IIr
CISCO

Cisco ParStream

Cisco ParStream Manual

<November 14, 2019>
© 2019 Cisco and/or its affiliates.

Document Information:

Title: Cisco ParStream Manual
Version: 6.2.1

Date Published: <November 14, 2019>
Date Printed: November 14, 2019

© 2019 Cisco and/or its affiliates.
All rights reserved.
This document is Cisco Public.

WWW.Cisco.com

Table of Contents

Cisco ParStream Manual i
Table of Contents iii
1 Preface 1
1.1 About Cisco ParStream 1
1.2 LiCeNnse 1
1.3 KeyFeatures 1
1.4 Document Audience 1
1.5 Prerequisites 2
1.6 Typographical Conventions 2
1.7 Command Conventions 2
1.8 Administrator/User 2
2 Installation 4
2.1 Installation Overview and Checklist 4
2.2 Supported Platforms and Packages 4
2.3 Hardware Requirements 5
2.4 Configuring Linux OS for Cisco ParStream 7
2.5 Installing Cisco ParStream Server. 10
2.6 PAM Authentication 11
2.7 Cisco ParStream Installation Directory Tree 11
2.8 Administrative User 'parstream’ 11
2.9 Systemd e e 12
3 Getting Started Tutorial 15
3.1 Cisco ParStream Database Software 15
3.2 Database Data Storage Location, 15
3.3 Additional Packages Required to Run the Tutorial 15
3.4 General Directory Structure e 15
3.5 Create a Minimal Cluster Configuration 16
3.6 Provide a Table Definition 17
3.7 Startthe Cluster e 17
3.8 ViewProcessesand OpenPorts 19

Page iii

Page iv

3.9 Using Interactive SQL Utility 20
3.10 Connect and View Cluster Information 21
3.11 DefiningaTable 21
3.12 Startthe ImportertoloadData 22
313 RunQueries. e 24
3.14 Stop the Cisco ParStream Server and the Cisco ParStream Importer 24
3.15 Cleanup the Cluster and Restore the Tutorial Environment 25
4 Important Constraints Using Cisco ParStream 26
4.1 Important General Constraints with Data Types 26
4.2 Important General Constraints with SQL Commands 26
4.3 Important General Constraints when ImportingData 27
44 DatalossPrevention. 27
5 Database Design 29
5.1 DataPartitioning e 29
5.2 Schema/Metadata Versioning e 34
53 BitmapIndices 35
6 Clustering and Distribution 40
6.1 High Availability and Scalability 40
6.2 Running Cisco Parstream with Multiple Server Nodes 40
6.3 Partition Distribution 53
7 Dynamic Columns 61
7.1 Motivation for Dynamic Columns 61
7.2 Using Dynamic Columns e 62
8 Database Configuration 73
8.1 ConfDirectoriesand INIFiles 73
8.2 Internationalization (H8N) 74
9 Server Administration 76
9.1 Startingthe Servers e 76
9.2 UserAuthentication. 78
9.3 DBMS Scheduler 81
9.4 Stored Procedures 83

9.5 Monitoring, Logging, and Debugging Lo 84
10 Importing Data 88
10.1 Overview of Data Import 88
10.2 General Import Characteristics and Settings 89
10.3 General Format of CSV ImportFiles 89
10.4 CSV File Format of Specific Types 93
10.5 Usingthe CSV Importer e 99
10.6 ETLImport e 104
10.7 Import Data with INSERT INTO ¢ i v it e e e e e e e 107
11 Deleting Data 109
11.1 Delete Statements 109
12 Client Applications and Tools 110
12.1 Database Clients pncandnetcat i i i i i i it i e 110
12.2 PSQLclient e 115
13 Options Reference 116
13.1 Commandline Arguments 116
13.2 Global Options 119
13.3 Server-Section Options 134
13.4 Import-Section Options e 146
13.5 Optimization Options 149
14 Merging Partitions 151
14.1 Merging Partitions 151
142 ETLMerge 154
15 Performance Optimizations 158
15.1 Execution Control 158
15.2 Careful Partitioning e 163
15.3 Partition Exclusion 163
15.4 ORDER BY Bitmap Index Optimization 165
15.5 Optimizing the Partition Access Tree 166
15.6 Smart Query Distribution 167
15.7 JOIN Optimizations 168

Page v

15.8 Query Rewrite Optimizations

15.9

Small Optimizations e

15.10 Column Store Compressions
15.11 LIMIT optimization e
15.12 Parallel Sort e

15.13 Controlling the Number of Mapped Files

15.14 Disable Tracking of Access Timesin File System

15.15 Separation Aware Execution L

16 Socket Client Interface

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Security . .. e
Tooling e
Output Format e
ControlCommands e e
ASCll Interface
XML Interface o e
JSONInterface e e

17 ODBC Client Interface

171
17.2
17.3
17.4
17.5

ODBC Configuration Brief
Installing ODBC Driveron Linux
Configuring Cisco ParStream ODBC Connectionon Linux
Installing ODBC Driver on Windows it iie

Configuring Cisco ParStream ODBC Connection on Windows

18 JDBC Client Interface

18.1
18.2

Installing JDBC Driver
Configuring JDBC Connections i e

19 Java Streaming Import Interface (JSII)

19.1
19.2
19.3
19.4
19.5

Page vi

Introduction L
General Concept e
Java Driver Limitations
Using the Java Streaming Import Interface

Java driver for Streaming Import Interface Reference

199
199
199
199
200
204
205
207

209
209
210
211
211
212

214
214
215

20 External User-Defined Table Operators (xXUDTO) 232

20.1 Concept of Using User-Defined Table Operators (UDTO) 232
20.2 Enabling External Processing of xUDTOs 233
20.3 Using External User-Defined Table Operators 235
20.4 Integrating R Scripts as xUDTOs e 238
21 SQL Coverage 244
21.1 Supported Keywords, Functions, and Operators 244
21.2 Commands e e e e e e e e e e 247
21.3 Optimization Settings L 260
21.4 DataTypes o o e 260
22 SQL Language Elements 263
22.1 CiscoParStream SQL 263
22.2 Supported SQL Keywords e 263
23 SQL Data Types 267
23.1 Supported Data Types o e e 267
23.2 Integral Types o L e 267
23.3 Floating-Point Types o e e 268
23.4 Dateand Time Types o 268
23.5 Stringand Charactertypes 272
23.6 BlobTypes e e 274
23.7 Bit-Field Types e 274
23.8 MultiValues (Numeric Arrays) o e e 275
24 Table Statements 277
24.1 Overview of Table Statements 277
24.2 CREATE TABLE Statements 278
24.3 ALTER TABLE Statements 295
24.4 DROP TABLE Statements 297
25 SQL Functions 299
26 System Tables 306
26.1 Introductionof System Tables 306
26.2 StaticTables 308

Page vii

26.3 Schema and Configuration Tables
26.4 RuntimeTables e

27 SQL Grammar
27.1 BNF Notation e
27.2 SQL Statements e
27.3 SELECT Statements
27.4 INSERT Statements e
27.5 DELETE Statements
27.6 INSPECT Statements
27.7 Schema Definition Statements Lo
27.8 Schema Manipulation Statements
27.9 cCALL Statement (Control Statements)
27.10 ST Statements (Session Statements) oo oo L.
27.11 ALTER SYSTEM Statements (System Statement)
27.12 User Administration Statements
27.13 DBMS Job Scheduler e

28 Reserved Keywords
28.1 Reserved Standard SQL Keywords

28.2 Reserved Cisco ParStream Keywords

29 Release Notes
29.1 Release Notes Version 6.2.. i e
29.2 Release Notes Version 6.1 e
29.3 Release Notes Version 6.0
29.4 Release Notes Version 5.4 e
29.5 Release Notes Version 5.3 e
29.6 Release Notes Version 5.2,
29.7 Release Notes Version 5.1 e
29.8 Release Notes Version 5.0 e

29.9 Release Notes Version 4.4 e

A Examples

A1 Example ‘cluster e

Page viii

325
325
325
327
360
361
362
364
370
372
373
375
377
377

378
378
381

384
384
384
385
386
386
387
388
389
390

392

A2
A3
A4
A5

Example ‘'multivalue’
Example ‘dynamiccolumns’
Example ‘stringdistr’

Example ‘xUDTO’ Defining External User-Defined Table Operators

B API Examples

B.1
B.2

Glossary

Index

Example ‘importapi_java’ Using the Streaming Import Interface by a JAVA Client

Example ‘jdbc’ Using the JDBC Driver,

394
. 394

.. 394

395

397

Page ix

Preface

Welcome to the Cisco ParStream Manual. This manual describes the Cisco ParStream database.

Note:
Ensure you are familiar with the “Important Constraints Using Cisco ParStream” (see chapter 4,
page 26) before using Cisco ParStream.

About Cisco ParStream

Cisco ParStream is a massively parallel (MPP) shared-nothing data management system designed to
run complex analytical queries over extremely large amounts of data on a cluster of commodity servers.
Cisco ParStream is specifically designed to exploit advantages of modern processor architectures.

License

Cisco ParStream is licensed as a component of the Cisco Kinetic Edge & Fog Processing Module
(EFM). Licensing is managed through the Kinetic EFM Smart Licensing Tool.

Key Features

Cisco ParStream can be seamlessly added to your existing environment and processes. Key features
include:

» Fast setup (tools support structure and data migrations)

» Fast import, transformation and indexing (file and stream interface)

» All ordinary data types supported (integer, floating-point, date, time, timestamp, string, blob, etc.)
» Easy querying (SQL 2003 Select is supported)

» Advanced analytics (easily extended via user-defined functions /C++ API)

» Schema-based (multi-dimensional partitioning, single and multi-table support, columns and indices)

* Infrastructure independent (running on single servers, dedicated clusters and virtualized private
and public clouds)

+ Platform independent (many Linux distributions supported)

» Software-only product (no need for special hardware as it runs on standard CPUs, RAM, SSDs,
and spinning disks)

Document Audience

The following installation guide is targeted at experienced database and Linux system administrators.

Page 1

1 Preface

1.5 Prerequisites

Prerequisites

This document assumes that you have:

« Expertise in SQL and Linux
» A supported Linux operating system

* A hardware platform that meets the minimum requirements

Typographical Conventions

This document uses the following typographical conventions to mark certain portions of text:

Conventions

Description

Italics

Monospaced

Monosp.italics

Bold

New terms, foreign phrases, and other important passages are emphasized
in italics.

Everything that represents input or output of the computer, in particular
commands, program code, and screen output, is shown in a monospaced
font.

Within such passages, italics indicate placeholders; you must insert an actual
value instead of the placeholder.

On occasion, parts of program code are emphasized in bold face if they have
been added or changed since the preceding example.

Command Conventions

The following conventions are used in the synopsis of a command:

Conventions

Description

Brackets ([and)
Braces ({, })
Vertical lines ()
Dots (’...)

Prompt (=>)
Prompt ($)

Indicates optional parts.

Indicates that you must choose one alternative.

Indicates that you must choose one alternative.

The preceding element can be repeated.

SQL commands are preceded by the prompt =>, where it enhances the clarity.
Shell commands are preceded by the dollar prompt.

Normally, prompts are not shown in code examples.

Administrator/User

The following defines how the terms administrator and user are used in this document:

« An administratoris generally a person who is in charge of installing and running the Cisco ParStream

Server.

* A usercan be anyone who is using, or wants to use, any part of the Cisco ParStream system.

Page 2

1.8 Administrator/User 1 Preface

Note:

The terms administrator and user should not be interpreted too narrowly. This document
does not have fixed presumptions about system administration procedures.

Page 3

Installation

Installation Overview and Checklist

Pre-Installation Checklist

Ensure you have the following before beginning the installation tasks:
» Obtain superuser (roof) permissions or sudo access to all servers in your cluster to perform the
installation.

» Download the Cisco ParStream installation package that is part of the Cisco Kinetic Edge & Fog
Processing Module.

Installation Tasks

The following is a list of required Cisco ParStream installation tasks. Each task is described in later

chapters of this guide:

* Procure and configure the servers and networking equipment in accordance with hardware
requirements provided in this guide (see section 2.3, page 5).

» Configure Linux OS per Cisco ParStream installation pre-requisites on each node in the cluster
(see section 2.4, page 7).

+ Install Cisco ParStream Server software by running the installer on each node in the cluster
(see section 2.5, page 10).

« Configure the Administrative User account “parstream” (see section 2.8, page 11).

» Follow the Getting Started Tutorial section in this guide (optional; see section 3, page 15).

Securing the Installation

Every install of a Cisco ParStream instance will have to meet specific requirements for performance
and security. It is generally advisable, to configure the underlying platform Linux OS as tight as
possible by minimizing the number of amount and privileges of processes running and services
offered. Suggested is adherence to general hardening guidelines as provided by the NSA hardening
guide collection at https://www.nsa.gov/ or platform specific formulations (as noted below in
section 2.2, page 4). To enable educated decisions, when the grade of security impacts performance,
and where to strike a balance acceptable for the local install, the sections in this chapter (starting with
section 2.3, page 5) offer helpful information and relations.

Supported Platforms and Packages

This section provides important information about Cisco ParStream supported platforms and lists
associated software package information for installation, development and drivers.

Page 4

2.3 Hardware Requirements 2 Installation

Server Packages

Cisco ParStream Server is supported on the following 64-bit Operating Systems on the x86_64
architecture:
Operating System Cisco ParStream Server Installation Packages
(64-bit, x86_64 architecture)
Red Hat Enterprise Linux 7
CentOS 7

parstream-database-<version>.el7.x86_64.rpm

parstream-authentication-<version>.el7.x86_64.rpm

JDBC Package

ParStream JDBC Driver is provided on the following 32-bit and 64-bit Operating Systems on x86 and
x64 architectures:

Java Platform \ Cisco ParStream JDBC Driver Package

Java 8, all editions ‘ parstream—jdbc-<version>.el7.noarch.rpm

JSII Package

ParStream Java SSI Driver is provided on the Operating Systems on x86 and x64 architectures:

Operating System Cisco ParStream Server Installation Packages
(64-bit, x86_64 architecture)

Red Hat Enterprise Linux 7
CentOS 7

parstream-sii-<version>.el7.x86_64.rpm

Security Guidelines

Installs of Cisco ParStream are expected to rely on a system adhering to platform specific security
guidelines, where offered by vendor / distributor. The places where to find normative information are
subject to change, thus only sample URLs are given here:

Operating System Security Guidelines Sample URL
Red Hat Enterprise Linux 7 | https://access.redhat.com/documentation/en-US/...
Red_Hat_Enterprise_Linux/7/pdf/Security_Guide/...

Red_Hat_Enterprise_Linux-7-Security_Guide-en-US.pdf

Red Hat Enterprise Linux 7 | https://wiki.centos.org/HowTos/0OS_Protection/
CentOS7

Hardware Requirements

This section provides the Cisco ParStream requirements, as well as important details and
considerations.

Note:

Page 5

2 Installation 2.3 Hardware Requirements

To eliminate potential resource contention, do not run any 3rd party applications on any
Cisco ParStream node.

x86 64 Processor Architecture

Cisco ParStream Server software runs on x86-64 architecture hardware. Cisco ParStream software
will run on any compliant platform, including virtualized.

Note:
A processor’s clock speed directly affects the Cisco ParStream database response time.

* A larger number of core processors enhance the cluster’s ability to simultaneously
execute multiple massively parallel processing (MPP) queries and data loads.

» A popular, proven, and cost effective platform for the Cisco ParStream cluster node is
2-socket industry-standard server with Intel® Xeon® 6- or 8-core processors, such as
Xeon E5-2600 or Xeon 5600 Series.

+ The minimum acceptable total number of core processors (not HT) in a server node
(e.g., a virtual machine) is 4.

RAM

A sufficient amount of memory is required to support high-performance database operations,
particularly in environments with high concurrency and/or mixed workload requirements.

Cisco ParStream requires a minimum of 2GB per physical CPU core, however 4GB or more
per CPU is recommended. For example, the minimum amount of RAM for a server node with 2
hyper-threaded eight-core CPUs is 32GB (2 CPUs * 8 cores * 2GB), though 64GB is recommended.

This guidance provides a degree of flexibility enabling you to provision RAM in compliance with DIMM
population rules to maintain the highest supported RAM speed. On modern Intel Xeon architectures
this typically means:

» To utilize the highest supported DIMM speed, all channels should be loaded similarly, i.e., no
channel should be left completely blank.

* The maximum number of DIMMs per channel is 2.

Storage

Since Cisco ParStream is designed as a shared-nothing MPP system, Cisco ParStream cluster nodes
can utilize any storage type — internal or shared/attached (SAN, NAS, DAS) as long as the storage
is presented to the host as a Cisco ParStream supported file system and provides a sufficient 1/0
bandwidth. Internal storage in a RAID configuration offers the best price/performance/availability
characteristics at the lowest cost.

The following are guidelines for internal storage provisioning:

+ To maximize I/O performance, spread the 1/O across multiple individual drives. Cisco ParStream
requires at least 4 individual drives dedicated to the Cisco ParStream Data Storage Location. For

Page 6

2.4 Configuring Linux OS for Cisco ParStream 2 Installation

production environments, provisioning 8 or more drives to the Cisco ParStream Data Storage
Location is recommended.

» Allinternal drives used for Cisco ParStream data storage should be connected to a single RAID
controller and presented to the host as one contiguous RAID device. This means that a single
RAID controller must "see" all available internal drives.

Note:
Some servers with multiple internal drive cages requiring separate RAID controllers may
have design limitations and are not recommended as Cisco ParStream nodes.

+ Select a RAID controller with 1GB or more cache, with write caching enabled.

« Ensure that the storage volume for Cisco ParStream Data Directory is no more than 60% utilized
(i.e., has at least 40% free space).

Network

Cisco ParStream software forms a cluster of server nodes over an Ethernet network and uses TCP
P2P communications.

The network provisioned for operating a Cisco ParStream cluster should be 1GB or greater. In addition

» For best performance, all cluster nodes should reside on the same subnet network.
» |P addresses for the cluster nodes must be assigned statically and have the same subnet mask.

» We recommend that the cluster network is provisioned with Ethernet redundancy. Otherwise, the
network (specifically the switch) could be a single point of a cluster-wide failure.

Power Management and CPU Scaling

CPU scaling may adversely affect the database performance.

Note that due to the internal architecture of Cisco ParStream it is important to disable any BIOS option
for efficient dynamic power management or frequency scaling of CPU’s. The reason is that updates
due to the dynamic management react too slow so that such a feature is even highly counter-productive
for an efficient usage of Cisco ParStream. Thus:

Disable any dynamic management of CPU frequencies (which is more and more
enabled by default).

As a result, you should not see different CPU frequencies in /proc/cpuinfo.

Although CPU scaling can also be controlled via governors in the Linux kernel, CPU scaling control is
usually hardware specific. For background information, see

http://en.wikipedia.org/wiki/Dynamic_frequency_scaling.

Configuring Linux OS for Cisco ParStream

This section details the steps that must be performed by the root user on each server in the cluster.

Page 7

http://en.wikipedia.org/wiki/Dynamic_frequency_scaling

2 Installation 2.4 Configuring Linux OS for Cisco ParStream

Note:

All nodes in the cluster must be identically configured.

After making all the changes outlined in this section, restart the servers and verify that the
recommended settings are implemented.

Swap Space
Cisco ParStream recommends allocating, at minimum, the following swap space:
System Ram Size (GB) | Min Swap Space (GB)
4 or less 2
41016 4
16 to 64 8
64 to 256 16

The swap file or partition should not be co-located on the same physical volume as the Cisco ParStream
data directory.

Data Storage Location

The Cisco ParStream Data Directory should be placed on a dedicated, contiguous storage volume. If
internal storage is used, the physical data drives should form one hardware RAID device presented to
the host as one contiguous volume.

ext4 is the recommended Linux file system for the Data Storage Location.

Due to performance and reliability considerations, Cisco ParStream does not recommend using
LVM in the I/O path to the Data Storage Location. Further, Cisco ParStream does not support Data
Storage Location on logical volumes that have been extended beyond their initially configured capacity.

IPTables (Linux Firewall)

You should allow access in the firewall for ports used by ParStream depending on your
configuration/usage.

For client access use (only open the one you need):

$ firewall-cmd --zone=public --add-service=parstream-netcat
$ firewall-cmd --zone=public --add-service=parstream-postgresqgl

If you have configured a cluster, you need additional ports for intercluster communication (you have to
open all of the following ports):

$ firewall-cmd —--zone=public --add-service=parstream-cluster-messages

$ firewall-cmd —--zone=public --add-service=parstream-partition-activation
S firewall-cmd —--zone=public --add-service=parstream-find-nodes

$ firewall-cmd —--zone=public --add-service=parstream-registration—-port

Page 8

2.4 Configuring Linux OS for Cisco ParStream 2 Installation

You should limit access to the intercluster communcation ports using appropriate firewall rules only
allowing access to / from necessary machines (all cluster nodes) or if necessary protect against denial
of service attacks using connection rate limits.

See section 13.3.1, page 135 for an overview of the ports Cisco ParStream uses.

SELinux

SELinux is not recommended on cluster nodes as it may complicate cluster operations.
If it is enabled:

« |If it doesn’t violate your security practices, in the file /etc/sysconfig/selinux change the
setting for SELINUX to disabled:

SELINUX=disabled

» Immediately change the current mode to permissive (until SELinux is permanently disabled upon
the next system restart):

$ setenforce 0

To check the current settings, you can call:

$ getenforce

Clock Synchronization

When using the date/time functions, the clocks on all servers in the cluster must be synchronized to
avoid inconsistent query results.

Ensure the NTP package is installed and the system is configured to run the NTP daemon on
startup:

$ chkconfig ntpd on
$ service ntpd restart

To check the current settings:

$ chkconfig —--list ntpd
$ service ntpd status

Verify the level of server’s clock synchronization:

$ ntpg -c rv | grep stratum

A high stratum level, e.g., 15 or greater, indicates that the clocks are not synchronized.

Note:

Page 9

2 Installation 2.5 Installing Cisco ParStream Server

These instructions are intended for RHEL/CentOS which names the NTP daemon process
ntpd.

Maximum Number of Open Files

If the error "too many file open" appears, the setting for the maximal number of open files must be
increased. Cisco ParStream will print a warning if the value is less than 98,304.

To change the setting, add the following to the file /etc/security/limits.conf:

* hard nofile 131072
* soft nofile 131072
root hard nofile 131072
root soft nofile 131072

Logout and log back in for the changes to take immediate effect.
To check the current settings, call:

$ ulimit -n

max_map_count Kernel Parameter

If the error "cannot allocate memory" appears, the Linux kernel parameter vm.max_map_count must
be increased.

To change the setting, add the following to the file /etc/sysctl.conf:

vm.max_map_count = 1966080

and reload the config file for the changes to take immediate effect:

$ sysctl -p

Check the current settings as follows:

$ cat /proc/sys/vm/max_map_count

Installing Cisco ParStream Server

This section details the steps that must be performed by the root user on each server in the cluster.

Cisco ParStream Server software depends on supplemental Linux packages that may or may not
already be installed on your servers. For this reason, your servers should be able to download and
install additional Linux packages from official repositories while installing this software.

Page 10

2.6 PAM Authentication 2 Installation

CentOS, RHEL

Install Cisco ParStream Server software:

$ yum install parstream-database-<version>.el7.x86_64.rpm

PAM Authentication

The installer will install a new PAM configuration file for the authentication to the Cisco ParStream
Server. It will be installed as /etc/pam.d/parstream. In order to login with the user parstream,
you have to follow the instructions in section 2.8.1, page 12.

Cisco ParStream authenticates users via an external application called parstream-
authentication. This application is provided by an additional software package, that has to
be installed separately. For each supported platform, a different package has to be installed. See
section 9.2, page 78 for further information about user authentication.

CentOS, RHEL

To install Cisco ParStream authentication software:

$ yum install parstream-authentication-<version>.el7.x86_64.rpm

Cisco ParStream Installation Directory Tree

The Cisco ParStream installation directory tree is organized as follows:

Path Description
/opt/cisco/kinetic/parstream-database Cisco ParStream installation
directory, pointed to by the
$PARSTREAM_HOME
environment variable

/opt/cisco/kinetic/parstream-database/bin Executable binaries and scripts
/opt/cisco/kinetic/parstream—database/lib Shared libraries
/opt/cisco/kinetic/parstream-database/examples | Examples
/var/log/parstream Message logs

Administrative User ’parstreanr

This section provides parstream login and account information.

The Cisco ParStream Server installation procedure automatically creates a Linux user parstream if it
doesn’t exist. The user parstream is:

Page 11

2 Installation 2.9 Systemd

* The owner of the product installation in /opt/cisco/kinetic/parstream—-database

» The Administrative user of the Cisco ParStream database. The configuration and administration
tasks in the Cisco ParStream database environment, including starting and stopping the database
server, should be performed by this user.

Note:

The Cisco ParStream database processes should not be started with root user privileges.

Enabling Interactive Login for ‘parstream’

The installation procedure creates the user parstream without a pass phrase. You can start an
interactive shell session as parstream user with su command from root account. However, all other
logins as user parstream are disabled until a pass phrase is set.

You can set a pass phrase for the user parstream by running the following command as root:

$ passwd parstream

Useful Environment Variables

Define PARSTREAM_HOME which is mostly used by the example execution scripts:

export PARSTREAM HOME=/opt/cisco/kinetic/parstream-database

The PATH variable should be extended by the bin folder of the installation to be able to use commands
like pnc directly from your shell:

export PATH=/opt/cisco/kinetic/parstream-database/bin:$PATH

When executing the parstream-server
or parstream-importer manually, the LD_LIBRARY_PATH should be set as we use dynamic
linking for our executables:

export
LD_LIBRARY_PATH=/opt/cisco/kinetic/parstream-database/lib:$LD_LIBRARY_PATH

Systemd

Setting up systemd for Cisco ParStream

Before starting the Cisco ParStream server you need to configure the packaged parstream systemd
daemon.

To configure the daemon put the following into

Page 12

2.9 Systemd 2 Installation

/usr/lib/systemd/system/parstream-databaselsrvl.service.d/local.conf:

[Unit]
AssertPathExists=/psdata/tutorial
[Service]
WorkingDirectory=/psdata/tutorial

You can now control the service wusing systemctl using the servicename

parstream-database@srvl.

Use systemctl status to check its status.

* parstream-databasesrvl.service - Cisco ParStream database - srvlLoaded:
loaded (/usr/lib/systemd/system/parstream-database.service; disabled;
vendor preset: disabled)

Drop—-In:
/usr/lib/systemd/system/parstream-databasesrvl.service.d|-local.confActive:
inactive (dead)

Use systemctl start to start the server. If it fails to start it will not show you any errors - you need
to use systemctl status afterwards to check its status.

Use systemctl stop to stop the server.

Note:

If the initial start of the cluster fails, you have to clean-up any temporary files created for
the first failed cluster setup before you start the cluster initialization again. Beware that
this will remove all metadata and wipe all data from the server and is not recommened
once the system has been running correctly. (there are other options, which go beyond
this initial tutorial):

$ cd /psdata/tutorial
$ rm -rf journals

More information on systemd and how to use and configure it can be found under
https://www.freedesktop.org/software/systemd/man/systemd.html

Configuring the Cisco ParStream daemon to start automatically

The packaged systemd allows the server to be configured to automatically start and stop with the
system.

To register the service use the systemct1l enable command (it will not implicitly start the server):

$ systemctl enable parstream—-databasesrvl

Page 13

https://www.freedesktop.org/software/systemd/man/systemd.html

2 Installation 2.9 Systemd

Use systemctl disable to unregister the server (it will not implicitly stop the server).

Note:

If you stop the server using systemctl stop it will be restarted on the next reboot. If
you use systemd to start your server, you should only use systemctl to stop your parstream
server. If you use an ALTER SYSTEM CLUSTER shutdown command, the systemd service
will immediately restart the server, which might leave it in an undefined state.

Page 14

Getting Started Tutorial

This tutorial provides instructions for typical tasks used when operating a Cisco ParStream database.
It covers initial setup, loading data, running queries, and basic performance tuning optimizations.

Cisco ParStream Database Software

Before proceeding, ensure that Cisco ParStream is installed on a node or a cluster of nodes according
to this installation guide. That is:

+ Cisco
ParStream database software is installed in /opt/cisco/kinetic/parstream—-database
(see section 2.5, page 10),

» The installed software shall be owned by the user parstream (see section 2.8, page 11).
* Environment variables such as SPARSTREAM_HOME are set-up (see section 2.8.2, page 12).

Database Data Storage Location

Each Cisco ParStream server node must be configured with a storage volume for database data files.
This storage volume should be provisioned as recommended in section 2.4.2, page 8.

In this tutorial, we presume the databases will be created on a dedicated storage volume mounted as
/psdata. The user parstream must have read-write privileges in the directory /psdata.

Additional Packages Required to Run the Tutorial

Running this tutorial requires some Linux packages to be installed as follows:

CentOS7 / RHEL 7 / Oracle Linux 7

yum install python-argparse nc telnet PyGreSQL

General Directory Structure

Cisco ParStream uses the following directory layout for each instance. Data and journal directories
are created by Cisco ParStream if necessary.

Path Description

conf Directory containing configuration files

import Staging directory for the import process

journals Directory containing server metadata
partitions—[srvname] | Default directory for data stored inside Cisco ParStream

Page 15

3 Getting Started Tutorial

Create a Minimal Cluster Configuration

3.5 Create a Minimal Cluster Configuration

All of the following steps in this tutorial are performed by the user parstream. First, we need to

create the conf directory:

mkdir -p /psdata/tutorial/conf
Secondly, we create a configuration file called parstream. ini in this directory.
An example of a minimal configuration file for this tutorial is provided here:

clusterId = ParStreamTutorial
registrationPort = 9040

[server.srvl]
host = localhost
port = 9210

rank =1

datadir = partitions-srvl

[server.srv2]
rank = 2

host = localhost
port = 9220

datadir = partitions-srv2

[server.srv3]

rank = 3

host = localhost

port = 9230

datadir = partitions—-srv3

[import.impl]
host = localhost

leaderElectionPort = 9099

rank = 9999
sourcedir

import

targetdir

This configuration file defines:

partitions—-impl

« acluster ’ParStreamTutorial’ to manage all server and import nodes of this tutorial:

— All servers and importer use the common registration port °9040’.

— To start the database, we give 120 seconds time (this is especially necessary to start clusters
with multiple servers; as we only have one server here, you can set this value to 20).

* a couple of settings for each server, called ’srv1’, ’srv2’, and 'srv3’.

listening for client

connections (for the moment we need only the first server, but we provide all definitions so

that we can keep this INI file when we run the database with multiple servers)

— Each server has to define a host, i.e., a network address to bind to listen on.

Page 16

3.6 Provide a Table Definition 3 Getting Started Tutorial

— Each server has to define an initial port (internally servers use up to 5 ports starting with this
port).

— Each server needs its own rank, which is used to define, which server is the initially preferred
server for cluster management

— Each server defines where to keep the database files (the so-called partitions).

+ alocal data importer 'imp1’ that will automatically load CSV data files from the specified staging
directory
— Each importer has to define a ’leader election port’ for the cluster management and a rank.
— Each importer needs to define where to find the CSV files to import data from and a partition
directory used to temporarily store data while it is being transferred to the server(s).

Copy this template to your parstream.ini file.

Provide a Table Definition

To make the server configuration meaningfully complete, we need to define at least one table. Database
tables are defined by submitting CREATE TABLE commands (see section 24.2, page 278). For this
tutorial, we provide a simple CREATE TABLE statement:

CREATE TABLE measurements (sensor_id UINT64 INDEX EQUAL,
sensor_name VARSTRING (255) COMPRESSION HASHG64
INDEX EQUAL,
value float)
PARTITION BY sensor_id
DISTRIBUTE OVER sensor_id
IMPORT_FILE_PATTERN 'measure.x*';

Partitioning a table is a way of organizing data. Each unique value of a partitioning column will be
used to organize the data physically. Hence, filtering on a partitioning column will greatly reduce the
amount of data that needs to be inspected by Cisco ParStream.

The distribution over statement controls how the data is distributed among the cluster nodes. Each
value of the column will be assigned round-robin to a different cluster node. Therefore, it would be
ideal if the data is distributed evenly among all the different values of that column. For a more in-depth
explanation, see section 6.3, page 53.

Start the Cluster

The recommended way to start Cisco ParStream is to use the provided systemd scripts described
in section 2.9, page 12. Alternatively, you can start the Cisco ParStream server process from the
tutorial’s base directory with the following command:

/opt/cisco/kinetic/parstream—-database/bin/parstream-server <srvname>

Page 17

3 Getting Started Tutorial 3.7 Start the Cluster

To start a cluster for the first time, promptly start the Cisco ParStream servers on all cluster nodes
within 60 seconds (half of the default time set for option clusterInitTimeout).

So start the first server, 'srv1’:

cd /psdata/tutorial
/opt/cisco/kinetic/parstream-database/bin/parstream-server srvl

server 'srv2:

cd /psdata/tutorial
/opt/cisco/kinetic/parstream—-database/bin/parstream-server srv2

and server 'srv3':

cd /psdata/tutorial
/opt/cisco/kinetic/parstream-database/bin/parstream-server srv3

Wait until all log files contain lines that the cluster is successfully started, which take about two minutes
by default. During this period, the log files end with messages such as:

[2018-10-11T14:42:25] :srv1-144224:PROT-77065: Running cluster leader
detection (limited until 2015-Mar-13 14:44:25)

When the servers are up and running, you should see output similar to this:

[2018-10-11T14:43:25.321578] :srv1-144224:PROT-77066: Cluster leader detected:
leader = 'srvl' I AM THE LEADER (elapsed time = 00:01:00)

[2018-10-11T14:43:25.587458] :srv1-144224:INFO-77063: Registration of cluster
node 'srvl' done

[2018-10-11T14:43:39.456872] :srv1-144224:PROT-77018: Activating node srvl
[2018-10-11T14:43:39.758525] :srv1-144224:PROT-77011: Starting to listen on
port 9010 for client connections

and this:

[2018-10-11T14:42:34.654425] :srv2-144233:PROT-77065: Running cluster leader
detection (limited until 2015-Mar-13 14:44:34)

[2018-10-11T14:43:25.214547] :srv2-144233:PROT-77066: Cluster leader detected:
leader = 'srvl' (elapsed time = 00:00:51)

[2018-10-11T14:43:25.578975] :srv2-144233:INFO-77063: Registration of cluster
node 'srv2' done

[2018-10-11T14:43:35.133581]:srv2-144233:PROT-77093: Cluster follower
detected: follower = 'srv2' I AM A FOLLOWER

[2018-10-11T14:43:38.577258] :srv2-144233:PROT-77011: Starting to listen on
port 9020 for client connections

Page 18

3.8 View Processes and Open Ports 3 Getting Started Tutorial

As the messages indicate, the Cisco ParStream servers are up and ready for client connections.

View Processes and Open Ports

To view the processes, run the command:

ps x
PID TTY STAT TIME COMMAND
98440 pts/0 Sl 0:00
/opt/cisco/kinetic/parstream-database/bin/parstream-server srvl
98443 pts/0 S1 0:00
/opt/cisco/kinetic/parstream-database/bin/parstream-server srv2
98447 pts/0 S1 0:00

/opt/cisco/kinetic/parstream-database/bin/parstream-server srv3

You can also verify that the processes are listening on the defined ports by running the command:

lsof -1

If the 1sof command is not available on your platform, you might have to install the corresponding
package, which usually has the same name (e.g., calling yum install 1sof on CentOS).

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

parstream 98440 parstream ou IPv4 1229966 0t0 TCP %:9210 (LISTEN)
parstream 98440 parstream 10u IPv4 1229967 0t0 TCP *:9211 (LISTEN)
parstream 98443 parstream 6u IPv4d 1229966 0t0 TCP %x:9220 (LISTEN)
parstream 98443 parstream 10u 1IPv4 1229967 0t0 TCP %x:9221 (LISTEN)
parstream 98447 parstream 6u IPv4 1229966 0t0 TCP %:9230 (LISTEN)
parstream 98447 parstream 10u IPv4 1229967 0t0 TCP %:9231 (LISTEN)

* 9010 is the default listening port for pnc/netcat ASCII character connections of srv1
* 9011 is the default listening port for ODBC and JDBC client connections of srv1
* 9020 is the default listening port for pnc/netcat ASCII character connections of srv2
* 9021 is the default listening port for ODBC and JDBC client connections of srv2
* 9030 is the default listening port for pnc/netcat ASCII character connections of srv3
* 9031 is the default listening port for ODBC and JDBC client connections of srv3

Page 19

3 Getting Started Tutorial 3.9 Using Interactive SQL Utility

Using Interactive SQL Utility

Even though no data has been loaded into the database yet, you can start the Cisco ParStream
interactive SQL utility pnc and create some practice SQL queries to familiarize yourself with the
environment.

You can connect to any query node of the cluster to issue queries. To call pnc you have to pass a user
name. By default, a user parstreamn is created, so that pnc should be called as follows (passing
user name and port of srv1):

pnc -U parstream -p 9010

The output will be:

password:

Connecting to localhost:9010
Connection established.
Encoding: ASCII

After typing in your pass phrase, the prompt signals it is ready to submit commands or queries:

Cisco ParStream=>

For example, you can get the list of tables in the database by querying a system table:

Cisco ParStream=> SELECT table_name FROM ps_info_table;

Output:

#table_name

We receive an empty list because we did not create any table, yet.
Similarly, you can query for details about the current configuration:

Cisco ParStream=> SELECT * FROM ps_info_configuration;

To exit the pnc utility, either press Ctr1-D or type quit at the prompt:

Cisco ParStream=> quit;

Output:

Lost connection.

Page 20

3.10 Connect and View Cluster Information 3 Getting Started Tutorial

Connect and View Cluster Information

Connect to any node of the cluster, for example node ’'srv?’, with the pnc utility:

\$ pnc -U parstream -p 9010
password:

Connecting to localhost:9010
Connection established.
Encoding: ASCII

Cisco ParStream=>

and type at the prompt:

Cisco ParStream=> SELECT name, type, host, port, node_status, leader,
follower FROM ps_info_cluster_node ORDER BY port;

which if everything is up and running should print:

#name;type;host;port;node__status;leader;follower

"srvl"; "QUERY"; "localhost";9210; "active";1;0
"srv2";"QUERY"; "localhost";9220; "active";0;1
"srv3"; "QUERY"; "localhost";9230; "active";0;0
[0.001 s]

This confirms that all query nodes are active and online and that one node is the leader (i.e., currently
managing the cluster) and that one of the other two nodes is a so-called follower (backup for the
leader).

Defining a Table

Using pnc, we can create a first table. We can interactively submit a corresponding CREATE TABLE
command, but we can also call pnc again, processing the contents of a corresponding SQL file with
the table definition as input:

pnc -U parstream —-p 9010 < table.sqgl

After connecting and asking for the pass phrase again, the resulting output is:

CilsCO ParStream=> . .ttt it ettt et eeeeaeneeenaeens
Table 'measurements' successfully created.

If we repeat our query for a list of tables now:

Cisco ParStream=> SELECT table_name FROM ps_info_table;

we get the output:

#table _name

Page 21

3 Getting Started Tutorial 3.12 Start the Importer to Load Data

"measurements"

View the definitions of the columns in our sample table with the following query:
Cisco ParStream=> SELECT column_name, column_type, sgl_type, column_size

FROM ps_info_column WHERE table_name='measurements'
ORDER BY column_name;

Output:
#column__name;column__type;sql_type;column__size
"sensor_id"; "numeric"; "UINT64"; <NULL>

"sensor_name"; "numeric"; "VARSTRING"; 255
"value"; "numeric"; "FLOAT" ; <NULL>

You can also confirm that our sample table has no data:

Cisco ParStream=> SELECT COUNT (x) AS cnt FROM measurements;

Output:

#ent
0

Start the Importer to Load Data

We have configured the import data directory in /psdata/tutorial/conf/parstream.ini:

[import.impl]

sourcedir = /psdata/tutorial/import

Additionally, there are also importer-related parameters configured in each table definition:

CREATE TABLE measurements
(

)

PARTITION BY sensor_id
DISTRIBUTE OVER sensor_id
IMPORT_FILE_PATTERN 'measure.x';

Once started, the importer monitors the import directory for new data files with names matching
the specified TMPORT_FILE_PATTERN. In this tutorial, the importer 'imp1 is configured to

Page 22

3.12 Start the Importer to Load Data 3 Getting Started Tutorial

continuously load CSV files matching the 'measure. «’ pattern from any directory in or below
/psdata/tutorial/import into the table measurements.

You can create an example csv file and store it in the /psdata/tutorial/import directory with a
name starting with measure, e.g., measurement01.csv:

1; "temp-01';23.3
2; "humid-01"';13.23
3; '"vibr-01';25.23
1; 'temp-01';25.3
2; '"humid-01"';11.23
3; 'vibr-01';29.23

Verify that the directory contains the created CSV file and then start the importer as follows:

cd /psdata/tutorial
\$PARSTREAM_HOME /bin/parstream—-import impl

You should see output similar to this:

Import Process ID: 14989
Output i1s written to: /var/log/parstream/import-14987-20181013-1324.10g

Monitor the importer’s log file to view the output’s progress:
tail -f /var/log/parstream/import-14987-20181013-1324.1l0g

You should see a line stating the import of the csv files. If you had multiple csv files, the importer would
import them in packs of three files by default.

[2018-10-11T13:24:41.234123] :1impl1-132441-0:PROT-77061: **** import file:

".../import/measurements0l.csv"

After some time, the output will be:

[2018-10-11T13:26:10.142643] :impl-132441:PROT-77064: Distributing created partition
'1Z_2018-10-13T12:24:41_impl_0_PM'

[2018-10-11T13:26:10.647825] :impl1-132441:PROT-77064: Distributing created partition
'27_2018-10-13T12:24:41_impl_0_PM'

[2018-10-11T13:26:11.357618] :impl-132441:PROT-77064: Distributing created partition

'32_2018-10-13T12:24:41_impl_0_PM'
[2018-10-11T13:26:11.876354] :impl1-132441:PROT-77041: Will sleep for 6 seconds...

The example data is loaded entirely when you see repeated log file messages similar to this:

[2018-10-11T13:28:02.255485] :impl-132441:PROT-77046: Table measurements': no files
with pattern 'measure.x' found to import
[2018-10-11T13:28:02.678525] :impl1-132441:PROT-77041: Will sleep for 6 seconds...

Page 23

3 Getting Started Tutorial 3.13 Run Queries

You can stop the importer with ct r1-C. All successfully imported csv files will be moved to a hidden
.backup directory below the import directory. Additionally, all malformed rows that could not be
imported will be placed in a secondary hidden folder . rejected below the import directory.

Run Queries

To run SQL queries, start the Cisco ParStream interactive SQL utility pnc and at the prompt type:

Cisco ParStream=> SELECT COUNT (*) FROM measurements;

#auto__alias 1
6
[0.009 s]

This confirms the data was loaded correctly.

Stop the Cisco ParStream Server and the Cisco ParStream
Importer

Stop the Cisco ParStream Cluster

To stop the cluster, connect to any server via pnc and issue the following command:

Cisco ParStream=> ALTER SYSTEM CLUSTER SHUTDOWN;

Output:

ALTER OK

Or, just start pnc by typing this command only:

echo 'ALTER SYSTEM CLUSTER SHUTDOWN; ' | pnc -U parstream

Stop a single Cisco ParStream Server

To stop a single server, connect to the server via pnc and issue the following command:

Cisco ParStream=> ALTER SYSTEM NODE SHUTDOWN;

Output:

ALTER OK

Page 24

3.15 Cleanup the Cluster and Restore the Tutorial Environment 3 Getting Started Tutorial

Or, just start pnc by typing this command only:

echo 'ALTER SYSTEM NODE SHUTDOWN;' | pnc -U parstream

Stop the Cisco ParStream Importer

To stop the importer, stop the corresponding process by pressing Ctrl-C or killing the process with
kill pid.

Cleanup the Cluster and Restore the Tutorial Environment

To clean up the example and restore the tutorial environment:

Stop any running Cisco ParStream servers and the Cisco ParStream importer (see section 3.14,
page 24).
Delete the database that was created in previous steps:

rm -rf /psdata/tutorial

Page 25

Important Constraints Using Cisco ParStream

Cisco ParStream is optimized to provide incredible performance (especially speed) when analyzing a
huge amount of data, concurrently imported. These optimizations are only possible with a specific
design that leads to some constraints that might be surprising for ordinary database administrators
and users.

Some of these constraints violate the usual expectations in key concepts of databases and SQL. So,
everybody dealing with Cisco ParStream should know them to avoid buggy assumptions, design, or
computation.

This chapter lists these overall constraints, where common expectations are not met. Note also the
limitations and constraints for specific Cisco ParStream features, mentioned where the features are
introduced and described.

Important General Constraints with Data Types

» Special Values
All numeric types have special values to deal with NULL. These special values can’t be used as
ordinary values. Numeric values usually use the largest positive value as NULL.

For example:

— For atype 1NT8 the value 127 can’t be used as ordinary value.

— For atype uINT8 the value 255 can’t be used as ordinary value.

If the values may occur, use a type with a larger value range. See section 23.2, page 267 for details.
+ Empty Strings and NULL

Strings use the empty string internally as NULL. Thus, imported empty strings become NULL and
are or have to be handled as NULL in queries.

See section 23.5.1, page 273 for details.
* BLOBS
A Cisco ParStream BLOB is technically a CLOB.

Important General Constraints with SQL Commands

e UNIQUE and PRIMARY KEY
Columns marked with UNIQUE or PRIMARY KEY do not guarantee uniqueness of the data. The
keywords are a hint that the Cisco ParStream engine can assume that data is unique, but this
assumption has to be ensured by the user importing data. Thus, UNIQUE means “assume that the
data is unique.”
The reason for this behavior is that checking, whether a value already exists in the database, would
take too long and slow down imports significantly.

¢ DEFAULT

Page 26

4.3 Important General Constraints when Importing Data 4 Important Constraints Using Cisco ParStream

DEFAULT values for columns are only effective when columns are added, or when streaming import
is used.
CSV imports and INSERT INTO imports currently require also to pass data for columns with default
values.

Important General Constraints when Importing Data

* No imports of rows containing only NULL/empty values
Cisco ParStream never imports data, where all values of all columns/fields are NULL or empty
strings.
See section 10.2, page 89 for details.

* Imports and UNIQUE and PRIMARY KEY
As mentioned above, the same value can be imported even if a column is marked as UNTIQUE or
PRIMARY KEY.
The reason for this behavior is that checking, whether a value already exists in the database, would
take too long and slow down imports significantly.

Data Loss Prevention

The persistent storage of data is one of the most crucial tasks for a database system. Once the
database signals that data has been imported correctly, the database has to make certain that data
has been stored in such a way that even in the case of a complete power outage, the data will be
available to the user in the future. Therefore, the database system stores the data in non-volatile
memory, e.9., a hard drive. Unfortunately, this is a costly operation and over the course of time, many
optimizations and caching layers were introduced to alleviate the long waiting time for disk access.
Hence, we need to take a closer look at these caching layers to understand when data is really stored
persistently and which steps we have to take to guarantee a smooth operation.

Every write operation by a process uses an API of the operating system. The operating system
in turn signals back when it has stored the data. The operating system caches multiple writes in
memory to reorder and write them more efficiently to disk, even though it has already signaled to the
process that the data was written successfully. From the processes point of view, the data has been
written to persistent storage and the operating system will fulfill that contract even if the process is
killed, quits, or crashes. However, if the operating system loses power (or a hard reset is performed),
the contract can no longer be fulfilled and data is lost. Therefore, we recommend equipping your
servers with Uninterruptable Power Supply (UPS) units that bridge the short amount of time of the
power loss and if that is not possible, initiate a proper shutdown of the system. The API of the operating
system provides different options to prevent data loss in the case of an interrupted service by allowing
a process to signal the operating system to circumvent the caching and directly write the data to disk.
One of these options are the fsync operations, which only return once the data is persisted. This is
a costly operation and can be enabled in Cisco ParStream using the “synchronizeFilesystemWrites”
config option. However, beneath the operating system are even more caching layers that play a crucial

Page 27

4 Important Constraints Using Cisco ParStream 4.4 Data Loss Prevention

role in persisting data correctly.

Following the caching of the operating system, the data is sent to the RAID or hard drive controller
which in turn usually provides a caching to improve write rates. There are different kinds of hard drive
caches that behave differently in the case of a power loss. We will only focus on one property that is
most important for our analysis: Battery Backed Write Cache. If the RAID controller is equipped with a
battery, all write operations that are cached will be written to the disk even if the system loses power.
We recommend to only use battery backed RAID controllers. If your RAID controller is not equipped
with a battery for the write cache, all the data still contained in the write cache will be lost in the case
of a power outage. Therefore, you need to disable the write cache in such RAID controllers at the cost
of performance.

The persistent storage should be set up as a RAID to reduce the risk of data loss in case of disk
failure. Each RAID mode offers different performance and fault tolerance characteristics. Additionally,
the system administrator should monitor the remaining disk size regularly to react early to the risk of
running out of storage space.

Page 28

Database Design

The name ParStream reflects the main concepts of the Cisco ParStream system:

» Par - from the word parallel, representing the nature of parallel executions of a single query
« Stream - for streamed query execution, similar to an assembly line or pipelining within a CPU

This chapter describes some of the design concepts and features of Cisco ParStream uses to produce
high performance for huge amounts of data. Understanding these features is useful for you, a
sophisticated user of Cisco ParStream. These include:

* Management of its data in partitions
* Management of schema changes with metadata versions
» The fundamental concept of bitmap indices

Data Partitioning

Cisco ParStream physically splits the data of a table into data partitions. Partitioning allows new data
can be appended to a table and allows a single query to be executed by multiple CPU cores.

There are two types of partitions, logical and physical:

+ Logical partitions are distinct parts of the same table. Combined, all logical partitions of a single
table comprise the complete table data.

» Physical partitions are used to manage and manipulate logical partitions. In fact, a logical partition
can consist of multiple physical partitions. Some advantages of multiple physical partitions are:

— Each import creates separated physical partitions. If data of a logical partition is imported in
multiple steps (with different imports and/or multiple times), it will produce multiple physical
partitions.

— If a logical partition is too large to be managed as one physical partition, you can split it by
configuring the limit of physical partitions.

— Temporarily, you might need multiple physical partitions to merge or replace data. In that case,
the physical partitions reflecting the current state are activated while the other physical partitions
are not activated.

The way Cisco ParStream creates logical partitions is data dependent instead of "basically randomly"
splitting data according to its size. In fact, the different partitions of one table rarely have the same
size.

Having partitions with different size sounds counterproductive to query latency; however, this approach
is an important improvement in data processing speed. By analyzing queries, Cisco ParStream can
exclude partitions in query processing that do not match the SELECT clause in an SQL statement.
For example, if you have data about humans, and most queries ask for data about men, partitioning
by gender would make a lot of sense, so that the women’s data partition need not be analyzed. In
addition, the compression ratio of a partition is usually better if the data within it is somehow related.
For example: Men tend to be taller than women, so partitioning by gender produces two data groups

Page 29

5 Database Design 5.1 Data Partitioning

with people whose heights are closer together and are thus more compressible than those with random
partitioning.

You can specify as many partitioning columns as you want using the PARTITION BY clause:

CREATE TABLE MyTable

dt DATE INDEX RANGE INDEX_GRANULARITY DAY,
user VARSTRING COMPRESSION HASH64 INDEX EQUAL,

)
PARTITION BY dt, user

You can even use expressions as partition criterion:

CREATE TABLE MyTable

(
num UINT32 INDEX EQUAL,
name VARSTRING COMPRESSION HASH64 INDEX EQUAL,

PARTITION BY (num MOD 25), name

The number of partitions created by that partitioning column is the number of distinct values in that
column.

Although there are no technical limits to the number of partitioning columns, it is reasonable to limit
their number to 2-15, depending on the number of distinct values of the used columns: Using a column
representing floating point values is less desirable than using a Boolean or integral column. If only
using Boolean columns, with 20 partitioning columns you create about one million partitions (2°20).

Currently, Cisco ParStream requires the database administrator (DBA) to choose suitable partitioning
criteria. Inefficient partitioning criteria can significantly increase the query response time, or decrease
the performance of the Cisco ParStream import.

Ideally,

+ there should be at least as many partitions as there are CPU cores,

+ the partitions should be of similar size, and

» there should be no partitions that contain less than a few thousand rows.

Because continuously appending data to a table is an intended usage scenario for Cisco ParStream,
there is a mechanism that aggregates small partitions into larger partitions at regular intervals.

Information:

For tables with few data rows, logical data partitioning can be disabled.

Page 30

5.1 Data Partitioning 5 Database Design

Merging Partitions

When new data is appended to a table, this data is always put into new physical data partitions, even if
logical data partitions with the same values in partitioning columns already exist. To avoid generating
more and more physical data partitions, Cisco ParStream can merge physical data partitions that
belong to the same logical partition at regular intervals.

Cisco ParStream has two default merges: hourly, that merges new partitions that were created over
the course of the previous hour (24 hourly merges per day), and daily, that merges partitions that were
created over the course of the previous day.

The merge intervals are just abstractions and are configurable. Thus, an “hourly” merge might happen
after 5 minutes or 10 hours. You can also have “weekly” and “monthly” merges. So, you have 4 level of
configurable merges.

Please note that for Java Streaming Import (see chapter 19, page 216) partitions are even merged
every minute. This is because external sources might create partitions every second, which might
result into poor performance if these partitions are only merged after one hour.

You can limit the maximum number of rows of a partition, partitionMaxRows (see section 13.2.1,
page 126) to avoid getting partitions that are too large. For a merge, the criteria for
partitionMaxRows is the number of rows in the source partitions. That ensures that the merge
result is never split up into multiple partitions and avoids merges that may be partially performed or
even skipped.

During a merge, the data can be transformed or purged using ETL merge statements. The number
of rows can be reduced by combining multiple rows using a GROUP BY clause (see section 14.2,
page 154 for an example). Using this, merges are never skipped and might result in one source
partition being replaced by a (possibly smaller) transformed partition.

Partition merge commands leave behind unused partition directories. These are deleted shortly after
the merge as soon as a rollback of the merge is no longer possible.

See chapter 14, page 151 for further details about merging partitions.

Partitioning by Functions

It is possible to specify a function instead of a real column for a partitioning value. This is especially
useful for timestamp columns where you only want to use part of the date and time information. The
example below uses only the month part of a timestamp for the partitioning.

CREATE TABLE MyTable

(
dt DATE INDEX RANGE INDEX_GRANULARITY DAY,
user_group UINT32 INDEX EQUAL,

)
PARTITION BY DATE_PART ('month',dt), user_group

You can use all available SQL functions and expressions. Note that you have to use parentheses for
an expression:

Page 31

5 Database Design 5.1 Data Partitioning

CREATE TABLE MyTable

(
lon DOUBLE INDEX EQUAL INDEX_ BIN_COUNT 360 INDEX BIN_MIN O INDEX BIN_MAX

360,

lat DOUBLE INDEX EQUAL INDEX_ BIN_COUNT 180 INDEX_BIN_MIN -90 INDEX_BIN_MAX
90,

point_in_time UINT32 INDEX EQUAL,

)
PARTITION BY (lon MOD 90), (lat MOD 45), (point_in_time MOD 43800)

Note:

* A partitioning value that is calculated by a function or expression is not allowed as distribution
column.

* A column appearing as function argument in a "partitions" expression must be unique within that
expression. Otherwise the partitioning behavior is undefined.

Partitions Layout

Cisco ParStream data is stored in regular files in the filesystem. In fact, each physical partition is
stored as a directory with a path and filename according to the current partitioning.

Path of Partition Directories

For example, if you import data

* into datadir . /partitions

* into table Hotels

* logically partitioned by
— a hashed string for the column city
— aBoolean value (integer 0 or 1) for column seaview
— a hashed string for the column bedtype

each import creates a partition directory, as in this example:

./partitions/Hotels/12129079445040/0/12622392800185Z2_2012-09-05T15:09:04_first_42_PM

In this instance, the path has the following elements:
» the name of the targetdir/datadir.
+ the table name (Hotels)
» the “path” of the logical partition values:
— 12129079445040 as hash value for the city
— 0 as for the Boolean value for the “seaview”
— 12622392800185 as hash value for the “bedtype”

Page 32

5.1 Data Partitioning 5 Database Design

s az_
+ followed by the timestamp of the creation 2012-09-05T15:09: 04 of the physical partition,
« followed by the node that created the physical partition (name of the importing or merging process)

+ followed by the sequence number, an increasing number greater than 0 for an imported partition
(or 0 if this partition was created by merge)

+ and a final suffix for the partition type (here: _pwMm).
If you later import additional data for the same logical partition, you will get another directory for

the corresponding physical partition having the same path with a different timestamp and a different
sequence number.

If you get multiple physical partitions due to size limits (i.e., partitions that have the same import date

and the same import process), the name of the partition directory is extended by “_1”, “_2", and so on.

If no logical partitioning is defined, the physical partition files would be named something like:

./partitions/Hotels/Z_2012-09-05T15:09:04_first_43_PM

That is, all data of an import would be stored in one physical partition having the timestamp and
importing process as (directory) name.

Partition File Naming Conventions

Imported partitions might have one of two partition name suffixes:

+ _PM, stands for “minute” partitions, which are initially created by CSV imports and INSERT INTO
(see chapter 10, page 88).

+ _Ps stands for “seconds” partitions, which is used if data is imported via Java Streaming Imports
(see chapter 19, page 216).

Different partition name suffixes exist because of Cisco ParStream’s merge concept (see section 5.1.1,
page 31). Partition merges can merge:

* “seconds” partitions to “minute” partitions,
* “seconds” and “minute” partitions to “hour” partitions,

* “seconds”, “minute”, and “hour” partitions to “day” partitions,
» and analogously for “week” and “month” partitions combining data of a “week” or a “month”.

See section 14.1, page 151 for details.

Note that the names “minute”, “hour”, etc. are just pure abstractions for initial imports and merged
partitions. You can define when merges from one level to the next apply and therefore indirectly define
your understanding of an “hour” or “day”.

Merged partitions might also have a filename ending with other suffixes, such as _PH for “minute
partitions” that have been merged into “hour partitions”. In that case the name before the suffix is the
name of the node that caused the merge. The following suffixes are provided:

Page 33

5 Database Design

Partition Suffix

5.2 Schema/Metadata Versioning

Meaning

_PS
_PM

_PH
_PD
_PW
_PF

initial “seconds” partitions (only created by streaming imports)

“minute” partitions which are initially created by CSV imports and INSERT
INTO, and are the result of merging _Ps partitions

“hour” partitions (merged _Ps and _PM partitions)

“day” partitions (merged _pPs/_pM/_PH partitions)

“week” partitions (merged _pPs/_pPM/_PH/_PD partitions)

“‘month” or “final” partitions (merged _ps/_pM/_PH/_PD/_PW partitions)

The sequence number will always be 0 for merged partitions.

Contents of Partition Directories

Inside partition directories, you can have several files on different levels:

Filename Meaning

partition.smd | general partition information (status, number of rows, versions)

colName column store file of the partition (name according to column name)

*.pbi bitmap index files (prefix has column name)

*.sbi bitmap index (old format)

* .map value map for variable length data such as non-hashed strings and multivalues
*.hs hashed string lookup data

x.hsm hashed string lookup map

nrows.bm

file to deal with rows having only NULL values

Note that the system table ps_info_mapped_file (see section 26.4, page 320) lets you see which
of these files is currently mapped into the database.

Partition State

A partition can have one of the following states:

Partition State

Meaning

incomplete
active

The partition gets created and is not ready for usage yet.
The partition is active

disabled-by-merge | The partition is disabled by a merge (see section 5.1.1, page 31)
disabled-by-unload | The partition is disabled by an unload command (see section 16.4.2,

offline

page 204)
The partition is not activated yet

Schema/Metadata Versioning

Cisco ParStream can modify its schema by calling statements such as CREATE TABLE and ALTER

TABLE to add and

modify tables (see chapter 24, page 277) or by calling CREATE FUNCTION to

register user-defined functionality (see section 20, page 232). These modifications illustrate the
versioning concept of the Cisco ParStream schema/metadata.

Page 34

5.3 Bitmap Indices 5 Database Design

To handle different schema states, Cisco ParStream internally uses metadata versions. Currently,
these versions use integral numbers which increase with each schema modification. Thus, the first
table definition, Cisco ParStream’s metadata version has the value 1, with a seconds table definition
the metadata version becomes 2, after adding a column to a table, the metadata version becomes 3,
and so on.

Note that the fact that currently integral values for metadata versions are used, might change over
time. Therefore, if exported, the version is exported as string.

The schema and all its versions are stored in journals, located in journal directories, and are defined
by the global option journaldir (see section 13.2.1, page 122).

If data is written into partitions, the metadata version used is stored within the partitions.
Note that the version stored for a partition is the version with the last definition for the table.

* You can query the metadata version of existing tables with the system table ps_info_table (see
section 26.3, page 309).

* You can query the metadata version of loaded partitions with the system table
ps_info_partition (see section 26.4, page 316).

Bitmap Indices

Cisco ParStream uses bitmap indices, which are stored into the physical partitions as index files
(e.g., with suffix .pbi or .sbi, see section 5.1.3, page 34). This is one of the basic features Cisco
ParStream uses to produce its excellent performance.

For a general introduction of the bitmap index concept, see, for example,
http://en.wikipedia.org/wiki/Bitmap_index. That page also provides links to get additional
information.

This section presents a few simple examples, which are important to aid in understanding other topics
in this manual. You can use the bitmap optimizations by specifying a specific index. See section 24.2.6,
page 293 for details.

Equal Index

The equal bitmap index is suited for queries that use one or a small number of values. The indices of
different fields can be combined.

Page 35

http://en.wikipedia.org/wiki/Bitmap_index

5 Database Design

o
=

field1, field2 | a

a, 1

b, 2

c, 3

a, 4

b, 1

a, 2

c, 3

OINOO AW —

a, 4

O

a, 1

10

a, 2

11

b, 3

12

c, 4

13

d, 1

14

e 2

X

X

Now let’s look what happens on queries on this index type.

If we select one index:

SELECT % WHERE fieldl

the index b is used to select rows 2, 5, 11:

"b";2
"b"; 1
"b",'?)

But if we select two indices:

SELECT % WHERE fieldl = 'b'

the AND of the two indices is computed:

Page 36

row b 2 result
1

2 X X X

3

4

5 X

6 X

7

8

AND field2

5.3 Bitmap Indices

5.3 Bitmap Indices

9
10 X
11 X

12

13

14 X

and row 2 is returned:

"b";2

Range Index

5 Database Design

The range bitmap index works the same as the equal indices but with the columns representing values
within a range:

row field1, field2 | <=a | <=b |<=C | <=d | <=¢€
1 a, 1 X X X X
2 b, 2 X X X X
3 c 3 X X X
4 a, 4 X X X
5 b, 1 X X X
6 a, 2 X X X
7 c 3 X X X
8 a, 4 X X X X
9 a, 1 X X X X
10 a, 2 X X X X
11 b, 3 X X X X
12 c 4 X X X
13 d, 1 X X
14 e 2 X

Binned Index

Two or more values are binned into one index. The distribution of values into one index can be equally
distributed or custom defined. Custom defined bins should be used if you are always querying the
same values.

row field1, field2 b,c |d,e |1 2
1 a, 1 X
2 b, 2 X X

Page 37

5 Database Design

3 c,3 X
4 a, 4 X

5 b, 1 X
6 a, 2 X

7 c, 3 X
8 a, 4

9 a, 1

10 a, 2

11 b, 3

12 c, 4

13 d, 1

14 e 2

Sorting criteria

5.3 Bitmap Indices

An index for unsorted data is larger than an index for sorted data. This effect is influenced by the
selected compression algorithm. But even using a very simple RLE (Run Length Encoding) produces
a much smaller index on sorted data. You can sort on additional fields, but the effect on the index is

not as big.
g’;"v) N el field2 | a
1 a, 1 X
9 a, 1 X
6 a, 2 X
10 a, 2 X
4 a, 4 X
8 a, 4 X
5 b, 1
2 b, 2
11 b, 3
3 c,3
7 c, 3
12 c, 4
13 d, 1
14 e 2

See section 15.4, page 165 for an approach to use this benefit.

Examples for Bitmap Indices

IPv4 Address

The IPv4 Address (see http://en.wikipedia.org/wiki/Ipv4) is a 32-bit, unsigned integer value.

Page 38

http://en.wikipedia.org/wiki/Ipv4

5.3 Bitmap Indices 5 Database Design

Cisco ParStream allows you to import IPv4 Addresses in several formats:

Import as 4 uint16/uint8 fields according to the dot notation

Warning:

If one or more parts of the address can be set to 255 (0xFF), uint16 must be used, because
UINT8_MAX is used as NULL inside Cisco ParStream.

Query examples: Find all rows with an IP address

SELECT x FROM ip WHERE ip_1=192 AND ip_2=168 AND ip_3=178 AND ip_4=32;

Import as uint64/uint32

Warning:
If the address 255.255.255.255 (0OxFFFFFFFF) is needed as a representation, uint64 must
be used, because UINT32_ MAX is used as NULL inside Cisco ParStream.
Sales Volume
If you have a large number of companies stored inside your table and use an equal index, you will get

one index per value inside your data. However, you use limiting values in your query most of the time.

Query examples: Selecting all companies where the sales volume is greater or equal to the limiting
value of 10,000:

SELECT % FROM company WHERE sales_volume >= 10000;

Because your query hits exactly a limiting value, Cisco ParStream does an AND on two bitmap indices
(first >= 10000 => < 20000, second: >= 20000) and can return the result set after one bitmap
operation. If you have more indices configured, additional bitmap operations are necessary.

Selecting all companies where the sales volume is greater or equal to the non limiting value

SELECT % FROM company WHERE sales_volume >= 15000;

The same code is executed, but with an additional filter step which excludes the values < 15000.

Page 39

Clustering and Distribution

Cisco ParStream is a database designed for big data scenarios. This means that it must be able to
scale and to be highly available:

» Scalability can be reached by being able to distribute requests over multiple servers and providing
load balancing.
» High availability can be reached by providing backup servers and providing failover support.

Both features are supported by the “clustering’ abilities of Cisco ParStream.

High Availability and Scalability

To support high availability and scalability, Cisco ParStream uses the following concepts:

» Because any Cisco ParStream database provides the ability to run with multiple servers, you can
have both failover and load balancing, where imports and merges are even possible when nodes
are temporarily offline. You can even add new servers (cluster nodes) at runtime.

» Partition Distribution lets you define how values are distributed in the cluster according to the value
of a specific column. This provides both failover and load balancing.

Note the following general remarks:

» High availability can be achieved by using partition distribution lists with backup servers. Depending
on how many redundant backup servers are used for each partition hash, one or more query-slaves
can become inoperative without affecting the availability. Nevertheless, the query performance will
begin to degrade, if the optimal parallelism cannot be achieved with the remaining servers.

» Replication of data can be achieved by using partition distribution lists with backup servers.
Depending on how many redundant backup servers for each partition hash are used, one or
more query-slaves can become inoperative without affecting the availability.

 For the configuration of partition distribution lists, see section 6.3, page 53.

Running Cisco Parstream with Multiple Server Nodes

* Enhanced redundancy and fault tolerance:
As long as at least half of the nodes are operational, the cluster will work continuously. This means,
it can import data and answer queries. However, queries can be processed successfully only if the
operational nodes have all partitions that are required to answer that query.

+ Continuous import:
Even when some cluster nodes are down, it is now possible to continuously import data as long as
at least one target node for every partition distribution value is still online. If an importer finds that
for a given partition distribution value there is no distribution target node left online, it will temporarily
stop importing and wait until one of the offline nodes rejoins the cluster.

+ Automatic resynchronization of nodes after a downtime:

Page 40

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

When a node receiving partitions from an importer fails, it will miss data which was imported during
its downtime. Therefore, before the node is reintegrated into the cluster, it will be automatically
synchronized, i.e., it downloads the missing data partitions from one of the other nodes. This is
automatically initiated by the leader node.

Adding new servers/nodes:

After the initial setup and while the cluster is up and running, you can add new nodes to distribute
newly imported data over more servers.

Note the limitations at the end of this section (see section 6.2.6, page 52).

See section A.1, page 392 for a complete example.

Terminology and Basic Concepts

Note the following basic concepts and terminology for clustering:

A cluster consists of cluster nodes or, in this context, just nodes, which represent a logical process
instance in the cluster that can fulfill query requests, import data, and/or manage the cluster. Nodes
can run on the same or different hosts, but when they use the same host the server nodes have to
use different ports (note that up to 5 consecutive ports are used; see section 13.3.1, page 135).
A cluster node can either be

— aquery node (server), which you can use to send query statements, or

— an import node (importer), which you can use to import new data.

A cluster node can’t be both.

Each cluster node can have different states:

— offline: The node is not available for cluster management or for queries.

— online: The node is available for cluster management but not for queries.

This state is used to allow cluster nodes to synchronize data and metadata so that they are in a
valid state, when they become active

— active: The node is available for both cluster management and for queries.

At any time a cluster has one leader node, also referred to as just leader, which organizes the
cluster:

— Informs all nodes about the current state of the cluster

— Initializes merges (see section 14.1, page 152)

— Deals with partially failed imports or failed merges

The functionality of the leader node is not used to query data or to import data (unless the data
import partially failed). Normal queries and imports are completely distributed and scale well.

A query node can be a follower node, also referred to as just a follower, if it is used as fallback
for the leader. Any online query node can become a follower. The minimum number of follower
nodes that must exist to run the cluster is n/2 query nodes.

The question which query node becomes a leader (or follower) is determined according to a
so-called rank, which is an integral value. The lower the rank, the more likely the node is to become
a leader. Initially, the query node with the lowest rank becomes the leader and the nodes with the

Page 41

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

next lowest ranks become followers. If due to a failure other nodes become leaders or followers
they keep those roles even if the failed nodes become available again.

» All nodes, in the cluster, including import nodes, must have a
— unique name
— unique rank

» The query nodes of the cluster are usually specified and elected during the initial start-up of the
cluster. After the cluster is initialized the set of query nodes in a cluster is rather stable, though you
may have “known” nodes that are (temporarily) unavailable.

* New query nodes can be added while the cluster is running. This does not lead to a redistribution
of existing data. Instead, newly imported data will be distributed to this node, provided new values
get imported and dynamic partition distribution is used.

* New import nodes can be added/used at any time after the cluster is initialized and running.

Several options allow to influence the behavior of clusters. See section 13.2.2, page 130 for details.

Setting-Up and Starting a Cluster

To start a cluster you need the necessary configurations (see section 6.2.3, page 45) and then have to
start all query nodes (servers) within a given timeframe. During this initial timeframe all nodes get in
contact with each other to find out which leader node manages the cluster (as long it is online). This is
described in the next subsection.

Note that in the cluster example (see section A.1, page 392) there is a shell script run_servers. sh,
which you can use as example to start and run multiple servers of a cluster. It starts multiple servers,
checks whether and when they are up and running, prints possible errors, and stops the servers with
<return> or Ctrl-C. Note that stopping the servers is done just by killing them all with ki11 -9, which
you should not do in your mission-critical database control scripts (see section 6.2.6, page 51). See
section 9.2, page 78 for how to use user authentication in a cluster.

Leader Election

As just introduced as terminology and basic concept, the cluster management uses a “leader-follower”
approach:

* A leader manages the relevant cluster state data and propagates it to the followers.
» A follower will take over in case of the failure of the leader.

That is, while the cluster is in operation, exactly one of the nodes is the leader. The leader is
responsible for managing cluster metadata and distributing it to the other nodes, for dealing with
partially failed imports and for merges. For redundancy purposes, the leader has exactly n/2 followers
which replicate all the metadata so that they can take over when the leader goes down, where n is the
known number of query nodes in the cluster.

In order to determine the leader of a cluster the option rank (see section 13.3.1, page 134 and
section 13.4.2, page 147) is used. When the cluster starts for the very first time, a leader election
takes place. During this election phase, each node announces its rank to all other nodes. Then an

Page 42

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

elimination algorithm is used: If two nodes compare their rank, the node with the higher rank gets
eliminated for the leader election. This is done until the leader election phase ends.

The following figure shows what happens when a cluster node is started:

based on registered
start
» register nodes cluster nodes
node
elect leader and followers

\ J
|

cluster initialization
option: clusterInitTimeout

initialize node states activate
(read schema and data) | node

Thus, in each started query node you have the following phase:

1. The first period is used to let the nodes register to each other. Thus, a node sends out and
receives registration requests. Each node with a rank higher than another node gets eliminated,
so that finally the leader node becomes clear.

2. Then, each node registers itself to the leader node and the leader distributes the initial state of
the cluster.

3. Then, each cluster node has time to establish its local state.

4. Finally, the cluster node gets activated.

You can control, how long the first two phases, which are used for cluster initialization, take with the
global option clusterInitTimeout (see section 13.2.2, page 131).

The following figure shows how multiple cluster nodes register to each other happens when a cluster
node is started:

Page 43

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

based on registered

register nodes cluster nodes

o le,ma,,anm,,,
Lttt

initialize node states | activate
(read schema and data) | node

start
nodel

start) ezl o s initialize node states activate
de2 register nodes cluster nodes d <ch dd d
nace elect leader and followers (read schema and data) noce
start szl s initialize node states activate
i d
node3 rEzs E elect |:;:Setf;:3 fzsllnwers (read schema and data) node

b b
L

interval to register a (query) node:
option: ¢laimlLeadershipMessageInterval

Thus, to initially start a cluster:

* You have to start all servers (query nodes) within the first half of clusterInitTimeout
period so that they have time to register to each other. Thus, this option should be set to a value
that is twice the time you need to start all cluster nodes plus some seconds for the handshake.

* Option clusterInitTimeout also applies as default to cluster reinitializations (cluster restarts).
However, you can specify an alternative period with option clusterReinitTimeout for such a
reinitialization (see section 6.2.2, page 45).

* You can control the interval for sending out registration messages to the other nodes with the
option claimlLeadershipMessageInterval. The default value is every five Seconds with a
maximum of an eighth of the whole cluster initialization period to ensure that at least four registration
messages go out during the registration phase.

As written, the node with the lowest rank will initially become the leader. However, if a leader goes
offline/down, another node will become the leader and will remain to be the leader until it gets offline.
Thus, the rank is only a hint for becoming the leader, but any query node can become a leader and
then remains to be a leader as long as it is online. For this reason, it can happen that not the query
node with the lowest rank is the leader. This strategy was chosen to minimize leader changes.

Again, please note, that the configured rank must be unique within a cluster. If the rank is ambiguous
or not specified, you can’t start a node inside the cluster. This also applies to import nodes.

Page 44

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

Cluster Reinitialization and Leader Re-Election

If the leader is no longer available, leader re-election is triggered, which roughly uses the
same mechanisms as described above. However, unlike the first initialization the actual current
cluster nodes are already known by the former leader and all followers. For this reason, you
can give clusterReinitTimeout (see section 13.2.2, page 131) a smaller duration than for
clusterInitTimeout (the default is that both intervals are equal).

During re-election the preference is not to change leadership (even if the former leader was not the
initial leader). Thus, leadership only changes if the leader is not available.

To prevent from a “split brain” situation, where two leaders in a cluster evolve, a new leader can only
be successfully elected if more than half of the query nodes of the cluster accept the new leader. This
means that

A cluster reinitialization or leader re-election can only be successful if at least n/2 + 1 query nodes
are available, where n is the number of known query nodes.

» For a cluster with 2 query nodes, reinitialization or re-election can only be successful, if both nodes
are available.

If leader re-election fails (not enough nodes available after the first half of clusterReinitTimeout
seconds), another trial is triggered. Thus, leader re-election is always performed in an endless loop
until it is successful.

Runtime Split-Brain Prevention

As explained above a leader will only establish when a majority of nodes registers with it after the
election. This way only one leader can be established in this fashion. However it is possible that an
established leader loses contact with a number of nodes such that it no longer has a majority of nodes
registered with it. Subsequently a new leader could establish with a new majority, while the old leader
is still running. To prevent this a running leader will automatically resign leadership when it no longer
has contact to a majority of nodes (including itself).

Furthermore it has to be ensured that during a change of leadership no leader-relevant information
such as distribution tables, sync states, etc. is lost. To ensure this the leader always chooses exactly
n/2 nodes to be followers, such that this information always resides on a majority of nodes. Together
with itself this means that this information resides on a majority of nodes, and thus the majority
establishing the new leader will always contain a node with the newest version of this information
which will then become leader.

Configuration of the Clusters

Activating Clustering

By default, clustering is always enabled for Cisco ParStream servers. You have to start each process
(server and importer) with the same cluster ID (unique in your network), which is usually defined in an
corresponding INI file:

clusterId = MyTestCluster

Page 45

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

A server or importer can not connect with a server having a different ID. (Importers will wait forever
when the cluster ID is wrong, expecting/hoping that, because no server is available at the moment,
this will change soon.)

Next, you have to configure a registration port:

registrationPort = 9040

The leader will open this TCP port to accept connections from the other nodes.
There are a lot of additional options you can set, which are described in section 13.2.2, page 130.

Note that for very small clusters having only one or two query nodes, or if (almost) no redundancy is
required, you have to set a couple of options so that operations are not (temporarily) blocked due to
missing query nodes.

Update Redundancy

In case of clusters where the redundancy is higher than 1, you have to set the global option
minUpdateRedundancy (see section 13.2.2, page 130). For example, to have all data on 2 nodes
(one redundant node), you have to set:

minUpdateRedundancy = 2

The default minimum update redundancy is 1.

This option influences the merge and import behavior. If the affected distribution group has less nodes
available than the number specified in minUpdateRedundancy, then

* merges are skipped and

» imports are blocked until enough nodes are available again (a retry of the import is scheduled after
1,2, 4,8, ... seconds).

Specify Servers

For each query node, add a server section to your INI files. The section must be named
[server.servername] and must contain at least the node’s rank, hostname, and port number.

For example:

[server.srvl]

rank = 30

port = 9010

host = castor.example.com
datadir = ./partitions

[server.srv2]

rank = 40
port = 9015
host = pollux.example.com

datadir = ./partitions

Page 46

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

Make sure that each node has its own distinct rank, otherwise the leader election will fail.

Also note that servers sharing the same directory for their data results in undefined behavior. Thus,
you have to ensure that each server has its own physical database directory. You can do that by

» running the servers on different hosts (as in the example above) or
» by specifying different directories as datadir.

Specify Importers

For each import node, in addition to general cluster settings you have to configure a section named
[import . importername] as follows:

[import.impl]

host = calypso.example.com
sourcedir = ./csv
targetdir = ./import

rank = 99

Note again that even import nodes need a unique rank, although they never can become a leader.

Note also that you don’t have to start and/or register importers during the initial cluster setup or leader
election. You can start importers (with or without a new rank) at any time the cluster is up and running.

Configuring the Leader Election Ports

For the leader election, Cisco ParStream technically establishes communication channels between all
cluster nodes using TCP ports.

For this, all nodes in the cluster need a common unique registration port, which is used by each leader
to manage the cluster. It should be set using the global option registrationPort. For example:

registrationPort = 9040

In addition, each node needs an individual “leaderElectionPort” for the leader election. For servers,
port+4 will be used (see section 13.3.1, page 135).

For importers, you have to set it as leaderElectionPort:

[import.impl]
leaderElectionPort = 4712

Note the following when using TCP channels for leader election:

* In this mode a lot of initial communication channels are opened during the leader election so that
each node can communication with other nodes.

» For this reason, all processes have to know all ports of all servers in this mode. That is, if you
start your processes with passing the ports via commandline options, you have to specify all ports
in all processes.

* Running two clusters with the same ports (but different cluster IDs) is not possible.

Page 47

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

For example, when starting a cluster with servers srv1, srv2, and srv3, all servers have to know all
ports of all other servers:

parstream-server srvl —--clusterId=MyClusterId
——server.srvl.port=8855 —-—-server.srv2.port=8860 —--server.srv3.port=8865
——-registrationPort=9040

parstream-server srv2 —--clusterId=MyClusterId
——server.srvl.port=8855 —--server.srv2.port=8860 —--server.srv3.port=8865
——-registrationPort=9040

parstream-server srv3 —--clusterId=MyClusterId
—-—server.srvl.port=8855 —--server.srv2.port=8860 —--server.srv3.port=8865
—-registrationPort=9040

In addition, each importer has to know all ports of all servers and define a leaderElectionPort:

parstream—import impl --clusterId=MyClusterId
——server.srvl.port=8855 —--server.srv2.port=8860 —--server.srv3.port=8865
——registrationPort=9040 --leaderElectionPort=8890

A corresponding INI file shared by all nodes might contain the following rows:

clusterId = MyClusterId
registrationPort = 9040

[server.srvl]
port = 8855

[server.srv2]
port = 8860

[server.srv3]
port = 8865

[import.impl]
leaderElectionPort = 8890

Configuring the Table Distribution

For each table, the distribution must be configured as described in Section “Partition Distribution” (see
section 6.3, page 53).

Page 48

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

State of a Cluster

Note that a Cisco ParStream database using a cluster with distributed data and failover support has a
distributed state. In fact the state of the database as a whole consists out of:

The INI files of each query node and each import node, containing basic configurations.
The partitions distributed over and used by all query nodes, containing all imported data.

The journal files of each query node and each import node, containing the (distributed) schema.
They contain all table definitions and modifications, distribution lists, and data necessary to
synchronize nodes that were temporarily offline.

The files are located in a node specific sub-directory of the journal directory, which is specified
by the journaldir option (see section 13.2.1, page 122). Thus, multiple nodes can share the
same journal directory. The default value for the journaldir optionis ./journals. Journal
sub-directories might have a prefix such as import.

To be able to query the state of a cluster, a couple of system tables are provided:

ps_info_cluster_node (see section 26.4, page 317
allows to list all nodes, their type, and whether they are online, active, leader, or follower (see
section 6.2.1, page 41).

For example:

SELECT name, host, port, type, leader, follower, active
FROM ps_info_cluster_node
ORDER BY leader DESC, follower DESC, type DESC;

might have the following output:

#name;host;port;type;leader;follower;active

4

"srvl";"localhost";9110; "query";1;

0
"srv2";"localhost";9120; "query";0;1;
"srv3";"localhost";9130; "query";0;1;
0
0

4

"srv4";"localhost";9140; "query";0;
"srv5";"localhost";9150; "query";0;

I = S S S

4

"impl";"";0; "import";0;0;1

Note that during a (re-)election the result might be something like (after establishing a connection,
being online is enough to get these information):

#name;host;port;type;leader;follower;active
"srvl1l";"localhost";9110; "query";0;0;0
"srv2";"localhost";9120; "query";0;0;0
"srv3";"localhost";9130; "query";0;0;0
"srv4";"localhost";9140; "query";0;0;0
"srv5";"localhost";9150; "query";0;0;0
"impl";"";0; "import";0;0;0

ps_info_partition_sync_backlog (see section 26.4, page 318)
allows to query from the leader information about open (re-)synchronizations.

Page 49

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

For example:

SELECT node_name, type,table_name,relative_path FROM
ps_info_partition_sync_backlog;

might have the following output:

#node__name;type;table__name;relative_path

"srv3"; "import"; "Hotels";"0/108654481144649289627_2013-09-09T17:45:34_1impl_PM"
"srv3"; "import"; "Hotels";"0/729522743034618511172_2013-09-09T17:45:34_1impl_PM"
"srv3"; "import"; "Hotels";"2/5905983059134328757_2013-09-09T17:45:34_impl_PM"
"srv3"; "import"; "Hotels";"2/63325776791519476477Z_2013-09-09T17:45:34_impl_PM"
"srv3"; "import"; "Hotels";"2/9217869177449822067_2013-09-09T17:45:34_impl_PM"
"srv3"; "import"; "Hotels";"4/171493889857097260017_2013-09-09T17:45:34_1impl_PM"

signaling that node “srv3” has open synchronizations for an import of table “Hotels” with the listed
physical partitions.
An empty result signals no open synchronizations.
Note, that you have to send this request to the leader. Otherwise, the result will be empty although
open synchronizations exist or not up-to-date."

* ps_info_partition_distribution (see section 26.4, page 323)
allows to query from the leader (or a follower) information about which value gets distributed to
which node.

Adding Cluster Nodes

You can add new query nodes while the cluster is running. This does not lead to a redistribution of
existing data. Instead, newly imported data will be distributed to this node, provided new values get
imported and dynamic partition distribution is used.

To add/register a new node, you have to start the new node as usual with the command
parstream-server, but with the option --registerNode For example, if you want to add srv4
as new cluster node start this server with the following command:

start server srv4, registering it as new cluster node
parstream-server —-registerNode srv4

Of course, as usual for the new server/node the corresponding INI file settings have to be provided.

Note that this call is a pure registration. After the registration, the process will immediately terminate.
If the registration was successful, the exit status of the registration is 0 (EXIT_SUCCESS). You can
find further information in the log output, such as (the detailed wording might change):

[2013-11-04T13:56:40] :srv4-135640:INFO(77063) Registration of cluster node
'srv4' done

[2013-11-04T13:56:40] : srv4-135640:PROT (77018) node 'srv4' registered in
cluster 'cluster_xyz', terminate now

"You can also send the request to other nodes. However, followers might return a state that is not up-to-date.

Page 50

6.2 Running Cisco Parstream with Multiple Server Nodes 6 Clustering and Distribution

Note that the new node gets only registered, not started. To use the server in the cluster, you have to
start it again this time as usual (without -—registerNode) to let it become active and online:

start server for node srv4 after registration
parstream-server srv4

Note the following limitations:

* Adding a node to a cluster that has a table with EVERYWHERE distribution (see section 6.3.1,
page 58) is currently not supported.

Stopping, Restarting, and Upgrading a Cluster

Cluster Control Commands

The following subsection describes how to maintain a cluster. For this purpose cluster control
commands are used which are described in section 16.4.1, page 200.

Stopping and Restarting a Cluster

To stop and restart a running cluster, it is necessary to ensure that no inconsistencies are created or
unnecessary cluster reorganizations happen (for example by stopping the leader before other nodes,
so that a leader re-election is initiated).

The usual way to shut down a cluster is the high-level cluster shutdown command

ALTER SYSTEM CLUSTER SHUTDOWN;

This is roughly equivalent to the following manual sequence:

1. Find out, which nodes are leader and followers:

—— find out leader:

SELECT name, host, port FROM ps_info_cluster_node
WHERE leader = 1;

—— find out followers:

SELECT name, host, port FROM ps_info_cluster_node
WHERE follower = 1;

2. Stop import(er)s.
3. Stop query nodes that are neither leaders nor followers.
4. Stop query nodes that are followers.

5. Stop the leader node.
To restart the cluster, you should use the opposite order:

1. Restart the former leader node.

Page 51

6 Clustering and Distribution 6.2 Running Cisco Parstream with Multiple Server Nodes

2. Restart the query nodes that have been followers.
3. Restart all remaining query nodes.

4. Restart importers.

Checking for Open Synchronizations

In order to check for open synchronizations, you should send

SELECT % from ps_info_partition_sync_backlog;

to the leader. As long as there are entries in the table, there are open synchronizations left to be
processed. If you want to make sure that there are no more open synchronizations, you should
deactivate imports and merges and wait until ps_info_partition_sync_backlog has no more
entries.

Backup a Cluster

As explained in section 6.2.4, page 49, you should always backup all the INI files, the partitions, and
the journal files if you want to save the state of the cluster. In addition, we recommend to stop the
cluster at least partially so that no merges are running (see section 16.4.1, page 201), no imports are
running (see section 16.4.1, page 200), and all open synchronizations are done (see section 6.2.6,
page 52),

ALTER SYSTEM CLUSTER DISABLE MERGE;
ALTER SYSTEM CLUSTER DISABLE IMPORT;

—— should return zero before backup of the node is started
SELECT COUNT (*) FROM ps_info_partition_sync_backlog GROUP BY node_name;

Upgrading a Cluster

Sometimes it is necessary to upgrade a Cisco ParStream cluster to a new version. For performing a
version upgrade in a cluster environment, please perform the following steps.

+ Stop the cluster (see section 6.2.6, page 51).
+ Install the new Cisco ParStream package.

+ Make any necessary configuration changes (Check the incompatibilities section in the Release
notes).

» Restart the cluster (see section 6.2.6, page 51).

Limitations for Clustering

Note the following limitations for the clustering of Cisco ParStream databases:

Page 52

6.3 Partition Distribution 6 Clustering and Distribution

« Currently, the set of cluster nodes should usually be defined at the first startup. While you can add
nodes later on, you can’t dynamically remove nodes (nodes can only be down, which means that
they are still considered for new data, distribution values, and merges).

» The relocation of cluster nodes to a different host requires manual activity i.e. to adjust the
configured host names. You especially have to transfer the state (partitions and journal files)

» To re-setup a cluster from scratch you have to remove both partition and journal files/directories.

+ The partition directories of different servers can’t be shared. Thus, you have to ensure that the
partition directories (option datadir) are on different hosts or have different names.

Partition Distribution

Cisco ParStream provides load balancing in form of partition distribution.

It means that the data gets partitioned across multiple servers/nodes so that each server/node is
responsible for a different set of data. A query sent to one server, say srv1, will try to distribute
the request over the servers assigned as primary (or fallback) query nodes according to the current
distribution table. The other servers send their partial results to srv1, where it is consolidated into the
final result, which is send back to the client.

In Cisco ParStream, the values are distributed according to the current distribution table, that each
node internally has. Each table has exactly one column for which it manages a list of query nodes,
which defines where the data is stored for each possible value for that column. All lists for all tables
compose the distribution table. For any query sent to a query node, the query node hands the
request over to the primary or (if not available) to the fallback nodes, which are listed for the value in
the distribution table.

The distribution table is a dynamic table that grows with every new value not already registered,
appending its distribution (primary and fallback nodes) determined by a shifting round robin algorithm.

In addition, note the following:
» The distribution criterion has to be one of the table’s partitioning columns.

» Currently, only integral and date/time column types are allowed as distribution values. See
section 6.3.1, page 59 for details about how to distribute over (non-hashed) strings and other

types.
» Itis not possible to configure a function partition value as distribution criterion. However you can
use an ETL column instead.

» ltis possible to configure more than one server for a given value of the distribution criterion. The
first configured server is the primary server for this value. All other servers are backup servers
for this partition. If the primary server is down, one of the backup servers will be used for this
partition. The querying client will not take notice of this fallback situation. If the query node the
client connects to cannot find a query node for a partition (i.e. neither the primary node the backup
nodes are available), the request cannot be fulfilled and an error is send to the client.

The following subsections explain these features in detail with typical examples. See chapter 24,
page 277 for details of the exact syntax.

Page 53

6 Clustering and Distribution 6.3 Partition Distribution

Dynamic Partition Distribution

You can distribute your partitions dynamically. That means, that you don’t have to specify for each
possible value the nodes where it gets distributed. Instead, new values, for which the distribution is
not clear yet, are distributed according to a certain policy (which is described below).

To be able to use dynamic partition distribution when switching from older Cisco ParStream versions
you can define an initial static distribution for a limited set of values.

You can specify a DISTRIBUTION clause in one of the following formats:

* DISTRIBUTE OVER col
distribution according to column col with 1 fallback node

* DISTRIBUTE OVER col WITH REDUNDANCY num
distributed according to column col with num-1 fallback nodes

* DISTRIBUTE OVER col WITH INITIAL DISTRIBUTION dlist
distributed according to column col with 1 fallback node and an initial static distribution dlist

* DISTRIBUTE OVER col WITH REDUNDANCY num WITH INITIAL DISTRIBUTION dlist
distributed according to column col with num-1 fallback nodes and an initial static distribution dlist

* DISTRIBUTE OVER col BY COLOCATION WITH tab
distributed according to the distribution that the value of column col would have in table tab

* DISTRIBUTE EVERYWHERE
distributed over all query nodes

If the REDUNDANCY is not specified, the default value 2 is used, so that we have 1 fallback node. The
maximum redundancy allowed is 9.

In addition you can explicitly specify the default policy for new values, BY ROUND_ROBIN, which isn’t
necessary yet because this is the only policy yet.

Note the following restrictions:

+ If old imported data violates any internal distribution rules, you run into undefined behavior. Note
that you can query the existing distribution policy (see section 6.3.1, page 59).

The clause will be explained in details in the following subsections. See section 27.7.2, page 365 for
the grammar specified in Backus-Naur-Form (BNF).

Note that you can use this approach to benefit from the Separation Aware Execution optimizations
(see section 15.15, page 186 for details).

Simple Dynamic Distribution

The simple example for a dynamic partition distribution is just to specify the column, which is used as
distribution criterion.

For example:

CREATE TABLE MyTable (
zip INT16 ... INDEX EQUAL ...

)
PARTITION BY zip,

Page 54

6.3 Partition Distribution 6 Clustering and Distribution
DISTRIBUTE OVER zip

Note the following:

» The distribution column (specified with DISTRIBUTE OVER) has to be a partition column (specified
in the column list for PARTITION BY) that has to have an EQUAL index.

» Currently, only integral and date/time types are supported. See section 6.3.1, page 59 for details
about how to distribute over strings and date/time types.

Note that for performance reasons the column to distribute over should have a small/limited number
of possible values. For this reason, you might use an ETL column as distribution column. For
example:

CREATE TABLE MyTable (
userid UINT32,

usergroup UINT64 INDEX EQUAL CSV_COLUMN ETL

)
PARTITION BY usergroup, zip
DISTRIBUTE OVER usergroup

ETL (SELECT userid MOD 20 AS usergroup
FROM CSVFETCH (MyTable)

)

By default, the distribution uses a default redundancy of 2, which means that 1 fallback node is
required. You can change this default by specifying a different REDUNDANCY:

CREATE TABLE MyTable (
zip INT16 ... INDEX EQUAL ...

)
PARTITION BY zip,
DISTRIBUTE OVER zip WITH REDUNDANCY 3

Note that the value specified as REDUNDANCY has to be possible. If you specify a REDUNDANCY
of 3, an import requires 3 query nodes. Thus, the redundancy should not exceed the number of
query nodes in the cluster. In fact, if you have a cluster with only 1 query node, you have to set the
REDUNDANCY to 1.

Note also that the importer blocks until at least one of the assigned distribution nodes for a value
encountered during a CSV import is available.

Details of the Distribution Policy

To provide distributions for new values, Cisco ParStream uses an approach that should provide failover
and load balancing without much internal effort. The principal algorithm is as follows:

Page 55

6 Clustering and Distribution 6.3 Partition Distribution

» If the redundancy covers all existing query nodes all permutations of distribution lists are used. For
example, if we have a redundancy of 3 with 3 servers, each new distribution value gets the next
entry of the following list:

srvl srv2 srv3
srv2 srv3 srvl
srv3 srvl srv2
srvl srv3 srv2
srv3 srv2 srvl
srv2 srvl srv3

» If the redundancy is smaller than the current number of nodes, we iterate a window of
numberOfRedundant servers over the list of all servers and use all permutations in that window.
That is, if we have 8 servers and a redundancy of 3, then we iterate with the following window states
of 3 servers over all 8 servers:

srvl srv2 srv3
srv2 srv3 srvé
srv3 srv4 srvd
srv4d srv5 srvé
srvb srv6 srv7
srv6 srv7 srv8
srv7 srv8 srvl
srv8 srvl srv2

and use all 6 permutations in each window (as demonstrated by the following figure):

That is, for a specific number of servers, we have
numberOfServers * redundancy!
different distribution list entries (here: 8 » 3x2x1, thus 48).

Note that the possible distribution lists for new values change, when the number of nodes change.
For example, the window [srvl srv2 srv4] is possible with 4 nodes, but not with 5 or more
nodes. Thus, with 4 nodes new distributions might use this window, while after adding an additional
node this window won’t be used again for new distribution values. As a consequence, the number of
different distribution lists can be higher with the number of nodes over time raised to 8 than with a
stable number of 8 nodes from the beginning.

Page 56

6.3 Partition Distribution 6 Clustering and Distribution

INITIAL Distributions

You can specify an initial static distribution for a limited set of values. This feature is especially provided
to be able to deal with data imported in older versions where only a static distribution was possible. In
addition, this allows to re-initialize the whole database with dynamic distribution with partitions that
were already distributed (to query the existing distribution, see section 6.3.1, page 59).

To specify an initial static distribution, you have to use an INITIAL DISTRIBUTION clause. In that
clause you can specify the query nodes, data should be distributed to, for each value.

For example:

CREATE TABLE MyTable (
zip INT16 ... INDEX EQUAL

)

PARTITION BY zip,
DISTRIBUTE OVER zip WITH INITIAL DISTRIBUTION (
0 TO srvl,srv2,srv3

4

TO srv2,srv3,srvl),

TO srv3,srvl,srv2),

TO srv2,srvl,srv3),

()
(1)
(2)
(3 TO srvl,srv3,srv2),
(4)
(5)

TO srv3,srv2,srvl),

Note that in the lists of servers you should always use all permutations to avoid bad load balance
situations when a server is not available. This ensures that during a failure of one server, the requests
are equally distributed among all other servers. For example, if with the configuration above srvi1
fails, the requests are distributed to srv2 for value 0 and to srv3 for value 3. A setup such as:

DISTRIBUTE OVER zip WITH INITIAL DISTRIBUTION (
—— bad distribution !
TO srvl,srv2,srv3

4

(0)

(1 TO srv2,srv3,srvl),
(2 TO srv3,srvl,srv2),
(3 TO srvl,srv2,srv3),
(4 TO srv2,srv3,srvl),
(5)

TO srv3,srvl,srv2),

would be a lot worse because with srv1 not being available all requests are distributed to srv2 only.

You can assign the same nodes for multiple values (but again keep in mind to specify all
permutations):

CREATE TABLE MyTable (
zip INT16 ... INDEX EQUAL

Page 57

6 Clustering and Distribution 6.3 Partition Distribution

PARTITION BY zip,

DISTRIBUTE OVER zip WITH INITIAL DISTRIBUTION (

0,6,12,18 TO srvl,srv2,srv3
1,7,13,19 TO srv2,srv3,srvl
2,8,14, TO srv3,srvl,srv2
3,9,15 TO srvl,srv2,srv3
4,10,16 TO srv2,srv3,srvl
5,11,17 TO srv3,srvl,srv2

4
4
14
4

4

()
()
()
()
()
()

4

Note that the initial distribution is independent from the specified or default redundancy. That is, the
previous statement would lead to a redundancy of 3 for each value from 1 to 19 and to a redundancy
of 2 for all new values.

To specify a redundancy of 3 for all values, you have to specify:

CREATE TABLE MyTable (
zip INT16 ... INDEX EQUAL

)

PARTITION BY zip,

DISTRIBUTE OVER zip WITH REDUNDANCY 3 WITH INITIAL DISTRIBUTION (
(0,3,6,9,12,15,18 TO srvl,srv2,srv3),
(1,4,7,10,13,16,19 TO srv2,srv3,srvl),
(2,5,8,11,14,17 TO srv3,srvl,srv2),

EVERYWHERE Distributions

You can specify that a distribution provides full redundancy. That is, all data is distributed over all
nodes.

For example:

CREATE TABLE MyTable (
zip INT16 ... INDEX EQUAL

)
PARTITION BY zip,
DISTRIBUTE EVERYWHERE

This feature will especially be useful when small tables are used in JOINs of distributed tables. By
replicating the data to all query nodes, these small tables are always locally available when queries for
the distributed table are processed. This leads to a better performance because the whole query is
processed inside one node.

Note that adding a node to a cluster (see section 6.2.5, page 50) that has a table with EVERYWHERE
distribution is currently not supported.

Page 58

6.3 Partition Distribution 6 Clustering and Distribution

COLOCATION Distributions

You can also specify that a distribution according to one column in one table has to follow the
distribution of another column in another table. This is useful for JOINs where it is an performance
improvement that typically the data of the joined tables is co-located on the same query node.

For example:

CREATE TABLE MyTablel (
no INT16 ... INDEX EQUAL ...

)
PARTITION BY no,
DISTRIBUTE OVER no

CREATE TABLE MyTable2 (
zip INT16 ... INDEX EQUAL ...

)
PARTITION BY zip,
DISTRIBUTE OVER zip BY COLOCATION WITH MyTablel

Here, the values of MyTable?2 are distributed according to the distribution the value of zip would
have as distribution value of table MyTablel. Thatis, the zip code 34500 in MyTable2 has the same
distribution as the value 34500 as no would have in MyTablel.

Note:
» The distribution columns of both tables have to have the same type.

* The basic table referred to with COLOCATION WITH has to be a table that has a directly specified
round robin policy specified with DISTRIBUTE OVER. That is, the table referred to is not allowed to
have a DISTRIBUTE EVERYWHERE Of DISTRIBUTE ... BY COLOCATION distribution policy.
However, a basic table might have multiple tables that co-locate their distribution with it.

Querying the Current Distribution

You can query the current distribution via the system tables ps_info_table (for the distribution
configuration) and ps_info_partition_distribution (for the distribution of the imported
values). See section 26.4, page 323 for details.

Distribution over String and Date/Time Values

There are restrictions regarding the type of the distributed column: You need an integral or date/time
type. However, indirectly you can still use other types for distribution. Note also that for hashed string
you have to pass NULL instead of the empty string as distribution value.

To be able to use other types, the general approach is to provide an ETL column (see section 10.6,
page 104), which is filled by a function transforming another import column into an integral value. If you

Page 59

6 Clustering and Distribution 6.3 Partition Distribution

need a limited value range, you can also use MOD. Note however, that you can’t MOD for non-numeric
types (except DATE and SHORTDATE).

Thus, you have the following options:

» For non-hashed strings (type VARSTRING without compression HASH64) you should provide a
ETL statement calling HASH64 () (see section 25, page 303) for the string value.
For example:

CREATE TABLE Hotels

(
City VARSTRING,

distr UINT64 INDEX EQUAL CSV_COLUMN ETL,

)
PARTITION BY distr, Hotel
DISTRIBUTE OVER distr

ETL (
SELECT HASH64 (City) AS distr
FROM CSVFETCH (Hotels)

)

If you need a limited value range, you have to call MOD on the value returned by HASHG64 ().
For example:

CREATE TABLE Hotels

(
City VARSTRING,

distr UINT64 INDEX EQUAL CSV_COLUMN ETL,

)
PARTITION BY distr, Hotel

DISTRIBUTE OVER distr

ETL (
SELECT HASH64 (City) MOD 7 AS distr
FROM CSVFETCH (Hotels)

)

» For floating-point types, you can call TRUNC () or FLOOR () (and MOD).

» For hashed strings (type VARSTRING with compression HASH64) you also can use the HASHG4 ()
function, which yields the hash value of the string (see section 25, page 303). But if you need a
limited value, you can call MOD on the hashed string directly.

Page 60

Dynamic Columns

This section describes the usage of the Cisco ParStream database feature for dealing with dynamic
columns.

Corresponding example code can be found in examples/dynamiccolumns (see section A.3,
page 392).

Motivation for Dynamic Columns

One problem of databases running against a fixed schema is that adding a new column is a significant
change. When tracking data and states, what or how something is being measured might change over
time. For example, sensors might be added, enabled, modified, disabled, or removed. Having a static
column for each device or point of measurement would lead to a lot of schema changes.

A better approach to have a specific column for each specific point of measurement is to collect data
in a generic way, having a key identifying what or how something was measured and a corresponding
value. However, the SQL expressions to analyze data for such a generic approach become very
complex, using JOINs and other features.

For this reason, Cisco ParStream provides an approach to capture/import data in a raw generic format,
while allowing to map raw data to Dynamic Columns when analyzing/processing data.

For example, you can measure raw data over time as follows:

Timestamp Region | ID Attribute | val_uint8 | val_int64 | val_double
2015-07-07 12:00:00 | 1 us16x | power 77

2015-07-07 12:00:00 | 1 us771 | humidity | 67

2015-07-07 12:00:00 | 1 us771 | pressure 1234.3
2015-07-07 12:01:02 | 2 ca224 | rpm 86500

2015-07-07 12:02:22 | 1 us771 | humidity | 64

2015-07-07 12:02:22 | 1 us771 | pressure 12371
2015-07-07 12:02:22 | 1 us771 | rpm 86508

2015-07-07 12:02:22 | 2 ca224 | rpm 86433

2015-07-07 12:03:44 | 1 us771 | pressure 1240.7
2015-07-07 12:03:44 | 2 ca224 | rpm 86622

2015-07-07 12:04:00 | 1 usi16x | power 99

2015-07-07 12:04:00 | 1 us990 | humidity | 63

2015-07-07 12:04:00 | 1 usi16y | power 98

Here, for certain points in time, we then can specify

» the Region code and ID of a sensor, representing where, how, and/or by what a value was
measured,

* the Attribute that was measured, and

» the value the attribute had when it was measured, using different value columns for different data
types.

Page 61

7 Dynamic Columns

7.2 Using Dynamic Columns

Using the dynamic columns feature, you can deal with such a raw table as if it would have the different
attributes imported as individual columns:

Timestamp Region | ID Humidity | Power | Pressure | RPM
2015-07-07 12:00:00.000 | 1 us16x 77

2015-07-07 12:00:00.000 | 1 us771 | 67 1234.3
2015-07-07 12:01:02.000 | 2 caz224 86500
2015-07-07 12:02:22.000 | 1 us771 | 64 1237.1 86508
2015-07-07 12:02:22.000 | 2 caz224 86433
2015-07-07 12:03:44.000 | 1 us771 1240.7
2015-07-07 12:03:44.000 | 2 ca224 86622
2015-07-07 12:04:00.000 | 1 us16x 99

2015-07-07 12:04:00.000 | 1 us16y 98

2015-07-07 12:04:00.000 | 1 us990 | 63

The resulting “dynamic table” has a column for each attribute with the corresponding type that was
used to store the values. Rows with values for different attributes of the same timepoint and sensor

are combined.

Similarly, if you just care for the values of a specific region, you can get:

Timestamp Region | Humidity | Power | Pressure | RPM
2015-07-07 12:00:00.000 | 1 67 77 1234.3
2015-07-07 12:01:02.000 | 2 86500
2015-07-07 12:02:22.000 | 1 64 1237.1 86508
2015-07-07 12:02:22.000 | 2 86433
2015-07-07 12:03:44.000 | 1 1240.7
2015-07-07 12:03:44.000 | 2 86622
2015-07-07 12:04:00.000 | 1 63 99

2015-07-07 12:04:00.000 | 1 63 98

As you can see, the first two rows were joined because they have the same region and distinct
attributes. In fact, because two different sensors in the same region did yield different values at the
same time, we have one joined row in the dynamic table for region “1” of 12:00:00. In addition, the
last three rows were combined into two rows because we join both values for power with the value for
humidity.

These dynamic tables are created on the fly as temporary tables and can be used as a table in arbitrary
queries, which makes handling of this generic approach a lot easier.

Using Dynamic Columns

To be able to use the dynamic columns approach, you have to
+ Define a generic raw table that can be used with dynamic columns.

» Use the DYNAMIC_COLUMNS operator to use the corresponding “dynamic table,” temporarily
generated from the source table and its data.

Page 62

7.2 Using Dynamic Columns 7 Dynamic Columns

Defining Generic Raw Tables for the Dynamic Columns Approach

To define a generic table that can be used for the dynamic columns feature, the table has to have the
following special constraints:

There must be exactly one column marked with DYNAMIC_COLUMNS_KEY, defining the dynamic
columns key. This column stores the name that is used as column name when using the table as
dynamic table. The column type must be a hashed string.

There must be one or more columns marked with DYNAMIC_COLUMNS_VALUE, that can be used
for dynamic columns values associated with the dynamic columns key. Here, multiple value
columns are possible to be able to handle different value types, index configurations. etc. Thus, for
each possible value type there should be a corresponding value column. However, multiple keys
can share the same value column, if the value type is the same.

In addition, the following constraints apply:

The table must have an ORDER BY clause, which specifies at least one physical column, which is
neither a dynamic columns key nor a dynamic columns value. Cisco ParStream uses the columns
listed there as JOIN_COLUMNS in a dynamic table to be able to decide how to construct the logical
rows inside a dynamic columns operator (without such join columns, Cisco ParStream would always
combine all rows with all other rows, which would not be useful).

The first ORDER BY column should be THE most coarse-grained attribute you want to analyze
over, because this column always has to be used in the JOIN_COLUMNS of a dynamic table using
this raw table. In most cases, it will be a timestamp attribute if you aggregate data over time (as
shown in the initial example on page 62 in Section 7.2).

Here is a first example, specifying a table for the motivating example above (with slightly more technical
names such as ts instead of Timestamp):

CREATE TABLE RawData
(
ts TIMESTAMP NOT NULL INDEX EQUAL,
region UINT64 NOT NULL INDEX EQUAL,
id VARSTRING (255) NOT NULL COMPRESSION HASH64 SEPARATED BY region INDEX
EQUAL,
attribute VARSTRING(255) NOT NULL COMPRESSION HASH64 INDEX EQUAL
DYNAMIC_COLUMNS_KEY,
val_uint8 UINT8 INDEX EQUAL DYNAMIC_COLUMNS_VALUE,
val_int64 INT64 INDEX EQUAL DYNAMIC_COLUMNS_VALUE,
val_double DOUBLE INDEX EQUAL DYNAMIC_COLUMNS_VALUE,
)
PARTITION BY region, id
DISTRIBUTE OVER region
ORDER BY ts, id
ETL (SELECT LOWER (attribute) AS attribute FROM CSVFETCH (RawData))

Here, over time (defined in ts), we collect and analyze different data, identified by the name in the
key column attribute. The data is provided by a sensor identified with id. These sensors are
located in different regions, defined by integral values, which are used to distribute the data over

Page 63

7 Dynamic Columns 7.2 Using Dynamic Columns

different servers. For the values of the dynamic columns, we provide three possible types: one for
small unsigned integral values, one for large signed integral values, and one for floating-point values.

Note the following:

Any source table for the dynamic columns feature is still an ordinary table that can be used
directly as if the DYNAMIC_COLUMNS_KEY and DYNAMIC_COLUMNS_VALUE attributes would not
have been set.

There is only one DYNAMIC_COLUMNS_KEY column allowed per table.

The DYNAMIC_COLUMNS_KEY column must be defined as VARSTRING with COMPRESSION
HASH64 INDEX EQUAL. In addition, the following constraints for key columns apply:

— The column may not be a primary key.

— The column may not be defined as UNTQUE column.

— The column may not be defined as sk1Ped column.

We strongly suggest that the DYNAMIC_COLUMNS_KEY column has a NOT NULL constraint to
ensure that no rows without any key may get imported.

We also suggest that the columns to partition or join over are also NOT NULL, because joining with
NULL values sometimes results into surprising results.

The values provided for the dynamic columns keys should be valid column names and differ not
only regarding case-sensitivity. Ideally, they should follow a common convention such as using
uppercase or lowercase letters only (see section 7.2.2, page 68 for details). Otherwise, we have a
mixture of case-sensitive values that define different columns although column names are normally
case-insensitive. This results into undefined behavior when using dynamic columns queries (see
below).

To ensure that no different spelling of the same attribute causes this undefined behavior, we strongly
recommend to use an ETL statement that converts all attributes to lowercase or uppercase letters
as it is done in this example:

ETL (SELECT LOWER (attribute) AS attribute FROM CSVFETCH (RawData))

(See section 10.6, page 105 for details of modifying ETL statements).
A DYNAMIC_COLUMNS_VALUE column must not have a default value other than NULL. For this
reason, it also must not have a NOT NULL constraint.

Neither a DYNAMIC_COLUMNS_KEY nor a DYNAMIC_COLUMNS_VALUE column may be used as
partitioning columns (used in the PARTITION BY clause of the raw table) or as first field in the
ORDER BY clause of the raw table.

Using Dynamic Tables

To be able to use tables supporting the dynamic columns approach as dynamic tables (in the mode
where the generic key entries are handled as columns), you have to use the DYNAMIC_COLUMNS
operator. It yields a dynamic table as temporary table, which can be used like any other table.
However, when using the DYNAMTC_COLUMNS operator you have to specify some attributes and some
restrictions apply.

Page 64

7.2 Using Dynamic Columns 7 Dynamic Columns

For example, with the following SQL expression, you can convert the raw table defined above to a
dynamic table having all values assigned to a specific timestamp:

DYNAMIC_COLUMNS (ON RawData PARTITION BY id JOIN_COLUMNS (ts))

Here, we create a dynamic table based on the data in RawData, which is partitioned by column
id, and join the data in each partition over column ts. Because the raw table has the distribution
column region, the PARTITION BY clause is hecessary (using the distributed column or a column
separated by it). The JOIN_COLUMNS clause has to have at least the first column in the ORDER BY
clause of the raw table. The resulting table will have all columns used in the PARTITION BY and the
JOIN_COLUMNS clauses plus the columns derived from the dynamic column key values.

As aresult, a query such as

SELECT x FROM DYNAMIC_COLUMNS (ON RawData PARTITION BY id JOIN_COLUMNS (ts))
ORDER BY ts

will generate a table having a column for each attribute imported as dynamic columns keys. In this
table, for each point in time, the rows will have the corresponding values (or NULL).

For example (according to the motivating example above, see section 7.1, page 61), if you import the
following data (e.g., via CSV import):

ts; region; id; attribute; values (different types)

2015-07-07 12:00:00; 01; uslé6x; power ;77; ;
2015-07-07 12:00:00; 01; wus771; humidity ;67; ;
2015-07-07 12:00:00; 01; us771; pressure ; ; ;1234.3
2015-07-07 12:01:02; 02; caz224; rpm ; :86500;
2015-07-07 12:02:22; 01; us771; humidity ;64; ;
2015-07-07 12:02:22; 01; us771l; pressure ; ; ;1237.1
2015-07-07 12:02:22; 01; us771l; rpm ; ;86508;
2015-07-07 12:02:22; 02; caz224; rpm ; ;86433;
2015-07-07 12:03:44; 01; us771; pressure ; ; ;1240.7
2015-07-07 12:03:44; 02; ca224; rpm ; ;86622;
2015-07-07 12:04:00; 01; uslé6x; power ;99; ;
2015-07-07 12:04:00; 01; us990; humidity ;63; ;
2015-07-07 12:04:00; 01; uslé6y; power ; 98; ;
the query

SELECT x FROM DYNAMIC_COLUMNS (ON RawData PARTITION BY id JOIN_COLUMNS (ts))
ORDER BY ts, id

will yield the following data (spaces added to make it more readable):

#ts;id;humidity; power;pressure;rpm,

2015-07-07 12:00:00.000; "uslex"; <NULL>; 77; <NULL>; <NULL>
2015-07-07 12:00:00.000; "us771"; 67; <NULL>; 1234.3; <NULL>
2015-07-07 12:01:02.000; "ca224"; <NULL>; <NULL>; <NULL>; 86500

2015-07-07 12:02:22.000; "ca224"; <NULL>; <NULL>; <NULL>; 86433

2015-07-07 12:02:22.000; "us771"; 64; <NULL>; 1237.1; 86508

Page 65

7 Dynamic Columns 7.2 Using Dynamic Columns

2015-07-07 12:03:44.000; "caz224"; <NULL>; <NULL>; <NULL>; 86622
2015-07-07 12:03:44.000; "us771"; <NULL>; <NULL>; 1240.7; <NULL>

2015-07-07 12:04:00.000; "usl6x"; <NULL>; 99; <NULL>; <NULL>
2015-07-07 12:04:00.000; "usloey"; <NULL>; 98; <NULL>; <NULL>
2015-07-07 12:04:00.000; "us990"; 63; <NULL>; <NULL>; <NULL>

Because data with the attributes humidity, pressure, rpm, and power was inserted, the resulting
dynamic table has these columns. If we add additional data afterwards with a new attribute, the
resulting dynamic table would automatically have one more column, if the same query is processed
again.

The rows contain all values we have for a particular sensor for a particular point in time, because we
join explicitly over ts. However, different sensors always have different rows, because we partition
over the sensors (column id). Thus, for each attribute there is only a column with multiple entries if
multiple rows have values for different attributes of the same ID.

To see and join over both ID and region, you have to request the following:

SELECT ts, id, region, =«
FROM DYNAMIC_COLUMNS (ON RawData
PARTITION BY id
JOIN_COLUMNS (ts, region))
ORDER BY ts, id

or:

SELECT ts, id, region, =
FROM DYNAMIC_COLUMNS (ON RawData
PARTITION BY id, region
JOIN_COLUMNS (ts))
ORDER BY ts, id

which will both yield the following data:

#ts;id;region; humidity;power;pressure;rpm

2015-07-07 12:00:00.000; "uslé6x";
2015-07-07 12:00:00.000; "us771";
2015-07-07 12:01:02.000; "ca224";
2015-07-07 12:02:22.000; "cazz24";
2015-07-07 12:02:22.000; "us771";
2015-07-07 12:03:44.000; "caz24";
2015-07-07 12:03:44.000; "us771";

<NULL>; 77; <NULL>; <NULL>
67; <NULL>; 1234.3; <NULL>
<NULL>; <NULL>; <NULL>; 86500
<NULL>; <NULL>; <NULL>; 86433
64; <NULL>; 1237.1; 86508
<NULL>; <NULL>; <NULL>; 86622
<NULL>; <NULL>; 1240.7; <NULL>

Ne Ne N

o~

~.

~.

= T T = T CH S R S Sy
<

2015-07-07 12:04:00.000; "uslex"; ; <NULL>; 99; <NULL>; <NULL>
2015-07-07 12:04:00.000; "usley"; 1; <NULL>; 98; <NULL>; <NULL>
2015-07-07 12:04:00.000; "us990"; 1; 63; <NULL>; <NULL>; <NULL>

Note that you can specify region both as additional partition column or as additional join column.’

' There is small difference between using region as partitioning or join column, though: For PARTITIONING BY we
apply the rules for GROUP BY, while for JOIN_COLUMNS we apply the rules for JOIN. This has different effects if input rows
contain NULL as values for these partitioning or join columns, which can become pretty confusing. For this reason, we
recommend to declare partitioning and joining columns to be NOT NULL, so that both forms have the same effect.

Page 66

7.2 Using Dynamic Columns 7 Dynamic Columns

To partition over regions only, the query should look like the following:

SELECT ts, region, » FROM DYNAMIC_COLUMNS (ON RawData PARTITION BY region
JOIN_COLUMNS (ts)) ORDER BY ts, region

It joins the data of rows that have the same timepoint and the same region. As a result, we now also
join the first two rows and combine the last three rows into two rows:

#ts;region;humidity; power;pressure;rpm

2015-07-07 12:00:00.000; 1; 67; 77; 1234.3; <NULL>
2015-07-07 12:01:02.000; 2; <NULL>; <NULL>; <NULL>; 86500
2015-07-07 12:02:22.000; 1; 64; <NULL>; 1237.1; 86508
2015-07-07 12:02:22.000; 2; <NULL>; <NULL>; <NULL>; 86433
2015-07-07 12:03:44.000; 1; <NULL>; <NULL>; 1240.7; <NULL>
2015-07-07 12:03:44.000; 2; <NULL>; <NULL>; <NULL>; 86622
2015-07-07 12:04:00.000; 1; 63; 98; <NULL>; <NULL>
2015-07-07 12:04:00.000; 1; 63; 99; <NULL>; <NULL>

Note that because two different sensors in the same region did yield a value for the same attribute
power at the same time 12:04:00, we now have two joined rows in the dynamic table combining these
values with the humidity value for the same timepoint and region.

To get same column names as the motivating example (see section 7.1, page 62), we can use aliases
for both the regular static columns and the dynamic columns in the dynamic table as follows:

SELECT "Timestamp", Region, =
FROM DYNAMIC_COLUMNS (ON RawData
PARTITION BY region
JOIN_COLUMNS (ts)
DYNAMIC_COLUMN_NAMES (humidity AS Humidity,
"power" AS "Power",
pressure AS Pressure,
rpm AS RPM)
STATIC_COLUMN_NAMES (ts AS "Timestamp",
region as Region)
) ORDER BY "Timestamp", Region

Note that as keywords such as power and t imestamp have to get quoted here.
The output would be then as follows (spaces added to make it more readable):

#Timestamp; Region; Humidity; Power; Pressure; RPM

2015-07-07 12:00:00.000; 1; 67; 77; 1234.3; <NULL>
2015-07-07 12:01:02.000; 2; <NULL>; <NULL>; <NULL>; 86500
2015-07-07 12:02:22.000; 1; 64; <NULL>; 1237.1; 86508
2015-07-07 12:02:22.000; 2; <NULL>; <NULL>; <NULL>; 86433
2015-07-07 12:03:44.000; 1; <NULL>; <NULL>; 1240.7; <NULL>
2015-07-07 12:03:44.000; 2; <NULL>; <NULL>; <NULL>; 86622
2015-07-07 12:04:00.000; 1; 63; 98; <NULL>; <NULL>
2015-07-07 12:04:00.000; 1; 63; 99; <NULL>; <NULL>

Page 67

7 Dynamic Columns 7.2 Using Dynamic Columns

Note that in dynamic tables it can happen that rows exist even if the columns selected have no valid
entries. For example, if you only select for entries with the attribute rpm:

SELECT ts, rpm FROM DYNAMIC_COLUMNS (ON RawData
PARTITION BY id
JOIN_COLUMNS (ts))
ORDER BY ts, rpm

the output will be as follows:

#ts;rpm

2015-07-07 12:00:00.000; <NULL>
2015-07-07 12:00:00.000; <NULL>
2015-07-07 12:01:02.000;86500
2015-07-07 12:02:22.000; 86433
2015-07-07 12:02:22.000; 86508
2015-07-07 12:03:44.000; <NULL>
2015-07-07 12:03:44.000;, 86622
2015-07-07 12:04:00.000; <NULL>
2015-07-07 12:04:00.000; <NULL>
2015-07-07 12:04:00.000; <NULL>

To skip the rows with NULL values, use a corresponding WHERE condition. For example:

SELECT ts, rpm FROM DYNAMIC_COLUMNS (ON RawData
PARTITION BY id
JOIN_COLUMNS (ts))
WHERE rpm IS NOT NULL
ORDER BY ts, rpm

Here, the output is as follows:

#ts;rpm

2015-07-07 12:01:02.000;86500
2015-07-07 12:02:22.000;86433
2015-07-07 12:02:22.000; 86508
2015-07-07 12:03:44.000; 86622

Note that such a WHERE clause is especially necessary if you only are requesting for columns that
were added recently. For all data, before the new dynamic column was added, you would otherwise
get rows with NULL values.

Dynamic Column Names

There are certain requirements and constraints regarding dynamic column names, because on one
hand the dynamic columns key values can in principle be any string, while column names have some
restrictions.

Note the following:

Page 68

7.2 Using Dynamic Columns 7 Dynamic Columns

» If a dynamic columns key is not a valid column name (see section 24.2.1, page 281), it is not listed
in dynamic tables.

» The dynamic columns are automatically sorted according to their case-sensitive name (using ASCII
order)

» Because in general column names are case-insensitive in Cisco ParStream, it is undefined
behavior if column names differ but are case-insensitively equal. (e.g. having the value/name
"Height’, ’height’, and '"HEIGHT"). It is not guaranteed whether a = yields multiple or just one column
and what happens if one of the columns is explicitly requested.

* A static column name hides a dynamic column with the same name. Use aliasing to make them
visible (see section 7.2.3, page 71).

NOTE: For this reason, it is a strong recommendation to establish/force a general convention for
values of dynamic columns keys to be valid column names:

« The string values should have at least two letters and no special characters.

» The string values should follow a general convention regarding case-sensitivity, such as using only
capital letters or using only lowercase letters.

» To ensure that no different spelling of the same attribute causes undefined behavior, we strongly
recommend to use an ETL statement that converts all attributes to lowercase or uppercase letters.
For example:

CREATE TABLE RawData
(

attribute VARSTRING(255) NOT NULL COMPRESSION HASH64 INDEX EQUAL
DYNAMIC_COLUMNS_KEY,

)

ETL (SELECT LOWER (attribute) AS attribute FROM CSVFETCH (RawData))

You can check, whether dynamic column keys are valid or conflict by using the system table
ps_info_dynamic_columns_mapping (see below).

System Table Support

We provide a system table ps_info_dynamic_columns_mapping (See section 26.4, page 316),
which lists the actual dynamic columns combined with some information about whether column names
are invalid or conflict with each other.

A request such as

SELECT % FROM ps_info_dynamic_columns_mapping ORDER BY table_name,
dynamic_name

after importing the data listed above, will correspondingly have the following output:

#table _name;dynamic__name;key_column;value_column;is_wvalid;is _conflicting

Page 69

7 Dynamic Columns 7.2 Using Dynamic Columns

"RawData"; "HEIGHT"; "attribute"; "val_uint8"; "TRUE"; "TRUE"
"RawData"; "Height"; "attribute";"val_uint8"; "TRUE"; "TRUE"
"RawData"; "height"; "attribute";"val_uint8"; "TRUE"; "TRUE"
"RawData"; "humidity"; "attribute"; "val_uint8"; "TRUE"; "FALSE"
"RawData"; "x"; "attribute";"val_int64"; "FALSE"; "FALSE"

Thus, column humidity is the only dynamic columns name, where no problems exist, because it is a
valid column name and not conflicting.

Whether columns play a role regarding dynamic columns is also listed in the attribute
dynamic_columns_type of the ps_info_column system table. See section 26.3, page 309
for details.

Dealing with Multiple Values for a Measurement

A row may have multiple values for multiple or different DYNAMTC_COLUMNS_VALUE columns. In that
case, the first row having exactly one DYNAMIC_COLUMNS_VALUE value defines the dynamic mapping
used.

For example, if the following data is imported:

ts; reg.; id; attribute; values (different types)

2015-07-08 15:01:00; O01; us771; humidity; 22; ; 44.0
2015-07-08 15:02:00; O01; us771l; humidity; 67; ;
2015-07-08 15:03:00; 03; powl6; humidity; ; 142;
2015-07-08 15:04:00; 03; powl6; humidity; 133; ;

the second data row defines that in the corresponding dynamic table the column humidity maps to
the value in the first value column. As a consequence, the values of the dynamic table are:

#ts;id;humidity

2015-07-08 15:01:00.000;"us771";22
2015-07-08 15:02:00.000;"us771"; 67
2015-07-08 15:03:00.000; "powl6"; <NULL>
2015-07-08 15:04:00.000; "powl6";133

As you can see, because the second data row maps humidity to the first value column, all values
are taken from that column (even from the first row, which did define two values). In cases where no
value exists, the corresponding rows only contain NULL values (that way you can see that there may
be some conflicts).

If there is only input defining multiple values for a key, there will be no clear mapping yet. In that
case, the row (with the timestamp) will exist in the dynamic table, but without any column listing the
corresponding value. Thus, all visible dynamic columns will have null values in the row. In that case,
the column will also have no entry yetin ps_info_dynamic_columns_mapping.

Details of DYNAMIC_COLUMNS Operators

The DYNAMIC_COLUMNS operator might have the following clauses (in that order):

Page 70

7.2 Using Dynamic Columns 7 Dynamic Columns

An optional PARTITION BY clause

A mandatory JOIN_COLUMNS clause

An optional DYNAMIC_COLUMN_NAMES clause
An optional STATIC_COLUMN_NAMES clause

The clauses have the following meaning:

The optional PARTITION BY clause is necessary for distributed tables (see section 6.3, page 53)
that have no EVERYWHERE distribution. In that case, the PARTITION BY clause must contain at
least the distribution column or a column separated by the distribution column.

The effect of the PARTITION BY clause is that the data is split into buckets depending on the
PARTITION BY field similar to GROUP BY semantics. This means that NULL values may be
grouped together and are not added implicitly to the JOIN_COLUMNS.

If you have an EVERYWHERE distribution or a table with multiple partitioning columns, using a
PARTITION BY clause increases the amount of parallelization used internally. For example, if a
table has a partitioning column id a query such as

SELECT ts, id, humidity, pressure
FROM DYNAMIC_COLUMNS (ON RawData
JOIN_COLUMNS (ts, id))
ORDER BY ts, id

will usually perform better if the fact that id is a partitioning column is taken into account in the
DYNAMIC_COLUMNS clause:

SELECT ts, id, humidity, pressure
FROM DYNAMIC_COLUMNS (ON RawData
PARTITION BY id
JOIN_COLUMNS (ts))
ORDER BY ts, id

All PARTITION BY fields must either be partitioning columns of the table or separated by one.

The mandatory JOIN_COLUMNS clause as described above (see section 7.2.1, page 63) must
contain the first ORDER BY column of the raw table and may contain additional columns. It is used
to decide which data to join in the resulting dynamic table.

Any physical column that shall be visible in the resulting dynamic table and is neither a dynamic
key nor a dynamic value column nor part of the PARTITION BY clause must be listed here. All
columns listed in this clause must be physical columns of the table and must be no MULTI_VALUE
columns.

The optional DYNAMIC_COLUMN_NAMES and STATIC_COLUMN_NAMES clauses allow to define
alias names for the dynamic and for the static columns of the dynamic table. This allows for
dynamic columns names of existing static columns, while still using the static columns under a
different name. For example:

SELECT ts, raw_id, =
FROM DYNAMIC_COLUMNS (ON RawData
PARTITION BY id

Page 71

7 Dynamic Columns 7.2 Using Dynamic Columns

JOIN_COLUMNS (ts)
DYNAMIC_COLUMN_NAMES (humidity AS id, rpm AS dz)
STATIC_COLUMN_NAMES (id AS raw_id))

ORDER BY ts, raw_id

maps the dynamic columns with the name humidity to the name id, dynamic columns with the
name rpm to the name dz, while giving the existing static column name id the name raw_id. If
columns with dynamic aliases don’t exist, they are simply ignored.

Note that all physical columns of the raw table that shall be visible in the resulting dynamic table must
be columns in the JOIN_COLUMNS clause or the PARTITION BY clause.

Current Restrictions

The following general restrictions apply regarding the dynamic columns feature:

Physical MULTI_VALUE columns can’t be part of dynamic tables generated with the
DYNAMIC_COLUMNS operator (although they can be part of the raw tables).

All values of key columns should be transformed to lower case prior to importing them due to
planned incompatible changes in future versions.

Page 72

Database Configuration

Conf Directories and INI Files

Conf Directories

The Cisco ParStream database configuration can be split into multiple files to ease the setup of
multiple servers. These files must be located in the same directory, the so-called conf directory.

On startup, Cisco ParStream checks the following locations to find the conf directory:
1. The containing directory if passed the ——inifile filepath option
2. The directory passed with ——confdir dir
3. The sub-directory . /conf in the current working directory
4. The directory conf in the directory of the Cisco ParStream executable

5. The directory /etc/parstream

Within these directories, Cisco ParStream searches for the general configuration file parstream. ini
and additional configuration files, which can be:

» INIfiles for server and distribution definitions
The general format of the INI files is described in the following sections of this chapter.

In the past (until Version 4.0) you could also define PSM files in the conf directory, which were used to
define the schema used by the database. These files had the suffix . psm and contained in essence
CREATE TABLE statements plus possible comments with leading —— (see section 24.2, page 278).
For backward compatibility these files are still processed the first time you start a server and no
existing schema definition is found. After this initial usage, they are ignored. The details about how to
create and define tables are described in Chapter 24, page 277.

INI File Format

Cisco ParStream configuration files are supplied in the INI file format. A single entry to set an option is
formatted as follows:

name = value

The entry might be global or inside a section. At the beginning, the INI file has global scope (note:
before Version 2.0 this only applies to the file parstream. ini; see the warning below).

Sections within a hierarchy are defined using square brackets:

[section]
name = value

Deeper levels of a hierarchy are denoted by a . character in the section name.

Page 73

8 Database Configuration 8.2 Internationalization (118N)

[section.subsection]
name = value

Since Version 2.0, you can switch back to the global scope with an empty section name:

[]

globaloption = value

Warning:

Before Version 2.0, if you have multiple INI files, global options should be set only
at the beginning of the file parstream.ini. The reason is that after processing
parstream. ini the order of the other INI files is undefined and further INI files continue
with the scope the previous INI file ends with (this was fixed with Version 2.0).

Warning:

If you have any duplicate entries inside your INI files, Cisco ParStream will give you a
warning, i.e.: !'! WARNING: duplicate config entry ’server.first.port’:
old value: ’9951’, using new value: ’33333’ and use the last value read
from the file or from the command line. Commandline parameters are preferred over INI
file parameters.

Examples

Example: The port of a Cisco ParStream server named first, should be reachable on port 1234.

[server.first]
port = 1234

A # character at the beginning of a line denotes a comment. For example:
comment name = value
For all these settings in INI files you can pass command line arguments when the server gets started.

These command line arguments overwrite the corresponding INI file setting.
See Starting the Server#commandline-args and Commandline Arguments for details.

Internationalization (I18N)

Different countries have different character sets, character encodings, and conventions. This section
describe the features Cisco ParStream provide for internationalization.

In principle, Cisco ParStream supports different character sets (7-bit, 8-bit with different encodings,
UTFS8).

Page 74

8.2 Internationalization (118N) 8 Database Configuration

However, string sorting depends on which character set and encoding is used. For this reason, since
Version 2.0, you can to specify the locale to use.

This is a global Cisco ParStream option, which can be specified in the corresponding INI file (see
Global Options):

locale = C

or passed as an option (see Commandline Arguments):

——locale=C

The only portable locale is the locale called C, which is default. Other locales depend on your operating
system. Usually you can call

$ locale -a

to query the supported locales on your platform. For example, the following might be supported:

locale C # ANSI-C conventions (English, 7-bit, provided on all platforms)
locale = POSIX # POSIX conventions (English, 7-bit)

locale = en_US # English in the United States

locale = en_US.utf8 # English in the United States with UTFS§ encoding
locale = de_DE # German in Germany

locale = de_DE.IS0-8859-1 # German in Germany with ISO-Latin-1 encoding

locale = de_DE.IS0-8859-15 # German in Germany with ISO-Latin-9 encoding (having the
Euro-Symbol)
locale = de_DE.utf8 # German in Germany with UTF8 encoding

Note:

If in a cluster different locales are used so that sorting is not consistent, Cisco ParStream
will run into undefined behavior.

Page 75

Server Administration

To setup and start a Cisco ParStream database, a couple of steps are necessary:

You should define a database configuration. This is usually done in INI files in the conf directory
(see section 8.1.1, page 73).

You have to start the servers.
You might also want to import data, which is described in Chapter 10, page 88.

This chapter describes how to start a Cisco ParStream server with parstream—-server and how to
deal with authorization and logging.

Starting the Servers

Starting a Cisco ParStream Server

After installing Cisco ParStream and providing a corresponding configuration, the easiest way to start
a Cisco ParStream server is to perform the following steps:

1. Set variable PARSTREAM_HOME:

export PARSTREAM_HOME=/opt/cisco/kinetic/parstream-database

and add Cisco ParStream libraries to your library search path:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PARSTREAM_HOME/1lib

. Go to the directory, where your Cisco ParStream database configuration is located. Usually, this

should be a directory containing:

» asub-directory conf which typically contains the INI file for the basic configuration

* a sub-directory partitions or any other datadir specified in the INI file of the
corresponding server.

. The INI file has to contain the minimum options that are required to run a server:

* aglobal clusterId

* aglobal registrationPort

» server-specific host and port

» aserver-specific rank

Note that clusterId, registrationPort and rank are required because any Cisco

ParStream server can sooner or later be extended to a multi-node cluster (see chapter 6,
page 40).

You might typically also set:

Page 76

9.1 Starting the Servers 9 Server Administration

Note:

* aglobal clusterInitTimeout, which defines the time in seconds to wait for a cluster of
multiple nodes to establish. If you know that the database is running with only one server/node
you can/should set to just 1.

» the server-specific datadir
For example, an INI file for a server called £irst might look as follows:

basic cluster settings for single-node clusters:
clusterId = exampleCluster
registrationPort = 9040
clusterInitTimeout = 1

[server.first]
host = localhost
port = 9042

server rank in multi-node clusters:
rank =1

directory that contains the data partitions:
datadir = ./partitions

4. Start the Cisco ParStream server parstream—server. The only required argument is the

name of the server to start, which identifies the corresponding section in the INI files for the other
settings.

For example:

\$PARSTREAM_HOME/bin/parstream-server first

Now, the server is ready to process queries sent to the configured host and port.

If you add $PARSTREAM_HOME/bin to your search path, starting the server as follows is
enough:

parstream-server first
For more sophisticated ways to start a Cisco ParStream server (e.g. logging all output into a

file), see the systemd daemon, the shell script start.sh in $SPARSTREAM_HOME/bin or the
run_example. sh scripts in the various examples, Cisco ParStream provides.

The Cisco ParStream server uses multiple ports. For this reason, the server option port has to be
set. This port and up to four consecutive ports will be used by Cisco ParStream. See section 13.3.1,
page 135 for details.

The server uses journal files to store cluster metadata. See section 6.2.4, page 49 for details.

Page 77

9 Server Administration 9.2 User Authentication

Cisco ParStream Server Command Line Parameters

The Cisco ParStream server provides the ability to pass several commandline arguments, to configure
and influence the behavior of the server.

On one hand you can pass several standard arguments:

Argument Effect

--help print syntax including all commandline options

--version print version

-—confdir dir use dir as the conf-directory with the configuration (INI files)
-—configcheck just check the configuration without starting the server
-—inifile filepath | use filepath as the configuration (INI) file

--verbosity arg change verbosity (0: minimum, 5: maximum)

In addition, all values of the configuration file can be overwritten by command line parameters. The
prefix of a parameter string depends on the section, in which it is defined.

For example, to overwrite the parameter port of the server with the name first with the value 9088,
the command line parameter must be formulated as follows:

—-—-server.first.port=9088

User Authentication

Cisco ParStream provides the ability to enable user authentication to restrict access to the database.
By default, users have to authenticate to the server by providing login credentials if they want to
retrieve data . Access to the server is only granted if the authentication is successful.

Note the following:
» User authentication is only enabled for the external communication via the first two server ports

(see section 13.3.1, page 135). For this reason, to secure the communication in a Cisco ParStream
cluster, you should disable the access to all internal ports for the average user.

+ Clients send pass phrases currently in clear text so that you should use secure network connections
for connected clients.

« There is currently no authorization management established by Cisco ParStream providing different
roles and responsibilities. Any successfully logged in user can perform any remote valid database
operation.

While pass word is the widely established common term, we use pass phrase to remind people that
the length of such a secret is the most important factor, and the effort needed to crack simple words or
short secrets is reducing dramatically with every new hardware generation.

User Authentication Approach

The authentication approach Cisco ParStream uses is based on PAM (the Pluggable Authentication

Modules), which is usually supported by all Linux distributions. Thus, this means that

Page 78

9.2 User Authentication 9 Server Administration

+ PAM provides user management and authentication. By default Cisco ParStream uses system
users for authentication. However, you can configure Cisco ParStream to use any other PAM
module that meets your requirements.

» Cisco ParStream allows to register these users as database users via DDL commands so that
Cisco ParStream uses the PAM user with its pass phrase to grant access to the database. Doing
this, you can even map a PAM user name to a different database login name.

Cisco ParStream authenticates users via an external application called
parstream—authentication. This application is provided by an additional software package,
that has to be installed separately. For each supported platform, a different package has to be installed
(see section 2.6, page 11).

By default, the installation of Cisco ParStream creates a system and database user parstream.
After you have followed the instructions in section 2.8.1, page 12 and set a pass phrase for the user
parstream, you can log into the Cisco ParStream database using this user. For this to work, the
Cisco ParStream database has to be started from this user. Currently it is only possible to log into
Cisco ParStream with the system user that has started the database. However, you can create alias
database users (see section 9.2.3, page 80) that share the same system user and pass phrase.

Thus, after installing Cisco ParStream to enable authentication for a new user, you have to
+ Create a corresponding PAM user if not using the default Cisco ParStream PAM module. See the
documentation of the selected PAM module how to create new users.

+ Create a database user that maps to the PAM user, using the CREATE USER command (see
section 9.2.3, page 80). As an effect, the database user has the pass phrase of the associated
PAM user.

» Pass login name of the database user and the same pass phrase of the associated PAM user with
each client that connects to Cisco ParStream:

— See section 12.1.1, page 110 for authentication with pnc.

— See section 12.1.2, page 113 for authentication with netcat (note however that you should
prefer pnc because netcat doesn’t hide the pass phrase input).

— See section 19.5.22, page 229 for authentication with the Java Streaming Import Interface (JSII).
— See section 18, page 214 for authentication with JDBC.

Note the following:
* Multiple database users can map to the same PAM user (but not vice versa).

» A database user can map to a PAM user that does not exist (yet). But, it can only be used to login
with clients after the underlying PAM user was created. This way, you can temporarily remove a
PAM user and create a new PAM user with the same user name to change the pass phrase.

» There is no authentication necessary to import data with the CSV importer. Authentication is only
required for streaming imports and when retrieving data from clients.

* You can choose between different PAM service configurations. By default, the ParStream
configuration is installed, which defines the following options with its default values:

[authentication]
pamService = parstream

Page 79

9 Server Administration 9.2 User Authentication

authenticationWrapperExecutable =
/opt/cisco/kinetic/parstream_authentication_1/parstream-authentication

You can define other service configurations using different names and specify its name here.

Migrating from Previous Database Versions

If you migrate from a previous Cisco ParStream database version, the system will not create the
parstream database user upon first startup automatically. As authentication is on by default, you will
not be able to authenticate and thus use the database. The following steps have to be taken to setup
your database for authentication:

+ Shutdown the database cluster

» Disable authentication for all database servers in the cluster. See section 9.2.4, page 81 for details.
+ Start the database cluster. You can now log into the database without user authentication.

+ Create the parstream database user. See section 9.2.3, page 80 for details.

+ Shutdown the database cluster.

+ Enable authentication for all database servers in the cluster.

« Start the database cluster. You can now log into the database with your newly created user.

This procedure has to be performed once for each migrated cluster.

Managing Database Users

Creating a Database User

To create a database user that maps to a PAM user jdoe you have to call:

CREATE USER 'jdoe'

The effect is, that provided the PAM user jdoe exists, the database user jdoe can login to the
database when starting a client connection using the associated PAM user pass phrase.

Alternatively, you can map the PAM user name to a different database user name:

CREATE USER 'jdoe' WITH LOGIN 'john'

Here, the database user john will map to the PAM user jdoe, using its associated pass phrase to
establish client connections.

Note:

» The database user is shared among all nodes of a cluster, thus it is up to the database administrator
to ensure that all cluster nodes provide a corresponding PAM user consistently.

* Multiple database user can map to the same PAM user.

Page 80

9.3 DBMS Scheduler 9 Server Administration

Removing a Database User

To drop a database user you have to call DROP USER with the database user name. For example:

DROP USER 'jdoe'

or:

DROP USER 'john'

Note:

* Any user who is logged into the database using its authentication credentials can drop any other
user. If the user is currently connected to the database, the user can finish its queries, but can’t
login again.

» Even if the user is still connected, it is no longer listed in the list of database users see section 26.4,
page 316.

» To avoid to be able to connect to the database again, you can’t drop the last user.
* You can also drop the default user parstream provided it is not the last user.

Listing all Database Users
The system table ps_info_user lists all current database users:

SELECT % FROM ps_info_user

Users already dropped but still connected are not listed.
See section 26.4, page 316 for details.

Disabling Authentication

To disable user authentication at all, you have to set the global option userAuthentication
(section 13.2.1, page 120):

userAuthentication = false

As with any option, you can pass this option via command line:

parstream-server —--userAuthentication=false ...

DBMS Scheduler

The DBMS Scheduler allows users to define tasks that are executed periodically. A task consists of a
unique name, an action to be performed, a timing that defines when the task is to be executed, an

Page 81

9 Server Administration 9.3 DBMS Scheduler

optional comment, and an ’enabled’ flag that defines whether the newly created job should be active
immediately.

The task is executed by the cluster according to the defined timing. Should any errors occur during the
execution of a job, an error message is logged in the leader’s log file. Please note that failing tasks will
not be automatically disabled by Cisco ParStream.

If an action of a job uses a table that is removed via a DROP TABLE command, the job will be removed
as well.

Listing all Jobs

All configured jobs along with their actions, timings, and whether they are enabled or disabled, are
listed in the system table ps_info_job.

Creating a Job

You can create a job by using the CREATE JOB command followed by a unique identifier for the job
name and a description of the job in the json format. By default, a job is enabled and starts running
once the next configured point in time is reached.

To create a job named "exampledob" that inserts the value 1 every second into a table named
"exampleTable" with the only column "id", you would use the following statement:

CREATE JOB exampledob { "action": "INSERT INTO exampleTable SELECT 1 AS id;",

"timing": "x * x x x" };

Please note that the name of a job follows the rules of SQL identifiers. Hence, all name matching is
done in a case-insensitive way unless the identifier is quoted.

The ’'comment’ and ’enabled’ json fields are optional. The 'comment’ field allows you to add a
description to the job. The ’enabled’ field defines whether the job should be enabled after creation. By
default, all newly created jobs are enabled.

Disabling a Job

You can disable an enabled job by using the DISABLE JOB statement:

DISABLE JOB exampledJob;

A disabled job will no longer be executed automatically until it is re-enabled.

Enabling a Job

You can enable a disabled job by using the ENABLE JOB statement:

ENABLE JOB exampledJob;

Page 82

9.4 Stored Procedures 9 Server Administration

Manually Running a Job

Apart from the automatic execution of a job according to its configured schedule, you can execute a
job manually by using the RUN JOB statement:

RUN JOB exampledJob;

Removing a Job

You can remove a job from the system by using the DROP JOB statement:

DROP JOB exampleJdob;

Stored Procedures

Stored procedures can be used to store SQL statements and reuse them by using a routine identifier.

Create a Stored Procedure

CREATE PROCEDURE defines a new stored procedure. A procedure is defined by a unique identifier,
an argument list and a procedure definition.
The following example defines a procedure named ageFilter and has three parameters:
CREATE PROCEDURE ageFilter (
firstNameFilter VARSTRING,
minAge UINTS,
maxAge UINTS8)
LANGUAGE SQL AS
SELECT age
FROM persons
WHERE first_name = firstNameFilter
AND age >= minAge
AND age <= maxAge;

The Cisco ParStream implementation of stored procedures has the following functional properties:

» The procedure identifier must be unique.

» No function overloading is possible.

» The parameter list can be empty.

» Default values for parameters are not supported.

* Routine characteristics are restricted to SQL only.

+ Only single statements in the procedure definition are accepted.
+ Only input parameters are supported.

Page 83

9 Server Administration 9.5 Monitoring, Logging, and Debugging

Execute a Stored Procedure

To execute a previously defined stored procedure the CA1L.1, command can be used like:

CALL ageFilter ('John', 18, 30);

where ageFilter is the routine identifier which was used to define the procedure in the CREATE
PROCEDURE command. Additional arguments are defined in parentheses and separated by commas.

Drop a Stored Procedure

To remove no longer required procedures the following command can be used:

DROP PROCEDURE ageFilter;

Monitoring, Logging, and Debugging

Monitoring

To ease analysis of performance problems in Cisco ParStream, detailed event logs of the following

processes are potentially recorded:

+ Start of a server or importer

» Query execution (according to ExecTree option MonitoringMinLifeTime, see section 13.3.4,
page 141).

» Import execution (according to ExecTree option MonitoringImportMinLifeTime, See
section 13.3.4, page 141).

+ Merge execution (according to ExecTree option MonitoringMergeMinLifeTime, see
section 13.3.4, page 141).

Whenever execution of any of these exceeds the given threshold (or for server starts all the time)
events are written to files in the directory specified by the global option performanceLoggingPath
see section 13.2.1, page 129.

The following files are (potentially) written:

* monitoring_username_date.log recording per-execution query, merge and import events,
persisted after each execution exceeding the given runtime limit.

* serverStart_username_date.log recording server start events, persisted after each server
start.

* execthreadpool_username_date.log recording statistics and events of the global execution
scheduler, persisted during server shutdown.

Here, username and date are replaced by the current username (usually the value of the USER
environment variable) and date upon the time of persisting.

Page 84

9.5 Monitoring, Logging, and Debugging 9 Server Administration

The detail level of the execution related event logs can be controlled by the ExecTree options
QueryMonitoringTimeDetailLevel, MergeMonitoringTimeDetaillevel,
ImportMonitoringTimeDetailLevel, for query, merge, and import execution, respectively (see
section 13.3.4, page 141).

The detail level of the global scheduler event log can be controlled by the global/server option
executionSchedulerMonitoringTimeDetaillevel (see section 13.2.1, page 129 and see
section 13.3.2, page 139).

When you encounter performance problems you can use the mentioned options to generate event
logs.

Logging
Cisco ParStream provides four different types of protocol messages, written by servers and importers:

Type | Meaning

ERROR | All errors that occur in Cisco ParStream server or importer

PROT | All types of information that are important to the user, e.g. version of Cisco ParStream,
incoming requests, ...

WARN | Minor errors that occur and can be handled within Cisco ParStream server and importer
INFO | Minor information for the user, e.g. Cisco ParStream configuration

These messages have a unique output format:

[_timestamp_]:_Unique query ID_:_message type_ (_message number_): _message
text_ (optional: function that emit this message, file, line)
For example:

[2012-07-23T12:59:50] : server3-125949:PROT (77011) : Starting to listen on port
9042 for client connections

[2012-07-23T14:42:45] :server3-125949:ERROR (70024) : Unknown command: slect =
from Address (function: EQueryResultType
parstream: :ParStreamServer: :executeCommand (const std::stringg,
parstream::ClientConnectioné&) file: src/server/ParStreamServer.cpp,
line: 1625)

All of these four message types are logged to stderr.

Verbosity

Using the global option verbosity (see section 13.2.1, page 120 you can enable more verbose
output of servers and importers. For example:

verbosity = 2

The effect for higher verbosity is for example as follows:
» Servers print list of loaded dynamic libraries.

Page 85

9 Server Administration 9.5 Monitoring, Logging, and Debugging

» Servers log complete results instead of just the beginning.
» Importers print more details about available tables.

Debugging

For debugging and analysis support, you can use global option and class specific settings.
Note: The class names internally used are not standardized and may change from version to version.

The global options defaultbDebuglLevel (see section 13.2.1, page 120) defines the default debug
level.

Debugging Support at Start Time

You can specify default debug level in the global configuration section of an INI file:

defaultDebuglevel = 1

Value 0 means that no debug output is written. Values 1 (minimum) to 5 (maximum) enabled debug
output of all internal behavior.

A class specific debug level may also be configured in the INI file in the subsection "DebuglLevel”. The
class name is case sensitive.

For example:

[DebugLevel]
ClientConnection=5
PartitionManager=1
ExecThreadPool=2

Granularity of the class debug switches are different for each class. For example all execution nodes
use the following debug levels:

Level | Debug Output

1 Class instance specific like construction, destruction and parameters
2 Blockspecific like block processing, finished, etc.

3 Rowspecific like processing or filtering of rows

4 Valuespecific like Calculation, Assignment, etc.

Debugging Support at Running Time

You can also change the general or specific debug level at runtime using an ALTER SYSTEM SET
command.

For example, the following command changes the global debug level of the server that receives the
command:

ALTER SYSTEM SET DebugLevel.defaultDebuglLevel=3

Page 86

9.5 Monitoring, Logging, and Debugging 9 Server Administration

For example, the following command changes a class specific debug level of the server that receives
the command:

ALTER SYSTEM SET DebugLevel.ClientConnection=3

To reset a debug level back to default (i.e. tracking the see section 13.2.1, page 120 again):

ALTER SYSTEM SET DebugLevel.ClientConnection TO DEFAULT

Note that the default for defaultDebugLevel is 0.

Detailed Exception Information

You can use the debugging feature to enable more detailed reporting of process information in case of
exceptions. If the debug level of the exception class is set to a value greater than 0, a file with process
info is created every time an exception occurs.

The file is named after the pattern ParStream-ProcInfo-<PID>-<TIMESTAMP>.txt and is
placed in the server’s working directory. It contains the following information:

+ timestamp

+ version info

* process status

+ open file descriptors

* memory maps

It must be enabled in the INI files as follows:

[DebugLevel]
Exception = 1

Page 87

Importing Data

Cisco ParStream provides different efficient ways to import (huge amount of) data. The general import
concepts, the executables, their options and possibilities, the format of import data and the format of
the resulting partition data are introduced and explained in this chapter.

Overview of Data Import

e sl TR J

csv
files

ParStream
partitions

optional ETL
transformation

Streaming
data

ParStream
Table

In principle, Cisco ParStream can import data into the database as follows:

The schema for the table to import has to be defined via CREATE TABLE statements and sent to
one cluster node (See chapter 24, page 277 for details).

The data to import can be provided by three ways:

You can use the CSV importer parstream-import, which reads data (in a loop) provided as
CSV files.

The format of CSV files is explained in section 10.3, page 89.

parstream—import is described in section 10.5, page 99.

You can use the Java Streaming Import Interface.

This allows to implement your own importing executables using a Java API provided by Cisco
ParStream to import the data.

The Java Streaming Import Interface is described in Chapter 19, page 216.

You can use the INSERT INTO statement.

This allows to insert data inside Cisco ParStream from one table to another.

The INSERT INTO feature is described in section 10.7, page 107.

The imported data is stored into partitions, which discussed in section 5.1, page 29.

You can import data, while tables are modified. See section 24.3.1, page 295 discussed in
section 5.1, page 29.

Page 88

10.2 General Import Characteristics and Settings 10 Importing Data

When importing data from external sources, you can use so called ETL statements (“extract”,
“transform”, and “load”) to transform the data you read into the format of the database columns
For example, you can add additional columns for better partitioning or filter rows according to a
WHERE clause. Note, however, that ETL import statements don’t apply to INSERT INTO statements.
See section 10.6, page 104 for details.

General Import Characteristics and Settings

General Import Characteristics

Please note the following general characteristics of any import in Cisco ParStream:

* NULL handling:
— Note that for strings and integral data types specific values represent NULL. For example, empty
strings or the value 255 for type UINTS.
— You can’t import rows containing only NULL values. Rows must have at least one column having
a non-NULL value.

» When processing schema updates or servers are about to shut down, running imports are first
finished. Thus, schema updates and regular shutdowns take effect after a running import is
committed.

General Import Settings

The general ability to import can be controlled by the following options and commands:
» Using the global server option enableImport (see section 13.2.1, page 122) you can initially
enable or disable imports. The default value is t rue.

« By calling CLUSTER DISABLE IMPORT Or CLUSTER ENABLE IMPORT (see section 16.4.1,
page 200) you can (temporarily) disable and enable imports in cluster scenarios.

General Format of CSV Import Files

One major source of input data for the Cisco ParStream database are comma separated value (CSV)
files. The types of the values in each column are specified with the CREATE TABLE statement (see
section 24.2, page 278). Every table is filled by a separate CSV file. That is, the CSV files serve
basically as a human readable representation of the initial state of the table or additional state an
import brings into the database.

Each row needs to have the same number of column entries, separated by the column separator
(default: “; 7).

The CSV File Format in General

CSV files have the following general format:

Page 89

10 Importing Data 10.3 General Format of CSV Import Files

+ Columns are separated by the column delimiter, which is the semicolon (*; ”) by default.
* Rows are delimited by the end of an input row.
» The character # at the beginning is used for comments (introduces rows that are ignored).

Thus, the following CSV file content defines two rows with four columns:

A simple CSV example having two rows with four columns:
string; int; double; date

first line;42;12.34;1999-12-31

second line;77;3.1415;2000-12-24

Values, are validated during CSV import. Thus, the example above has to match a corresponding
table definition such as the following:

CREATE TABLE MyTable (
myString VARSTRING,
myInt INT64,
myFloat DOUBLE,
myDate DATE,

If values don't fit, the whole row is ignored and stored in a special file containing all rejected rows (see
section 10.5.2, page 101). The same applies if the number of fields in the CSV input does not match
the number of columns.

Basic Processing of CSV Fields

For the individual values, specified between the column delimiter or the beginning/end of row, the
following rules apply:

» Leading and trailing spaces of values are always skipped.

» With leading and trailing spaces removed, the empty value, the value “\N”, and the value “<NULL>"
always represents NULL. This is not the case if additional characters (except leading/trailing
spaces) exist or the value is quoted. See section 10.3.2, page 93 for details.

* You can put the whole value (inside leading and trailing spaces) within double quotes. This applies
to any type. By this feature, you can have leading or trailing spaces inside the value. You can also
use double quotes to have the column separator as part of the value. Double quotes in the middle
of a value have no special effect.

* A backslash (outside or within double quotes) disables any special handling of the following
character. The following character is taken as it is. Thus:

— “\"” makes the double quote character part of the value instead of beginning/ending a quoted
value.

— “\;”is not interpreted as column separator even without quoting the value.

- “\x”, “\t”, and “\n” are just the characters “x”, “t”, and “n” (the leading backslash is ignored).

— “\\”is just the backslash character as part of the value.

Page 90

10.3 General Format of CSV Import Files 10 Importing Data

For example, if you have input for two columns, a line number and a string:

line;string

1; nospaces

2;" withspaces "
3;"\"with quotes\""
4;\;

5;\"

6;"\""

the strings specified as second field are:

* inline 1: the string “nospaces” (leading and trailing spaces are skipped)

* inline 2: the string “ withspaces ” (leading and trailing spaces are not skipped)
* inline 3: the string “"with quotes"” (leading and trailing spaces are not skipped)
* inline 4: a semicolon.

* inline 5: just the character “"”

* inline 6: also just the character “"”

Note that queries for this data by default will escape the double quotes.

Skipped CSV Columns

To be able to process CSV files with more fields/columns than necessary, you can declare tables
to have sk1Ped columns. By this, you define a column that from the point of the database schema
does not exist, except that they are listed in the system table ps_info_column (see section 26.3,
page 309).

For example:

CREATE TABLE MyTable (
id UINT64,
name VARSTRING,
ignored VARSTRING SKIP TRUE,
value DOUBLE,

defines MyTable to have 3 columns, id, name, and value, using the first, second, and fourth CSV
input field of each row of the following CSV file:

id; name; ignored; value

1; AA-143;some additional ignored information;1.7
1; AA-644;other additional ignored information;7.3

Note that you still have to specify the correct column type of skipped columns, because even ignored
input fields have to match the format (simply, use type VARSTRING if the format doesn’t matter).

Page 91

10 Importing Data 10.3 General Format of CSV Import Files

The Column Separator

You can use other characters than the semicolon as CSV column separator with the importer option
columnseparator (see section 13.4.2, page 146).

For example, when a dot is used as separator:

[import.imp]
columnseparator =

you have to specify floating-point values and other values using a dot within double quotes:

A simple CSV example having two rows with four columns:
string; int; double; date

first 1line.42."12.34".1999-12-31

second line.77."3.1415".2000-12-24

Again, you can also simply put double quotes around all values:

A simple CSV example having two rows with four columns:
string; int; double; date

"first line"."42" , "12.34".,"1999-12-31"
"second line".77"."3.1415"."2000-12-24"

This is especially necessary if you define a columns separator that also might be part of a value.
You can also define non-printable characters as column separators in different ways:

* You can either specify the column separator with a backslash. To specify other non printable
character you can define it as the following escaped characters: \a, \b, \ £, \t, \v, \?,0r \’.

For example, you can define a tabulator as column separator as follows:

[import.imp]
columnseparator = \t

* You can define the octal or hexadecimal value of the column separator: \x##, Ox##, or a octal
value defined with only a leading 0.
For example, you can define a tabulator as column separator as follows:

[import.imp]
columnseparator = 0x09

The following characters are not allowed to be column separators: “\”, “"”, space, and newline.

Note that when using a comma as column separator, you can import multivalues only if they with all
their elements are quoted as a whole, because they also use the comma as internal separator (see
section 10.4.6, page 98).

Page 92

10.4 CSV File Format of Specific Types 10 Importing Data

Compression of Import Files

The CSV import files can be uncompressed, or they can be compressed by using either bzip2 or gzip.
The compression type will be determined by examining the file extension .bz2 or . gz respectively.

If none of those extensions is used, uncompressed text is assumed.
Note that . tgz is not supported.

Importing NULL Values

CSV values can be empty. In that case the values are always interpreted as NULL values.
Note that rows where all values are NULL are never imported.

In the following example, the last column of the first row and the second column of the second row are
initialized by NULL values.

two rows with 3 columns with NULL values:
first line;42;
second line;;date'2000-12-24"

In addition, one can use \N or <NULL> in GSV files as NULL values. This only applies if the whole
value except leading and trailing spaces has the corresponding characters. Any additional character
or double quotes let the value have the corresponding two or six characters.

To clarify that for strings and MultiValues:

+ Strings: The empty string is interpreted as a NULL string (see section 23.5.1, page 273). Importing
\N and <NULL> is interpreted as importing an empty/NULL string. Importing "\N" and "<NULL>"
results in strings containing exactly that characters. Note that this means that rows having only
empty string values are never imported.

* MultiValues: Importing \N and <NULL> or an empty CSV input value will be interpreted as NULL.
Currently there is no difference between an empty multivalue and a multivalue containing exactly
one NULL element. IS NULL is TRUE if the multivalue is empty. IS NOT NULL is the opposite
(non-empty).

This table summarizes the special cases:

Type IS NULL IS NOT NULL Valid NULL import

String Any empty string Any string that is not empty | empty string, with or
without " ", \N, <NULL>

Multivalue | empty non-empty empty multivalue, \N,
<NULL>

CSV File Format of Specific Types

Page 93

10 Importing Data 10.4 CSV File Format of Specific Types

Importing Integers

Values for unsigned and signed integer typed columns will be parsed from integer values with decimal
base.

Format | Examples
[-]digits | 42

-12

NULL <NULL>
\N

As usual, an empty CSV value also is interpreted as NULL.

Note that you have to put the value within double quotes if the minus character is defined as column
separator (see section 10.3.1, page 92).

Importing Floating-Point Numbers

Floating-point numbers can be parsed for the value types FLOAT and DOUBLE from the following
formats:

Format Examples

[-]digits. digits[e(+/-)digits] | -1.2
3.24e+23

NULL <NULL>
\N

As usual, an empty CSV value also is interpreted as NULL.

Note that you have to put the value within double quotes if the dot, minus, plus or ‘e’ character is
defined as column separator (see section 10.3.1, page 92).

Importing Date and Time Formats

Date/time values have a default import format, you can use. However, since Version 2.2, you can
specify any other date/time import format specified by a csv_FORMAT clause, which is described
below (see page 95).

Supported default import formats for type date are:

Format Examples | Remark
YYYY-MM-DD | 2010-11-23
DD.MM.YYYY | 23.11.2010 | Supported until Version 2.2. Use CSV_FORMAT ’DD.MM.YYYY’ instead,

then.
MM/DD/YYYY | 11/23/2010 | Supported until Version 2.2. Use CSV_FORMAT ’MM/DD/YYYY’ instead,
then.
NULL <NULL>
\N

Supported formats for type shortdate are:

Page 94

10.4 CSV File Format of Specific Types 10 Importing Data

Format Examples Remark
YYYY-MM-DD | 2010-11-23
unix timestamp | 1287059484
DD.MM.YYYY | 23.11.2010 | Supported until Version 2.2. Use CSV_FORMAT ’DD.MM.YYYY”’
instead, then.

MM/DD/YYYY | 11/23/2010 | Supported until Version 2.2. Use CSV._FORMAT ’MM/DD/YYYY’
instead, then.

NULL <NULL>
\N

Supported formats for type time are:

Format Examples
HH24:MI:SS 12:30:21
HH24:MI:SS.MS | 12:30:21.865
NULL <NULL>

\N

Supported formats for type timestamp are:

Format Examples
YYYY-MM-DD HH24:MI:SS 2010-11-23 12:30:21
YYYY-MM-DD HH24:MI:SS.MS | 2010-11-23 12:30:21.865
NULL <NULL>

\N

For all date/time types, as usual, an empty CSV value also is interpreted as NULL.

Note that you have to put the value within double quotes if one of the characters “-”, “:”, or “.” is
defined as column separator (see section 10.3.1, page 92).

Supporting other Date and Time Formats with CSV_FORMAT

Since Version 2.2., the CSV_FORMAT clause inside the CREATE TABLE statement (see section 24.2.5,
page 289) allows to define how date/time types are interpreted by CSV importer. The format mask
can not be used for ETL (see section 10.6, page 104) generated CSV columns.

An example for a CREATE TABLE statement including a column specific format mask could look like
the following:

CREATE TABLE dateTable

(
dateColumn DATE ... CSV_FORMAT 'DD.MM.YYYY'

)

Now, import values such as 24.12.2013 are supported (instead of the default format 2013-12-24).

The following table contains all supported format specifiers which can be used in Cisco ParStream to
define a format mask:

Page 95

10 Importing Data 10.4 CSV File Format of Specific Types

Specifier | Range Length | Def. | Description

HH 01-12 1-2 0 Note: Default is 12 hour format
HH12 01-12 1-2 0 Hour with 12 hour format
HH24 00-23 1-2 0 Hour with 24 hour format

MI 00-59 1-2 0 Minute

SS 00-59 1-2 0 Second

MS 000-999 1-3 0 Millisecond

AM or PM | AM, PM, A.M., PM. 2or4 AM | Meridian indicator for HH and HH12 (both
AM and PM allow all values)

YYYY 0000-9999 (date) 1-4 0 Year (4 digits)
2000-2187 (shortdate)
YY 00-99 1-2 0 Two digit year; Includes years 1930-1999
and 2000-2029.
MM 01-12 1-2 1 Month number
DD 01-31 1-2 1 Day of month
EPOCH 0-253450598399 1-12 Unix/POSIX Time which covers all

information (time and date) (e.g.
15148801). Max is 253450598399 which
is the 31. Dec. 9999 23:59:59

EPMS 0-253450598399999 4-15 Like EPOCH. This format uses
milliseconds as smallest unit (instead of
Unix timestamp typical seconds).

In addition you can use any other character, which is required then at the specified position and can
be used as separator to separate different value items. Thus, a format such as day: DD. would

successfully read in “day: 23.” (requiring the characters 'd’, 'a’, ’y’, ', and a space, followed by the
day value, followed by a dot). The characters are case sensitive.

Note the following:

+ If a format mask allows a variable length of digits, you either need separators to detect the end
or the maximum number of digits are processed. For example, for the format mask ' bDMMYYY Y’
avalue suchas 111970’ is not allowed; you have to pass Y 01011970’ instead (thus, leading
zeros are required because no separators are given).

Other examples for format mask are:

Example Input Format Mask Description

01.01.99 MM.DD.YY Using the two digit year with “.” separators.
11:59:59.999 PM | HH12:MI:SS.MS AM Time with milliseconds and meridian given.
2007-08-31T16:47 | YYYY-MM-DDTHH24:MI | Timestamp using ‘T’ as a date-time separator.
13284555.999 EPOC.MS Unix timestamp with given milliseconds.

date 2013-12-31 date YYYY-MM-DD Date with character literals

Page 96

10.4 CSV File Format of Specific Types 10 Importing Data

Importing Strings

As introduced as the general import format in section 10.3.1, page 89, strings are imported by removing
leading and trailing spaces. As for all types, you can encapsulate the value with double quotes ("),
which allows to have leading and trailing spaces and the column separator inside the string. With and
without enclosing double quotes, you can also escape any character by a backslash, which disables
any special meaning.

Note that in ASCII query output the strings are enclosed by double quotes and any special character
inside the string (double quote or column separator character) is escaped by a backslash. This ensures
a round-trip capability of string: String returned by query results are always valid for imports resulting
in the same value.

For example, the CSV input:

#no;string

1; hello

2;" \"world tn\" "
3;

; last

defines in the second column the input strings (value between > and <) >hello<, > "world tn" <,
the empty string (NULL) and >1ast<. In the first column, the last row defines NULL as value.
A query will output the lines as follows:

#no;string

1;"hello"

2;" \"world tn\" "

3; nmnn
<NULL>; "last"

Thus, NULL strings are printed as empty strings and for other types the output for
NULL values by default is <NULL> (which can be modified via the global option
asciiOutputNullRepresentation; see section 13.2.1, page 122). This output can be used
as input again and will result to the same internal values.

Again, note that importing an empty string or the values \N and <NULL> without additional characters
except leading and trailing spaces results in a string being NULL. (see section 10.3.2, page 93).

Note also:

+ With MAPPING_TYPE PROVIDED you can define the hash values yourself, using the following
syntax: “hash: value” (see section 24.2.6, page 294)

Importing Blobs

Values for blobs can be specified as values for strings (see section 10.4.4, page 97).

Page 97

10 Importing Data 10.4 CSV File Format of Specific Types

Importing MultiValues

Numeric columns can be stored as multivalues by specifying a MULTI_VALUE singularity (see
section 24.2.4, page 284). These types roughly correspond to arrays and imply certain indexing
options.

Note the following about multivalues:

* Multivalue elements are separated by commas in CSV files.

* Multivalue values are NULL if they are empty, defined as <NULL> or \N (see section 10.3.2,
page 93).

For example, the following import file provides values for a multivalue as second column:

lineno;multivalue
1;81,82,83,84,85

Note that when using a comma as column separator (or any other character that might be part of the
multivalue elements), you can import multivalues only if they are quoted as a whole. For example:

lineno;multivalue
1,"81,82,83,84,85"
2 , nn

3,"0"

4,m1n

5,"1,2"

6,"3,4,5"
7,"6,7,8,9,10"

8 , nn

Importing Bitvectors

Bitvectors are currently parsed like integers. For example, the input value 3 initializes the bitvector
00000011.

Page 98

10.5 Using the CSV Importer 10 Importing Data

Using the CSV Importer

Starting the CSV Importer

After installing Cisco ParStream and providing a corresponding configuration, the easiest way to start
the Cisco ParStream importer is to perform the following steps:

1. Set the variable PARSTREAM HOME:

export PARSTREAM_ HOME=/opt/cisco/kinetic/parstream—-database

and add Cisco ParStream libraries to your library search path:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:S$PARSTREAM HOME/lib

2. Go to the directory, where your Cisco ParStream database configuration is located. Usually, this
should be a directory containing:

» asub-directory conf which typically contains the INI file for the basic configuration

* aimport sub-directory or any other sourcedir specified in the INI file of the corresponding
server.

3. The INI file has to contain the minimum options that are required to run an importer:
* aglobal cluster1d
* aglobal registrationPort
* importer-specific host and leaderElectionPort
* an importer-specific rank
* an importer-specific targetdir
Note that clusterId, leaderElectionPort and rank are required because any Cisco
ParStream server can sooner or later be extended to a multi-node cluster (see chapter 6,
page 40).
You might typically also set:

* aglobal clusterInitTimeout, which defines the time in seconds to wait for a cluster of
multiple nodes to establish. If you know that the database is running with only one server/node
you can/should set to just 1.

» the importer-specific sourcedir

For example, an INI file for an importer called imp might look as follows:

basic cluster settings for single-node clusters:
clusterId = exampleCluster
registrationPort = 9040
clusterInitTimeout = 1

[import.imp]

Page 99

10 Importing Data 10.5 Using the CSV Importer

host = localhost
leaderElectionPort = 9051

rank (any number is fine):
rank = 99

directory that contains the raw data (CSV files) to import:
sourcedir = ./import

temporary directory that contains read partitions before transferred to the server:
targetdir = ./import-partitions

4. Start the Cisco ParStream importer parstream-import. The only required argument is the
name of the importer to start, which identifies the corresponding section in the INI Files for the
other setting (you can pass this name also with ——importername).

For example:

SPARSTREAM_HOME/bin/parstream—import imp

If you add $SPARSTREAM_HOME/bin to your search path, starting the importer as follows is enough:

parstream-import imp

By default, the importer reads for each table the files that match the specified subdirectory and file
pattern. For example, here for table MyTable all files ending with . csv are processed:

CREATE TABLE MyTable (

)
IMPORT_DIRECTORY_PATTERN '.«'
IMPORT_FILE_PATTERN '.*\.csv';

The default is to look for all files that begin with the name of the table and end with . csv. Thus,
with

CREATE TABLE Hotel (

)i

the importer will read all CSV files, where the file name starts with Hotel.

By default, the importer runs in an endless loop. Thus, it does not end when all files in the import
directory are processed. Instead, it checks again and again whether new files for import exist and
processes them.

Note that CSV import files provided by some processes should in general have different names. If
you just write CSV files using the same name, ensure a file was processed before providing a new file.
For this, it is not enough to find the imported data in the database, you also should have the imported
file in the backup directory (see section 10.5.2, page 101).

Page 100

10.5 Using the CSV Importer 10 Importing Data

The interval to check for new import files is something to configure as global entry in the configuration
file (see section 13.2, page 119):

Time to wait for the importer between searches for new data (in seconds)
reimportInterval = 1

When importing data, the data gets parsed and transferred into partitions, which are stored then in a
target directory. This can bet set via the option targetdir:

[import.imp]
targetdir = ./import-partitions

For more sophisticated ways to start a Cisco ParStream importer (e.g. logging all output into a file),
see the shell script import.shin SPARSTREAM_HOME /bin.

Note:

If an importer has to connect to a server, then the port specified in the server configuration
and the port above it must be open. If e.g. port 4002 is configured, then both the ports
4002 and 4003 must be available. See section 13.3.1, page 135 for details.

.backup and .rejected folders

Imported CSV files are by default moved into the backup directory of the import directory. For each
import file, the backup directory is the sub-directory .backup.

You can disable the move of the imported files with the importer option csvreadonly (see
section 13.4.2, page 146). This, of course, only makes sense, if the importer is not running in
a loop. Note that you can’t define an alternative directory for the backup folder, because if the backup
folder is on a different device, this is a significant performance drawback. Use symbolic links instead.

Because CSV files can contain about everything (including illegal data), it will be filtered by the
importer. Every line of the CSV file that cannot be imported into the database will be put into a file
in the subdirectory . rejected. The name of the file is <csvfilename>.rejected.txt, where
csvfilename is the complete CSV file name including any compression suffixes. This file may contain
empty or comment lines in addition to the ones containing illegal data or a wrong number of columns.
That file is never compressed, even though the imported CSV file was compressed.

Importer and Schema/Metadata Changes

Normally the CSV importer periodically checks for schema/metadata changes i.e. for a CREATE
TABLE or ALTER TABLE statement issued to the server (see chapter 24, page 277). Importing for a
newly created table works automatically, but for an ALTER TABLE to work seamlessly you need to do
the following steps:

1. Stop creating CSV-files

2. Make sure the CSV importer runs out of CSV files

Page 101

10 Importing Data 10.5 Using the CSV Importer

3. Issue ALTER TABLE command(s)

4. Provide CSV-files in new format

CSV Importer Command Line Parameters

The Cisco ParStream CSV importer provides the ability to pass several commandline arguments, to
configure and influence the behavior of the importer.

On one hand you can pass several general arguments. For example:

Option Arg Description Default
-—help Prints how to start the Cisco ParStream
server/importer and exits
--version Prints the version of the Cisco ParStream
server/importer and exits
—-—confdir string | Defines the configuration directory, where INI files | ./conf
are searched
—--configcheck Check configuration (INI file and commandline
options) and end the program
——importername | string | Defines the name of the importer to start servername
-—inifile string | Constrains to only one configuration (INI) file being
used
—-—-servername string | Defines the name of the server to start importername
—-—sourcedir string | overwrites a sourcedir specified in the INI files
(see Import-Options)
-—targetdir string | overwrites a targetdir specified in the INI files (see
Import-Options)
--verbosity integer | change verbosity (0: minimum, 5: maximum) 0
-—iterations integer | Set maximum number of iterations before ending | 0 (endless)
the importer (0: endless)
--finite Start the import with exactly one iteration, which false
should import all CSV files. Sets the default for the
number of iterations to 1 and the default for
maximum number of CSV files processed to
"unlimited".

In addition, you can pass some table specific arguments. For example:

Option Arg Description
-—table.tabname.directorypattern | string | overwrites the
IMPORT_DIRECTORY_PATTERN for import
of table tabname.

—-—table.fabname.filepattern string | overwrites the TMPORT_FILE_PATTERN for
import of table tabname.
-—table.tabname.etl string | overwrites the ETL query for an import of

table tabname.

Page 102

10.5 Using the CSV Importer 10 Importing Data

See section 13.1, page 116 for a complete list of all commandline arguments.

Finally, all values of the configuration INI file can be overwritten by command line parameters. The
prefix of a parameter string depends on the section, in which a specific parameter was defined.

For example, to overwrite the parameter rank of the server with the name imp with the value 999, the
command line parameter must be formulated as follows:

——import.imp.rank=999

Page 103

10 Importing Data 10.6 ETL Import

ETL Import

By default, each column in a CSV file results in exactly one column in the database. However, you can

use so called ETL statements (“extract”, “transform”, and “load”) to transform the data you read from

CSV files into the format of the database columns. Typical applications of this features are:
+ Adding additional columns for better partitioning
+ Filtering rows read from CSV files according to a WHERE clause

Note that ETL import transformations don’t apply to INSERT INTO statements (see section 10.7,
page 107). Instead to have to provide the corresponding ETL values with an INSERT INTO statement.

To define a ETL import transformation, you need to provide some additional information when defining
the table:

* Inthe corresponding CREATE TABLE statement you must define a corresponding ETL statement.

* In addition, columns additionally filled by the ETL statement must have been declared with
CSV_COLUMN ETL.

Note also that you can specify the ETL import statement via the command line with option
-—-table.tabname.et1 (see section 10.5.4, page 102).

Additional ETL Columns

For example, a ETL clause such as

ETL (SELECT id MOD 3 AS etlColumnl
FROM CSVFETCH (MyTable)

means that the resulting import will be all columns from table MyTable plus a column et1Columnl
becoming the value from column id consisting of values between 0 and 2, computed as modulo on
the column id in the same input row.

The keyword CSVFETCH instructs the importer to use the CSV import file as input. Its argument is the
name of the table, the ETL statement applies to.

It's also possible to specify other column names or wildcards in the SELECT statement, but that’s not
necessary or useful because:

» A wildcard representing “all remaining columns” is implicitly added to the ETL statement anyway,
having the same effect as:

ETL (SELECT id MOD 3 AS etlColumnl, =
FROM CSVFETCH (MyTable)

» Specifying only a fixed list of names would become a problem if later on additional columns are
added to the table.

The columns filled by ETL statements should usually should be defined in the CREATE TABLE
statement with CSV_COLUMN ETL:

Page 104

10.6 ETL Import 10 Importing Data

CREATE TABLE MyTable
(
id ...
etlColumnl ... CSV_COLUMN ETL,

Strictly speaking, CSV_COLUMN ETL means that the column does not have a CSV index (as it is the
default for csv_COLUMN, see section 24.2.4, page 284), which means that this column doesn’t get
values from corresponding CSV import files.

Modifying Existing Columns

You can even have ETL import conversions for columns that are not marked with CSV_COLUMN ETL.
Then, there must be a value in the import file, which is overwritten then during the import according to
the ETL statement.

For example, the following statement ensures that all values of a VARSTRING column valString
only have lowercase letters:

ETL (SELECT LOWER(valString) AS valString FROM CSVFETCH (MyTable))

Filtering CSV Rows

To filter data read out of CSV files, you simple have to provide a WHERE clause in the ETL statement.
All rows, where the WHERE clause does not match, are ignored. Note that filtered lines will neither be
found in the .rejected folder nor in lodfiles.

For example:

ETL (SELECT = FROM CSVFETCH (etlTable)
WHERE last_access > date '2013-01-31"

imports all lines from CSV files for table et1Table where the date read from the column
last_access is after 01/31/2013. All rows not matching this definition (this includes rows where
last_access iS NULL in this example) will be ignored.

A Complete Example for an ETL Import

The following table definition:

CREATE TABLE etlTable
(
id UINT32 INDEX EQUAL,
street VARSTRING (100),
zip UINT32 INDEX EQUAL,
city VARSTRING (100) COMPRESSION HASH64 INDEX EQUAL,
—— an artificial column created by the ETL process as "id MOD 3":

Page 105

10 Importing Data 10.6 ETL Import

partitionId UINT32 INDEX EQUAL CSV_COLUMN ETL,
)
PARTITION BY partitionId
ETL (SELECT id MOD 3 AS partitionId,
FROM CSVFETCH (etlTable)
WHERE city = 'San Francisco'
)i

reads input rows with columns id, street, zip, and city, ignoring rows where the city is not “San
Francisco,” and adds an additional column partitionId to partition the data according to the ID’s
read.

For other examples, see the section about table distribution (section 6.3, page 53) or the Separation
Aware Execution optimization (section 15.15.1, page 188).

Page 106

10.7 Import Data with INSERT INTO 10 Importing Data

Import Data with INSERT INTO

An existing table can be filled by an INSERT INTO statement. The INSERT INTO statement has the
following format (for grammar details see section 27.4, page 360):

INSERT INTO <table—-name> <select-statement>

Note the following:

» You have to provide values for all columns of the destination table, except those marked with SKIp
TRUE. This includes values for ETL columns (see below).

» The columns are identified by their name, not by the order. For this reason you usually need aliases
in the SELECT part of INSERT INTO statements (unless you read data from a source table having
the same column name(s)).

» For each import you need an available thread. Thus, for each node/server you have to specify
with option maxImport Threads (see section 13.2.1, page 127) how many imports are possible in
parallel (which might also require to set socketHandlingThreads, see section 13.3.2, page 138).

Also, note the limitations below.

Example

Consider we have the following two tables:

CREATE TABLE Hotels

(
city VARSTRING (1024) COMPRESSION HASH64 INDEX EQUAL,
hotel VARSTRING (100) COMPRESSION HASH64 INDEX EQUAL,
price UINT16 INDEX RANGE,
"week" UINTS

CREATE TABLE AveragePrices

(
city VARSTRING (1024) COMPRESSION HASH64 INDEX EQUAL,
price UINT16 INDEX RANGE,
quarter UINT8 INDEX EQUAL

After inserting data into table Hotels you can fill the table for the average prices for example as
follows:

INSERT INTO AveragePrices
SELECT city, SUM(price)/COUNT (*) AS price, 1 AS quarter
FROM Hotels
WHERE week BETWEEN 1 AND 13

Page 107

10 Importing Data 10.7 Import Data with INSERT INTO

GROUP BY city;

If this command is successful, it returns INSERT, a 0 and the number of successfully inserted rows.
For example:

#0OK
INSERT 0 64

Note that to insert NULL for specific columns you can’t pass NULL for a hashed string column. Instead,
you have to pass the empty string. For example, the following is possible (provided street is a
non-hashed string and city is a hashed string):

INSERT INTO Address SELECT 777 AS id, NULL AS street, NULL AS zip, '' AS city;

Note however, that in general using INSERT INTO to insert single rows is not a good idea, because
for each row a new partition is created. (This is the reason, why Cisco ParStream provides a INSERT
INTO statement for results of queries but not for single rows.)

Limitations

Note the following limitations:

+ INSERT INTO statements writes data directly into the target table without any ETL transformation
(see section 10.1, page 88). For this reason, you also have to provide the values for ETL
columns. Of course, you have to ensure that the integrity of ETL columns is not violated by this.
That is, either the values for ETL columns already match the ETL statement or you have to apply
the same function to them.

* When inserting data, the column types have to match. This especially means that you can’t insert a
column of hashed strings into a column of non-hashed strings or vice versa.

» Currently, no parentheses are allowed around the inner SELECT statement.

+ System tables ps_info_import and ps_info_query_history are only partly supported yet.

Page 108

Deleting Data

Cisco ParStream supports deleting data from a table using standard SQL commands. The possibilities
and limitations of the delete command are introduced and explained in this chapter.

Delete Statements

Cisco ParStream supports standard SQL DELETE statements. The data is removed by evaluating the
filter provided in the DELETE statement for each record. If a record matches this filter, the records will
be removed from the system. Once the records are removed from the table, the statement will return
with the number of deleted records.
For example, a query deleting every record with the value ’42’ in column ’value’ of a table
‘'measurements’ would look like this:

DELETE FROM measurements WHERE value = 42;

If the filter is omitted from the query, all data of the table is deleted:

DELETE FROM measurements;

Limitations

Please note the following general limitations of DELETE statements in Cisco ParStream:

» Filter statements in WHERE clauses are only allowed on partitioning columns. The consequence of
this limitation is that only complete partitions can be deleted. If a filter contains any non-partitioning
columns, an error will be reported.

* Inthe case of parallel IMPORT and DELETE operations, where the filter of the DELETE statement
matches data of the IMPORT statement, it is undefined whether the newly imported data is deleted
or not. The only guarantee is that the cluster retains a consistent view of the data.

* DELETE statements and merges cannot run in parallel. If a merge is already running on the table
specified in the DELETE statement, the DELETE will wait for the merge to complete. Hence, the

DELETE statement can take a long time to complete if a merge is running in parallel.
Any merge on a table will be postponed until the DELETE statement on the table has finished.

Page 109

Client Applications and Tools

This chapter describes the client applications and tools of Cisco ParStream:
» The socket interfaces pnc and netcat/nc (see section 12.1, page 110)
+ The PSQL Client (see section 12.2, page 115)

Database Clients pnc and netcat

To connect to a Cisco ParStream server, you can use any client that can serve as socket interface
(see chapter 16, page 199). A typical example is netcat, but Cisco ParStream provides a more
convenient tool called pnc, which is described first.

pnc

Cisco ParStream provides a python client, called pnc, as a more comfortable alternative to working
directly with net cat. It's features resemble that of a PQSL client but pnc connects to Cisco ParStream
via the socket interface. After installation, pnc is located at SPARSTREAM_HOME /bin.

Features of pnc

pnc provides some advantages about simple socket interfaces such as netcat:
» Multi-line queries are supported
— Queries cover multiple input lines until a semicolon is reached
— Comment lines, starting with —— are ignored
» Seeing responses without additional options.
* Measuring execution time.
+ Options to execute queries from a file.
» Options to write results to a file.

Note that Cisco ParStream servers currently only accept single-line commands. pnc converts multi-
line commands in one single-line command, which especially makes it easier to process complex
commands such as CREATE TABLE commands read from batch files (SQL files).

Invocation of pnc

The invocation corresponds to PSQL.
For example:

pnc -h <host> -p <port> -U <loginname> —--auto-reconnect --ssl

pnc has the following options:

Page 110

12.1 Database Clients pnc and netcat 12 Client Applications and Tools

Option Short | Effect

--host -h Hostname to connect to (default: 1ocalhost)

-—port -p Port to connect to (default: port 9042)

—-—username -U Login name to use as defined by the CREATE USER command

(see section 9.2.3, page 80). If you use this option, you will be
prompted for a pass phrase. Without this option, pnc assumes
that your server does not use authentication, which by default is
not the case.

-—auto-reconnect | -r With this option pnc transparently reconnects to the Cisco
ParStream server when it loses the connection.

-—ssl -s pnc creates an ssl encrypted connection.

—-help -h help

All the command-line arguments are optional.

Performing Queries with pnc

By default, pnc reads command lines line by line with Cisco ParsStream=> as prompt. Commands
have to end with ;. Lines, started with —— are ignored.

Thus after starting pnc (here connecting to port 9042):

S pnc —-p 9042

the tool will establish a connection (if possible) and ask for the commands using its prompt:

Connecting to localhost:9042 ...
Connection established.
Encoding: ASCII

Cisco ParStream=>

The you can type any command including standard SQL queries, CREATE TABLE commands, and
the additional commands described in section 16.4, page 200.

For example, you can get the list of columns in the database by querying a system table typing at the
pnc prompt the following:

Cisco ParStream=> SELECT table_name, column_name FROM ps_info_column;

This results into the following output:

#table _name;column__name
"MyTable"; "name"
"MyTable"; "value"

[0.241 s]
The end of the request usually is the time the request took.

Page 111

12 Client Applications and Tools 12.1 Database Clients pnc and netcat

To exit the pnc utility, either press ctr1-D or use the quit command (see section 16.4.2,
page 201):

Cisco ParStream=> quit;

which results in the following output:

Lost connection.

Performing Scripts with pnc

You can also use pnc to read commands from standard input. For example, the following command
performs a SELECT command passed with echo on a Cisco ParStream server listening on port 9988
of the local host:

echo '"SELECT * FROM ps_info_column;' | pnc -p 9988 -U loginname

This can also be used to send the contents of full command/batch files, such as SQL files with CREATE
TABLE commands:

pnc -p 9988 -U loginname < MyTable.sgl
pnc converts the commands read into single-line commands, while removing comment lines. For
example, if the contents of MyTable.sql is the following multi-line command:

—— create a first table
CREATE TABLE MyTable
(

col UINT32
)
this command is sent as the following single-line command to Cisco ParStream:

CREATE TABLE MyTable (col UINT32)

This is what you'd have to send to Cisco ParStream servers if a standard command line tool such as
netcat is used (see section 12.1.2, page 114).

Note that inside a command no comments should be used. You should place them before or after the
commands.

Key Combinations and Commands of pnc

pnc allows the following key combinations:

Page 112

12.1 Database Clients pnc and netcat 12 Client Applications and Tools

Key (Combination) | Effect

<ENTER> newline
; <ENTER> execute SQL query
<CTRL>+<C> kill

pnc provides the following commands (no “; ” is required):

Command Effect

\g <ENTER> quit

\t <ENTER> toggle timing (timing is enabled at startup)
\o output.csv <ENTER> | write all output to the file output.csv
\d <ENTER> describe: List of all tables

\d mytable <ENTER> describe: List columns for table mytable

netcat / nc

netcat or nc is a standard tool you can use to send statements to Cisco ParStream servers.

Note however: If using netcat all authorization credentials (login name and pass phrase) should be
passed as environment variables to minimize exposure of credentials (login name and pass phrase)
to tools like top, ps and bind the lifetime of these secrets to the session. A common useful rule is
to export HISTCONTROL=ignorespace and then define these environment variable values in a
command line starting with a space, so it will not be written into command line history. It is alternatively
possible to use pnc instead of netcat. With pnc pass phrase input hides typed pass phrases. In
addition, pnc provides some additional features. See section 12.1.1, page 110 for details about pnc.

Performing Queries with netcat

After connecting with net cat, you enter queries followed by return. The results are displayed inline.

The first command usually is the login request, because by default Cisco ParStream requires user
authentication (see section 9.2, page 78):

LOGIN 'username' 'pass phrase'

The server should respond with:
#INFO-77060: Authentication successful
The login lasts until the end of your connection to the Cisco ParStream server.
Then you can send any SQL command, which is terminated by a newline. For example:

SELECT table_name, column_name, column_type, column_size FROM ps_info_column

The command might might produce the following output:

#table _name;column_name;column__type;column,__size
"Address"; "year"; "numeric"; "UINT64"; <NULL>
"Address"; "month"; "numeric"; "UINT64"; <NULL>

Page 113

12 Client Applications and Tools 12.1 Database Clients pnc and netcat

"Address";"day"; "numeric"; "UINT64"; <NULL>
"Address"; "state";"string"; "VARSTRING"; 100

You can use all SQL commands as well as the additional command described in section 16.4,
page 200.
To end the connection to the server, you can send the quit command (see section 16.4.2,
page 201):

quit
Note again that each statement has to end with a newline.

Performing Scripts with netcat

You can pipe input into the standard netcat, which might come from other commands or files. This
can be used to script queries.

This way, you can send complete scripts. For example:
export HISTCONTROL=ignorespace username='login_name'; pw='pass phrase'

echo —e "LOGIN 'S${username}' 'S$S{pw}'\nSELECT * FROM ps_info_column\nquit\n" |
nc localhost 9950 -w 10

Note the following:

* You have to send commands on lines that end with a newline.

* You should use an option such as -w sec, which waits the specified number of seconds and then
quit, to see responses (on some platforms this option might not be available).

You can also send the content of SQL command files via net cat. For example, you can create create

tables that way:

A |l

cat MyTable.sgl | grep -v -='" | tr "\n" " " | tr ';' '"\n' | netcat
localhost 9077

Note that you have to

* remove comment lines because they are currently not correctly ignored

» transform newlines into spaces because the input has to be one line

» transform the ending semicolon into a newline because commands have to end with a newline

Again note that usually user authentication is required, which makes the command more complicated
or part of the SQL file. By using pnc instead of netcat/nc performing commands from SQL/batch
files is a lot easier (see section 12.1.1, page 112).

Page 114

12.2 PSQL client 12 Client Applications and Tools

PSQL client

To use the PSQL Postgres client in conjunction with Cisco ParStream, install package postgresqgl
of your Linux distribution. Then enter at the command prompt (a simple example only):

psgl -h localhost -p 1112 -W "sslmode=disable" username

Note that one can use any pass phrase, but it may not be empty.

If the user authentication is disabled (see section 9.2, page 78), you can provide a dummy password
to the command. Then enter at the command prompt:

psgl -h localhost -p 1112 "sslmode=disable password=x"

The connect parameters can also be stored in environment variables (necessary for "sslmode" and
"password" in older versions of psql):

export PGHOST=localhost
export PGPORT=1112
export PGSSLMODE=disable
export PGPASSWORD=x
export PGUSER=username

This is the preferred way of submitting credentials as other users may see the issued command line,
e.g. via ps.

Note that within PSQL, a command must be terminated by a semicolon ";" before it is executed when
pressing the return key.

To quit type “\gq".
Here are the most important commands:

Command Effect

\q quit

\r reset (clear current query)
\h command | help

\timing enable timing queries

For further information, see man psqgl or:
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psqgl_cheatsheet

Page 115

http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet

Options Reference

This chapter describes the details of all options you can set for Cisco ParStream servers and importers.
It describes the commandline options as well as the options you can set via INI files (or via the
commandline).

Commandline Arguments

For both importer and server, you can specify a couple of commandline options.

Pure Commandline Options

On one hand, there are the pure commandline options listed in Table 13.1 that only can be passed via
the commandline (in the For column, “S” means that the option applies to servers and “I” means that
this option applies to importers).

Note the following:

* Instead of et1MergeHour, et1MergeDay, et1MergeWeek, et1MergeMonth you can also
pass the options et IMergelevell, et 1MergelLevel2, et 1Mergelevel 3, et 1MergelLeveld,
respectively.

If you pass a positional parameter that is not an argument of an option, it is used as servername by

the server and importername by the importer.

For example, the following three calls are equivalent for starting a server first:

parstream-server —--confdir MyProject/conf first
parstream-server --confdir MyProject/conf —--servername=first
parstream-server —--confdir MyProject/conf --servername first

Passing INI-File Options as Commandline Options

In addition, you can pass all INI file options as commandline arguments. This applies to global options
(see section 13.2, page 119) as well as section-specific options. Note that in fact a couple of global
options are typically passed as commandline options.

For example, the following command starts the importer £irst with a verbosity level of 3:

parstream-import —--verbosity=3 first

Here, the verbosity argument of the commandline overwrites the global INI file entry for option
verbosity (if specified):

verbosity = 0

Page 116

13.1 Commandline Arguments

13 Options Reference

As another example, the following command starts the server £irst with the port passed via command

line:

parstream-server first --server.first.port=1234

Thus, the port argument of the commandline overwrites the following INI file entry (if specified):

[server.first]

port = 2345

Importer Commandline Options

For the importer, the following options can be defined as commandline arguments:

Option Arg. Description Default
-—verbosity integer | Controls the output verbosity (0: min, 5: max) false
-—iterations | integer | Set maximum number of iterations before ending the importer (0: endless)
-—finite Start the import with exactly one iteration, which should import | false

all CSV files. Sets the default for the number of iterations to 1
and the default for maximum number of CSV files processed to
"unlimited".

It is usually not necessary to specify an option because the option cluster1d is usually set in the INI

file.

The default for iterations is 0 (endless).

Page 117

13 Options Reference

13.1 Commandline Arguments

Option Arg. | Description Default For

--help Prints how to start the Cisco S/
ParStream server/importer and exits

--version Prints the version of the Cisco S/
ParStream server/importer and exits

--confdir string | Defines the configuration directory, ./conf S/
where INI files are searched

--configcheck Check configuration (INI file and S/
commandline options) and end the
program

——inifile string | Constrains to only one configuration S/
(IN1) file being used

—-—-servername string | Defines the name of the server to importername | S/I
start/use

—-—importername string | Defines the name of the importer to servername I
start

--sourcedir string | overwrites a sourcedir specified in the I
INI files (see section 13.4, page 146)

-—targetdir string | overwrites a targetdir specified in the I
INI files (see section 13.4, page 146)

--table.tab.directorypattern | string | overwrites the I
IMPORT_DIRECTORY_PATTERN for
imports of table tab.

-—table.tab.filepattern string | overwrites the I
IMPORT_FILE_PATTERN for imports
of table tab.

--table.tab.etl string | overwrites the ETL query for imports I
of table tab.

-—table.tab.et1MergeMinute string | overwrites the ETLMERGE clause for S
an “minute” ETL merge of table tab.

--table.lab.et1MergeHour string | overwrites the ETLMERGE clause for S
an “hourly” ETL merge of table tab.

-—table.tab.et1lMergeDay string | overwrites the ETLMERGE clause for S
an “daily” ETL merge of table tab.

-—table.tab.et1MergeWeek string | overwrites the ETLMERGE clause for S
an “weekly” ETL merge of table tab.

--table.lab.et1MergeMonth string | overwrites the ETLMERGE clause for S

an “monthly” ETL merge of table tab.

Table 13.1: Pure Commandline Options for Servers (“S”) and Importers (“I”)

Page 118

13.2 Global Options 13 Options Reference

Global Options

Global options are defined at the beginning of the configuration file "parstream.ini". These settings are
thus not located within any section. They might apply to the server or the importer or both.

Note that you can also pass these options alternatively via the command line. For example:

parstream-server —--locale=C first

would set (or overwrite) the setting of the global option 1ocale.

Global Options in Detail

Cisco ParStream provides many global options so that they are presented in multiple tables:
» Mandatory global options

* Functional global options

» Non-functional global options

* Functional global options for multi-node clusters

» Nonfunctional global options for multi-node clusters

Again, in the For column, “S” means that the option applies to servers and “I” means that this option
applies to importers. fileBlockTransferTimeout also has an effect on partition swaps.

Mandatory Global Options

The following options have to be set for each Cisco ParStream database (either in an INI file or by
passing them as command-line arguments).

Option: clusterId

Type: string

Default:

Effect: Defines the unique ID, which is used by all servers and importers to identify the cluster.

Affects: S/l

Option: registrationPort

Type: integer

Default:

Effect: TCP port number used for the registration of cluster nodes and exchanging status information with
the cluster leader. All servers and importers in a cluster have to use the same registration port.

Affects: S/l

Page 119

13 Options Reference 13.2 Global Options

Functional Global Options

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Page 120

verbosity

integer

0

Controls the output verbosity (0: min, 5: max). See section 9.5.3, page 85 for details.
S/l

defaultDebugLevel

integer

0

Debugging level (0: off, 1: min, 5:max). You can change the value for a running server with an
ALTER SYSTEM SET DebugLevel.defaultDebuglLevel=value command (see

section 27.11.1, page 375). See section 9.5.4, page 86 for details.

S

debugMessageTimestamp

Boolean

true

Format DEBUG messages with an preceding timestamp similar to PROT, WARN and INFO
messages.

S/l

reimportInterval

integer

6

Seconds to wait until the importer tries to import again data from the specified sourcedir (>= 0).
I

limitQueryRuntime

integer

0

Interrupt queries running for longer than this time in milliseconds and return an error, to help save
server resources. A value of 0 disables the time limit. You can overwrite this value for each
session (see section 27.10.1, page 373).

S

numBufferedRows

integer

32

Size of the buffer for output. You can overwrite this value for each session (see section 27.10.1,
page 373).

S

13.2 Global Options 13 Options Reference

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

userAuthentication

Boolean

true

Enables/disables user authentication (see section 9.2, page 78).
S/

locale

string

C

Locale for string sorting. Use the shell command 1ocale -a to get a full list of supported locales
on your box (see section 8.2, page 74)

S

ignoreBrokenPartitions

bool

false

Ignore broken partitions resulting from power outages during start up. If a broken partition is
detected, the system will try to restore the partition from another cluster node. If no cluster node
holds an intact copy of the partition, the partition will be dropped.

S

validatePartitions

bool

false

Detect broken partitions resulting from power outages during start up. This might slow down the
node start up.

S

iterations

integer

0 (endless)

Set maximum number of iterations before ending (0: endless)
I

output format

string

ASCII

Set the default output format for queries (AsC11, JSON, XML). You can overwrite this value for
each session (see section 27.10.1, page 373). See section 16.3, page 199 for details about the
different output formats.

S

Page 121

13 Options Reference 13.2 Global Options

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Page 122

asciiOutputColumnSeparator
string

Set the string that separates columns in the ASCIT output format. You can overwrite this value for
each session (see section 27.10.1, page 373). See section 16.3, page 199 for details about the
different output formats.

S

asciiOutputMultiValueSeparator
string

Set the string that separates multivalue entries in the ASCTT output format. You can overwrite this
value for each session (see section 27.10.1, page 373). See section 16.3, page 199 for details
about the different output formats.

S

asciiOutputNullRepresentation

string

<NULL>

Set the string that represents NULL values in the ASCIT output format. You can overwrite this
value for each session (see section 27.10.1, page 373). See section 16.3, page 199 for details
about the different output formats.

S

journaldir

string

Jjournals

path for journal files (see section 6.2.4, page 49)
S/l

udfLibraryPath

string

./udf

Basic path for user-defined functionality. May be a relative or absolute path. Currently, it is used:

» For external user-defined table operators (xUDTO) in a way that scripts for xUDTO functionality
have to be placed here (see section 20.2.2, page 234).

S

enableImport

boolean

true

Initially enable or disable imports. See section 16.4.1, page 200 for how to enable and disable
imports in a cluster at runtime.

S

13.2 Global Options 13 Options Reference

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

enableMerge

boolean

true

Initially enable or disable partition merging. The option was formerly called just merge accepting
boolean values and the values node and reimport, which is still supported to use (See
section 14.1.1, page 152 for details). See section 16.4.1, page 201 for how to enable and disable
merges in a cluster at runtime.

S/l

minutemergeschedule

string

0 = = * x (each full minute)

The times at which the merging of seconds- to minute-partitions should be performed. Note that
the value is interpreted according to UTC timestamps. See section 14.1.2, page 154. Note also
that seconds-partitions are only created for streaming imports.

S/l

hourlymergeschedule

string

0 0 = * =« (each full hour)

The times at which the merging of minute-partitions to hour-partitions should be performed. Note
that the value is interpreted according to UTC timestamps. See section 14.1.2, page 154.

S/l

dailymergeschedule

string

0 0 0 = x (each midnight UTC)

The times at which the merging of hour-partitions to day-partitions should be performed. Note that
the value is interpreted according to UTC timestamps. See section 14.1.2, page 154.

S/l

weeklymergeschedule

string

disabled

The times at which the merging of day-partitions to week-partitions should be performed. Note
that the value is interpreted according to UTC timestamps. See section 14.1.2, page 154. If not
explicitly configured, the merge of week-partitions is disabled.

S

monthlymergeschedule

string

disabled

The times at which the merging of week-partitions to month-partitions should be performed. Note
that the value is interpreted according to UTC timestamps. See section 14.1.2, page 154. If not
explicitly configured, the merge of month-partitions is disabled.

S

Page 123

13 Options Reference 13.2 Global Options

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Page 124

highResolutionLogtime

Boolean

true

Format timestamps of DEBUG, PROT, WARN, and INFO messages with fractional seconds.
S/l

blobbuffersize

integer

1,048,576 (22°)

Maximum number of bytes a single blob and string value may contain. Rows that contain longer
values are not imported. The value must be >= 64. The value is automatically adjusted if this is
not the case. If this value is set, it might also make sense to set the import option
inputFileBuffersize (see section 13.4.3, page 148).

S/l

ipVersion

string

IPv4

Specifies the accepted IP protocols for network communication. Possible options are 1pv4,
IPDualStack, and IPvé6.

1Pv4 will use IPv4 addresses only. The incoming accept port is bound to all IPv4 interfaces.
Hostnames in the cluster configuration will be resolved to IPv4 addresses only. IPv6 addresses
are not allowed in this configuration. For outgoing connections from one cluster member or the
importer to other cluster members, only IPv4 connections are used. Clients may only connect
using IPv4 connections.

IPDualStack allows for usage of both types of IP addresses, but IPv6 has to be configured on
all hosts running a server process. The incoming accept port is bound to all interfaces, allowing
IPv4 and IPv6 connections. Hostnames in the cluster configuration will be resolved to IPv4 and
IPv6. Both types of IP addresses are allowed in the configuration. For outgoing connections from
one cluster member or the importer to other cluster members, IPv4 and IPv6 connections will be
used (no preference of the IP version). Clients may connect using IPv4 and IPv6 addresses.

1Pv6 will use IPv6 addresses only. The incoming accept port is bound to all IPv6 interfaces.
Hostnames in the cluster configuration will be resolved to IPv6 addresses only. IPv4 addresses
are not allowed in the configuration. For outgoing connections from one cluster member or the
importer to other cluster members, only IPv6 connections are used. Clients may only connect
using IPv6 connections.

S/l

13.2 Global Options 13 Options Reference

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:
Affects:

sslMode

string

none

Enable TLS encryption for network connections. The available options include: - none: no
connections will use TLS encryption - client: all database clients will communicate over SSL/TLS
encrypted connections - server: all internal cluster connections will communicate over SSL/TLS
encrypted connections - all: All connections will communicate over SSL/TLS encrypted
connections Note: Only TLS encryption is supported as SSL is deprecated.

S/

sslKeyFile

string

conf/server.key

Private key file of the server used for SSL/TLS encryption.
S/

sslCertFile

string

conf/server.crt

Certificate file of the server used for SSL/TLS encryption.
S/

sslCaFile
string

Trusted certificate authorities file of the server. The option will be ignored if it is empty.
S/

sslDhFile
string

Diffie-Hellman parameter file of the server. The option will be ignored if it is empty.
S/l

sslCiphers

string

HIGH:!aNULL

List of SSL/TLS ciphers accepted by the server.
S/l

sslMinimumTlsVersion

string

1.2

Minimum version of TLS to use for the encryption, e.g., 1.2, 1.1, or 1.0.
S/l

Page 125

13 Options Reference 13.2 Global Options

Option: overrideProcessRequirements

Type: Boolean

Default: false

Effect: Override the requirements of mapped files and number of open file handles and only issue a
warning instead of an error.

Affects: S/l

Option: clientConnectionTimeout

Type: integer

Default: 0

Effect: Configure the time in seconds after which an inactive connection will be dropped by the server. (0:
off)

Affects: S

Note:

+ The format of the ...schedule merge options is described in section 14.1.2, page 154. See
section 14.1, page 151 for details.

Non-Functional Global Options

Option: partitionMaxRows

Type: integer

Default: 10*1024*1024

Effect: Maximum number of rows a partition can have. If the number of rows exceeds this limit, a logical
partition is split up into multiple physical partitions (see section 5.1, page 29). This option also

impacts whether merges are performed (see section 5.1.1, page 31).
Affects: S/l

Option: partitionMaxRowsForMinuteMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows an minute merge can have (see section 14.1, page 151).
Affects: S/l

Option: partitionMaxRowsForHourlyMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows an hourly merge can have (see section 14.1, page 151).
Affects: S/l

Option: partitionMaxRowsForDailyMerge
Type: integer
Default: partitionMaxRows

Effect: Maximum number of source rows a daily merge can have (see section 14.1, page 151).
Affects: S/l

Page 126

13.2 Global Options 13 Options Reference

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:
Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

partitionMaxRowsForWeeklyMerge

integer

partitionMaxRows

Maximum number of source rows a weekly merge can have (see section 14.1, page 151).
S/

partitionMaxRowsForMonthlyMerge

integer

partitionMaxRows

Maximum number of source rows a monthly merge can have (see section 14.1, page 151).
S/

maxExecutionThreads

integer

1.5 times the number of hardware threads rounded up

Maximum number of threads to use for execution in total (must be set to a value >0, see
section 15.1, page 158). Influences the default value of maxMergeThreads and
maxImportThreads.

S/

maxQueryThreads

integer

0 (same as maxExecutionThreads)

Maximum number of threads, out of the total maxExecutionThreads available, to use for
queries. Value 0 means to use the value of maxExecutionThreads.

S

maxMergeThreads

integer

maxExecutionThreads /4, at least 1

Maximum number of threads, out of the total maxExecutionThreads available, to use for
merging partitions (Chapter 14, page 151). Value 0 means to use the value of
maxExecutionThreads.

S/

maxImportThreads

integer

maxExecutionThreads /4, at least 1

Maximum number of threads, out of the total maxExecutionThreads available, to use for
server-sided import jobs, such as Java Streaming Imports (Chapter 19, page 216) and INSERT
INTO’s (section 10.7, page 107). Value 0 means to use the value of maxExecutionThreads.
S/

maxExternalProcesses

integer

maxExecutionThreads

Maximum number of concurrent external processes for execution of UDT statements, see
section 20.2.2, page 234.

S/l

Page 127

13 Options Reference 13.2 Global Options

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Page 128

defaultQueryPriority

string/integer

medium (same as 4)

Execution priority of query tasks unless another value is specified via the SET command (see
section 27.10, page 373). The value can be passed as string or as integral value (1ow/8,
medium/4, high/2). In all outputs and queries the integral value is used. Can be overridden by
the server section option with the same name (see section 13.3.2, page 136). See section 15.1,
page 158 for documentation of the possible values.

S

defaultImportPriority

string/integer

medium (Same as 4)

Execution priority of query tasks unless another value is specified via the SET command (see
section 27.10, page 373) for INSERT INTO statements or via the Java Streaming Import Interface
(see section 19, page 216). The value can be passed as string or as integral value (1ow/8,
medium/4, high/2). In all outputs and queries the integral value is used. Can be overridden by
the server and import section option with the same name (see section 13.3.2, page 136 and see
section 13.4.3, page 148). See section 15.1, page 158 for documentation of the possible values.
S/l

defaultMergePriority

string/integer

medium (sSame as 4)

Execution priority of merge tasks. The value can be passed as string or as integral value (1ow/8,
medium/4, high/2). In all outputs and queries the integral value is used. Can be overridden by
the server and importer section option with the same name (see section 13.3.2, page 136 and see
section 13.4.3, page 148). See section 15.1, page 158 for documentation of the possible values.
S/l

queryThrottlingInterval

integer

500

Milliseconds of thread time scaled by number of available threads of after which a query is
considered “long running” and will get its effective priority reduced (section 15.1, page 158). Value
0 means the effective priority remains stable.

S

fileBlockTransferTimeout

float

10.0

Timeout (seconds) of one file data block transfer.
I

fileBlockTransferBuffersize
integer

2"1024*1024

Buffersize (bytes) for file data block.
I

13.2 Global Options 13 Options Reference

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

columnStoreSegmentSize

integer

65536

Maximum size in bytes of segments when writing sparse or dictionary column stores (> 0). (see
section 15.10.1, page 178) .

I

queryHistoryMaxSeconds

integer

600 (10 minutes)

Maximum duration (in seconds) queries are kept for the query history system table
ps_info_query_history (See section 26.4, page 321). 0 means that no duration limit exists.
S

queryHistoryMaxEntries

integer

1000

Maximum number of queries kept for the query history system table ps_info_query_history
(See section 26.4, page 321). 0 means that no quantity limit exists, so that all queries are kept.
S

importHistoryMaxEntries

integer

1000

Maximum number of historic imports kept for the imports system table ps_info_import (See
section 26.4, page 322). 0 means that the maximum is really 0, so that no imports are kept at all.
S

performanceloggingPath

string

/var/log/parstream

The directory into which monitoring information is logged (See section 9.5.1, page 84).
S/l

executionSchedulerMonitoringTimeDetailLevel

string

summary

Control the detail level of the global execution scheduler event log (See section 9.5.1, page 84).
Possible values are summary and intervals, where the latter causes logging of each execution
slice (ca every 20ms) and may therefore generate very large logs. Is overridden by the server
option of the same name.

S/

Page 129

13 Options Reference 13.2 Global Options

Option: synchronizeFilesystemWrites

Type: Boolean

Default: false

Effect: Synchronizes file changes with the storage device, which prevents data loss in case of a power
outage for merges and partition transfers. This option should be set to true if the system where the
database is running on has no emergency protection like an uninterruptible power supply (UPS)
and no clean shutdown of the operating system can be guaranteed. Enabling this option will slow
down the operation of the database.

Affects: S

Global Options for Multi-Node Clusters

By default, Cisco ParStream is running with clustering abilities (see chapter 6, page 40). Several
additional options are provided to influence the behavior of such a cluster, which matters if it has more
than one server/node.

Again, these options are presented in multiple tables:
* Functional global options for multi-node clusters
* Nonfunctional global options for multi-node clusters

Note that usually all cluster node should have the same cluster option value to ensure that when the
leader changes the same policies are used.

Functional Global Options for Multi-Node Clusters

Option: minUpdateRedundancy

Type: integer

Default: 1

Effect: The leader submits merges to all available nodes of a distribution group only, when the number of
participating nodes is not below this value. Imports stop distributing partitions for a distribution
group that has less than this number of members available. Hint: If you have a cluster where you
want to enforce redundancies greater than 1, you have to set this value explicitly (e.g. set this
value to 2 to have a redundancy of 2, having 1 backup copy of all the data; see section 6.2.3,
page 46)

Affects: S/l

Note:

* Note that currently import and merge operations are blocked for tables that declare a redundancy
value smaller than this global start-time value. Note that Cisco ParStream can’t fix the options
automatically because the value might be useful if additional nodes will be added (see section 6.2.5,
page 50).

Non-Functional Global Options Multi-Node Clusters

These options are mainly options for timers and intervals, which are used to establish the cluster,
detect errors, and recover.

Page 130

13.2 Global Options 13 Options Reference

Option:
Type:

Default:

Effect:

Affects:

Option:

Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

Option:
Type:

Default:

Effect:

Affects:

maxSchedulerConcurrencyLevel

integer

5

Limits the number of asynchronous tasks a cluster node processes concurrently. The minimum
value is 1.

S/l

maxSyncConcurrencyLevel

integer

10

Limits the number of asynchronous partition synchronisation tasks the cluster processes
concurrently. The minimum value is 1.

S/l

maxActivationDeletionConcurrencylLevel

integer

3

Limits the number of asynchronous partition activation or delete tasks the cluster processes
concurrently. The minimum value is 1.

S/

clusterInitTimeout

integer

120

Time (seconds) within cluster start-up for finding all nodes in the subnet and electing the leader.
Note that you have to start all nodes in the first half of this period. The minimum for
clusterInitTimeout is 20 seconds. See section 6.2.2, page 42 for details.

S/l

clusterReinitTimeout

integer

clusterInitTimeout

Time (seconds) within cluster reinitialization for finding all nodes in the subnet and electing the
leader if the cluster already exists. Note that you have to start all nodes in the first half of this
period. The minimum for clusterReinitTimeout is 10 seconds. See section 6.2.2, page 42
for details.

S/l

claimLeadershipMessagelInterval

integer

5

Interval (in Seconds) to send out registration messages during the first half of the cluster
initialization. The minimum for claimLeadershipMessageInterval is 1 second. The
maximum for claimLeadershipMessagelInterval iS clusterInitTimeout / 8 or
clusterReinitTimeout / 8, respectively, to have at least four claim leadership requests
during the node registration period (first half of cluster (re)initialization timeout). See section 6.2.2,
page 42 for details.

S/l

Page 131

13 Options Reference 13.2 Global Options

Option: nodeRegistrationTimeout

Type: integer

Default: 30

Effect: Timeout (seconds) for the registration and deregistration of a cluster node at the leader.
Affects: S/

Option: nodeAliveMessagelInterval
Type: integer

Default: 10
Effect: Interval (seconds) for sending alive notifications from cluster nodes to the leader.
Affects: S/l

Option: nodeResynchronizationInterval
Type: integer

Default: 60

Effect: Interval (seconds, min. 30) for checking partition synchronization backlog of active nodes for
entries and initiate a resynchronization if needed.

Affects: S

Option: partitionSearchTimeout

Type: integer

Default: 30

Effect: Maximum time (seconds) the cluster leader waits for the response of a partition search request.
Affects: S/l

Option: partitionMergeRequestTimeout

Type: integer

Default: 60

Effect: Maximum time (seconds) the cluster leader waits for the response of a partition merge request.
Affects: S/l

Option: synchronizePartitionRequestTimeout

Type: integer

Default: 120

Effect: Maximum time (seconds) a cluster node waits for the response of a request to synchronize
partitions between nodes. The expected processing time depends strongly on the number of
columns and the size of the partitions and should be increased appropriately.

Affects: S/

Option: requestDefaultTimeout

Type: integer

Default: 60

Effect: Generic maximum duration (seconds) a cluster node waits for the response of a request with an
average expected processing time.

Affects: S/l

Page 132

13.2 Global Options

Option:
Type:
Default:
Effect:

Affects:

13 Options Reference

dhsgbConnectionTimeout

integer

255

Timeout (seconds) to establish inter cluster connections for DHSGB (see section 15.15.2,
page 189).

S

Authentication Options

For authentication (see section 9.2, page 78), the options described in this section are provided under
the section authentication. For example:

[authentication]

pamService = parstream

authenticationWrapperExecutable =

/opt/cisco/kinetic/parstream_authentication_1/parstream—authentication

Option:
Type:
Default:
Effect:

Option:
Type:
Default:
Effect:

pamService
string
parstream

PAM service configuration used for authentication. Corresponds to a PAM module configuration
file with the same name located in /etc/pam.d.

authenticationWrapperExecutable

string
/opt/cisco/kinetic/parstream_authentication_1l/parstream—authentication
External authentication application for PAM authentication including path. If the application cannot
be found by the Cisco ParStreamserver, no authentication is possible.

Page 133

13 Options Reference 13.3 Server-Section Options

Server-Section Options

In INI files, server-specific options are usually located in the section of the corresponding server.
Thus, each server has its own subsection, which can be given any alphanumeric name used as the
"servername”.

For example:

[server.MyServer]
host = localhost
port = 6789

As usual, you can pass these options as commandline options, which override the INI file options. For
example:

parstream-server —-server.MyServer.host=localhost —--server.MyServer.port=7777
MyServer

There are many server-specific options so that they are presented in multiple tables:
» Functional server-specific options
» Non-functional server-specific options

Note that the behavior of the server is also influenced by the ExecTree option, described in
section 13.3.4, page 140.

Functional Server-Section Options

Option: host

Type: string

Default: localhost

Effect: Server |IP address.

Option: port

Type: integer

Default: 9042

Effect: Server port number. Note: Cisco ParStream opens this and consecutive ports (see
section 13.3.1, page 135 for details).

Option: datadir

Type: string

Default: ./

Effect: Directory that contains the data partitions. In a remote server setup the specified path must be an
absolute path.

Page 134

13.3 Server-Section Options 13 Options Reference

Option: rank

Type: integer

Default: 0

Effect: The rank (between 0 and 65535) defines the basic order for electing the cluster leader. The node
with the lowest rank is the preferred leader. Each node rank has to be unique within the configured
cluster to avoid ambiguities. Nodes with an duplicate rank will be excluded from the cluster and
terminate. For more details see section 6.2.2, page 42

Ports

Cisco ParStream servers (or query nodes) always open the following public ports:

Port Service Description

port parstream-netcat Basic port as specified in the INI file and used for netcat
connections

port+1 | parstream-postgresql | Port for Postgres connections (i.e. psgl and JDBC), and file
transfer between Cisco ParStream servers and importers.

For an importer to connect successfully to a remote server, both of these ports must be open.
For managing clustering Cisco ParStream servers also open the following internal ports:

Port Service Description
port+2 | parstream-cluster-messages | A TCP port used for partition synchronization and slave
queries
port+3 | parstream-partition-activation | A TCP port used for partition activation and load
port+4 | parstream-find-nodes A TCP port for the cluster leader election (see
section 6.2.3, page 47)

In addition, within the following global ports might be shared among all nodes of a cluster:

Port Service Description

registrationPort | parstream-registration-port | A TCP port for the node registration at the
leader, exchanging cluster node status
information and health checking.

Even importers have to open a port, the 1eaderElectionPort. See section 6.2.3, page 47 for
details.
Note that user authentication is used for the first two external ports. See section 9.2, page 78 for
details.

Page 135

13 Options Reference 13.3 Server-Section Options

Non-Functional Server-Section Options

Option:
Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Page 136

maxExecutionThreads

integer

Value of the global option maxExecutionThreads (see section 13.2.1, page 127)

Maximum number of threads to use for execution in total (> 0, section 15.1, page 158). Influences
the default value of maxMergeThreads and maxImportThreads.

maxQueryThreads

integer

Value of the global option maxQueryThreads (see section 13.2.1, page 127)

Maximum number of threads, out of the total maxExecutionThreads available, to use for
queries. Value 0 means maxExecutionThreads.

maxMergeThreads

integer

Value of the global option maxMergeThreads (see section 13.2.1, page 127)

Maximum number of threads, out of the total maxExecutionThreads available, to use for
merging partitions (Chapter 14, page 151). Value 0 means maxExecutionThreads.

maxImportThreads

integer

Value of the global option maxImportThreads (see section 13.2.1, page 127)

Maximum number of threads, out of the total maxExecutionThreads available, to use for
server-sided import jobs, such as Java Streaming Imports (Chapter 19, page 216) and INSERT
INTO’s (section 10.7, page 107). Value 0 means maxExecutionThreads

defaultQueryPriority

string/integer

Value of the global option defaultQueryPriority (see section 13.2.1, page 128)
Execution priority of query tasks unless another value is specified via the SET command (see
section 27.10, page 373).

defaultImportPriority

string/integer

Value of the global option defaultImportPriority (see section 13.2.1, page 128)

Execution priority of query tasks unless another value is specified via the SET command (see
section 27.10, page 373) for INSERT INTO statements or via the Java Streaming Import Interface
(see section 19, page 216).

defaultMergePriority

string/integer

Value of the global option defaultMergePriority (see section 13.2.1, page 128)
Execution priority of merge tasks.

13.3 Server-Section Options 13 Options Reference

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

queryThrottlingInterval

integer

Value of the global option queryThrottlingInterval (see section 13.2.1, page 128)
Milliseconds of thread time scaled by number of available threads of after which a query is
considered “long running” and will get its effective priority reduced (section 15.1, page 158). Value
0 means the effective priority remains stable.

preloadingthreads

integer

Value of the global option maxExecutionThreads (see section 13.2.1, page 127)

Number of preloading threads. Usually we use number of maxExecutionThreads. When your
I/O subsystem isn’t fast, reduce this number to increase performance

preloadcolumns

string

nothing

How to preload all columns (complete, memoryefficient, nothing). See section 15.9.3,
page 177

preloadindices

string

nothing

How to preload all indices (complete, nothing). See section 15.9.3, page 177

blockqueriesonpreload

boolean

false

If set to true, no further queries are accepted until all configured columns and indices marked for
preloading have been loaded.

maxConnectionsJdbc

integer

250

Limits the number of concurrent connections to the server via the jdbc/odbc/postgres interface.
The sum of maxConnectionsSocket and maxConnectionsddbc should be well below the ulimit.

maxConnectionsSocket

integer

250

Limits the number of concurrent connections to the server via the socket interface. The sum of
maxConnectionsSocket and maxConnectionsJdbc should be well below the ulimit.

jdbcHandlingThreads

integer

8

Number of threads executing requests over the postgres (jdbc, odbc) connection in parallel. If
there are more requests coming in over the pooled connections, they will be queued until the next
jdbcHandlingThread is free for executing the query.

Page 137

13 Options Reference 13.3 Server-Section Options

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Page 138

socketHandlingThreads

integer

8

Number of threads executing requests over the socket connection in parallel. If there are more
requests coming in over the pooled connections, they will be queued until the next
socketHandlingThread is free for executing the query.

mappedFilesCheckInterval

integer

10

Time in seconds the check for whether the maximum of mapped files is reached, so that
unmapping should happen. A value of 0 disables the unmapping mechanism (allows unlimited
mapped files). You can change the value for a running server as a whole with an ALTER SYSTEM
SET command (see section 27.11.1, page 375). See section 15.13, page 184 for details.

mappedFilesMax

integer

80,000

Maximum number of mapped files before unmapping starts. If the number of memory mapped
column and index files exceeds this value and a check for the number of mapped files happens,
unmapping of (parts of) these files from memory is triggered. A value of 0 forces unmapping of all
unused files with each unmapping check. You can change the value for a running server as a
whole with an ALTER SYSTEM SET command (see section 27.11.1, page 375). See

section 15.13, page 184 for details.

mappedFilesAfterUnmapFactor

floating-point

0.8

General factor for unmapping mapped files if the limit of maximum number of mapped files is
reached. The goal is to have less or equal than mappedFilesMax =
mappedFilesAfterUnmapFactor mapped files after unmapping. Possible values have to be
between 0.0 (all unused files are unmapped with each unmapping check) and 1.0 (after
unmapping we should have mappedFilesMax mapped files). Because unmapping happens in
chunks and mapped files that are used are not unmapped, the factor might not exactly be reached
when unmapping happens. You can change the value for a running server as a whole with an
ALTER SYSTEM SET command (see section 27.11.1, page 375). See section 15.13, page 184
for details.

mappedFilesOutdatedInterval

integer

3600

If unmapping happens, all mapped files with no access for this amount of seconds are always
unmapped. Note that as long as the limit mappedFilesMax is not reached, even outdated files
are not unmapped. You can change the value for a running server as a whole with an ALTER
SYSTEM SET command (see section 27.11.1, page 375). See section 15.13, page 184 for details.

13.3 Server-Section Options 13 Options Reference

Option:
Type:
Default:
Effect:

Option:
Type:
Default:
Effect:

Option:
Type:
Default:
Effect:

Option:
Type:
Default:
Effect:

Option:
Type:
Default:
Effect:

Option:
Type:
Default:
Effect:

mappedFilesMaxCopySize

integer

16384

Maximum size of files in bytes that will be copied completely into heap memory upon first request
instead of using a memory mapped approach. The files with sizes smaller than or equal to the
value of mappedFilesMaxCopySize but will still be managed by the LRU approach in the same
way as mapped files. and will therefore still be visible in the ps_info_mapped_files system
table (see section 26.4, page 320). See section 15.13, page 184 for more details.

fileBlockTransferTimeout

float

Value of the global option fileBlockTransferTimeout

Timeout of one file data block transfer in seconds used for this server

maxscanpartitionconcurrencylevel

integer

Value of the server option maxExecutionThreads

Degree of parallelism for scanning partitions in the server startup phase (between 0 and
maxExecutionThreads). Set value 0 to disable parallel partition scanning. The value is
automatically limited t0o maxExecutionThreads

logscanpartitionprogressinterval

integer

10000

Interval (number of partitions) for logging the partition scanning progress. Set value 0 to disable
partition scanning progress.

mergeConcurrency

integer

1

Number of parallel merges. (see section 14.1.1, page 153)

executionSchedulerMonitoringTimeDetailLevel

string

summary

Control the detail level of the global execution scheduler event log (See section 9.5.1, page 84).
Possible values are summary and intervals, where the latter causes logging of each execution
slice (ca every 20ms) and may therefore generate very large logs. Overrides the global options of
the same name.

Connection Pool Options

For the connection pool (see section 15.1, page 162), a couple of options are provided, which can be
used by servers and importers.

Page 139

13 Options Reference 13.3 Server-Section Options

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

connectionPool.numConnectionsPerNode

integer

4

Number of connections pre-allocated by a cluster for upcoming queries to each other node. This
number should correlate with the typical number of queries that occur in parallel. Note that with
distributed hash separations such as DHSGB (see section 15.15.2, page 189) you always need 2
connections per query on the query master, so that the default 4 provides fast query support for 4
incoming parallel queries without DHSGB or 2 incoming parallel queries with DHSGB. The
minimum is 1.

connectionPool.nodeErrorRetryInterval

integer

100

Minimal interval in milliseconds to wait before attempting to connect to a server that had a
connection error with the last trial.

connectionPool.connectionFetchTimeout

integer

5000

Timeout in milliseconds for a query waiting for a connection, if not enough connections are
available.

connectionPool.staleConnectionCheckInterval

integer

5000

Interval in milliseconds to double check the availability of a pre-allocated connection.

Deprecated Server-Section Options

Execution Engine Options

Some parameters that influence the performance of query execution are configurable. The
corresponding options are definable in the INI section with the name [ExecTree]. Additionally,
these options can be changed inside a session of a running server using a SQL SET statement (see
section 27.10, page 373). Future releases may expose additional parameters.

Page 140

13.3 Server-Section Options

Option:
Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

13 Options Reference

BitmapAggregationLimit

integer

40000

The limit for the cardinality of values in aggregations up to which bitmap indices are used for the
aggregation. If this parameter is set to 0 then bitmap indices are never used for aggregations.
Applies to: bitmap indices

MonitoringMinLifeTime

integer

0

Threshold for writing out monitoring information of queries. Queries with execution times above
this threshold (milliseconds in realtime mode) will be written to the monitoring log (see

section 9.5.1, page 84). A value of 0 disables this feature. Applies to: server

MonitoringImportMinLifeTime

integer

0

Threshold for writing out monitoring information of imports. Imports with execution times above
this threshold (milliseconds in realtime mode) will be written to the monitoring log (see

section 9.5.1, page 84). A value of 0 disables this feature. Applies to: server/importer

MonitoringMergeMinLifeTime

integer

0

Threshold for writing out monitoring information of merges. Merges with execution times above
this threshold (milliseconds in realtime mode) will be written to the monitoring log (see

section 9.5.1, page 84). A value of 0 disables this feature. Applies to: server

QueryMonitoringTimeDetailLevel

string

summary

Detail level of the per-query event log (see section 9.5.1, page 84). Can be set to either summary
or intervals (case insensitive) to record only summaries or each execution slice interval. Take
care not to leave this option on all the time as it can produce potentially very large event logs.
Applies to: server

MergeMonitoringTimeDetailLevel

string

summary

Detail level of the per-merge event log (see section 9.5.1, page 84). Can be set to either summary
or intervals (case insensitive) to record only summaries or each execution slice interval. Take
care not to leave this option on all the time as it can produce potentially very large event logs.
Applies to: server

Page 141

13 Options Reference 13.3 Server-Section Options

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Page 142

ImportMonitoringTimeDetailLevel

string

summary

Detail level of the per-import event log (see section 9.5.1, page 84). Can be set to either summary
or intervals (case insensitive) to record only summaries or each execution slice interval. Take
care not to leave this option on all the time as it can produce potentially very large event logs.
Applies to: server/importer

SeparationAwareExecution

boolean

true

In general, enable/disable all separation aware execution optimizations (see section 15.15,
page 186 for details).

SeparationEnableDSGB

boolean

true

Enable/disable Data Separated GROUP BY (DSGB) (see section 15.15.1, page 186 for details).
Note that this optimization is only enabled if also the general option
SeparationAwareExecution is enabled.

SeparationEnableHSGB

boolean

true

Enable/disable Hash Separated GRour BY (HSGB) (see section 15.15.2, page 189 for details).
Note that this optimization is only enabled if also the general option
SeparationAwareExecution is enabled.

SeparationEnableDSFA

boolean

true

Enable/disable Data Separated Function Aggregations (DSFA) (see section 15.15.3, page 190 for
details). Note that this optimization is only enabled if also the general option
SeparationAwareExecution is enabled.

SeparationEnableDSJ

boolean

true

Enable/disable Data Separated Jo1IN (DSJ) (see section 15.15.4, page 191 for details). Note that
this optimization is only enabled if also the general option SeparationAwareExecution is
enabled.

SeparationEnableHSJ

boolean

true

Enable/disable Hash Separated Jo1N (HSJ) (see section 15.15.4, page 191 for details). Note that
this optimization is only enabled if also the general option SeparationAwareExecution is
enabled.

13.3 Server-Section Options 13 Options Reference

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

SeparationEnableDSI

boolean

true

Enable/disable Data Separated IN (DSI) (see section 15.15.5, page 197 for details). Note that this
optimization is only enabled if also the general option SeparationAwareExecution is enabled.

SeparationEnableDHS

boolean

true

Enable/disable all distributed hash separated optimizations, i.e. DHSGB. (see section 15.15.2,
page 189 for details). Note that this optimization is only enabled if also the general option
SeparationAwareExecution and option SeparationEnableHSGB are enabled.

NumHashSeparatedStreamsPerNode

integer

16

Number of hash generated separated streams per participating node on group by columns with
many different values. Must be greater than zero.

NumAggregationChildren

integer

32

Split a long running aggregation node in small parallelized partial aggregations. Applies to:
parallelization of aggregation

GroupByBitmapLimit

integer

the value of BitmapAggregationLimit

Number of bitmap operations allowed in group by of bitmap aggregation. Applies to: bitmap
indices

VectorAggregationEnabled

boolean

true

Enable vector aggregation. Applies to: bitmap indices

NumValuesVectorPreferred

integer

64

The upper bound of values where vector aggregation instead of bitmap aggregation is used.
Applies to: bitmap indices

MaxRhsValuesForLhsJoinBitmapScan

integer

1024

Number of bitmap operations allowed on left side of join operation. Applies to: bitmap indices, join

Page 143

13 Options Reference 13.3 Server-Section Options

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Page 144

MaxOutputBufferSize

integer

1GB (1,073, 741, 824 bytes)

Maximum number of bytes which should be written to the output buffer in a single query. This
value is processed by the output buffers for the query result of the socket interface (netcat/pnc), for
transferring data between slaves and the query master, and for all DHSGB related communication
between servers. To remove the limit set the parameter to 0. Applies to: all queries

NumAggregationMapBuckets

integer

30000

Number of hash buckets used for aggregation data structures.

NumDistinctAggregationMapBuckets

integer

the value of NumAggregationMapBuckets

Number of hash buckets used for distinct aggregation data structures. Should be reduced if
distinct aggregations perform slow or use a lot of memory.

ReorderGroupByFields

boolean

true

If true each ExecBitmapAggregation node tries to reorder the group by fields to speed up the
bitmap operations required for the group by calculation. Because this reordering is based on some
estimations about the bitmap compressions it may degrade the performance in some rare
constellations. Therefore, the option may be switched of if it is better to force the execution engine
to perform the group by bitmap operation in the order of the fields given in the GROUP BY clause.

IterativeGroupByAggregation

boolean

false

Future use. Don't set this value without confirmation by Cisco ParStream consultants.

MaxIterativeGroupByFields

integer

0 (unlimited)

Future use. Don't set this value without confirmation by Cisco ParStream consultants.

ExecNodeDataMemoryStatistic

string

CurrentAndMaxStatistic

Set data memory statistic type of query processing on ExecNode level. Value "NoStatistic"
disables this feature. Note: this option can only be set via the SET command (see section 27.10,
page 373).

13.3 Server-Section Options 13 Options Reference

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Note:

ExecTreeDataMemoryStatistic

string

NoStatistic

Set data memory statistic type of query processing on ExecTree level. Value
"CurrentAndMaxStatistic" enables this feature. Note: Because monitoring memory usage statistic
on the ExecTree level needs to be thread safe, this option may slow down query processing
significantly. For this reason, this option can only be set via the SET command (see section 27.10,
page 373).

QueueActivateReceiver

integer

16

Threshold to force the processing of receiving execution nodes. If at least this many results are in
the input queue of a receiving node, the processing of this node is forced to continue. Note that the
value always should be less than QueueDeactivateSender; otherwise deadlocks will occur.

QueueDeactivateSender

integer

255

Threshold to pause the processing of sending execution nodes. If at least this many results are in
the output queue of a sending node, the execution of the node is temporarily stopped. Note that
the value always should be greater than QueueActivateReceiver; otherwise deadlocks will
occur. Note also that the value always should be less than QueueReactivateSender.

QueueReactivateSender

integer

64

Threshold to force the re-processing of sending execution nodes. If only up to this many results are
in the output queue of a temporarily stopped sending node, the sending node is forced to continue
its processing. Note that the value always should be greater than QueueReactivateSender.

* You can query the current value of these options via the system table ps_info_configuration
(see section 26.3, page 312).

Page 145

13 Options Reference 13.4 Import-Section Options

Import-Section Options

Import Definitions

Import-specific definitions are located in the import section of the corresponding server.

Each importer has its own import section, which can be given any alphanumeric name used as the
"importername”.

For example:

[import .MyImporter]
sourcedir = MyProject/import

As usual, you can pass these options as commandline options, which override INI file options. For
example:

parstream—import —--import.MyImporter.sourcedir=MyProject/import MyImporter

Note that the importer counts as cluster node and each cluster node must have a unique name. Hence
its name cannot correspond to any server name.

There are many import-section options so that they are presented in multiple tables:
» Functional import-section options
» Non-functional import-section options

Functional Import-Section Options

Option: sourcedir

Type: string

Default: none

Effect: Directory with raw data. If this parameter is not set, then no raw data will be imported and instead
only partitions will be merged. Can be overwritten in the command line with —sourcedir.

Option: targetdir

Type: string

Default:

Effect: Directory path used to temporarily store the partitions before they are transferred to the servers.
Not setting this option is an error. Can be overwritten in the command line with —targetdir.

Option: columnseparator

Type: string

Default: ;

Effect: Character used as column separator in CSV files. Might be a special character such as “\t”.
Characters “\”, “"”, space, and newline are not allowed. See section 13.4.2, page 146 for details.

Page 146

13.4 Import-Section Options 13 Options Reference

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

csvreadonly

boolean

false

If set, imported CSV files are not moved to the . backup folder.

maxnumcsvfiles

integer

3 (Note, however, that the commandline option --finite changes this default value to 0
(unlimited); See section 13.1.3, page 117 for details.)

Specifies the maximum number of CSV files that are imported into a single partition in one
importer run. 0 means: no limit. Note that if you have many huge CSV files the value 0 may result
in a server crash, because all CSV files are processes at once.

rank

integer

0

The rank (between 0 and 65535) defines the basic order for electing the cluster leader. An
importer never becomes leader, but for reasons of the cluster functionality the rank is required for
importers too and has to be unique within the cluster. For more details see section 6.2.2, page 42

leaderElectionPort

integer

9046

A TCP port for the cluster leader election (see section 6.2.3, page 47) for details.

Non-Functional Import-Section Options

Option:
Type:

Default:

Effect:

Option:

Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

writebuffersize

integer

121024

Buffer size for serialized writing of column store data. IF the value is > 0, a central “FileWriterNode”
writes to the different open column store data files chunky of this size. If writebuffersize
equals 0, column stores are written in parallel directly by the import nodes (which can easily
exceed the limit of open files).

indexWriteBufferSize

integer

64 * 1024

Buffer size for serialized writing of bitmap index data. If the value is > 0, a central “FileWriterNode”
writes to the different open bitmap index files in chunks of this size. If the value is zero, bitmap
index files are written in parallel directly by the import nodes (which can easily exceed the limit of
open files).

fileBlockTransferBuffersize
integer

2*1024*1024

Buffersize (bytes) for file data block.

Page 147

13 Options Reference 13.4 Import-Section Options

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Page 148

numberoffetchnodes

integer

3

Number of Fetch Nodes during import (=CSV files read in parallel)

numberOfWriterNodes

integer

1

Number of column store File Writers during import (=write column stores in parallel)

inputFileBufferSize

integer

1,048,576 (22°)

Size of the input file cache. This value should be larger than the longest line in CSV import files. It
has to be >= 32,768 and >= blobbuffersize/2 (see section 13.2.1, page 124). The value is
automatically adjusted if this is not the case.

maxExecutionThreads

integer

Value of the global option maxExecutionThreads (see section 13.2.1, page 127)

Maximum number of threads to use for execution in total (> 0, section 15.1, page 158). Influences
the default value of maxMergeThreads and maxImportThreads.

maxMergeThreads

integer

Value of the global option maxMergeThreads (see section 13.2.1, page 127)

Maximum number of threads, out of the total maxExecutionThreads available, to use for
merging partitions (Chapter 14, page 151). Value 0 means maxExecutionThreads.

maxImportThreads

integer

Value of the global option maxImportThreads (see section 13.2.1, page 127)

Maximum number of threads, out of the total maxExecutionThreads available, to use for
server-sided import jobs, such as Java Streaming Imports (Chapter 19, page 216) and INSERT
INTO’s (section 10.7, page 107). Value 0 means maxExecutionThreads.

defaultImportPriority

string/integer

Value of the global option defaultImportPriority (see section 13.2.1, page 128)

Execution priority of query tasks unless another value is specified via the SET command (see
section 27.10, page 373) for INSERT INTO statements or via the Java Streaming Import Interface
(see section 19, page 216).

defaultMergePriority

string/integer

Value of the global option defaultMergePriority (see section 13.2.1, page 128)
Execution priority of merge tasks.

13.5 Optimization Options 13 Options Reference

Option: preloadingthreads

Type: integer

Default: Value of the global option maxExecutionThreads (see section 13.2.1, page 127)

Effect: Number of preloading threads. Usually we use number of maxExecutionThreads. When your
I/O subsystem isn'’t fast, reduce this number to increase performance.

In addition, you can use option ExecTree.MonitoringImportMinLifeTime to log imports than
run longer than a passed duration in milliseconds (see section 13.3.4, page 141).

Connection Pool Options

For the connection pool (see section 15.1, page 162), a couple of options are provided, which also
can be used by importers. See section 13.3.2, page 139 for details.

Optimization Options

Cisco ParStream provides query rewrite optimizations (see section 15.8, page 172), which can be
enabled and disabled with INI file settings (as described here) and via SET commands on a per-session
basis (see section 21.3.1, page 260).

Theses options belong to the INI file section [optimization] and are designed in a way that you
can enable or disable them as a whole or individually.

For example, the following setting enables all query rewrite optimizations:

[optimization]
rewrite.all = enabled

As another example, the following setting enables the “joinElimination” optimization only:

[optimization]
rewrite.all = individual
rewrite.joinElimination = enabled

The optimization options are in detail as follows:
Option: rewrite.all

Type: enabled Oordisabled Or individual
Default: individual
Effect: If this option is enabled, all optimizations are enabled. If the parameter is disabled, all

optimizations are disabled. If the parameter is individual, optimizations can be switched on
and off individually (see below). The value of this option can be changed at runtime (see
section 27.10.1, page 374).

Page 149

13 Options Reference 13.5 Optimization Options

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Option:
Type:

Default:

Effect:

Page 150

rewrite. joinElimination

enabled Ordisabled

disabled

If the optimization option rewrite.all is setto individual, the setting of this parameter
switches the join elimination optimization (see section 15.8.1, page 173) on or off. The value of
this option can be changed at runtime (see section 27.10.1, page 374).

rewrite.mergeJoinOptimization

enabled or disabled

enabled

If the optimization option rewrite.all is setto individual, the setting of this parameter
switches the merge join optimization (see section 15.8.3, page 174) on or off. The value of this
option can be changed at runtime (see section 27.10.1, page 374).

rewrite.hashJoinOptimization

enabledor disabled

enabled

If the optimization option rewrite.all is setto individual, the setting of this parameter
switches the hash join optimization (see section 15.8.2, page 174) on or off. The value of this
option can be changed at runtime (see section 27.10.1, page 374).

rewrite.sortElimination

enabledor disabled

enabled

If the optimization option rewrite.all is setto individual, the setting of this parameter
switches the elimination of sort nodes on or off. If this option is set to on, sort nodes will be
optimized away if the input is already sorted correctly. The value of this option can be changed at
runtime (see section 27.10.1, page 374).

rewrite.validationNodeOptimization

enabled Or disabled

enabled

If the optimization option rewrite.all is setto individual, the setting of this parameter
switches the validation node optimization on or off. If this option is set to on, validation nodes will
be optimized away if no validation is necessary. Currently the validation node checks if not-null
fields are correctly filled and it checks the valid length of length restricted string fields. The value of
this option can be changed at runtime (see section 27.10.1, page 374).

Merging Partitions

This chapter explains the features of Cisco ParStream to merge partitions.

Merging Partitions

As introduced in section 5.1.3, page 32, Cisco ParStream imports data in “minute” partitions (or
“seconds” partitions for streaming import),

Servers (leaders) can then initiate the merge of imported partitions (“minute” partitions with suffix _pM,
, Or “seconds” partitions with suffix _Ps) into aggregated partitions of a higher level (“minute” partitions
with suffix _PM “hour” partitions with suffix _pPH, “day” partitions with suffix _PD, “week” partitions with
suffix _Pw, or “month”/“final” partitions with suffix _PF).

LI L1}

Note again that the name “seconds”, “minute”, “hour” etc. are just pure abstractions for initial and
further levels of merges. You can define when merges from one level to the next apply and therefore
indirectly define your understanding of an “hour” or “day”.

This is controlled by several options (see chapter 13, page 116):
» Whether to perform merges
* When to perform merges

* And you can specify transformations for your data during merges (so that you can for example
purge your data to have only one row with a sum of the old rows). See section 14.2, page 154 for
detalils.

Note that you can temporarily disable scheduled server merges by sending the command “ALTER
SYSTEM CLUSTER DISABLE MERGE”to a cluster node (see section 16.4.1, page 201).

In addition, note the following:

» To avoid getting too large partitions, merges also respect the general option to limit the maximum
number of rows of a partition, partitionMaxRows (see section 13.2.1, page 126). For a merge,
the criteria for partitionMaxRows is the number of rows in the source partitions to ensure
that the merge result is never split up into multiple partitions as a consequence of exceeding
the partitionMaxRows limit. For this reason, merges are usually partially performed or even
skipped, if this would result into partitions that might become too large (i.e. if the sum of rows in a a
particular merge would exceed partitionMaxRows). Thus, after a merge “minute to hour”, for
instance, there might still be “minute” partitions.

« To have a fine-grained control for the size of merged partitions, you can also set the
global options partitionMaxRowsForMinuteMerge, partitionMaxRowsForHourlyMerge,
partitionMaxRowsForDailyMerge, partitionMaxRowsForWeeklyMerge, and
partitionMaxRowsForMonthlyMerge (see section 13.2.1, page 126).

» However, if during a merge the data is transformed or purged using ETL merge statements (see
section 14.2, page 154), merges are never skipped and might result in one source partition being
replaced by a transformed partition. The transformed partition might even be smaller then, if the
ETL merge purges the data via a GROUP BY clause (see section 14.2, page 154 for an example).
Thus, after a merge still multiple partitions might be smaller than partitionMaxRows.

Page 151

14 Merging Partitions 14.1 Merging Partitions

Continuous Partition Merge

The “Continuous Partition Merge” ensures partition merging, even when some of the cluster nodes are
offline. Merging is controlled by the cluster leader. The leader ensures that all nodes merge the same
source partitions to guarantee consistent partitions over all nodes. Merging will happen as long as
at least one node (or a configured greater number of nodes) of a distribution group is active (online
and synchronized). The resulting partitions of missed merges are synchronized in the same way as
imported partitions, when a node gets online.

Merging Options

Several options allow to influence the merge behavior.

Merge Policy

The most important option is the global option enableMerge, initially specifying whether merges are
enabled. This option can be set for an importer and for a server (see section 13.2.1, page 122). The
default value is true.

For backward compatibility, also the global option merge is supported, which can have the following
values:

Merge Policy | Effect

true merges will be performed (default)
reimport merges will be performed

false no merges will happen

none same

As written, you can enable or disable merges at runtime by sending the command “ALTER SYSTEM
CLUSTER DISABLE MERGE”to a cluster node (see section 16.4.1, page 201).

Basic Merge Options

Merging is orchestrated by the cluster leader node (see section 6.2.1, page 41). Merging is possible
even if the cluster is in a degraded state (node failures) (see section 14.1, page 152).

These merges can be controlled by the following global options, which should be set for all servers
(query nodes) in the cluster because any query node can become a leader:

Page 152

14.1 Merging Partitions

14 Merging Partitions

Option Effect Default
merge defines the merge policy (see section 14.1.1, true
page 152)

minutemergeschedule

The times (UTC) at which the merging of
seconds-partitions to minute-partitions should be
performed. See section 14.1.2, page 154.

0 * * * =%

hourlymergeschedule | The times (UTC) at which the merging of 0 0 * * =
minute-partitions to hour-partitions should be
performed. See section 14.1.2, page 154.
dailymergeschedule The times (UTC) at which the merging of 0 00 * =
hour-partitions to day-partitions should be performed.
See section 14.1.2, page 154.
weeklymergeschedule | Thetimes (UTC) at which the merging of disabled
day-partitions to week-partitions should be performed.
See section 14.1.2, page 154. If not explicitly
configured, the merge of week-partitions is disabled.
monthlymergeschedule | The times (UTC) at which the merging of disabled

week-partitions to month-partitions should be
performed. See section 14.1.2, page 154. If not
explicitly configured, the merge of month-partitions is
disabled.

The format of the ...schedule options is described in section 14.1.2, page 154. The defaults are that
the minute merge is performed every minute, the hourly merges are performed at every full hours and
that the daily merge is performed at midnight UTC. Other merges are disabled by default.

Other Merge Options

There are other options, that influence merges:

Option maxMergeThreads (see section 13.2.1, page 127) allows to define how many threads may
be used by merges.

Option partitionSearchConcurrencyLevel limits the number of merges that are composed
in parallel by the leader. This limits the load in the leader and the nodes caused by searching for
mergeable partitions and composing the triggered merges.

The recommended value depends on the number of cluster nodes and the partitioning values and
should be not lower than the number of cluster node. For example:

partitionSearchConcurrencyLevel=4
Option mergeConcurrency (see section 13.3.2, page 139) sets how many merges may take

place in parallel. More merges in parallel might result in faster merge operations, but will also use
more resources and can lead to e.g. poorer query performance.

There are further options to adjust the merge behavior. See section 13.2, page 119 for a complete
overview.

Page 153

14 Merging Partitions 14.2 ETL Merge

Cron-Like Schedule Options Syntax

The ...schedule merge options for cluster leaders use a cron-like syntax.
The general syntax is as follows:

<seconds> <minutes> <hours> <days_of_month> <days_of week>

For these five values, you can specify:

« A comma-separated list of absolute values (such as 17 or 13, 15, 19) to have your job executed
exactly at second, minute, ... Note that no spaces are allowed inside the comma-separated list.

* A « as a wildcard to have your job executed every second, minute, ...

+ For seconds, minutes, hours: An expression =/ n, such as =/ 6, to have your job executed every
n-th second, minute, ...

Note that n is newly processed for each minute, hour, day. That is, if for minutes = /17 is specified,
this is equivalent to specifying 0, 17, 34, 51 (at the end of the hour, the last interval is 9 minutes).
The day of week must be specified numerically, the week starts with 0 for Sunday. That is, 1 stands for
Monday, 2 for Tuesday, 3 for Wednesday, 4 for Thursday, 5 for Friday, and 6 for Saturday.
For example:

Value Meaning

*x/6 * * x Execute a job every six seconds (in every minute, every hour, every day)
13 12 * x = Execute a job hourly at 12 minutes and 13 seconds after the full hour
000 * 1 Execute a job weekly every Monday at 00:00 AM

0 /30 » 1 = Execute a job every 30 minutes on the first day of each month

0 0 9,13,18 = x | Execute a job each day at 9am, 1pm, and 6pm

ETL Merge

With the ETL merge feature, an ETL statement (“extract”, “transform”, and “load”) can be specified to
define data transformations for every merge level (Seconds to minute, minute to hour, hour to day, day
to week, and week to month).

Every supported select SQL statement can be used to define how to merge rows as long as the
column types remain. The new contents after the merge is the result of the passed select statement.

The typical application of this feature is:

» Purging data (combining multiple entries of counters for a short interval into one entry for a longer
interval). This is done via aggregations and GROUP BY clauses (see section 14.2.1, page 155 for
an example).

Note that the merge policy reimport is required:

if the cluster performs the ETL merge:
merge=reimport

Page 154

14.2 ETL Merge 14 Merging Partitions

Limitations of ETL Merge

Using an ETL merge, it is not allowed to change the partitioning schema or partitioning values. If some
aspect of the partitioning is changed, the database will behave erroneously, because these violations
will not be detected automatically.

Furthermore, an ETL merge SQL select statement has to return all values that are required by the
schema. All values have to have the correct identifier and type. Compatible types can be coerced
automatically. Overflows, type and other schema violations will be reported as errors and no merge
will take place.

Note also that filtering during ETL merges is currently not possible. Using a WHERE clause in an ETL
merge statement will result in an error.

Example for a Purging ETL Merge

A typical example for an ETL merge would be a merge that combines counters such as the number of
hits of a web site.

Guess, we have the following table:

CREATE TABLE Hits

(
url VARSTRING COMPRESSION HASH64 INDEX EQUAL,
host VARSTRING (100),
hits UINT64,

)

PARTITION BY url

DISTRIBUTE EVERYWHERE;

The column hits contains the number of hits in a given time period. Multiple rows in one or multiple
import files will have entries here. Now if we have multiple import files and a merge is triggered, we
can specify that all rows for a specific url and host are merged to one row containing the sum of all
hits. The corresponding SELECT statement for such a request:

SELECT url, host, SUM(hits)
FROM Hits
GROUP BY url, host;

has to become a ETLMERGE statement in the table specification:

CREATE TABLE Hits

(
url VARSTRING COMPRESSION HASH64 INDEX EQUAL,
host VARSTRING (100),
hits UINT64,

)

PARTITION BY url

DISTRIBUTE EVERYWHERE

ETLMERGE HOUR (

Page 155

14 Merging Partitions 14.2 ETL Merge

SELECT url, host, SUM(hits) as hits
FROM PARTITIONFETCH (Hits)
GROUP BY url, host

Here, we specify a ETL merge statement for the merge to hour partitions (first, respectively second,
merge level). Note that inside the ETL merge statement

* we read the data from table Hit s with PARTITIONFETCH ()
+ thesumofhits (SUM(Hits)) becomes the new entry for column hits (AS hits)

To enable these kinds of merges for all levels, you have to specify:

CREATE TABLE Hits
(
url VARSTRING COMPRESSION HASH64 INDEX EQUAL,
host VARSTRING(100),
hits UINT64,
)
PARTITION BY url
DISTRIBUTE EVERYWHERE
ETLMERGE MINUTE (
SELECT url, host, SUM(hits) as hits
FROM PARTITIONFETCH (Hits)
GROUP BY url, host
)
ETLMERGE HOUR (
SELECT url, host, SUM(hits) as hits
FROM PARTITIONFETCH (Hits)
GROUP BY url, host
)
ETLMERGE DAY (
SELECT url, host, SUM(hits) as hits
FROM PARTITIONFETCH (Hits)
GROUP BY url, host
)
ETLMERGE WEEK (
SELECT url, host, SUM(hits) as hits
FROM PARTITIONFETCH (Hits)
GROUP BY url, host
)
ETLMERGE MONTH (
SELECT url, host, SUM(hits) as hits
FROM PARTITIONFETCH (Hits)
GROUP BY url, host

Note:

Page 156

14.2 ETL Merge 14 Merging Partitions

* You can pass the ETL merge strategy also via the command line. For example:

parstream-server first --table.Hits.etlMergeHour="SELECT url, host,
SUM(hits) as hits FROM PARTITIONFETCH (Hits) GROUP BY url, host"

Before Version 2.2 you had to specify (which is still supported):

parstream-server first --table.Hits.meta.etlMergelevell="SELECT url,
SUM (hits) as hits FROM PARTITIONFETCH (Hits) GROUP BY url, host"

See section 13.1.1, page 116 for details.

host,

Page 157

Performance Optimizations

This chapter describes optimizations that can improve query speed or reduce space requirements.

Note that while in some special situations one can influence how queries are processed internally so
that certain queries can execute faster, these manual tunings can lead to worse performance in other
situations. For this reason the trade-offs need to be examined carefully.

by Cisco ParStream. For these situations the queries execute faster, but others might be a little bit
slower. Hence, it is a trade-off which kind of configuration fits best for your situation.

Note:

Be careful! A speedup in one kind of query may result in a performance penalty in another!

Execution Control

Servers offering 12, 24, 48, and even more parallel executing threads on the hardware layer
are available off the shelf for prices well suited even for the mid-level server market. To directly
transform this native low-level independent parallel execution capability into a direct advantage
for Cisco ParStream users, Cisco ParStream manages all compute and /O intensive execution
tasks — such as queries, imports, and merge tasks — within a pool of parallel running independent
threads. These threads are assigned execution time on the available compute cores. By this, the task
scheduling directly translates the natural parallelism offered by today’s affordable computer hardware
into measurable high-level advantages for database users like scale-out and flexible concurrency
under even heterogeneous query loads.

The strategy that Cisco ParStream implements strikes a balance between executing each and every
individual query as early and fast as possible (using the first-in-first-out (FIFO) principle), while optimally
balancing parallel competing tasks. The selected strategy together with optional parametrization by
the DB administrator and by users allows for fair concurrency, by preventing short-running queries
from being blocked by long running ones.

The principle works roughly as follows:

* You can specify the number of threads the Cisco ParStream database uses in total for task
execution.

» These threads are then used by queries, imports, and merges.

* You can specify limits for each execution type so that imports or merges cannot block queries.

* You can specify the priority queries, imports, and merges initially get, which impacts the initial
minimal number of threads the task gets.

* You can specify the amount of thread execution time after which the priority of long-running tasks
decreases, which is done by reducing the minimal number of threads the task gets (it will always be
at least 1).

 Priority influences how many threads a new tasks gets to execute the request. Priority is not used
to starts tasks in different order. Thus, the tasks scheduler works on a strict FIFO manner.

Page 158

15.1 Execution Control 15 Performance Optimizations

Execution Control in Detail

In detail, there is first the configuration of the total number of threads and for which execution tasks
these threads can be used:

« The total number of threads available for execution is set via the global/server option
maxExecutionThreads. The default is 1.5 times the number of hardware threads rounded
up. The default value should be suitable to absorb I/O related latencies, but if even under heavy
query load the cpu remains idle increasing this value could help.

+ To avoid mutual blocking of query, merge, and import tasks the total number of execution
threads can be partitioned via the global/server options maxQueryThreads, maxMergeThreads,
and maxImportThreads, which limit the number of threads which can be allocated to query,
merge, and import task, respectively. The defaults are:

Option Value Meaning

maxQueryThreads | 0 all threads can be used for queries

maxMergeThreads | maxExecutionThreads/4 | at most a quarter of all threads can be used for
merges

maxImportThreads | maxExecutionThreads/4 | at most a quarter of all threads can be used for
imports

Then, among these threads, you can influence via priorities the fraction of the available threads a
specific task should be assigned:

» For queries, merges, and imports you can specify the following initial priorities:

Numeric Value | Convenience | Meaning
Value
2 high highest priority (try to use at least half of all available threads)
4 medium default priority (try to use at least % of all available threads)
8 low lowest priority (try to use at least % of all available threads)

The numeric values are provided to be able to easily sort or filter according to priorities when
inspecting relevant system tables. They are used in all system tables and INSPECT statements
(see below). The convenience values are provided to be able to set priorities in a more readable
way.

The default is 4 or medium.

* You can set these initial priorities as global or server-specific options defaultQueryPriority,
defaultImportPriority, or defaultMergePriority (see section 13.2, page 119).

* You can also set the default query or import priority per session via the SQL SET command (see
section 27.10, page 373).

+ The effect of these priorities is to set the minimal number of threads that initially are assign
to the task. In fact, the numeric value is used as divisor to process the internal task
attribute min_num_threads, which can be requested for running queries by the system table
ps_info_running_query (see section 26.4, page 321) or the SQL INSPECT command (see
section 27.6, page 362).

For example, if maxQueryThreads is 16, a query with medium priority (value 4) will initially
request 4 as minimum number of threads (16 divided by 4).

Page 159

15 Performance Optimizations 15.1 Execution Control

Over time the “effective priority” of a task can shrink by using/setting the option
queryThrottlingInterval globally or per server. Setting queryThrottlingInterval toa
value greater than 0, instructs the scheduler to reduce the individual minimum number of threads
for a given task after it has consumed queryThrottlingInterval * maxQueryThreads
milliseconds of the total thread time during the execution time of the query. Total thread time
is the sum of all threads a tasks uses. This means, throttling will only count when a query
actually uses some CPU resources and throttling will happen earlier the more threads work on it
concurrently. The implemented algorithm halves the minimal number of threads before inspection
in every iteration down to a minimal value of 1. This introduces the concept of niceness and also
guarantees completion.

Based on the resulting minimum number of threads for each task at a certain time, the execution

scheduler then works as follows:

— First, all tasks get all their minimum number of threads, beginning with the oldest task.

— If after assigning all the requested minimum number of threads there are still unassigned threads
(leftovers) all these threads will be assigned to the oldest task (to finish oldest task first according
to the FIFO principle).

— If there are not enough thread to fulfill the minimum requests of all tasks, the youngest tasks are
blocked.

— If for the next tasks there are less threads available than the requested minimum number, the
task will still start but only with the remaining number of available threads.

In principle, tasks might temporarily not use all their requested threads. If Cisco ParStream detects
this, the threads might be used by other tasks. This for example might happen during a streaming
import, when Cisco ParStream is waiting for data from the client to arrive.

Thus, prioritization is not done by changing the order of tasks. Instead, if threads are available for
an execution type, the tasks start strictly in the order of the statements (FIFO strategy). Priorities
only influence the requested minimum number of threads, so that tasks with higher priority can finish
faster/earlier.

Note that the FIFO strategy is employed cluster-wide, meaning the timestamp used to sort tasks is
taken on the issuing cluster node.

Consequences of Execution Control by Example

The effect of this algorithm can be demonstrated by an example:

Assume the Cisco ParStream database uses the default values for the number of threads (16 in
total, at most 4 for imports, and at most 4 for merges).

A first query running alone will get all 16 threads (4 as wished minimum, which is the result of 16
divided by 4, plus 12 not used by any other task). Thus we have the following situation:

— Q1 has 16 threads (initial minimum 4 plus 12 leftovers)

Assume we SET the query priority to high or 2 and we start a second query, the situation will be:
— Q1 has 8 threads (initial minimum 4 plus 4 leftovers)

— Q2 has 8 threads (initial minimum 8 (16 divided by 2)

With the query priority SET to 1ow or 8, a third query task will have the following effect:

Page 160

15.1 Execution Control 15 Performance Optimizations

— Q1 has 6 threads (4 as minimum plus 2 leftovers)
— Q2 has 8 threads (initial minimum 8)
— Q3 has 2 threads (initial minimum 2 (16 divided by 8)

Starting an import with the default priority (medium or 4) will have the following effect:

— Q1 has 5 threads (4 as minimum plus 1 leftover)

— Q2 has 8 threads (initial minimum 8)

— Q8 has 2 threads (initial minimum 2)

— 11 has 1 thread (initial minimum 1 (4 divided by 4)

After setting query priority back to the default priority (medium or 4) starting another query with
default priority will have the following effect:

— Q1 has 4 threads (4 as minimum)

Q2 has 8 threads (initial minimum 8)

Q3 has 2 threads (initial minimum 2)

I1 has 1 thread (initial minimum 1)

Q4 has 1 thread (initial minimum 4 (16 divided by 4) but only 1 thread left)

Trying to process anything else is block until one of these tasks finished, is killed, times out, or is
throttled. Thus:

— Q1 has 4 threads (4 as minimum)

— Q2 has 8 threads (initial minimum 8)

— Q3 has 2 threads (initial minimum 2)

— 11 has 1 thread (initial minimum 1)

— Q4 has 1 thread (initial minimum 4 but only 1 thread left)

— Q5 has 0 thread (initial minimum 4 (16 divided by 4) but no thread left)

With throttling for the high-priority query Q2 (which might happen first, because throttling depends
on total thread time consumption), the situation will be as follows:

— Q1 has 4 threads (4 as minimum)

— Q2 has 4 threads (initial minimum 8 halved)

— Q8 has 2 threads (initial minimum 2)

— 11 has 1 thread (initial minimum 1)

— Q4 has 4 thread (initial minimum 4)

— Q5 has 1 thread (initial minimum 4 but only 1 thread left)

Thus:

By default half of the threads are reserved for queries only (a quarter might be used by imports or
queries and a quarter might be used for merges and queries).

The highest settable priority (high or 2) will lead to only up to halve the number of available threads
to be assigned to the first scheduled task, meaning that one cannot reserve the whole threadpool
for a single task unless no other task is running.

By default, one import or merge task only gets % of all threads if there are too much other tasks so
that there are no unassigned threads after fulfilling all requested minimums.

Page 161

15 Performance Optimizations 15.1 Execution Control

To configure Cisco ParStream to reserve dedicated threads for each task type, you can set
maxExecutionThreads t0 maxQueryThreads+maxMergeThreads+maxImport Threads.
Even high priority queries might get blocked by many low priority queries. If this is a problem
and you cannot wait for timeouts (option 1imitQueryRuntime, see section 13.2.1, page 120) or
throttling, you can kill these queries using the INSPECT and KILL commands described below.

Thread Inspection and KILL Command

Additional inspection and control commands are available to help remedy critical corner cases of query
processing:

Threadpool inspection

The INSPECT THREADPOOL command (see section 27.6, page 362) offers a quick insight in the
execution engine.

The command is provided to be able to query the state of the running tasks and their associated
threads even if normal queries would be blocked, because it does not use the normal mechanisms
of the execution engine.

The result from this call has the same format as table data returned from query results and system
tables showing the resource consumption of running tasks, identified by their execution_id.
Abort running queries

Using the ALTER SYSTEM KILL command (see section 27.11, page 375) you can terminate a
running task by passing its execution_id.

Dealing with the Connection Pool

For an efficient and reliable communication between connected nodes a connection pool is provided
for each node, which can be configured via server options (see section 13.3.2, page 139).

The connection pool roughly operates as follows:

Based on a list of the connected servers each node always has the goal to have a specific number
of connections available to each connected server for immediate use. If one or more of these
available connections is used for a concrete query, new connections are asynchronously requested
to re-establish the desired number of available connections. The number of available connections
can be controlled by option connectionPool.numConnectionsPerNode (see section 13.3.2,
page 139). The default is 4.

If a trial to establish a new connection fails, the mechanism to request additional
connections is paused for a certain period of time defined by the server option
connectionPool.nodeErrorRetryInterval (see section 13.3.2, page 139). However, the
connections already established still can be used by new queries.

If a trial to establish new connections fails, this has no direct impact on the existing connections.
Thus, Cisco ParStream does not assume in general that all connections are broken if there is a
problem to establish a new one. If indeed all connections to a node are broken (e.g. because
the node is no longer available), this will be part of the usual error handling when the existing
connections are used again.

Page 162

15.2 Careful Partitioning 15 Performance Optimizations

* In case a new query needs a connection, but the pool is exhausted, the query will be
blocked until a new connection is available or connectionPool.connectionFetchTimeout
(see section 13.3.2, page 139) is reached. This also implies that a query will stall
for remoteNodeConnectionPool.connectionFetchTimeout milliseconds in case the
connection to the remote node cannot be established.

— In clusters with multiple nodes the query might fail or failover to the next redundant node after
the timeout.

* When a query using a connection has finished (i.e. all data from a slave have been
transmitted) the connection is given back into the pool. The pool will never drop such re-used
connections, thus usually after some queries there will be more connections in each pool than
connectionPool.numConnectionsPerNode (see section 13.3.2, page 139). Cisco ParStream
also tries to re-use connections even if an error occurred during processing of sub-selects and
should succeed doing so as long as there is no network failure outside of the Cisco ParStream
server process. Note that currently such error-resilience is not implemented for insert slaves, such
that the connections used to distribute data among the cluster during an INSERT INTO request or
a streaming import will likely be dropped if the request fails or is rolled back. You can observe the
number of connections currently in use as well as the number of re-use successes and failures via
the system table ps_info_remote_node (see section 26.4, page 317).

» Cisco ParStream periodically checks whether available connections still can be used. This can be
controlled by option connectionPool.staleConnectionCheckInterval (see section 13.3.2,
page 139).

* You can check the current state of the connection pool using the system table
ps_info_remote_node (see section 26.4, page 317).

Note that the connection pool internally gets established with the first distributed query. For this
reason, the initial state you can query with this system table might not be valid until the first
distributed query was processed.

Careful Partitioning

Cisco ParStream is a database that is specialized to analyze huge amounts of data. For this, the
data has to be partitioned so that typical queries are able to skip most of the data. Thus, appropriate
partitioning is a key for good performance. Note that you can partition according to both data and
functions over data. See section 5.1, page 29 for details.

Partition Exclusion

A key element for the performance of Cisco ParStream is a technique called partition exclusion. In
order to minimize the amount of data that needs to be accessed by a query, Cisco ParStream uses
different techniques to exclude partitions from the running executions.

A query is always mapped to an execution tree in which fetching leaf nodes read data from different
partitions. The goal is to exclude reads when Cisco ParStream knows that there can’t be data for the
running query. Thus, partition exclusion minimizes the number of leaf nodes (breadth) of the tree by

Page 163

15 Performance Optimizations 15.3 Partition Exclusion

analyzing the given query with respect to the knowledge of the partitioning as well as knowledge about
partition-wise value distribution based on bitmaps

This leads to the consequence that partitioning in Cisco ParStream should be designed in a way that
ideally only the necessary data is read. However, too many partitions can also have drawbacks. Thus,
the goal is to find the right design and granularity for partitioning to benefit from partition exclusion.

So, let’s explain explained the technique by example.

Please note that there is a similar mechanism in place to exclude full cluster nodes from a query (see
section 6.3.1, page 54).

Partition Exclusion by Partition Value

When a query is received, the WHERE condition of the statement is evaluated with respect to conditions
on partitioning columns. In case of multilevel partitioning this is done in an iterative way. For this first
level of exclusion no access to any partition data is necessary, this is purely done based on metadata.

Assuming we have the following table:

CREATE TABLE MyTable

(
ts TIMESTAMP INDEX EQUAL,
userId INT64 INDEX EQUAL,
platform VARSTRING,
etlDay DATE INDEX EQUAL CSV_COLUMN ETL,
userIdGroup UINT64 INDEX EQUAL CSV_COLUMN ETL

)
PARTITION BY etlDay, userIdGroup

DISTRIBUTE EVERYWHERE

ETL (SELECT CAST (ts AS DATE) AS etlDay,
userId MOD 12 AS userIdGroup
FROM CSVFETCH (MyTable))

This yields a partitioning structure where we get a first partition level partitioning by the day the given
timestamp belongs to (et1Day) and a second partition level of 12 partitions based on the value of
userId. Thus, in total we get a partition hierarchy partitioning by the user ID per day.

Receiving a query such as
SELECT COUNT (x) FROM MyTable WHERE etlDay = date'2013-04-12"'";

will directly eliminate all partition subtrees for any et 1Day not equal to 7 2013-04-12". Thus, all
partitions except the 12 partition in the subtree of ' 2013-04-12" are completely ignored.

This works on all levels, thus

SELECT COUNT (x) FROM MyTable WHERE userIdGroup = 5;

cannot prune full subtrees, but will exclude all partitions not having value 5 as userIdGroup (i.e.
where the value of user1d MOD 12 yields 5).

Page 164

15.4 ORDER BY Bitmap Index Optimization 15 Performance Optimizations

Partition Exclusion via Bitmaps Indexes

Following the metadata based exclusion of partitions, the exclusion is also possible based on details
available via existing bitmap indexes. The general principle is that, if it is possible to conclude that a
partitions cannot contain any rows that are relevant for the query, the whole partition is skipped. For
that, we only need the meta data stored into bitmap files; we doesn’t have to perform the usual bitmap
index processing. This optimization kicks in for all bitmap backed filter operations regardless of them
being a partitioning attribute or not.

Following the example above, exclusion on partitioning relevant attribute

SELECT COUNT (*) FROM MyTable WHERE userId = 12345;

will exclude all partitions that do not contain a userId with value 12345 based on the existing bitmap
dictionary. With partition exclusion by query analysis described above, we have to access at most
one partition per day (exactly those with a value of 9 for userIdGroup because 12345 MOD 12
yields 9). Now by using bitmaps we can also skip full days, if the user1d with value 12345 (or the
corresponding value 9) is not present in all of them.

Consider another example:

SELECT COUNT (%x) FROM MyTable WHERE platform <> 5;

Again partitions on the leaf level are skipped if we can tell by examining the partition level bitmap
dictionary that it contains no relevant data. In this case we simple check if there is a bitmap for value 5
or not.

Following the exclusion of whole subtrees and partitions we further reduce the amount of data being
accessed by utilizing the available indexes to exclude data from column stores or completely skipping
the access to column stores if the required operation can be executed on the bitmap itself (for example
aggregates like SUM / COUNT / AVG ...).

ORDER BY Bitmap Index Optimization

As introduced in section 5.3, page 35, Cisco ParStream supports different bitmap indices. It can be an
advantage if the physical data is internally sorted according to the index value (especially for range
indices). For this reason, Cisco ParStream provides the ability to force a sorting of the imported column
data with a ORDER BY clause (for backward compatibility you can also use SORTED BY instead of
ORDER BY).

That means, ORDER BY can be used to specify one or multiple columns to control the physical sorting
of the data records in each partition during an import or merge.

At first, this has an effect in the size of the bitmaps, because a bitmap on the first order criteria has
minimal size. In addition you can improve the the bitmap operation performance. As in most natural
data of real world scenarios the column are related in some way sorting most times improves operation
speed on the other column, too.

As usual, there are trade-offs. For this reason, you should double check the effect of this option with a
small amount of typical data. However, good candidates for this optimization are columns with many

Page 165

15 Performance Optimizations 15.5 Optimizing the Partition Access Tree

different values (such as timestamps) if you mainly have queries that use WHERE clauses with with
BETWEEN conditions for it. Then using a range index with the data sorted according to the data of
this column, can become a big improvement.

In general, you should try to sort according to columns with biggest indices first. They should become
smaller but you have to find out whether other columns grow.

Optimizing the Partition Access Tree

For a database partitioned according to a specific definition, it can be helpful to optimize partition
access according to other columns. In fact, if we have a WHERE clause, using a column that is not
specified as a partition, it can be helpful to create a partition access tree with this column.

For example, if we have partitioned according to columns 2 and B:

CREATE TABLE MyTable (
A ...,
B ...,
C

)
PARTITION BY A, B

and typical queries use a WHERE clause for column C:

SELECT % FROM MyTable WHERE C = ...;

then the following optimization using PARTITION ACCESS might help:

CREATE TABLE MyTable (
A ...,
B ...,
C
)
PARTITION BY A, B
PARTITION ACCESS A, C

Note that all columns listed for partition access have to have an index.

By specifying a LIMIT, you can enable/disable this feature for access tree subnodes that would have
more subnodes than the specified limit. For example:

CREATE TABLE MyTable (
A ...,
B ...,
C
)
PARTITION BY A, B
PARTITION ACCESS A, C LIMIT 5

Page 166

15.6 Smart Query Distribution 15 Performance Optimizations

The default partition access limit is 1. Thus:

CREATE TABLE MyTable (

)
PARTITION BY A, B
PARTITION ACCESS A, C

is equivalent to

CREATE TABLE MyTable (

)
PARTITION BY A, B
PARTITION ACCESS A, C LIMIT 1

Smart Query Distribution

Since Version 2.2, Cisco ParStream evaluates there WHERE condition attached to a query to determine
the set of known distribution values that can actually match the condition, and given this which nodes
of the cluster it needs to actually involve in the evaluation of the query.

For example, given an initial distribution like the following:

CREATE TABLE MyTable (
A ...,

)

PARTITION BY A,

DISTRIBUTE OVER A WITH INITIAL DISTRIBUTION (
(1 TO nodel node2),
(2 TO node2 node3),
(3 TO node3 nodel),

A query with a WHERE condition such as ... WHERE A=1 is processed knowing that nodel is
enough to evaluate it. This leads to a reduction in network traffic as well as robustness against
node failures. So the example query will be evaluated, even if node2 and node3 are down, while
an unconstrained query on the same table would not. This also works with internally generated
distributions and more complex queries such as ... WHERE B>0 AND A=1, which would again
only involve nodel.

Page 167

15 Performance Optimizations 15.7 JOIN Optimizations

Note, however, that subqueries with column aliases will break this mechanism. For example the
query

SELECT % FROM (SELECT A AS B FROM MyTable) WHERE B = 1;

will currently be sent to all cluster nodes, and fail if node2 and node3 are down.

JOIN Optimizations

Cisco ParStream provides a couple of optimizations for JOIN (see section 27.3.1, page 330).

Note that Cisco ParStream executes a join with either a “Hash Join” or a “Nested Loop Join” algorithm
depending on whether the join condition contains an equal predicate (A.a = B.b) or not. The joins
are processed in order of appearance in the SQL statement. That is, Cisco ParStream generates a
left deep join tree.

For example, the following query will produce a join between table taba and table tabB, and join the
result with table tabcC:

SELECT * FROM tabA
INNER JOIN tabB ON tabA.id = tabB.id
INNER JOIN tabC ON tabB.id2 = tabC.id;

The following sections show the optimizations that can be applied for joins with predicates containing
equality conditions.

Ordering Of Tables

Join queries result in a left deep tree. The query given as introductory example in section 15.7,
page 168 results in the tree shown in figure 15.1.

Due to the tree’s structure the query is processed from the query’s rightmost to its leftmost table.
To achieve an optimal performance you should always make sure, that the table with the least
data being fetched is the query’s rightmost table. The table with the second least data should be
the query’s second rightmost table and so on. This eventually results in the table with the most data
fetched for the query is the leftmost table.

The data fetched from a table can be limited by a condition pushdown (see section 15.7.2, page 168).
Hence, the table having the most data is not necessarily the table, which provides the most data for a
given query.

Condition Pushdowns

The following subsections show the different strategies that are applied to limit the amount of data
being fetched from a given table. Limiting the data fetched from tables eventually limits the amount of
data that must be processed by the join node to calculate the join results.

Page 168

15.7 JOIN Optimizations 15 Performance Optimizations

HashdJoin

HashJoin FetchMode tabC

FetchMode tabA FetchMode tabB

Figure 15.1: Example of a left deep join tree

WHERE Condition Pushdown

WHERE conditions and JOIN conditions are analyzed for terms that may be pushed down to the

appropriate fetch nodes. This has different advantages:

+ The data that must be fetched for a table can be reduced significantly.

+ The filter, that must be processed by the join node in order to calculate the join’s result tuples, is
simplified.

However, there is a restriction for LEFT OUTER, RIGHT OUTER and FULL OUTER JOINs: Cisco

ParStream may only push down predicates to the non-preserved table.

To push down terms of a WHERE condition, the WHERE condition is analyzed for sub terms that can
be pushed down. Terms that are pushed down end up as filter in the appropriate FetchNode. Terms
that cannot be pushed down are preserved as post condition filter. The join node will evaluate the post
condition filter. Therefore, an optimal performance is achieved if all terms can be pushed down
to the appropriate FetchNodes, leaving an empty post filter.

You can verify if sub terms of a WHERE condition are pushed down by using the sqglprint command
(see section 16.4.2, page 202). For example, executing the following query:

sqglprint SELECT tabA.id, tabB.id FROM tabA INNER JOIN tabB ON tabA.id =
tabB.id WHERE tabB.id = 2;

results in the following Preprocessed Tree:'
Preprocessed tree:

OutputNode requiredOutputRows: none fields: (tabA.id, tabB.id) uniqueNodeId:
4 limit: none offset: 0 output-format: default

' The Description Tree and Parametrized Tree are not of interest in order to analyze the WHERE condition pushdown.

Page 169

15 Performance Optimizations 15.7 JOIN Optimizations

JoinNodeSingle requiredOutputRows: none [parallelizable] fields: (tabA.id,
tabB.id) uniqueNodelId: 5 condition: Join info: join condition: tabA.id =
tabB.id, join type: INNER

FetchNode requiredOutputRows: none [parallelizable] fields: (tabA.id)
uniqueNodeId: 1 condition: table: tabA fetchtype: eForceBitmapFetch

FetchNode requiredOutputRows: none [parallelizable] fields: (tabB.id)
uniqueNodeId: 2 condition: tabB.id = 2 table: tabB fetchtype: eNoPreset

Each of the nodes shown in the Preprocessed Tree above have an condition entry holding all filters
that may be applied by the individual node on the data it processes. In the given example the WHERE
filter is pushed down to the FetchNode for table t abB, limiting the amount of data being fetched from
this table. Because there is no term for taba in the WHERE filter, nothing is pushed down to taba’s
FetchNode.

However, even if there is no WHERE condition for taba the amount of data being fetched for this table
can be significantly limited by a Runtime Condition (See section 15.7.2, page 172).

There are three rules that are applied to calculate the WHERE condition pushdown. The three rules
are explained in the following. For each rule an example is given, showing which condition is pushed
down to the left, which condition is pushed down to the right, and which remaining conditions serve as
postfilter.

* Rule 1: If the node is an AND instruction, each sub-tree may be pushed down if it can be answered
with the subset of the input.
For example:

SELECT A.%, B.x FROM tableA A
INNER JOIN tableB B ON A.id = B.id
WHERE (A.x = 12) AND (B.y = 13);

results in the following:
— Pushdown left:

(A.x = 12)

— Pushdown right:

(B.y = 13)

— Postfilter:

nothing

* Rule 2: If the node is an OR instruction, the whole tree may be pushed down if it can be answered
with the subset of the input.

For example:

Page 170

15.7 JOIN Optimizations 15 Performance Optimizations

SELECT A.%, B.x FROM tableA A
INNER JOIN tableB ON A.id = B.id
WHERE (A.x = 12 AND A.y = 3) OR (A.k > 10);

results in the following:
— Pushdown left:

(A.x = 12 AND A.y = 3) OR (A.k > 10)

— Pushdown right:

nothing

— Postfilter:
nothing
* Rule 3: Additionally, Cisco ParStream can push down several terms of OR conditions, which must

remain in the post filter to ensure correct results.
Consider, for example:

SELECT A.%, B.x FROM tableA A
INNER JOIN tableB ON A.id = B.id
WHERE (A.x = 12 AND A.y = 3) OR (A.k > 10);

This pushdown is easier to understand if Cisco ParStream first builds a Conjunctive Normal Form
(CNF) and then applies the two rules above:

SELECT A.%, B.x FROM tableA A
INNER JOIN tableB B ON A.id = B.id
WHERE (A.x > 7 OR A.y < 3) AND (A.x > 7 OR B.k > 4) AND
(B.1 = 3 OR A.y < 3) AND (B.i = 3 OR B.k > 4);

Thus, this results in the following:
— Pushdown left:

(A.x > 7 OR A.y < 3)

— Pushdown right:

(B.i = 3 OR B.k > 4)

— Postfilter:

(A.x > 7 OR B.k > 4) AND (B.i = 3 OR A.y < 3)

Page 171

15 Performance Optimizations 15.8 Query Rewrite Optimizations

Runtime Condition Pushdown

The order in which the different tables are joined has a huge influence on the performance. Cisco
ParStream employs a feature called Runtime Condition Pushdown, which performs a semi-join of the
qualifying join keys of the right relation with the left relation. To generate this list of possible join keys,
Cisco ParStream executes the right relation first. Hence, the sub-trees in the join tree are executed
from the rightmost to the leftmost.

This allows us to reduce the amount of data that is fetched if the following conditions are met:

+ The join column of the left relation has a bitmap index. If there is no bitmap index the Runtime
Condition Pushdown is disabled for this column.

» The number of distinct values of the join key is smaller than MaxRhsValuesForLhsJoinBitmapScan
(see section 13.3.4, page 140).

+ ltis aninner join or right outer join.

Therefore, the order of appearance of tables in a SQL statement should be from highest
number of rows to lowest nhumber of rows.

Given the following query:

SELECT tabA.id, tabB.id FROM tabA
INNER JOIN tabB ON tabA.id = tabB.id
WHERE tabB.id = 1;

This query will only fetch rows, where the condition tabB. id=1 is met (See section 15.7.2, page 169).
After these rows have been fetched, Cisco ParStream gets the Runtime Condition taba.id IN (1),
which limits the amount of data being fetched from taba significantly.

In a nutshell JOIN condition pushdown works as follows:

+ Before execution of the hash join nodes all the right hand side fetches are executed. Currently there
is a known limitation for the right hand side fetches that limit the amount of data per FetchNode on
the right hand side to one million rows.

« In this case it means that Cisco ParStream fetches all ids from t abB where the condition id = 1
is fulfilled.

« These values are cached and, because Cisco ParStream knows by the equi condition taba.id =
tabB. id the mapping to the respective field in taba, the matching values are then pushed to the
respective fetch nodes of taba.

Query Rewrite Optimizations

Cisco ParStream can rewrite JOIN queries to simpler and therefore faster queries if certain edge
conditions hold.

These optimizations are disabled by default. They can be enabled globally or individually using either
INI file options (see section 13.5, page 149) and/or, on a per-session basis, using SET commands
(see section 21.3.1, page 260).

Page 172

15.8 Query Rewrite Optimizations 15 Performance Optimizations

Join Elimination

With the optimizer option rewrite.joinElimination (see section 13.5, page 149) Cisco
ParStream can eliminate an INNER JOIN completely.

For example, the following query:

SELECT f.a FROM facts f INNER JOIN dimension d ON d.id = f.d_id

would internally be rewritten to:

SELECT f.a FROM facts f WHERE f.d_id IS NOT NULL

If enabled, this optimization will happen if the following conditions hold:
* Rule 1: Itis an inner join. This optimization is not applicable to other join types.
* Rule 2: The join condition consists of a single equal predicate only.

* Rule 3: Let the join condition be LHS_TABLE.X = RHS_TABLE.Y. Then, LHS_TABLE.X must
have been declared as referencing RHS_TABLE. Y. The column definition of LHS_TABLE . X must
look like:

CREATE TABLE LHS_TABLE {

X ... REFERENCES RHS_TABLE.Y

and RHS_TABLE.Y is declared to be NOT NULL and UNIQUE, or PRIMARY KEY which implies
NOT NULL and UNIQUE. The definition of RHS_TABLE. Y looks like:

CREATE TABLE RHS_TABLE {

Y ... NOT NULL UNIQUE

or

CREATE TABLE RHS_TABLE {

Y ... PRIMARY KEY

* Rule 4: Neither the select-list, nor WHERE, ORDER BY, GROUP BY, HAVING or anything else may
reference columns of the right-hand side table.

Page 173

15 Performance Optimizations 15.8 Query Rewrite Optimizations

The REFERENCES declaration above is a foreign key relation: every non-null value in LHS_TABLE . X
must be contained in REHS_TABLE. Y. Please note that Cisco ParStream does neither check this, nor
the UNIQUE declaration of REHS_TABLE. Y. It is the responsibility of the user to ensure that these
properties hold. Wrong query results are the consequence if the properties do not hold.

Hash Join Optimization

With the optimizer option rewrite.hashJoinOptimization (see section 13.5, page 150) Cisco
ParStream can speed up joins by converting nested loop joins to hash joins.

If enabled, this optimization will happen if the following condition holds:
* Rule 1: The join condition contains at least one equi-condition.

Merge Join Optimization

With the optimizer option rewrite.mergeJoinOptimization (see section 13.5, page 150) Cisco
ParStream can use a merge-join strategy to reduce memory consumption and speed up joins.

If enabled, this optimization will happen if the following conditions hold:
* Rule 1: The join is an inner, left-outer, right-outer or full-outer join.
* Rule 2: The join condition contains at least one equi-condition. Example:

SELECT * FROM tabA INNER JOIN tabB ON tabA.a = tabB.c AND tabA.b =
tabB.d

* Rule 3: The tables being joined have a common sorting, considering equi-conditions. In the
example of rule 2, the equi-conditions are tabA.a = tabB.c and tabA.b = tabB.d. Now
consider a table definition like this:

CREATE TABLE tabA ({

)

SORTED BY a ASC, b DESC

CREATE TABLE tabB ({

)

SORTED BY ¢ ASC, d ASC

In this case, there is a common sorting containing one column pair tabA.a and tabB. c.

Page 174

15.9 Small Optimizations 15 Performance Optimizations

* Rule 4: One of the following holds true:
— The join can use data separation (see section 15.15.4, page 191 for details).

— The option NumHashSeparatedStreamsPerNode has the value 1 (see section 13.3.4,
page 143).

Sort Elimination

With the optimizer option rewrite.sortElimination (see section 13.5, page 150) Cisco
ParStream can speed up queries by removing unnecessary sorting operations.

If enabled, this optimization will happen if the following condition holds:

* Rule 1: The data being queried is sorted by an ORDER BY statement that is identical to or a subset
of an ORDER BY statement in the CREATE TABLE statement.

Query Rewrite Analysis with ANALYZE REWRITE

The effect that the rewrite optimizer performs can be inspected with the ANALYZE REWRITE command
that can be issued over the netcat interface.

The syntax of the command is:

<analyze statement> ::=
"ANALYZE" "REWRITE" [<analysis verbosity] <SQL statement to analyze>

<analysis verbosity> ::=
"ALLH
| "NEARMATCHES"
| "MATCHES"
<SQL statement to analyze> ::=

<dynamic select statement>
| <insert statement>

The verbosity determines how much output is generated. ALL is the most verbose output, MATCHES is
the least verbose output. If no verbosity is specified, it defaults to ALL.

Small Optimizations

Several other options allow you to optimize the behavior of the Cisco ParStream database.
ExecTree Options

Note that the performance of the Cisco ParStream server is also influenced by the ExecTree option,
described in section 13.3.4, page 140.

Page 175

15 Performance Optimizations 15.9 Small Optimizations

Threadpool Settings

Cisco ParStream uses several threads organized in thread pools, for which you can specify the size.

For example:
sllslfsffsf s SPHEfepEyefs
sllasllzllzs|l B sl 21l s 8l 8 2
1HHHE 1HHHHE
IS IS O O O] (&) [] []
sla|g|e|s A
=3 = = = = o oy ol o ol o
Connection Connection
Pool Pool

‘_' ‘ m socket_handling_threads=4

jdbc_handling_threads=3
N | EE (IE |12
= = o = = o -
i EE ELE g8 2~ EE
=4 o = o o o T
g |12 (|2 g [|I2 [|[€ (|8

Execution
Pool
maxapithreads=7

= = = = = = =
sl el g 2
= = = = = = =
= = = = = = =
SIHEfEfleflefl&fe
sflzlallalallcllz
=] @ @ =] @ @ =]
(N | I | I | O | | I |

The incoming threads execute one request from all connections. There are a maximum number of
jdbc_handling_threads + socket_handling_threads running and handling queries at the
same time. The SQL parsing and creation of the execution plan is done in this Request Handling
Thread. After the execution plan is created, the query executes in parallel (and also in parallel with
other queries) in the Execution Thread Pool. The number of execution threads can be set with the
option maxExecutionThreads and maxQueryThreads (see section 13.2.1, page 127).

Page 176

15.10 Column Store Compressions 15 Performance Optimizations

Preloading

A couple of options allow to preload data so that queries for this data gets accelerated. The following
server-specific options (see section 13.3, page 134) allow to preload data:

Option Effect Default
preloadcolumns val Whether and how to preload columns. nothing
Possible values are:
complete: preload all columns and
map files (for strings and blobs)
memoryefficient: preload all
columns, but when column is a string or
blob only the map-files are preloaded
nothing: preload nothing
preloadindices val Whether and how to preload all indices. | nothing
Possible values are:
complete: preload all indices
nothing: preload no indices
preloadingthreads num Number of preloading threads. Usually | maxExecutionThreads
Cisco ParStream uses the number of the
option maxExecutionThreads (see
section 13.2.1, page 127), but when your
I/0O subsystem isn’t fast, reduce these
number to increase performance
blockqueriesonpreload bool | If setto true, no further queries are false
accepted until all configured columns
and indices marked for preloading have

been loaded.
For example:
[server.srvl]
preloadcolumns = memoryefficient
preloadindices = complete

In addition, you can specify for individual columns whether to preload column data and/or indices by
using the PRELOAD_COLUMN and/or PRELOAD_INDICES clause (see section 24.2.4, page 284).

Note that you can query which data is loaded via the system table ps_info_mapped_file (see
section 26.4, page 320).

Column Store Compressions

Column store compression is a technique that can reduce the size of column stores in the file system
and/or in memory.

Cisco ParStream currently supports the following forms of column store compression:

* A Sparse Compression approach, which optimizes column stores when there is a high number of
one typical value (see section 15.10.1, page 178).

Page 177

15 Performance Optimizations 15.10 Column Store Compressions

» A Dictionary Compression approach, which optimizes column stores when there is a hit number of
multiple typical value (see section 15.10.2, page 179).

* A low-level compression that compresses column stores using the 1.z4 algorithm (see
section 15.10.3, page 181).

Sparse Column Store Compression

Sparse column store compression is effective on columns with a high number of equal values.

Note that, if there are multiple typical values, then dictionary column compression usually is a better
approach (see section 15.10.2, page 179).

How Sparse Compression Works

The idea of the sparse column store compression is to store one value, the most frequent one in the
column store, once in the column store, as so-called default value.

The values different from the default value are stored together with their row id in segments of the
column store, which are regions of the column store file. How many segments are written to a sparse
column store during import depends, among other things, on a maximum segment size that can be
configured with the global options columnStoreSegmentSize (see section 13.2.1, page 126).

The effectiveness of the sparse compression depends on how often the default value occurs in the
column store. The higher the number of occurrences of the default value compared to the number of
non-default values is, the better will the column store be compressed.

Sparse-compressed column stores are not only smaller in the file system, they also save room when
they are loaded into memory, and due to their smaller size also save 10 time.

Sparse column store compression is activated for a column by specifying a COMPRESSION SPARSE
with an optional default value in the CREATE TABLE statement. If no default value is specified, NULL
is used because that is a very frequent case.

Note that only fixed-width column types can use the sparse column compression. These are all integer
and floating-point column types, all datetime types, BITVECTORS, and hashed strings and blobs of
singularity SINGLE_VALUE.

Note also that one cannot combine SPARSE compression with Lz4 compression.

Examples

A simple example of creating a sparse column store:

CREATE TABLE SomeTable (
coll INT16 COMPRESSION SPARSE

)
DISTRIBUTE EVERYWHERE;

Another example, using VAT with a default value of 19 percent (as it is in Germany, for instance):

CREATE TABLE Expenses (

Page 178

15.10 Column Store Compressions 15 Performance Optimizations

vat UINT8 COMPRESSION SPARSE SPARSE_DEFAULT 19,

)
DISTRIBUTE EVERYWHERE;

You can also use a DEFAULT clause to specify the default values used for sparse compression:

CREATE TABLE Expenses (
vat UINT8 DEFAULT 19 COMPRESSION SPARSE,

)
DISTRIBUTE EVERYWHERE;

But note that currently such a DEFAULT clause is no general default value in case no value is give
during imports.

A more complex example of creating sparse columns showing all types for which sparse compression
is available:

CREATE TABLE three_segments

(
bitvector8_col BITVECTOR8 COMPRESSION SPARSE,
uint8_col UINT8 COMPRESSION SPARSE,
uintl6_col UINT16 COMPRESSION SPARSE,
uint32_col UINT32 COMPRESSION SPARSE,
uint64_col UINT64 COMPRESSION SPARSE,
int8_col INT8 COMPRESSION SPARSE,
intl6_col INT16 COMPRESSION SPARSE,
int32_col INT32 COMPRESSION SPARSE,
int64_col INT64 COMPRESSION SPARSE,
float_col FLOAT COMPRESSION SPARSE,
double_col DOUBLE COMPRESSION SPARSE,
shortdate_col SHORTDATE COMPRESSION SPARSE,
date_col DATE COMPRESSION SPARSE,
time_col TIME COMPRESSION SPARSE,
timestamp_col TIMESTAMP COMPRESSION SPARSE,
varstring_col VARSTRING COMPRESSION HASH64, SPARSE,
blob_col BLOB COMPRESSION HASH64, SPARSE,

)

DISTRIBUTE EVERYWHERE;

See also section 24.2.4, page 285 for details.

Dictionary Column Store Compression

Dictionary column store compression is most effective on columns with small numbers of distinct
values.

Note that, if there is only one typical value, then sparse column compression usually is a better
approach (see section 15.10.1, page 178).

Page 179

15 Performance Optimizations 15.10 Column Store Compressions

How Dictionary Compression Works

A dictionary-compressed column stores contains a dictionary of all the distinct values in the column
store. Each distinct value has an index in that dictionary.

For each row in the column store, the index of the row’s value in the dictionary is stored in the column
store instead of the value itself. Because indices can be stored as bit-fields that take much less room
than the value itself, this can save a significant amount of memory.

Dictionary-compressed column stores are not only smaller in the file system, they also save room
when they are loaded into memory, and due to their smaller size also save I/O time.

Dictionary column store compression is activated for a column by specifying a COMPRESSION
DICTIONARY inthe CREATE TABLE statement (see section 24.2.4, page 284).

Note that only fixed-width column types can use the dictionary column compression. These are all
integer and floating-point column types, all date/time types, BITVECTORS, hashed strings, and blobs
of singularity SINGLE_VALUE.

Note also that one cannot combine DICTIONARY compression with LzZ4 compression.

Examples

A simple example of creating a dictionary column store:

CREATE TABLE SomeTable (
coll INT16 COMPRESSION DICTIONARY

A more complex example of creating dictionary columns showing all types for which dictionary
compression is available.

CREATE TABLE SomeOtherTable

(
bitvector8_col BITVECTOR8 COMPRESSION DICTIONARY,
uint8_col UINT8 COMPRESSION DICTIONARY,
uintl6_col UINT16 COMPRESSION DICTIONARY,
uint32_col UINT32 COMPRESSION DICTIONARY,
uint64_col UINT64 COMPRESSION DICTIONARY,
int8_col INT8 COMPRESSION DICTIONARY,
intl6_col INT16 COMPRESSION DICTIONARY,
int32_col INT32 COMPRESSION DICTIONARY,
int64_col INT64 COMPRESSION DICTIONARY,
float_col FLOAT COMPRESSION DICTIONARY,
double_col DOUBLE COMPRESSION DICTIONARY,
shortdate_col SHORTDATE COMPRESSION DICTIONARY,
date_col DATE COMPRESSION DICTIONARY,
time_col TIME COMPRESSION DICTIONARY,
timestamp_col TIMESTAMP COMPRESSION DICTIONARY,
varstring_col VARSTRING COMPRESSION HASH64, DICTIONARY,

Page 180

15.11 LIMIT optimization 15 Performance Optimizations

blob_col BLOB COMPRESSION HASH64, DICTIONARY,

See also section 24.2.4, page 285 for details.

LZ4 Compression

This column store compression technique uses 1.z4 to reduce the size of column store files in the file
system.

Caution: LZ4 compression has its benefits but can also have significant drawbacks:
» LZ4 shortens import speed if disk I/O is significantly slower than the time to compress the data.

» However, when reading data from the column store to process queries, both more memory and
time is needed to uncompress the data. In fact, a column store is completely mapped into memory
to uncompress it.

That is, never turn LZ4 compression on without evaluating the approach and comparing the
effect both with and without LZ4 compression.

For details how to enable 1.z4 compression, see section 24.2.4, page 285.

LIMIT optimization

The LIMIT optimization is an optimization which comes with no user configurations required. The
LIMIT in the OutputNode will be pushed down the expression tree as far as possible, as illustrated
the following examples:

SELECT * FROM ... [WHERE ...] LIMIT N

Rules for this kind of command:

* no node transmits more than N results

» no buffers of more than N rows are kept

» on each node the query stops once N results have been collected

* due to internal parallelism this does not guarantee that more than N results are ever produced but
from each partition only up to N values are extracted

SELECT = FROM ... [WHERE ...] ORDER BY ... LIMIT N

Rules for this kind of command:
¢ no node transmits more than N results
+ all data matching WHERE will still be fetched

» sort will be massively parallelized via initial sort/sort merge strategy and sort on slave nodes as
well as query master

Page 181

15 Performance Optimizations 15.12 Parallel Sort

* internal buffers, the number of which is usually on the order of number of selected partitions, are
limited to N rows

SELECT sum(...) FROM ... [WHERE ...] GROUP BY ... [HAVING ...] LIMIT N
Such queries will not benefit greatly from the optimization done here, because Cisco ParStream does

not optimize inside the aggregations themselves, and the aggregations will only produce results after
all data has been processed.

SELECT sum(...) FROM ... [WHERE ...] GROUP BY ... [HAVING ...] ORDER BY ...
LIMIT N

As above, but keep in mind that the optimization only applies after the GROUP BY has been executed.

SELECT sum(...) FROM ... [WHERE ...] LIMIT N

Any limit > 0 will not result in any change in query behavior, because only one row can ever be
expected.

LIMIT O will not trigger any actual data processing, but only return the resulting field-list and can
thus be safely used to extract column lists and perform quick validity checks of queries.

Parallel Sort

Sort is parallelized across cluster nodes and partitions. Each partition will get its own SortNode
assigned, which will be generated automatically by the server. Additionally SortMergeNodes will
combine the results of the separate child nodes, which can be SortNodes, other SortMergeNodes or
TransportNodes for distributed queries, as illustrated for a simple example in figure 15.2.

Page 182

15.12 Parallel Sort 15 Performance Optimizations

Sort Merge Node
123456789

Sort Merge Node Transport Node

123468

Sort Node Transport Mode
248

Sort Mode
136

Sort Mode
5749

Partition 2
428

Partition 1
631

Master Query

Partition 1
547

Slave Query

Figure 15.2: Query processing of the parallel sort.

Page 183

15 Performance Optimizations 15.13 Controlling the Number of Mapped Files

Controlling the Number of Mapped Files

Cisco ParStream tries to hold a useful amount of data in memory to provide the best possible
performance. However, keeping too much data in memory is counter-productive because the system
might start to swap. For this reason, you have the ability to control how much and how long data is
kept in memory.

A mapped file collector is provided to unmap old data if certain conditions are met. The conditions
roughly are:

A specified limit of maximum mapped files is reached
The last access to the data files is older than a specified amount of time

The following server options control this behavior in detail:

Option Effect Default

mappedFilesMax maximum number of mapped files before 80,000

unmapping happens

mappedFilesCheckInterval Interval in seconds that limit of maximum number of | 10

mapped files is checked

mappedFilesOutdatedInterval | If unmapping happens, all files with an access older | 3600 (1 hour)

than this amount of Seconds are unmapped

mappedFilesAfterUnmapFactor | Factor for mappedrFilesMax to compute the 0.8

resulting number of mapped files after unmapping.

mappedFilesMaxCopySize Maximum size of files in bytes that will be copied 16384

completely into heap memory instead of using a
memory mapped approach.

Note:

In principle the algorithm for unmapping files follows a LRU (least recently used) approach, which
means that if too much files are mapped into memory, the files with the oldest last access are
unmapped. Note however that to optimize this algorithm, individual files are not unmapped strictly
according to their access timestamps.

Note that as long as the limit mappedFilesMax is not reached, even outdated files are not
unmapped.

A value of 0 for mappedFilesMax Or mappedFilesCheckInterval disables the whole
unmapping algorithm.

See section 26.4, page 320 for system table ps_info_mapped_file, listing which files are
currently memory mapped.

The mappedFilesAfterUnmapFactor is used to specify the target number of mapped files
when unmapping applies. With the default 80,000 for mappedFilesMax the default 0.8 for
mappedFilesAfterUnmapFactor means that the goal is to unmap files so that less or equal
64,000 mapped files exist afterwards. Thus, if you had 90.000 mapped files when unmapping
happens, the goal is to unmap at least 26,000 files. A factor of 0 means that all files shall get
unmapped.

Note however, that this factor is only a rough goal. Mapped files are unmapped in chunks so that
more files might get unmapped. It might also happen that less files are unmapped because the
files are still/again in use or new mapped files were added while unmapping happens.

Page 184

15.14 Disable Tracking of Access Times in File System 15 Performance Optimizations

The mappedFilesMaxCopySize option deals with the fact that loading files as a whole might be
faster than using an memory mapped approach for small files. Usually, the system call mmap ()
internally uses pages of 4096 bytes size to manage the file access. Every mmap-segment will add
an additional entry into the processes page table. If the number of entries grows, it may exceed a
threshold, which noticeably slows down every subsequent memory access addressing prior unused
pages (page fault). Therefore using mmap for files smaller than a certain size makes no sense,
because the performance penalty for the page faults is very high and the page only consist of a
small number of pages. For files smaller than one page (4096 bytes) the effect is even worse,
because they will be anyway mapped completely from disk storage into memory. The files with sizes
smaller than or equal to the value of mappedFilesMaxCopySize will therefore be copied from
disk to memory in full, but will be managed by the LRU approach in the same way as mapped files
and will therefore be visible in the ps_info_mapped_files system table (but because they are
not really memory mapped anymore, they will not be visible in the processes /proc/self/maps
system file).

You can set the values at runtime with a ALTER SYSTEM SET command (see section 27.11.1,
page 375). Note that it might take up to mappedFilesCheckInterval seconds until the new
values are processed. If unmapping was disabled, it might take additional 5 seconds until the first
check is performed.

You can query the values of these options using the system table ps_info_configuration
(see section 26.3, page 312).

Disable Tracking of Access Times in File System

The file system keeps track of multiple statistics about its managed files. Among others, the last file
access time is updated every time a file is being accessed. Cisco ParStream does not make use
of this information, hence, we can improve file system performance by disabling the tracking of the
access times. You can disable the tracking by adding noat ime to the mount options in /etc/fstab.

An example would look like this:

/dev/hdal / ext4 defaults, noatime 11

Page 185

15 Performance Optimizations 15.15 Separation Aware Execution

Separation Aware Execution

Cisco ParStream provides a couple of optimizations based on the awareness of locally or distributed
separated data.

In general, these separation aware execution optimizations are enabled by the ExecTree option
SeparationAwareExecution (see section 13.3.4, page 142).

If enabled in general, you can disable specific separation aware execution optimizations in case they
are counter-productive with the following options in the [ExecTree] section:

Option Effect Page
SeparationEnableDSGB | Enable/disable Data Separated GRouP BY (DSGB) 186
SeparationEnableHSGB | Enable/disable Hash Separated GRoup BY (HSGB) 189
SeparationEnableDSFA | Enable/disable Data Separated Function Aggregations (DSFA) 190
SeparationEnableDSJ Enable/disable Data Separated Jo1N (DSJ) 191
SeparationEnableHSJ | Enable/disable Hash Separated JoIN (HSJ) 196
SeparationEnableDSI Enable/disable Data Separated 1IN (DSI) 197

Several of these optimizations have distributed variants. In fact:

» For Data Separated GRoUP BY (DSGB) you can also have Distributed Data Separated GROUP BY
(DDSGB) (see section 15.15.1, page 189).

» For Hash Separated GrRourP BY (HSGB) you can also have Distributed Hash Separated GROUP
BY (DHSGB). (see section 15.15.2, page 189).

» For Data Separated JOIN (DSJ) you can also have Distributed Data Separated JOIN (DDSJ) (see
section 15.15.4, page 194).

With the ExecTree option SeparationEnableDHS you can enable/disable all distributed hash
separated optimizations, i.e. DHSGB.

Data Separated GROUP BY (DSGB and DDSGB)

Data Separated GROUP BY (DSGB) is an approach to optimize GROUP BY queries. The basic idea
is to distribute the data of a distinct column into disjoint sets (partitions). When queries address
this/these disjoint column(s) in a GROUP BY clause, you will gain a significant query speed up.
Assume we have a query like SELECT ... GROUP BY userid. Internally, we get an execution
tree like in Figure 15.3. It is easy to see, that the upper aggregation stage does not scale.

When we organize the data in disjoint sets (see Figure 15.4), we are able to build a simpler execution
tree without the bottleneck in the upper stage. In the upper stage, we only concatenate the results of
the stages stated below.

The aim is to distribute the work of an aggregate node into independent nodes. Each node can
accomplish its work in parallel to the other nodes. The result can easily be concatenated by an output
node. Depending on the amount of data the parameter to determine the disjoint portions should be
chosen reasonably. To achieve this you have to tell the import process how to build the disjoint data
sets.

For example, guess we have a table with different user IDs:

CREATE TABLE MyTable (

Page 186

15.15 Separation Aware Execution 15 Performance Optimizations

A potential
Output Node bottleneck

Aggregate Node

N S

Aggregate Node Aggregate Node

——J» group by userid

]4

Aggregate Node

i ™)

Partition 1 Fartition 2 Partition n

-
.
r

.

Figure 15.3: Common aggregation execution

Output Node

1

Aggregate Node Aggregate Node Aggregate Node ——» group by userid

I A B -

' Ty
Partition 1 Partition 2 Partition 3
L o L o \‘_—.J
userid % n=10 userid % n=1 userid % n =2

Figure 15.4: Data separated execution

Page 187

15 Performance Optimizations 15.15 Separation Aware Execution

userid UINT32

To build a disjoint limited set of data, we have to specify an ETL select statement distributing the
userids over 20 usergroups: For example:

ETL (SELECT userid MOD 20 AS usergroup
FROM CSVFETCH (MyTable)

For this new ETL column we need a corresponding column, which we use to partition the data:

CREATE TABLE MyTable (
userid UINT32

usergroup UINT16 INDEX EQUAL CSV_COLUMN ETL

)
PARTITION BY ... usergroup

The important point is to tell the database optimizer that queries to column userid can be optimized
because they are distributed (separated) by the newly introduced column:

CREATE TABLE MyTable (
userid UINT32 ... SEPARATE BY usergroup

usergroup UINT16 INDEX EQUAL CSV_COLUMN ETL

)
PARTITION BY ... usergroup

Thus, to bring all together in the CREATE TABLE statement we need the following:

CREATE TABLE MyTable (
userid UINT32 ... SEPARATE BY usergroup

usergroup UINT16 INDEX EQUAL CSV_COLUMN ETL

)
PARTITION BY ... usergroup

ETL (SELECT userid MOD 20 AS usergroup
FROM CSVFETCH (MyTable)

)
Finally, we have to enable this optimization in general with the corresponding INI options:

[ExecTree]
SeparationAwareExecution = true

SeparationEnableDSGB = true

Page 188

15.15 Separation Aware Execution 15 Performance Optimizations

Distributed Data Separated GROUP BY (DDSGB)

For Data Separated GROUP BY there is also a variant provided, called Distributed Data Separated
GROUP BY (DDSGB). Several of these optimizations have distributed variants. For DDSGB
(Distributed Data Separated GROUP BY) you also have to distribute the data according to the
usergroup column as described in section 6.3, page 53.

Hash Separated GROUP BY (HSGB and DHSGB)

Hash Separated GROUP BY (HSGB) is another approach to optimize GROUP BY queries. A query
with a group by clause results internally in several aggregation stages. You can speed up these
aggregations by building an internal mesh of parallelization. There is also a distributed variant of this
optimization called Distributed Hash Separated GROUP BY (DHSGB).

Output Node
Aggregate Node Aggregate Node Aggregate Node ——» group by userid
' ™ ' " I
Partition 1 Partition 2 Partition 3
L ». L ».
userid % n=10 userid % n=1 userid % n =2

Figure 15.5: Distributed Hash Separated GROUP BY (DHSGB)

To enable the Hash Separated GROUP BY, the following INI parameters have to be set in the
[ExecTree] section:

[ExecTree]
SeparationAwareExecution = true
SeparationEnableHSGB = true

This feature works on a cluster as well. To enable the support for DHSGB, the following INI file
parameter must be set additionally:

[ExecTree]
SeparationEnableDHS = true

Page 189

15 Performance Optimizations 15.15 Separation Aware Execution

You can control the degree of parallelism per node used by (D)HSGB via another option in the
[ExecTree] section:

[ExecTree]
NumHashSeparatedStreamsPerNode = 16

For example, the value 16 means to have 16-way-parallelism of inner aggregation stages on each
participating cluster-node.

Finding the right value for NumHashSeparatedStreamsPerNode is not easy. Bear in mind that the
speed up depends on many criteria, such as number of CPUs, number of cores in the CPUs, amount
of memory, and so on. Setting this value to zero or below will yield an error.

With the global option dhsgbConnectionTimeout (see section 13.2.2, page 133) you can define
the timeout when establishing inter cluster connections for DHSGB.

Data Separated Function Aggregation (DSFA)

A query with a DISTINCT clause or a DISTVALUES function can be parallelized even without a GROUP
BY clause. Cisco ParStream leverages the information given by the data separation on a column to
reduce the number of comparisons necessary to get a distinct set of values. The only prerequisites
to enable this feature are that the column in the DISTINCT or DISTVALUES is either a partitioning
column or separated by a partitioning column, and that DSFA is enabled in the INI configuration:

[ExecTree]
SeparationAwareExecution = true
SeparationEnableDSFA = true

Then, with

SELECT DISTINCT city FROM tabA;

we assume that city is separated by a partitioning column. Hence, each partition contains a set of
cities that is disjoint to the sets in the other partitions. Therefore, Cisco ParStream calculates all
distinct values per partition and then concatenates the results of all partitions to get a final set of
distinct values.

And with

SELECT COUNT (DISTINCT city) FROM tabA;

the procedure is identical to the example above. The sole exception is that instead of concatenating
the sets of disjoint values, we sum up the different number of distinct values.

This feature can be extended to work in a cluster if the partitioning column is also the distribution
column. Then, Cisco ParStream can calculate the distinct values on each server independently and
concatenate the result as a final step.

Page 190

15.15 Separation Aware Execution 15 Performance Optimizations

JOIN Parallelization

Cisco ParStream applies different parallelization strategies for JOIN queries. These strategies enable
the optimizer to scale join nodes horizontally to achieve an optimal query performance. The strategies
applied are:

+ Data Separated JOIN (DSJ, see page 191)
 Distributed Data Separated JOIN (DDSJ, see page 194)
» Hash Separated JOIN (HSJ, see page 196)

The optimizer always tries to leverage DSJs if possible and falls back to HSJs if DSJ is not applicable.
In a multi-stage join both of these strategies may appear in combination, because the optimizer will
use DSJs as long as possible and fall back to HSJs if DSJ can’t be applied anymore.

Figure 15.6 shows how the optimizer decides which parallelization strategy to use.

!

Extract equality
conditions

quality conditions
empty?

Are all predicates data
separated?

Yes — Single threaded NLI 4>©

Apply hash
Mo separation

4

Multi threaded equi
nested loop join

o

Figure 15.6: Decision flow for parallelization strategies

Data Separated JOIN (DSJ)

A JOIN can exploit Data Separation. This enables the optimizer to scale the JOIN horizontally and
join complete partitions pairwise. This feature can be applied when joining:

+ two partitioning columns, or

» two columns that are separated by another column, which splits these columns virtually into disjoint
parts (see section 15.15.4, page 192 for details).

Page 191

15 Performance Optimizations 15.15 Separation Aware Execution

To enable Data Separated JOINs the ExecTree options SeparationAwareExecution (see
section 13.3.4, page 142) and SeparationEnableDSJ must be set in the [ExecTree] section:

[ExecTree]
SeparationAwareExecution = true
SeparationEnableDSJ = true

Tables are implicitly separated by their respective partitioning column. Assume we have two tables
tabA and tabB, both tables are partitioned by the respective id column. Executing the following
query will result in the execution tree shown in figure 15.7 (we assume that both tables have the values
1 and 2 for their individual id column):

SELECT * FROM tabA
INNER JOIN tabB ON tabA.id = tabB.id;

OutputNode
HashJoinNode HashJoinNode
| 3
tabB tabA tabB
Partitions for id=1 Partitions for id=2

Figure 15.7: Example of a Separated Join with partitions for column id (in both tables column id has the values
1 and 2, respectively)

To exploit Data Separation for columns that are separated by another column (see section 15.15.1,
page 188 for further details about columns separated by another column) you have to specify a hint
for the optimizer. For this, Cisco ParStream introduces a new column property called “REFERENCES”
(see section 24.2.4, page 284), which allows to exploit a defined Data Separated JOINs similarly to
DSGB (see section 15.15.1, page 186). The new property allows to define that a column in one table
is separated by the same function as another column in another table.

For example: Assume you have two tables taba and tabB containing user ids. Due to the high
cardinality of your user ids assume further, that you want to group user ids by a column user_group
which is created by an ETL statement during import. The function you may use to create the column

Page 192

15.15 Separation Aware Execution 15 Performance Optimizations

user_group iS user_id % 20 to generate 20 groups. These 20 groups contain disjunct sets
of user_ids. The function user_id % 20 is utilized by taba and tabB in order to create their
respecting user_group column. Now assume you issue the following query:

SELECT = FROM tabA INNER JOIN tabB ON tabA.user_id = tabB.user_id;

If the optimizer knew that both user_id columns fall into 20 disjunct groups, a DSJ could be executed
directly on the user_group column.

We give an example why here a DSJ is applicable: Assume there is a user_group with the value 1
for taba which has no counterpart in tabB. Due to the fact that the column user_id falls into disjunct
subsets we know that there exist no matching user_ids in this subset for taba and tabB. This
allows the optimizer to exclude complete partitions without the need to match the individual user_ids
within the partitions. In order to exploit this knowledge the optimizer needs a hint. This hint is given by
the “REFERENCES” keyword telling the optimizer that both user_id columns are separated by the
same function. It is, due to the rule of transitivity, sufficient if you give this hint in one table definition.
For the sake of this example we’ll show the relevant parts of taba’s table definition:

CREATE TABLE tabA

(
user_id UINT64 SINGLE_VALUE SEPARATE BY user_group REFERENCES tabB.user_id

INDEX EQUAL,

user_group UINT64 SINGLE_VALUE INDEX EQUAL CSV_COLUMN ETL

)
PARTITION BY user_group,

ETL (SELECT user_id MOD 20 AS user_group FROM CSVFETCH (tabd));

Hence, Cisco ParStream can use the existing data separation to parallelize the join locally into multiple
hash joins. Otherwise, Cisco ParStream would have to separate the values manually by a pre-hashing
phase.

Please note:

» Referenced column have to be defined as NOT NULL and UNIQUE.

* You can also reference a table as a whole (i.e. REFERENCES tabB). In that case, the referenced
column is the column marked as PRIMARY KEY in the referenced table (see section 24.2.4,
page 284).

* IftabA.coll REFERENCES tabB.col2, every value of tabA.coll has to occur somewhere
in tabB.col2 unless itis NULL. This constraint is not validated by Cisco ParStream, valid data
has to be guaranteed by the customer.

* REFERENCES is a transitive property and cycles will lead to an error.
* A wrong REFERENCES configuration may lead to wrong query results.
+ Separation aware execution has to be enabled for this feature to work (see section 13.3.4, page 140).

Page 193

15 Performance Optimizations 15.15 Separation Aware Execution

Distributed Data Separated JOIN (DDSJ)

Cisco ParStream currently only supports Distributed Data Separated Joins. Locally on each cluster
member, Cisco ParStream uses a Data Separated Join (DSJ) to compute partial solutions of the query.
Due to data separation, Cisco ParStream can simply concatenate the results, locally computed, on the
query master to create the final result.

If Cisco ParStream cannot exploit data separation to parallelize a join across cluster members, Cisco
ParStream reverts back to a join on the query master. That means, Cisco ParStream ships all data
to the query master and computes the result locally. In this case, Cisco ParStream may still apply a
hash separation to use a hash join, but using data separation and computing the join on all cluster
members in parallel will yield better performance.

To use a Distributed Data Separated Join, a few conditions have to be fulfilled:

» The join columns are either distribution columns, or they are separated by one of the distribution
columns (see section 6.3, page 53) using the same function (see section 15.15.4, page 192).

* One of the tables is distributed across the cluster. The other tables are either replicated on every
node using distribution everywhere (see section 6.3.1, page 58), or they are collocated with the
distributed table (see section 6.3.1, page 54).

+ All requirements from Data Separated Join (DSJ). See section 15.15.4, page 191.

Figure 15.8 shows how the optimizer decides how to distribute a join query.

By the rules above, Cisco ParStream can conduct a join within a cluster in three different ways:

* Rule 1: Assume columns tabA.a and tabB.b are collocated. Then, for example, the following
query:

SELECT = FROM tabA
INNER JOIN tabB ON tabA.a = tabB.b;

would result in a distributed join, which is executed on each node individually. This is shown in
figure 15.9.

* Rule 2: Assume columns a and b are collocated and a third column c is either collocated to column
a or b, or fully distributed.
For example, the following query:

SELECT * FROM tabA
INNER JOIN tabB ON tabA.a
INNER JOIN tabC ON tabB.b

tabB.b
tabC.c;

would result in a distributed join, which is executed on each node individually: This is shown in
figure 15.10.

* Rule 3: If the data sets are neither collocated nor at least one of the tables is fully distributed,
concurrent execution of the join across a cluster is not possible. Hence, all work must be done by
the query master after collecting all relevant data.

In this case, for example, the following query:

SELECT * FROM tabA
INNER JOIN tabB ON tabA.a = tabB.b;

Page 194

15.15 Separation Aware Execution 15 Performance Optimizations

Perform local join on
@ one node — Yes

Are both tables
replicated?

Perform join on each
node [Yes

Mo
v

Extract equality
conditions

h 4

Send data of
ves - relations to query Perform local join
master

s one predicate datd
separated and
equally distributed?

Mo

Yes

v

Perform hash join on
each node

A

Concatenate results
p of all nodes on query
master

Figure 15.8: The optimizer’s activities to decide the distribution strategy

Query master Query slave Query slave

Figure 15.9: Columns a and b are collocated which leads to a distributed execution of the join on each cluster
member.

Page 195

15 Performance Optimizations

15.15 Separation Aware Execution

Query master

Query slave

Query slave

Figure 15.10: Columns a and b are collocated, column c is either collocated to column a or b, or fully distributed,
which leads to a distributed execution of the join on each cluster member.

will result into a situation as shows in figure 15.11.

local join

RecvMNode

Query master

[SEndNude]| [SsndNudE]|

[SendNnde]‘ [SendNndeJ|

— "
col col
a b

Query slave

—3 -_—
col col
a 3}

Query slave

Figure 15.11: Columns a and b are not collocated, neither is one of the tables fully distributed. This leads to a
local join on the query master.

Hash Separated Join (HSJ)

If a Data Separated JOIN (see section 15.15.4, page 191) is not applicable, the optimizer will fall back to
a Hash Separated J0IN (HSJ). HSJ is applied if the columns within the join condition are not separated
by the same logical attribute. If this is the case the optimizer does not know how the data is distributed.
Still the optimizer is capable to scale the JOIN horizontally by adding HashSeparatingNodes. This
layer distributes data, based on its hash value, to the layer of join nodes above. This eventually allows
the join to be scaled. The support for HSJ can be enabled by the following options:

[ExecTree]

SeparationAwarekExecution = true

Page 196

15.15 Separation Aware Execution 15 Performance Optimizations

SeparationEnableHSJ = true
The number of parent nodes of HashSeparatingNodes is determined by the [ExecTree] option
NumHashSeparatedStreamsPerNode (see section 13.3.4, page 143):

[ExecTree]
NumHashSeparatedStreamsPerNode = 16

By this configuration entry, 16 HashJoinNodes will be created above 32 HashSeparatingNodes.?

Given the following query:
SELECT * FROM tabA INNER JOIN tabB ON tabA.id = tabB.id;
which joins over two columns not separated by the same

logical attribute, and NumHashSeparatedStreamsPerNode set to 3, will result in the execution
tree shown in figure 15.12.

OutputNode

el N

HashJoinNode HashJoinMNode HashJoinNode

HashBuilding Layer

—1 1

FetchModes for both tables

Figure 15.12: Simplified example of a JOIN query where the optimizer decided to use hash separation.

Data Separated IN (DSI)

We can leverage data separation to calculate a Data Separated IN (DSI) for queries like in the following
example:

SELECT % FROM tabA WHERE tabA.userId IN (SELECT id FROM tabB);

The prerequisite to perform a Data Separated 1N (DSI) is that the columns used in the IN, in the
example “tabA.userld” and “tabB.id”, are:

+ two partitioning columns, or

2 For each JoinNode two HashSeparatingNodes are created: One for the join’s LHS, and one for the join’s RHS children.

Page 197

15 Performance Optimizations 15.15 Separation Aware Execution

» two columns that are separated by another column, which splits these columns virtually into disjoint
parts. See section 15.15.4, page 192 for a detailed explanation.

In this case, Cisco ParStream calculates all relevant keys on a partition level to reduce the size of
unnecessary filter statements and to retrieve only relevant data.

You can enable the support for Data Separated 1N (DSI) by using the following ini configuration:

[ExecTree]
SeparationAwareExecution = true
SeparationEnableDSI = true

If you operate a cluster with multiple nodes, the Data Separated IN can only be applied if the two
columns involved in the IN are co-located, i.e., they are either columns used to distribute the table
over the cluster or they are separated by distribution columns.

If the Data Separated IN is disabled, the only option to use an IN statement involving two tables is to
have one table replicated on every cluster node. Otherwise, the IN query will not be accepted and
return an error message.

Page 198

Socket Client Interface

Client applications can connect to a Cisco ParStream database via a plain character-based socket
interface. Various utilities and tools can utilize this interface.

The socket interface is realized over a TCP/IP connection. All data is transmitted as UTF-8 encoded
text, there is no binary transmission of data. Simultaneous connections are processed within a server
in parallel, using threads. Multiple requests within the same connection are processed sequentially.

Each request consists of one line and is terminated either with a zero-byte or a client’s ("\n"). Every
line of a result set is terminated with a LF ("\n"). The entire result set is terminated with an empty line
followed by a zero-byte.

Security

For a user to authenticate with a Cisco ParStream server via the netcat interface, he needs to issue a
login command using valid login credentials after connecting to Cisco ParStream:

login '<username>' '<pass phrase>'

Tooling
Users can interact with Cisco ParStream database over the socket interface using these tools:

1. nc (netcat): a standard socket interface client (see section 12.1.2, page 113).

2. pnc: an improved socket interface client provided by Cisco ParStream (see section 12.1.1,
page 110).

In addition to SQL conforming commands, Cisco ParStream also accepts additional control commands
sent through the netcat interface that read or alter system parameters. See section 16.4, page 200 for
details.

SQL commands can also sent to Cisco ParStream with the psql console client using the PostgreSQL
compatible protocol. See section 12.2, page 115 for details.

Output Format

Cisco ParStream can have different interface formats. The default format, ASCII, returns the result of
queries as plain ASCII data. In addition, you can use

» JSON: The output format is JSON (See section 16.7, page 207 for details).
» XML: The output format is XML (See section 16.6, page 205 for details).

The output format can be set in the configuration file as global option outputformat (see
section 13.2.1, page 121):

Page 199

16 Socket Client Interface 16.4 Control Commands

global
outputformat = JSON

or by sending a SET command to the server (see section 27.10.1, page 373):

SET OUTPUTFORMAT = 'JSON';

or unquoted

SET OUTPUTFORMAT = JSON;

See section 23.5.1, page 273 for the effect of the output format on NULL/empty strings.

See section 16.6, page 205 for details of the XML format.
See section 16.7, page 207 for details of the JSON format.

Control Commands

Beside the usual SQL statements, the socket interface provides a number of commands to control a
Cisco ParStream database installation. Some of them are just provided for internal use and might only
be helpful to fix something on a low-level base.

Cluster Control Commands

To control the cluster as a whole, a number of commands are provided, which you can issue by using
the ALTER SYSTEM command (see section 27.11, page 375):

ALTER SYSTEM CLUSTER SHUTDOWN
ALTER SYSTEM NODE SHUTDOWN
ALTER SYSTEM NODE [nodename] SHUTDOWN

Shuts down all a specific node/server or all nodes or of a cluster (including importer nodes).
Active synchronization or import tasks are allowed to finish, but no new such tasks will be
allowed to start. If the optional parameter nodename is not passed, the command will shut
down the node/server the query is issued on. The “ALTER SYSTEM NODE SHUTDOWN”
command can be used to shut down any server/node (independent from whether it is part
of a cluster).

ALTER SYSTEM CLUSTER DISABLE IMPORT
ALTER SYSTEM CLUSTER ENABLE IMPORT

Enable or disable data import operations for the cluster. When data imports are disabled
the cluster will not accept new streaming import connections or import with the Cisco
ParStream importer. Active data imports will be allowed to finish.

The import status can be queried via the system table ps_info_cluster_node (see
section 26.4, page 317).

Page 200

16.4 Control Commands 16 Socket Client Interface

ALTER SYSTEM CLUSTER DISABLE MERGE
ALTER SYSTEM CLUSTER ENABLE MERGE

Enable or disable the execution of scheduled merges. If merges are being disabled,
currently running merges will run until completed, but no new merges will be executed.

The merge status can be queried via the system table ps_info_cluster_node (see
section 26.4, page 317).

ALTER SYSTEM CLUSTER EXECUTE MERGE LEVEL (HOUR | DAY | WEEK | MONTH)

Force execution of the specified merge. The merge will be executed immediately, even if
merges are currently disabled.

Additional Internal Commands

The following command have effect only on a single-node cluster. Note that in clusters with multiple
servers/nodes corresponding cluster commands should be preferred if provided.

help [request]

This requests returns a description of the available requests. If the optional parameter is
set to the name of a request, then a detailed description of that request is returned.

INSPECT subject

+ Outputs tabular information about the given subject without using the execution engine
(i.e. unlike SELECT based system table queries)

+ See section 27.6, page 362 for details.

LOGIN username’ pass phrase’

Tries to authenticate with the provided user name and pass phrase. If user authentication
is enabled (see section 9.2, page 78), the user can issue queries after a successful
authentication with this command.

Note that the pass phrase is currently sent without encryption, so that it's up to the system
or network administrator to ensure a secure transport over the network if this is required.

quit
Closes the connection to the server and frees all resources held by that connection. This

request is used mostly for automated tests; to terminate a script that contains various
requests in a clean way.

SET command

Page 201

16 Socket Client Interface 16.4 Control Commands

» Sets session-specific values.
+ See section 27.10, page 373 for details.

showexectree command

+ The command showexectree can be used by the socket interface to display the
execution tree into which SQL statements are translated.

» For example: A request such as follows:

showexectree SELECT * FROM Address;

might output:
parstream: :ExecOutputNode (0x7£31a400b300)
input
Address.__street_value (offset=0,size=16,varstring, single_value, hashed

value, column=Address.street),

queue (of 0x7£31a400b300, size O0)

parstream: :ExecTransNodeRecvTICP (0x7£31a4006d30)

output
Address.__street_value (offset=0,size=16,varstring, single_value, hashed
value, column=Address.street),

parstream: :ExecTransNodeRecvTICP (0x7£31a4007£d0)

output
Address.__street_value (offset=0,size=16,varstring, single_value, hashed
value, column=Address.street),

parstream: :ExecFetchNodeColumnData (0x7£31a400ad30)

output
Address.__street_value (offset=0,size=16,varstring, single_value, hashed
value, column=Address.street),

output Address.id(offset=64,size=4,int32,single_value, not
hashed, column=Address.id),

ALTER SYSTEM NODE SHUTDOWN

Tells the local server to stop accepting requests, and to shutdown the next time a connection
to the server is opened — after all pending queries and imports have been processed.
In multi-node clusters the corresponding cluster control command should be used (see
section 16.4.1, page 200).

sqlprint command

+ The command sglprint can be used by the socket interface to display the description
tree in different processing stages (after parsing, after meta data enrichment, after
optimizations) into which SQL statements are translated.

» For example: A request such as follows:

Page 202

16.4 Control Commands 16 Socket Client Interface

sqglprint SELECT AVG(value) AS val FROM testtable;

might output:

Description tree:
OutputNode requiredOutputRows: none fields: (val) uniqueNodeId: 3 limit:
none offset: 0
AggregateNode requiredOutputRows: none fields: (val) uniqueNodeId: 2
aggregate fields: val:=AVG(value) group by: level: 0/2
FetchNode requiredOutputRows: none [parallelizable] fields: (value)
uniqueNodeId: 1 condition: table: testtable

Preprocessed tree:
OutputNode requiredOutputRows: none fields: (val) uniqueNodeId: 3 limit:
none offset: 0
AggregateNode requiredOutputRows: none fields: (val) uniqueNodeId: 6
aggregate fields: val:=AVGCOUNTSUM (val) group by: level: 0/2
AggregateNode requiredOutputRows: none [optional] fields: (val,
val__ CNT_INTERN) uniqueNodeId: 5 aggregate fields:
val__ CNT_INTERN:=SUM(val__CNT_INTERN), val:=SUM(val) group by: level:
1/2 [cascadable]
AggregateNode requiredOutputRows: none [parallelizable] fields: (val,
val__CNT_INTERN) uniqueNodeId: 4 aggregate fields:
val__ CNT_INTERN:=COUNT (value), val:=SUM(value) group by: level: 2/2
FetchNode requiredOutputRows: none [parallelizable] fields: (value)
uniqueNodeId: 1 condition: table: testtable

Parametrized tree:
|=>[val (offset=0, size=8,double, single_value,not hashed, nocolumn)] :rowSize=0
ParametrizedNode parstream::0OutputNode NoRemoteProcessing no separation
possible no sorting partition-overlapping
|=>[val (offset=0, size=8,double, single_value, not
hashed, nocolumn)] :rowSize=8
ParametrizedNode parstream: :AggregateNode NoRemoteProcessing no
separation possible no sorting partition-overlapping
|->[val (offset=0,size=8,uint64,single_value,not hashed,nocolumn),
val__ CNT_INTERN (offset=8,size=8,uint64, single_value, not
hashed, nocolumn)] :rowSize=16
ParametrizedNode parstream::AggregateNode NoRemoteProcessing no
separation possible no sorting partition-overlapping
|=>[val (offset=0,size=8,uint64, single_value,not hashed, nocolumn),
val__ CNT_INTERN (offset=8,size=8,uint64, single_value, not
hashed, nocolumn)] :rowSize=16
ParametrizedNode parstream::AggregateNode NoRemoteProcessing no
separation possible no sorting partition-local
|=>[value (offset=0,size=8,uint64,single_value, not
hashed, column=testtable.value)] :rowSize=8
ParametrizedNode parstream::FetchNode NoRemoteProcessing no separation
possible no sorting partition-local

Optimized tree:

|->[val (offset=0,size=8,double, single_value,not hashed,nocolumn)] :rowSize=0

ParametrizedNode parstream::0OutputNode NoRemoteProcessing no separation
possible no sorting partition-overlapping

Page 203

16 Socket Client Interface 16.5 ASCII Interface

|=>[val (offset=0, size=8,double, single_value, not
hashed, nocolumn)] :rowSize=8
ParametrizedNode parstream: :AggregateNode NoRemoteProcessing no
separation possible no sorting partition-overlapping
|->[val (offset=0,size=8,uint64, single_value,not hashed, nocolumn),
val__ CNT_INTERN (offset=8,size=8,uint64, single_value, not
hashed, nocolumn)] :rowSize=16

* Note that the output format is not standardized and might change with any new Cisco
ParStream version.

unload partition tablename

Marks the specified partition as disabled. (partition status “disabled-by-unload”, see
section 5.1.3, page 34). The partition will subsequently be ignored at server startup and by
load requests.

» partition is the path of the partition’s directory under the partition directory (usually
datadir).

+ tablename is the name of the table the partition belongs to.
The return value is the number of unloaded partitions which should be 1 if the partition was
unloaded and 0 if unloading failed.

For example:

unload 3875/20100120_7_2010-08-17T09:03:39_first_PM MyTable
unload "14/2010-11-14 14:00:147Z_2013-09-17T20:23:24_first_pPM"
MyTable

Note:

Unloading a partition is not reversible and will physically delete the data of the
partition!

load directory tablename

Scans the specified directory (must be a sub-directory of the server’s datadir) for
partitions and loads them. The partitions have to be created with a standalone import.
Loading partitions that are not activated is rejected. The return value is the number of
loaded partitions.

For example, if inside the partition directory of the server is a partition for the value 835:
load 835 MyTable

ASCII Interface

In the Asc11 setting the output by default is output in a csv like syntax:
Input:

Page 204

16.6 XML Interface 16 Socket Client Interface

SELECT x FROM Wages WHERE wage_id = 47;

Output:
#wage__id;education;address;sex;experience;union;wage;age;race;occupation;sector;marr

47;10;5;0;13;0;4.85;29;3;6;0;0

The column separator, separator for entries in multi-values, and the NULL representation
can be customized with the options asciiOutputColumnSeparator (see section 13.2.1,
page 121), asciiOutputMultiValueSeparator (see section 13.2.1, page 122), and
asciiOutputNullRepresentation (see section 13.2.1, page 122), respectively.

Error Handling

In the case of an error an error code and a human-readable error message is returned. The line that
contains the answer for a request starts with "#ERROR", followed by ’-’, and an error number, if an
error has occurred. The error code is followed by the error message.

For example:

#ERROR-000: Internal Error

#FERROR-100: Invalid Query

#ERROR-110: Unknown Request

#ERROR-120: Unknown Column

#FERROR-130: Insufficient Number of Parameters

#ERROR-200: No Data Found

XML Interface

The data can also be transmitted packed inside XML.
Input:

SELECT x FROM Wages WHERE wage_id = 47;

Output:

<output>
<dataset>
<wage_id>47</wage_1id>
<education>10</education>
<address>5</address>

Page 205

16 Socket Client Interface 16.6 XML Interface

<sex>0</sex>
<experience>13</experience>
<union>0</union>
<wage>4.85</wage>
<age>29</age>
<race>3</race>
<occupation>6</occupation>
<sector>0</sector>
<marr>0</marr>
</dataset>
</output>

Input:

SELECT wage_id FROM Wages WHERE wage_id > 47 LIMIT 5;

Output:

<output>
<dataset>
<wage_id>48</wage_id>
</dataset>
<dataset>
<wage_id>51</wage_id>
</dataset>
<dataset>
<wage_id>58</wage_id>
</dataset>
<dataset>
<wage_id>61</wage_1id>
</dataset>
<dataset>
<wage_id>64</wage_1id>
</dataset>
</output>

This can be checked with:

SELECT count (x) FROM Wages WHERE wage_id > 47;

Output:

<output>
<dataset>
<auto_alias_1_>486</auto_alias_1__ >
</dataset>
</output>

Here you don’t get a real data row, but the internal count of Cisco ParStream back.

Page 206

16.7 JSON Interface

Error Handling

16 Socket Client Interface

Error messages in the XML output format are textually the same as for the ASCII output format, but
formatted as XML with a single error element:

<error>ERROR-000:

<error>ERROR-100:

<error>ERROR-110:

<error>ERROR-120:

<error>ERROR-130:

<error>ERROR-200:

Internal Error</error>

Invalid Query</error>

Unknown Request</error>

Unknown Column</error>

Insufficient Number of Parameters</error>

No Data Found</error>

JSON Interface

The data can also be transmitted packed inside JSON.

Input:

SELECT x FROM Wages WHERE wage_id = 47;

Output:

{"rows":

[

"wage_id":47,

"education":

"sex":0,

"experience"

"union":0,
"wage":4.85,
"age":29,
"race":3,

"occupation"

"sector":0,

"marr":0

Input:

10,

:13,

16,

SELECT wage_id FROM Wages WHERE wage_id > 47 LIMIT 5;

Page 207

16 Socket Client Interface 16.7 JSON Interface

Output:

{"rows":
[
{"wage_1id":48},
{"wage_id":51},
{"wage_id":58},
{"wage_id":61},
{"wage_id":64}

This can be checked with:

SELECT count (x) FROM Wages WHERE wage_id > 47;

Output:

{"rows":[{"auto_alias_1 ":486}]}

Here you don’t get a real data row, but the internal count of Cisco ParStream back.

Error Handling

Error messages in the JSON output format are textually the same as for the ASCII output format, but
formatted as JSON dictionary with a single entry error:

{"error" : "ERROR-000: Internal Error"}

{"error" : "ERROR-100: Invalid Query"}

{"error" : "ERROR-110: Unknown Request"}

{"error" : "ERROR-120: Unknown Column"}

{"error" : "ERROR-130: Insufficient Number of Parameters"}
{"error" : "ERROR-200: No Data Found"}

Page 208

ODBC Client Interface

Cisco ParStream relies on PostgreSQL ODBC driver psglODBC (v11.00.0000) to provide ODBC client
connectivity to a Cisco ParStream database.

The Cisco ParStream server port for client ODBC connections is 1 higher than the basic port of the
corresponding Cisco ParStream server. For example, if port=9042, the ODBC connection port is
9043. See section 13.3.1, page 135 for details.

ODBC Configuration Brief

The content of this section is general ODBC information provided as a courtesy. Cisco ParStream
specific material is limited to the content of the Cisco ParStream DSN.

ODBC Connection String

A standard ODBC connection string is a semicolon separated list of connection attribute/value pairs,
for example:

"DSN=demo; SERVERNAME=10.10.20.99; PORT=9043; DATABASE=demo;

Username=parstream; Password=n-a;"

Note:
Per ODBC specification, connection attribute names are case insensitive.

Data Source Name (DSN)

DSN is a named tag in a ODBC.INI file that lists a set of connection attributes. Here is an example of
a Cisco ParStream DSN "Demo":

[demo]

Driver = /usr/lib64/psglodbc.so
Servername = 10.10.20.99

Port = 9043

Database = demo

Username = parstream

Password = n-a

If a connection string includes DSN=DSN_NAME attribute, the ODBC driver (or Driver Manager) builds
the actual connection string by combining all attributes listed under [DSN_NAME].

A DSN listed in the System ODBC.INI file would be a System DSN, accessible by all users of the host
OS.

A DSN listed in the User ODBC.INI file would be a User DSN, accessible only by the given user of the
host OS.

A given database may have any number of DSNs pointing to it.

Page 209

17 ODBC Client Interface 17.2 Installing ODBC Driver on Linux

It is legitimate to have the same System and User DSN at the same time. Users should use caution -
in this case User DSN may "cast shade" on System DSN which may lead to inadvertent confusions. In
case of a conflict (same connection attribute defined with different values) the order of precedence is
as follows:

+ System DSN
+ User DSN
» Connection String

l.e. User DSN settings overwrites System DSN settings, and attributes explicitly specified in the
connection string overwrite either User or System DSN.

Note:

DSN is not required to make a database connection. A client can specify all connection
attributes on-the-fly in the connection string. However a DSN provides convenience and
connection attributes consistency.

Installing ODBC Driver on Linux

The installation instructions below are for RHEL/CentOS/Oracle Linux. Adjust the instructions
accordingly to install the driver on other Linux OS variants.

As user root, install the psglODBC driver (postgresgl-odbc rpm) and unixODBC Driver Manager
(unixODBC rpm). Note that postgresgl-odbc RPM package pulls in unixODBC package as
dependency.

$ yum install postgresgl-odbc

If you are planning to write custom C/C++ code using ODBC interface, you’ll need to install an optional
unixODBC-devel RPM package that includes ODBC API include files (e.g. sgl.h, sglext.h,
sqltypes.h, etc.):

$ yum install unixODBC-devel

Verify unixODBC default configuration:

$ odbcinst -v —j
unixODBC x.y.z

DRIVERS............: /etc/odbcinst.ini

SYSTEM DATA SOURCES: /etc/odbc.ini

FILE DATA SOURCES..: /etc/ODBCDataSources
USER DATA SOURCES..: /home/parstream/.odbc.ini

Confirm that the SYSTEM DSN is /etc/odbc.ini and USER DSN is $HOME/ . odbc.ini.

Page 210

17.3 Configuring Cisco ParStream ODBC Connection on Linux 17 ODBC Client Interface

Configuring Cisco ParStream ODBC Connection on Linux

psqlODBC driver relies on a ODBC Driver Manager to read System or User DSN. With unixODBC the
default locations of the ODBC.INI files are as follows:

» System DSNfile is /etc/odbc.ini
» User DSNfile is SHOME/ . odbc.ini

The default locations may be overwritten with environment variables SODBCSYSINT and SODBCINT.
Please refer to the unixODBC documentation for additional information.

System ODBC.INI file is generally used for production deployments.
User ODBC.INI file is often used in multi-user development environments

A minimalistic user setup would include only one file, either /etc/odbc.ini or SHOME/ . odbc. ini.
In a typical use case the ODBCINST.INI file (e.g. /etc/odbcinst.ini) is not required.

Edit the System or User DSN file and add a DSN section using a DSN "demo" example included
earlier in the chapter as a template. You should only need to adjust Servername and Port settings.

You can now test a DSN "demo" connection with unixODBC command-line tool i sql:
S isgl -v demo
Connected!

sgl-statement
help [tablename]
quit

Installing ODBC Driver on Windows

32-bit and 64-bit versions of psqlODBC drivers are available for download from PostgreSQL (https:
//www.postgresql.org/ftp/odbc/versions/msi/). Each driver is packaged as a standard
Windows MSI file installer.

As a Windows Administrator, start the MSI installer and follow the on-screen instructions to complete
the driver installation.

Page 211

https://www.postgresql.org/ftp/odbc/versions/msi/
https://www.postgresql.org/ftp/odbc/versions/msi/

17 ODBC Client Interface 17.5 Configuring Cisco ParStream ODBC Connection on Windows

Configuring Cisco ParStream ODBC Connection on
Windows

As of Windows NT, the System and User ODBC.INI files have been replaced with respective registry
entries:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI]
[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC. INI]

On Windows, ODBC DSN is configured with a Control Panel ODBC Applet.

Note:
32bit psqlODBC driver installed on a 64bit Windows platform operates within a WoW64
subsystem.

The System DSN registry entry for WoW64 subsystem is

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBC.INI]

To configure a DSN for a 32bit start psqlODBC driver installed on a 64bit Windows, start
the WoWe64 Control Panel ODBC Applet:

C:\Windows\SysWOW64\odbcad32.exe

psqlODBC driver installation includes ANSI and Unicode driver variants. ANSI driver is preferred for
performance sensitive applications over the Unicode (UTF-16) version that uses 2 bytes to represent
each character.

To configure a DSN, start the Control Panel ODBC Applet (for example, Start > Control Panel >
Administrative Tools > Data Sources (ODBC)).

Click Add > PostgreSQL ANSI

Fill out the fields in the DSN Setup dialog as follows (see figure 17.1):

+ “Data Source” and “Database” can be anything of your choice.

* “Description” can be empty.

« “SSL Mode” must be set to “disable.”

+ “Server’ and “Port” have to be set to the values of the corresponding Cisco ParStream server.

+ “User Name” and “Pass phrase” have to be set to the corresponding values if authentication is
enabled (see section 9.2, page 78) or some arbitrary values otherwise (these field are not allowed
to be empty).

+ “User Name” and “Pass phrase” have to be set to some arbitrary values (the fields are not allowed
to be empty)

Use the “Test” button to verify the database connectivity.

Page 212

17.5 Configuring Cisco ParStream ODBC Connection on Windows 17 ODBC Client Interface

-~

; QDEC Data Source Administrator | 22

| User DSM | System DSN | File DSM | Drivers I Tracing | Connection Pooling | About |

System Data Sources:

Mame Driver Add...
Demo PostareSGL ANSI
’
PostgreSQL ANSI ODBC Driver (psglODBC) Setup oS
Data Source Description
Databaze demo 551 Mode | dizable -
Eik Server 192.168.1.2 Port 9043

User Mame parstream FPazzword wwee

Optionz

(Doucn] [Gt] [samish] o o

Figure 17.1: Setting up DSN with ODBC Control Panel Applet

Page 213

JDBC Client Interface

The Cisco ParStream JDBC Driver uses PostgreSQL client protocol and extends the capabilities of
the PostgreSQL JDBC Driver by adding additional data types, such as UINT, supported by Cisco
ParStream. It is possible to use the stock PostgreSQL JDBC Driver if Cisco ParStream specific
features are not used by the application.

The Cisco ParStream JDBC driver is a Type IV (pure) JDBC driver.

The Cisco ParStream JDBC driver requires Java 8 JRE or JDK.

The Cisco ParStream JDBC driver Class Name is "com.parstream.ParstreamDriver".

The Cisco ParStream server port for client JDBC connections is 1 higher than the basic port of the

corresponding Cisco ParStream server. For example, if port=9042, the JDBC connection port is
9043. See section 13.3.1, page 135 for details.

Cisco ParStream JDBC URL Specification

In JDBC, a database is represented by a URL. Cisco ParStream URL has the following format:
jdbc:parstream://[host] [:port]/[database] [?connectionAttributel=valuel]

[&connectionAttribute2=value2]...

where

host - host name or IP address of the server

port