outputformat (see
section 13.2.1, page 121):

Page 199

16 Socket Client Interface 16.4 Control Commands

� �
global
outputformat = JSON� �

or by sending a SET command to the server (see section 27.10.1, page 373):� �
SET OUTPUTFORMAT = 'JSON';� �

or unquoted� �
SET OUTPUTFORMAT = JSON;� �

See section 23.5.1, page 273 for the effect of the output format on NULL/empty strings.

See section 16.6, page 205 for details of the XML format.
See section 16.7, page 207 for details of the JSON format.

Control Commands
Beside the usual SQL statements, the socket interface provides a number of commands to control a
Cisco ParStream database installation. Some of them are just provided for internal use and might only
be helpful to fix something on a low-level base.

Cluster Control Commands

To control the cluster as a whole, a number of commands are provided, which you can issue by using
the ALTER SYSTEM command (see section 27.11, page 375):

ALTER SYSTEM CLUSTER SHUTDOWN
ALTER SYSTEM NODE SHUTDOWN
ALTER SYSTEM NODE [nodename] SHUTDOWN

Shuts down all a specific node/server or all nodes or of a cluster (including importer nodes).
Active synchronization or import tasks are allowed to finish, but no new such tasks will be
allowed to start. If the optional parameter nodename is not passed, the command will shut
down the node/server the query is issued on. The “ALTER SYSTEM NODE SHUTDOWN”
command can be used to shut down any server/node (independent from whether it is part
of a cluster).

ALTER SYSTEM CLUSTER DISABLE IMPORT
ALTER SYSTEM CLUSTER ENABLE IMPORT

Enable or disable data import operations for the cluster. When data imports are disabled
the cluster will not accept new streaming import connections or import with the Cisco
ParStream importer. Active data imports will be allowed to finish.

The import status can be queried via the system table ps_info_cluster_node (see
section 26.4, page 317).

Page 200

16.4 Control Commands 16 Socket Client Interface

ALTER SYSTEM CLUSTER DISABLE MERGE
ALTER SYSTEM CLUSTER ENABLE MERGE

Enable or disable the execution of scheduled merges. If merges are being disabled,
currently running merges will run until completed, but no new merges will be executed.

The merge status can be queried via the system table ps_info_cluster_node (see
section 26.4, page 317).

ALTER SYSTEM CLUSTER EXECUTE MERGE LEVEL (HOUR | DAY | WEEK | MONTH)

Force execution of the specified merge. The merge will be executed immediately, even if
merges are currently disabled.

Additional Internal Commands

The following command have effect only on a single-node cluster. Note that in clusters with multiple
servers/nodes corresponding cluster commands should be preferred if provided.

help [request]

This requests returns a description of the available requests. If the optional parameter is
set to the name of a request, then a detailed description of that request is returned.

INSPECT subject

• Outputs tabular information about the given subject without using the execution engine
(i.e. unlike SELECT based system table queries)

• See section 27.6, page 362 for details.

LOGIN ’username’ ’pass phrase’

Tries to authenticate with the provided user name and pass phrase. If user authentication
is enabled (see section 9.2, page 78), the user can issue queries after a successful
authentication with this command.

Note that the pass phrase is currently sent without encryption, so that it’s up to the system
or network administrator to ensure a secure transport over the network if this is required.

quit

Closes the connection to the server and frees all resources held by that connection. This
request is used mostly for automated tests; to terminate a script that contains various
requests in a clean way.

SET command

Page 201

16 Socket Client Interface 16.4 Control Commands

• Sets session-specific values.

• See section 27.10, page 373 for details.

showexectree command

• The command showexectree can be used by the socket interface to display the
execution tree into which SQL statements are translated.

• For example: A request such as follows:� �
showexectree SELECT * FROM Address;� �

might output:� �
parstream::ExecOutputNode(0x7f31a400b300)

input

Address.__street_value(offset=0,size=16,varstring,single_value,hashed

value,column=Address.street), ...

queue(of 0x7f31a400b300, size 0)

parstream::ExecTransNodeRecvTCP(0x7f31a4006d30)

output

Address.__street_value(offset=0,size=16,varstring,single_value,hashed

value,column=Address.street), ...

parstream::ExecTransNodeRecvTCP(0x7f31a4007fd0)

output

Address.__street_value(offset=0,size=16,varstring,single_value,hashed

value,column=Address.street), ...

parstream::ExecFetchNodeColumnData(0x7f31a400ad30)

output

Address.__street_value(offset=0,size=16,varstring,single_value,hashed

value,column=Address.street), ...

output Address.id(offset=64,size=4,int32,single_value,not

hashed,column=Address.id), ...� �
ALTER SYSTEM NODE SHUTDOWN

Tells the local server to stop accepting requests, and to shutdown the next time a connection
to the server is opened — after all pending queries and imports have been processed.
In multi-node clusters the corresponding cluster control command should be used (see
section 16.4.1, page 200).

sqlprint command

• The command sqlprint can be used by the socket interface to display the description
tree in different processing stages (after parsing, after meta data enrichment, after
optimizations) into which SQL statements are translated.

• For example: A request such as follows:

Page 202

16.4 Control Commands 16 Socket Client Interface

� �
sqlprint SELECT AVG(value) AS val FROM testtable;� �

might output:� �
Description tree:

OutputNode requiredOutputRows: none fields: (val) uniqueNodeId: 3 limit:

none offset: 0

AggregateNode requiredOutputRows: none fields: (val) uniqueNodeId: 2

aggregate fields: val:=AVG(value) group by: level: 0/2

FetchNode requiredOutputRows: none [parallelizable] fields: (value)

uniqueNodeId: 1 condition: table: testtable

Preprocessed tree:

OutputNode requiredOutputRows: none fields: (val) uniqueNodeId: 3 limit:

none offset: 0

AggregateNode requiredOutputRows: none fields: (val) uniqueNodeId: 6

aggregate fields: val:=AVGCOUNTSUM(val) group by: level: 0/2

AggregateNode requiredOutputRows: none [optional] fields: (val,

val__CNT_INTERN) uniqueNodeId: 5 aggregate fields:

val__CNT_INTERN:=SUM(val__CNT_INTERN), val:=SUM(val) group by: level:

1/2 [cascadable]

AggregateNode requiredOutputRows: none [parallelizable] fields: (val,

val__CNT_INTERN) uniqueNodeId: 4 aggregate fields:

val__CNT_INTERN:=COUNT(value), val:=SUM(value) group by: level: 2/2

FetchNode requiredOutputRows: none [parallelizable] fields: (value)

uniqueNodeId: 1 condition: table: testtable

Parametrized tree:

|->[val(offset=0,size=8,double,single_value,not hashed,nocolumn)]:rowSize=0

ParametrizedNode parstream::OutputNode NoRemoteProcessing no separation

possible no sorting partition-overlapping

|->[val(offset=0,size=8,double,single_value,not

hashed,nocolumn)]:rowSize=8

ParametrizedNode parstream::AggregateNode NoRemoteProcessing no

separation possible no sorting partition-overlapping

|->[val(offset=0,size=8,uint64,single_value,not hashed,nocolumn),

val__CNT_INTERN(offset=8,size=8,uint64,single_value,not

hashed,nocolumn)]:rowSize=16

ParametrizedNode parstream::AggregateNode NoRemoteProcessing no

separation possible no sorting partition-overlapping

|->[val(offset=0,size=8,uint64,single_value,not hashed,nocolumn),

val__CNT_INTERN(offset=8,size=8,uint64,single_value,not

hashed,nocolumn)]:rowSize=16

ParametrizedNode parstream::AggregateNode NoRemoteProcessing no

separation possible no sorting partition-local

|->[value(offset=0,size=8,uint64,single_value,not

hashed,column=testtable.value)]:rowSize=8

ParametrizedNode parstream::FetchNode NoRemoteProcessing no separation

possible no sorting partition-local

Optimized tree:

|->[val(offset=0,size=8,double,single_value,not hashed,nocolumn)]:rowSize=0

ParametrizedNode parstream::OutputNode NoRemoteProcessing no separation

possible no sorting partition-overlapping

Page 203

16 Socket Client Interface 16.5 ASCII Interface

|->[val(offset=0,size=8,double,single_value,not

hashed,nocolumn)]:rowSize=8

ParametrizedNode parstream::AggregateNode NoRemoteProcessing no

separation possible no sorting partition-overlapping

|->[val(offset=0,size=8,uint64,single_value,not hashed,nocolumn),

val__CNT_INTERN(offset=8,size=8,uint64,single_value,not

hashed,nocolumn)]:rowSize=16

...� �
• Note that the output format is not standardized and might change with any new Cisco

ParStream version.

unload partition tablename

Marks the specified partition as disabled. (partition status “disabled-by-unload”, see
section 5.1.3, page 34). The partition will subsequently be ignored at server startup and by
load requests.

• partition is the path of the partition’s directory under the partition directory (usually
datadir).

• tablename is the name of the table the partition belongs to.

The return value is the number of unloaded partitions which should be 1 if the partition was
unloaded and 0 if unloading failed.

For example:
unload 3875/20100120_Z_2010-08-17T09:03:39_first_PM MyTable

unload "14/2010-11-14 14:00:14Z_2013-09-17T20:23:24_first_PM"

MyTable

Note:
Unloading a partition is not reversible and will physically delete the data of the
partition!

load directory tablename

Scans the specified directory (must be a sub-directory of the server’s datadir) for
partitions and loads them. The partitions have to be created with a standalone import.
Loading partitions that are not activated is rejected. The return value is the number of
loaded partitions.

For example, if inside the partition directory of the server is a partition for the value 835:
load 835 MyTable

ASCII Interface
In the ASCII setting the output by default is output in a csv like syntax:

Input:

Page 204

16.6 XML Interface 16 Socket Client Interface

� �
SELECT * FROM Wages WHERE wage_id = 47;� �

Output:� �
#wage_id;education;address;sex;experience;union;wage;age;race;occupation;sector;marr
47;10;5;0;13;0;4.85;29;3;6;0;0� �

The column separator, separator for entries in multi-values, and the NULL representation
can be customized with the options asciiOutputColumnSeparator (see section 13.2.1,
page 121), asciiOutputMultiValueSeparator (see section 13.2.1, page 122), and
asciiOutputNullRepresentation (see section 13.2.1, page 122), respectively.

Error Handling

In the case of an error an error code and a human-readable error message is returned. The line that
contains the answer for a request starts with "#ERROR", followed by ’-’, and an error number, if an
error has occurred. The error code is followed by the error message.

For example:� �
#ERROR-000: Internal Error

#ERROR-100: Invalid Query

#ERROR-110: Unknown Request

#ERROR-120: Unknown Column

#ERROR-130: Insufficient Number of Parameters

#ERROR-200: No Data Found� �

XML Interface
The data can also be transmitted packed inside XML.

Input:� �
SELECT * FROM Wages WHERE wage_id = 47;� �

Output:� �
<output>

<dataset>

<wage_id>47</wage_id>

<education>10</education>

<address>5</address>

Page 205

16 Socket Client Interface 16.6 XML Interface

<sex>0</sex>

<experience>13</experience>

<union>0</union>

<wage>4.85</wage>

<age>29</age>

<race>3</race>

<occupation>6</occupation>

<sector>0</sector>

<marr>0</marr>

</dataset>

</output>� �
Input:� �
SELECT wage_id FROM Wages WHERE wage_id > 47 LIMIT 5;� �

Output:� �
<output>

<dataset>

<wage_id>48</wage_id>

</dataset>

<dataset>

<wage_id>51</wage_id>

</dataset>

<dataset>

<wage_id>58</wage_id>

</dataset>

<dataset>

<wage_id>61</wage_id>

</dataset>

<dataset>

<wage_id>64</wage_id>

</dataset>

</output>� �
This can be checked with:� �
SELECT count(*) FROM Wages WHERE wage_id > 47;� �

Output:� �
<output>

<dataset>

<auto_alias_1__>486</auto_alias_1__>

</dataset>

</output>� �
Here you don’t get a real data row, but the internal count of Cisco ParStream back.

Page 206

16.7 JSON Interface 16 Socket Client Interface

Error Handling

Error messages in the XML output format are textually the same as for the ASCII output format, but
formatted as XML with a single error element:� �
<error>ERROR-000: Internal Error</error>

<error>ERROR-100: Invalid Query</error>

<error>ERROR-110: Unknown Request</error>

<error>ERROR-120: Unknown Column</error>

<error>ERROR-130: Insufficient Number of Parameters</error>

<error>ERROR-200: No Data Found</error>� �
JSON Interface
The data can also be transmitted packed inside JSON.

Input:� �
SELECT * FROM Wages WHERE wage_id = 47;� �

Output:� �
{"rows":

[

{

"wage_id":47,

"education":10,

"sex":0,

"experience":13,

"union":0,

"wage":4.85,

"age":29,

"race":3,

"occupation":6,

"sector":0,

"marr":0

}

]

}� �
Input:� �
SELECT wage_id FROM Wages WHERE wage_id > 47 LIMIT 5;� �

Page 207

16 Socket Client Interface 16.7 JSON Interface

Output:� �
{"rows":

[

{"wage_id":48},

{"wage_id":51},

{"wage_id":58},

{"wage_id":61},

{"wage_id":64}

]

}� �
This can be checked with:� �
SELECT count(*) FROM Wages WHERE wage_id > 47;� �

Output:� �
{"rows":[{"auto_alias_1__":486}]}� �

Here you don’t get a real data row, but the internal count of Cisco ParStream back.

Error Handling

Error messages in the JSON output format are textually the same as for the ASCII output format, but
formatted as JSON dictionary with a single entry error:� �
{"error" : "ERROR-000: Internal Error"}

{"error" : "ERROR-100: Invalid Query"}

{"error" : "ERROR-110: Unknown Request"}

{"error" : "ERROR-120: Unknown Column"}

{"error" : "ERROR-130: Insufficient Number of Parameters"}

{"error" : "ERROR-200: No Data Found"}� �

Page 208

ODBC Client Interface

Cisco ParStream relies on PostgreSQL ODBC driver psqlODBC (v11.00.0000) to provide ODBC client
connectivity to a Cisco ParStream database.

The Cisco ParStream server port for client ODBC connections is 1 higher than the basic port of the
corresponding Cisco ParStream server. For example, if port=9042, the ODBC connection port is
9043. See section 13.3.1, page 135 for details.

ODBC Configuration Brief
The content of this section is general ODBC information provided as a courtesy. Cisco ParStream
specific material is limited to the content of the Cisco ParStream DSN.

ODBC Connection String

A standard ODBC connection string is a semicolon separated list of connection attribute/value pairs,
for example:� �
"DSN=demo;SERVERNAME=10.10.20.99;PORT=9043;DATABASE=demo;

Username=parstream;Password=n-a;"� �
Note:

Per ODBC specification, connection attribute names are case insensitive.

Data Source Name (DSN)

DSN is a named tag in a ODBC.INI file that lists a set of connection attributes. Here is an example of
a Cisco ParStream DSN "Demo":� �
[demo]

Driver = /usr/lib64/psqlodbc.so

Servername = 10.10.20.99

Port = 9043

Database = demo

Username = parstream

Password = n-a� �
If a connection string includes DSN=DSN_NAME attribute, the ODBC driver (or Driver Manager) builds
the actual connection string by combining all attributes listed under [DSN_NAME].

A DSN listed in the System ODBC.INI file would be a System DSN, accessible by all users of the host
OS.

A DSN listed in the User ODBC.INI file would be a User DSN, accessible only by the given user of the
host OS.

A given database may have any number of DSNs pointing to it.

Page 209

17 ODBC Client Interface 17.2 Installing ODBC Driver on Linux

It is legitimate to have the same System and User DSN at the same time. Users should use caution -
in this case User DSN may "cast shade" on System DSN which may lead to inadvertent confusions. In
case of a conflict (same connection attribute defined with different values) the order of precedence is
as follows:

• System DSN

• User DSN

• Connection String

I.e. User DSN settings overwrites System DSN settings, and attributes explicitly specified in the
connection string overwrite either User or System DSN.

Note:

DSN is not required to make a database connection. A client can specify all connection
attributes on-the-fly in the connection string. However a DSN provides convenience and
connection attributes consistency.

Installing ODBC Driver on Linux

The installation instructions below are for RHEL/CentOS/Oracle Linux. Adjust the instructions
accordingly to install the driver on other Linux OS variants.

As user root, install the psqlODBC driver (postgresql-odbc rpm) and unixODBC Driver Manager
(unixODBC rpm). Note that postgresql-odbc RPM package pulls in unixODBC package as
dependency.� �
$ yum install postgresql-odbc� �

If you are planning to write custom C/C++ code using ODBC interface, you’ll need to install an optional
unixODBC-devel RPM package that includes ODBC API include files (e.g. sql.h, sqlext.h,
sqltypes.h, etc.):� �
$ yum install unixODBC-devel� �

Verify unixODBC default configuration:� �
$ odbcinst -v -j

unixODBC x.y.z

DRIVERS............: /etc/odbcinst.ini

SYSTEM DATA SOURCES: /etc/odbc.ini

FILE DATA SOURCES..: /etc/ODBCDataSources

USER DATA SOURCES..: /home/parstream/.odbc.ini

...� �
Confirm that the SYSTEM DSN is /etc/odbc.ini and USER DSN is $HOME/.odbc.ini.

Page 210

17.3 Configuring Cisco ParStream ODBC Connection on Linux 17 ODBC Client Interface

Configuring Cisco ParStream ODBC Connection on Linux

psqlODBC driver relies on a ODBC Driver Manager to read System or User DSN. With unixODBC the
default locations of the ODBC.INI files are as follows:

• System DSN file is /etc/odbc.ini

• User DSN file is $HOME/.odbc.ini

The default locations may be overwritten with environment variables $ODBCSYSINI and $ODBCINI.
Please refer to the unixODBC documentation for additional information.

System ODBC.INI file is generally used for production deployments.

User ODBC.INI file is often used in multi-user development environments

A minimalistic user setup would include only one file, either /etc/odbc.ini or $HOME/.odbc.ini.
In a typical use case the ODBCINST.INI file (e.g. /etc/odbcinst.ini) is not required.

Edit the System or User DSN file and add a DSN section using a DSN "demo" example included
earlier in the chapter as a template. You should only need to adjust Servername and Port settings.

You can now test a DSN "demo" connection with unixODBC command-line tool isql:� �
$ isql -v demo

+---------------------------------------+

| Connected! |

| |

| sql-statement |

| help [tablename] |

| quit |

| |

+---------------------------------------+

SQL>� �

Installing ODBC Driver on Windows

32-bit and 64-bit versions of psqlODBC drivers are available for download from PostgreSQL (https:
//www.postgresql.org/ftp/odbc/versions/msi/). Each driver is packaged as a standard
Windows MSI file installer.

As a Windows Administrator, start the MSI installer and follow the on-screen instructions to complete
the driver installation.

Page 211

https://www.postgresql.org/ftp/odbc/versions/msi/
https://www.postgresql.org/ftp/odbc/versions/msi/

17 ODBC Client Interface 17.5 Configuring Cisco ParStream ODBC Connection on Windows

Configuring Cisco ParStream ODBC Connection on
Windows

As of Windows NT, the System and User ODBC.INI files have been replaced with respective registry
entries:� �
[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI]

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI]� �
On Windows, ODBC DSN is configured with a Control Panel ODBC Applet.

Note:

32bit psqlODBC driver installed on a 64bit Windows platform operates within a WoW64
subsystem.

The System DSN registry entry for WoW64 subsystem is� �
[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBC.INI]� �

To configure a DSN for a 32bit start psqlODBC driver installed on a 64bit Windows, start
the WoW64 Control Panel ODBC Applet:� �
C:\Windows\SysWOW64\odbcad32.exe� �

psqlODBC driver installation includes ANSI and Unicode driver variants. ANSI driver is preferred for
performance sensitive applications over the Unicode (UTF-16) version that uses 2 bytes to represent
each character.

To configure a DSN, start the Control Panel ODBC Applet (for example, Start > Control Panel >
Administrative Tools > Data Sources (ODBC)).

Click Add > PostgreSQL ANSI

Fill out the fields in the DSN Setup dialog as follows (see figure 17.1):

• “Data Source” and “Database” can be anything of your choice.

• “Description” can be empty.

• “SSL Mode” must be set to “disable.”

• “Server” and “Port” have to be set to the values of the corresponding Cisco ParStream server.

• “User Name” and “Pass phrase” have to be set to the corresponding values if authentication is
enabled (see section 9.2, page 78) or some arbitrary values otherwise (these field are not allowed
to be empty).

• “User Name” and “Pass phrase” have to be set to some arbitrary values (the fields are not allowed
to be empty)

Use the “Test” button to verify the database connectivity.

Page 212

17.5 Configuring Cisco ParStream ODBC Connection on Windows 17 ODBC Client Interface

Figure 17.1: Setting up DSN with ODBC Control Panel Applet

Page 213

JDBC Client Interface

The Cisco ParStream JDBC Driver uses PostgreSQL client protocol and extends the capabilities of
the PostgreSQL JDBC Driver by adding additional data types, such as UINT, supported by Cisco
ParStream. It is possible to use the stock PostgreSQL JDBC Driver if Cisco ParStream specific
features are not used by the application.

The Cisco ParStream JDBC driver is a Type IV (pure) JDBC driver.

The Cisco ParStream JDBC driver requires Java 8 JRE or JDK.

The Cisco ParStream JDBC driver Class Name is "com.parstream.ParstreamDriver".

The Cisco ParStream server port for client JDBC connections is 1 higher than the basic port of the
corresponding Cisco ParStream server. For example, if port=9042, the JDBC connection port is
9043. See section 13.3.1, page 135 for details.

Cisco ParStream JDBC URL Specification

In JDBC, a database is represented by a URL. Cisco ParStream URL has the following format:

jdbc:parstream://[host][:port]/[database][?connectionAttribute1=value1]

[&connectionAttribute2=value2]...

where
host - host name or IP address of the server
port - server listening port for JDBC connections described above
database - database name, required, but currently a no-op for Cisco ParStream server
Additional connection attributes are: user - user name used for login (see section 9.2, page 78)
password - password for login (see section 9.2, page 78) ssl - can be set to "true", to enable encrypted
communication
Below are examples of valid Cisco ParStream URLs:� �
DriverManager.getConnection(

"jdbc:parstream://localhost:9043/noop?user=johndoe&password=mysecret&ssl=true");� �
or:� �
Properties prop = new Properties();

prop.setProperty("user", "johndoe");

prop.setProperty("password", "mysecret");

prop.setProperty("ssl", "true");

DriverManager.getConnection("jdbc:parstream://localhost:9043/noop?&loglevel=0", prop);� �
or without authentication:� �
DriverManager.getConnection("jdbc:parstream://localhost:9043");� �

Installing JDBC Driver
The Cisco ParStream JDBC driver includes the following:

Page 214

18.2 Configuring JDBC Connections 18 JDBC Client Interface

File Description
cisco-parstream-jdbc-<VERSION>-javadoc.jar javadoc generated documentation
cisco-parstream-jdbc-<VERSION>.jar JAR file for Java 8

A pure Type IV driver does not need an "installation". A Cisco ParStream JDBC driver JAR file can be
placed into any directory accessible by client Java applications.

On Linux platforms Cisco ParStream recommends copying the driver JAR file to
$PARSTREAM_HOME/jdbc.

On Windows platforms the driver JAR may be stored, for example, in C:\ParStream\jdbc.

Configuring JDBC Connections
To create a JDBC connection, you need:

1. Set the Java CLASSPATH to include the full path to the Cisco ParStream JDBC driver JAR file.
Java CLASSPATH can be set using multiple alternative methods.
For example, in Linux Bash:� �
$ export CLASSPATH=.:<full path to

JAR>/cisco-parstream-jdbc-<VERSION>.jar:$CLASSPATH� �
or on Windows, if setting in the Command Prompt:� �
C:\>set CLASSPATH=.;%CLASSPATH%

C:\>set

CLASSPATH=C:\ParStream\jdbc\cisco-parstream-jdbc-<VERSION>.jar;%CLASSPATH%� �
2. In your Java application, load the Cisco ParStream driver:� �

Class.forName("com.parstream.ParstreamDriver");� �
3. Then make the connection:� �

String URL = "jdbc:parstream://localhost:9043";

String dbUser = "parstream";

String dbPwd = "n-a";

Connection conn = DriverManager.getConnection(URL, dbUser, dbPwd);� �

Page 215

Java Streaming Import Interface (JSII)

This chapter covers the Java Streaming Import Interface provided by Cisco ParStream. It provides the
ability to import data into the database from a Java application.

Introduction

The Java Streaming Import Interface is built on top of the Streaming Import Interface. It provides
methods that internally invoke the streaming functions of the C-API. The Java methods allows client
connections to import data into a running server. It also provides methods that:

• allow obtaining meta-information about tables and columns, start an insert operation, write data,
commit an import (or rollback),

• allow converting Java abstract data types to Cisco ParStream column data types. Such methods
ensure range validity during conversion, and are optional to use.

The following sections describe the general concept of the Cisco ParStream Java Streaming Import
Interface in more detail.

General Concept

Connecting to Cisco ParStream

A client application can use the Java Wrapper to establish a connection with a Cisco ParStream
database.

Thread Safety

Multiple Java connections can run in parallel provided each connection uses its own instance of a
ParstreamConnection. These parallel connections can even insert data on the same table.

Inserting data

Before inserting data, the client application must specify the target table to which, data from the current
connection goes to. Such table must exist in the database prior to inserting into it.

Data to be inserted from Java must be stored in an Object[]. The length of the Object[] must
have a length identical to the number of columns in the target table.

While the API provides the ability to insert row by row, internally multiple rows are transferred in bigger
blocks of data to the server for better performance.

The inserted data is subject to ETL statements specified in the table definition like CSV-based import
data (see section 10.6, page 104). For this reason, columns marked with CSV_COLUMN ETL don’t
count as valid column for streaming imports.

Page 216

19.2 General Concept 19 Java Streaming Import Interface (JSII)

In addition, skipped columns (columns marked with SKIP TRUE, see section 24.2.4, page 285) also
don’t count as valid column for streaming imports.

Commit and Rollback

Data that should be inserted needs to be confirmed by a commit command. All data that is inserted
between commit commands is written to partitions. A success of the commit command indicates the
successful creation of all resulting partitions. In case of an exception no partitions are created.

A client can also abort the creation and activation of partitions by a rollback command. In this case all
data since the last commit is ignored by the server.

Exception Handling

Methods in this driver may throw two types of exceptions when invoked.

• A com.parstream.driver.ParstreamFatalException means that you no longer can use
this connection.

1.all started but uncommitted insertions are ignored (as if a rollback would have been called).

2.The close() method is the only method that can be invoked following a fatal exception, which
invalidates the connection handle and free all associated memory.

• A com.parstream.driver.ParstreamException means that a particular call failed but the
connection is still usable.

1.Example: if you attempt to insert an Object[] that has a length not equal to the number of
columns in the target table.

Mapping Data Types between Cisco ParStream and Java

For each item in the Object[] to be inserted, the data type must be compatible with the corresponding
column type in the Cisco ParStream table (see chapter 23, page 267). Table 19.1 shows which Java
data types are compatible with which Cisco ParStream data types.

To insert a NULL, set the corresponding element in the Object[] to null.

Optionally, the Java Streaming Import provides a package, that contains class helpers to convert Java
data types into Cisco ParStream’s Java column types. These classes can be found in the package:
com.parstream.driver.datatypes. For example, the PsUint8 class, provides methods to
convert from Java Byte, Short, Integer, Long into Java type Short, which subsequently can
be inserted into a Cisco ParStream UINT8 column.

Note that Cisco ParStream internally uses special values to represent a SQL NULL. For this reason
you can’t for example insert the value 255 as ordinary UINT8 (see section 23.2, page 267). Inserting
these values instead of NULL results in an exception. See section 19.5.21, page 228 for the defined
constants.

Page 217

19 Java Streaming Import Interface (JSII) 19.3 Java Driver Limitations

Cisco ParStream Data Type Java Data Type
UINT8 Short
UINT16 Integer
UINT32 Long
UINT64 Long
INT8 Byte
INT16 Short
INT32 Integer
INT64 Long
DOUBLE Double
FLOAT Float
VARSTRING String
SHORTDATE ParstreamShortDate
DATE ParstreamDate
TIME ParstreamTime
TIMESTAMP ParstreamTimestamp
BITVECTOR8 Short
BLOB String

Table 19.1: Mapping between Cisco ParStream and Java data types

Java Driver Limitations
Please note the following limitations that currently apply:

• UINT64 datatype supports a range larger than Java’s long data type (signed 64-bit).

Using the Java Streaming Import Interface
The following example provides a rough overview how to use the Java driver for the C-API.

The Cisco ParStream distribution provides a complete example with a corresponding database. It can
be found in the directory examples/importapi_java (see section B.1, page 394 for details).

Dealing with Connections

First, you have to instantiate and create a handle for each connection:� �
ParstreamConnection psapi = new ParstreamConnection();

psapi.createHandle();� �
createHandle() attempts to create a handle, which will be used by the driver internally for all
subsequent method calls dealing with the connection, until it is closed. This method throws a
ParstreamFatalException in case the handle creation fails, which happens of the application is
out of memory.

Optionally, you can set connection options before attempting to connect to the database. For
example:

Page 218

19.4 Using the Java Streaming Import Interface 19 Java Streaming Import Interface (JSII)

� �
psapi.setTimeout(20000);� �

You may also set the import priority. The priority may either be: high, medium, or low. For example:� �
psapi.setImportPriority(ImportPriority.MEDIUM);� �

The possible ImportPriority ENUM values can be found in
com.parstream.driver.ParstreamConnection.ImportPriority.

Following that, you can establish a connection with the server using connect() method:� �
psapi.connect(host, port, username, password, useSSL, caFilePath);� �

The username is the login name of the registered database user, password its PAM pass phrase
(see section 9.2, page 78). useSSL configures whether to enable SSL encryption for the client.
caFilePath configures a file path to a CA file for the certificate verification process.

The close() method is used to close the connection:� �
psapi.close();� �

Following this, the initially created handle is no longer valid. Invoking connect() is not possible.

Retrieving Version Information

If you want to know, which Cisco ParStream version the used API has:� �
String version = psapi.getVersion();

System.out.println("Using psapi version: " + version);� �
If you want to know the database version for a specific connection:� �
String dbVersion = psapi.getDbVersion();

System.out.println("Cisco ParStream db version: " + dbVersion);� �
If you want to know the database metadata version for a specific connection:� �
String metadataVersion = psapi.getMetadataVersion();

System.out.println("Cisco ParStream metadata version: " + metadataVersion);� �
Querying Metadata (Tables and Columns)

You can list the tables in the database:� �
String[] tableNames = psapi.listTables();

for (int i = 0; i < tableNames.length; i++) {

System.out.println("table " + i + ": " + tableNames[i]);

}� �
Page 219

19 Java Streaming Import Interface (JSII) 19.4 Using the Java Streaming Import Interface

You may also list the columns of a specific table:� �
ColumnInfo[] columns = psapi.listImportColumns("MyTable");

for (int i = 0; i < columns.length; i++) {

System.out.println("column " + i + ": " + columns[i].getName());

}� �
Notes for both methods:

• Multiple calls of this method are possible but will always return the same data. Thus, to retrieve the
effect of a schema change on the table, you have to use a new connection.

• A ParstreamException is thrown if listImportColumns is provided with a non-existent table
name.

• A ParstreamFatalException is thrown if the handle is not usable, or if there are no tables in
the database

Inserting Rows

To insert rows, first you have to start an insertion. You have to specify the column names to insert. If
you leave columns out, the specified default values will be filled in for that columns. The order of the
given columns has to be respected by the data insertion with the rawInsert() method.� �
String names[] = { "age", "weight", "id" };

psapi.prepareInsert("MyTable", names);� �
This method throws a ParstreamFatalException if the handle is invalid. Throws a
ParstreamException if the specified table name does not exist.

After the connection is prepared for insertion, you have to insert data row by row. An Object[] containing
the data is passed to the rawInsert() method. Types of array elements must match corresponding
types of the table (see section 19.2.5, page 217).� �
short age = 35;

double weight = 67.5;

long id = 12345678l;

Object[] data = new Object[]{age, weight, id};

psapi.rawInsert(data);� �
This method throws a ParstreamFatalException if the handle is invalid and connection must be
closed. It throws ParstreamException if the row insertion failed. This may be because:

• Object[] length not equal to number of columns

• Invalid values especially apply to values that internally represent NULL values (see section 23.2,
page 267).

• The order given by the prepareInsert method was not respected by the rawInsert method

To insert a NULL value for a specific column, assign the corresponding array element to null. For
example:

Page 220

19.4 Using the Java Streaming Import Interface 19 Java Streaming Import Interface (JSII)

� �
short age = 35;

double weight = 67.5;

Object[] data = new Object[]{age, weight, null};

psapi.rawInsert(data);� �
Finally, you have to commit the insertion:� �
psapi.commit();� �

Alternatively, you can rollback the insertion:� �
psapi.rollback();� �

If a problem occurs with a commit or a rollback, a ParstreamFatalException is thrown.

Dealing with Multivalues

To insert multivalues, an array needs containing the multivalues need to be constructed. The data
type of the array depends on the data type of the multivalue column in Cisco ParStream. For example,
if Cisco ParStream has a multivalue column of data type INT16, then a Short[] array need to be
constructed to hold the multivalues (see section 19.1, page 218 for the table of all data type mappings).

For example:� �
Short[] multivalues = new Short[] {1, 2, null, 3};

Object[] rawData = new Object[] {...., multivalues,... };

psapi.rawInsert(rawData);� �
Dealing with data type mapping

Conversion from a Java type to a Cisco ParStream type can be done manually by the user. Alternatively
the Java Streaming Import package provides helper classes to perform such conversions and ensure
that the value to be converted is within range. This is optional. For example, when inserting a value
into a Cisco ParStream UINT8 column:� �
String originalValue = "12";

short psValue = PsUint8.valueOf(originalValue);

Object[] rawData = new Object[] {...., psValue,...};

psapi.rawInsert(rawData);� �
In addition the Java Streaming Import package provides an insert method, which tries to convert each
column to the expected Java data type matching the Cisco ParStream data type. This is optional.
Table 19.2 shows which Java data types are compatible with which Cisco ParStream data types.
Multivalues will not be converted to the Cisco ParStream data type.

For example, when inserting an unknown input type.� �
Page 221

19 Java Streaming Import Interface (JSII) 19.4 Using the Java Streaming Import Interface

Cisco ParStream Data Type Java Data Type(s)
UINT8 Byte, Short, Integer, Long
UINT16 Byte, Short, Integer, Long
UINT32 Byte, Short, Integer, Long
UINT64 Byte, Short, Integer, Long
INT8 Byte, Short, Integer, Long
INT16 Byte, Short, Integer, Long
INT32 Byte, Short, Integer, Long
INT64 Byte, Short, Integer, Long
DOUBLE Float, Double
FLOAT Float, Double
VARSTRING String
SHORTDATE ParstreamShortDate, java.util.Date,

GregorianCalendar
DATE ParstreamDate, java.util.Date, GregorianCalendar
TIME ParstreamTime, java.util.Date, GregorianCalendar
TIMESTAMP ParstreamTimestamp, java.util.Date,

GregorianCalendar
BITVECTOR8 Short
BLOB String

Table 19.2: Mapping between Cisco ParStream and Java data types

Object[] data = new Object[]{35, 67.5f, null};

psapi.insert(data);� �
Dealing with TIMESTAMP Columns

As described in section 23.4, page 268 the timestamp is stored uninterpreted without a time zone. The
example timestamp "2016-06-14T12:30:45.567+0200" will be stored as "2016-06-14 12:30:45.567".
The zone offset information for a specific day will be lost.

Java date time classes derived from java.util.Date internally store their value as milliseconds
since the Epoch and are always handled as if they are timestamp values of the default JVM time zone.
For example 1465911045128 milliseconds since the Epoch will be represented:

• in JVM time zone UTC as "2016-06-14 13:30:45.128"

• in JVM time zone Europe/Berlin as "2016-06-14 15:30:45.128"

The class com.parstream.driver.ParstreamTimestamp implements following constructors:

• GregorianCalendar

• java.util.Date

• java.sql.Date

• long epoc: number of milliseconds since the Epoch as UTC timestamp

• long seconds, int milliseconds: number of seconds since the Epoch as UTC timestamp
and the milliseconds part (0-999)

Page 222

19.5 Java driver for Streaming Import Interface Reference 19 Java Streaming Import Interface (JSII)

With the constructor java.util.Date we implicitly accept java.sql.Timestamp for constructing
ParstreamTimestamp instances. Invoking any of the above constructors with a NULL argument will
insert a NULL into the database.

Dealing with TIME Columns

As described in section 23.4, page 268 the time is stored uninterpreted without a time zone.

The class com.parstream.driver.ParstreamTime implements following constructors:

• GregorianCalendar

• java.util.Date

• java.sql.Date

• int hour, int minute, int second, int millisecond

With the constructor java.util.Date we implicitly accept java.sql.Time for constructing
ParstreamTime instances. Invoking any of the above constructors with a NULL argument will
insert a NULL into the database.

The class GregorianCalendar and all derivations of the class java.util.Date contain a time
zone. This time zone and its offset will be ignored while inserting the time value into Cisco ParStream.

In case of a java.util.Date the time part of the local representation of the timestamp in sense of
the JVM time zone will be inserted. For example 1465911045128 milliseconds since the Epoch ("2016-
06-14 13:30:45.128 UTC") will be inserted in JVM time zone Europe/Berlin as "15:30:45.128".

Dealing with DATE Columns

The DATE column type cannot respect any time zone due to its SQL Standard definition.

The class com.parstream.driver.ParstreamDate implements following constructors:

• GregorianCalendar

• java.util.Date

• java.sql.Date

• int year, int month, int day

With the constructor java.util.Date we implicitly accept java.sql.Date for constructing
ParstreamDate instances. Invoking any of the above constructors with a NULL argument will
insert a NULL into the database.

The class GregorianCalendar and all derivations of the class java.util.Date contain a time
zone. This time zone and its offset will be ignored while inserting the date value into Cisco ParStream.

In case of a java.util.Date the date part of the local representation of the timestamp in sense
of the JVM time zone will be inserted. For example 1465947000000 milliseconds since the Epoch
("2016-06-14 23:30:00 UTC") will be inserted in JVM time zone Europe/Berlin as "2016-06-15".

Java driver for Streaming Import Interface Reference

Page 223

19 Java Streaming Import Interface (JSII) 19.5 Java driver for Streaming Import Interface Reference

Running the example

Detailed instructions for compiling and running the example can be found in
examples/importapi_java/README.txt.

ColumnInfo

This class provides information about a specific column in the database. A ColumnInfo[] can be
obtained by invoking the method listImportColumns("MyTable"). There are four methods that
provide information of a specific column.

• public String getName()

• public Type getType()

• public Singularity getSingularity()

• public int getLength()

ColumnInfo.Type

Type is an enum defining the possible data types of various columns in a Cisco ParStream table.� �
public enum Type {

UINT8, UINT16, UINT32, UINT64,

INT8, INT16, INT32, INT64,

FLOAT, DOUBLE, VARSTRING,

SHORTDATE, DATE, TIME, TIMESTAMP,

BITVECTOR8, BLOB;

};� �
ColumnInfo.Singularity

Singularity is an enum defining the possible column singularity in a Cisco ParStream table.� �
public enum Singularity {

SINGLE_VALUE, MULTI_VALUE;

};� �
PsUint8

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type UINT8. It provides two static methods:

• PsUint8.valueOf(long value)

• PsUint8.valueOf(String value)

Page 224

19.5 Java driver for Streaming Import Interface Reference 19 Java Streaming Import Interface (JSII)

PsUint16

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type UINT16. It provides two static methods:

• PsUint16.valueOf(long value)

• PsUint16.valueOf(String value)

PsUint32

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type UINT32. It provides two static methods:

• PsUint32.valueOf(long value)

• PsUint32.valueOf(String value)

PsUint64

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type UINT64. It provides two static methods:

• PsUint64.valueOf(long value)

• PsUint64.valueOf(String value)

PsInt8

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type INT8. It provides two static methods:

• PsInt8.valueOf(long value)

• PsInt8.valueOf(String value)

PsInt16

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type INT16. It provides two static methods:

• PsInt16.valueOf(long value)

• PsInt16.valueOf(String value)

PsInt32

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type INT32. It provides two static methods:

• PsInt32.valueOf(long value)

• PsInt32.valueOf(String value)

Page 225

19 Java Streaming Import Interface (JSII) 19.5 Java driver for Streaming Import Interface Reference

PsInt64

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type INT64. It provides two static methods:

• PsInt64.valueOf(long value)

• PsInt64.valueOf(String value)

PsDouble

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type DOUBLE. It provides two static methods:

• PsDouble.valueOf(long value)

• PsDouble.valueOf(String value)

PsFloat

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type FLOAT. It provides two static methods:

• PsFloat.valueOf(long value)

• PsFloat.valueOf(String value)

PsBitVector8

This class provides a set of static methods that act as helpers when converting Java types into the
Cisco ParStream column type BITVECTOR8. It provides two static methods:

• PsBitVector8.valueOf(long value)

• PsBitVector8.valueOf(String value)

ParstreamShortDate

This class is a Java representation of the Cisco ParStream SHORTDATE datatype. It has four possible
constructors:

• ParstreamShortDate(GregorianCalendar calendar)

• ParstreamShortDate(int year, int month, int day)

• ParstreamShortDate(java.sql.Date date)

• ParstreamShortDate(java.util.Date date)

Value range is from 01.01.2000 to 31.12.2178. Throws ParstreamException if input value is out of
range.

Page 226

19.5 Java driver for Streaming Import Interface Reference 19 Java Streaming Import Interface (JSII)

ParstreamDate

This class is a Java representation of the Cisco ParStream DATE datatype. It has four possible
constructors:

• ParstreamDate(GregorianCalendar calendar)

• ParstreamDate(int year, int month, int day)

• ParstreamDate(java.sql.Date date)

• ParstreamDate(java.util.Date date)

Value range is from 01.01.0000 to 31.12.9999. Throws ParstreamException if input value is out of
range.

ParstreamTime

This class is a Java representation of the Cisco ParStream TIME datatype. It has four possible
constructors:

• ParstreamTime(GregorianCalendar calendar)

• ParstreamTime(int hour, int minute, int second, int millisecond)

• ParstreamTime(java.sql.Date date)

• ParstreamTime(java.util.Date date)

Value range is from 00:00:00.000 to 23:59:59.999. Throws ParstreamException if input value is
out of range.

ParstreamTimestamp

This class is a Java representation of the Cisco ParStream TIMESTAMP datatype. It has six possible
constructors:

• ParstreamTimestamp(GregorianCalendar calendar)

• ParstreamTimestamp(int year, int month, int day, int hour, int minute, int second, int millisecond)

• ParstreamTimestamp(java.sql.Date date)

• ParstreamTimestamp(java.util.Date date)

• ParstreamTimestamp(long milliseconds): number of milliseconds since the Epoch as UTC
timestamp

• ParstreamTimestamp(long seconds, int milliseconds): number of seconds since the Epoch as UTC
timestamp and the milliseconds part (0-999)

Value range is from 01.01.0000 00:00:00.000 to 31.12.9999 23:59:59.999. Throws
ParstreamException if input value is out of range.

Connection Options

Here you can find a list of options that you may set for a Cisco ParStream connection.

Page 227

19 Java Streaming Import Interface (JSII) 19.5 Java driver for Streaming Import Interface Reference

• setTimeout(int t): sets the connection time out in milliseconds (see section 19.5.22,
page 228)

• setImportPriority(ParstreamConnection.ImportPriority priority): sets the
priority of the import, providing an ENUM value (see section 19.5.22, page 229)

NULL Constants

Cisco ParStream uses particular values internally to store NULL values. An inserted row that contains
one of these values will be rejected, and a com.parstream.driver.ParstreamException will
be thrown.

To be able to check whether integral values have the special meaning to represent NULL (see
section 23.2, page 267) the following constants are defined:� �
#define PARSTREAM_INT8_NULL 127

#define PARSTREAM_UINT8_NULL 255

#define PARSTREAM_INT16_NULL 32767

#define PARSTREAM_UINT16_NULL 65535

#define PARSTREAM_INT32_NULL 2147483647

#define PARSTREAM_UINT32_NULL 4294967295

#define PARSTREAM_INT64_NULL 9223372036854775807

#define PARSTREAM_UINT64_NULL 18446744073709551615u

#define PARSTREAM_SHORTDATE_NULL 65535

#define PARSTREAM_DATE_NULL 4294967295

#define PARSTREAM_TIMESTAMP_NULL 18446744073709551615u

#define PARSTREAM_TIME_NULL 4294967295

#define PARSTREAM_BITVECTOR8_NULL 0� �
Note that for floating-point values NaN is used as NULL value, which means that this value should not
be used in the API.

Methods

In general, the majority of the C-API functions have a corresponding Java method. The following will
give a brief description of each Java method.

void createHandle ()

• Creates a handle that will be used for all other methods of the streaming api. This must be the first
method to call before any subsequent calls are made.

• throws

– ParstreamFatalException if out of handles

void setTimeout (int timeout)

• Sets the connection timeout interval using the given parameter in milliseconds. The default timeout
value is 0, which means there is no timeout on communication actions to the server.

Page 228

19.5 Java driver for Streaming Import Interface Reference 19 Java Streaming Import Interface (JSII)

• throws

– ParstreamFatalException if handle is invalid

void setImportPriority (ParstreamConnection.ImportPriority priority)

• Sets the priority of the import given an ENUM that can either be (HIGH, MEDIUM, or LOW)

• throws

– ParstreamFatalException if handle is invalid

void connect (String server, String port,

String username, String password)

• Initializes a connection with a Cisco ParStream server via a TCP socket. This call must be made
before attempting to interact with the server.

• The username is the login name of the registered database user, password its PAM pass phrase
(see section 9.2, page 78).

• throws

– ParstreamFatalException on invalid handle or connection error

void close ()

• Closes the connection and clean up connection handle. The handle can no longer be used to
establish a new connection. A new handle must be created to reconnect to a Cisco ParStream
server

String getVersion ()

• Retrieves the Cisco ParStream version of the psapi interface

String getDbVersion ()

• Retrieves the Cisco ParStream version of the connected Cisco ParStream database server

• throws

– ParstreamFatalException on invalid handle or connection error

String getMetadataVersion ()

• Retrieves the Cisco ParStream metadata version of the connected Cisco ParStream database
server

• throws

– ParstreamFatalException on invalid handle or connection error
– ParstreamException if the server version is too old to provide a metadata version

String getConnectionId ()

• Retrieves the unique id for this connection. The unique id can be used to check the Cisco ParStream
system table ps_info_insert_history for the status of the imports for this connection.

Page 229

19 Java Streaming Import Interface (JSII) 19.5 Java driver for Streaming Import Interface Reference

• throws

– ParstreamFatalException on invalid handle or connection error

String[] listTables ()

• Retrieves a string array of table names available at the Cisco ParStream server

• throws

– ParstreamFatalException on invalid handle or connection error

ColumnInfo[] listImportColumns (String tableName)

• Retrieve list of column descriptions of specific table

• throws

– ParstreamFatalException on invalid handle or connection error
– ParstreamException if table name is invalid

void prepareInsert (String tableName)

• Prepare connection for inserting rows into a single table using the default column order returned by
listImportColumns

• throws

– ParstreamFatalException on invalid handle or connection error
– ParstreamException if table name is invalid

void prepareInsert (String tableName, String[] columnNames)

• Prepare connection for inserting rows into a single table using the given column order given by
columnNames. Left out columns will be filled with default values.

• throws

– ParstreamFatalException on invalid handle or connection error
– ParstreamException if table name is invalid

void rawInsert (Object[] insertValues)

• Insert a single row into a prepared table.

• throws

– ParstreamFatalException on invalid handle or connection error
– ParstreamException if the row is rejected due to erroneous data values

void insert (Object[] insertValues)

• Insert a single row into a prepared table. If possible columns will be cast without data-loss to
expected Cisco ParStream data type.

• throws

– ParstreamFatalException on invalid handle or connection error

Page 230

19.5 Java driver for Streaming Import Interface Reference 19 Java Streaming Import Interface (JSII)

– OutOfRangeException if a column would not fit into its data type value range
– AutoCastException if a column cannot be cast into the expected Cisco ParStream data type
– ParstreamException if the row is rejected due to erroneous data values

void commit ()

• Commit inserted rows to the Cisco ParStream server. After the commit returned successfully, the
newly inserted data can be retrieved from the server.

• throws

– ParstreamFatalException on invalid handle or connection error

void rollback ()

• Rollback all insert operations since the the connection was prepared for insertion. After a rollback
you can start inserting rows again after calling psapi_prepare_insert.

• throws

– ParstreamFatalException on invalid handle or connection error

Page 231

External User-Defined Table Operators
(xUDTO)

This sections describes the ability of Cisco ParStream to define external user-defined table
operators (xUDTO):

• User-defined table operators, because Cisco ParStream allows to process one or multiple rows
of input producing none, one, or multiple output rows.

• external, because the functionality is defined as separate process, which is called from the core
Cisco ParStream processes if necessary.

This feature especially can be used to use functionality defined by the programming language R (see
section 20.4, page 238).

Note that registered xUDTO functions are listed by the ps_info_udf system table (see section 26.4,
page 324).

Concept of Using User-Defined Table Operators (UDTO)

Figure 20.1: Using external User-Defined Table Operators

In principle, xUDTOs work as described in figure 20.1:

• With CREATE FUNCTION you can define any function name as representing a functionality
processed by external processes. Such a function uses the data imported to compute a local
output.

• You can use an ON clause (with an inner SELECT clause) to specify which data has to be processed
by the user defined table operator.

• The mandatory PARTITION BY clause divides the data for the external processes into multiple
partitions so that the data can be processed by the user-defined function in parallel.

Page 232

20.2 Enabling External Processing of xUDTOs 20 External User-Defined Table Operators (xUDTO)

• The data is processed by a limited number of external processes. If more partitions than this count
need external processing, additional external processes are started sequentially as "slots" become
available again until all partitions have been processed.

• The result of applying the xUDTO is a table expression and can be persisted via INSERT INTO.

Note that this is just a conceptional overview. Cisco Parstream especially will optimize the whole
processing if this is possible. For this reason, partitioning the data for external processes should match
the partitioning inside the Cisco ParStream database.

Enabling External Processing of xUDTOs

In general, to enable external processing of external user-defined table operators you have to

• define a script type, which you can use and refer to to define specific functions

• define specific functions

Defining Script Types

A script type defines the general handling of a specific type of scripts, such as the command to call to
start a process dealing with a specific function call. It has to be defined in an external section of the
INI file(s) of Cisco ParStream (see section 8.1.1, page 73).

For example, to enable calling shell scripts using the command /bin/sh you can define the
following:� �
[external.sh]

command = /bin/sh %script %args� �
As you can see, you can use the following placeholders here:

• %script is defined when defining the concrete user-defined table function with CREATE

FUNCTION It allows to pass arguments defined by the place, where the concrete name of the SQL
function is defined. A typical example is the name of the script called, when the command calls a
scripting command. See section 20.2.2, page 234 for details.

• %args can be used to pass arguments even from a specific function call as part of the query using
the user-defined function call by a COMMAND_LINE_ARGS clause. See section 20.3.3, page 237 for
details.

As another example, you can specify a script type sed, which calls the standard sed utility, using the
passed argument as sed command (see its usage below):� �
[external.sed]

command = /bin/sed -e %args� �

Page 233

20 External User-Defined Table Operators (xUDTO) 20.2 Enabling External Processing of xUDTOs

Defining External Functions

To define external functions, you need a defined script type (see above). Then you can define a
function with a CREATE FUNCTION command.

The syntax of the CREATE FUNCTION command is as follows:

CREATE FUNCTION <name>(<scriptType>, <script>,

<inFormat>, <outFormat>)

The meaning of the arguments is as follows:

• scriptType is the type, for which a corresponding command has to be registered in the INI file (as
described above).

• script is the script argument passed to the define command as %script.

• inFormat is the input format that Cisco ParStream uses to provide its data as input for the called
command/script. Currently, only the format ParStream is supported, which is the format Cisco
ParStream uses for output of regular queries (CSV format with semicolon as delimiter and strings
in parentheses).

• outFormat is the output format that Cisco ParStream requires to read and process output of the
called command/script. Currently, only the format ParStream is supported, which is the format
Cisco ParStream uses for output of regular queries (CSV format with semicolon as delimiter and
strings in parentheses).

For example:� �
CREATE FUNCTION myFunc('sh', 'MyScript.sh', 'ParStream', 'ParStream')� �

registers myFunc as external user-defined table operator using the sh script type calling the script
MyScript.sh with the standard input and output formats.

Note that the %script argument expected to be located in the directory for user-defined function,
using the option udfLibraryPath (see section 13.2.1, page 122).

If the script type is registered as follows:� �
udfLibraryPath = udf

[external.sh]

command = /bin/sh %script� �
And a server starts in the directory /opt/cisco/kinetic/parstream-database/bin, then
corresponding function calls defined for this script type as above will result in the following call to
execute the external user-defined table operator at runtime:� �
/bin/sh /opt/cisco/kinetic/parstream-database/bin/udf/MyScript.sh� �

The defined command line must be able to execute on all nodes, i.e. all the needed executables, and
used scripts and data files need to be present on each node.

Note that the CREATE FUNCTION command has to be sent to just one node of a cluster.

Page 234

20.3 Using External User-Defined Table Operators 20 External User-Defined Table Operators (xUDTO)

The registration of an external user-defined table operator creates a new metadata version (see
section 5.2, page 34).

Using External User-Defined Table Operators
To use xUDTOs, you have to call the defined function passing the data to process with an ON clause.

The minimum syntax of such a call using an ON clause is roughly as follows:� �
func (ON (SELECT ...)

PARTITION BY ...

RETURNS (...)

)� �
The SELECT defines the data to be used as input for the external user-defined table operators.

With the PARTITION BY you define how to partition the data as input for the function. For all rows
using the same partition value(s) the function will be called once. Ideally, part of the partitioning here
should be the general partitioning and distributing used in the database.

The RETURNS clause defines the names of the returned columns. The output of the defined functions
must have a corresponding number of columns. According to the output format ’ParStream’ these
columns have to be separated by a semicolon.

For example, for a script type sh defined as� �
[external.sh]

command = /bin/sh %script� �
an external user-defined table operator, defined as� �
CREATE FUNCTION myFunc('sh', 'MyScript.sh', 'ParStream', 'ParStream')� �

can be used as follows in an ON clause:� �
myFunc (ON (SELECT myStr, myInt FROM MyTable)

PARTITION BY myInt

RETURNS (outStr VARSTRING, outVal UINT64)

)� �
meaning that:

• The data from the query SELECT myStr, myInt FROM MyTable is used as input for myFunc()
passing it in the usual output format to the registered script MyScript.sh

• With PARTITION BY you specify that the data sent to the external process is partitioned by the
values of the passed columns. Passing column myInt in the sample above thus leads to myFunc

being called once for each distinct value in column myInt (and receiving all matching rows).

• With RETURNS you can specify the name and type of the values returned in each row of the script
called. Here, the output of the script must be rows containing a string and an unsigned integer (as
usual separated by a semicolon).

Page 235

20 External User-Defined Table Operators (xUDTO) 20.3 Using External User-Defined Table Operators

Two additional clause are possible in an ON clause:� �
myFunc (ON (SELECT myStr, myInt FROM MyTable)

PARTITION BY myInt

ORDER BY myInt −− optional
COMMAND_LINE_ARGS('') −− optional
RETURNS (outStr VARSTRING, outVal UINT64)

)� �
• With ORDER BY you can specify that the rows passed to the function are sorted according to the

passed columns.

• With COMMAND_LINE_ARGS you can pass strings of command line arguments which are used as
%args in the specified script type command (see section 20.2.1, page 233).

In the execution up to maxExternalProcesses will be launched to process the different partitions
simultaneously.

Example Using a xUDTO

You can use a xUDTO in different ways. For example as part of a general SELECT statement you can
output the resulting data:� �
SELECT * FROM myFunc (ON (SELECT myStr, myInt FROM MyTable)

PARTITION BY myInt

RETURNS (outStr VARSTRING, outVal UINT64)

)

ORDER BY outStr� �
You can also use this function call to insert the resulting output into a new table using the INSERT
INTO statement (see section 10.7, page 107). For example, after defining a table for the output data
as follows:� �
CREATE TABLE OutTable (

outStr VARSTRING,

outVal UINT64

)

DISTRIBUTE EVERYWHERE� �
or as follows:� �
CREATE TABLE OutTable (

outStr VARSTRING,

outVal UINT64 INDEX EQUAL

)

PARTITION BY outVal

DISTRIBUTE OVER outVal� �
the following statement inserts the output/result of myFunc() into table OutTable:

Page 236

20.3 Using External User-Defined Table Operators 20 External User-Defined Table Operators (xUDTO)

� �
INSERT INTO OutTable

SELECT * FROM myFunc (ON (SELECT myStr, myInt FROM MyTable)

PARTITION BY myInt

RETURNS (outStr VARSTRING, outVal UINT64)

)� �
If for example, the script simply passes the data read through:� �
#!/bin/sh
while read ROW

do

echo $ROW

done� �
and the first row contains hello world as value of column myStr and 42 as value of column myInt,
the function call will pass the corresponding line to standard input as "hello world";42. This
means that, because this row is also used as output, the corresponding output row will have a column
outStr with value “hello world” and a column outVal with value 42.

Note that output rows always have to end with a newline character to get processed.

Dealing with Errors in xUDTOs

To be able to detect and deal with errors, any error written to the standard error output by the called
scripts will be redirected into the log file of the corresponding server.

For example, the following script will print to standard error whenever it is started, so that the server
log files will contain corresponding entries, for each time when the script is called due to a partitioned
external user-defined table operator call:� �
#!/bin/sh
echo "MyScript.sh started" 1>&2

while read ROW

do

echo $ROW

done� �
Using Command Line Args

By using the COMMAND_LINE_ARGS clause, you can specify details of the called functionality within
the ON clause.

If you have e.g. specified the command to be:� �
[external.sed]

command = /bin/sed -e %args� �
and defined a corresponding func sed()

Page 237

20 External User-Defined Table Operators (xUDTO) 20.4 Integrating R Scripts as xUDTOs

� �
CREATE FUNCTION sed('sed', '', 'ParStream', 'ParStream')� �

(Note that here the second argument for the %script is empty, because it is not used.)

Then, you can pass the specific sed command inside your ON clause. Here, for example to replace in
each row all occurrences of a digit by the digit 0:� �
SELECT * FROM sed (ON (SELECT myStr, myInt FROM MyTable)

PARTITION BY myInt

COMMAND_LINE_ARGS('s/[0-9]/0/g')

RETURNS (outStr VARSTRING, outVal UINT64)

)

ORDER BY outStr, outVal� �
of end by begin, which would mean that an input such as� �
"this 1 world";42� �

will be converted into� �
"this 0 world";00� �

so that the resulting row gets this 0 world as value for outStr and 0 as value for outVal.

Limitations using xUDTOs

Please note the following limitations using user-defined table operators:

• Output lines written by the called commands/scripts must end with a newline character. Otherwise
they are not processed.

Integrating R Scripts as xUDTOs
One way to use external user-defined table operators (xUDTOs, see section 20, page 232) is to enable
calling R scripts according to the R Project for Statistical Computing (see http://www.r-project.

org/). Here, we describe how to do that according to the example xUDTO provided in the example
directory of Cisco ParStream (see section A.5, page 393).

Defining an R Script Type

To enable calling R scripts, you first have to define a corresponding script type. For example:� �
[external.R]

command = Rscript %args %script� �
Here, %args is used to be able to pass command-line arguments to the call of the R script associated
with a specific xUDTO.

Page 238

http://www.r-project.org/
http://www.r-project.org/

20.4 Integrating R Scripts as xUDTOs 20 External User-Defined Table Operators (xUDTO)

Register R Scripts

Then, you can register a function, calling a specific R script passed as second argument. For example,
we could define a function that performs a linear regression and returns the corresponding linear
model:� �
CREATE FUNCTION lm_R('R', 'lm.R', 'ParStream', 'ParStream')� �

This command registers an external user-defined table operator lm_R() calling the R script lm.R (by
calling the corresponding command for the script type R using lm.R as parameter %script). The last
two parameters require to use the standard Cisco ParStream input and output format (other formats
are not supported yet).

The R script has to read input and to write output according to the standard input file format of Cisco
ParStream. For example:� �
#!/usr/bin/env Rscript

we fetch data from stdin
f <- file('stdin')

open(f)

t <- read.table(f,

input schema
colClasses = c('character',

'integer',

'integer',

'integer',

'numeric'),

col.names = c('sensor_id',

'week_of_year',

'day_of_week',

'hour_of_day',

'value'),

input format
header = FALSE,

na.strings = '<NULL>',

sep = ';',

dec = '.'

)

close(f)

quick-and-dirty argument processing,
production code would likely use packages like optParse
logging <- '--logging' %in% commandArgs(trailingOnly = TRUE)

if (nrow(t) > 0) {

if (logging) {

write('Got some rows, will fit a lm', stderr())

}

Page 239

20 External User-Defined Table Operators (xUDTO) 20.4 Integrating R Scripts as xUDTOs

for each run of this script sensor_id will be identical
sensor_id <- t$sensor_id[[1]]

lmfit = lm(t$hour_of_day ~ t$ week_of_year + t$value)

result <- c(sensor_id, lmfit$coefficients)

result[is.na(result)] <- '<NULL>' # translate N/A into Cisco ParStream convention

echo result on stdout
write(paste(result, collapse = ';'), # columns are separated by ‘;‘

stdout())

} else {

if (logging) {

write('Did not receive any data to fit', stderr())

}

}� �
As usual for registered xUDTOs, the R scripts have to be placed in the directory for user-defined
function, using the global option udfLibraryPath (see section 13.2.1, page 122).

If the library path is defined as follows:� �
udfLibraryPath = udf� �

and the command for the R script type is defined as follows:� �
[external.R]

command = Rscript %script� �
and the xUDTO was registered to call the R script lm.R and the server executing the command
was started in the directory /opt/cisco/kinetic/parstream-database/bin, the resulting
command called for each xUDTO call will be:� �
Rscript /opt/cisco/kinetic/parstream-database/bin/udf/lm.R� �

Input Processing

As shown in the example lm.R above, R scripts should typically use read.table() to process Cisco
ParStream input. Beside the mapping of the column names and type, which is described below, you
should in general specify the following input format properties in read.table():� �
t <- read.table(...

header = FALSE,

na.strings = '<NULL>',

sep = ';',

dec = '.'

)� �
Page 240

20.4 Integrating R Scripts as xUDTOs 20 External User-Defined Table Operators (xUDTO)

Here we specify that

• We have no header in the input data

• <NULL> is the NULL value

• The semicolon is the column separator

• A dot is used as decimal point

Depending of the concrete input not all properties might be necessary in all cases (e.g. you don’t have
to specify the floating-point character if no floating point values are used).

In addition, we have to map column names and types from Cisco ParStream to R.

The following table describes the suggested best mappings from Cisco ParStream data types to R
data types upon input:

ParStream Type Format R Type
UINT8 unsigned integer integer

UINT16 unsigned integer integer

UINT32 unsigned integer integer

UINT64 unsigned integer integer

INT8 signed integer integer

INT16 signed integer integer

INT32 signed integer integer

INT64 signed integer integer

FLOAT floating-point value double

DOUBLE floating-point value double

VARSTRING "<characters>" character

BLOB "<characters>" character

SHORTDATE YYYY-MM-DD Date

DATE YYYY-MM-DD Date

TIME HH:MM:SS[.MS] Date

TIMESTAMP YYYY-MM-DD HH:MM:SS[.MS] Date

In this example, we map data read from the following input table:� �
CREATE TABLE Sensors (

sensor_id VARSTRING COMPRESSION HASH64 INDEX EQUAL,

week_of_year INT8,

day_of_week INT8,

hour_of_day INT8,

xvalue UINT64

)

PARTITION BY sensor_id

DISTRIBUTE EVERYWHERE;� �
as follows:� �
t <- read.table(...

input schema
colClasses = c('character',

Page 241

20 External User-Defined Table Operators (xUDTO) 20.4 Integrating R Scripts as xUDTOs

'integer',

'integer',

'integer',

'numeric'),

col.names = c('sensor_id',

'week_of_year',

'day_of_week',

'hour_of_day',

'value'),

...

)� �
For the first four arguments we use the proposed mappings having the same names in Cisco ParStream
and R. For the last input column we map to a different name not using the suggested types mapping.
If you want to pass data from an existing table to a pre-defined R script this is a typical case. Here, for
example, it makes sense that the R script uses type numeric because values might be both integral
and floating-point values, so that the mapping from UINT64 to numeric also fits fine.

Output Processing

For output you can use any write statement, given that any NA values are mapped to <NULL>, and
that columns are separated by a semicolon. For example, according to the example above:� �

result[is.na(result)] <- '<NULL>'

write(paste(result, collapse = ';'), stdout())� �
will produce output rows with a sensor id and the three floating-point coefficients of the linear model.

Again R data types have to be mapped to corresponding Cisco ParStream data types to fit a
corresponding RETURNS. We suggest the following mappings:

R Type ParStream Type Comment
integer [U]INT<8|16|32|64>

double FLOAT, DOUBLE

character VARSTRING

Date TIMESTAMP

logical ??? no direct mapping, needs to be mapped on another (e.g.
integer) type

complex - unsupported, real and imaginary components need to be
stored separately

NULL - unsupported, all values are typed in Cisco ParStream

Note:

• Cisco ParStream types don’t have a special type for NULL. Instead, NULL is a special value for the
different types. For this reason, to return 8-bit values you should map them to INT16 or UINT16.

• Output rows have to end with a newline to get processed.

Page 242

20.4 Integrating R Scripts as xUDTOs 20 External User-Defined Table Operators (xUDTO)

As RETURNS clause for the lm_R function compatible with the output sensor id and 3 floating point
coefficients the following works:� �
RETURNS(sensor_id VARSTRING, c0 DOUBLE, c1 DOUBLE, c2 DOUBLE)� �

Error Handling

As usual for external user-defined table operators, any output written to stderr will be written to the log
file of the server executing the script. Output to stderr can for example be done in R as follows:� �

write('Did not receive any data to fit', stderr())� �
Calling R Scripts defined as xUDTOs

To call R scripts, registered as xUDTOs, you have to use an ON clause. For example, calling the R
script lm.R defined as xUDTO lm_R() above look as follows:� �
SELECT * FROM lm_R(ON (SELECT sensor_id, week_of_year,

day_of_week, hour_of_day, xvalue

FROM Sensors)

PARTITION BY sensor_id

RETURNS(sensor_id VARSTRING,

c0 DOUBLE, c1 DOUBLE, c2 DOUBLE)

)

ORDER BY sensor_id� �
By adding a COMMAND_LINE_ARGS clause you can pass command-line arguments to the call of the R
script (used as %args in the corresponding command defined for this script type). For example:� �
SELECT * FROM lm_R(ON (SELECT sensor_id, week_of_year,

day_of_week, hour_of_day, xvalue

FROM Sensors)

PARTITION BY sensor_id

COMMAND_LINE_ARGS('--logging')

RETURNS(sensor_id VARSTRING,

c0 DOUBLE, c1 DOUBLE, c2 DOUBLE)

)

ORDER BY sensor_id� �

Page 243

SQL Coverage

In principle, Cisco ParStream complies with the SQL 2008 standard. However, to support special
features and deal with specific limitation, Cisco ParStream also has additional commands and
restrictions. This chapter gives a brief overview of the supported types and commands. See the SQL
Reference Guide for details.

Supported Keywords, Functions, and Operators

Keyword(s) Description See Section
+, -, *, / Arithmetic operators 21.2.13 page 249
=, <>, != Check for equality 21.2.5 page 247
<, <=, >, >= Comparisons 21.2.5 page 247
[] Check whether specific bit is set(v[2] is equivalent

to BIT(v,2))
21.2.25 page 252

~, ~*, !~, !~* Regular expression matching 21.2.9 page 248
ADD COLUMN Part of ALTER TABLE command 21.2.43 page 259
ALL Part of the UNION declaration 21.2.39 page 257
ALTER SYSTEM Part of a KILL or SET command 21.2.47 page 259
ALTER TABLE Schema/Metadata modifications 21.2.43 page 259
AND Logical AND and BETWEEN AND 21.2.6 page 248
AS Alias name 21.2.20 page 251
ASC Ascending sorting 21.2.3 page 247
AVG Average value 21.2.14 page 250
BETWEEN AND Value in specific range 21.2.10 page 249
BIT Check whether specific bit is set (BIT(v,2) is

equivalent to v[2])
21.2.25 page 252

BY See ORDER BY 21.2.3 page 247
CASE WHEN THEN
[ELSE] END

Replace multiple values by other values 21.2.21 page 251

CAST Explicit type conversion 21.2.29 page 254
COALESCE First non-NULL value 21.2.24 page 252
CONTAINS Checks whether a string contains a substring 21.2.8 page 248
COUNT Number of ... 21.2.16 page 250
CREATE TABLE Create new table 21.2.42 page 259
CROSS See JOIN 21.2.38 page 256
DATE_PART Part of date or time value/column 21.2.28 page 253

Page 244

21.1 Supported Keywords, Functions, and Operators 21 SQL Coverage

Keyword(s) Description See Section
DATE_TRUNC Date or time rounded 21.2.28 page 253
DAYOFMONTH Extracts the day out of a date or timestamp value

as integer.
21.2.28 page 253

DAYOFWEEK Extracts the day of the week out of a date or
timestamp value as integer.

21.2.28 page 253

DAYOFYEAR Extracts the day of year out of a date or timestamp
value as integer.

21.2.28 page 253

DEFAULT Allowed as value in SET statements to recover the
default value for the given setting

21.2.45 page 259

DESC Descending sorting 21.2.3 page 247
DISTINCT Without duplicates 21.2.17 page 250
ELSE See CASE WHEN 21.2.21 page 251
END See CASE WHEN 21.2.21 page 251
EPOCH Extracts the UNIX timestamp out of a date or

timestamp value as integer.
21.2.28 page 253

EXTRACT Part of date or time value/column 21.2.28 page 253
FIRST First result 21.2.31 page 254
FLOOR Round down floating-point value to integral value 21.2.26 page 253
FROM Table identifier 21.2.2 page 247
FULL See JOIN 21.2.38 page 256
GROUP BY Grouping 21.2.18 page 251
HAVING Result filter 21.2.19 page 251
HIGH Value used to set the priority of execution tasks 21.2.37 page 256
HOUR Extracts the hour out of a time or timestamp value

as integer.
21.2.28 page 253

IF Conditional value (simple CASE clause) 21.2.22 page 252
IFNULL Replacement for NULL values 21.2.23 page 252
IN Possible list of values or check against subquery

results
21.2.11 page 249

INNER See JOIN 21.2.38 page 256
INSERT INTO Insert data from other tables 21.2.40 page 258
IMPORTPRIORITY Priority of subsequently issued import tasks 21.2.37 page 256
JOIN Combine multiple tables 21.2.38 page 256
IS [NOT] NULL Check for NULL values 21.2.12 page 249
LEFT See JOIN 21.2.38 page 256
LIKE (sub)string matching 21.2.7 page 248
LIMIT Limit resulting rows 21.2.30 page 254

Page 245

21 SQL Coverage 21.1 Supported Keywords, Functions, and Operators

Keyword(s) Description See Section
LOW Value used to set the priority of execution tasks 21.2.37 page 256
LOWER Lowercase letters 21.2.27 page 253
LOWERCASE Lowercase letters 21.2.27 page 253
MATCHES Regular expression matching 21.2.9 page 248
MAX Maximum value 21.2.14 page 250
MEDIAN MEDIAN of values 21.2.33 page 255
MEDIUM Value used to set the priority of execution tasks 21.2.37 page 256
MILLISECOND Extracts the millisecond out of a time or timestamp

value.
21.2.28 page 253

LOW Value used to set the priority of execution tasks 21.2.37 page 256
MIN Minimum value 21.2.14 page 250
MINUTE Extracts the minute out of a time or timestamp value

as integer.
21.2.28 page 253

MOD Modulo operator 21.2.13 page 249
NOT Logical “NOT” 21.2.6 page 248
NULL no value defined 21.2.12 page 249
OFFSET Skip some results 21.2.30 page 254
OR Logical “OR” 21.2.6 page 248
ORDER BY Sorting 21.2.3 page 247
OUTER See JOIN 21.2.38 page 256
PERCENTILE_CONT PERCENTILE_CONT of values 21.2.33 page 255
PERCENTILE_DISC PERCENTILE_DISC of values 21.2.33 page 255
QUARTER Extracts the quarter out of a date or timestamp

value as integer.
21.2.28 page 253

QUERYPRIORITY Priority of subsequently issued query tasks 21.2.37 page 256
RIGHT See JOIN 21.2.38 page 256
SECOND Extracts the second out of a time or timestamp

value as integer.
21.2.28 page 253

SELECT Basic query command 21.2.2 page 247
SET Change session settings 21.2.45 page 259
SHL Shift-left 21.2.25 page 252
STDDEV_POP Population standard deviation 21.2.32 page 255
SUM Sum of values 21.2.14 page 250
TABLE See CREATE TABLE 21.2.42 page 259
TAKE Additional columns for MIN and MAX 21.2.15 page 250
THEN See CASE WHEN 21.2.21 page 251

Page 246

21.2 Commands 21 SQL Coverage

Keyword(s) Description See Section
TRUNC Truncate floating-point value to integral value 21.2.26 page 253
UNION Combine multiple sets 21.2.39 page 257
UPPER Uppercase letters 21.2.27 page 253
UPPERCASE Uppercase letters 21.2.27 page 253
WEEK Extracts the week out of a date or timestamp value

as integer.
21.2.28 page 253

WHEN See CASE WHEN 21.2.21 page 251
WHERE Basic result filter 21.2.4 page 247
XOR Bit-wise XOR 21.2.25 page 252
YEAR Extracts the year out of a date or timestamp value

as integer.
21.2.28 page 253

Commands

Simple Select Commands

Basic Selects

For example:� �
SELECT * FROM MyTable;

SELECT a, b, c FROM MyTable;� �
ORDER-BY Clause

For example:� �
SELECT * FROM MyTable ORDER BY ...

SELECT * FROM MyTable ORDER BY Name DESC, Price ASC;� �
WHERE Clause

For example:� �
SELECT * FROM MyTable WHERE ...� �

Comparisons: =, <>, !=, <, <=, >, >=

For example:� �
SELECT * FROM Hotels WHERE Name = 'Marriott';

SELECT * FROM MyTable WHERE NumVal != 1 AND City <> 'Cologne';

Page 247

21 SQL Coverage 21.2 Commands

SELECT val FROM MyTable WHERE val > 0;

SELECT birthday FROM MyTable WHERE birthday <= date '2014-12-20';� �
Note: Both <>and != are supported.

Logical Operations: AND, OR, NOT

For example:� �
SELECT * FROM MyTable WHERE NOT id = 7

SELECT * FROM MyTable WHERE (id = 4 OR id = 5) AND NOT id = 6� �
LIKE Clause

For example:� �
SELECT * FROM MyTable WHERE City LIKE 'Rom%';

SELECT * FROM MyTable WHERE City LIKE '_om_';� �
Matches against the whole string with the following wildcards:

• Character “_” matches any single character

• Character “%” matches any sequence of zero or more characters

CONTAINS Clause

For example:� �
SELECT * FROM MyTable WHERE Name CONTAINS 'rr';� �

Searches for a substring

Regular Expression Matching: MATCHES, ~, !~, ~*, !~*

For example:� �
SELECT Name FROM MyTable WHERE Name MATCHES '.*rr.*';

SELECT * FROM MyTable WHERE Name MATCHES '[[:alpha:]].*r{2}i?[^qx]*';

SELECT * FROM MyTable WHERE Name ~ '[[:alpha:]].*r{2}i?[^qx]*';

SELECT * FROM MyTable WHERE Name !~* '[[:alpha:]].*R{2}i?[^q-x]*';� �
Note:

The regex syntax follows in all cases an egrep style for the whole value. For example:

'[[:alpha:]].*r{2}i?[^qx]*'

means:

Page 248

21.2 Commands 21 SQL Coverage

alphanumeric letter
followed by any number (“*”) of any letter (“.”)
followed by 2 r’s
optionally followed by an i

followed by any letter except q and x

~, ~*, !~, !~* have the following meanings

~ is equivalent to MATCHES
~* ignores case
!~ and !~* search for values NOT matching the pattern

BETWEEN-AND Clause

For example:� �
SELECT num FROM MyTable WHERE num BETWEEN 5000 AND 9000;

SELECT name FROM MyTable WHERE name BETWEEN 'A' AND 'zzz';� �
IN Clause

For example:� �
SELECT * FROM MyTable WHERE City IN ('Rome', 'Nice');

SELECT * FROM MyTable WHERE Val NOT IN (5900, 7777);� �
Note: IN also can be used with sub-queries (see section 21.2.35, page 256 for details).

NULL Clause

For example:� �
SELECT * FROM MyTable WHERE ... IS NULL;

SELECT * FROM MyTable WHERE ... IS NOT NULL;� �
Note that for strings empty values are interpreted as NULL values.

Arithmetic Operations: +, -, *, /, MOD

For example:� �
SELECT 2 * 33.3 + (7/2) -10;

SELECT Price*Num,*,3e4-1733 FROM Hotels WHERE Price * Num > 3e4 + -1733;

SELECT (2*33.3+(7/2)-10) MOD 7;

SELECT MOD(2*33.3+(7/2)-10, 7);

SELECT DateVal, DateVal + 7 AS OneWeekLater FROM MyTable;� �
Page 249

21 SQL Coverage 21.2 Commands

Note that you can call MOD for date values.

Aggregates: MIN, MAX, SUM, AVG

For example:� �
SELECT SUM(Price) FROM MyTable;

SELECT AVG(Price) FROM MyTable;

SELECT MIN(Price) FROM MyTable;

SELECT MAX(Price) FROM MyTable;� �
Note:

• AVG and SUM are applicable on all numeric data types.

• MIN and MAX are callable on numeric data types, strings, hashed values, and date/time types.

TAKE Clause

Where aggregates are used, there is a support to query corresponding other columns where an
aggregate applies.

For example:� �
SELECT MIN(Price), TAKE(Hotel), TAKE(City) FROM Hotels;� �

• yields the minimum Price and for one of the hotels with this price the values in columns Hotel and
City.

• If no row matching row exists (e.g. because SUM is used), the values are NULL.

COUNT Clause

For example:� �
SELECT COUNT(*) FROM MyTable;

SELECT COUNT(*) AS NumRows FROM MyTable;

SELECT COUNT(Price) FROM MyTable;

SELECT COUNT(Price) AS NumPrices FROM MyTable;

SELECT COUNT(DISTINCT Price) FROM MyTable;� �
DISTINCT Clause

For example:� �
SELECT DISTINCT City FROM MyTable;

SELECT DISTINCT City, Bed, Seaview FROM MyTable WHERE ...

SELECT COUNT(DISTINCT Price) FROM MyTable;� �
Page 250

21.2 Commands 21 SQL Coverage

GROUP-BY Clause

For example:� �
SELECT City FROM MyTable GROUP BY City;

SELECT Hotel, COUNT(DISTINCT City), MAX(Num) FROM MyTable GROUP BY Hotel;� �
HAVING Clause

For example:� �
SELECT * FROM MyTable HAVING Val < 8800;

SELECT City, SUM(Num) AS Nums FROM Hotels GROUP BY City HAVING Nums > 15;� �
Note: In Cisco ParStream the HAVING clause is a filter working as post processor on the results of a
SELECT statement.

Thus, it can be used similar to WHERE clauses with all statements, not only with aggregates and
GROUP BY.

AS Clause

AS to rename column

For example:� �
SELECT Price AS P FROM MyTable;

SELECT SUM(Num) AS SumSeaview FROM Hotels WHERE Seaview = 1;� �
AS as ID used in HAVING Clauses

For example:� �
SELECT Price AS P FROM MyTable HAVING P > 10;� �

AS in FROM clause

For example:� �
SELECT * FROM MyTable AS T;� �

CASE WHEN Clause

For example:

Page 251

21 SQL Coverage 21.2 Commands

� �
SELECT CASE Val WHEN 'Single' then 'S'

WHEN 'Twin' THEN 'T'

ELSE 'D' END FROM MyTable;

SELECT CASE WHEN Val = 'Single' THEN 1 ELSE 2 END FROM MyTable;� �
IF Clause

For example:� �
SELECT IF(Val = 'Single',1,2) FROM MyTable;� �

Is a shortcut for:� �
SELECT CASE WHEN Val = 'Single' THEN 1 ELSE 2 END FROM MyTable;� �

IFNULL Clause

Replacement for NULL values.

For example:� �
SELECT IFNULL(StringVal,'no value') FROM MyTable;

SELECT IFNULL(IntVal,-1) FROM MyTable;� �
COALESCE Clause

First non-NULL value.

For example:� �
SELECT COALESCE (NewPrice, OldPrice) from Pricelist;� �

Numeric Operations: [], BIT, XOR, SHL

For example:� �
SELECT Val SHL 2 FROM MyTable;� �

yields Val shifted to the left by 2 bits� �
SELECT Val XOR 2 FROM MyTable;� �

yields bit-wise XOR of Val and 000010� �
SELECT BIT(Val,1) FROM MyTable;� �

Page 252

21.2 Commands 21 SQL Coverage

yields whether second bit (bit with index 1) is set� �
SELECT Val[1] FROM MyTable;� �

yields whether second bit (bit with index 1) is set

Floating-Point Operations: TRUNC, FLOOR

For example:� �
SELECT TRUNC(Val) from MyTable;� �

Truncate floating-point value to integral value (TRUNC(4.7) yields 4, TRUNC(-7.1) yields -7)� �
SELECT FLOOR(Val) from MyTable;� �

rounds down floating-point value to integral value (FLOOR(4.7) yields 4, FLOOR(-7.1) yields -8)

String Operations: LOWER, UPPER, LOWERCASE, UPPERCASE

For example:� �
SELECT LOWER(firstname), UPPER(lastname) FROM MyTable;

SELECT LOWERCASE(firstname), UPPERCASE(lastname) FROM MyTable;� �
Date/Time Operations: DATE_PART, DATE_TRUNC, EXTRACT, unary

extraction functions

For example:� �
SELECT DATE_PART('MONTH',Val) FROM MyTable;� �

• extracts a specific part out of a date or time value

• first argument can be: ’YEAR’, ’MONTH’, ’DAY’, ’HOUR’, ’MINUTE’, ’SECOND’, ’MILLISECOND’,
’DOW’, ’DOY’, ’EPOCH’, ’ISODOW’, ’ISOYEAR’, ’QUARTER’ or ’WEEK’

• second argument Val must be the name of a column/field with type date, shortdate, time, or
timestamp� �
SELECT DATE_TRUNC('MONTH',Val) FROM MyTable;

SELECT DATE_TRUNC(2000,Val) FROM MyTable;� �
• rounds down to a specific part out of a date or time value

• first argument can be: ’YEAR’, ’MONTH’, ’DAY’, ’HOUR’, ’MINUTE’, ’SECOND’, ’MILLISECOND’,
’QUARTER’, ’WEEK’ or an integer value interpreted as milliseconds

Page 253

21 SQL Coverage 21.2 Commands

• second argument Val must be the name of a column/field with type date, time, or timestamp� �
SELECT EXTRACT(WEEK FROM Val) FROM MyTable� �

• extracts a specific part out of a date or time value

• first argument can be: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND, DOW,
DOY, EPOCH, ISODOW, ISOYEAR, QUARTER or WEEK

• second argument Val must be the name of a column/field with type date, shortdate, time, or
timestamp� �
SELECT DAYOFMONTH(Val) FROM MyTable

SELECT DAYOFWEEK(Val) FROM MyTable

SELECT DAYOFYEAR(Val) FROM MyTable

SELECT EPOCH(Val) FROM MyTable

SELECT HOUR(Val) FROM MyTable

SELECT MILLISECOND(Val) FROM MyTable

SELECT MINUTE(Val) FROM MyTable

SELECT MONTH(Val) FROM MyTable

SELECT QUARTER(Val) FROM MyTable

SELECT SECOND(Val) FROM MyTable

SELECT WEEK(Val) FROM MyTable

SELECT YEAR(Val) FROM MyTable� �
CAST Clause

For example:� �
SELECT CAST (myTimestamp AS DATE) FROM MyTable;� �

LIMIT and OFFSET Clause

For example:� �
SELECT * FROM Hotels ORDER BY City, Name LIMIT 3;� �

stop output after 3rd row� �
SELECT * FROM Hotels ORDER BY City, Name LIMIT 3 OFFSET 3;� �

start output with 4th row and stop after 6th row

FIRST Clause

For example:� �
Page 254

21.2 Commands 21 SQL Coverage

SELECT FIRST(name) FROM MyTable WHERE Val IS NULL;

SELECT FIRST(firstname), FIRST(lastname) FROM people WHERE income > 60000;� �
• yields only one of multiple possible results

• If multiple results are possible it is undefined which result is taken

• If no result exists, NULL is returned

STDDEV_POP Clause

For example:� �
SELECT STDDEV_POP(Price) FROM MyTable;� �

Computes the population standard deviation.

MEDIAN, PERCENTILE_CONT, PERCENTILE_DISC

For example:� �
SELECT MEDIAN(Price) FROM MyTable;� �

Computes the median of Price.

For example:� �
SELECT PERCENTILE_CONT(Price, 0.22) FROM MyTable;� �

Computes the 0.22 percentile of Price after doing linear interpolation.

For example:� �
SELECT PERCENTILE_DISC(Price, 0.22) FROM MyTable;� �

Computes the 0.22 discrete percentile of Price, which is a value from the set of input values.

Page 255

21 SQL Coverage 21.2 Commands

Complex SELECT Commands

This section covers all complex select commands currently officially supported (queries from multiple
tables and with sub queries).

IN Statement with Sub-Queries

For example:� �
SELECT * FROM MyTable WHERE Name IN

(SELECT Name FROM MyTable WHERE Val IS NOT NULL);� �
Nested SELECT Commands

You can use the result of one SELECT as input for a second SELECT. For example:� �
SELECT * FROM (SELECT * FROM MyTable);

SELECT * FROM (SELECT City, (CASE WHEN Bed = 'Single'

THEN 1

ELSE 2 END)*Num

AS FreeBeds

FROM Hotels)

WHERE FreeBeds > 0;� �
PRIORITY Statements

For example:� �
SET QueryPriority TO HIGH;

SELECT COUNT(DISTINCT(lastname)) FROM employee;

SET ImportPriority TO HIGH;

INSERT INTO employee SELECT * FROM employee WHERE lastname = 'Doe';� �
JOIN Statements

For example:� �
SELECT A.*, B.* FROM A

INNER JOIN B ON A.userid = B.userid;

SELECT lastname, departmentName FROM employee

LEFT OUTER JOIN department ON employee.departmentID = department.id;

SELECT City.name, Customers.customer FROM Customers

RIGHT OUTER JOIN City ON Customers.cityId = City.id;

SELECT City.name, Customers.customer FROM Customers

FULL OUTER JOIN City ON Customers.cityId = City.id;

Page 256

21.2 Commands 21 SQL Coverage

SELECT lastname, departmentName FROM employee

CROSS JOIN department;� �
UNION Statements

You can combine the results of multiple queries into a single result set if the different queries all return
matching data.

For example:� �
SELECT id FROM tabA

UNION ALL SELECT id FROM tabB;

SELECT tabA.a AS id FROM tabA

UNION DISTINCT SELECT tabB.b AS id FROM tabB;

SELECT A.id AS f FROM tabA A

UNION SELECT B.ref_id AS f FROM tabB.B;

(SELECT id FROM tabA ORDER BY salary DESC LIMIT 3)

UNION (SELECT id FROM tabB ORDER BY salary ASC LIMIT 3)

ORDER BY id LIMIT 2;

SELECT CAST(stock_office AS UINT64) AS numItems FROM tabA

UNION SELECT stock AS numItems FROM tabB;

SELECT AVG(Rev) AS ARev, CAST(SUM(Rev) AS DOUBLE) AS SRev, PageName

FROM WebVisits

GROUP BY PageName

UNION

SELECT AvgRev AS ARev, CAST(NULL AS DOUBLE) AS SRev, URL AS PageName

FROM googleStatistics

GROUP BY PageName

ORDER BY PageName;� �

Page 257

21 SQL Coverage 21.2 Commands

INSERT INTO Command

Tables can be filled by various methods:

• You can use the parstream-import executable, which reads data from CSV files.

• You can use the Streaming Import Interface, a C and Java API.

• You can use the INSERT INTO statement.
For example:� �
INSERT INTO AveragePrices

SELECT city, SUM(price)/COUNT(*) AS price, 1 AS quarter

FROM Hotels

WHERE week BETWEEN 1 AND 13

GROUP BY city;� �

Page 258

21.2 Commands 21 SQL Coverage

Creating and Changing Tables

Cisco ParStream supports creating tables with an extended standard conforming SQL statement. In
addition, you can add additional columns.

Creating Tables

Cisco ParStream’s CREATE TABLE statement is an extension of the standard SQL CREATE TABLE
statement.

An example of a simple CREATE TABLE statement can be found below. Please refer to the manual for
the full syntax.� �
CREATE TABLE Hotels

(

City VARSTRING (1024) COMPRESSION HASH64 INDEX EQUAL,

Hotel VARSTRING (100) COMPRESSION HASH64 INDEX EQUAL,

Price UNIT16 INDEX RANGE,

Num UINT8

)

PARTITION BY City, Hotel

DISTRIBUTE EVERYWHERE;� �
Adding Columns� �
ALTER TABLE Hotels ADD COLUMN Phone VARSTRING;

ALTER TABLE Hotels ADD COLUMN HotelId UINT16 DEFAULT 42;� �
Other Commands

Set Commands

For example:� �
SET LimitQueryRuntime TO 10000

SET ExecTree.MonitoringMinLifeTime = 5000

SET QueryPriority TO DEFAULT� �
Alter System Set Commands

For example:� �
ALTER SYSTEM SET mappedFilesMax TO 10000

ALTER SYSTEM SET mappedFilesCheckInterval = DEFAULT� �
Page 259

21 SQL Coverage 21.3 Optimization Settings

Alter System Kill Commands

For example:� �
ALTER SYSTEM KILL queryId� �

Optimization Settings

Rewrite Optimizations

With the optimization.rewrite settings query optimizations can be enabled or disabled explicitly.

For example:� �
SET optimization.rewrite.all = enabled;

SELECT A.*, B.* FROM A INNER JOIN B ON A.userid = B.userid;

SET optimization.rewrite.all = individual;

SET optimization.rewrite.joinElimination = disabled;

SET optimization.rewrite.hashJoinOptimization = disabled;

SET optimization.rewrite.mergeJoinOptimization = disabled;

SELECT A.*, B.* FROM A INNER JOIN B ON A.userid = B.userid;� �

Data Types

Strings

For string, Cisco ParStream provides type VARSTRING. An empty string always is interpreted as
NULL. In string literals, you can escape single quotes. For example:� �
'Say \'Hello\' to me'� �

Numeric Values

For integral numeric type you have signed and unsigned types with 8, 16, 32, and 64 bits:

• INT8, INT16, INT32, INT64

• UINT8, UINT16, UINT32, UINT64

Note that NULL is a special value inside the range of these types. For this reason, the range of
supported values lacks a value that is typically supported. The resulting ranges are as follows:

Page 260

21.4 Data Types 21 SQL Coverage

Type Minimum Maximum NULL
INT8 -128 +126 +127
UINT8 0 +254 +255
INT16 -32768 +32766 +32767
UINT16 0 +65534 +65535
INT32 -2147483648 +2147483646 +2147483647
UINT32 0 +4294967294 +4294967295
INT64 -9223372036854775808 +9223372036854775806 +9223372036854775807
UINT64 0 +18446744073709551614 +18446744073709551615

Thus, if you need all bits for your values, you have to use the next larger type. For example, to have all
values from -128 til +127 you have to use type int16.

For floating-point numeric values you have the following types:

• float, double

You can use scientific notation to specify values. For example:� �
SELECT * from Hotels WHERE Price > 1e4;� �

Date and Time Values

For Date and Time values you have types time, timestamp, date, shortdate:

• Type date:

– 4 byte data type counting days since 0.0.0000
– Supported minimum: 00.00.0000
– Supported maximum: 31.12.9999
– Literals: date ’2010-02-22’ or: date ’0222-1-1’

(4 digits for year required)

• Type shortdate:

– 2 byte data type counting days since 01.01.2000
– Minimum: 01.01.2000
– Maximum: 05.06.2178
– Literals: shortdate ’2010-02-22’ or: shortdate ’2000-1-1’

(4 digits for year required)

• Type time:

– 4 byte data type counting milliseconds
– Minimum: 00:00:00 or 00:00:00.000
– Maximum: 23:59:59.999
– Format: hh:mm:ss[.uuu]
– Literals: time ’00:00:00’ or: time ’22:25:44.007’ or: time ’22:25:44.3’

(2 digits for hour, minutes, seconds required; “.3” means 300 milliseconds)

• Type timestamp:

Page 261

21 SQL Coverage 21.4 Data Types

– 8 byte data type counting milliseconds
– Supported minimum: 01.01.0000 00:00:00
– Supported maximum: 31.12.9999 23:59:59.999
– Format: YYY-MM-DD hh:mm:ss[.uuu]
– Literals: timestamp ’2012-1-1 00:00:00’ or: timestamp ’2012-01-31 22:25:44.07’

(4 digits for year required; 2 digits for hour, minutes, seconds required;
“.07” means 70 milliseconds)

Note:

• Type date supports + and -, adding/subtracting days.

• Types time and timestamp support + and -, adding/subtracting milliseconds.

Other Types

In addition, Cisco ParStream provides the following data types:

• Blobs: BLOB

• Bit-Fields: BITVECTOR8

• Numeric arrays: MULTI_VALUE of integral and floating-point types

Page 262

SQL Language Elements

Cisco ParStream SQL
Cisco Parstream SQL implementation is Entry Level SQL-92 compliant.

Cisco ParStream supports elements of Core SQL-2003.

This chapter defines Cisco ParStream’s “data structures and basic operations on SQL-data” according
to Standard SQL. It provides functional capabilities for creating, accessing, and maintaining SQL-data.
[see SQL/Foundation, 9075-2, 2008], Scope 1.

For syntactic elements which are not defined here, please look into the Standard SQL. Any restrictions
of Standard SQL, particularly concerning mandatory, or optional features according to the Conformance
Rules, apply for Cisco ParStream, except, it is explicitly mentioned here.

Syntactic elements of Standard SQL which are differently realized in Cisco ParStream are additionally
marked here with a warning like this.

Syntactic elements of Cisco ParStream which are not part of the SQL Standard are additionally marked
here in the text with a dot like this.

Supported SQL Keywords
The following table gives an overview of the supported keywords, functions, and operators.

Keyword(s) Description See
+, -, *, / Arithmetic operators
=, <>, != Check for equality
<, <=, >, >= Comparisons
[] Check whether specific bit is set (v[2] is equivalent to

BIT(v,2))
˜, ˜*, !˜, !˜* Regular expression matching
ADD COLUMN Part of ALTER TABLE command page 296
ALL Part of the UNION declaration page 327
ALTER SYSTEM Part of a KILL or SET command page 375
ALTER TABLE Schema/Metadata modifications page 370
AND Logical “and” and see BETWEEN AND page 337
AS Alias name page 328
ASC Ascending sorting page 332
AVG Average value page 347
BETWEEN AND Value in specific range
BIT Check whether specific bit is set (BIT(v,2) is equivalent to

v[2])

Page 263

22 SQL Language Elements 22.2 Supported SQL Keywords

Keyword(s) Description See
BY See ORDER BY

CASE WHEN THEN

[ELSE] END

Replace multiple values by other values page 350

CAST Explicit type conversion page 299
COALESCE First non-NULL value page 350
CONTAINS Check whether a string contains a substring
COUNT Number of
CREATE TABLE Create new table page 278
CROSS See JOIN page 330
CURRENT_DATE Gives the date the query started as UTC page 300
CURRENT_TIME Gives the time the query started as UTC page 300
CURRENT_TIMESTAMPGives the timestamp the query started as UTC page 300
DESC Descending sorting page 332
DATE_PART Extract part of a date/time value page 300
DATE_TRUNC Round down a date/time value page 301
DAYOFMONTH Extracts the day out of a date or timestamp value as integer. page 301
DAYOFWEEK Extracts the day of the week out of a date or timestamp

value as integer.
page 301

DAYOFYEAR Extracts the day of year out of a date or timestamp value as
integer.

page 301

DEFAULT Default setting for a variable page 373
DELETE Delete values from a table page 361
DISTINCT Without duplicates
DISTVALUES Distinct Values page 301
ELSE See CASE WHEN

END See CASE WHEN

EPOCH Extracts the UNIX timestamp out of a date or timestamp
value as integer.

page 302

EXTRACT Extract part of a date/time value page 302
FALSE Boolean value page 337
FIRST First result page 349
FLOOR Round down floating-point value to integral value page 303
FROM Table identifier page 329
FULL See JOIN page 330
GROUP BY Grouping page 331
HASH64 Convert string to hash value page 303

Page 264

22.2 Supported SQL Keywords 22 SQL Language Elements

Keyword(s) Description See
HAVING Result filter page 332
HIGH High priority setting page 373
HOUR Extracts the hour out of a time or timestamp value as integer. page 303
IF Conditional value page 304
IFNULL Replacement for NULL values page 304
IMPORTPRIORITY Priority for import execution page 373
IN Possible list of values
INNER See JOIN page 330
INSERT INTO Insert values from other tables page 360
IS [NOT] NULL Check for NULL values
JOIN Combine multiple tables page 330
LEFT See JOIN page 330
LIKE (sub)string matching page 341
LIMIT Limit resulting rows page 332

Limit partition access
LOW Low priority setting page 373
LOWER Lowercase letters page 304
LOWERCASE Lowercase letters page 304
MATCHES Regular expression matching
MAX Maximum value page 347
MEDIUM Medium priority setting page 373
MILLISECOND Extracts the millisecond out of a time or timestamp value. page 304
MIN Minimum value page 347
MINUTE Extracts the minute out of a time or timestamp value as

integer.
page 304

MOD Modulo operator page 346
NOT Logical “not” page 337
NULL no value defined
NOW Gives the timestamp the query started as UTC page 304
OFFSET Skip some results page 332
ON See JOIN

OR Logical “or” page 337
ORDER BY Sorting page 332
OUTER See JOIN page 330
QUARTER Extracts the quarter out of a date or timestamp value as

integer.
page 304

Page 265

22 SQL Language Elements 22.2 Supported SQL Keywords

Keyword(s) Description See
QUERYPRIORITY Priority for query execution page 373
RIGHT See JOIN page 330
SECOND Extracts the second out of a time or timestamp value as

integer.
page 304

SELECT Basic query command page 327
SET Change session settings page 373
SHL Shift-left
STDDEV_POP Population Standard Deviation page 347
SUM Sum of values page 347
TABLE See CREATE TABLE

TAKE Additional columns for MIN and MAX page 348
THEN See CASE WHEN

TRUE Boolean value page 337
TRUNC Truncate floating-point value to integral value page 305
UNION Combine multiple sets page 327
UPPER Uppercase letters page 305
UPPERCASE Uppercase letters page 305
WEEK Extracts the week out of a date or timestamp value as

integer.
page 305

WHEN See CASE WHEN

WHERE Basic result filter page 331
XOR Bit-wise XOR
YEAR Extracts the year out of a date or timestamp value as integer. page 305

Page 266

SQL Data Types

The following sections list the available and supported data types.

In the description: Bold means the data type is part of Standard SQL. If an alias is given for a data
type, then the importer configuration uses the alias and not the name (see section Value Types for
details of how to specify these types).

Supported Data Types

Currently Cisco ParStream supports the following data types:

• Integral types for signed and unsigned integral values of different size and granularity: INT8,
INT16, INT32, INT64, UINT8, UINT16, UINT32, UINT64

• Floating-point types of different size and granularity: FLOAT, DOUBLE

• Date/time types: DATE, SHORTDATE, TIME, TIMESTAMP

• Strings and character types: VARSTRING, which might be stored as hashed value ("hashed
string")

• Blobs: BLOB

• Bit-Fields: BITVECTOR8

• Numeric arrays: MULTI_VALUE of integral and floating-point types

For Boolean values, integral types or bit-fields can be used. Integral types and floating-point types are
so-called numeric types.

Integral Types

Cisco ParStream supports the following integral types:

SQL Name ParStream Type Size Description
bool – – not available, use int8 instead
byte INT8 1 byte very small integer
unsigned byte UINT8 1 byte very small unsigned integer
smallint INT16 2 bytes small-range integer
unsigned smallint UINT16 2 bytes small-range unsigned integer
integer INT32 4 bytes typical choice for integer
unsigned integer UINT32 4 bytes typical choice for unsigned integer
bigint INT64 8 bytes large-range integer
unsigned bigint UINT64 8 bytes large-range unsigned integer
decimal – – not available, use uint64 instead

Note that the numeric types of Cisco ParStream use a special value to represent NULL, which limits
the range of the storable values. As a consequence, the types have the following values:

Page 267

23 SQL Data Types 23.3 Floating-Point Types

ParStream Type Size Range NULL

INT8 1 byte -128 to +126 +127
UINT8 1 byte 0 to +254 +255
INT16 2 bytes -32768 to +32766 +32767
UINT16 2 bytes 0 to +65534 +65535
INT32 4 bytes -2147483648 to +2147483646 +2147483647
UINT32 4 bytes 0 to +4294967294 +4294967295
INT64 8 bytes -9223372036854775808 to

+9223372036854775806
+9223372036854775807

UINT64 8 bytes 0 to +18446744073709551614 +18446744073709551615

Thus, to be able to store all values from -128 to +127 into a column, you should use type int16 rather
than type int8.

See section 24.2.5, page 287 for details about defining these types.
See section 10.4.1, page 94 for details about importing values of these types.

Floating-Point Types

ParStream Type Size Description
DOUBLE 8 bytes double-precision floating-point type
FLOAT 4 bytes single-precision floating-point type

Note: We strongly recommend to usually use type DOUBLE for floating-point values. The reason is
that due to the limited amount of bits, FLOAT values easier get more significant rounding errors and
even small values with only a few digits after the dot might become slightly different values as they
internally are mapped to the next possible valid floating-point value. For example, after inserting a
FLOAT such as 1234.7 a query for this value might return 1234.699951, while when using type
DOUBLE, the output will be 1234.7.

The types follow IEEE 754, with the exception that +/- infinity and NaN are not supported.

You can use scientific notation to specify values. For example:� �
SELECT * FROM Hotels WHERE Price > 1e4;� �

See section 24.2.5, page 287 for details about defining these types.
See section 10.4.2, page 94 for details about importing values of these types.

Date and Time Types

Cisco ParStream provides the following types for dates and times:

Page 268

23.4 Date and Time Types 23 SQL Data Types

ParStream Type Size Descrip-
tion

NULL Internal Format

DATE 4 bytes 32-bit date uint32 NULL days since 24.11.-4713
SHORTDATE 2 bytes 16-bit date uint16 NULL days since 01.01.2000
TIME 4 bytes time of day uint32 NULL milliseconds since 00:00:00
TIMESTAMP 8 bytes both date

and time
uint64 NULL milliseconds since 01.01.0000 00:00:00

Types TIMESTAMP and TIME are defined according to the SQL Standard and stored without any
interpretation of time zones. Therefore these column types are equivalent to SQL Standard column
types TIMESTAMP WITHOUT TIME ZONE and TIME WITHOUT TIME ZONE.

These types support the following ranges:

ParStream Type Supported Minimum Supported Maximum
DATE 01.01.0000 31.12.9999
SHORTDATE 01.01.2000 31.12.2178
TIME 00:00:00 or 00:00:00.000 23:59:59.999
TIMESTAMP 01.01.0000 00:00:00 31.12.9999 23:59:59.999

Date/Time Literals

The date/time literals have the following standard SQL conforming syntax:

Type Literal Examples
DATE date’2010-02-22’

date ’222-1-1’

SHORTDATE shortdate’2010-02-22’

shortdate ’2000-1-1’

TIME time’00:00:00’

time ’22:25:44.007’

time ’9:3:0’

TIMESTAMP timestamp’2012-1-1 00:00:00’

timestamp ’2012-1-31 22:5:44.7’

Thus:

• For years, 1 to 4 digits are required.

• For time and timestamp, hours, minutes, and seconds with 1 or 2 digits are required.

• Milliseconds are optional.

• time’23:0:0.3’ is equivalent to time’23:00:00.300’

In addition, you can define your own format when importing date/time values (see section 10.4.3,
page 94).

Page 269

23 SQL Data Types 23.4 Date and Time Types

Date/Time Operations

• For types date and shortdate you can use:

– Operators = , !=, <>, <, <=, >, >= to compare dates
– Operator +, - to add/subtract days passed as integer values
– Operator - to process the difference of two dates (date/shortdate - date/shortdate)
– Operator MOD to process a modulo of the date value

• For types time and timestamp you can use:

– Operators = , !=, <>, <, <=, >, >= to compare times/timestamps
– Operator +, - to add/subtract milliseconds passed as integer values
– Operator - to process the difference of two times (time - time)
– Operator - to process the difference of two timestamps (timestamp - timestamp)

• In addition, you can:

– Add a date/shortdate with a time to get a timestamp

Interval Literals

Cisco ParStream supports day-time intervals as defined in the SQL standard ISO 9075 with a few
limitations, which are listed below.

Fields in Day-time Intervals

Cisco ParStream supports day-time intervals with the following keywords:

Keyword Description
DAY Number of days
HOUR Number of hours
MINUTE Number of minutes
SECOND Number of seconds and possibly fractions of a second

The first field in an interval expression is only limited by <interval leading field precision>. All
subsequent fields are restrained as follows:

Keyword Valid Values of Interval Fields
DAY Unconstrained except by <interval leading field precision>
HOUR Number of hours within the day (0-23)
MINUTE Number of minutes within the hour (0-59)
SECOND Number of seconds within the minute (0-59.999)

The interval literals have the following standard SQL conforming syntax:

Page 270

23.4 Date and Time Types 23 SQL Data Types

Type Literal Examples
DAY TO SECOND interval ’10 10:10:10’ day to second

interval ’-10 10:10:10.111’ day to second

DAY TO MINUTE interval ’10 10:10’ day to minute

interval ’-10 10:10’ day to minute

DAY TO HOUR interval ’10 10’ day to hour

interval ’-10 10’ day to hour

HOUR TO SECOND interval ’10:10:10’ hour to second

interval ’-10:10:10’ hour to second

HOUR TO MINUTE interval ’10:10’ hour to minute

interval ’-10:10’ hour to minute

MINUTE TO SECOND interval ’10:10’ minute to second

interval ’-10:10’ minute to second

DAY interval ’10’ day

interval ’-10’ day

HOUR interval ’10’ hour

interval ’-10’ hour

MINUTE interval ’10’ minute

interval ’-10’ minute

SECOND interval ’10’ second

interval ’-10’ second

The leading field precision defines how many digits the leading field supports. The default value is two.
If we need to define an interval with three or more digits, we have to set the leading field precision
accordingly:� �
SELECT * FROM examples WHERE ts < NOW() - INTERVAL '100' DAY(3);

SELECT * FROM examples WHERE ts < NOW() - INTERVAL '1000' DAY(4);� �
The fractional seconds precision defines how many digits the fractional seconds part supports. The
default and maximum value is three. If we want to limit the digits of the fractional seconds part of the
interval to fewer digits, we have to set the fractional seconds precision accordingly:� �
SELECT * FROM examples WHERE ts < NOW() - INTERVAL '0.12' SECOND(2,2);

SELECT * FROM examples WHERE ts < NOW() - INTERVAL '00:00.12' MINUTE TO

SECOND(2);

SELECT * FROM examples WHERE ts < NOW() - INTERVAL '0.1' SECOND(2,1);

SELECT * FROM examples WHERE ts < NOW() - INTERVAL '00:00.1' MINUTE TO

SECOND(1);� �

Page 271

23 SQL Data Types 23.5 String and Character types

Valid Operators Involving Intervals

Operand 1 Operation Operand 2 Result Type
Timestamp + or - Interval Timestamp

Date + or - Interval Timestamp

ShortDate + or - Interval Timestamp

Time + or - Interval Time

Interval + Timestamp Timestamp

Interval + Date Timestamp

Interval + ShortDate Timestamp

Interval + Time Time

Interval + Interval Interval

Limitations

• Cisco ParStream only supports day-time intervals, no year-month intervals.

• Interval fractional seconds precision has a default and maximum value of three digits.

• Day-time intervals cannot be stored in a table.

• Day-time intervals cannot be the final result of a SQL result, i.e., day-time intervals can only be
used in conjunction with a datetime type.

• Akin to other datetime types, intervals do not support time zone configurations.

Note:

The leading field precision has to be set if a leading field with more than two digits is used.
This is different from PostgreSQL where the leading field precision cannot be set and any
number of digits for the leading field is accepted.

String and Character types

Cisco ParStream provides the following types for strings

ParStream Type Description
VARSTRING non-hashed string
VARSTRING COMPRESSION HASH64 hashed string (with index support)

Thus, for string types, you have two options:

• use non-hashed strings, which is useful to hold just string values without searching for them

• use hashed strings, which allows to use special indices to optimize search operations

In addition, you can

• specify the length of the string

Note:

Page 272

23.5 String and Character types 23 SQL Data Types

• The global option blobbuffersize (see section 13.2.1, page 124) defines the maximum number
of bytes a string is allowed to have on import. The default value is 1,048,576 (1024*1024 or 220).

Dealing with Empty Strings

Note that empty strings are by Cisco ParStream internally stored as NULL values. Thus, when data is
stored in Cisco ParStream, there is no difference between empty and NULL strings.

In fact, empty strings and NULL strings are handled as follows:

• Importing empty strings has the same effect as importing NULL as values for string columns.
Because rows to import are ignored in case all the values are NULL this implies that you can’t
import rows where all string values are empty (and all other values NULL if any).

• To filter for empty strings, you have to use IS NULL or IS NOT NULL: For example:� �
SELECT * FROM MyTable WHERE str IS NULL� �

or� �
SELECT * FROM MyTable WHERE str IS NOT NULL� �

• How queries return NULL strings depends on the channel and output format (see section 16.3,
page 199):

– Using the netcat port if the output format is ASCII, NULL/empty strings are returned empty
strings. For example, a query for a non-hashed string str and a hashed string hstr column
might return:� �
#str;hstr
"";"str is empty"

"hstr is empty";""� �
– Using the netcat port if the output format is JSON, NULL/empty strings are returned as null:

For example:� �
{"rows" : [

{"str" : null,"hstr" : "str is empty"},

{"str" : "hstr is empty","hstr" : null}

]

}� �
– Using the netcat port if the output format is XML, NULL/empty strings are returned as empty

values. For example:� �
<output>

<dataset>

<str></str>

<hstr><![CDATA[str is empty]]></hstr>

</dataset>

<dataset>

Page 273

23 SQL Data Types 23.6 Blob Types

<str><![CDATA[hstr is empty]]></str>

<hstr></hstr>

</dataset>

</output>� �
– When using Postgres to connect to Cisco ParStream, NULL/empty strings are returned as NULL.

For example using psql:� �
=> \pset null NULL

Null display is "NULL".

=> select * from MyTable;

str | hstr

----------------+-------------

NULL | str is empty

hstr is empty | NULL

(2 rows)� �

Blob Types

There is also a type blob for “binary large objects” provided, which allows the storage of binary data.
Blobs are always hashed compressed:

ParStream Type Description
BLOB implicitly hashed blobs (with index support)
BLOB COMPRESSION HASH64 explicitly hashed blobs (with index support)

Note the following:

• The global option blobbuffersize (see section 13.2.1, page 124) defines the maximum number
of bytes a blob is allowed to have on import. The default value is 1,048,576 (1024*1024 or 220).

Bit-Field Types

ParStream Type Size Description NULL

BITVECTOR8 1 byte 8 bit bitvector, where each bit can be either
TRUE or FALSE

All bits set to FALSE

Note how this is different from common bitvector implementations. It is not possible to set individual
bits to NULL. If the NULL-behavior is undesired, treat the bitvector8 as a bitvector7, and have the
remaining bit always set to TRUE.

See section 24.2.5, page 293 for details about defining these types.
See section 10.4.7, page 98 for details about importing values of these types.

Page 274

23.8 MultiValues (Numeric Arrays) 23 SQL Data Types

MultiValues (Numeric Arrays)
A MultiValue is a field in a table that can contain an arbitrary number of numeric values of the same type
(so, basically a numeric array). This feature is currently only supported for integer and floating-point
values.

The benefit of MultiValues is that you don’t need to know in advance how many elements you expect
and that you can index and filter them. This gives the ability to represent a 1:n relation.

Suppose you are tracking some sort of flow which spans multiple servers (identified by a numeric ID).
Then, you can store all of them in a multivalue holding the IDs:� �
CREATE TABLE track

(

....

serverIdMultiValue UINT32 MULTI_VALUE INDEX EQUAL

.....

)� �
Import Conventions for MultiValues

In CSV files, multivalues (see section 23.8, page 275) are expressed as comma-separated list of
numeric values:� �
flowId; serverIdMultiValue
233423;345,23454,7789,2334� �

Using MultiValues

On the SQL level, you can now run queries like the following examples:

Example 1: Identify flows which involved servers 345 and the value 2334 in the multivalue list:� �
SELECT flowId, serverIdMultiValue

FROM track

WHERE serverIdMultiValue = 345

AND serverIdMultiValue = 2334;� �
The result would be:� �

flowId; serverIdMultiValue
233423;345,23454,7789,2334� �

You can also expand the result by using a GROUP BY for the multivalues. For example, the query:� �
SELECT flowId, serverIdMultiValue

FROM track

WHERE serverIdMultiValue = 345 AND

Page 275

23 SQL Data Types 23.8 MultiValues (Numeric Arrays)

serverIdMultiValue = 2334

GROUP BY flowId, serverIdMultiValue;� �
will yield the following result:� �

flowId; serverIdMultiValue
233423;345

233423;23454

233423;7789

233423;2334� �
With DISTVALUES() you can process the distinct values of multivalue columns (see section 25,
page 301 for details).

Limitations for MultiValues

Note the following limitations for multivalues:

• Multivalues currently should be used with an equal index.

• JOINs (see section 27.3.1, page 330) on multivalues are not supported and result in an exception.

• Multivalues currently must not be used on the right side of an import ETL-join. Neither can a tree
merge be made on a table which contains one or more multivalue columns.

Page 276

Table Statements

This chapter describes the details about how to define, modify and delete tables using CREATE TABLE,
ALTER TABLE, DROP TABLE, and other statements.

Overview of Table Statements
To be able to use a database table in Cisco ParStream, you have to define it with a CREATE TABLE

command. In addition, you can modify tables with ALTER TABLE commands. Tables not used any
more can be deleted with the DROP TABLE command. This section describes the principle usage of
these commands.

Formulating Table Definitions

To define a table a CREATE TABLE statement has to be used. For example:� �
CREATE TABLE Hotels

(

City VARSTRING COMPRESSION HASH64 INDEX EQUAL,

Hotel VARSTRING(100) COMPRESSION HASH64 INDEX EQUAL,

Price UINT16 COMPRESSION DICTIONARY INDEX RANGE,

)

DISTRIBUTE EVERYWHERE� �
For details of the format of this statement see section 24.2, page 278.

Performing Table Definitions

To define a table the most convenient way is to create a SQL file with the CREATE TABLE statement
and send it as command to one of the nodes in a cluster.

The easiest way to do this is to use the pnc client (see section 12.1.1, page 112). For example
after defining a corresponding command in a file MyTable.sql, you can send this to a server/node
listening on port 9988 as follows:� �
pnc -p 9988 < MyTable.sql� �

Note: You should always wait for and check the result of such a request, because due to the
distributed organization of Cisco ParStream databases, it might happen that the call is not possible or
does not succeed. When creating a table “Address” the answer signaling success is:� �
Table 'Address' successfully created.� �

If multiple CREATE TABLE commands are defined in multiple files of a subdirectory, you can simply
call:� �
cat table-definitions/*.sql | pnc -p 9988� �

Page 277

24 Table Statements 24.2 CREATE TABLE Statements

Alternatively you can send such a command interactively from the Cisco ParStream client.

For backward compatibility, you can also define a table is a so-called PSM file in the config directory to
be used as initial table definition.

For details of the pnc client see section 12.1.1, page 110.

Table Modifications

You can modify existing tables using a ALTER TABLE statement. For example:� �
ALTER TABLE Hotels ADD COLUMN Phone VARSTRING DEFAULT NULL;� �

Note: Again, you should always wait for and check the result of such a request, because due to the
distributed organization of Cisco ParStream databases, it might happen that the call is not possible
or does not succeed. When performing an ALTER TABLE command the answer signaling success
is:� �
ALTER OK� �

Again, you have to send this statement as command to one of the nodes in a cluster.

For details of the ADD COLUMN command see section 24.3.2, page 296.

Table Deletion

You can delete existing tables using the DROP TABLE statement. For example:� �
DROP TABLE Hotels;� �

Note: You cannot drop tables that are REFERENCED by other tables (e.g. colocation). For details of
the DROP TABLE command see section 24.4, page 297.

CREATE TABLE Statements

CREATE TABLE Statement Overview

This subsection describes the details of the CREATE TABLE statement provided by Cisco ParStream.
In principle, it designed after the SQL Standard (ISO 9075) using several extensions to be able to
provide the specific abilities and features Cisco ParStream offers. See section 27.7.2, page 364 for a
description of the detailed grammar of CREATE TABLE statement in BNF (Backus-Naur Form).

Note that these definitions include schema aspects as well as import aspects (such as the column in
the CSV file), which means that the syntax is extended by Cisco ParStream specific elements.

The CREATE TABLE statement can be passed in batch mode to a database by passing it to a client
interface such as netcat or pnc. See section 12.1.2, page 114 and section 12.1.1, page 112 for
examples how to use SQL files as input for data sent over the socket interface.

Page 278

24.2 CREATE TABLE Statements 24 Table Statements

Simple Example

As a simple example, the following statement creates a table Hotels with 4 columns (two of them used
as partitions):� �
CREATE TABLE Hotels

(

City VARSTRING COMPRESSION HASH64 INDEX EQUAL,

Hotel VARSTRING(100) COMPRESSION HASH64 INDEX EQUAL,

Price UINT16 COMPRESSION DICTIONARY INDEX RANGE,

Num UINT8 COMPRESSION SPARSE SPARSE_DEFAULT 1

)

DISTRIBUTE EVERYWHERE� �
Note that the order of both the table clauses and the column attributes matters (see the tables below
and the grammar in section 27.7.2, page 364).

The minimum CREATE TABLE statement has to define the table name, at least one column with name
and type and a distribution clause (see section 6.3, page 53). For example:� �
CREATE TABLE MinTable

(

col UINT32

)

DISTRIBUTE EVERYWHERE;� �
All other TABLE clauses are optional.

Note that the command contains both pure schema information and information about how to import
the data. For example, you can specify where to find input CSV files for a table:� �
CREATE TABLE SmallTable

(

col UINT32

)

DISTRIBUTE EVERYWHERE

IMPORT_DIRECTORY_PATTERN '.*'

IMPORT_FILE_PATTERN '.*\.csv';� �
The default is to look for files that begin with the name of the table and end with .csv. You can still
overwrite the directory and file pattern for a table via the command line (see section 13.1.1, page 116).

All clauses and attributes for the table as a whole and for specific columns are described in the
upcoming subsections. See section 24.2.1, page 281 for some restrictions regarding table and column
names.

Complex Example

As a more complex example, here is a CREATE TABLE statement, where almost all possible attributes
are used:� �

Page 279

24 Table Statements 24.2 CREATE TABLE Statements

CREATE TABLE ComplexTable (

id UINT64 SINGLE_VALUE PRELOAD_COLUMN NOTHING SEPARATE BY NOTHING

INDEX EQUAL MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS FALSE

CSV_COLUMN 0 SKIP FALSE,

binnedNumerical INT32 SINGLE_VALUE PRELOAD_COLUMN MEMORY_EFFICIENT SEPARATE

BY NOTHING

INDEX RANGE MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS TRUE

INDEX_BIN_COUNT 20 INDEX_BIN_MIN MIN INDEX_BIN_MAX MAX

CSV_COLUMN 1 SKIP FALSE,

manualBoundaries INT32 SINGLE_VALUE PRELOAD_COLUMN MEMORY_EFFICIENT

SEPARATE BY etlDay

INDEX RANGE MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS TRUE

INDEX_BIN_BOUNDARIES (10, 20, 30, 40, 50)

CSV_COLUMN 2 SKIP FALSE,

skippedColumn DOUBLE SINGLE_VALUE

CSV_COLUMN 3 SKIP TRUE,

dayColumn DATE COMPRESSION SPARSE SINGLE_VALUE PRELOAD_COLUMN COMPLETE

SEPARATE BY NOTHING

INDEX EQUAL MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS FALSE

INDEX_GRANULARITY YEAR

CSV_COLUMN 4 CSV_FORMAT 'YYYY-MM-DD' SKIP FALSE,

etlDay UINT16 SINGLE_VALUE PRELOAD_COLUMN NOTHING SEPARATE BY NOTHING

INDEX EQUAL MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS FALSE

CSV_COLUMN ETL,

nonHashedString VARSTRING (20) COMPRESSION NONE MAPPING_FILE_GRANULARITY

256 SINGLE_VALUE

PRELOAD_COLUMN NOTHING SEPARATE BY NOTHING

CSV_COLUMN 5 SKIP FALSE,

hashedString VARSTRING (255) COMPRESSION HASH64, DICTIONARY MAPPING_TYPE

AUTO

SINGLE_VALUE PRELOAD_COLUMN NOTHING SEPARATE BY NOTHING

INDEX EQUAL PRELOAD_INDEX COMPLETE

CSV_COLUMN 6 SKIP FALSE,

bitvectorColumn BITVECTOR8 SINGLE_VALUE PRELOAD_COLUMN NOTHING SEPARATE BY

NOTHING

INDEX EQUAL MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS FALSE INDEX_MASK 3

multiValueNumeric UINT8 MULTI_VALUE PRELOAD_COLUMN NOTHING SEPARATE BY

NOTHING

INDEX EQUAL MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS FALSE

)

PARTITION BY (id MOD 10), etlDay

Page 280

24.2 CREATE TABLE Statements 24 Table Statements

DISTRIBUTE OVER etlDay WITH REDUNDANCY 2

ORDER BY binnedNumerical

IMPORT_DIRECTORY_PATTERN '.*'

IMPORT_FILE_PATTERN 'complex.*\.csv'

ETL (

SELECT ComplexTable.id, ComplexTable.binnedNumerical,

ComplexTable.manualBoundaries, ComplexTable.dayColumn,

ComplexTable.nonHashedString, ComplexTable.hashedString,

ComplexTable.bitvectorColumn, ComplexTable.multiValueNumeric,

DATE_PART('day', dayColumn) AS etlDay

FROM CSVFETCH(ComplexTable)

)

;� �
Note again that the order of both the table clauses and the column attributes matters (see the tables
below and the grammar in section 27.7.2, page 364).

Table and Column Names

Cisco ParStream maps columns directly to files using table and column names as file path elements
(see section 5.1, page 29). For this reason, there are restrictions regarding table and column names,
which are listed below.

If table and column identifiers conflict with SQL keywords (see section 28, page 378), you have to put
them between quotation marks. For example, the following statement creates a table named "TABLE"
with columns called "PARTITION" and "SORTED":� �
CREATE TABLE "TABLE" (

"PARTITION" UINT8 INDEX EQUAL,

"SORTED" UINT32 INDEX EQUAL

)

PARTITION BY "PARTITION", "SORTED"

DISTRIBUTE EVERYWHERE;� �
Restrictions for Table Names

Table names have the following restrictions:

• Table names must have at least 2 characters.

• Table names may use only the following characters: the underscore _, letters, and digits

• Table names may not start with a digit or an underscore.

• Table names may not use umlauts or unicode letters.

• Table names may not start with ’pg_’ or ’ps_’ because these prefixes are used for internal tables
and system table (see chapter 26, page 306).

Table names are case-insensitive. Thus,� �
SELECT * FROM OneTable;

Page 281

24 Table Statements 24.2 CREATE TABLE Statements

SELECT * FROM onetable;

SELECT * FROM ONETABLE;� �
query values from the same table.

Restrictions for Column Names

Column names have the following restrictions:

• Column names must have at least 2 characters.

• Column names may use only the following characters: the underscore _, letters, and digits

• Column names may not start with a digit or an underscore.

• Column names may not use umlauts or unicode letters.

Column names are case-insensitive.

Possible Clauses and Attributes inside CREATE TABLE statements

As written above, the minimum CREATE TABLE statement has to define the table name and at least
one column with name and type. All other TABLE clauses and column attributes are optional (with a
few exceptions where column types require certain attributes).

Note that you can still overwrite the directory and file pattern for a table via the command line (see
section 13.1.1, page 116).

All clauses and attributes for the table as a whole and for specific columns are described in the
upcoming subsections.

All Table Attributes

Tables can have the following clauses and attributes, specified in the order of their usage after:
CREATE TABLE tabname (

columns
)

Page 282

24.2 CREATE TABLE Statements 24 Table Statements

Clause Description
PARTITION BY columns List of columns or expressions that are used to partition the

data. This is a comma separated list. See section 5.1,
page 30 for details.

PARTITION ACCESS columns Column names to optimize the partition access tree. See
section 15.5, page 166 for details.

LIMIT num Defines the maximum number of branched subnodes for
the resulting access tree. All columns given here MUST
have an index. See section 15.5, page 166 for details.

DISTRIBUTE ... A specification for the distribution of the data (see
section 6.3, page 53)

ORDER BY columns A list of column names that are used to sort the physical
data in the database for internal optimization (see
section 15.4, page 165).

IMPORT_DIRECTORY_PATTERN pat Global regex pattern for directory names in the import
directory. Default: .*

IMPORT_FILE_PATTERN pat Global regex pattern for import file names. Default:
tablename.*\.csv (the file has to start with the table
name and end with .csv)

ETL (query) Defines query as ETL query for an import. See
section 10.6, page 104) for details.

ETLMERGE level (query) Defines query as ETL query for an ETL merge process for
level level (HOUR, DAY, WEEK, or MONTH). See section 14.2,
page 154 for details.

Note (again) that:

• The order matters and has to fit the order in the table above.

• You can still overwrite the directory and file pattern for a table as well as an ETL or ETLMERGE
clause for a table via the command line (see section 13.1.1, page 116).

• For backward compatibility you can use here:

– PARTITIONED BY instead of PARTITION BY

– DISTRIBUTED BY instead of DISTRIBUTE BY

– SORTED BY instead of ORDER BY

Page 283

24 Table Statements 24.2 CREATE TABLE Statements

All Column Attributes

Columns can have the following clauses and attributes (specified in the order of their usage after their
name). Only the leading name and the typename are mandatory.
Attribute Types Description Default
typename all Column type (see section 24.2.5, page 287)
(length) strings, blobs number of characters/bytes 1024
DEFAULT val all Defines a default value for added columns or

sparse column compressions. This is currently no
general default value used if imports don’t provide
a value (in that case the value is always NULL)

NULL

NOT NULL all Declares that the column may not contain NULL

values. This is checked on all import paths.
Required for referenced columns (see
section 15.15.4, page 192).

Not present

UNIQUE all Declares that the column contains unique values
only, i.e. each distinct value occurs only once.
Please note that this property is not checked by
Cisco ParStream because of performance reasons.
Required for referenced columns (see
section 15.15.4, page 192).

Not present

PRIMARY KEY all Declares that the column is the primary key of its
table. This implies that the column is declared NOT

NULL and UNIQUE. Only one column in a table
may be declared as that.

Not present

COMPRESSION values all Compression (NONE and LZ4 for all types, HASH64
for hashed strings or blobs, and/or SPARSE or
DICTIONARY for fixed-width columns (see below).

NONE

MAPPING_TYPE val hashed types Mapping type of the column (see section 24.2.6,
page 294).

AUTO

MAPPING_FILE_GRANULARITY val strings,
multivalues

Number of combined entries (see section 24.2.5,
page 291)

1

singularity numeric SINGLE_VALUE or MULTI_VALUE for multivalues
(see section 23.8, page 275 and section 10.4.6,
page 98)

SINGLE_VALUE

PRELOAD_COLUMN val all NOTHING, COMPLETE, or MEMORY_EFFICIENT
(see section 24.2.6, page 293)

NOTHING

SEPARATE BY val all Columns for DSA optimization (see
section 15.15.1, page 188)

NOTHING

REFERENCES vals all Referenced columns for DSJ optimization (see
section 15.15.4, page 192)

NOTHING

INDEX val all Column index (NONE, EQUAL, RANGE; see
section 24.2.6, page 293)

NONE

Page 284

24.2 CREATE TABLE Statements 24 Table Statements

Attribute Types Description Default
INDEX_BIN_COUNT int numeric Denotes the number of bitmaps that will be

created. No binning is used, if this parameter is not
set or if it is set to 0 or 1. Binning works for all
numeric data types.

INDEX_BIN_MIN val numeric Lower bound of the range of values for which bins
will be created. If the smallest value of the type
shall be used, then the notation "<MIN>" is allowed
as well.

INDEX_BIN_MAX val numeric Upper bound of the range of values for which bins
will be created. If the greatest value of the type
shall be used, then the notation "<MAX>" is
allowed as well.

INDEX_BIN_BOUNDARIES(ints) numeric Enables binning for the bitmap index. The
parameter takes a comma-separated list of values;
for each range between two values one bitmap will
be created. The values must be sorted in
ascending order. This parameter cannot be used
together with indexbincout, indexbinmin, and
indexbinmax.

INDEX_MASK int bitvectors Describes which bit of a bitvector to index (only
used when valuetype is a bitvector).

INDEX_GRANULARITYval date/time Granularity at which index bitmaps are created
(see section 24.2.5, page 289)

see below

PRELOAD_INDEXval all NOTHING or COMPLETE NOTHING

DYNAMIC_COLUMNS_KEY all column is key in a dynamic columns table (see
chapter 7, page 61

DYNAMIC_COLUMNS_VALUE all column is possible value in a dynamic columns
table (see chapter 7, page 61

CSV_COLUMN int|ETL all Column number within the CSV raw data. The
numbering must start with 0, and in the whole table
the numbers must be consecutive. If ETL is
specified, the column data must be filled using an
ETL clause (see section 10.6, page 104).

see below

CSV_FORMAT format Date/Time The CSV_FORMAT clause provides the ability to
define a format mask for the import data (see
section 10.4.3, page 95)

SKIP bool all TRUE means to ignore the column when importing
or querying data. This can be useful for CSV
imports (see section 10.3.1, page 91). The column
must not be an ETL column, then.

FALSE

Note the following:

• COMPRESSION: The compression specified how the database internally stores values. Here, a
couple of (type-specific) optimizations are possible:

– The default is NONE, which cannot get combined with any other value.
– Strings can have the value HASH64, which handles them as hashed strings (see section 23.5,

page 272).
– For blobs, compression HASH64 is always set (even if not specified).
– For column types that have a fixed width, COMPRESSION can also be SPARSE (see

section 15.10.1, page 178) or DICTIONARY (see section 15.10.2, page 179).

Page 285

24 Table Statements 24.2 CREATE TABLE Statements

* Fixed-width column types are all integer and floating-point types, BITVECTOR8, all date/time
types, hashed strings, and blobs. Note that only SINGLE_VALUE types are fixed-width.

* SPARSE compressions have an option default value, which can be specified with
SPARSE_DEFAULT. If it is not defined, the column DEFAULT value is used. See
section 15.10.1, page 178 for examples.

– Every column type can have the compression value LZ4 to save space on storage. Note
however, that this can cause significant performance drawbacks in other areas; so, use this
compression style with care. See section 15.10.3, page 181 for details.

If multiple compression values are specified, they can have any order separated by a comma.
SPARSE and DICTIONARY can be combined with HASH64, but not with LZ4.
For example:� �
CREATE TABLE MyTable (

colName VARSTRING COMPRESSION HASH64,

colSparse VARSTRING(1024) COMPRESSION HASH64, SPARSE SPARSE_DEFAULT 'a

string',

colDictionary VARSTRING(1024) COMPRESSION HASH64, DICTIONARY,

colVal VARSTRING(1024) COMPRESSION LZ4, HASH64,

)

...� �
See section 15.10, page 177 for further details.

• MULTI_VALUE: Only numeric types can be multivalues (see section 23.8, page 275).

• INDEX: Only single-value numeric types and date/time types can have a RANGE index.

• CSV_COLUMN: The default value for CSV_COLUMN is the maximum CSV_COLUMN value of the
previous columns plus 1.

• Columns with NOT NULL can’t have NULL as DEFAULT value, thus you have to explicitly provide a
default value in this case (although it might never be used).

• It is not supported to have a DEFAULT value with user-provided hash values (MAPPING_TYPE
PROVIDED), with NON NULL UNIQUE, or with PRIMARY KEY.

• For backward compatibility you can use

– SEPARATED BY instead of SEPARATE BY

Page 286

24.2 CREATE TABLE Statements 24 Table Statements

Column Types

Columns can have the following types (see Chapter 23, page 267 for general information about all
data types).

Category ParStream Type Size
Signed Integer INT8 1 byte

INT16 2 bytes
INT32 4 bytes
INT64 8 bytes

Unsigned Integer UINT8 1 byte
UINT16 2 bytes
UINT32 4 bytes
UINT64 8 bytes

Floating-Point Types FLOAT 4 bytes
DOUBLE 8 bytes

Date/Time Types DATE 4 bytes
SHORTDATE 2 bytes
TIME 4 bytes
TIMESTAMP 8 bytes

Strings VARSTRING 8 for hashed strings
Blobs BLOB depends on value
Bit-Arrays BITVECTOR8 1 byte

The following subsections describe details about these types and especially the attributes that can be
used with them.

Numeric Types and Multivalues

Numeric columns store simple data types like integers (see section 23.2, page 267) or floating-point
values (see section 23.3, page 268). They support all index types and may be multivalues.

Integral columns have one of the following types: INT8, INT16 INT32, INT64, UINT8, UINT16
UINT32, UINT64.

Floating-point columns have one of the following types: FLOAT, DOUBLE.

Page 287

24 Table Statements 24.2 CREATE TABLE Statements

Attribute Description Default
COMPRESSION values Compression (NONE, LZ4 for all types. SPARSE or

DICTIONARYfor all SINGLE_VALUE types, not in
combination with LZ4).

NONE

MAPPING_FILE_GRANULARITY val Number of combined entries if MULTI_VALUE (see
section 24.2.5, page 289)

1

singularity SINGLE_VALUE or MULTI_VALUE (see section 23.8,
page 275)

SINGLE_VALUE

PRELOAD_COLUMN val NOTHING, COMPLETE, or MEMORY_EFFICIENT (see
section 24.2.6, page 293)

NOTHING

SEPARATE BY val columns for DSA optimization (see section 15.15.1,
page 188)

NOTHING

REFERENCES vals columns for DSJ optimization (see section 15.15.4,
page 191)

NOTHING

INDEX val Column index (NONE, EQUAL, RANGE; see section 24.2.6,
page 293)

NONE

INDEX_BIN_COUNT int Denotes the number of bitmaps that will be created. No
binning is used, if this parameter is not set or if it is set to 0
or 1. Binning works for all numeric data types.

INDEX_BIN_MIN val Lower bound of the range of values for which bins will be
created. If the smallest value of the type shall be used,
then the notation "<MIN>" is allowed as well.

INDEX_BIN_MAX val Upper bound of the range of values for which bins will be
created. If the greatest value of the type shall be used,
then the notation "<MAX>" is allowed as well.

INDEX_BIN_BOUNDARIES(ints) Enables binning for the bitmap index. The parameter takes
a comma-separated list of values; for each range between
two values one bitmap will be created. The values must be
sorted in ascending order. This parameter cannot be used
together with indexbincout, indexbinmin, and indexbinmax.

PRELOAD_INDEX val NOTHING or COMPLETE NOTHING

CSV_COLUMN int|ETL Column number within the CSV raw data. The numbering
must start with 0, and in the whole table the numbers must
be consecutive. If ETL is specified, the column data must
be filled using an ETL clause (see section 10.6, page 104).

see below

SKIP bool TRUE means to ignore the column when importing or
querying data. This can be useful for CSV imports (see
section 10.3.1, page 91). The column must not be an ETL
column, then.

FALSE

For example:� �
CREATE TABLE NumericTable (

id UINT64 INDEX NONE,

binnedNumerical INT32 PRELOAD_COLUMN MEMORY_EFFICIENT

INDEX EQUAL INDEX_BIN_COUNT 20 INDEX_BIN_MIN MIN INDEX_BIN_MAX MAX,

manualBoundaries INT64

INDEX RANGE MAX_CACHED_VALUES 20000 CACHE_NB_ITERATORS TRUE

INDEX_BIN_BOUNDARIES (10, 20, 30, 40, 50),

avg DOUBLE,

Page 288

24.2 CREATE TABLE Statements 24 Table Statements

values UINT8 MULTI_VALUE,

)

...� �
MAPPING_FILE_GRANULARITY is another time/size trade-off: For multivalues, Cisco ParStream
merges several entries internally. The position for each of these merged entries is stored for faster
access. This parameter describes the number of entries that are combined as one position. A higher
value results in a smaller index, a lower value results in faster access.

Date/Time Types

Date/time columns use one of the following types: DATE, SHORTDATE, TIME, TIMESTAMP (see
section 23.4, page 268). Internally, the values are stored as integers. They support indexing and index
binning, including a specific attribute INDEX_GRANULARITY.

Attribute Description Default
COMPRESSION values Compression (NONE, LZ4 for all types. SPARSE or DICTIONARY for all

SINGLE_VALUE types, not in combination with LZ4).
NONE

PRELOAD_COLUMN val NOTHING, COMPLETE, or MEMORY_EFFICIENT (see section 24.2.6,
page 293)

NOTHING

SEPARATE BY val columns for DSA optimization (see section 15.15.1, page 188) NOTHING

REFERENCES vals columns for DSJ optimization (see section 15.15.4, page 191) NOTHING

INDEX val Column index (NONE, EQUAL, RANGE; see section 24.2.6, page 293) NONE

INDEX_GRANULARITY val Granularity at which index bitmaps are created (see section 24.2.5,
page 289)

see below

PRELOAD_INDEX val NOTHING or COMPLETE NOTHING

CSV_COLUMN int|ETL Column number within the CSV raw data. The numbering must start with 0,
and in the whole table the numbers must be consecutive. If ETL is
specified, the column data must be filled using an ETL clause (see
section 10.6, page 104).

see below

CSV_FORMAT format The CSV_FORMAT clause provides the ability to define a format mask for
the import data (see section 10.4.3, page 95)

SKIP bool TRUE means to ignore the column when importing or querying data. This
can be useful for CSV imports (see section 10.3.1, page 91). The column
must not be an ETL column, then.

FALSE

For example:� �
CREATE TABLE DateTimeTable (

timepoint TIMESTAMP,

day DATE COMPRESSION SPARSE INDEX EQUAL INDEX_GRANULARITY YEAR

CSV_FORMAT 'YYYY-MM-DD',

day2 DATE COMPRESSION DICTIONARY INDEX EQUAL INDEX_GRANULARITY YEAR

CSV_FORMAT 'YYYY-MM-DD',

)

...� �
INDEX_GRANULARITY is provided for date/time types to control at which granularity indices are
created. This trades off index size against the amount of data that needs to be fetched from column
stores.

Page 289

24 Table Statements 24.2 CREATE TABLE Statements

Possible values and defaults are:

Value Description Valid for Default for
YEAR Indices will be binned

for each year.
DATE, TIMESTAMP

MONTH Indices will be binned
for each month.

DATE, TIMESTAMP

DAY Indices will be binned
for each day.

DATE, SHORTDATE, TIMESTAMP DATE, SHORTDATE

HOUR Indices will be binned
for each hour.

TIME, TIMESTAMP

MINUTE Indices will be binned
for each minute.

TIME, TIMESTAMP

SECOND Indices will be binned
for each second.

TIME, TIMESTAMP

MILLISECOND Indices will be binned
for each millisecond.

TIME, TIMESTAMP TIME, TIMESTAMP

WEEK Indices will be binned
for each week.

DATE, TIMESTAMP

QUARTER Indices will be binned
for each quarter.

DATE, TIMESTAMP

The default value for INDEX_GRANULARITY is DAY for DATE and SHORTDATE and MILLISECOND for
TIME and TIMESTAMP.

String Types

String columns have type VARSTRING. The type can have an optional length and an optional
compression.

By specifying the compression HASH64 you can define hashed string. Hashed columns store string
data and use hashes to index the strings. This allows to save storage over string columns if the same
strings occur frequently in the input data. The actual string data is held in maps that exist locally for
each data partition (see section 5.1.3, page 34).

Page 290

24.2 CREATE TABLE Statements 24 Table Statements

Attribute Description Default
(length) number of characters/bytes 1024
COMPRESSION values Compression (NONE, LZ4 for all types, and/or HASH64 for

hashed strings. SPARSE or DICTIONARY for hashed strings, not
in combination with LZ4)

NONE

MAPPING_TYPE val Mapping type of the column (see section 24.2.6, page 294). AUTO

MAPPING_FILE_GRANULARITY val Number of combined string entries (see section 24.2.5, page 291) 1
PRELOAD_COLUMN val NOTHING, COMPLETE, or MEMORY_EFFICIENT (see

section 24.2.6, page 293)
NOTHING

SEPARATE BY val columns for DSA optimization (see section 15.15.1, page 188) NOTHING

REFERENCES vals columns for DSJ optimization (see section 15.15.4, page 191) NOTHING

INDEX val Column index (NONE or EQUAL; see section 24.2.6, page 293) NONE

PRELOAD_INDEX val NOTHING or COMPLETE NOTHING

CSV_COLUMN int|ETL Column number within the CSV raw data. The numbering must
start with 0, and in the whole table the numbers must be
consecutive. If ETL is specified, the column data must be filled
using an ETL clause (see section 10.6, page 104).

see below

SKIP bool TRUE means to ignore the column when importing or querying
data. This can be useful for CSV imports (see section 10.3.1,
page 91). The column must not be an ETL column, then.

FALSE

MAPPING_FILE_GRANULARITY is another time/size trade-off: Cisco ParStream merges several
string entries internally. The position for each of these merged entries is stored for faster access. This
parameter describes the number of string entries that are combined as one position. A higher value
results in a smaller index, a lower value results in faster access.

For example:� �
CREATE TABLE StringTable (

str1 VARSTRING,

str2 VARSTRING(100),

str3 VARSTRING COMPRESSION LZ4, HASH64,

)

...� �
Note the following:

• The global option blobbuffersize (see section 13.2.1, page 124) defines the maximum number
of bytes a string is allowed to have on import. The default value is 1,048,576 (1024*1024 or 220).

Blob Types

Blob columns have type BLOB. They store binary data and use hashes to index them. Currently they
are equivalent to hashed strings.

The type can have an option length. Even if not specified they always have HASH64 compression. In
addition, you can specify an additional LZ4 or SPARSE or DICTIONARY compression. As usual, you
can set the index type and mapping options.

Page 291

24 Table Statements 24.2 CREATE TABLE Statements

Attribute Description Default
(length) number of characters/bytes 1024
COMPRESSION values Compression (implicit HASH64 and optional LZ4 or SPARSE) or DICTIONARY) HASH64

MAPPING_TYPE val Mapping type of the column (see section 24.2.6, page 294). AUTO

PRELOAD_COLUMN val NOTHING, COMPLETE, or MEMORY_EFFICIENT (see section 24.2.6, page 293) NOTHING

SEPARATE BY val columns for DSA optimization (see section 15.15.1, page 188) NOTHING

REFERENCES vals columns for DSJ optimization (see section 15.15.4, page 191) NOTHING

INDEX val Column index (NONE, EQUAL; see section 24.2.6, page 293) NONE

PRELOAD_INDEX val NOTHING or COMPLETE NOTHING

CSV_COLUMN int|ETL Column number within the CSV raw data. The numbering must start with 0, and
in the whole table the numbers must be consecutive. If ETL is specified, the
column data must be filled using an ETL clause (see section 10.6, page 104).

see below

SKIP bool TRUE means to ignore the column when importing or querying data. This can
be useful for CSV imports (see section 10.3.1, page 91). The column must not
be an ETL column, then.

FALSE

For example:� �
CREATE TABLE BlobTable (

str1 BLOB,

str2 BLOB COMPRESSION HASH64,

str3 BLOB(512) COMPRESSION HASH64, SPARSE,

str4 BLOB(512) COMPRESSION HASH64, DICTIONARY,

str5 BLOB(512) COMPRESSION LZ4, HASH64,

)

...� �
Blob columns are constrained by the following:

• Blobs can only be used as SINGLE_VALUE

• The following configuration options can be chosen: In case of user provided hash values, the id can
be omitted if blob data is inserted multiple times. Only the first insertion needs to be augmented
with an id value. However, this only applies for non-parallel import runs and if the CSV file to be
imported contains less than partitionMaxRows (see section 13.2.1, page 126) rows.

Note the following:

• The global option blobbuffersize (see section 13.2.1, page 124) defines the maximum number
of bytes a blob is allowed to have on import. The default value is 1,048,576 (1024*1024 or 220).

Page 292

24.2 CREATE TABLE Statements 24 Table Statements

Bitvectors

Attribute Description Default
COMPRESSION values Compression (NONE, SPARSE, DICTIONARY, or LZ4) NONE

PRELOAD_COLUMN val NOTHING, COMPLETE, or MEMORY_EFFICIENT (see section 24.2.6, page 293) NOTHING

SEPARATE BY val columns for DSA optimization (see section 15.15.1, page 188) NOTHING

REFERENCES vals columns for DSJ optimization (see section 15.15.4, page 191) NOTHING

INDEX val Column index (NONE, EQUAL; see section 24.2.6, page 293) NONE

INDEX_MASK int Describes which bit of a bitvector to index (only used when valuetype is a
bitvector).

PRELOAD_INDEX val NOTHING or COMPLETE NOTHING

CSV_COLUMN int|ETL Column number within the CSV raw data. The numbering must start with 0, and
in the whole table the numbers must be consecutive. If ETL is specified, the
column data must be filled using an ETL clause (see section 10.6, page 104).

see below

SKIP bool TRUE means to ignore the column when importing or querying data. This can
be useful for CSV imports (see section 10.3.1, page 91). The column must not
be an ETL column, then.

FALSE

For example:� �
CREATE TABLE BitsTable (

bitvector1 BITVECTOR8,

bitvector2 BITVECTOR8 INDEX EQUAL INDEX_MASK 3,

)

...� �

Details of Other Column Attributes

Index Types

As introduced in section 5.3, page 35, Cisco ParStream provides the ability to specify bitmap indices
for better performance. Currently equality encoding and range encoding is supported. Range encoded
indices are typically larger than equality encoded indices.

Indextype Description
NONE No index will be created for the field.
EQUAL The index is optimized for queries that check for value equality.
RANGE The index is optimized for range queries.

Note:

• Only single-value numeric types and date/time types can have a RANGE index.

• Note that strings only support EQUAL indices based on hashes.

Preload Attributes

You can locally overwrite the server settings to preload some columns or indexes:

Page 293

24 Table Statements 24.2 CREATE TABLE Statements

Option Value Description
preloadcolumn complete preload the column and the map-file (for strings and

blobs)
memoryefficient preload the column, but when the column contains

strings or blobs only the map-file is preloaded
nothing preload no column data

preloadindex complete preload the index
nothing preload no index

Mapping Attributes

Mapping Types

Attribute MAPPING_TYPE controls whether hash values are provided automatically or explicitly via the
CSV import.

Value Description
AUTO The hash used for mapping values is generated internally (default).
PROVIDED The hash used for mapping values is provided in the CSV input. The syntax for this is:

“hash:value”.

Page 294

24.3 ALTER TABLE Statements 24 Table Statements

ALTER TABLE Statements

For schema changes, Cisco ParStream provides ALTER TABLE statements. Currently only an ADD

COLUMN statement is supported.

See section 27.8.1, page 370 for a description of the detailed grammar of ALTER TABLE in BNF
(Backus-Naur Form).

Dealing with ALTER TABLE Statements

As with CREATE TABLE statements, you have to send ALTER TABLE statements as command to
one of the nodes in a cluster.

The statements result in a new metadata version as described in see section 5.2, page 34.

Imports are allowed to continue and finish. This means in details:

• Running CSV imports (parstream-import, see chapter 10, page 88) will continue until finished
using the old metadata version. After a schema/metadata change got activated (which should
usually happen almost immediately), the new CSV format has to be used. For this reason you
might stop adding new CSV files and finish processing existing CSV files before performing a
schema/metadata change.

• Java Streaming Imports (see chapter 19, page 216) will finish their commits. When starting a new
commit, the metadata version is verified and results in an error if it doesn’t match.

• INSERT INTO statements section 10.7, page 107. will finish their statements. New INSERT INTO

statements will use the new metadata version.

Dealing with Multiple ALTER TABLE Statements

Note that schema/metadata modifications might be triggered by sending ALTER TABLE commands to
different nodes at the same time. For this reason some rules and limitations exist:

• Cisco ParStream can only perform one modification at a time.

• While a schema modification is not finished, a new modification will be queued. Note that order of
multiple queued changes is not guaranteed to be stable.

• If not all nodes of a cluster are online and a modification is still possible, it will be performed
informing the missing node later when it becomes active again.

Note: You should always wait for and check the result of a schema modification, because due to
the distributed organization of Cisco ParStream databases, it might happen that the call is not possible
or does not succeed. When performing an ALTER TABLE command the answer signaling success
is:� �
ALTER OK� �

Page 295

24 Table Statements 24.3 ALTER TABLE Statements

ADD COLUMN Statements

ADD COLUMN statements allow to add new columns to existing tables. The principle syntax is as
follows:

ALTER TABLE tableName ADD COLUMN columnDefinition

For the columnDefinition in principle you have to use the syntax as for CREATE TABLE statements
(see section 24.2.4, page 284).

With ADD COLUMN the DEFAULT attribute of a column definition plays an important role. For all data
located in existing partitions, imported before the column was added, this defines the default value
used. For example:� �
ALTER TABLE Hotels ADD COLUMN HotelId UINT16 DEFAULT 42;� �

This means that queries sent to data imported before adding the column always yield 42 as HotelId.
This default value is part of the schema so that the existing partitions are not modified. Note that the
default value is only used for “old” partitions. Only “running” imports might still create partitions with the
old format. When starting imports with the modified table, a corresponding value has to be provided.

If no default value is provided, the default for values of columns of old partitions before the column
was added is NULL.

Note: You should always wait for and check the result of such a request, because due to the
distributed organization of Cisco ParStream databases, it might happen that the call is not possible
or does not succeed. When performing an ALTER TABLE command the answer signaling success
is:� �
ALTER OK� �

Limitations of ADD COLUMN Statements

Note the following specific limitations for ADD COLUMN:

• DEFAULT values can only be SINGLE_VALUE literals. Currently, no expressions are supported.

• UNIQUE and PRIMARY KEY attributes are not allowed in ADD COLUMN statements.

Order of Table Modifications in Cluster Scenarios

In systems up-and-running you have to be careful to use the right order of updates for table
modifications.

In cluster scenarios, this is handled by Cisco ParStream internally (therefore it is enough to send the
update to only one node of the cluster).

Page 296

24.4 DROP TABLE Statements 24 Table Statements

DROP TABLE Statements

To remove tables not needed any more, the DROP TABLE statement is available.

See section 27.8.2, page 370 for a description of the detailed grammar of DROP TABLE in BNF
(Backus-Naur Form).

NOTE:

• DROP TABLE will remove the whole table with all its current data without any further warning.

• Each client that is able to send queries, can send such a request.

Details of the DROP TABLE Statement

DROP TABLE can be used to delete tables that were created with a CREATE TABLE statement and
might have been altered by ALTER TABLE statements.

For example, the following statement deletes the table Hotels:� �
DROP TABLE Hotels� �

On success the command returns with:� �
#OK DROP� �

This means that the whole table with all its data is logically deleted:

• The table is no longer listed in system tables such as ps_info_table (see section 26.3,
page 309).

• The table name can be reused immediately to create a new table.

Queries, pending while a DROP TABLE command is performed, will finish without an error, but the
values processed or returned are undefined. There will be no warning that the table is about to get
dropped.

The physical deletion of all the partitions will happen asynchronously, when pending queries and
running merges or imports are finished. This has the following effects:

• Imports on dropped tables will not add data to a new table with the same name in case it is created.

Note that table names are case-insensitive. Thus, the command above would also delete a table
named hotels.

DROP TABLE responds with an error message if the table does not exist, is a system table, or if it
cannot be deleted because of existing references.

The following additional rules and limitations apply to the usage of DROP TABLE:

• Tables that are referenced by other tables (see section 15.15.4, page 192), cannot be deleted with
DROP TABLE.

• System tables can not be deleted with DROP TABLE.

• Scheduled merges for dropped tables are dropped, too.

Page 297

24 Table Statements 24.4 DROP TABLE Statements

• When a stopped server or cluster is restarted, any unfinished physical deletion proceeds.

• Importers drop pending partition distribution for dropped tables.

• Importers running in offline-import mode must be stopped before DROP TABLE and restarted after
the drop.

• If a DBMS Scheduler job’s action uses the dropped table, the job will be removed as well.

Page 298

SQL Functions

Cisco ParStream supports a couple of following special functions, which are described here. Note that
additional function (especially standard SQL function) are explained in Chapter 27, page 325.

CAST (val AS type)

• converts val into type type.

• val can be a value expression in a SELECT list, a WHERE clause, a ON clause, and a HAVING

clause.

• The following conversions are possible:
to

from
signed
integer

unsigned
integer

floating-
point

VARSTRING DATE
SHORTDATE

TIME TIMESTAMP

signed integer yes yes yes - - - -
unsigned integer yes yes yes - - - -
floating-point yes yes yes - - - -
VARSTRING - - - yes yes yes yes
SHORTDATE - - - - yes - yes
DATE - - - - yes - yes
TIME - - - - - yes -
TIMESTAMP - - - - yes yes yes
NULL yes yes yes yes yes yes yes
TRUE / FALSE yes yes yes - - - -

Thus, the following types count as signed integer target types:
INT8, INT16, INT32, INT64, BITVECTOR8, SMALLINT, INTEGER

the following types count as unsigned integer target types:
UINT8, UINT16, UINT32, UINT64, USMALLINT, UINTEGER,

and FLOAT and DOUBLE count as floating-point target types.

• For compatibility the CAST function also allows to specify the following target types, which are
mapped to internally supported types as follows:
Alias Internal type
VARCHAR(<length>) VARSTRING
SMALLINT INT16
USMALLINT UINT16
INTEGER INT32
UINTEGER UINT32

The length value of VARCHAR(<length>) will be ignored and mapped to VARSTRING, which has
no internal length limitations.

• Note:

– Integral conversions throw an exception, if the value is out of range.
– If val is a NULL the function will return NULL for all valid target types. (The casts from NULL are

provided, because for Cisco ParStream, NULL has type DOUBLE by default.)
– The supported casts for TRUE yield 1, while the supported casts for FALSE yield 0.
– When converting a DATE to TIME the time part is 00:00:00.000.

Page 299

25 SQL Functions

– When converting a VARSTRING value into a date/time value the string must be in the following
format:

* DATE/SHORTDATE: ’YYYY-MM-DD’ (e.g. ’2011-01-29’)

* TIME: ’HH:MI:SS[.MS]’ where milliseconds are optional (e.g. ’12:31:59.999’ or
’12:31:59’)

* TIMESTAMP: ’YYYY-MM-DD HH:MI:SS[.MS]’ where milliseconds are optional (e.g.
’2011-01-29 12:31:59.999’)

• val must be a single value. Multi values will lead to an error.

• See section 27.3.4, page 350 for the corresponding grammar.

CONFIGVALUE (key)

• Returns the value of the passed configuration entry.

• The following configuration entries are supported as key:

servername name of the server node
nodename name of the node (in ETL imports the name of the importer)
hostname name of the host
port basic port (as string)

CURRENT_DATE ()

• Gives the query’s starttime as DATE in UTC.

CURRENT_TIME ()

• Gives the query’s starttime as TIME in UTC.

CURRENT_TIMESTAMP ()

• Gives the query’s starttime as TIMESTAMP in UTC.

DATE_PART (partname, col)

• Extracts a specific part out of a date, time or timestamp value as integer.

• partname can be:

– DAY - day of month
– DOW - day of week, Sunday(0) - Saturday(6)
– DOY - day of year, 1-365 (leap year 366)
– EPOCH - UNIX timestamp, seconds since 1970-01-01 00:00:00
– HOUR

– ISODOW - day of week as defined in ISO 8601, Monday(1) - Sunday(7)
– ISOYEAR - year that the date falls in, ISOYEAR of 2006-01-01 would be 2005
– MILLISECOND

– MINUTE

– MONTH

– QUARTER - quarter of year, 1-4
– SECOND

Page 300

25 SQL Functions

– WEEK - week of year, 1-53
– YEAR

• col must be the name of a column/field with type DATE, SHORTDATE, TIME, or TIMESTAMP

• For example: For a column/field named val with value 2001-05-12 20:03:05.00:
the result of DATE_PART(’MONTH’, val) is 5 and
the result of DATE_PART(’HOUR’, val) is 20

• Note: This function is currently very slow, because partname can be different for every value of
col. If the part field is the same for all values of the specific column it is recommended to use
EXTRACT (see section 25, page 302 for details) or one of the provided unary extraction functions
like MONTH(column).

DATE_TRUNC (truncval, col)

• rounds the date or time value down according to a given trunc value

• truncval can be:

– an integer, truncating the value according to the passed value in milliseconds
– one of the following string values: ’YEAR’, ’MONTH’, ’DAY’, ’HOUR’, ’MINUTE’, ’SECOND’,

MILLISECOND, ’WEEK’ or ’QUARTER’

• col must be the name of a column/field with value type DATE, SHORTDATE, TIME, or TIMESTAMP

• For example: For a column/field named val with the value 2001-05-12 20:03:05.005

the result of DATE_TRUNC(’MONTH’, val) is 2001-05-01 00:00:00 and the result of
DATE_TRUNC(2000, timestamp) is 2001-05-12 20:03:04.

DAYOFMONTH (column)

• Extracts the day out of a date or timestamp value as integer.

• Note: This is the short writing of the EXTRACT(DAY FROM column).

DAYOFWEEK (column)

• Extracts the day of the week out of a date or timestamp value as integer.

• Sunday results in 1 and Saturday results in 7.

• Note: EXTRACT(DOW FROM column) and EXTRACT(ISODOW FROM column) have different
return values.

DAYOFYEAR (column)

• Extracts the day of year out of a date or timestamp value as integer.

• Range from 1 to 365 or 366 in leap years.

• Note: This is the short writing of the EXTRACT(DOY FROM column)

DISTVALUES (col)

• yields the distinct values of all values as one multivalue

• If the column itself is a multivalue column, it yields a multivalue of all distinct values these multivalues
contain.

• The resulting multivalue does not contain NULL values (unless there are only NULL values).

Page 301

25 SQL Functions

• There is no defined order for the resulting elements. The order might change from call to call.

• This function is callable for all column types, although multivalue columns can only be defined for
integer and floating-point values.

• For example:

– If SELECT col FROM MyTable yields:� �
#col
0

0

0

1

2

2

0� �
then SELECT DISTVALUES(col) FROM MyTable yields:� �
#auto_alias_1__
0,1,2� �

– If SELECT multivalue_col FROM MyTable yields:� �
#multivalue_col
3,6,9

6,7,8,9,10

<NULL>

0

1

1,2� �
then SELECT DISTVALUES(multivalue_col) FROM MyTable yields:� �
#auto_alias_1__
0,1,2,3,6,7,8,9,10� �

EPOCH (column)

• Extracts the UNIX timestamp out of a date or timestamp value as integer.

• Returns the seconds counted since 1979-01-01 00:00:00.

• Note: This is the short writing of the EXTRACT(EPOCH FROM column)

EXTRACT (part FROM column)

• Extracts a specific part out of a date or time value as integer.

• partname can be:

– DAY - day of month
– DOW - day of week, Sunday(0) - Saturday(6)
– DOY - day of year, 1-365 (leap year 366)

Page 302

25 SQL Functions

– EPOCH - UNIX timestamp, seconds since 1970-01-01 00:00:00
– HOUR

– ISODOW - day of week as defined in ISO 8601, Monday(1) - Sunday(7)
– ISOYEAR - ISO 8601 year that the date falls in, ISOYEAR of 2006-01-01 would be 2005
– MILLISECOND

– MINUTE

– MONTH

– QUARTER - quarter of year, 1-4
– SECOND

– WEEK - week of year, 1-53
– YEAR

• column must be the name of a column/field or a single value with type DATE, SHORTDATE, TIME,
or TIMESTAMP.

• Examples:
EXTRACT(MONTH FROM DATE’2001-05-12’) results in 5.
EXTRACT(HOUR FROM TIMESTAMP’2001-05-12 20:03:05.00’) results in 20.
EXTRACT(WEEK FROM SHORTDATE’2014-06-06’) results in 23.

FIRST (value)

• Restricts a query to yield only “the first” of all possible values.

• Note that it is undefined which value/row is used if multiple values/rows match (even multiple calls
of the same query can have different results).

• See section 27.3.4, page 349 for details and examples.

FLOOR (val)

• Rounds an floating-point value down to the next integral value.

• val can be numeric value.

• For example:

– FLOOR(4.7) yields 4
– FLOOR(-7.1) yields -8

HASH64 (strvalue)

• Returns the hash value of the passed string strvalue

• For non-hashed strings, the value is the same as the HASH64 compression (see section 24.2.4,
page 285) yields for imported string values.

• This function is especially useful to distribute over string values. See section 6.3.1, page 59 for an
example.

HOUR (column)

• Extracts the hour out of a time or timestamp value as integer.

• Note: This is the short writing of the EXTRACT(HOUR FROM column).

Page 303

25 SQL Functions

IF (value, trueresult, falseresult)

• See section 27.3.4, page 354 for details and examples.

IFNULL (value, replacement)

• defines a replacement for NULL values.

• The type of the replacement must match the type of the value.

• For example:� �
SELECT IFNULL(StringVal,'no value') FROM table;

SELECT IFNULL(IntVal,-1) FROM table;� �
LOWER (value)

LOWERCASE (value)

• lowercases the string value value

MILLISECOND (column)

• Extracts the millisecond out of a time or timestamp value as integer.

• Note: This is the short writing of the EXTRACT(MILLISECOND FROM column).

MINUTE (column)

• Extracts the minute out of a time or timestamp value as integer.

• Note: This is the short writing of the EXTRACT(MINUTE FROM column).

MONTH (column)

• Extracts the month out of a date or timestamp value as integer.

• Note: This is the short writing of the EXTRACT(MONTH FROM column).

NOW ()

• Gives the query’s starttime as TIMESTAMP in time zone UTC.

QUARTER (column)

• Extracts the quarter out of a date or timestamp value as integer.

• Range: quarter 1 to 4.

• Note: This is the short writing of the EXTRACT(QUARTER FROM column)

SECOND (column)

• Extracts the second out of a time or timestamp value as integer.

• Note: This is the short writing of the EXTRACT(SECOND FROM column).

TAKE (columnname)

• yields the value of column columnname that corresponds with the value of the previous MAX() or
MIN() command

• See section 27.3.4, page 348 for details and examples.

Page 304

25 SQL Functions

TRUNC (val)

• truncates a floating-point value to an integral value

• val can be numeric value

• For example:

– TRUNC(4.7) yields 4
– TRUNC(-7.1) yields -7

UPPER (value)

UPPERCASE (value)

• uppercases the string value value

WEEK (column)

• Extracts the week out of a date or timestamp value as integer.

• Range: From 1 to 53

• Note: This is the short writing of the EXTRACT(WEEK FROM column)

YEAR (column)

• Extracts the year out of a date or timestamp value as integer.

• Note: This is the short writing of the EXTRACT(YEAR FROM column).

Page 305

System Tables

Introduction of System Tables

The system tables - also known as "system catalog" or "information schema" - are a mechanism for
requesting metadata. These tables are read-only views, which provide information about all of the
tables, columns, and custom functions in the running Cisco ParStream instance. They are available
through standard SQL commands

For example, you can query all tables and columns with the following command:� �
SELECT table_name,column_name,column_type,SQL_type,column_size

FROM ps_info_column;� �
It might have the following output:� �
#table_name;column_name;column_type;sql_type;column_size
"Hotels";"City";"hashed";"VARSTRING";1024

"Hotels";"Hotel";"string";"VARSTRING";100

"Hotels";"Seaview";"numeric";"INT8";<NULL>

"Hotels";"Price";"numeric";"UINT16";<NULL>

"Hotels";"Num";"numeric";"UINT8";<NULL>

"Hotels";"ID";"numeric";"UINT32";<NULL>

"Bookings";"ID";"numeric";"UINT32";<NULL>

"Bookings";"Name";"string";"VARSTRING";1024

"Bookings";"Name";"numeric";"UINT32";<NULL>� �
In addition to the static database schema, system tables also serve as monitoring functions, such as
RAM consumption or a list of all running queries.

For example:� �
SELECT pid, realtime_sec, total_ram_mb, operating_system

FROM ps_info_process;� �
might have the following output:� �
#pid;realtime_sec;total_ram_mb;operating_system
17580;59;64257;"3.10.0-327.22.2.el7.x86_64 #1 SMP Thu Jun 23 17:05:11 UTC

2016 x86_64"� �
Note the following general rules regarding Cisco ParStream system tables:

• The names of all Cisco ParStream system tables start with ps_info.

• The order of the columns is not guaranteed and might change. If the order matters, use explicit
column names instead of a *.

Page 306

26.1 Introduction of System Tables 26 System Tables

List of all System Tables

Name Meaning Page

ps_info_catalog Lists all system tables 307

Static information:
ps_info_version Yields version information 308
ps_info_type Yields all existing data types 308

Schema and Configuration:
ps_info_table Yields information about all tables 309
ps_info_column Yields information about all columns 309
ps_info_compression Yields information about the compression

attributes of all columns
310

ps_info_bitmap_index Yields index information 311
ps_info_partitioned_by Yields PARTITION BY clauses of tables 311
ps_info_sorted_by Yields ORDER BY clauses of tables 311
ps_info_separated_by Yields SEPARATE BY clauses of columns 311
ps_info_configuration Yields the general configuration of a server 312
ps_info_user_defined_option Yields all options defined via INI files or

command line
315

Runtime information:
ps_info_user Yield the list of current database users 316
ps_info_dynamic_columns_mapping Yields details of the current dynamic columns

mapping
316

ps_info_partition Yields details of all existing partitions 316
ps_info_cluster_node Yields the details of all nodes in a cluster 317
ps_info_remote_node Yields the details of all remote nodes of a

cluster
317

ps_info_partition_sync_backlog Yields open partition synchronizations 318
ps_info_custom_query Yields names of registered custom queries 319
ps_info_debug_level Yields settings of all debug levels 319
ps_info_disc Yields file system information 319
ps_info_job Yields all configured jobs 319
ps_info_library Yields all loaded libraries 320
ps_info_mapped_file Yields information about all memory mapped

files
320

ps_info_process Yields process ID, user name, and other
process information of the server

320

ps_info_running_query Yields all running queries 321
ps_info_query_history Yields all recently done queries 321
ps_info_import Yields all running and recently done imports 322
ps_info_partition_distribution Yields the current partition distribution table 323
ps_info_merge_queue_detail Yields all merges running on a cluster node 323
ps_info_udf Yields all loaded user defined functions 324

Page 307

26 System Tables 26.2 Static Tables

Table ps_info_catalog
• Lists all system tables

• C++ Class: SystemTablePsCatalog

• Returned columns:

Column Type Meaning
name VARSTRING name of the system table
description VARSTRING description of the system table

The other tables are described in the sections below.

Static Tables

Table ps_info_version
• Yields Cisco ParStream version, source revision, source branch, build type and local changes

• C++ Class: SystemTablePsVersion

• Returned columns:

Column Type Meaning
parstream_version VARSTRING Official Cisco ParStream Version
source_revision VARSTRING internal source code revision ID
source_branch VARSTRING internal source branch name
build_type VARSTRING type of built (e.g. "debug")
build_host VARSTRING host where the built was performed
build_host_osversion VARSTRING operating system version of the host where the built was

performed
build_datetime VARSTRING timestamp when the built was performed (e.g.

"20141210T075450Z")
local_changes VARSTRING list of changed source files

Table ps_info_type
• Yields all existing Cisco ParStream data types. If there is a corresponding Postgres data type, its

oid is used.

• C++ Class: SystemTablePsType

• Returned columns:

Column Type Meaning
oid INT32 type ID
type_name VARSTRING name of the type (in upper-case letters)
type_size INT16 size of the type (-1 for multivalue types)
value_singularity VARSTRING singularity (SINGLE_VALUE, MULTI_VALUE)

Page 308

26.3 Schema and Configuration Tables 26 System Tables

Schema and Configuration Tables

The following tables provide information about all tables and columns according to all column attributes
described in section 24.2.4, page 284.

Table ps_info_table
• Yields which tables are in the database

• C++ Class: SystemTablePsTable

• Returned columns:

Column Type Meaning
table_name VARSTRING Name of the table
import_directory_pattern VARSTRING Value of IMPORT_DIRECTORY_PATTERN
import_file_pattern VARSTRING Value of IMPORT_FILE_PATTERN
etl VARSTRING ETL statement if any (or empty)
distribution_algorithm VARSTRING Algorithm used for partition distribution
distribution_column VARSTRING Column used for partition distribution
distribution_redundancy UINT32 Redundancy value of partition distribution
colocation_source VARSTRING Referred table for co-located partition distribution
metadata_version VARSTRING Metadata version number of the last modification of this

table

Table ps_info_column
• Yields table name, column name, and column attributes of all columns in the database

• C++ Class: SystemTablePsColumn

• Returned columns:

Page 309

26 System Tables 26.3 Schema and Configuration Tables

Column Type Meaning
table_name VARSTRING name of the table
column_name VARSTRING name of the column
column_type VARSTRING general type category of the column (string, numeric,

datetime, . . .)
value_type_oid INT32 type ID (OID)
sql_type VARSTRING column type as in CREATE TABLE (INT32, VARSTRING,

. . .)
column_size UINT64 number of characters (for strings and blobs)
mapping_level VARSTRING value of MAPPING_LEVEL (deprecated attribute)
mapping_type VARSTRING value of MAPPING_TYPE AUTO, PROVIDED
mapping_file_granularity UINT32 value of MAPPING_FILE_GRANULARITY
singularity VARSTRING singularity (SINGLE_VALUE, MULTI_VALUE)
preload_column VARSTRING preload value (see section 15.9.3, page 177)
csv_column VARSTRING column in CSV imports (number or ETL)
csv_column_no UINT32 column in CSV imports (NULL for ETL columns)
skip VARSTRING whether to skip this column on imports and queries

(TRUE or FALSE, see section 10.3.1, page 91)
unique VARSTRING deprecated: whether this column is declared UNIQUE

(TRUE or FALSE)
has_unique_constraint UINT8 1 if this column is declared UNIQUE, 0 otherwise
not_null VARSTRING deprecated: whether this column is declared NOT NULL

(TRUE or FALSE)
has_not_null_constraint UINT8 1 if this column is declared NOT NULL, 0 otherwise
primary_key VARSTRING deprecated: whether this column is declared PRIMARY

KEY (TRUE or FALSE)
is_primary_key UINT8 1 if this column is declared PRIMARY KEY, 0 otherwise
default_value VARSTRING the default value for this column
dynamic_columns_type VARSTRING role for the dynamic columns feature (REGULAR_COLUMN,

DYNAMIC_COLUMNS_KEY, or
DYNAMIC_COLUMNS_VALUE; see section 7.2.2, page 69)

For the compression attributes of a column, see system table ps_info_compression (page 310).

Table ps_info_compression
• Yields the compression attributes of all columns in the database

• C++ Class: SystemTablePsCompression

• Returned columns:

Column Type Meaning
table_name VARSTRING name of the table
column_name VARSTRING Name of the column the compression belongs to
sequence_number UINT32 The position of this compression in the list of compressions of this

column
compression VARSTRING The kind of compression (NONE, HASH64, LZ4, SPARSE)
default_value VARSTRING SPARSE_DEFAULT value if compression is SPARSE, else empty
lower_bound UINT8 Minimum bit-width in INDEX_BITS if compression is DICTIONARY,

else empty
upper_bound UINT8 Maximum bit-width in INDEX_BITS if compression is DICTIONARY,

else empty

Page 310

26.3 Schema and Configuration Tables 26 System Tables

Table ps_info_bitmap_index
• Yields index attributes of all columns in the database

• C++ Class: SystemTablePsBitmapIndex

• Returned columns:

Column Type Meaning
table_name VARSTRING Name of the table the index belongs to
column_name VARSTRING Name of the column the index belongs to
index_type VARSTRING index type (EQUAL or RANGE)
max_cached_values UINT64 value of MAX_CACHED_VALUES
cache_nb_iterators VARSTRING value of CACHE_NB_ITERATORS
index_granularity VARSTRING value of MAX_CACHED_VALUES
index_bin_count UINT64 value of INDEX_BIN_COUNT
index_bin_min VARSTRING value of INDEX_BIN_MIN
index_bin_max VARSTRING value of INDEX_BIN_MAX
index_bin_boundaries VARSTRING value of INDEX_BIN_BOUNDARIES
index_mask UINT64 value of INDEX_MASK

Table ps_info_partitioned_by
• Yields PARTITIONED BY clauses of tables

• C++ Class: SystemTablePsPartitionedBy

• Returned columns:

Column Type Meaning
table_name VARSTRING Name of the table
column_name VARSTRING Name of the column if the table is partitioned by a column name
expression VARSTRING Expression if the table is partitioned by an expression
sequence_number UINT32 The position of this PARTITION BY clause in the list of all clauses

Table ps_info_sorted_by
• Yields SORTED BY clauses of tables

• C++ Class: SystemTablePsSortedBy

• Returned columns:

Column Type Meaning
table_name VARSTRING Name of the table
column_name VARSTRING Name of the column
sequence_number UINT32 The position of this ORDER BY clause in the list of all clauses

Table ps_info_separated_by
• Yields SEPARATED BY clauses of columns

• C++ Class: SystemTablePsSeparatedBy

• Returned columns:

Page 311

26 System Tables 26.3 Schema and Configuration Tables

Column Type Meaning
table_name VARSTRING Name of the table
column_name VARSTRING Name of the column
separating_column VARSTRING

sequence_number UINT32 The position of this SEPARATE BY clause in the list of all clauses

Table ps_info_configuration
• Yields configuration the requested Cisco ParStream server as a list of key/value pairs

• C++ Class: SystemTablePsConfiguration

• Returned columns:

Column Type Meaning
key VARSTRING Name of the configuration value
value VARSTRING Value of the configuration value as string

Currently, the following keys are supported:
Key Value

version Cisco ParStream version
argv0 Name of the started server process (argv[0])
cmdlineArgs Commandline arguments of the started server process (without

argv[0])
startTime ISO 8601 representation of the server startup time
locale Locale
encoding Client encoding used
isServer "true" if server, "false" if importer
nodeName Name of the node
hostName Name of the host
port Basic port (as string)
workingDir Working directory at startup
confDir Directory where we read config files from
journalDir Directory of journal files
dataDir Partitions directory
clusterId Cluster ID
clusterRank Cluster rank
mergeDisabled "true" if merges are disabled, "false" otherwise
outputFormat Value of session settable option outputFormat, which is the

format in which query results will sent to the client of this session
(see section 13.2.1, page 121 and see section 27.10.1, page 373)

queryHistoryMaxEntries Value of option queryHistoryMaxEntries, which is the
maximum number performed queries are kept to see them in
the query history (see section 13.2.1, page 129)

queryHistoryMaxSeconds Value of option queryHistoryMaxSeconds, which is the
maximum duration in seconds performed queries are kept to see
them in the query history (see section 13.2.1, page 129)

Page 312

26.3 Schema and Configuration Tables 26 System Tables

Key Value

importHistoryMaxEntries Value of option importHistoryMaxEntries, which is the
maximum number performed imports are kept to see them in
the import history (see section 13.2.1, page 129)

importHistoryMaxSeconds Value of deprecated option importHistoryMaxSeconds, which
is the maximum duration in seconds performed imports are kept
to see them in the import history

mappedFilesMax Value of server option mappedFilesMax (see section 13.3.2,
page 138)

mappedFilesCheckInterval Value of server option mappedFilesCheckInterval (see
section 13.3.2, page 138)

mappedFilesOutdatedInterval Value of server option mappedFilesOutdatedInterval (see
section 13.3.2, page 138)

mappedFilesAfterUnmapFactor Value of server option mappedFilesAfterUnmapFactor (see
section 13.3.2, page 138)

maxExecutionThreads Value of option maxExecutionThreads which is the total
number of threads available for task execution (see section 13.2.1,
page 127)

maxQueryThreads Value of option maxQueryThreads which is the maximum
number of threads, out of the maxExecutionThreads available,
which can be assigned to query tasks with 0 meaning that there
is no limit (see section 13.2.1, page 127)

maxImportThreads Value of option maxImportThreads which is the maximum
number of threads, out of the maxExecutionThreads available,
which can be assigned to import tasks with 0 meaning that there
is no limit (see section 13.2.1, page 127)

maxMergeThreads Value of option maxMergeThreads which is the maximum
number of threads, out of the maxExecutionThreads available,
which can be assigned to merge tasks with 0 meaning that there
is no limit (see section 13.2.1, page 127)

maxExternalProcesses Value of option maxExternalProcesses, which is the
maximum number of concurrent external processes for execution
of UDT statements (see section 13.2.1, page 127)

connection_id Connection ID of the session that sent the request
queryPriority Value of session settable option queryPriority, which is the

priority query tasks issued in this session initially will run (see
section 13.2.1, page 128 and see section 27.10.1, page 374)

importPriority Value of session settable option importPriority, which is the
priority import tasks issued in this session initially will run (see
section 13.2.1, page 128 and see section 27.10.1, page 374)

mergePriority Value of option mergePriority, which is the priority with which
internal merge tasks run (see section 13.2.1, page 128)

queryThrottlingInterval Value of option queryThrottlingInterval, which is the
interval after which (periodically) a running query will be reduced
in priority (see section 13.2.1, page 128)

limitQueryRuntime Query runtime limit of the session that sent the request (see
section 13.2.1, page 120)

numBufferedRows Number of buffered rows for output (see section 13.2.1, page 120)

In addition, the values of all ExecTree options (see section 13.3.4, page 140) and the value of all
optimization options (see section 13.5, page 149) are returned by the system table:

Page 313

26 System Tables 26.3 Schema and Configuration Tables

ExecTree.AsyncRemoteProxyExecution

ExecTree.BitmapAggregationLimit

... optimization.rewrite.all
optimization.rewrite.joinElimination

...

Note the following:

• Directories are absolute paths.

• mergeDisabled is the local status of the queried server. In a cluster, you have to ask the leader
to see, whether currently merges in the cluster are disabled.

• The system table ps_user_defined_option (see page 315) lists all options as defined via INI
and command line, which allows to find out, why a configuration entry does not have its default
value.

• The order of the rows is undefined and might vary from call to call.

For example:� �
SELECT * FROM ps_info_configuration;� �

might have the following result:� �
#key;value
"version";"3.2.0"

"argv0";"parstream-server"

"cmdlineArgs";"first"

"startTime";"2014-07-23T19:00:05"

"locale";"C"

"encoding";"ASCII"

"isServer";"true"

"nodeName";"first"

"workingDir";"/parstream-testdata/2.1/HotelDemo"

"confDir";"/parstream-testdata/2.1/HotelDemo/conf"

"journalDir";"/parstream-testdata/2.1/HotelDemo/journals"

"dataDir";"parstream-testdata/2.1/HotelDemo/./partitions/"

"clusterId";""

"mergeDisabled";"false"

"outputFormat";"ASCII"

"queryHistoryMaxEntries";"1000"

"queryHistoryMaxSeconds";"600"

"importHistoryMaxEntries";"1000"

"importHistoryMaxSeconds";"600"

"maxExecutionThreads";"20"

"maxQueryThreads";"0"

"maxImportThreads";"5"

"maxMergeThreads";"5"

...

"connection_id";"first-190005-9077-0"

"queryPriority";"4"

"importPriority";"4"

"mergePriority";"4"

Page 314

26.3 Schema and Configuration Tables 26 System Tables

"queryThrottlingInterval";"0"

"limitQueryRuntime";"0"

"numBufferedRows";"32"

"ExecTree.BitmapAggregationLimit";"40000"

"ExecTree.GroupByBitmapLimit";"40000"

"ExecTree.IterativeGroupByAggregation";"false"

...

"optimization.rewrite.all";"individual"

"optimization.rewrite.joinElimination";"disabled"

...� �
Table ps_info_user_defined_option
• Yields all options defined via INI files or command line arguments.

• C++ Class: SystemTablePsUserDefinedOption

• Returned columns:

Column Type Meaning
key VARSTRING Name of the user defined option
value VARSTRING Value of the option as string
source VARSTRING Name of the INI file or “<commandline>” for command line arguments

Note the following:

• If an option is not set a INI file or as command line argument, the default value will be used and the
option won’t be listed in the table.

• Thus, this system table allows to see what the user or system administrator has requested as
non-default option value. System table ps_info_configuration (see page 312), provides the
ability to query the resulting and current status of the running server. Note that options and the
internal configuration might not match directly to each other.

For example:� �
SELECT * FROM ps_info_user_defined_option;� �

might have the following result:� �
#key;value;source
"import.first.sourcedir";"./import";"parstream.ini"

"merge";"false";"parstream.ini"

"reimportInterval";"1";"parstream.ini"

"server.first.datadir";"./partitions/";"parstream.ini"

"server.first.host";"127.0.0.1";"parstream.ini"

"server.first.port";"9042";"parstream.ini"

"servername";"first";"<commandline>"

"verbosity";"0";"parstream.ini"� �

Page 315

26 System Tables 26.4 Runtime Tables

Runtime Tables

Table ps_info_user
• Yield the list of current database users.

• C++ Class: SystemTablePsUser

• Returned columns:

Column Type Meaning
login_name VARSTRING name of the database user
user_name VARSTRING name of the associated PAM user

See section 9.2, page 78 for details.

Table ps_info_dynamic_columns_mapping
• Yields details of the current dynamic columns mapping.

• C++ Class: SystemTablePsDynamicColumnsMapping

• Returned columns:

Column Type Meaning
table_name VARSTRING name of the raw table
dynamic_name VARSTRING value of the dynamic column (column marked with

DYNAMIC_COLUMNS_KEY)
key_column VARSTRING name of the DYNAMIC_COLUMNS_KEY column in the table
value_column VARSTRING name of the DYNAMIC_COLUMNS_VALUE column used by this dynamic

name in the table
is_valid VARSTRING whether the dynamic name is a valid column name (TRUE or FALSE)
is_conflicting VARSTRING whether the dynamic name is conflicting with another dynamic name

(TRUE or FALSE)

See section 7.2.2, page 69 for details.

Table ps_info_partition
• Yields details of all existing partitions

• C++ Class: SystemTablePsPartition

• Returned columns:

Column Type Meaning
base_directory VARSTRING root data directory (datadir)
table_name VARSTRING name of the table
relative_path VARSTRING path from root data directory
num_records INT64 number of records
partition_condition VARSTRING condition for this partition

e.g.: Price < 100 AND City = hashvalue

status VARSTRING status of this partition (see section 5.1.3, page 34)
metadata_version VARSTRING metadata version number of the table when this partition was

created
parstream_version VARSTRING Cisco ParStream version used to write this partition
access_time TIMESTAMP time stamp of the last access

Page 316

26.4 Runtime Tables 26 System Tables

Table ps_info_cluster_node
• Yields the details of all nodes in a cluster from a node/server.

• C++ Class: SystemTablePsClusterNode

• Returned columns:

Column Type Meaning
name VARSTRING name of the node
type VARSTRING type of the node (QUERY or IMPORT)
host VARSTRING hostname
port UINT16 basic (query) port
leader INT8 1 if leader
follower INT8 1 if follower
active INT8 1 if active (only possible if online)
online INT8 1 if online (connection channels open)
follower_rank UINT16 rank (if no leader)
parstream_version VARSTRING version of the software the node uses (format:

ParStreamVersion-SourceCodeKey, e.g.: 2.2.0-3fdf00a)
data_version UINT64 version number of the cluster node state (incremented with each

update)
pid INT64 the process identifier of the server process on the executing node
node_status VARSTRING status of the given node

active (node is online and active, and can process queries)
online (node is online and has to be synchronized; cannot

process queries)
shutting_down (node is shutting down)
offline (node is offline and can neither import data nor

process queries)
The value might be followed by “???” (see below)

merge_status VARSTRING merge status of the node
enabled (merging is enabled)
disabled (merging is disabled)

import_status VARSTRING data import status of the node
enabled (data import is enabled)
disabled (data import is disabled)

If the node receiving this request is offline, the status returned is more or less the last known state of
the cluster. To signal this, all node_status values of other nodes will have “???” at the end.

Note that the information about whether a node is active does not mean that requests could not have
any problems. System table ps_info_remote_note (see section 26.4, page 317) lists details about
(recent) errors when using connections to a specific node.

See section 6.2.1, page 41 for details about possible cluster node states.

See section 6.2.4, page 49 for details about how to use this system table.

Table ps_info_remote_node
• Yields the details of all remote nodes (if any) and their connection pool (see section 15.1, page 162).

• C++ Class: SystemTablePsRemoteNode

• Returned columns:

Page 317

26 System Tables 26.4 Runtime Tables

Column Type Meaning
name VARSTRING name of the node
host VARSTRING hostname
port UINT16 basic (query) port
online INT8 1 if online (connection channels open)
connection_available_count UINT32 available connections in the connection pool
connection_check_count UINT32 number of double-checks currently performed for

available connections
connection_success_count UINT64 sum of all established connection to the node
connection_error_count UINT64 sum of all failed trials to connect to the node
num_connections_in_use UINT64 number of connections currently in use by

queries/inserts
connection_reuse_success_count UINT64 number of connections which were fed back to

the pool after use
connection_reuse_failure_count UINT64 number of connections which could not be fed

back to the pool after use
last_error_message VARSTRING last error message (or NULL/"" if none)
last_error_time TIMESTAMP time stamp of the last error (or NULL if none)
parstream_version VARSTRING Cisco ParStream version of the node

You have to send this request to a node that is online.

Also note the following:

• Each node has its own set of counters. Restarting a node re-initializes the counters.

• The connection counts and parstream_version are 0 or empty until the information is available
(this is usually after the first distributed query).

• Some features such as DHSGB (see section 15.15.2, page 189) may internally create additional
connections. For this reason, distributed queries might increase some counters more than just 1.

Table ps_info_partition_sync_backlog
• Yields from a cluster leader (or follower) information about the partitions that still need to be

synchronized to nodes of the cluster

• C++ Class: SystemTablePsPartitionSyncBacklog

• Returned columns:

Column Type Meaning
node_name VARSTRING name of the node
type VARSTRING type of the open synchronization (merge, import, or delete)
table_name VARSTRING name of the table to synchronize
relative_path VARSTRING relative path of partition to sync
node_name_source VARSTRING in case of an active sync the name of the node processing the sync,

empty otherwise
sync_status VARSTRING sync status of the partition

pending (no active sync ongoing)
active (sync in progress)

metadata_version UINT64 Metadata version number of the table it relates to

An empty result signals no open synchronizations. Note, however, that you have to send this request
to the leader (or a follower) node. Otherwise, the result will be empty although open synchronizations

Page 318

26.4 Runtime Tables 26 System Tables

exist or not up-to-date (if the follower doesn’t have the newest state yet). See section 6.2.4, page 49
for details about how to use this table.

Table ps_info_custom_query
• Yields names of registered custom queries.

• C++ Class: SystemTablePsCustomQuery

• Returned columns:

Column Type Meaning
registered_custom_query VARSTRING

Table ps_info_debug_level
• Show settings of all debug levels (See section 9.5.4, page 86)

• C++ Class: SystemTablePsDebugLevel

• Returned columns:

Column Type Meaning
class_name VARSTRING name of the class to set the debug level for
debug_level INT64 value of the debug level setting
is_default UINT8 1 if the debug level of this class is tracking see section 13.2.1, page 120

Table ps_info_disc
• Prints disc usage of the partition folder

• C++ Class: SystemTablePsDisc

• Returned columns:

Column Type Meaning
path VARSTRING path of the partition
file_name VARSTRING name of the file in the partition
type VARSTRING type of the information in the file
size_byte INT64 size of the file in Bytes
status VARSTRING status (active etc. (see section 5.1.3, page 34) or "no partition.smd

found" or "unknown")

Table ps_info_job
• Shows all configured jobs

• C++ Class: SystemTablePsJob

• Returned columns:

Column Type Meaning
name VARSTRING unique name of the job
action VARSTRING SQL command to be executed
timing VARSTRING Timing defining when the job is executed
comment VARSTRING A user comment about this job.
enabled VARSTRING Status of the job.

Page 319

26 System Tables 26.4 Runtime Tables

Table ps_info_library
• Shows string with paths/names of loaded libraries.

• C++ Class: SystemTablePsLoadedLibrary

• Returned columns:

Column Type Meaning
loaded_library VARSTRING

Table ps_info_mapped_file
• Yields path, size, role, and type of all memory mapped files of the Cisco ParStream process and

the table/partition/column they belong to.

• C++ Class: SystemTablePsMappedFile

• Returned columns:

Column Type Meaning
file_path VARSTRING path of the file
file_size UINT64 size of the file
table VARSTRING table the files belongs to
column VARSTRING column the files belongs to
partition VARSTRING partition the file belongs to
type VARSTRING type of the file (string with one of the following values:

column_data (no filetype suffix)
column_data_map (suffix .map)
index (suffix .sbi)
hashed_string_lookup_data (suffix .hs)
hashed_string_lookup_map (suffix .hsm)

access_time TIMESTAMP last time the mapped file was accessed by the system

Table ps_info_process
• Yields process ID, user name, and other process information of the server.

• C++ Class: SystemTablePsProcess

• Returned columns:

Column Type Meaning
pid INT32 process ID
user VARSTRING user name
host_name VARSTRING host name
operating_system VARSTRING operating system
threads INT32 current number of threads
realtime_sec DOUBLE real time used so far
utime_sec DOUBLE user time used so far
stime_sec DOUBLE system time used so far
vsize_mb DOUBLE size of virtual memory usage of this process
used_ram_mb DOUBLE size of resident memory usage of this process
total_ram_mb DOUBLE size of physical memory of the machine
free_ram_mb DOUBLE size of free memory of the machine

Page 320

26.4 Runtime Tables 26 System Tables

Table ps_info_running_query
• Yields all running queries

• C++ Class: SystemTablePsRunningQuery

• Returned columns:

Column Type Meaning
connection_id VARSTRING connection ID
query_id VARSTRING query ID
execution_id VARSTRING execution ID (relates to the execution_ID column of the

INSPECT THREADPOOL output see section 27.6, page 362)
execution_type VARSTRING type of query ("QUERY", "IMPORT", or "MERGE")
command VARSTRING command string
starttime TIMESTAMP starting time of query
runtime_msec UINT64 running time so far in milliseconds
realtime_msec UINT64 amount of time spent in this query accumulated across all

threads assigned to it.
cputime_msec UINT64 amount of CPU time (i.e. not counting I/O wait cycles etc.) spent

executing this query accumulated across all threads assigned to
it.

min_num_threads UINT64 minimum number of threads requested by execution of this
query before other tasks issued after it shall be considered (>0).

max_num_threads UINT maximum number of threads that is allowed to be assigned to
execution of this query (0 means no limit).

current_num_threads UINT64 number of threads currently assigned to this task.
execution_priority UINT64 priority used for executing the query (see section 15.1,

page 158)
channel VARSTRING used command channel (POSTGRESQL or NETCAT)
role VARSTRING MASTER or SLAVE
master_node VARSTRING node the query was originally sent to
slave_nodes VARSTRING list of slave nodes if any (only set if role is MASTER)
slave_sub_id VARSTRING sub-ID of the slave node (only set if role is SLAVE)

Note the following:

• The command string may have SQL or JSON format.

• Any request from a client is a MASTER request. If this results into sub-requests sent to executing
servers, they are listed in slave_nodes. master_node is part of the list of slave_nodes if a
part of the distributed execution happens there.

• Any sub-request from a server is a SLAVE request. In that case the command string always has
JSON format.

Table ps_info_query_history
• Yields (recent) done queries.

• C++ Class: SystemTablePsQueryHistory

• Returned columns:

Page 321

26 System Tables 26.4 Runtime Tables

Column Type Meaning
connection_id VARSTRING connection ID
query_id VARSTRING query ID
execution_id VARSTRING execution ID (relates to the execution_ID column of the INSPECT

THREADPOOL output see section 27.6, page 362)
execution_type VARSTRING type of query ("QUERY", "IMPORT", or "MERGE")
command VARSTRING command string
starttime TIMESTAMP starting time of query
runtime_msec UINT64 running time in milliseconds
realtime_msec UINT64 amount of time spent in this query accumulated across all threads

assigned to it.
cputime_msec UINT64 amount of CPU time (i.e. not counting I/O wait cycles etc.) spent

executing this query accumulated across all threads assigned to
it.

execution_priority UINT64 priority used for executing the query (see section 15.1, page 158)
channel VARSTRING used command channel (POSTGRESQL or NETCAT)
role VARSTRING MASTER or SLAVE
master_node VARSTRING nodes the query was originally sent to
slave_nodes VARSTRING list of slave nodes if any (only set if role is MASTER)
slave_sub_id VARSTRING sub-ID of the slave node (only set if role is SLAVE)
result_size UINT64 number of rows of query result
error VARSTRING error message if query failed

Note the following:

• With the global options queryHistoryMaxSeconds and queryHistoryMaxEntries you can
control how long and how many queries are kept to be returned by this request. See section 13.2.1,
page 129 for details.

• The command string may have SQL or JSON format.

• Any request from a client is a MASTER request. If this results into sub-requests sent to executing
servers, they are listed in slave_nodes. master_node is part of the list of slave_nodes if a
part of the distributed execution happened there.

• Any sub-request from a server is a SLAVE request. In that case the command string always has
JSON format.

For example after sending a request to srv3 a query might return:� �
#query_id;command;starttime;runtime_msec;channel;role;master_node;slave_nodes;slave_sub_id;result_size;error
"srv3-160409-9130-2-4";"select * from Hotels";2014-04-02

16:09:58.954;68;"NETCAT";"MASTER";"srv3";"srv1, srv2, srv3, srv4, srv5";"";26;""� �
As you can see, the command was forwarded to 5 servers (including itself). The corresponding query
history at srv5 might look as follows:� �

#query_id;command;starttime;runtime_msec;channel;role;master_node;slave_nodes;slave_sub_id;result_size;error
"srv3-160409-9130-2-4";"select {...}";2014-04-02

16:09:58.968;41;"NETCAT";"SLAVE";"srv3";"";"1";10;""� �
The dots represent the internal JSON command from master to slave node.

Page 322

26.4 Runtime Tables 26 System Tables

Table ps_info_import
• Yields running and recently done imports. In a cluster, this request has to be send to a leader or

follower node. The entries are listed as soon as the imports have been accepted as valid commands
to import data. They might still collect the data to import (import state STARTED) or might have all
data but not finished the activation of the resulting partitions (import state INSERTED). Successful
imports have state ACTIVATED; failed/canceled imports have state CANCELED. Note: This system
table is currently in beta state so that with upcoming versions columns and the exact definition
about which entries are listed might change.

• C++ Class: SystemTablePsImport

• Returned columns:

Column Type Meaning
connection_id VARSTRING connection ID
query_id VARSTRING query ID
execution_id VARSTRING execution ID (relates to the execution_ID column of the INSPECT

THREADPOOL output see section 27.6, page 362)
table_name VARSTRING name of the table the insert applies to
import_state TIMESTAMP STARTED, INSERTED, ACTIVATED, or CANCELED
starttime TIMESTAMP starting time of query
connected_host VARSTRING host that caused the insert
connected_port VARSTRING port of the host that caused the insert
connected_user VARSTRING user that caused the insert if known
master_node VARSTRING nodes the insert was originally sent to

Note the following:

• You can use the global option
TimportHistoryMaxEntries to control how many of the historical entries are kept to be returned by
this request (see section 13.2.1, page 129 for details).

Table ps_info_partition_distribution
• Shows the current partition distribution table (see section 6.3, page 53) denormalized to have for

each value of a column in a table one row for each node

• C++ Class: SystemTablePsPartitionDistribution

• Returned columns:

Column Type Meaning
table_name VARSTRING name of the table
column_name VARSTRING name of the column
column_type VARSTRING type of the column
distribution_value VARSTRING value for which the distribution exists
server_name VARSTRING one of the nodes for the distribution value
distribution_rank UINT32 priority of the node (smaller is higher)

Table ps_info_merge_queue_detail
• Shows detailed information on the merge job queue for the current node

Page 323

26 System Tables 26.4 Runtime Tables

• C++ Class: SystemTablePsMergeQueueDetail

• Returned columns:

Column Type Meaning
node_name VARSTRING name of the node the queue belongs to
distribution_group VARSTRING distribution value of the merge as string
table_name VARSTRING target table
merge_level VARSTRING merge level (H | D | W | F)
relative_path_target VARSTRING relative path of target partition
queue_position INT64 position of job in the merge queue
relative_path_source VARSTRING relative path of source partition

To identify which source partitions belong to one merge job the queue_position can be used in
addition to relative_path_target.

Table ps_info_udf
• Shows detailed information about the loaded user defined functions xUDTOs (see section 20,

page 232) and user defined procedures (UDPs). Note that these UDFs are provided by the user or
application programmer and Cisco ParStream is not responsible for its functionality.

• C++ Class: SystemTableUDF

• Returned columns:

Column Type Meaning
created_at TIMESTAMP Empty/NULL.
type VARSTRING Type of user defined function
name VARSTRING Name of the routine that can be used in a SQL request
internal_name VARSTRING Empty/NULL for xUDTOs/UDPs.
version VARSTRING Empty/NULL for xUDTOs/UDPs.
parameters VARSTRING . Empty/NULL for xUDTOs.
definition VARSTRING . Commands for UDPs, empty/NULL for xUDTOs.
file_name VARSTRING Name of the file that contains this function (xUDTO: script file)
external_tool VARSTRING Fox xUDTOs: Type of the script file.

• Types that are supported as function parameter(s) are: UINT8, UINT16, UINT32, UINT64, INT8,
INT16, INT32, INT64, FLOAT, DOUBLE, SHORTDATE, DATE, TIMESTAMP, TIME, VARSTRING.

Page 324

SQL Grammar

BNF Notation
The syntactic notation used in ISO/IEC 9075 is an extended version of the BNF (Backus Normal Form
or Backus Naur Form). In the version of BNF used in ISO/IEC 9075, the notation symbols have the
meaning as follows:

• <...> is used to name syntactic elements

• ::= is used to break a composed statement of the SQL language into sub-parts

• | means “or”

• [...] means “optional”

For example, just below "preparable SQL data statement" is the name of a syntactic element, and it is
written here as <preparable SQL data statement>.

SQL Statements
According to Standard SQL, 20.6 <prepare statement>: we can divide statements for execution into
data statements (such as SELECT, INSERT, and DELETE) schema statements (such as CREATE

TABLE), session statements (such as SET), and system statements (currently only ALTER SYSTEM):� �
<preparable statement> ::=

<preparable SQL data statement>

| <preparable SQL schema statement>

| <preparable SQL control statement>

| <preparable SQL session statement>

| <preparable SQL system statement>

| <preparable SQL user administration statement>

<preparable SQL data statement> ::=
<dynamic select statement>

| <insert statement>

| <delete statement>

| <inspect statement>

<preparable SQL schema statement> ::=
<SQL schema statement>

<SQL schema statement> ::=
<SQL schema definition statement>

<SQL schema manipulation statement>

<preparable SQL control statement> ::=
<SQL control statement>

<preparable SQL session statement> ::=
<SQL session statement>

<preparable SQL system statement> ::=

Page 325

27 SQL Grammar 27.2 SQL Statements

<SQL system statement>

<preparable SQL user administration statement> ::=
<SQL user administration statement>� �

For details about <dynamic select statement> (SELECT statements), see section 27.3,
page 327.
For details about <insert statement> (INSERT statements), see section 27.4, page 360.
For details about <delete statement> (DELETE statements), see section 27.5, page 361.
For details about <inspect statement> (INSPECT statements), see section 27.6, page 362.
For details about <SQL schema definition statement> (CREATE TABLE statements), see
section 27.7, page 364.
For details about <SQL schema manipulation statement> (ALTER TABLE and DROP TABLE

statements), see section 27.8, page 370.
For details about <SQL session statement> (SET statements), see section 27.10, page 373.
For details about <SQL system statement> (ALTER SYSTEM statements), see section 27.11,
page 375. For details about <SQL user administration statement> (CREATE USER

statements), see section 27.12, page 377.

Page 326

27.3 SELECT Statements 27 SQL Grammar

SELECT Statements

In principle, SELECT statements have the following syntax (from Standard SQL, 20.6 <prepare
statement>: Prepare a statement for execution):� �
<dynamic select statement> ::=

"SELECT"

[<set quantifier>]
<select list>

<from clause>

[<where clause>]
[<group by clause>]
[<having clause>]
[<order by clause>]
[<limit clause>]� �

In more detail with some clauses expanded:� �
<dynamic select statement> ::=

"SELECT"

["DISTINCT" | "ALL"]
{ "*" | <select sublist> [{ "," <select sublist>}...] }

"FROM" <table reference>

["WHERE" <search condition>]
["GROUP" "BY" <column name> [{ "," <column name> }...]]
["HAVING" <search condition>]
["ORDER" "BY" <column reference> ["ASC" | "DESC"]

[{ "," <column reference> ["ASC" | "DESC"] }...]]
["LIMIT" { [<offset> ","] <row_count> | <row_count> "OFFSET" <offset> }]� �

Note the following:

• Unless explicitly requested, the order of columns and rows is undefined and might vary from
query to query. For this reason:

– Use specific column names instead of the wildcard * to get a specific column order.
– Use a GROUP BY clause (see section 27.3.1, page 331) to get a a specific row order.

The following subsections explain this syntax in detail.

SELECT Statement and UNION Clause

From Standard SQL, 20.6 <prepare statement>: Prepare a statement for execution.� �
<dynamic select statement> ::=

<cursor specification>� �
From Standard SQL, 14.3 <cursor specification>: Define a result set.� �
<cursor specification> ::=

<query expression>� �
Page 327

27 SQL Grammar 27.3 SELECT Statements

Combined syntax:� �
<dynamic select statement> ::=

<query expression>� �
From Standard SQL, 7.13 <query expression>: Specify a table.� �
<query expression> ::=

<query expression body> [<order by clause>] [<limit clause>]

<query expression body> ::=
<query term>

| <query expression body> "UNION" ["ALL" | "DISTINCT"] <query term>

<query term> ::=
<query specification>

| "(" <query expression body>

[<order by clause>] [<limit clause>] ")"� �
Please note that the names and types of the returned fields of each query of a UNION statement have
to be identical in Cisco ParStream. This can be accomplished by using CAST (see section 27.3.4,
page 350) and aliasing.

Query Specifications and Alias Handling

From Standard SQL, 7.12 <query specification>: Specify a table derived from the result of a table
expression and from Standard SQL, 7.4 <table expression>: Specify a table or a grouped table.� �
<query specification> ::=

"SELECT" [<set quantifier>] <select list> <table expression>

<select list> ::=
"*"

| <select sublist> [{ "," <select sublist> }...]

<select sublist> ::=
<derived column>

<derived column> ::=
<value expression> [<as clause>]

<as clause> ::=
"AS" <column name>

<table expression> ::=
<from clause>

[<where clause>]
[<group by clause>]
[<having clause>]� �

• Each <select sublist> indicates a value that you want to display.

• For <value expression> see section 27.3.3, page 344.

Page 328

27.3 SELECT Statements 27 SQL Grammar

• For <column name> see section 27.3.2, page 333.

• For <column reference> see section 27.3.2, page 342.

• For <set quantifier> see section 27.3.4, page 347.

Note the following:

• Again, note that the order of columns and rows is undefined and might vary from query to query
(see above).

• Note that an alias name specified in the <as clause> is only known outside the clause where it is
defined. For this reason, instead of� �
SELECT id AS s FROM Addr1 JOIN Addr2 ON s = id;� �

you have to write:� �
SELECT Addr1.id AS s FROM Addr1 JOIN Addr2 ON Addr1.id = Addr2.id;� �

Using the alias column name in the <group by clause> is possible.

FROM Clause

From Standard SQL, 7.5 <from clause>: Specify a table derived from one table.� �
<from clause> ::=

"FROM" <table reference>� �
From Standard SQL, 7.6 <table reference>: Reference a table.� �
<table reference> ::=

<table primary>

| <joined table>

<table primary> ::=
<table name> [["AS"] <correlation name>]
| "(" <dynamic select statement> ")" ["AS"] <correlation name>

| <table operator> [["AS"] <correlation name>]
| <custom_procedure_call>� �

Note:

• For <table name> see section 27.3.2, page 333.

• For <table operator> see section 27.3.1, page 333.

• For <correlation name> see section 27.3.2, page 333.

• For <dynamic select statement> see section 27.3, page 327.

A <custom_procedure_call> is a call to a predefined stored query. It consists of the procedure name
and arguments in parentheses. The <custom_procedure_call> within the <table primary> is a de facto
standard enhancement to Standard SQL. Currently this is only used for ETL Imports with CSVFETCH

(see section 10.6, page 104)and PARTITIONFETCH see section 14.2.1, page 155.

Page 329

27 SQL Grammar 27.3 SELECT Statements

JOIN Clause

From Standard SQL, 7.7 <joined table>: Specify a table derived from a Cartesian product, inner join,
or outer join.� �
<joined table> ::=

<cross join>

| <qualified join>

<cross join> ::=
<table reference> "CROSS" "JOIN" <table reference>

<qualified join> ::=
<table reference> [<join type>] "JOIN" <table reference> <join condition>

<join type> ::=
"INNER"

| <outer join type> ["OUTER"]

<outer join type> ::=
"LEFT"

| "RIGHT"

| "FULL"

<join condition> ::=
"ON" <search condition>� �

For details about <search condition> see section 27.3.2, page 337.

For example:� �
SELECT A.*, B.* FROM A

INNER JOIN B ON A.userid = B.userid;

SELECT lastname, departmentName FROM employee

LEFT OUTER JOIN department ON employee.departmentID = department.id;

SELECT City.name, Customers.customer FROM Customers

RIGHT OUTER JOIN City ON Customers.cityId = City.id;

SELECT City.name, Customers.customer FROM Customers

FULL OUTER JOIN City ON Customers.cityId = City.id;

SELECT lastname, departmentName FROM employee

CROSS JOIN department;� �
Note:

• JOINs on multivalues (see section 23.8, page 275) are not supported and result in an exception.

• There a restrictions on alias column names (see section 27.3.1, page 328).

See section 15.7, page 168 for a discussion of how to optimize JOIN applications when using Cisco
ParStream.

Page 330

27.3 SELECT Statements 27 SQL Grammar

WHERE Clause

From Standard SQL, 7.8 <where clause>: Specify a table derived by the application of a <search
condition> to the result of the preceding <from clause>.� �
<where clause> ::=

"WHERE" <search condition>� �
For details about <search condition> see section 27.3.2, page 337..

For example:� �
SELECT * FROM mytable

WHERE mykey > 10;� �
GROUP BY Clause

From Standard SQL, 7.9 <group by clause>: Specify a grouped table derived from the application of
the <group by clause> to the result of the previously specified clause.� �
<group by clause> ::=

"GROUP" "BY" <column name> [{ "," <column name>}...]� �
• For <column name> see section 27.3.2, page 333.

• A <column name> of the <group by clause> must either correspond to a <column reference> of
the table resulting from the <from clause> or be a <column name> of an <as clause> in a <select
sublist>.

• A <column reference> within the <value expression> of a <select sublist>� �
<select sublist> ::= <derived column> ::= <value expression> [<as clause>]

|

+--------------------------+------+------+---------------+

| | | |

<boolean value expression> <numeric value expression> | |

| | <string value expression> |

<predicate> | | <datetime value expression>

| | | |

e.g.: <column reference> = 10 +-------------+---------------+

|

+--------------+------------------------+-------+-------------+

| | | |

<case expression><if expression><set function specification><column reference>

| |

e.g.: | IF <column reference> = 3, 'yes','no'

e.g.: CASE <column reference> WHEN 3 THEN 'three'� �
has to be additionally within the <value expression> of a <general set function> or a <column
reference> of the <group by clause>.

• For <column reference> see section 27.3.2, page 342.

Page 331

27 SQL Grammar 27.3 SELECT Statements

HAVING Clause

From Standard SQL, 7.10 <having clause>: Specify a grouped table derived by the elimination of
groups that do not satisfy a <search condition>.� �
<having clause> ::=
"HAVING" <search condition>� �

For details about <search condition> see section 27.3.2, page 337.

ORDER BY Clause

The ORDER BY clause has the following syntax to specify a sort order (see Standard SQL, 10.10 <sort
specification list>):� �
<order by clause> ::=

"ORDER" "BY" <column reference> ["ASC" | "DESC"]
[{ "," <column reference> ["ASC" | "DESC"] }...]� �

Note:

• Without ORDER BY the order of the results is undefined and might even change from call to call.

• ASC is the default sort order.

For example:� �
SELECT myfield1, myfield2

FROM mytable

ORDER BY myfield2 DESC, myfield1;� �
LIMIT Clause

LIMIT is a supported language opportunity for Standard SQL to limit the number of rows in a result:� �
<limit clause> ::=

"LIMIT" { [<offset> ","] <row_count> | <row_count> ["OFFSET" <offset>] }

<offset> ::=
<unsigned integer>

<row_count> ::=
<unsigned integer>� �

Note:

• The <offset> argument specifies the offset of the first row to return, and the <row_count> specifies
the maximum number of rows to return. The offset of the first row is 0 (not 1).

• The <limit clause> is a Language Opportunity of Standard SQL. See [SQL/Foundation, 9075-2,
Working Draft, 2003], Editor’s Notes for WG3:HBA-003 = H2-2003-305, Possible Problems within

Page 332

27.3 SELECT Statements 27 SQL Grammar

SQL/Foundation, Language Opportunities, 5WD-02-Foundation-2003-09.pdf, pp. Notes-25 ff.,
+931+, p, Notes-59.

• Without using the GROUP BY clause, the contents of the limited rows is still undefined (even from
call to call).

• Currently the usage of LIMIT inside IN subqueries without ORDER BY leads to wrong results with
multiple cluster nodes or partitions.

For example:� �
SELECT a, b FROM mytable LIMIT 10;

SELECT myfield1, myfield2

FROM mytable

WHERE mykey>10

ORDER BY myfield2 DESC

LIMIT 10 OFFSET 3;� �
According to Standard SQL, 7.13 <query expression>, you could also specify a table as follows:� �
<fetch first clause> ::=
"FETCH" "FIRST" [<unsigned integer>] { "ROW" | "ROWS" } "ONLY"� �

However, this is not realized in Cisco ParStream. Instead, in Cisco ParStream you have two options:

• Use the FIRST function (see section 27.3.4, page 349).

• Use the <limit clause> as described above.

DYNAMIC_COLUMNS Operator� �
<table operator> ::=
<dynamic columns operator>

| <external user defined operator>

<dynamic columns operator> ::=
"DYNAMIC_COLUMNS" "("

"ON" <table name>

["PARTITION BY" <column list>]
"JOIN_COLUMNS" "(" <column list> ")"

["DYNAMIC_COLUMN_NAMES" "(" <select sublist> ")"]
["STATIC_COLUMN_NAMES" "(" <select sublist> ")"]

")"� �
See section 7.2.2, page 70 for details.

Lexical Elements, Scalar Expressions, and Predicates

Names and Identifiers

From Standard SQL, 5.4 Names and identifiers: Specify name.

Page 333

27 SQL Grammar 27.3 SELECT Statements

� �
<table name> ::=

<regular identifier>

<column name> ::=
<regular column identifier>

<correlation name> ::=
<regular identifier>� �

• For <regular identifier> see section 27.3.2, page 334.

• For <regular column identifier> see section 27.3.2, page 334.

Note:

• Cisco ParStream’s <column name> definition is a subset of Standard SQL with at least two
characters (see section 24.2.1, page 282).

• Furthermore in Cisco ParStream, a column can be defined as <regular column identifier> outside
of SQL language, only, so Cisco ParStream has introduced <regular column identifier>.

Token and Separator

<regular column identifier> is used in <column name> (see section 27.3.2, page 333). <regular
identifier> is used in <correlation name> and <table name> (see section 27.3.2, page 333).

From Standard SQL, 5.2 <token> and <separator>:

Specify lexical units (tokens and separators) that participate in SQL language.� �
<regular identifier> ::=

<identifier body>

<identifier body> ::=
<identifier start> [<identifier part>...]

<identifier part> ::=
<identifier start>

| <identifier extend>

<regular column identifier> ::=
<column identifier body>

<column identifier body> ::=
<identifier start> <identifier part>...� �

Note:

• <regular column identifier> is a subset of Standard SQL - SQL:2003 - <regular identifier> definition.

• <column identifier body> is a subset of Standard SQL - SQL:2003 - <identifier body> definition.� �
<identifier start> ::=

<simple Latin letter>

!! See the syntax Rules.

Page 334

27.3 SELECT Statements 27 SQL Grammar

<identifier extend> ::=
"_"

| <digit>

!! See the Syntax Rules.� �
• <identifier start> is a subset of Standard SQL - SQL:2003 - definition, corresponding SQL:1992/SQL-

92.

• <identifier extend> is a subset of Standard SQL - SQL:2003 - definition, corresponding
SQL:1992/SQL-92.� �
<delimiter token> ::=

<character string literal>

| <date string>

| <time string>

| <timestamp string>

| <SQL special character>

| <not equals operator>

| <greater than or equals operator>

| <less than or equals operator>� �
• For <character string literal>, see section 27.3.5, page 355.

• For <date string>, <time string>, <timestamp string>, see section 27.3.5, page 355.

• Note that Cisco ParStream also supports a shortdate string (see section 23.4, page 268).

As a Cisco ParStream proprietary extension of Standard SQL, Cisco ParStream defines:� �
| <match insensitive operator>

| <not match sensitive operator>

| <not match insensitive operator>� �� �
<not equals operator> ::=

"<>" | "!="

<greater than or equals operator> ::=
">="

<less than or equals operator> ::=
"<="� �

The ability also to use operator != as <not equals operator> is an extension by Cisco ParStream.

As a Cisco ParStream proprietary extension of Standard SQL, Cisco ParStream defines:� �
<match insensitive operator> ::=

<match sensitive operator><asterisk>

<not match sensitive operator> ::=
<not operator><match sensitive operator>

<not match insensitive operator> ::=

Page 335

27 SQL Grammar 27.3 SELECT Statements

<not operator><match insensitive operator>� �
• <match sensitive operator> As a Cisco ParStream proprietary extension of Standard SQL, see

section 27.3.2, page 336.

• <not operator> As a Cisco ParStream proprietary extension of Standard SQL, see section 27.3.2,
page 336.

Note:

• <identifier body> is not case sensitive.

SQL Terminal Character

From Standard SQL, 5.1 <SQL terminal character>:

Define the terminal symbols of the SQL language and the elements of strings.� �
<simple Latin letter> ::=

<simple Latin upper case letter>

| <simple Latin lower case letter>

<simple Latin upper case letter> ::=
"A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N"

| "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

<simple Latin lower case letter> ::=
"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n"

| "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

<digit> ::=
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<SQL special character> ::=
<space>

| <quote>

| <double quote>

| "("

| ")"

| ","

| "."

| "+"

| "-"

| "*"

| "/"

| ":"

| <equals operator>

| <less than operator>

| <greater than operator>

| ">"

| ">="

| "_"

<space> ::= " "

Page 336

27.3 SELECT Statements 27 SQL Grammar

<asterisk> ::= "*"

<equals operator> ::= "="

<less than operator> ::= "<"

<greater than operator> ::= ">"

<quote> ::= "'"

<double quote> ::= """� �
As a Cisco ParStream proprietary extension of Standard SQL, 5.1 <SQL terminal character>, Cisco
ParStream defines:� �

| <match sensitive operator>

| <not operator>

<match sensitive operator> ::= "~"

<not operator> ::= "!"� �
Search Condition

A <search condition> is used in a <where clause> and <having clause> (see section 27.3, page 327).

From Standard SQL, 8.20 <search condition>: Specify a condition that is TRUE, FALSE, or unknown,
depending on the value of a <boolean value expression>.� �
<search condition> ::=

<boolean value expression>� �
From Standard SQL, 6.34 <boolean value expression>: Specify a boolean value.� �
<boolean value expression> ::=

<boolean term>

| <boolean value expression> "OR" <boolean term>

<boolean term> ::=
<boolean factor>

| <boolean term> AND <boolean factor>

<boolean factor> ::=
["NOT"] <boolean test>

<boolean test> ::=
<boolean primary> ["IS" ["NOT"] <truth value>]

<truth value> ::=
"TRUE"

| "FALSE"

<boolean primary> ::=

Page 337

27 SQL Grammar 27.3 SELECT Statements

<predicate>

| <boolean predicand>

<boolean predicand> ::=
<parenthesized boolean value expression>

| <nonparenthesized value expression primary>

<parenthesized boolean value expression> ::=
"(" <boolean value expression> ")"� �

The <search condition> specifies a condition that has to be True for each row to be selected. For
allowed operators see the description of predicates below.

The truth value UNKNOWN is not supported.

The following table clarifies the behavior of NOT in combination with NULL:

a NOT a
TRUE FALSE

FALSE TRUE

NULL NULL

The following table clarifies the behavior of AND and OR in combination with NULL:

a b a AND b a OR b
TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE FALSE FALSE FALSE

TRUE NULL NULL TRUE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

The operations AND and OR work with a short circuit optimization. This means if the operand a of the
AND operation is FALSE, the calculation of the operand b will be skipped, because we already know
that the result is FALSE. In case of the OR operation the operand b calculation will be skipped, if the
operand a results in TRUE.

Predicates

<predicate> is used in <boolean term> in section 27.3.2, page 337.

From Standard SQL, 8.1 <predicate>: Specify a condition that can be evaluated to give a boolean
value.� �
<predicate> ::=

<comparison predicate>

| <in predicate>

| <like predicate>

| <POSIX regular expression>� �
• <POSIX regular expression> is not part of Standard SQL, see section 27.3.2, page 342.

Page 338

27.3 SELECT Statements 27 SQL Grammar

<comparison predicate>

From Standard SQL, 8.2 <comparison predicate>: Specify a comparison of two row values.� �
<comparison predicate> ::=

<row value predicand> <comparison predicate part 2>

<comparison predicate part 2> ::=
<comp op> <row value predicand>

<comp op> ::=
<equals operator>

| <not equals operator>

| <less than operator>

| <greater than operator>

| <less than or equals operator>

| <greater than or equals operator>� �
• For <row value predicand>, see <case expression> in section 27.3.4, page 350.

• For <equals operator>, see section 27.3.2, page 336.

• For <not equals operator>, see section 27.3.2, page 334.

• For <less than operator>, see section 27.3.2, page 336.

• For <greater than operator>, see section 27.3.2, page 336.

• For <less than or equals operator>, see section 27.3.2, page 334.

• For <greater than or equals operator>, see section 27.3.2, page 334.

<in predicate> == IN Subquery Expression

From Standard SQL, 8.4 <in predicate>: Specify a quantified comparison.� �
<in predicate> ::=

{ <column reference> | <column name> }

"IN"

{ <table subquery> | (<in value list>) }� �
IN <table subquery> == Subquery Expression

From Standard SQL, 8.4 <in predicate>: Specify a quantified comparison.� �
{ <column reference> | <column name> }

"IN"

<table subquery>� �
From 7.15 <subquery>:

Specify a scalar value, a row, or a table derived from a <query expression>.� �
<table subquery> ::=

<subquery>

Page 339

27 SQL Grammar 27.3 SELECT Statements

<subquery> ::=
"(" <query expression> ")"� �

Or, combined:� �
{ <column reference> | <column name> }

"IN"

"(" <query expression> ")"� �
• For <column reference> see section 27.3.2, page 342.

• For <column name> see section 27.3.2, page 333.

• For <query expression> see section 27.3, page 327.

• The <in predicate>_with IN <table subquery> has to be *one* <column reference> or <column
name> (of an <as clause>, see section 27.3, page 327) followed by keyword IN and a parenthesized
<query expression>. The <column reference> or <column name> is evaluated and compared to
each row of the <subquery> result.

• When the query is distributed across multiple servers as in a cluster then either the outer query must
be executed only locally (i.e. by involving only EVERYWHERE distributed tables, see section 6.3.1,
page 58) or subquery used by the IN clause must be co-located to the outer query. This can be
achieved via COLOCATION (see section 6.3.1, page 59) or by using EVERYWHERE distributed
tables (see section 6.3.1, page 58).

For example:� �
SELECT a FROM t

WHERE b IN (SELECT x FROM y WHERE z=1);� �
Selects column a of all rows of table t, where values of column b are in the result set yielded by the
statement SELECT x FROM y WHERE z=1.

IN (<in value list>) == Row and array comparisons

From Standard SQL, 8.4 <in predicate>: Specify a quantified comparison.� �
{ <column reference> | <column name> }

"IN"

"(" <in value list> ")"

<in value list> ::=
<unsigned literal> [{ "," <unsigned literal> }...]� �

Or, combined:� �
{ <column reference> | <column name> }

"IN"

"(" <unsigned literal> [{ "," <unsigned literal> }...] ")"� �
Page 340

27.3 SELECT Statements 27 SQL Grammar

• For <column reference> see section 27.3.2, page 342.

• For <column name> see section 27.3.2, page 333.

• For <unsigned literal> see section 27.3.3, page 344.

• The _<in predicate>_ with IN <value list> has to be one
¯

<column reference> or <column name>
(of an <as clause>, see section 27.3, page 327) followed by keyword IN and a parenthesized <in
value list>, a list of <unsigned literal>s. The <column reference> or <column name> is evaluated
and compared to each <unsigned literal> of the <in value list>. This is the shorthand notation for� �

{ <column reference> | <column name> } = <unsigned literal 1>

"OR"

{ <column reference> | <column name> } = <unsigned literal 2>

"OR"

...� �
For example:� �
SELECT a FROM t WHERE b IN (1,2,3,5);� �

Selects column a of all rows of table t, where values of column b are either 1, 2, 3, or 5.

<like predicate> == LIKE operator

From Standard SQL, 8.5 <like predicate>: Specify a pattern-match comparison.� �
<like predicate> ::=

{ <character string literal> | <column reference> }

"LIKE"

{ <character string literal> | <column reference> }� �
• For <character string literal>, see section 27.3.5, page 355.

• For <column reference>, see section 27.3.2, page 342.

The LIKE operator allows string comparison with pattern matching. It supports 2 wildcards:

• _ matches any character

• % matches any sequence of characters (zero or more)

Note:

• The pattern is always matched against the entire string, thus substring matching requires %
wildcards in the pattern.

• Matching characters are case-sensitive.

Examples:� �
−− match:
'ABCDEFG' LIKE 'ABC%'

'ABCDEFG' LIKE '%EFG'

'ABCDEFG' LIKE 'A_C_E_G'

'ABCDEFG' LIKE '%B%'

Page 341

27 SQL Grammar 27.3 SELECT Statements

'ABCDEFG' LIKE '%G%'

−− don’t mach:
'ABCDEFG' LIKE 'E'

'ABCDEFG' LIKE 'G_'

'ABCDEFG' LIKE 'A_'

'ABCDEFG' LIKE '%A'

'ABCDEFG' LIKE '%b%'

'ABCDEFG' LIKE 'aBCDEFG'� �
<POSIX regular expression>

A <POSIX regular expression> is not part of Standard SQL.� �
<POSIX regular expression> ::=

{ <character string literal> | <column reference> } <POSIX regular expression part

2>

<POSIX regular expression part 2> ::=
<POSIX match operator> { <character string literal> | <column reference> }

<POSIX match operator> ::=
<match sensitive operator>

| <match insensitive operator>

| <not match sensitive operator>

| <not match insensitive operator>� �
• For <character string literal>, see section 27.3.5, page 355.

• For <column reference>, see section 27.3.2, page 342.

• For <match sensitive operator>, see section 27.3.2, page 336.

• For <match insensitive operator>, <not match sensitive operator>, and <not match insensitive
operator>, see section 27.3.2, page 334.

Column Reference

In general:� �
<column reference> ::=

<identifier>� �
In details (from Standard SQL, 6.7 <column reference> Reference a column):� �
<column reference> ::=

<basic identifier chain>� �
From Standard SQL, 6.6 <identifier chain>

Disambiguate a <period>-separated chain of identifiers.� �
Page 342

27.3 SELECT Statements 27 SQL Grammar

<identifier chain> ::=
<identifier>

<basic identifier chain> ::=
<identifier chain>� �

• For <identifier>, see section 27.3.2, page 333.

Usage: <column reference> is used

• in <nonparenthesized value expression primary> (see section 27.3.3, page 344)

• in <group by clause> and <order by clause> (see section 27.3, page 327)

Row Value Predicand

<row value predicand> is used in <comparison predicate>, <comparison predicate part 2>, <in
predicate>, and <like predicate> (see section 27.3.2, page 338), as well as in <POSIX regular
expression> and <row value predicand> (see section 27.3.2, page 342), as well as in <case operand>
and <when operand> in <case expression> and <row value predicand> in <overlaps predicate part 2>
in <case expression> (see section 27.3.4, page 350).

In general:� �
<row value predicand> ::=

<nonparenthesized value expression primary>

| <common value expression>� �
• For <nonparenthesized value expression primary> and <common value expression>, see

section 27.3.3, page 344.

In details (from Standard SQL, 7.2 <row value expression>: Specify a row value):� �
<row value predicand> ::=

<row value special case>

| <row value constructor predicand>

<row value special case> ::=
<nonparenthesized value expression primary>� �

From Standard SQL, 7.1 <row value constructor>: Specify a value or list of values to be constructed
into a row.� �
<row value constructor predicand> ::=

<common value expression>

| <boolean predicand>� �
From Standard SQL, 6.34 <boolean value expression>: Specify a boolean value.� �
<boolean predicand> ::=

<nonparenthesized value expression primary>� �
Page 343

27 SQL Grammar 27.3 SELECT Statements

Value Expression

A <value expression> can have different formats:� �
<value expression> ::=

<common value expression>

| <boolean value expression>

<common value expression> ::=
<numeric value expression>

| <string value expression>

| <datetime value expression>� �
A <value expression> might be used used as follows:

• <value expression> is used in <case abbreviation> and <result expression> (see section 27.3.4, page 350),
in <derived column> (see section 27.3, page 327), in <aggregate function> and <first function> (see
section 27.3.4, page 347).

• <common value expression> and <nonparenthesized value expression primary> (a special form of <numeric
value expression>) are used in <row value predicand> (see section 27.3.2, page 343).

• <string value expression> and <numeric value expression> are used in <if expression> (see section 27.3.4,
page 354).

Numeric Value Expression

From Standard SQL, 6.26 <numeric value expression> Specify a numeric value:� �
<numeric value expression> ::=

<term>

| <numeric value expression> "+" <term>

| <numeric value expression> "-" <term>

<term> ::=
<factor>

| <term> "*" <factor>

| <term> "/" <factor>

<factor> ::=
[<sign>] <numeric primary>

<numeric primary> ::=
<value expression primary>

| <numeric value function>� �
• For <numeric value function>, see section 27.3.4, page 346.

String Value Expression

From Standard SQL, 6.28 <string value expression> Specify a character string value or a binary string
value:� �
Page 344

27.3 SELECT Statements 27 SQL Grammar

<string value expression> ::=
<character value expression>

<character value expression> ::=
<character factor>

<character factor> ::=
<character primary>

<character primary> ::=
<value expression primary>� �

Date/Time Value Expression

From Standard SQL, 6.30 <datetime value expression> Specify a datetime value.� �
<datetime value expression> ::=

<datetime term>

| [<unsigned integer> <sign>] CURRENT_DATE "(" ")" [<sign> <unsigned integer>]
| [<unsigned integer> <sign>] CURRENT_TIME "(" ")" [<sign> <unsigned integer>]
| [<unsigned integer> <sign>] CURRENT_TIMESTAMP "(" ")" [<sign> <unsigned

integer>]
| [<unsigned integer> <sign>] NOW "(" ")" [<sign> <unsigned integer>]

<datetime term> ::=
<datetime factor>

<datetime factor> ::=
<datetime primary>

<datetime primary> ::=
<value expression primary>� �

Value Expression Primary

From Standard SQL,6.3 <value expression primary> Specify a value that is syntactically self-
delimited:� �
<value expression primary> ::=

<parenthesized value expression>

| <nonparenthesized value expression primary>

<parenthesized value expression> ::=
"(" <value expression> ")"

<nonparenthesized value expression primary> ::=
<unsigned value specification>

| <column reference>

| <set function specification>

| <case expression>

| <if expression>� �
Page 345

27 SQL Grammar 27.3 SELECT Statements

From Standard SQL, 6.4 <value specification> and <target specification> Specify one or more values,
host parameters, SQL parameters, dynamic parameters, or host variables:� �
<unsigned value specification> ::=

<unsigned literal>� �
Numeric Value Functions

From Standard SQL, 6.27 <numeric value function>: Specify a value derived by the application of a
function to an argument.� �
<numeric value function> ::=

<modulus expression>

| <extract expression>

| ...

<modulus expression> ::=
"MOD" "(" <numeric value expression> <comma> <numeric value expression> ")"

| <numeric value expression> "MOD" <numeric value expression> ")"

<extract expression> ::=
"EXTRACT" "(" <extract field> "FROM" <extract source> ")"

<extract field> ::=
<primary datetime field>

<primary datetime field> ::=
<non-second primary datetime field>

| "SECOND"

| <parstream datetime field>

<non-second primary datetime field> ::=
"YEAR"

| "MONTH"

| "DAY"

| "HOUR"

| "MINUTE"

<parstream datetime field> ::=
"DOW"

| "DOY"

| "EPOCH"

| "ISODOW"

| "ISOYEAR"

| "MILLISECOND"

| "QUARTER"

| "WEEK"

<extract source> ::=
<datetime value expression>

<datetime value expression> ::=
<datetime term>

<datetime term> ::=
<datetime factor>

<datetime factor> ::=
<datetime primary>

<datetime primary> ::=
<value expression primary>

Page 346

27.3 SELECT Statements 27 SQL Grammar

� �
Note for MOD in Cisco ParStream:

• Cisco ParStream supports both forms of MOD:� �
val1 MOD val2

MOD(val1,val2)� �
• The first operand of a MOD operation (the dividend) can be a integer, floating-point or date value,

or NULL.

• The second operand of a MOD operation (the divisor) can be a integer or floating-point value or
NULL.

Aggregates and FIRST

From Standard SQL, 6.9 <set function specification>: Specify a value derived by the application of a
function to an argument.� �
<set function specification> ::=

<aggregate function>

| <first function>� �
<first function> is a proprietary extension of Standard SQL by Cisco ParStream, see section 27.3.4,
page 349.
Usage: <set function specification> is used

• in <nonparenthesized value expression primary> (see section 27.3.3, page 344).

Aggregate Functions

From Standard SQL, 10.9 <aggregate function>: Specify a value computed from a collection of rows.� �
<aggregate function> ::=

"COUNT" "(" "*" ")" [...]
| <general set function>

| "MEDIAN" "(" <column name> ")"

| ("PERCENTILE_DISC" | "PERCENTILE_CONT") "(" <column name> "," <double> ")"

<general set function> ::=
<set function type> "(" [<set quantifier>] <value expression> ")"

<set function type> ::=
<computational operation>

<computational operation> ::=
"AVG" | "COUNT" | "MAX" | "MIN" | "STDDEV_POP" | "SUM"

<set quantifier> ::=
"DISTINCT"� �

Page 347

27 SQL Grammar 27.3 SELECT Statements

The following aggregation functions are supported:

Name Description
AVG() Calculates the average
COUNT() Counts the number
MAX() Calculates the maximum
MEDIAN() Calculates the median
MIN() Calculates the minimum
PERCENTILE_CONT() Calculates the percentile after doing linear interpolation
PERCENTILE_DISC() Calculates the discrete percentile from the set of input values
STDDEV_POP() Calculates the population standard deviation
SUM() Calculates the sum over

• In Cisco ParStream, the <set function specification> is realized within the <value expression> (see
section 27.3.3, page 344) of a <select sublist> (see section 27.3, page 327), only, and not within
the <search condition> (see section 27.3.2, page 337).

• In Cisco ParStream, the DISTINCT set quantifier is only supported for the COUNT() aggregate
function.

• In Cisco ParStream, the ALL set quantifier is not supported.

Return Types:

Function Description
AVG(expr) average of all values as DOUBLE
COUNT(*) number of rows as INT64
MAX(expr) maximum of all values as INT64 or DOUBLE
MEDIAN() median as INT64 orINT64 or DOUBLE
MIN(expr) minimum of all values as INT64 or DOUBLE
PERCENTILE_CONT() percentile as DOUBLE
PERCENTILE_DISC() percentile as INT64 or DOUBLE
STDDEV_POP(expr) population standard deviation of all values as INT64 or DOUBLE
SUM(expr) sum of all values as INT64 or DOUBLE

See http://www.postgresql.org/docs/9.1/interactive/functions.html

TAKE Clause

If you want to combine aggregated columns with specific values of other columns, you can use the
TAKE clause, which is a Cisco-ParStream-specific extension. It allows to fill in one of the possible
values of rows that match with the aggregated value of the previous MIN() or MAX() command.

For example:� �
SELECT MIN(Price), TAKE(Hotel), TAKE(City) FROM Hotels� �

This statement yields for one of the hotels with minimum Price the corresponding values in columns
Hotel and City.

Page 348

http://www.postgresql.org/docs/9.1/interactive/functions.html

27.3 SELECT Statements 27 SQL Grammar

If multiple matching aggregated values exist, it is undefined which corresponding values are used.
Using TAKE() without a previous MIN() or MAX() is an error. However, other aggregates or columns
may come in between. You can even have multiple TAKE’s after different MIN or MAX. For example:� �
SELECT MIN(price) AS MinPrice,

TAKE(comment) as MinComment,

MAX(updated) AS MaxUpdated,

hotel,

duration,

TAKE(price) AS LatestPrice,

AVG(price),

TAKE(comment) AS LatestComment

FROM MyTable

GROUP BY hotel, duration

ORDER BY MaxUpdated ASC� �
is a valid statement (provided the columns exist) and

• yields as MinComment the value of column comment that corresponds with the minimum price
(MIN(price)) and

• yields as LatestPrice the value of column price that corresponds with the latest (maximum)
update (MAX(updated)) and

• yields as LatestComment the value of column comment that corresponds with the latest
(maximum) update (MAX(updated))

FIRST Function

<first function> is a proprietary extension of Standard SQL by Cisco ParStream: It allows to restrict
queries only to “the first” value computed from an collection of rows. The effect is like selecting one
arbitrary resulting rows for the corresponding query if the value is requested without using FIRST.
However, because only one result is requested, the query might run faster.

Format:� �
<first function> ::=

"FIRST" (<value expression>)� �
• For <value expression>, see section 27.3.3, page 344.

Note that if the order of resulting values/rows is undefined (which always is the case without using
ORDER BY), it is undefined, which “first” value/row is used. Even multiple calls of the same query on
the same database may have different results. Only if the result is ordered with ORDER BY so that
only one unique “first” result exists, this expression will always yield the same value.

FIRST() returns NULL, if no result exists.

For example:� �
SELECT FIRST(name)

FROM MyTable

WHERE val IS NULL

Page 349

27 SQL Grammar 27.3 SELECT Statements

� �
yields the name of one of the rows where ‘val’ is NULL.

For example:� �
SELECT FIRST(firstname), FIRST(lastname)

FROM People

WHERE income > 60000� �
yields first and last name of one of the rows where the income is greater than 60000.

For example:� �
SELECT FIRST(Firstname), FIRST(Lastname)

FROM People

ORDERED BY income DESC� �
yields first and last name of the person or one of the persons (!) with the highest income.

CAST Specification

A <cast specification> allows to explicitly convert a value of one type to another:� �
<cast specification> ::=

"CAST" (<cast operand> "AS" <data type>)

<cast operand> ::=
<value expression>

| "NULL"

| "TRUE"

| "FALSE"� �
Casts can be used in:

• <select list>

• <search condition> of WHERE clauses, ON clauses, and HAVING clauses.

See section 25, page 299 for details about which conversions are supported.

CASE and COALESCE Expressions

The <case expression> (CASE and COALESCE clause) allows to map values to other values or to
find the first non-NULL value among different columns.

In general, it has the following format:� �
<case expression> ::=

"COALESCE" (<value expression> { "," <value expression> }...)

| "CASE" <row value predicand> <simple when clause>... ["ELSE" <result>] "END"

| "CASE" <searched when clause>... ["ELSE" <result>] "END"

<simple when clause> ::=

Page 350

27.3 SELECT Statements 27 SQL Grammar

"WHEN" <row value predicand> "THEN" <result>

<searched when clause> ::=
"WHEN" <search condition> "THEN" <result>

<result> ::=
<value expression>� �

Usage: <case expression> is used

• in <nonparenthesized value expression primary> (see section 27.3.3, page 344).

In detail (from Standard SQL, 6.11 <case expression> Specify a conditional value):� �
<case expression> ::=

<case abbreviation>

| <case specification>

<case abbreviation> ::=
"COALESCE" "(" <value expression> { "," <value expression>}... ")"

<case specification> ::=
<simple case>

| <searched case>

<simple case> ::=
"CASE" <case operand> <simple when clause> ... [<else clause>] "END"

<searched case> ::=
"CASE" <searched when clause>... [<else clause>] "END"

<simple when clause> ::=
"WHEN" <when operand> "THEN" <result>

<searched when clause> ::=
"WHEN" <search condition> "THEN" <result>

<else clause> ::=
"ELSE" <result>

<case operand> ::=
<row value predicand>

| <overlaps predicate part 1>

<when operand> ::=
<row value predicand>

<result> ::=
<result expression>

<result expression> ::=
<value expression>� �

From Standard SQL, 8.14 <overlaps predicate>:

Specify a test for an overlap between two datetime periods.

Page 351

27 SQL Grammar 27.3 SELECT Statements

� �
<overlaps predicate part 1> ::=

<row value predicand>� �
• For <value expression> see section 27.3.3, page 344

• For <search condition> see section 27.3.2, page 337.

• For <row value predicand> see section 27.3.2, page 343.

For example:� �
SELECT COALESCE(city,id,housenr,postcode,street,'all columns are NULL') AS

FirstNotNull,

city,id,housenr,postcode,street

FROM Address;� �
might have the following output:� �

FirstNotNull | city | id | housenr | postcode | street

-------------------+-------------------+----+---------+----------+--------------------

Southhood | Southhood | 4 | 4 | 54321 | Building Street

Southhood | Southhood | 3 | 3 | 54321 | Building Street

Sea Coast Village | Sea Coast Village | 15 | 123 | 77666 | Noidea Place

Seven Hills | Seven Hills | 6 | 13 | 13432 | House Path

Seven Hills | Seven Hills | 7 | 25 | 13432 | House Path

Capital City | Capital City | 12 | 1 | 86843 | Foobar Road

Capital City | Capital City | 14 | 1 | 86843 | Barfoo Street

Northtown | Northtown | 1 | 2 | 12345 | Skypscraper Street

Northtown | Northtown | 2 | 3 | 12345 | Skypscraper Street

Desert Valley | Desert Valley | 11 | 12 | 45323 | Living Street

Southhood | Southhood | 5 | 7 | 54321 | Building Street

Seven Hills | Seven Hills | 8 | 29 | 13432 | House Path

Capital City | Capital City | 13 | 2 | 86843 | Foobar Road

Desert Valley | Desert Valley | 10 | 9 | 45323 | Living Street

Desert Valley | Desert Valley | 9 | 6 | 45323 | Living Street� �
For example:� �
SELECT CASE id*id WHEN 1 THEN 'one'

WHEN 144 THEN 'eleven?'

WHEN 4 THEN 'two'

WHEN 144 THEN 'twelve'

ELSE 'different'

END,

id

FROM Address;� �
might have the following output:� �

auto_alias_1__ | id

----------------+----

different | 4

different | 5

Page 352

27.3 SELECT Statements 27 SQL Grammar

different | 3

different | 8

different | 15

eleven? | 12

different | 14

different | 13

two | 2

different | 7

different | 9

different | 6

one | 1

different | 11

different | 10� �
For example:� �
SELECT CASE id WHEN housenr THEN 'id = housenr'

WHEN housenr+1 THEN 'id = housenr+1'

WHEN housenr-1 THEN 'id = housenr-1'

ELSE '|id-housenr|>1'

END,

id, housenr

FROM Address;� �
might have the following output:� �

auto_alias_1__ | id | housenr

----------------+----+---------

id = housenr | 4 | 4

|id-housenr|>1 | 5 | 7

|id-housenr|>1 | 8 | 29

id = housenr | 3 | 3

|id-housenr|>1 | 6 | 13

|id-housenr|>1 | 13 | 2

id = housenr-1 | 1 | 2

id = housenr-1 | 11 | 12

|id-housenr|>1 | 9 | 6

|id-housenr|>1 | 15 | 123

|id-housenr|>1 | 7 | 25

id = housenr+1 | 10 | 9

id = housenr-1 | 2 | 3

|id-housenr|>1 | 12 | 1

|id-housenr|>1 | 14 | 1� �
For example:� �
SELECT housenr, id, postcode,

CASE WHEN id BETWEEN housenr AND postcode THEN 'yes' END AS yes_or_NULL

FROM Address

ORDER BY id DESC;� �
might yield the following values:

Page 353

27 SQL Grammar 27.3 SELECT Statements

� �
housenr | id | postcode | yes_or_NULL

---------+----+----------+-------------

123 | 15 | 77666 |

1 | 14 | 86843 | yes

2 | 13 | 86843 | yes

1 | 12 | 86843 | yes

12 | 11 | 45323 |

9 | 10 | 45323 | yes

6 | 9 | 45323 | yes

29 | 8 | 13432 |

25 | 7 | 13432 |

13 | 6 | 13432 |

7 | 5 | 54321 |

4 | 4 | 54321 | yes

3 | 3 | 54321 | yes

3 | 2 | 12345 |

2 | 1 | 12345 |� �
IF Expressions

The <if expression> is a proprietary extension of Standard SQL by Cisco ParStream to specify a
conditional value:� �
<if expression> ::=

"IF" "(" <search condition> "," <numeric value expression> "," <numeric value

expression> ")"

| "IF" "(" <search condition> "," <string value expression> "," <string value

expression> ")"� �
• For <search condition>, see section 27.3.2, page 337.

• For <numeric value expression>, see section 27.3.3, page 344.

• For <string value expression>, see section 27.3.3, page 344.

The <result> of an <if expression> is the same as the <result> of a� �
<searched case> ::=

"CASE" "WHEN" <search condition> "THEN" <numeric value expression>

"ELSE" <numeric value expression> "END"

| "CASE" "WHEN" <search condition> "THEN" <string value expression>

"ELSE" <string value expression> "END"� �
Thus, for example:� �
SELECT IF (Val = 'Single', 1, 2) FROM MyTable� �

is a shortcut for:� �
SELECT CASE WHEN Val = 'Single' THEN 1 ELSE 2 END FROM MyTable� �

Usage: <if expression> is used

Page 354

27.3 SELECT Statements 27 SQL Grammar

• in <nonparenthesized value expression primary> (see section 27.3.3, page 344).

For example:� �
SELECT id,

houseno,

IF (id=housenr OR id+id=housenr, 'yes', 'no') AS IfResult

FROM Address

ORDER BY id;� �
might yield the following:� �

id | houseno | IfResult

----+---------+----------

1 | 2 | yes

2 | 3 | no

3 | 3 | yes

4 | 4 | yes

5 | 7 | no

6 | 13 | no

7 | 25 | no

8 | 29 | no

9 | 6 | no� �
Or as a modification:� �
SELECT id,

houseno,

IF (id=housenr OR id+id=housenr, id/housenr, housenr*id) AS IfResult

FROM Address

ORDER BY id;� �
might yield the following:� �

id | housenr | IfResult

----+---------+----------

1 | 2 | 0.5

2 | 3 | 6

3 | 3 | 1

4 | 4 | 1

5 | 7 | 35

6 | 13 | 78

7 | 25 | 175

8 | 29 | 232

9 | 6 | 54� �
Literals

From Standard SQL, 5.3 <literal> Specify a non-null value:� �
<unsigned literal> ::=

<unsigned numeric literal>

Page 355

27 SQL Grammar 27.3 SELECT Statements

| <general literal>

<general literal> ::=
<character string literal>

| <datetime literal>

| <interval literal>

<character string literal> ::=
<quote> [<character representation> ...] <quote>

<character representation> ::=
<nonquote character>

| <quote symbol>

<nonquote character> ::=
!! any character other than a <quote>

<quote symbol> ::=
<quote> <quote>

<unsigned numeric literal> ::=
<exact numeric literal>

| <approximate numeric literal>

<exact numeric literal> ::=
<unsigned integer> ["." [<unsigned integer>]]

<sign> ::=
"+" | "-"

<approximate numeric literal> ::=
<mantissa> E <exponent>

<mantissa> ::=
<exact numeric literal>

<exponent> ::=
<signed integer>

<signed integer> ::=
[<sign>] <unsigned integer>

<unsigned integer> ::=
<digit>...

<datetime literal> ::=
<date literal>

| <shortdate literal>

| <time literal>

| <timestamp literal>

<date literal> ::=
<date string>

<shortdate literal> ::=

Page 356

27.3 SELECT Statements 27 SQL Grammar

<shortdate string>

<time literal> ::=
<time string>

<timestamp literal> ::=
<timestamp string>

<date string> ::=
"DATE" [<space>] <quote> <unquoted date string> <quote>

<shortdate string> ::=
"SHORTDATE" [<space>] <quote> <unquoted date string> <quote>

<time string> ::=
"TIME" [<space>] <quote> <unquoted time string> <quote>

<timestamp string> ::=
"TIMESTAMP" [<space>] <quote> <unquoted timestamp string> <quote>

<date value> ::=
<years value> "-" <months value> "-" <days value>

<time value> ::=
<hours value> ":" <minutes value> ":" <seconds value>

<interval literal> ::=
INTERVAL <interval string> <interval qualifier>

<interval string> ::=
<quote> [<sign>] <unquoted interval string> <quote>

<unquoted interval string> ::=
<day-time literal>

<day-time literal> ::=
<day-time interval>

| <time interval>

<day-time interval> ::=
<days value> [<space> <hours value> [<colon> <minutes value> [<colon> <seconds

value>]]]

<time interval> ::=
<hours value> [<colon> <minutes value> [<colon> <seconds value>]]
| <minutes value> [<colon> <seconds value>]
| <seconds value>

<interval qualifier> ::=
<start field> TO <end field>

| <single datetime field>

<start field> ::=
<non-second primary datetime field> [<left paren> <interval leading field

precision> <right paren>]

Page 357

27 SQL Grammar 27.3 SELECT Statements

<end field> ::=
<non-second primary datetime field>

| SECOND [<left paren> <interval fractional seconds precision> <right paren>]

<single datetime field> ::=
<non-second primary datetime field> [<left paren> <interval leading field

precision> <right paren>]
| SECOND [<left paren> <interval leading field precision> <right paren>

[<comma> <interval fractional seconds precision>] <right paren>]]

<primary datetime field> ::=
<non-second primary datetime field>

| SECOND

<non-second primary datetime field> ::=
DAY

| HOUR

| MINUTE

<interval fractional seconds precision> ::=
<unsigned integer>

<interval leading field precision> ::=
<unsigned integer>

<unquoted date string> ::=
<date value>

<unquoted time string> ::=
<time value>

<unquoted timestamp string> ::=
<unquoted date string> <space> <unquoted time string>

<years value> ::=
<unsigned integer>

<months value> ::=
<unsigned integer>

<days value> ::=
<unsigned integer>

<hours value> ::=
<unsigned integer>

<minutes value> ::=
<unsigned integer>

<seconds value> ::=
<unsigned integer> ["." [<unsigned integer>]]� �

Note:

Page 358

27.3 SELECT Statements 27 SQL Grammar

• This grammar includes Cisco ParStream’s special type shortdate.

• A <nonquote character> is any character of the source language character set other than a <quote>.

• Two place a quote in a string literal use two quote characters. For example ’don”t’ represents
the value “don’t”.

• For <boolean value expression> see section 27.3.2, page 337.

• For <column reference> see section 27.3.2, page 342.

• For <set function specification> see section 27.3.4, page 347.

• For <case expression> see section 27.3.4, page 350.

• For <if expression> see section 27.3.4, page 354.

• For <digit>, <quote>, <double quote>, <space>, see section 27.3.2, page 336.

Page 359

27 SQL Grammar 27.4 INSERT Statements

INSERT Statements
<insert statement> is used in <preparable SQL data statement>, which is used in <preparable
statement> (see section 27.2, page 325).

Currently, Cisco ParStream only supports INSERT INTO statements:� �
<insert statement> ::=

"INSERT" "INTO" <insertion target> <insert columns and source>

<insertion target> ::=
<table name>

<insert columns and source> ::=
<preparable SQL data statement>� �

For <table name> see section 27.3.2, page 333.
For details about <preparable SQL data statement> see section 27.2, page 325.

See section 10.7, page 107 for details, examples, and limitations of INSERT INTO statements.

Page 360

27.5 DELETE Statements 27 SQL Grammar

DELETE Statements
<delete statement> is used in <preparable SQL data statement>, which is used in <preparable
statement> (see section 27.2, page 325).

Cisco ParStream supports DELETE statements:� �
<delete statement> ::=

"DELETE" <from clause> [<where clause>]� �
For details about <from clause> see section 27.3.1, page 329.
For details about <where clause> see section 27.3.1, page 331.

See section 11, page 109 for details, examples, and limitations of DELETE statements.

Page 361

27 SQL Grammar 27.6 INSPECT Statements

INSPECT Statements

<inspect statement> is used in <preparable SQL data statement>, which is used in <preparable
statement> (see section 27.2, page 325).

The grammar for the INSPECT statement is:� �
<inspect statement> ::=

"INSPECT" <inspection subject>� �
The INSPECT statement implements a metadata discovery mechanism similar to the system tables
see section 26, page 306 but without involving the execution engine and thereby avoiding latencies
introduced by resource consumption conflicts with other execution tasks. The downside is that no
filtering, JOINs, or UNIONs can be used to analyze INSPECT results.

The following subjects are available for inspection (the values are case-insensitive):

• ThreadPool

• ExecNodes

• ClusterConnectionPool

Details about INSPECT ThreadPool

Subject THREADPOOL

• Lists tasks which are currently in execution and their respective resource consumption.

• C++ Class: ExecThreadPool

• Returned columns:

Column Type Meaning
start_time TIMESTAMP The UTC time when this task was issued, measured on the

originating cluster-node (i.e. the query master in the case of a
query)

execution_id VARSTRING execution ID of the running task (can be used to kill the task see
section 27.11, page 375)

execution_type VARSTRING execution type of the running task, i.e. QUERY, IMPORT or
MERGE

min_num_threads UINT64 The minimum number of threads requested by this task before
other tasks issued after it shall be considered (>0).

max_num_threads UINT The maximum number of threads that is allowed to be assigned
to this task (0 means no limit).

current_num_threads UINT64 The number of threads currently assigned to this task.
realtime_msec UINT64 The amount of time spent in this tasks accumulated across all

threads assigned to it.
cputime_msec UINT64 The amount of CPU time (i.e. not counting IO wait cycles etc.)

spent in this tasks accumulated across all threads assigned to it.
num_execnodes UINT64 The number of active ExecNodes currently in this task.

Note the following:

Page 362

27.6 INSPECT Statements 27 SQL Grammar

• A task with the same query ID can appear several, non-contiguous times on a single-node cluster.
For example when a query master issues several partial slave queries to calculate subquery results
needed in large nested JOINs. In this case accumulated resource measurements, currently only
the realtime_msec and cputime_msec measurements, are only accumulated during contiguous
time-spans and reset if at any moment no execution takes place for the task with the given query ID
on this cluster node.

Page 363

27 SQL Grammar 27.7 Schema Definition Statements

Schema Definition Statements
<SQL schema definition statement> is used in <SQL schema statement>, which is used in <preparable
SQL schema statement>, which is used in <preparable statement> (see section 27.2, page 325)

The following subsections lists the grammar of all possible commands for the definition of schemas.
Those are currently CREATE TABLE and CREATE PROCEDURE. See chapter 24, page 277 for further
details of their functionality.

Schema Definition Grammar

The schema definition grammar is defined as followed:� �
<SQL schema definition statement> ::=
<create table statement>

| <SQL-invoked routine>

<SQL-invoked routine> ::=
<schema routine>

<schema routine> ::=
<schema procedure>� �

<schema procedure> is defined in see section 27.7.4, page 368

CREATE TABLE Grammar

In general, a CREATE TABLE statement has the following format:� �
<create table statement> ::=

"CREATE" "TABLE" <table name>

<column definition list>

["PARTITION" "BY" <column or function list>]
["PARTITION" "ACCESS" <column list> ["LIMIT" unsigned_int]]
<distribution definition>

["ORDER" "BY" <column list>]
["IMPORT_DIRECTORY_PATTERN" "'" dir_pattern "'"]
["IMPORT_FILE_PATTERN" "'" file_pattern "'"]
["ETL" "(" <etl select query> ")"]
[<etlmerge list>]
";"� �

Note that for backward compatibility you can use PARTITIONED BY instead of PARTITION BY (but
not with PARTITION ACCESS) and SORTED BY instead of ORDER BY.� �
<column definition list> ::=

"(" <column definition> [{ "," <column definition> }...] ")"

<column list> ::=
<column name> ["," <column list>]

Page 364

27.7 Schema Definition Statements 27 SQL Grammar

<column or function list> ::=
<column name or function>

| <column or function list> "," <column name or function>

<column name or function> ::=
<column name> | <function>

<function> ::=
SQL function...

<etlmerge list> ::=
<etlmerge> | <etlmerge list> <etlmerge>

<etlmerge> ::=
"ETLMERGE" <etlmerge level> "(" <etl select query> ")"

<etlmerge level> ::=
"MINUTE" | "HOUR" | "DAY" | "WEEK" | "MONTH"� �

A <distribution definition> may have the following format:� �
<distribution definition> ::=

"DISTRIBUTE" "EVERYWHERE"

| "DISTRIBUTE" "OVER" <column name> <distribution algorithm>

<distribution algorithm> ::=
["BY" "ROUND_ROBIN"] ["WITH" "REDUNDANCY" <redundancy>] [<initial distribution>]
| "BY" "COLOCATION" "WITH" <table name>

<redundancy> ::=
"1" .. "9"

<initial distribution> ::=
"WITH" "INITIAL" "DISTRIBUTION" "(" <distribution rule list> ")"

<distribution rule list> ::=
"(" <distribution rule> ")" ["," <distribution rule list>]

<distribution rule> ::=
<value list> "TO" <server list>

<value list> ::=
distr_value ["," <value list>]

<distr_value> ::=
<integral literal> | <datetime literal> | "NULL"

<server list> ::=
servername ["," <server list>]� �

Note:

• <column name> must be one of the elements of PARTITION BY clause, which is not using a
function.

Page 365

27 SQL Grammar 27.7 Schema Definition Statements

• Given a DISTRIBUTE OVER in absence of a BY ... clause let the algorithm default to ROUND_ROBIN
(currently no other algorithm is supported, but this may change in future).

• With the ROUND_ROBIN algorithm in the absence of WITH REDUNDANCY the redundancy defaults
to 2. Note that this means that you have to change this value for a cluster with only one query node.

• COLOCATION WITH must specify a reference table and the local distribution column must have the
same type as one of the referenced table

• DISTRIBUTE EVERYWHERE implements a distribution, where all values are distributed over all
query nodes.

• For backward compatibility you can use DISTRIBUTED instead of DISTRIBUTE.

For details of the table attributes see section 24.2.3, page 282.
For details of table distribution see section 6.3, page 53.

For details about ETL queries (<etl select query>), see section 27.3, page 327 and section 10.6,
page 104.

For details about ETLMERGE queries (<etlmerge list>), see section 14.2, page 154.

Column Definitions

Column definitions may occur in CREATE TABLE statements (see section 27.7.2, page 364) and with
restrictions in ALTER TABLE statements (see section 27.8.1, page 370).

They have the following format:� �
<column definition> ::=

<column name> <column type>

["DEFAULT" <default value>]
["NOT" "NULL"]
["UNIQUE" | "PRIMARY" "KEY"]
["COMPRESSION" ("NONE" | <compression list>)]
["MAPPING_LEVEL" <mapping level>]
["MAPPING_TYPE" ("AUTO" | "PROVIDED")]
["MAPPING_FILE_GRANULARITY" unsigned_int]
[("SINGLE_VALUE" | "MULTI_VALUE")]
["PRELOAD_COLUMN" <preload_column>]
["SEPARATE" "BY" (<column list> | "NOTHING")]
["REFERENCES" (<column list> | "NOTHING")]
["INDEX" <index definition> ["PRELOAD_INDEX" ("NOTHING" | "COMPLETE")]]
["DYNAMIC_COLUMNS_KEY" | "DYNAMIC_COLUMNS_VALUE"]
["CSV_COLUMN" ("ETL" | unsigned_int)]
["CSV_FORMAT" format_string]
["SKIP" ("TRUE" | "FALSE")]� �

Note that for backward compatibility you can use SEPARATED BY instead of SEPARATE BY.� �
<column type> ::=

<numeric type> | <character string type> | <datetime type>

| <binary large object string type> | <bitvector type>

<numeric type> ::=
"UINT8" | "UINT16" | "UINT32" | "UINT64" | "INT8"

Page 366

27.7 Schema Definition Statements 27 SQL Grammar

| "INT16" | "INT32" | "INT64" | "FLOAT" | "DOUBLE"

<default value> ::=
<literal>

<datetime type> ::=
"DATE" | "SHORTDATE" | "TIME" | "TIMESTAMP"

<character string type> ::=
"VARSTRING" ["(" unsigned_int ")"]

<binary large object string type> ::=
"BLOB" ["(" unsigned_int ")"]

<bitvector type> ::=
"BITVECTOR8"

<compression list> ::=
<compression> ["," <compression list>]

<compression> ::=
"LZ4" | "HASH64" | <sparse compression> | <dictionary compression>

<sparse compression> ::=
"SPARSE" ["SPARSE_DEFAULT" <sparse default value>]

<dictionary compression> ::=
"DICTIONARY"

<mapping level> ::=
"PARTITION" | "TABLE" | <column name> | <unsigned integer>

<preload column> ::=
"NOTHING" | "MEMORY_EFFICIENT" | "COMPLETE"

<column or column list> ::=
column_name | "(" <column list> ")"

<index definition> ::=
<numeric index> | <string index> | <datetime index>

<numeric index> ::=
<index type definition> [<numeric index bin definition>] ["INDEX_MASK"

unsigned_int]

<index type definition> ::=
<index type> ["MAX_CACHED_VALUES" unsigned_int] ["CACHE_NB_ITERATORS" bool]

<index type> ::=
"EQUAL" | "RANGE" | "NONE"

<numeric index bin definition> ::=
<numeric index bin auto> | "INDEX_BIN_BOUNDARIES" "(" <numeric index bin

boundaries> ")"

Page 367

27 SQL Grammar 27.7 Schema Definition Statements

<numeric index bin auto> ::=
"INDEX_BIN_COUNT" <integer literal>

["INDEX_BIN_MIN" "(" "MIN" | <numeric literal> ")"]
["INDEX_BIN_MAX" "(" "MAX" | <numeric literal> ")"]

<numeric index bin boundaries> ::=
<numeric literal> "," <numeric literal> | <numeric index bin boundaries> ","

<numeric literal>

<string index> ::=
<index type>

<datetime index> ::=
<index type definition> ["INDEX_GRANULARITY" <datetime index granularity>]

<datetime index granularity> ::=
"YEAR" | "MONTH" | "DAY" | "HOUR" | "MINUTE" | "SECOND" | "MILLISECOND"

<sparse default value> ::=
"NULL" | <literal>� �

Note the following:

• If the default column value DEFAULT is not set NULL is used.

• If MAPPING_TYPE PROVIDED is used the only possible value for DEFAULT is NULL.

• DEFAULT NULL and NOT NULL are exclusive.

• DEFAULT cannot be set for NOT NULL or PRIMARY KEY columns.

• The value set as DEFAULT is only used for reading existing partitions (e.g. after a DDL change); new
data imports e.g. from an INSERT INTO still to be provided with values for all needed columns.

• If the default value in COMPRESSION SPARSE_DEFAULT (see section 15.10.1, page 178) is omitted,
the value of DEFAULT is used (which defaults to NULL). If a string literal is specified as sparse
default value, its hash value is computed and used as default value.

• For SQL literals, see section 27.3.5, page 355.

For details of the column attributes see section 24.2.4, page 284.

CREATE PROCEDURE Grammar

The grammar of a CREATE PROCEDURE statement is defined as followed:� �
<schema procedure> ::=
"CREATE" "PROCEDURE" <routine name> <SQL parameter declaration list>

<routine characteristics>

<routine body>

<routine name> ::=
<qualified identifier>

<SQL parameter declaration list> ::=
"(" [<SQL parameter declaration>

[{ <comma> <SQL parameter declaration> }...]] ")"

Page 368

27.7 Schema Definition Statements 27 SQL Grammar

<SQL parameter declaration> ::=
<SQL parameter name> <parameter type>

<parameter type> ::=
<data type>

<routine characteristics> ::=
[<language clause>]

<language clause> ::=
"LANGUAGE" <language name>

<language name> ::=
"SQL"

<routine body> ::=
"AS" <SQL routine body>

<SQL routine body> ::=
<SQL procedure statement>

<SQL procedure statement> ::=
<preparable statement>� �

Page 369

27 SQL Grammar 27.8 Schema Manipulation Statements

Schema Manipulation Statements
<SQL schema manipulation statement> is used in <SQL schema statement>, which is used in
<preparable SQL schema statement>, which is used in <preparable statement> (see section 27.2,
page 325)

Cisco ParStream supports the following schema manipulation statements:

• ALTER TABLE statement (used to modify definitions of existing tables)

• DROP TABLE statement (used to delete existing tables)

• DROP PROCEDURE statement (used to delete existing stored procedures)� �
<SQL schema manipulation statement> ::=
<alter table statement>

| <drop table statement>

| <drop procedure statement>� �
ALTER TABLE Statements� �
<alter table statement> ::=

"ALTER" "TABLE" <table name> <alter table action>

<alter table action> ::=
<add column definition>

<add column definition> ::=
"ADD" "COLUMN" <column definition>� �

For <table name> see section 27.3.2, page 333.

<column definition> follows the grammar defined in Section 27.7.3 with the following restrictions:

• added columns cannot be UNIQUE or PRIMARY KEY, and

• CSV_COLUMN cannot be set for added columns.

See section 24.3, page 295 for details about the functionality and usage of ALTER TABLE.

DROP TABLE Statements� �
<drop table statement> ::=

"DROP" "TABLE" <table name>� �
For <table name> see section 27.3.2, page 333.

DROP PROCEDURE Statements� �
<drop procedure statement> ::=

"DROP" "PROCEDURE" <routine name>� �
Page 370

27.8 Schema Manipulation Statements 27 SQL Grammar

For <routine name> see section 27.7.4, page 368.

Page 371

27 SQL Grammar 27.9 CALL Statement (Control Statements)

CALL Statement (Control Statements)
<SQL control statement> is used in <preparable SQL control statement>, which is used in <preparable
statement> (see section 27.2, page 325)

<SQL control statement>

Standard SQL, 13.5 defines control commands like CALL with the following grammar:� �
<SQL control statement> ::=

<call statement>

<call statement> ::=
"CALL" <routine invocation>

<routine invocation> ::=
<routine name> <SQL argument list>

<SQL argument list> ::=
"(" [<SQL argument> [{ <comma> <SQL argument> }...]] ")"

<SQL argument> ::=
<literal>� �

Thus SQL arguements are currently restricted to literals instead of accepting value expressions.

For <routine name> see section 27.7.4, page 368.

Page 372

27.10 SET Statements (Session Statements) 27 SQL Grammar

SET Statements (Session Statements)

<SQL session statement> is used in <preparable SQL session statement>, which is used in
<preparable statement> (see section 27.2, page 325)

<SQL session statement>

Standard SQL, 13.5 defines various SET commands in <SQL procedure statement>. However, Cisco
ParStream defines different commands, so that Cisco ParStream has the following BNF here:� �
<SQL session statement> ::=

"SET" <variable> ("TO" | "=") (<literal> | <regular identifier> | "DEFAULT" |
"LOW" | "MEDIUM" | "HIGH");� �

The following variables are possible to set:
Variable: LimitQueryRuntime
Default: 0
Effect: Session specific ability to overwrite the global option limitQueryRuntime (see section 13.2.1,

page 120) to interrupt queries running for longer than this time in milliseconds. A value of 0
disables the time limit.

Variable: NumBufferedRows
Default: 32
Effect: Session specific ability to overwrite the global option numBufferedRows (see section 13.2.1,

page 120) to define the size of the buffer for output.

Variable: OutputFormat
Default: ASCII

Effect: Session specific ability to overwrite the global option outputformat (see section 13.2.1,
page 121) See section 16.3, page 199 for details about the different output formats.

Variable: AsciiOutputColumnSeparator
Default: ;
Effect: Session specific ability to overwrite the global option asciiOutputColumnSeparator (see

section 13.2.1, page 121) See section 16.3, page 199 for details about the different output
formats.

Variable: AsciiOutputMultiValueSeparator
Default: ,
Effect: Session specific ability to overwrite the global option asciiOutputMultiValueSeparator

(see section 13.2.1, page 122) See section 16.3, page 199 for details about the different output
formats.

Page 373

27 SQL Grammar 27.10 SET Statements (Session Statements)

Variable: AsciiOutputNullRepresentation
Default: <NULL>

Effect: Session specific ability to overwrite the global option asciiOutputNullRepresentation

(see section 13.2.1, page 122) See section 16.3, page 199 for details about the different output
formats.

Variable: QueryPriority
Default: defaultQueryPriority
Effect: Session specific priority value to be used for query tasks issued in this session (i.e. SELECT ...).

Active for all subsequently issued query tasks in this session until changed. For further details
and possible values see section 15.1, page 158.

Variable: ImportPriority
Default: defaultImportPriority
Effect: Session specific priority value to be used for import tasks issued in this session (i.e. INSERT

INTO ...) Active for all subsequently issued import tasks in this session until changed. For further
details and possible values see section 15.1, page 158.

In addition, you can change the value of all ExecTree options and all optimization options:

Variable Description
ExecTree.Option Set parameters that influence the performance of query

execution. Option is a case-insensitive ExecTree option, for
further details see section 13.3.4, page 140.

optimization.rewrite.Option Set parameters that influence query rewrite optimizations.
Option is a case-insensitive query rewrite option, for further
details see section 13.5, page 149.

When setting the value to the reserved word DEFAULT, the value is restored to its default value.

Note that you can set the OutputFormat only for the client socket interface, such as netcat or pnc
(see section 16, page 199), while the other options can be set using all client interfaces.

Note that for some options you have to use the ALTER SYSTEM SET command (see section 27.11.1,
page 375).

Page 374

27.11 ALTER SYSTEM Statements (System Statement) 27 SQL Grammar

ALTER SYSTEM Statements (System Statement)

<SQL system statement> is used in <preparable SQL system statement>, which is used in <preparable
statement> (see section 27.2, page 325)� �
<SQL system statement> ::=

"ALTER" "SYSTEM" [<target>] <system action and arguments>

<target> ::=
"CLUSTER" | "NODE" [<node_name>]

<system action and arguments> ::=
"SET" <variable> ("TO" | "=") (<literal> | "DEFAULT")

"KILL" <execution_id>

"DISABLE" ("IMPORT" | "MERGE")

"ENABLE" ("IMPORT" | "MERGE")

"SHUTDOWN"

"EXECUTE" "MERGE" "LEVEL" <merge_level> ["SCOPE" "GLOBAL"]
<execution_id> ::= <literal>

<node_name> ::= <literal>

<merge_level> ::= ("MINUTE" | "HOUR" | "DAY" | "WEEK" | "MONTH")� �
The optional target is only for some commands possible (see below).

The available actions are:

Action Argument Target Description
KILL executionID no Kill task (see section 27.6, page 362)
SET option =/TO value no Set server option (for all sessions) to new value (see

section 27.11.1, page 375
DISABLE IMPORT/MERGE no disable data import or merges (see section 16.4.1,

page 200)
ENABLE IMPORT/MERGE no enable data import or merges (see section 16.4.1,

page 200)
EXECUTE MERGE no executes the specified merge (see section 16.4.1,

page 201)
SHUTDOWN yes shut down a server/node or a cluster as a whole (see

section 16.4.1, page 200)

ALTER SYSTEM SET

For the ALTER SYSTEM SET command, in the SET clause the same syntax as for SET commands is
used (see section 27.10, page 373).

Currently, the following options are possible to set:

Page 375

27 SQL Grammar 27.11 ALTER SYSTEM Statements (System Statement)

Option Description
mappedFilesAfterUnmapFactor See section 13.3.2, page 138.
mappedFilesCheckInterval See section 13.3.2, page 138.
mappedFilesMax See section 13.3.2, page 138.
mappedFilesOutdatedInterval See section 13.3.2, page 138.
DebugLevel.name name might be defaultDebugLevel or a class name.

See section 9.5.4, page 86 for details.

All options can be set to DEFAULT.

Page 376

27.12 User Administration Statements 27 SQL Grammar

User Administration Statements
<SQL user administration statement> is used in <preparable SQL user administration statement>,
which is used in <preparable statement> (see section 27.2, page 325)� �
<SQL user administration statement> ::=

"CREATE" "USER" <user name> ["WITH" "LOGIN" <login name>]
| "DROP" "USER" <login name>

<user name> ::=
<string literal>

<login name> ::=
<string literal>� �

• For <regular identifier> see section 27.3.2, page 334.

• See section 9.2.3, page 80 for details.

DBMS Job Scheduler
<SQL scheduler statement> has the following syntax:� �
<SQL scheduler statement> ::=

"CREATE" "JOB" <job name> <json object>

| "DROP" "JOB" <job name>

| "ENABLE" "JOB" <job name>

| "DISABLE" "JOB" <job name>

| "RUN" "JOB" <job name>

<json object> ::=
"{" <double quote> "action" <double quote> ":" <double quote> <SQL statement>

<double quote> ","

<double quote> "timing" <double quote> ":" <double quote> <cron timing> <double

quote>

["," <double quote> "comment" <double quote> ":" <double quote> <string> <double

quote>]
["," <double quote> "enabled" <double quote> ":" <boolean>]

"}"� �
For <job name>, see section 27.3.2, page 333.
For <cron timing>, see section 14.1.2, page 154.

Page 377

Reserved Keywords

SQL forbids the usage of SQL keywords as identifiers. In addition, Cisco ParStream introduces several
additional keywords. These two lists of reserved keywords are provided here.

Note that when specifying table or column names, you have to use double quotes when these names
case-insensitively conflict with a keyword.

Reserved Standard SQL Keywords

A

ABS

ALL

ALLOCATE

ALTER

AND

ANY

ARE

ARRAY

ARRAY_AGG

AS

ASENSITIVE

ASYMMETRIC

AT

ATOMIC

AUTHORIZATION

AVG

B

BEGIN

BETWEEN

BIGINT

BINARY

BLOB

BOOLEAN

BOTH

BY

C

CALL

CALLED

CARDINALITY

CASCADED

CASE

CAST

CEIL

CEILING

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_LENGTH

CHECK

CLOB

CLOSE

COALESCE

COLLATE

COLLECT

COLUMN

COMMIT

CONDITION

CONNECT

CONSTRAINT

CONVERT

CORR

CORRESPONDING

COUNT

COVAR_POP

COVAR_SAMP

CREATE

CROSS

CUBE

CUME_DIST

CURRENT

CURRENT_CATALOG

CURRENT_DATE

CURRENT_DEFAULT_TRANSFORM_GROUP

CURRENT_PATH

CURRENT_ROLE

CURRENT_SCHEMA

CURRENT_TIME

CURRENT_TIMESTAMP

Page 378

28.1 Reserved Standard SQL Keywords 28 Reserved Keywords

CURRENT_TRANSFORM_GROUP_FOR_TYPE

CURRENT_USER

CURSOR

CYCLE

D

DATE

DAY

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DELETE

DENSE_RANK

DEREF

DESCRIBE

DETERMINISTIC

DISCONNECT

DISTINCT

DOUBLE

DROP

DYNAMIC

E

EACH

ELEMENT

ELSE

END

ESCAPE

EVERY

EXCEPT

EXEC

EXECUTE

EXISTS

EXP

EXTERNAL

EXTRACT

F

FALSE

FETCH

FILTER

FLOAT

FLOOR

FOR

FOREIGN

FREE

FROM

FULL

FUNCTION

FUSION

G

GET

GLOBAL

GRANT

GROUP

GROUPING

H

HAVING

HOLD

HOUR

I

IDENTITY

IN

INDICATOR

INNER

INOUT

INSENSITIVE

INSERT

INT

INTEGER

INTERSECT

INTERSECTION

INTERVAL

INTO

IS

J

JOIN

L

LANGUAGE

LARGE

LATERAL

LEADING

LEFT

LIKE

LIKE_REGEX

LN

LOCAL

LOCALTIME

Page 379

28 Reserved Keywords 28.1 Reserved Standard SQL Keywords

LOCALTIMESTAMP

LOWER

M

MATCH

MAX

MEMBER

MERGE

METHOD

MIN

MINUTE

MOD

MODIFIES

MODULE

MONTH

MULTISET

N

NATIONAL

NATURAL

NCHAR

NCLOB

NEW

NO

NONE

NORMALIZE

NOT

NULL

NULLIF

NUMERIC

O

OCTET_LENGTH

OCCURRENCES_REGEX

OF

OLD

ON

ONLY

OPEN

OR

ORDER

OUT

OUTER

OVER

OVERLAPS

OVERLAY

P

PARAMETER

PARTITION

PERCENT_RANK

PERCENTILE_CONT

PERCENTILE_DISC

POSITION

POSITION_REGEX

POWER

PRECISION

PREPARE

PRIMARY

PROCEDURE

R

RANGE

RANK

READS

REAL

RECURSIVE

REF

REFERENCES

REFERENCING

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

RELEASE

RESULT

RETURN

RETURNS

REVOKE

RIGHT

ROLLBACK

ROLLUP

ROW

ROW_NUMBER

ROWS

S

SAVEPOINT

SCOPE

SCROLL

Page 380

28.2 Reserved Cisco ParStream Keywords 28 Reserved Keywords

SEARCH

SECOND

SELECT

SENSITIVE

SESSION_USER

SET

SIMILAR

SMALLINT

SOME

SPECIFIC

SPECIFICTYPE

SQL

SQLEXCEPTION

SQLSTATE

SQLWARNING

SQRT

START

STATIC

STDDEV_POP

STDDEV_SAMP

SUBMULTISET

SUBSTRING

SUBSTRING_REGEX

SUM

SYMMETRIC

SYSTEM

SYSTEM_USER

T

TABLE

TABLESAMPLE

THEN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TO

TRAILING

TRANSLATE

TRANSLATE_REGEX

TRANSLATION

TREAT

TRIGGER

TRUNCATE

TRIM

TRUE

U

UESCAPE

UNION

UNIQUE

UNKNOWN

UNNEST

UPDATE

UPPER

USER

USING

V

VALUE

VALUES

VAR_POP

VAR_SAMP

VARBINARY

VARCHAR

VARYING

W

WHEN

WHENEVER

WHERE

WIDTH_BUCKET

WINDOW

WITH

WITHIN

WITHOUT

Y

YEAR

Z

Reserved Cisco ParStream Keywords

Page 381

28 Reserved Keywords 28.2 Reserved Cisco ParStream Keywords

A

ACCESS

AGGREGATE_OR

ALL_AVAILABLE

ANALYZE

ANY_ONE

AUTO

B

BIT

BITMAP_COMBINE

BITVECTOR8

C

CACHE_NB_ITERATORS

CLUSTER

COLOCATION

COMMAND_LINE_ARGS

COMPLETE

COMPRESSION

CONFIGVALUE

CONTAINSTRIPLETS

COUNTDISTINCT

COUNTIF

CSVFETCH

CSV_COLUMN

CSV_FORMAT

D

DATE_PART

DATE_TRUNC

DAYOFMONTH

DAYOFWEEK

DAYOFYEAR

DICTIONARY

DISABLE

DISTRIBUTE

DISTRIBUTED

DISTRIBUTION

DISTVALUES

DOW

DOY

DYNAMIC_COLUMN_NAMES

DYNAMIC_COLUMNS

DYNAMIC_COLUMNS_KEY

DYNAMIC_COLUMNS_VALUE

E

ENABLE

EPOCH

EQUAL

ETL

ETLMERGE

EVERYWHERE

EXECNODES

F

FIXSTRING

FORWARDED

H

HASH64

HASHWORDS

HIGH

I

IF

IFNULL

IMPORT

IMPORT_DIRECTORY_PATTERN

IMPORT_FILE_PATTERN

INDEX

INDEX_BIN_BOUNDARIES

INDEX_BIN_COUNT

INDEX_BIN_MAX

INDEX_BIN_MIN

INDEX_BITS

INDEX_GRANULARITY

INDEX_MASK

INF

INITIAL

INSPECT

INT16

INT32

INT64

INT8

ISODOW

ISOYEAR

J

JOB

JOIN_COLUMNS

K

KILL

Page 382

28.2 Reserved Cisco ParStream Keywords 28 Reserved Keywords

L

LEVEL

LIKEFUNC

LIMIT

LOGIN

LOOKUP

LOW

LOWERCASE

LZ4

M

MAPPING_FILE_GRANULARITY

MAPPING_LEVEL

MAPPING_TYPE

MATCHES

MATCHESFUNC

MAX_CACHED_VALUES

MEDIAN

MEDIUM

MEMORY_EFFICIENT

MILLISECOND

MULTI_VALUE

N

NAN

NAND

NODE

NOR

NOTHING

NOW

O

OFFSET

P

PARTITIONED

PG_CLIENT_ENCODING

PRELOAD_COLUMN

PRELOAD_INDEX

PROVIDED

Q

QUARTER

QUERIES

R

REDUNDANCY

ROUND_ROBIN

RUN

S

SEPARATE

SEPARATED

SHL

SHORTDATE

SHUTDOWN

SINGLE_VALUE

SKIP

SLEEP

SORTED

SPARSE

STATIC_COLUMN_NAMES

SUMIF

T

TAKE

THREADPOOL

TRIPLETS

TRUNC

U

UINT16

UINT32

UINT64

UINT8

UINTEGER

UPPERCASE

USMALLINT

V

VARSTRING

W

WEEK

X

XOR

Page 383

Release Notes

Release Notes Version 6.2

New Features of Version 6.2

• Updated CiscoSSL to fixed CVE-2019-1563

• Added LimitNOFILE to systemd service script template to set the limit correctly for servers started
via systemd.

Changes Incompatible with prior Versions

Please note that Version 6.2 adds some fixes and new feature that might break existing behavior:

Known Issues for Version 6.2

• If you stop a Cisco ParStream server using systemctl stop it will be restarted on the next reboot.
If you use systemd to start your server, you should only use systemctl to stop your parstream server.
If you use an ALTER SYSTEM CLUSTER shutdown command, the systemd service will immediately
restart the server, which might leave it in an undefined state.

Changes Incompatible with prior Versions since 6.2.0

Release Notes Version 6.1

New Features of Version 6.1

Changes Incompatible with prior Versions

Please note that Version 6.1 adds some fixes and new feature that might break existing behavior:

• The default value for partitionMergeRequestTimeout in the manual was corrected to 60.

• The default value for queryThrottlingInterval in the manual was corrected to 500.

• The default value for requestDefaultTimeout in the manual was corrected to 60.

• The default value for synchronizePartitionRequestTimeout in the manual was corrected to
120.

• The general options indicesCacheNbIterators, indicesMaxCachedValues,
partitionSearchConcurrencyLevel, requestLongTermTimeout, and
requestShortTermTimeout were deprecated and now emit a warning if used

Page 384

29.3 Release Notes Version 6.0 29 Release Notes

• The import options csvimport, defaultMergePriority, defaultImportPriority,
defaultQueryPriority, loadtables, maxMergeThreads, and serverJournalDir were
deprecated and now emit a warning if used

• The check for the configured number of mapped files and open file handles in the operating system
now produces an error instead of a warning. If the limit was ignored delibaretely, you can enable
the new option overrideProcessRequirements (See section 13.2, page 119) to restore the old
behavior.

• Updated the supported PostgreSQL ODBC driver to version 11.00.0000

• Added global option clientConnectionTimeout to configure the time in seconds after which
the server will drop inactive client connections. (See section 13.2, page 119)

Known Issues for Version 6.1

Changes Incompatible with prior Versions since 6.1.0

Release Notes Version 6.0

New Features of Version 6.0

• Change dependency from system OpenSSL library to packaged CiscoSSL library.

• Add TLS encryption support for client and inter-cluster connections.

• Stored Procedures with CREATE PROCEDURE, CALL and DROP PROCEDURE. For further details
see section 9.4.1, page 83.

Changes Incompatible with prior Versions

Please note that Version 6.0 adds some fixes and new feature that might break existing behavior:

• Parsing column definitions of CREATE TABLE statements require comma separation

Known Issues for Version 6.0

•

Changes Incompatible with prior Versions since 6.0.0

•

Page 385

29 Release Notes 29.4 Release Notes Version 5.4

Release Notes Version 5.4

New Features of Version 5.4

• Added general option ’ignoreBrokenPartitions’ for single node clusters. For further details, see
section 13.2, page 119.

• Added general option ’validatePartitions’. For further details, see section 13.2, page 119.

• Added warning to manual about removing journal directory.

• Added option ’synchronizeFilesystemWrites’ for secure filesystem writes. For further details, see
section 13.2, page 119.

Release Notes Version 5.3

New Features of Version 5.3

• Added systemd daemon for Cisco ParStream server (See section 2.9, page 12)

Page 386

29.6 Release Notes Version 5.2 29 Release Notes

Release Notes Version 5.2

Changes Incompatible with prior Versions

Please note that Version 5.2 adds some fixes and new feature that might break existing behavior:

• For improved memory handling Cisco ParStream 5.2.0 now uses tcmalloc. Tcmalloc is required to
operate Cisco ParStream. Please refer to the installation guide for additional information.

Page 387

29 Release Notes 29.7 Release Notes Version 5.1

Release Notes Version 5.1

Changes Incompatible with prior Versions

Please note that Version 5.1 adds some fixes and new feature that might break existing behavior:

• Default value for MonitoringMinLifeTime, MonitoringImportMinLifeTime, and
MonitoringMergeMinLifeTime were changed to zero, effectively disabling the monitoring by default.

Page 388

29.8 Release Notes Version 5.0 29 Release Notes

Release Notes Version 5.0

New Features of Version 5.0

• Added support for day-time interval literals

• We add a DBMS scheduler to Cisco ParStream to support periodic task execution.

• Added support for SQL DELETE commands

Changes Incompatible with prior Versions

Please note that Version 5.0 adds some fixes and new feature that might break existing behavior:

• Starting with Version 5.0.0, Cisco ParStream no longer supports the old bitmap index file format
(*.sbi).

Page 389

29 Release Notes 29.9 Release Notes Version 4.4

Release Notes Version 4.4

New Features of Version 4.4

• Cisco ParStream is now supported on Ubuntu 16.04

• Unified time zone handling for Java datatypes (See incompatible changes for details).

Changes Incompatible with prior Versions

Please note that Version 4.4 adds some fixes and new feature that might break existing behavior:

• The licensing mechanism was completely removed from Cisco ParStream. You no longer need to
provide a valid license in order to start the server. In case your license expired please contact your
Cisco sales representative.

• Starting a server with --licensefile now results in a startup error.

• Cisco ParStream is not supported on Ubuntu 14.04 anymore.

• Migrating tables from prior versions of Cisco ParStream with no PARTITION BY clause is no longer
supported.

• The Java Streaming Import will handle the time zone of Java Language Date Time values correct for
TIMESTAMP, TIME and DATE columns regarding the column data type definition (see section 19.4,
page 222).

The Java Streaming Import was broken while importing date time data running in a Java VM with a
time zone other than UTC.

The import behaviour for the following examples was for a Java VM running with time zone
Europe/Berlin and a current zone offset +01:00:

Inserting Java date time values in pre 4.4.0 versions:

Column Type Java Date Time Instance Column Data
TIMESTAMP Timestamp.valueOf("2016-06-01 00:30:01.256") "2016-05-31 22:30:01.256"
TIMESTAMP new GregorianCalendar(2016, 5, 1, 0, 30, 1) "2016-06-01 00:30:01.000"
DATE Date.valueOf("2016-06-01") "2016-05-31"
TIME Time.valueOf("00:30:01") "23:30:01.000"

Inserting Java date time values starting with Version 4.4.0:

Column Type Java Date Time Instance Column Data
TIMESTAMP Timestamp.valueOf("2016-06-01 00:30:01.256") "2016-06-01 00:30:01.256"
TIMESTAMP new GregorianCalendar(2016, 5, 1, 0, 30, 1) "2016-06-01 00:30:01.000"
DATE Date.valueOf("2016-06-01") "2016-06-01"
TIME Time.valueOf("00:30:01") "00:30:01.000"

Page 390

29.9 Release Notes Version 4.4 29 Release Notes

• The following messages aren’t displayed anymore: write_file, write_partition.

• The following messages aren’t displayed anymore on slaves: insert_data and query_send.

• Prot message delete partition is now a debug message.

Known Issues for Version 4.4

• Always set importHistoryMaxEntries to zero. Any other value than zero can lead to memory
exhaustion.

• Always use LIKE instead of CONTAINS in SQL queries wherever possible. LIKE offers better
performance and a smaller memory footprint during operation.

• In order to improve ease of use in our DYNAMIC_COLUMNS feature, we plan to introduce incompatible
changes in future versions. Therefore, we advise that all values of key columns are transformed to
lower case prior to importing them into Cisco ParStream.

Changes Incompatible with prior Versions since 4.4.4

• Since 4.4.4, the defaults of the server option connectionpool.connectionFetchTimeout

was increased from 500 ms to 5000 ms to avoid connection losses and instabilities during high load
phases.

Page 391

Examples

This chapter gives an overview of some example demonstrating the abilities and usage of Cisco
ParStream.

The examples are:

• The example cluster (see section A.1, page 392) is, as the name implies, an example for running
Cisco ParStream in a cluster.

• The example multivalue (see section A.2, page 392) deals with the usage of multivalue types.

• The example stringdistr (see section A.4, page 393) is an example for running Cisco ParStream
in a cluster with a predefined distribution according to string values.

• The example dynamiccolumns (see section A.3, page 392) is an example for running Cisco
ParStream in a cluster with the dynamic columns feature.

• The example xUDTO (see section A.5, page 393) demonstrates the usage of external User-Defined
Table Operations.

Note that chapter B, page 394 lists further examples to use the Cisco ParStream API’s.

The examples can be installed with the provided ’parstream-database-examples’ package. All
examples will then be located in the examples directory of the installed release in a subdirectory with
the corresponding name.

Example ‘cluster’
The example cluster shows how to set up a Cisco ParStream cluster. (see chapter 6, page 40).

For further information about the example and instructions on how to run it, please see the README.md
in examples/cluster.

Example ’multivalue’
The Cisco ParStream example multivalue demonstrates the usage of the multivalue field (see
section 23.8, page 275).

For further information about the example and instructions on how to run it, please see the README.md
in examples/multivalue.

Example ‘dynamiccolumns’
The example dynamiccolumns shows how to set up a Cisco ParStream cluster that uses the dynamic
column feature (see chapter 7, page 61).

For further information about the example and instructions on how to run it, please see the README.md
in examples/dynamiccolumns.

Page 392

A.4 Example ‘stringdistr’ A Examples

Example ‘stringdistr’
The example stringdistr shows how to set up a Cisco ParStream cluster with an initial distribution
(see section 6.3.1, page 57) for a specific string column.

For further information about the example and instructions on how to run it, please see the README.md
in examples/stringdistr.

Example ‘xUDTO’ Defining External User-Defined Table
Operators

The example xUDTO shows how to use Cisco ParStream’s external User-Defined Table Operators
(xUDTO). It contains an R script that is used by SQL queries to fit linear models. For a detailed
description about the xUDTO API see section 20, page 232.

For further information about the example and instructions on how to run it, please see the README.md
in examples/xUDTO.

Page 393

API Examples

This chapter gives an overview of some example demonstrating the abilities and usage of the Cisco
ParStream API’s. See chapter A, page 392 for some examples for the general usage of Cisco
ParStream.

The examples are:

• The example importapi_java (see section B.1, page 394) demonstrates the usage of Cisco
ParStream’s Streaming Import Interface for streaming imports by a JAVA client.

• The example jdbc (see section B.2, page 394) demonstrates the usage of the JDBC driver.

The examples can be installed with the provided ’parstream-client-examples’ package. All examples
will then be located in the examples directory of the installed release in a subdirectory with the
corresponding name.

Example ‘importapi_java’ Using the Streaming Import
Interface by a JAVA Client

The example importapi_java shows how to use Cisco ParStream’s Java Streaming Import Interface
(see chapter 19, page 216) by a JAVA client.

It consists of the following directories and files:

• A README.txt file, explaining how to build the example, start the server, and run the example.

• A conf directory, holding the corresponding server configurations for a database with a schema
the example import expects.

• A example/src subdirectory, containing the example JAVA client that demonstrates how to use
the Cisco ParStream’s Streaming Import Interface.

• A example/pom.xml file, which can be used to build the example client with Maven.

See section 19.4, page 218 for a detailed description of the function calls the example performs.

Example ‘jdbc’ Using the JDBC Driver
The example jdbc shows how to use Cisco ParStream’s JDBC Client Interface (see chapter 18,
page 214). It contains a simple Java client that sends SQL queries to the database via JDBC and
prints the results to the console.

For further information about the example and instructions on how to run it, please see the README.md
in examples/jdbc.

Page 394

Glossary

C

cmake

– Tool for creating makefiles and different IDE-Projects from a single definition file. Used internally
and for all provided examples. See http://www.cmake.org.

connection set

– A set of connections so that each node in a cluster can communicate with each other node.

D

description tree

– For each query, the description tree consists of a number of DescriptionNodes defining the
logical stages of a query. Every description tree is translated into one or more execution trees
performing the real processing part of every query.

E

execution tree

– The execution tree is the real processing part of every query. It is generated out of the description
tree.

G

conf directory

– The directory with database configuration files (such as INI files). Usually .conf or a directory
passed with --confdir.

P

logical partition

– A logical group of data separated from other data by some specific criteria (often distinct values
of partitioning columns). Logical partitions can consist out of multiple physical partitions.

N

node

– A logical element of a cluster. It can be a query or an import node. Multiple nodes can run on
the same system.

O

option

– The name of a parameter to configure the behavior of Cisco ParStream. Your own values can
be set in INI files or via command-line argument.

P

partition

– A logical or physical part of the database. Logical partitions can consist of multiple physical
partitions.

physical partition

Page 395

http://www.cmake.org

Glossary Glossary

– A directory with of data of a logical partition imported or merged together by the same process.

Q

query master

– In a multi-node cluster, the node which received the request from the client. It might change
for each query. This node is responsible for distributing the query to the query-slaves and
consolidate the sub results.

query slave

– In a multi-node cluster, all nodes which did not receive the request from the client (i.e. are no
query-master for this request). They calculate the sub results which are consolidated by the
query-master.

Page 396

Index

.backup, 101

.rejected, 101

abort query, 162
ACCESS, 166
active

cluster node state, 41
partition state, 34

ADD COLUMN, 296
examples, 259
grammar, 370

add node
cluster, 50

aggregate function, 347
alias handling, 328
ALTER SYSTEM, 375
ALTER SYSTEM KILL

examples, 260
ALTER SYSTEM NODE SHUTDOWN, 202
ALTER SYSTEM SET

examples, 259
ALTER TABLE, 295

ADD COLUMN, 296
examples, 259
grammar, 370

ANALYZE REWRITE, 175
AND, 337
API

JAVA example, 394
streaming Java import, 216

AS, 328
examples, 251

ASCII
interface, 204

AsciiOutputColumnSeparator, 373
asciiOutputColumnSeparator, 121
AsciiOutputMultiValueSeparator, 373
asciiOutputMultiValueSeparator, 122
AsciiOutputNullRepresentation, 373
asciiOutputNullRepresentation, 122
authentication, 78

disable, 81

options, 133
with netcat, 113
with psql, 115

authenticationWrapperExecutable, 133

backup
cluster, 52
for imported files, 101

BETWEEN
examples, 249

BIT
examples, 252

bitfield, 274
bitmap indices, 35
BitmapAggregationLimit, 140
BITVECTOR8, 274
bitvector8

import, 98
BLOB, 274
blob

import, 97
blobbuffersize, 124
blockqueriesonpreload, 137, 177
BNF notation, 325

CALL
grammar, 372
usage, 84

CASE, 350
examples, 251

CAST, 299, 350
examples, 254

claimLeadershipMessageInterval, 131
clientConnectionTimeout, 126
close(), 229
cluster, 40

add node, 50
backup, 52
concepts, 41
control commands, 51
controlcommands, 200
example, 392
follower, 41

397

Index Index

import node, 41
journal files, 49
leader, 41
limitations, 52
merge, 152
node, 41
node states, 41
query node, 41
rank, 41
restart, 51
shutdown, 51, 200
split brain, 45
terminology, 41
upgrade, 52
with few query nodes, 46

CLUSTER DISABLE IMPORT, 200
CLUSTER DISABLE MERGE, 201
CLUSTER ENABLE IMPORT, 200
CLUSTER ENABLE MERGE, 201
cluster example, 392
CLUSTER EXECUTE MERGE, 201
CLUSTER SHUTDOWN, 200
clusterId, 119
clusterInitTimeout, 131
clusterReinitTimeout, 45, 131
COALESCE, 350

examples, 252
column

names, 282
order, 327

column store, 177
DICTIONARY compression, 179
file suffix, 34
LZ4 compression, 181
SPARSE compression, 178

column store compression, 177
columns

dynamic, 61
columnseparator, 92, 146
columnStoreSegmentSize, 129
COMMAND_LINE_ARGS, 237
commit(), 231
COMPRESSION, 284
compression, 177

DICTIONARY, 179, 285
HASH64, 285
LZ4, 181, 285
of import files, 93
SPARSE, 178, 285

condition pushdown, 168
conf directory, 73
configuration, 73
CONFIGVALUE, 300
connect(), 229
connection pool, 162

options, 139
connectionFetchTimeout, 140
connectionPool.connectionFetchTimeout, 140
connectionPool.nodeErrorRetryInterval, 140
connectionPool.numConnectionsPerNode, 139
connectionPool.staleConnectionCheckInterval,

140
CONTAINS

examples, 248
control statements, 372
COUNT

examples, 250
CREATE FUNCTION, 234
CREATE JOB, 377
CREATE PROCEDURE

grammar, 368
usage, 83

CREATE TABLE, 278
examples, 259
grammar, 364
performing commands, 277

CREATE USER, 377
createHandle(), 228
CSV file

compression, 93
CSV import, 89

SKIP, 91
CSV_COLUMN, 285
CSV_FORMAT, 285
CSV_COLUMN

ETL, 104
CSV_FORMAT, 95
CSVFETCH, 104

Page 398

Index Index

csvreadonly, 146
CURRENT_DATE, 300
CURRENT_TIME, 300
CURRENT_TIMESTAMP, 300

dailymergeschedule, 123, 153
data separated GROUP BY, 186
data separated join, 191
data types, 267

BITVECTOR8, 274
BLOB, 274
DATE and SHORTDATE, 268
DOUBLE, 268
FLOAT, 268
integer, 267
multivalues, 275
string, 272
TIME and TIMESTAMP, 268
VARSTRING, 272

datadir, 134
DATE, 268
date

definition, 289
import, 94
import format, 95

DATE_PART, 300
DATE_TRUNC, 301
DATE_PART

examples, 253
DATE_TRUNC

examples, 253
DAYOFMONTH, 301
DAYOFWEEK, 301
DAYOFYEAR, 301
dbms scheduler, 81
DDSJ, 194
debugging, 86
DebugLevel, 86
debugMessageTimestamp, 120
DEFAULT, 284, 374

default value, 368
default value

SPARSE compression, 178
defaultDebugLevel, 86, 120
defaultImportPriority, 128, 136, 148

defaultMergePriority, 128, 136, 148
defaultQueryPriority, 128, 136
DELETE

grammar, 361
delete, 109
description tree

query, 202
DHSA, 189
DHSGB, 189
dhsgbConnectionTimeout, 133
DICTIONARY

default bit-widths, 180
DICTIONARY compression, 179, 285

examples, 180
DISABLE

IMPORT, 200
MERGE, 201

DISABLE JOB, 377
disabled-by-merge

partition state, 34
disabled-by-unload

partition state, 34
DISTINCT

examples, 250
DISTRIBUTE, 283

grammar, 365
distributed data separated join, 194
distributed hash separated GROUP BY, 189
distribution

of partitions, 53
policy, 55
table, 53

DISTVALUES, 301
DOUBLE, 268

definition, 287
import, 94

DPD, 54
driver

ODBC, 209
DROP JOB, 377
DROP PROCEDURE

grammar, 370
usage, 84

DROP TABLE, 297

Page 399

Index Index

grammar, 370
DROP USER, 377
DSGB, 186
DSJ, 191
dynamic columns, 61

example, 392
NOT NULL, 63

dynamic partition distribution, 54
dynamic table, 62
DYNAMIC_COLUMNS, 333
DYNAMIC_COLUMNS_KEY, 285
DYNAMIC_COLUMNS_VALUE, 285
DYNAMIC_COLUMN_NAMES, 70
DYNAMIC_COLUMNS, 70

empty strings, 273
ENABLE

IMPORT, 200
MERGE, 201

ENABLE JOB, 377
enableImport, 122
enableMerge, 122, 152
EPOCH, 302
errors, 85
ETL, 283

import, 104
merge, 154

ETLMERGE, 155, 283
example, 392, 394

cluster, 392
dynamic columns, 392
JAVA API, 394
JDBC, 394
multivalue, 392
streaming import with JAVA, 394
stringdistr, 393
xUDTO, 393

ExecNodeDataMemoryStatistic, 144
ExecTree Options, 140
ExecTreeDataMemoryStatistic, 145
execution

optimizations, 158
execution tree

query, 202
execution_id, 162

executionSchedulerMonitoringTimeDetailLevel,
129, 139

external user-defined table operators, 232
EXTRACT, 302

examples, 253

FALSE, 337
file suffix

of partition files, 34
fileBlockTransferBuffersize, 128, 147
fileBlockTransferTimeout, 128, 139
filename

of partitions, 32
FIRST, 303, 349

examples, 254
FLOAT, 268

definition, 287
import, 94

FLOOR, 303
examples, 253

follower, 41
FROM, 329
FUNCTION, 234
function, 299

getConnectionId(), 229
getDbVersion(), 229
getMetadataVersion(), 229
getVersion(), 229
GROUP BY, 331

data separated, 186
examples, 251
hash separated, 189

GroupByBitmapLimit, 143

hash join optimization, 174
hash separated GROUP BY, 189
hash separated join, 196
HASH64, 303

compression, 285
hashed string, 272
HAVING, 332

examples, 251
help, 201
highResolutionLogtime, 123
host, 134

Page 400

Index Index

HOUR, 303
hourlymergeschedule, 123, 153
HSGB, 189
HSJ, 196

i18n, 74
IF, 304, 354

examples, 252
IFNULL, 304

examples, 252
ignoreBrokenPartitions, 121
import, 88

.backup, 101

.rejected, 101
and ALTER TABLE, 295
backup directory, 101
bitvector, 98
blob, 97
column separator, 92
compression, 93
CSV data format, 89
date, 94
date format, 95
disable import, 200
DOUBLE, 94
ETL, 104
FLOAT, 94
INSERT INTO, 107
integer, 94
multivalue, 98
NULL, 93
round trip, 97
shortdate, 94
SKIP, 91
string, 97
time and timestamp, 94
time format, 95

import API
with Java, 216

import node, 41
IMPORT_DIRECTORY_PATTERN, 283
IMPORT_FILE_PATTERN, 283
IMPORT_DIRECTORY_PATTERN, 100
IMPORT_FILE_PATTERN, 100
importapi_java, 394

importer
ports, 135

importHistoryMaxEntries, 129
ImportMonitoringTimeDetailLevel, 142
ImportPriority, 374
IN

examples, 249, 256
incomplete

partition state, 34
INDEX, 284, 293
INDEX_BIN_BOUNDARIES, 285
INDEX_BIN_COUNT, 285
INDEX_BIN_MAX, 285
INDEX_BIN_MIN, 285
INDEX_GRANULARITY, 285, 289
INDEX_MASK, 285
indexWriteBufferSize, 147
indices, 35
information schema, 306
INI file, 73
inputFileBufferSize, 148
INSERT INTO, 107

grammar, 360
insert(), 230
INSPECT, 201

grammar, 362
inspect

THREADPOOL, 362
installation, 4
INT16, 267
INT32, 267
INT64, 267
INT8, 267
INTEGER, 299
integer, 267

definition, 287
import, 94

internationalization, 74
ipVersion, 124
iterations, 121
IterativeGroupByAggregation, 144

Java
streaming import example, 394

Java Streaming Import Interface, 216

Page 401

Index Index

JDBC, 214
example, 394

jdbcHandlingThreads, 137
JOIN

and multivalues, 276
condition pushdown, 168
distributed separated, 194
examples, 256
grammar, 330
hash separated, 196
optimizations, 168
separated, 191
table ordering, 168

join elimination, 173
JOIN_COLUMNS, 70
journal files, 49
journaldir, 122
JSII, 216
JSON

interface, 207

leader, 41
election, 42
re-election, 45

leaderElectionPort, 47, 147
LIKE, 341

examples, 248
LIMIT, 283, 332

examples, 254
for partition access, 166
optimization, 181

limitations
for clustering, 52

LimitQueryRuntime, 373
limitQueryRuntime, 120
listImportColumns(), 230
listTables(), 230
load, 204
locale, 121
logging, 85
logical partition, 29
LOGIN, 201
login

with pass phrase, 78
logscanpartitionprogressinterval, 139

LOWER, 304
examples, 253

LOWERCASE, 304
examples, 253

LZ4 compression, 181, 285

mapped files, 184
mappedFilesAfterUnmapFactor, 138, 184, 376
mappedFilesCheckInterval, 138, 184, 376
mappedFilesMax, 138, 184, 376
mappedFilesMaxCopySize, 139, 184
mappedFilesOutdatedInterval, 138, 184, 376
MAPPING_FILE_GRANULARITY, 284
MAPPING_TYPE, 284, 294
MATCHES

examples, 248
MAX, and TAKE, 348
maxActivationDeletionConcurrencyLevel, 131
maxConnectionsJdbc, 137
maxConnectionsSocket, 137
maxExecutionThreads, 127, 136, 148
maxExternalProcesses, 127
maxImportThreads, 127, 136, 148
MaxIterativeGroupByFields, 144
maxMergeThreads, 127, 136, 148, 153
maxnumcsvfiles, 147
MaxOutputBufferSize, 144
maxQueryThreads, 127, 136
MaxRhsValuesForLhsJoinBitmapScan, 143
maxscanpartitionconcurrencylevel, 139
maxSchedulerConcurrencyLevel, 130
maxSyncConcurrencyLevel, 131
MEDIAN, 347

examples, 255
merge, 153

disable merge, 201
ETL merge, 154
force execution, 201
option, 152
policy, 152

merge join optimization, 174
mergeConcurrency, 139, 153
MergeMonitoringTimeDetailLevel, 141
merging partitions, 151

in cluster, 152

Page 402

Index Index

metadata
versioning, 34

MILLISECOND, 304
MIN, and TAKE, 348
minUpdateRedundancy, 130
MINUTE, 304
minutemergeschedule, 123, 153
mmap(), 184
MOD, 346
monitoring, 84
MonitoringImportMinLifeTime, 141
MonitoringMergeMinLifeTime, 141
MonitoringMinLifeTime, 141
MONTH, 304
monthlymergeschedule, 123, 153
mount options, 185
MULL

and empty strings, 273
MULTI_VALUE, 275
multivalue, 275

and JOIN, 276
definition, 287
example, 392
import, 98
limitations, 276

multivalue example, 392

name
of columns, 282
of partitions, 32
of tables, 281

nc, 113
netcat, 113
noatime, 185
node, 41

ports, 135
NODE SHUTDOWN, 200
nodeAliveMessageInterval, 132
nodeErrorRetryInterval, 140
nodeRegistrationTimeout, 132
nodeResynchronizationInterval, 132
non-hashed string, 272
NOT, 337
NOT NULL, 284

in dynamic columns, 63

NOW, 304
NULL

and TRUE or FALSE, 337
examples, 249
import, 93
string, 93

NumAggregationChildren, 143
NumAggregationMapBuckets, 144
numberoffetchnodes, 148
numberOfWriterNodes, 148
NumBufferedRows, 373
numBufferedRows, 120
numConnectionsPerNode, 139
NumDistinctAggregationMapBuckets, 144
numeric array, 275
NumHashSeparatedStreamsPerNode, 143, 190,

197
NumValuesVectorPreferred, 143

ODBC, 209
Linux, 210
Windows, 211

offline
cluster node state, 41
partition state, 34

OFFSET, 332
examples, 254

ON, 235
online

cluster node state, 41
operator

DYNAMIC_COLUMNS, 70
optimization, 158

examples, 260
options, 149
query rewrite, 172

option, 116
asciiOutputColumnSeparator, 121
asciiOutputMultiValueSeparator, 122
asciiOutputNullRepresentation, 122
authenticationWrapperExecutable, 133
BitmapAggregationLimit, 140
blobbuffersize, 124
blockqueriesonpreload, 137, 177
claimLeadershipMessageInterval, 131

Page 403

Index Index

clientConnectionTimeout, 126
clusterId, 119
clusterInitTimeout, 131
clusterReinitTimeout, 131
columnseparator, 146
columnStoreSegmentSize, 129
connectionFetchTimeout, 140
csvreadonly, 146
dailymergeschedule, 123, 153
datadir, 134
debugMessageTimestamp, 120
defaultDebugLevel, 120
defaultImportPriority, 128, 136, 148
defaultMergePriority, 128, 136, 148
defaultQueryPriority, 128, 136
dhsgbConnectionTimeout, 133
enableImport, 122
enableMerge, 122, 152
ExecNodeDataMemoryStatistic, 144
ExecTree, 140
ExecTreeDataMemoryStatistic, 145
executionSchedulerMonitoringTimeDe-

tailLevel, 129, 139
fileBlockTransferBuffersize, 128, 147
fileBlockTransferTimeout, 128, 139
for authentication, 133
for connection pool, 139
for optimization, 149
GroupByBitmapLimit, 143
highResolutionLogtime, 123
host, 134
hourlymergeschedule, 123, 153
ignoreBrokenPartitions, 121
importHistoryMaxEntries, 129
ImportMonitoringTimeDetailLevel, 142
indexWriteBufferSize, 147
inputFileBufferSize, 148
ipVersion, 124
iterations, 121
IterativeGroupByAggregation, 144
jdbcHandlingThreads, 137
journaldir, 122
leaderElectionPort, 147
limitQueryRuntime, 120

locale, 121
logscanpartitionprogressinterval, 139
mappedFilesAfterUnmapFactor, 138, 184,

376
mappedFilesCheckInterval, 138, 184, 376
mappedFilesMax, 138, 184, 376
mappedFilesMaxCopySize, 139, 184
mappedFilesOutdatedInterval, 138, 184, 376
maxActivationDeletionConcurrencyLevel, 131
maxConnectionsJdbc, 137
maxConnectionsSocket, 137
maxExecutionThreads, 127, 136, 148
maxExternalProcesses, 127
maxImportThreads, 127, 136, 148
MaxIterativeGroupByFields, 144
maxMergeThreads, 127, 136, 148, 153
maxnumcsvfiles, 147
MaxOutputBufferSize, 144
maxQueryThreads, 127, 136
MaxRhsValuesForLhsJoinBitmapScan, 143
maxscanpartitionconcurrencylevel, 139
maxSchedulerConcurrencyLevel, 130
maxSyncConcurrencyLevel, 131
merge, 152, 153
mergeConcurrency, 139, 153
MergeMonitoringTimeDetailLevel, 141
minUpdateRedundancy, 130
minutemergeschedule, 123, 153
MonitoringImportMinLifeTime, 141
MonitoringMergeMinLifeTime, 141
MonitoringMinLifeTime, 141
monthlymergeschedule, 123, 153
nodeAliveMessageInterval, 132
nodeErrorRetryInterval, 140
nodeRegistrationTimeout, 132
nodeResynchronizationInterval, 132
NumAggregationChildren, 143
NumAggregationMapBuckets, 144
numberoffetchnodes, 148
numberOfWriterNodes, 148
numBufferedRows, 120
numConnectionsPerNode, 139
NumDistinctAggregationMapBuckets, 144

Page 404

Index Index

NumHashSeparatedStreamsPerNode, 143,
190

NumValuesVectorPreferred, 143
outputformat, 121
overrideProcessRequirements, 125
pamService, 133
partitionMaxRows, 126
partitionMaxRowsForDailyMerge, 126
partitionMaxRowsForHourlyMerge, 126
partitionMaxRowsForMinuteMerge, 126
partitionMaxRowsForMonthlyMerge, 127
partitionMaxRowsForWeeklyMerge, 127
partitionMergeRequestTimeout, 132
partitionSearchConcurrencyLevel, 153
partitionSearchTimeout, 132
performanceLoggingPath, 129
port, 134
preloadcolumns, 137, 177
preloadindices, 137, 177
preloadingthreads, 137, 149, 177
queryHistoryMaxEntries, 129
queryHistoryMaxSeconds, 129
QueryMonitoringTimeDetailLevel, 141
queryThrottlingInterval, 128, 137
QueueActivateReceiver, 145
QueueDeactivateSender, 145
QueueReactivateSender, 145
rank, 134, 147
registrationPort, 119
reimportInterval, 120
ReorderGroupByFields, 144
requestDefaultTimeout, 132
rewrite.all, 149
rewrite.hashJoinOptimization, 150
rewrite.joinElimination, 149
rewrite.mergeJoinOptimization, 150
rewrite.sortElimination, 150
rewrite.validationNodeOptimization, 150
SeparationAwareExecution, 142, 189
SeparationEnableDHS, 143
SeparationEnableDSFA, 142, 186
SeparationEnableDSGB, 142, 186
SeparationEnableDSI, 143, 186
SeparationEnableDSJ, 142, 186

SeparationEnableHSGB, 142, 186
SeparationEnableHSJ, 142, 186
socketHandlingThreads, 138
sourcedir, 146
sslCaFile, 125
sslCertFile, 125
sslCiphers, 125
sslDhFile, 125
sslKeyFile, 125
sslMinimumTlsVersion, 125
sslMode, 124
staleConnectionCheckInterval, 140
synchronizeFilesystemWrites, 130
synchronizePartitionRequestTimeout, 132
targetdir, 146
udfLibraryPath, 122
userAuthentication, 120
validatePartitions, 121
VectorAggregationEnabled, 143
verbosity, 120
weeklymergeschedule, 123, 153
writebuffersize, 147

OR, 337
order

of columns and rows, 327
ORDER BY, 283, 332

examples, 247
optimizations, 165

OutputFormat, 373
outputformat, 121, 199

for empty/NULL strings, 273
overrideProcessRequirements, 125

pamService, 133
parstream

user, 79
parstream-import, 99
parstream-server, 76
partition

distribution, 53
exclusion, 163
filenames, 32
optimizations, 163, 166
state, 34

PARTITION ACCESS, 166, 283

Page 405

Index Index

PARTITION BY, 30, 283
for xUDTOs, 235
in dynamic columns, 70
with functions, 31

PARTITIONFETCH, 155
partitionMaxRows, 126
partitionMaxRowsForDailyMerge, 126
partitionMaxRowsForHourlyMerge, 126
partitionMaxRowsForMinuteMerge, 126
partitionMaxRowsForMonthlyMerge, 127
partitionMaxRowsForWeeklyMerge, 127
partitionmerge, 155
partitionMergeRequestTimeout, 132
partitionSearchConcurrencyLevel, 153
partitionSearchTimeout, 132
pass phrase access

with psql, 115
pass phrase login, 78
passphrase, 78
password, 78
PERCENTILE_CONT

examples, 255
PERCENTILE_RANK

examples, 255
PERCENTILE_CONT, 347
PERCENTILE_DISC, 347
performance optimization, 158
performanceLoggingPath, 129
physical partition, 29
pnc, 110
policy

of distribution, 55
port, 134

overview of all ports, 135
Postgres

PSQL, 115
PRELOAD_COLUMN, 284
PRELOAD_INDEX, 285
preloadcolumns, 137, 177
preloadindices, 137, 177
preloading, 177
preloadingthreads, 137, 149, 177
prepareInsert(), 230
PRIMARY KEY, 193, 284

PRIORITY
examples, 256

priority of tasks, 158
ps_info_bitmap_index, 311
ps_info_catalog, 308
ps_info_cluster_node, 317
ps_info_column, 309
ps_info_compression, 310
ps_info_configuration, 312
ps_info_custom_query, 319
ps_info_debug_level, 319
ps_info_disc, 319
ps_info_dynamic_columns_mapping, 316
ps_info_import, 323
ps_info_job, 319
ps_info_library, 320
ps_info_mapped_file, 320
ps_info_merge_queue_detail, 323
ps_info_partition, 316
ps_info_partition_distribution, 323
ps_info_partition_sync_backlog, 318
ps_info_partitioned_by, 311
ps_info_process, 320
ps_info_query_history, 321
ps_info_remote_node, 317
ps_info_running_query, 321
ps_info_separated_by, 311
ps_info_sorted_by, 311
ps_info_table, 309
ps_info_type, 308
ps_info_udf, 324
ps_info_user, 316
ps_info_user_defined_option, 315
ps_info_version, 308
ps_info_dynamic_columns_mapping, 69
PSM file, 73
PSQL, 115

client, 115

QUARTER, 304
query

abort, 162
priority, 158

query node, 41
query rewrite, 172

Page 406

Index Index

queryHistoryMaxEntries, 129
queryHistoryMaxSeconds, 129
QueryMonitoringTimeDetailLevel, 141
QueryPriority, 374
queryThrottlingInterval, 128, 137
QueueActivateReceiver, 145
QueueDeactivateSender, 145
QueueReactivateSender, 145
quit, 201
quote

in string literal, 358

R integration, 238
rank, 41, 134, 147
rawInsert(), 230
REDUNDANCY, 54
REFERENCES, 284

examples, 193
registrationPort, 119
reimportInterval, 120
ReorderGroupByFields, 144
requestDefaultTimeout, 132
restart

cluster, 51
RETURNS, 235
rewrite.all, 149
rewrite.hashJoinOptimization, 150
rewrite.joinElimination, 149
rewrite.mergeJoinOptimization, 150
rewrite.sortElimination, 150
rewrite.validationNodeOptimization, 150
rollback(), 231
round trip

import and output, 97
row

order, 327
RUN JOB, 377

scheduler, 81
scheduler:create job, 82
scheduler:disable job, 82
scheduler:drop job, 83
scheduler:enable job, 82
scheduler:run job, 83
script type, 233

SECOND, 304
Security-Enhanced Linux, 9
SELECT, 327

examples, 247
nested, 256
order, 327

SELinux, 9
SEPARATE BY, 188, 284
separation aware execution, 186
SeparationAwareExecution, 142, 189, 192
SeparationEnableDHS, 143
SeparationEnableDSFA, 142, 186
SeparationEnableDSGB, 142, 186
SeparationEnableDSI, 143, 186
SeparationEnableDSJ, 142, 186
SeparationEnableHSGB, 142, 186
SeparationEnableHSJ, 142, 186
server, 76

ports, 135
shutdown, 202

server start, 76
session statements, 373
SET, 201, 373

examples, 259
SET optimization

examples, 260
setImportPriority(), 229
setTimeout(), 228
SHL

examples, 252
SHORTDATE, 268
shortdate

definition, 289
import, 94

showexectree, 202
shutdown

cluster, 51, 200
server, 202

signed integer, 267
SKIP, 91, 285
SMALLINT, 299
socket interface, 199
socketHandlingThreads, 138
Sort Elimination, 175

Page 407

Index Index

sort optimization, 182
SORTED BY

optimizations, 165
sourcedir, 146
SPARSE compression, 178, 285

default value, 178, 368
examples, 178

split brain, 45
SQL

functions, 299
reference, 325

SQL commands
via netcat, 114
via pnc, 112

sqlprint, 202
sslCaFile, 125
sslCertFile, 125
sslCiphers, 125
sslDhFile, 125
sslKeyFile, 125
sslMinimumTlsVersion, 125
sslMode, 124
staleConnectionCheckInterval, 140
starting servers, 76
STATIC_COLUMN_NAMES, 70
status

of partition, 34
STDDEV_POP

examples, 255
Stored Procedures, 83
Streaming Import Interface

JAVA example, 394
with Java, 216

string, 272
empty, 273
import, 97
NULL, 93
quote in string literal, 358

stringdistr
example, 393

stringdistr example, 393
suffix

of partition files, 34
synchronizeFilesystemWrites, 130

synchronizePartitionRequestTimeout, 132
system catalog, 306
system table, 306

ps_info_bitmap_index, 311
ps_info_catalog, 308
ps_info_cluster_node, 317
ps_info_column, 309
ps_info_compression, 310
ps_info_configuration, 312
ps_info_custom_query, 319
ps_info_debug_level, 319
ps_info_disc, 319
ps_info_dynamic_columns_mapping, 316
ps_info_import, 323
ps_info_job, 319
ps_info_library, 320
ps_info_mapped_file, 320
ps_info_merge_queue_detail, 323
ps_info_partition, 316
ps_info_partition_distribution, 323
ps_info_partition_sync_backlog, 318
ps_info_partitioned_by, 311
ps_info_process, 320
ps_info_query_history, 321
ps_info_remote_node, 317
ps_info_running_query, 321
ps_info_separated_by, 311
ps_info_sorted_by, 311
ps_info_table, 309
ps_info_type, 308
ps_info_udf, 324
ps_info_user, 316
ps_info_user_defined_option, 315
ps_info_version, 308

table, 277
CREATE TABLE, 278
definition via netcat, 114
definition via pnc, 112
dynamic, 62
names, 281

TAKE, 304, 348
examples, 250

targetdir, 146
task

Page 408

Index Index

priority, 158
terminology

cluster, 41
THREADPOOL, 362
threadpool

inspection, 162
threads

optimizations, 158
TIME, 268
time

definition, 289
import, 94
import format, 95

TIMESTAMP, 268
timestamp

definition, 289
import, 94

tree pruning, 163
TRUE, 337
TRUNC, 305

examples, 253
tutorial, 15
types, 267

BITVECTOR8, 274
BLOB, 274
DATE and SHORTDATE, 268
DOUBLE, 268
FLOAT, 268
integer, 267
multivalues, 275
string, 272
TIME and TIMESTAMP, 268
VARSTRING, 272

UDF
external user-defined table operators, 232
R integration, 238

udfLibraryPath, 122, 234
UDTO, 232

CREATE FUNCTION, 234
UINT16, 267
UINT32, 267
UINT64, 267
UINT8, 267

UINTEGER, 299
UNION, 327, 328

examples, 257
UNIQUE, 284
unload, 204
unmap files, 184
unsigned integer, 267
upgrade

clusters, 52
UPPER, 305

examples, 253
UPPERCASE, 305

examples, 253
user

parstream, 79
user authentication, 78
user management

database user, 80
user-defined table operators, 232
userAuthentication, 120
USMALLINT, 299

validatePartitions, 121
VARCHAR, 299
VARSTRING, 272
VectorAggregationEnabled, 143
verbosity, 85, 120
versioning, 34

warnings, 85
WEEK, 305
weeklymergeschedule, 123, 153
WHERE, 331
writebuffersize, 147

XML
interface, 205

XOR
examples, 252

xUDTO, 232
CREATE FUNCTION, 234
example, 393
R integration, 238

YEAR, 305

Page 409

	Cisco ParStream Manual
	Table of Contents
	1 Preface
	1.1 About Cisco ParStream
	1.2 License
	1.3 Key Features
	1.4 Document Audience
	1.5 Prerequisites
	1.6 Typographical Conventions
	1.7 Command Conventions
	1.8 Administrator/User

	2 Installation
	2.1 Installation Overview and Checklist
	2.2 Supported Platforms and Packages
	2.3 Hardware Requirements
	2.4 Configuring Linux OS for Cisco ParStream
	2.5 Installing Cisco ParStream Server
	2.6 PAM Authentication
	2.7 Cisco ParStream Installation Directory Tree
	2.8 Administrative User 'parstream'
	2.9 Systemd

	3 Getting Started Tutorial
	3.1 Cisco ParStream Database Software
	3.2 Database Data Storage Location
	3.3 Additional Packages Required to Run the Tutorial
	3.4 General Directory Structure
	3.5 Create a Minimal Cluster Configuration
	3.6 Provide a Table Definition
	3.7 Start the Cluster
	3.8 View Processes and Open Ports
	3.9 Using Interactive SQL Utility
	3.10 Connect and View Cluster Information
	3.11 Defining a Table
	3.12 Start the Importer to Load Data
	3.13 Run Queries
	3.14 Stop the Cisco ParStream Server and the Cisco ParStream Importer
	3.15 Cleanup the Cluster and Restore the Tutorial Environment

	4 Important Constraints Using Cisco ParStream
	4.1 Important General Constraints with Data Types
	4.2 Important General Constraints with SQL Commands
	4.3 Important General Constraints when Importing Data
	4.4 Data Loss Prevention

	5 Database Design
	5.1 Data Partitioning
	5.2 Schema/Metadata Versioning
	5.3 Bitmap Indices

	6 Clustering and Distribution
	6.1 High Availability and Scalability
	6.2 Running Cisco Parstream with Multiple Server Nodes
	6.3 Partition Distribution

	7 Dynamic Columns
	7.1 Motivation for Dynamic Columns
	7.2 Using Dynamic Columns

	8 Database Configuration
	8.1 Conf Directories and INI Files
	8.2 Internationalization (I18N)

	9 Server Administration
	9.1 Starting the Servers
	9.2 User Authentication
	9.3 DBMS Scheduler
	9.4 Stored Procedures
	9.5 Monitoring, Logging, and Debugging

	10 Importing Data
	10.1 Overview of Data Import
	10.2 General Import Characteristics and Settings
	10.3 General Format of CSV Import Files
	10.4 CSV File Format of Specific Types
	10.5 Using the CSV Importer
	10.6 ETL Import
	10.7 Import Data with INSERT INTO

	11 Deleting Data
	11.1 Delete Statements

	12 Client Applications and Tools
	12.1 Database Clients pnc and netcat
	12.2 PSQL client

	13 Options Reference
	13.1 Commandline Arguments
	13.2 Global Options
	13.3 Server-Section Options
	13.4 Import-Section Options
	13.5 Optimization Options

	14 Merging Partitions
	14.1 Merging Partitions
	14.2 ETL Merge

	15 Performance Optimizations
	15.1 Execution Control
	15.2 Careful Partitioning
	15.3 Partition Exclusion
	15.4 ORDER BY Bitmap Index Optimization
	15.5 Optimizing the Partition Access Tree
	15.6 Smart Query Distribution
	15.7 JOIN Optimizations
	15.8 Query Rewrite Optimizations
	15.9 Small Optimizations
	15.10 Column Store Compressions
	15.11 LIMIT optimization
	15.12 Parallel Sort
	15.13 Controlling the Number of Mapped Files
	15.14 Disable Tracking of Access Times in File System
	15.15 Separation Aware Execution

	16 Socket Client Interface
	16.1 Security
	16.2 Tooling
	16.3 Output Format
	16.4 Control Commands
	16.5 ASCII Interface
	16.6 XML Interface
	16.7 JSON Interface

	17 ODBC Client Interface
	17.1 ODBC Configuration Brief
	17.2 Installing ODBC Driver on Linux
	17.3 Configuring Cisco ParStream ODBC Connection on Linux
	17.4 Installing ODBC Driver on Windows
	17.5 Configuring Cisco ParStream ODBC Connection on Windows

	18 JDBC Client Interface
	18.1 Installing JDBC Driver
	18.2 Configuring JDBC Connections

	19 Java Streaming Import Interface (JSII)
	19.1 Introduction
	19.2 General Concept
	19.3 Java Driver Limitations
	19.4 Using the Java Streaming Import Interface
	19.5 Java driver for Streaming Import Interface Reference

	20 External User-Defined Table Operators (xUDTO)
	20.1 Concept of Using User-Defined Table Operators (UDTO)
	20.2 Enabling External Processing of xUDTOs
	20.3 Using External User-Defined Table Operators
	20.4 Integrating R Scripts as xUDTOs

	21 SQL Coverage
	21.1 Supported Keywords, Functions, and Operators
	21.2 Commands
	21.3 Optimization Settings
	21.4 Data Types

	22 SQL Language Elements
	22.1 Cisco ParStream SQL
	22.2 Supported SQL Keywords

	23 SQL Data Types
	23.1 Supported Data Types
	23.2 Integral Types
	23.3 Floating-Point Types
	23.4 Date and Time Types
	23.5 String and Character types
	23.6 Blob Types
	23.7 Bit-Field Types
	23.8 MultiValues (Numeric Arrays)

	24 Table Statements
	24.1 Overview of Table Statements
	24.2 CREATE TABLE Statements
	24.3 ALTER TABLE Statements
	24.4 DROP TABLE Statements

	25 SQL Functions
	26 System Tables
	26.1 Introduction of System Tables
	26.2 Static Tables
	26.3 Schema and Configuration Tables
	26.4 Runtime Tables

	27 SQL Grammar
	27.1 BNF Notation
	27.2 SQL Statements
	27.3 SELECT Statements
	27.4 INSERT Statements
	27.5 DELETE Statements
	27.6 INSPECT Statements
	27.7 Schema Definition Statements
	27.8 Schema Manipulation Statements
	27.9 CALL Statement (Control Statements)
	27.10 SET Statements (Session Statements)
	27.11 ALTER SYSTEM Statements (System Statement)
	27.12 User Administration Statements
	27.13 DBMS Job Scheduler

	28 Reserved Keywords
	28.1 Reserved Standard SQL Keywords
	28.2 Reserved Cisco ParStream Keywords

	29 Release Notes
	29.1 Release Notes Version 6.2
	29.2 Release Notes Version 6.1
	29.3 Release Notes Version 6.0
	29.4 Release Notes Version 5.4
	29.5 Release Notes Version 5.3
	29.6 Release Notes Version 5.2
	29.7 Release Notes Version 5.1
	29.8 Release Notes Version 5.0
	29.9 Release Notes Version 4.4

	A Examples
	A.1 Example `cluster'
	A.2 Example 'multivalue'
	A.3 Example `dynamiccolumns'
	A.4 Example `stringdistr'
	A.5 Example `xUDTO' Defining External User-Defined Table Operators

	B API Examples
	B.1 Example `importapi_java' Using the Streaming Import Interface by a JAVA Client
	B.2 Example `jdbc' Using the JDBC Driver

	Glossary
	Index

