

 EFM Manager User Guide - Cisco EFM, Release 1.7.0

Cisco Systems, Inc. www.cisco.com

1

EFM Manager User Guide
Kinetic - Edge & Fog Processing Module (EFM) 1.7.0

Revised: July 9, 2019

Introduction ... 3
EFM Manager Components and functions .. 3
Logging in to the EFM Manager ... 4
User Interface Overview .. 5
Devices Page .. 5

Viewing and updating a Device .. 6
Device Dashboard .. 7
Removing a Device ... 7
Devices Page and Device onboarding .. 8
Accepting a Device ... 9
Rejecting a Device in the Discovered Device list ... 9

Brokers Page .. 10
Viewing and updating a Broker .. 11
Broker Dashboard .. 11
Broker Relationship .. 12
Removing a Broker ... 13
Broker Page and Broker onboarding ... 13
Accepting a Broker ... 14
Rejecting a Broker in the Discovered Broker list ... 15

Normalized Asset Synchronization .. 16
Normalized Asset Grouping ... 16
Backup and restore of EFM Manager .. 17

For Backup: .. 17
For Restore: .. 18

Configuring the EFM Manager via the application-conf.json file .. 19
Onboarding Configuration and Workflow ... 21

Sensor Normalization Workflow .. 21
Asset Schema Definition .. 21
Devices Onboarding Definition .. 28
EFM Device Definition files .. 30
Creating user Onboarding Definition files using the Onboarding Definition Templates ... 30
Onboarding a Message Broker as a device example ... 39
Restarting EFM Manager after adding or modifying Device Definition files ... 56

http://www.cisco.com/

EFM Manager User Guide
Introduction

© 2018 Cisco and/or its affiliates. All rights reserved. Page 2 of 62

Onboarding FAQ .. 57
Device Simulator Link .. 60

DSLink Input Definitions for generating devices .. 60
Device Simulation Details .. 61

Obtaining documentation and submitting a service request .. 62

EFM Manager User Guide
Introduction

© 2018 Cisco and/or its affiliates. All rights reserved. Page 3 of 62

Introduction
The EFM Manager is a component of the of Cisco Kinetic EFM that can detect and manages devices and message
brokers throughout the EFM message system. In addition to managing the devices and brokers, the user has the ability to
create dashboards for health monitoring of selected fields that can be presented in the most current value or a historical
chart.

The discovery and onboarding of devices are accomplished through a set of definition files that specific how the devices
are discovered in the EFM node system, which fields and values will be used, as well what the resulting output will be
desired. Device fields are input from the original device node or through the EFM Manager UI, enabling the user to
compliment detected values with user input. The discovery and onboarding of the DSA message brokers does not
require user configuration.

The EFM Manager is extensible and each device type has its own unique set of definitions. These definitions files can be
upgraded to support new fields or renaming as requirements change.

After discovery and a device is approved, the EFM Manager maintains a list of devices in the EFM Manager graphical
interface, but also creates a node structure in the EFM data path that can be used as input for other applications. Each
accepted device will be found under the kinetic-efm-asset-dslink/Assets, where the name is taken from user defined
Label. Labels need not be unique.

EFM Manager Components and functions
The EFM Manager encompasses the following components:

• Application Server Backend, an Asset DSLink

• EFM Manager UI Web component

• A set of (example) device onboarding definition files and device simulation DSLink.

The Application server backend is responsible for discovering the devices to be onboarded using the DQL1 based search
pattern from the onboarding definition files. It also persists the device onboarding decision of the end-user. This
package also contains the kinetic-efm-dslink-bridge module which acts as the connection point between the application
server and the DSA network.

The Asset DSLink (kinetic-efm-asset-link) is implemented in Java and its purpose is to transform Low Level Device
Driver DSLink data into normalized device/device structure. It is also exposing the describing dimensions that an end-
user can enter inside the EFM Manager UI.

The EFM Manager UI web component is used in managing the devices and brokers (Accept, Reject, Delete and edit
details) by the end-user.

The device onboarding definition, defines the device to be onboarded. The asset class definition, defines the normalized
device data model. Example asset definitions are part of the installation and are used in automatically discovering

1 DQL is a distributed query language for EFM. DQL allows for queries across a single broker or optionally across a multi-
broker system. For more details on using DQL and examples see https://github.com/IOT-DSA/dslink-dart-dql/blob/mas-
ter/README.md .

https://github.com/IOT-DSA/dslink-dart-dql/blob/master/README.md
https://github.com/IOT-DSA/dslink-dart-dql/blob/master/README.md

EFM Manager User Guide
Logging in to the EFM Manager

© 2018 Cisco and/or its affiliates. All rights reserved. Page 4 of 62

devices from Device simulation DSLink in EFM Manager UI web component. More details on the onboarding can be
found in the Onboarding Configuration section.

The Device simulation DSLink is used to generate simulated device readings for Vibration and Temperature devices. This
can be used for demonstration purposes. By default, the DSLink generates 5 Temperature Devices and 5 Vibration
Devices. It is an optional component can be removed by the system administrator. More details on the device-simulator
can be found in the Device Simulator section.

Logging in to the EFM Manager

In order to connect to the EFM Manager, enter default URL is the following https://[Server IP Address]. If not
already logged into the EFM Manager, it is necessary the user insert their username and password and click “Log In” to
continue. Once logged in, the authorized applications will appear on the landing page. After, select the “EFM Manager”
to enter the application.

Figure 1. EFM Main applications landing page

EFM Manager User Guide
User Interface Overview

© 2018 Cisco and/or its affiliates. All rights reserved. Page 5 of 62

User Interface Overview
The user interface of the Kinetic - EFM Manager contains two main pages. In the leftmost portion of the UI, a selector
provides the ability to switch between two different views. The options are:

1. Devices - All the approved devices appear in the Devices page. This is the initial page when logging in. This
page allows for viewing, editing and removing the approved devices. But it also displays (see below
Accept/Reject Device) discovered devices pending acceptance or rejection.

2. Brokers - All the approved brokers appear in the Brokers page. This page allows for viewing, editing and
removing the approved brokers. But it also displays (see below Accept/Reject Broker) discovered brokers
pending acceptance or rejection.

Devices Page

Figure 2. EFM Manager and View Selection (List Mode)

EFM Manager User Guide
Devices Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 6 of 62

1 View Selection pane 2 Devices List Title

3 Summary counts of devices 4 Search -The text box allows for the user to input the
search criteria.
Refresh – Refresh the list
Details – enter the details page of the selected item
Remove – delete the accepted device from the list

5 Block (left) or detailed list (right) selector for
devices

6 Ascending Sort criteria. Field selection is built
dynamically based upon definitions.

7 Username (left) and logoff (right) 8 Devices List

9 Accept/Reject Device – once selected, enters
the Devices Accept/Reject Device page.
Devices pending will appear on this screen.

10 Select Columns (list mode only) – select one or more
fields to appear on the list

Viewing and updating a Device

Select the device from the list, then select the “Details” or Details symbol for the specific device in the list to see the
details. The page will be updated with the details defined in the onboarding definition files. For the simulated
temperature device, the example is as follows.

Figure 3. Device Details

The device detail allows for viewing and editing the device attributes that are permitted. Select Save to store the
updated information.

EFM Manager User Guide
Devices Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 7 of 62

Device Dashboard

Select the “Dashboard” tab allows the user to create a dashboard with streaming text or charts of the updated telemetry.
The dashboard is specific to this device type.

Figure 4. Device Dashboard

Select the fields using the dropdown selectors on the left for text-based output and on the right for charts.

Removing a Device

Select the “Remove” or trash can symbol for the specific device in the list to remove. It will be removed from the Devices
list. A removed device may reappear as a rejected discovery entry.

EFM Manager User Guide
Devices Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 8 of 62

Devices Page and Device onboarding

Figure 5. Onboarding Devices - Discovered Devices page

1 View Selection pane - 2 Devices Accept/Reject Device Title

3 Summary counts of devices - Discovered and
Rejected

 4 Search - The text box allows for the user to input the
search criteria.

5 Refresh – refresh list

Reject – remove selected item from the
discovered list. Does not delete entry.

Delete – N/A

 6 Cancel – Return to accepted devices list

Next – proceed to details page for onboarding device

7 Username (left) and logoff (right) 8 Discovered Devices List

9 Include Rejected – adds rejected devices to list

Descending Sort criteria. Field selection is built
dynamically based upon definitions.

EFM Manager User Guide
Devices Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 9 of 62

From the Devices main page, select the “Accept/Reject Devices” to view the list of devices pending acceptance or
rejection. Devices that have been deleted from the “Accept/Reject Devices” list can be viewed by toggling the “Include
Rejected” switch. Rejected items appear highlighted in red.

The EFM Manager discovery is a continuous process. The EFM Manager queries the EFM message system for devices,
that have been defined using the Cisco EFM Device Object Model Standard structure. When a new device is found and it
is not already in the Approved Devices list nor the Rejected Devices, it is placed in the Discovered list section.

Accepting a Device
Select a device from the list and select the “Next” icon to proceed. A new page is displayed for user input. When
accepting a device, the attribute fields that are defined in the onboarding template for the specific sensor appear. Some
fields may be populated by the system such as S/N, Asset Class and DSA Path. Others may allow for user modification
or user input.

Once the device is saved, it is placed in the Devices approved list and can be viewed by selecting the “Devices” tab on
the left pane.

Figure 6. Onboarding a Device - Accepting a Device

Rejecting a Device in the Discovered Device list
If a device is rejected, it will stay in the discovered list, but may not appear on the list if the “Rejected Devices” toggle is
off. Once a device is rejected, all rejected devices can be viewed by selecting the “Reject Devices” option on the screen.
Even after rejecting a device, the user can decide to accept a device or delete.

EFM Manager User Guide
Brokers Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 10 of 62

Brokers Page

Figure 7. EFM Manager and Broker View Selection (List Mode)

1 View Selection pane 2 Brokers List Title

3 Summary counts of accepted brokers 4 Search -The text box allows for the user to input the
search criteria.
Refresh – Refresh the list
Details – enter the details page of the selected item
Remove – delete the accepted device from the list

5 Block (left) or detailed list (right) selector for
brokers

6 Ascending Sort criteria:
• DSA Version
• Label
• Server Build

7 Username (left) and logoff (right) 8 Brokers List

9 Accept/Reject Broker – once selected, enters
the Brokers Accept/Reject Broker page.
Brokers pending will appear on this screen.

10 Select Columns (list mode only) – select one or more
fields to appear on the list

Selecting the Brokers options in the View Selection pane causes the graphical view to change to the Brokers page.

EFM Manager User Guide
Brokers Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 11 of 62

Viewing and updating a Broker

Select the “Details” or Details symbol for the specific broker in the list to see the details. The Details, Dashboard and
Relationship tabs change the specific pages for the broker.

Figure 8. Broker Detail

The broker detail allows for viewing and editing of the broker attributes, some fields may allow for updating. Select Save
to store the updated information.

Broker Dashboard

Select the “Dashboard” tab allows the user to create a dashboard with streaming metrics updated data of the select
fields or to create charts with the fields available. The dashboard is specific to this broker.

EFM Manager User Guide
Brokers Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 12 of 62

Figure 9. Broker Dashboard

Select the fields using the dropdown selectors on the left for text-based output and on the right.

Broker Relationship

Select the “Relationship” tab allows the user to see the list of upstream and downstream brokers from the select broker.
The relationships show is specific to this broker.

1 Broker Detail tabs 2 Search -The text box allows for the user to input the

search criteria.
3 Refresh – Refresh the list

Go to Relationship – when a specific broker and
this item is selected, a new page shows the
relationship list of the selected broker

4 Select the fields to display in the list

5 Ascending Sort criteria:
• Broker Type
• Broker UUID
• Creation Time
• Label
• Relationship Type

6 Brokers List

EFM Manager User Guide
Brokers Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 13 of 62

 Figure 10. EFM Manager Broker Relationship - see description table above

Select the fields using the dropdown selector.

Removing a Broker

Select the “Remove” or trash can symbol for the specific broker in the list to remove. It will be removed from the Brokers
list. A broker may reappear as a rejected discovery entry.

Broker Page and Broker onboarding

Figure 11. Onboarding Brokers - Discovered Brokers page

EFM Manager User Guide
Brokers Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 14 of 62

1 View Selection pane - 2 Brokers Accept/Reject Broker Title

3 Summary counts of brokers - Discovered and
Rejected

 4 Search - The text box allows for the user to input the
search criteria.

5 Refresh – refresh list

Reject – remove selected item from the
discovered list. Does not delete entry.

Delete – N/A

 6 Cancel – Return to accepted brokers list

Next – proceed to details page for onboarding device

7 Username (left) and logoff (right) 8 Discovered Brokers List

9 Include Rejected – adds rejected devices to list

Descending Sort criteria:
• DSA Version
• Label
• Server Build

From the Brokers main page, select the “Accept/Reject Brokers” to view the list of brokers pending acceptance or
rejection. Brokers that have been deleted from the “Accept/Reject Brokers” list can be viewed by toggling the “Include
Rejected” switch. Rejected items appear highlighted in red.

The EFM Manager discovery is a continuous process. The EFM Manager queries the EFM message system for brokers.
When a new broker is found and it is not already in the Approved Brokers list nor the Rejected Brokers, it is placed in the
Discovered list section.

Accepting a Broker
Select a broker from the list and select the “Next” icon to proceed. A new page is displayed for user input. Some fields
may be populated by the system. Other fields may allow for user modification or user input.

Once the broker is saved, it is placed in the broker approved list and can be viewed by selecting the “Brokers” tab on
the left pane.

EFM Manager User Guide
Brokers Page

© 2018 Cisco and/or its affiliates. All rights reserved. Page 15 of 62

Figure 12. Onboarding a Broker - Accepting a Broker

Rejecting a Broker in the Discovered Broker list
If a broker is rejected, it will stay in the discovered list, but may not appear on the list if the “Rejected Devices” toggle is
off. Once a device is rejected, all rejected brokers can be viewed by selecting the “Reject Devices” option on the screen.
Even after rejecting a broker, the user can decide to accept a broker or delete.

EFM Manager User Guide
Normalized Asset Synchronization

© 2018 Cisco and/or its affiliates. All rights reserved. Page 16 of 62

Normalized Asset Synchronization

The EFM Manager maintains synchronization between the Asset Registry and the node structure under the Asset DSLink
(kinetic-efm-asset-dslink/Assets). The synchronization process provides the following:

• On removing device or broker from EFM Manager UI, the entry is removed from Asset DSLink.

• On removing a device or broker from Asset DSLink, the entry gets recreated.

• The Changes done on the EFM Manager UI are immediately reflected in Asset DSLink.

Normalized Asset Grouping
The kinetic-efm-asset-dslink 1.7 link supports device grouping under the node structure downstream/kinetic-efm-
asset-dslink/Assets. The grouping is performed per the label indicated in the configuration schema file(graphql file).

Asset grouping example

EFM Manager User Guide
Backup and restore of EFM Manager

© 2018 Cisco and/or its affiliates. All rights reserved. Page 17 of 62

Backup and restore of EFM Manager
The vital information from EFM Manager can be backed up and restored.

Implications:

• The EFM Manager efm-manager needs to be stopped for backup and restore

• Files are copied into the same directories they have been backed up from

• During restore Ignite data is deleted

For Backup:
1. Stop the EFM Manager efm-manager:

service efm-manager stop
2. Execute

java -cp lib/efm-servicelayer*-fat.jar com.cisco.efm.launcher.ApplicationLauncher backup -
-outputDir=/path/to/backup

3. Default parameters such as --configDir, --workingDir and --conf are supported

a. configDir - the directory of the application where configuration is stored

b. workingDir - the working directory of the application, used for storing ignite data and DSLink data

c. conf - default config parameter defining json configuration file

4. A zip files will be created if backup is successful, during the backup a directory named _build will be created in
the outputDir

5. An Example is given below.
This command can be run from /opt/cisco/kinetic/efm_manager/lib
java -cp efm-servicelayer* com.cisco.efm.launcher.ApplicationLauncher backup --
outputDir=/home/efm/ --configDir=/opt/cisco/kinetic/efm_manager/config/ --
workingDir=/opt/cisco/kinetic/efm_manager/app-data/ --
conf=/opt/cisco/kinetic/efm_manager/config/application-conf.json

This command can be run from /opt/cisco/kinetic/efm_manager/
java -cp lib/efm-servicelayer* com.cisco.efm.launcher.ApplicationLauncher backup --
outputDir=/home/efm/

6. On executing the above command, the logs of execution are written in to log/server.log relative to the path from
where the script is executed.

EFM Manager User Guide
Backup and restore of EFM Manager

© 2018 Cisco and/or its affiliates. All rights reserved. Page 18 of 62

For Restore:
1. A successful installation of the efm-manager is required before restoring

2. Stop efm-manager
service efm-manager stop

3. The folder config and app-data in /opt/cisco/kinetic/efm_manager/ will be overwritten. It is necessary to
delete the folder before a restore.

4. Start restore
java -cp efm-servicelayer*-fat.jar com.cisco.efm.launcher.ApplicationLauncher restore --
backupPath=/path/to/backup.zip

5. No other parameters are required to restore.

6. An example is given below:
This command can be run from /opt/cisco/kinetic/efm_manager/lib
java -cp efm-servicelayer*-fat.jar com.cisco.efm.launcher.ApplicationLauncher restore --
backupPath=/home/efm/backup-1540303333.zip

This command can be run from /opt/cisco/kinetic/efm_manager/
java -cp lib/efm-servicelayer*-fat.jar com.cisco.efm.launcher.ApplicationLauncher restore
--backupPath=/home/efm/backup-1540303333.zip

7. On executing the above command, logging would be shown. Look for message that says "Restored all service
data".

8. Check whether the config folder and the app-data folder are restored and run the following command in case efm
is not the owner of the folder.
chown -R efm:efm config/
chown -R efm:efm app-data/

9. Start efm-manager
service efm-manager start

10. Restart efm-asset-dslink from EFM System Administrator or dataflow editor

EFM Manager User Guide
Configuring the EFM Manager via the application-conf.json file

© 2018 Cisco and/or its affiliates. All rights reserved. Page 19 of 62

Configuring the EFM Manager via the application-conf.json file
The EFM Manager is configured in the /opt/cisco/kinetic/efm_manager/config/application-conf.json file.

Configuration Property Name / Path Description
Mandat
ory Default Value

asset-
registry/normalization/assetSynchronizationInitialDelay
Seconds

Initial delay for asset DSLink synchronization in
seconds. When the value is negative or zero
initial synchronization is disabled.

N 30 s

asset-
registry/normalization/assetSynchronizationTimeoutMi
nutes

Total timeout minutes for asset DSLink
synchronization.

N 5 min

asset-
registry/normalization/assetSynchronizationListIdleTim
eoutSeconds

Idle timeout seconds for asset DSLink
synchronization list request. After the given
number of seconds without message from the
broker the list request is closed.

N 15 s

asset-registry/normalization/actionTimeoutSeconds Timeout seconds for asset DSLink action
invocations

N 30 s

asset-registry/normalization/enabled Boolean that indicates if the asset DSLink
integration is enabled.

N true

asset-
registry/normalization/assetSynchronizationIntervalMin
utes

Interval minutes for asset DSLink synchronization.
Default value is 10. When the value is negative,
or zero synchronization is disabled.

N 10 min

asset-registry/discovery/enabled Boolean that indicates if the device discovery is
enabled.

N true

asset-registry/discovery/fetchDataTimeoutSeconds Timeout seconds for fetching a single dimension
value from a source DSLink node.

N 60 s

asset-registry/discovery/restartIntervalMinutes Interval minutes between scheduled restarts of
the device discovery workflow.

N 10 min

asset-registry/discovery/startDelaySeconds Delay before initial first start of device discovery. N 10 s

asset-registry/discovery/queryIdleTimeoutSeconds Idle DQL / List timeout seconds. N 15 s

asset-registry/listenerInvocationTimeoutSeconds Amount of minutes a before asset registry
change listener has to respond until a timeout
occurs.

N 2 min

asset-registry/listenerMaxRetryWaitSeconds Max. number of seconds between two retry
attempts.

N 30 s

asset-registry/listenerInvocationRetryCount Max. number of retry attempts N 5

web-app/jwt/usernameClaimKey JWT token claim name for user name N username

web-app/jwt/permissionsClaimKey JWT token claim name for user permissions array N permissions

web-app/jwt/pubSecKeys Array of public key information for JWT
authentication. The array has to contain objects
with keys publicKey and algorithm.

Y

EFM Manager User Guide
Configuring the EFM Manager via the application-conf.json file

© 2018 Cisco and/or its affiliates. All rights reserved. Page 20 of 62

web-app/noAuthX Disables authentication requirement N false

dslink-bridge/broker Broker connection url. This has to be the url for
the root broker.

Y

dslink-bridge/token Optional credential token N

dslink-bridge/listTimerIntervalMillis Interval milliseconds in between checks if a list
request is considered to be finished

N 500 ms

dslink-bridge/listIdleTimeoutSeconds Timeout seconds for a list request. If no
response is being received for the specified
amount of time the list request is considered to
be finished.

N 5

dslink-bridge/requestTimeoutSeconds Total timeout seconds for a DSA request. N 30 s

dslink-bridge/customDQLQuery Custom DQL query for resolving DSLinks by
sysId

N option
traverseBrokers
=true | list * |
filter
$sysId="%s" |
subscribe :name
$base $sysType
$sysVersion

dslink-bridge/dqlPath Optional DQL path used for global queries N

config-installer/discoveryConfigFolder Folder from where asset class definitions and
discovery definitions are loaded and installed.
The files can be placed in sub-folders. If an
absolute path is configured the absolute path is
used. Otherwise the path is interpreted relative
to the configuration folder.

N discovery

runtime/systemdNotifierEnabled Flag if the systemd notifier workflow should be
enabled

N true

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 21 of 62

Onboarding Configuration and Workflow

Sensor Normalization Workflow
The sensor normalization workflow involves device on-boarding and sensor normalization. The on-boarding process is
about finding suitable source DSLink node structures that can be mapped to a certain sensor model schema.

The result of the sensor on-boarding is a representation of the source sensor data in the EFM Asset DSLink.

The configuration consists of at least two files that describe the normalized sensor (Asset Schema Definition) and a
source DSLink mapping (Device Discovery Definition).

Asset Schema Definition
Normalized sensors are described by a schema. The schema defines the dimension and metric fields and their value
scopes. There are some fields like id or label that all sensors share and can be generalized to an abstract sensor base
type. The sensor schema definition needs a serialized format because adding of new schemas is expected to work at
runtime. The serialized sensor schema will be part of a data set that is used by the API for adding and removing sensor
schema definitions.

Syntax

The sensor types need to be described in GraphQL schema. It makes sense to use the GraphQL type definition as
primary definition format.

Not all semantic requirements are met by the default GraphQL type definition. But, GraphQL has the concept of
directives which are basically annotations. These annotations are allowed at both type and field level. The concept of
directives can be used to extend the existing expressiveness of GraphQL type and field definitions to meet our needs.

For that purpose, four directives are being defined in our implementation of the GraphQL engine:

• @asset: Asset Type Directive

• @internal: Internal Field Directive

• @dimension: Dimension Field Directive

• @metric: Metric Field Directive

For general type definition format the GraphQL documentation can be reviewed. There is an interface type for general
sensor fields that is called Device.

Basic Format Description

This is how an asset type definition will look like:

Simulated Temperature sensor
type SimulatedTemperatureSensor implements Asset & Device @asset(

http://graphql.org/learn/schema/#type-language

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 22 of 62

 version: 1
 label: "Simulated Temperature Sensor"
) {
 # Building ID
 building: String @internal(
 label: "ID"
 access: "RW"
)
 ...
}

This example is not complete, some required arguments are missing and would need to be present in an actual type
definition.

Device schema definitions will need to implement both Asset and Device interface. This is a requirement of the GraphQL
API that is to be provided by the asset registry.

The asset type directive has to be specified. All dimension and metric fields need to be described. For the first release it
is expected that all fields are top level. No nested structures are supported for now.

Asset Interface

Generic interface that is implemented by all asset types
interface Asset {

 # Asset configuration
 assetConfig: AssetConfig! @internal(
 label: "Asset Configuration"
 access: "INTERNAL"
)

 # Asset ID
 id: ID! @dimension(
 label: "ID"
 access: "INTERNAL"
)

 # Asset Type Definition ID
 assetTypeDefinitionId: String! @internal(
 label: "Asset Type Definition Id"
 searchable: true
 access: "INTERNAL"
)

 # Human readable label for asset
 label: String! @dsaMapping(path: ":displayName") @dimension(
 label: "Label"
 searchable: true
)

 # Tags
 tags: [String!] @dsaMapping(path: "$sysTags") @dimension(
 label: "Tags"

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 23 of 62

 searchable: true
 access: "RW"
)
}

EFMAssetConfig object definition:

EFM Asset Configuration
type EFMAssetConfig implements AssetConfig {

 # Value is static 'ASSET_MANAGER' for the Asset Manager application
 type: String! @internal(
 label: "Asset Configuration Type"
 access: "INTERNAL"
)

 # DSA Id of Asset DSLink
 assetDSLinkSysId: String! @internal(
 label: "Asset DSLink Id"
 access: "INTERNAL"
)

 # DSA node path of target normalized asset
 targetAssetPath: String! @internal(
 label: "Target Asset Path"
 access: "INTERNAL"
)

 # DSA node path of source asset
 sourceAssetPath: String! @internal(
 label: "Source Asset Path"
 access: "INTERNAL"
)
}

The asset interface defines these fields:

• id: Unique global identifier of the instance

• label: Human readable label for the instance

• assetConfig: The asset config contains information about the DSA structure of the given instance

• assetTypeDefinitionId: ID of the asset class definition that describes the asset

• tags: Tag values can be used to flag instances for searching

Device Interface

Generic interface that is implemented by all device types

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 24 of 62

interface Device {

 # Asset configuration
 assetConfig: AssetConfig! @internal(
 label: "Asset Configuration"
 access: "INTERNAL"
)

 # Asset ID
 id: ID! @dimension(
 label: "ID"
 access: "INTERNAL"
)

 # Human readable label for asset
 label: String! @dsaMapping(path: ":displayName") @dimension(
 label: "Label"
 searchable: true
)

 # Tags
 tags: [String!] @dsaMapping(path: "$sysTags") @dimension(
 label: "Tags"
 searchable: true
 access: "RW"
)

 # Asset Type Definition ID
 assetTypeDefinitionId: String! @internal(
 label: "Asset Type Definition Id"
 searchable: true
 access: "INTERNAL"
)

 # Discovery Definition ID
 discoveryDefinitionId: String! @internal(
 label: "Discovery Definition Id"
 searchable: true
 access: "INTERNAL"
)

 # Device serial number
 serial: String! @dsaMapping(path: "$sysSerial") @dimension(
 label: "S/N"
 unique: true
 searchable: true
 access: "R"
)

 # Device vendor name
 vendor: String @dsaMapping(path: "$sysVendor") @dimension(
 label: "Vendor"
 searchable: true
 access: "RW"
)

 # Device product name
 product: String @dsaMapping(path: "$sysProduct") @dimension(
 label: "Product"
 searchable: true
 access: "RW"
)

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 25 of 62

}

The sensor interface redefines all fields of the Asset interface and these additional fields:

• serial: The serial is a predefined primary key value for sensor instances

• vendor: Dimension value for the sensor vendor string

• product: Dimension value for the sensor product string

• discoveryDefinitionId: ID of the discovery definition by which the device was found

GraphQL Directive Extension

As mentioned above the asset type definition is dependent on domain specific directives. These directives are @asset
located at the type definition and @internal, @dimension and @metric located at the field definitions.

Asset Directive [@asset]

The @asset directive marks a GraphQL type to be an asset type. This directive has two arguments:

version: Int!

The version of the asset definition.

label: String!

Device type label. This argument contains a human readable label for the asset type. The argument is required and there
is no default value.

Internal Field Directive [@internal]

The directive @internal is one of the three sensor field definition directives that provide additional meta information for
fields. This directive is to be used for fields that are neither dimension or metric. Only fields of EFM base domain are
neither domain nor metric. User defined fields have to be annotated with @dimension or @metric. This directive has
three arguments:

access: String = RW

Access definition for the given field. The purpose of this is to define if the value is mutable. Following values are allowed:

• R: Field value is readonly=

• RW: Field value is mutable

• INTERNAL:

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 26 of 62

o Field value is readable but not mutable by user actions. Actions executed in system context are able to
modify the values

o Fields with access set to INTERNAL will not be published to DSA. There will be no Asset Link
representation for those values.

• EXTERNAL: Field value is bound to a specific DSA path. If the value at the path changes and the device
discovery realizes the change, then the value is updated in the asset.

The Default value is RW.

searchable: Boolean = false

Indicator if the field is accessible in search queries. Default value is false.

label: String!

Device field label. This argument contains a human readable label for the field. The argument is required and there is no
default value.

Dimension Field Directive [@dimension]

The @dimension directive is to be used for dimension asset fields. This directive has six arguments:

access: String = RW

Access definition for the given field. The Default value is RW.

searchable: Boolean = false

Indicator if the field is accessible in search queries. Default value is false.

unique: Boolean = false

Indicator if the field value is unique.

label: String!

Device field label. This argument contains a human readable label for the field. The argument is required and there is no
default value.

DSA Mapping Field Directive [@dsaMapping]

The @dsaMapping directive is to be used if non default mapping to a DSA path is required.

path: String = "_DEFAULT_"

Relative path to respective information in the Asset DSLink. Default value is "_DEFAULT_". Using the default value will
derive a default path for the respective dimension value that looks like this: $<field name>. Valid path value
possibilities are:

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 27 of 62

• @<attribute name>: DSA node attribute

• $<config name>: DSA node config item

• :displayName: DSA node display name

• :value: DSA node name

• /<sub node name>:

o Path to DSA sub node.

o This can also be combined with one of the paths above for navigation to a sub node:

o /<sub node1>/<sub node 2>/@<attribute name>

Metric Field Directive [@metric]

The @metric directive is to be used for metric asset fields. This directive has three arguments:

label: String!

Asset field label. This argument contains a human readable label for the field. The argument is required and there is no
default value.

unitName: String

Contains the metric unit name. The nunit name is being used for value conversion. There is a list of supported unit names
and their semantics.

unitSymbol: String

Contains the metric unit symbol.

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 28 of 62

Devices Onboarding Definition
For DSA devices to be added to the EFM Device Manager, there needs to be a definition on how the node structure
should be transformed to a normalized EFM Manager device. Device onboarding definitions enable exactly this. There
can be multiple onboarding definitions for the same target device schema definition.

A device discovery definition contains an id and label for identifying purpose. The field assetType defines the sensor
type, which the sensor on-boarding definition finds. As a method of finding several discoveries are used. They are
defined as an array of Discovery Configs, which describe how to find an asset in DSA. The dimensionMappings holds
the paths in DSA to the unique identifying field values for the defined assetType. The config item dataflow defines the
mapping of metric fields from DSA to EFM. The field productImageRef is used to reference a UI icon that will be shown
hen displaying discovery entries. Default dimension values for on-boarded sensors can be defined in defaultValues.
The field discoveryClassId has to define a unique value that represents the given source DSLink in its target version.
Therefore discoveryClassId, assetType and assetTypeVersion define what DSLink source sensor will be on-
boarded into which device schema definition.

Discovery Definition Example:

{
 "label": <String>
 "discoveryClassId": <String>
 "assetType": <String>
 "assetTypeVersion": <Integer>
 "productImageRef": <String>
 "dimensionMappings": <JsonArray>
 "defaultValues": <JsonObject>
 "discoveries": <JsonArray>
 "dataflow": <JsonObject>
}

Device Discovery Configs
Currently only DQL is supported as a means to find new sensor DSA structures. For that purpose, configuration needs to
be placed in the on-boarding definition in the field discoveries. Every such query defines a DQL statement that will
return the paths of the top-level source sensor node.

Device Discovery Configuration format example:

{
 "type": <String>
 ...
}

Dimension Mappings

The discovery definition field dimensionMappings holds information on how the discovery can resolve values for
dimensions of an asset. The field dimensionMappings is an array of objects, where type is the name of the resolution
type and fieldName defines the sensor schema definition field name (dimension name). There are more properties in
each object which are resolution type specific and described below.

DSA Dimension Mapping

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 29 of 62

For DSA dimensionMappings the structure of a dimension mapping object looks like the example below. targetPath
is specific to the DSA type here and contains the DSA path expression which is to be used to resolve the dimension
value. targetPath is relative to the source sensor discovery path.

DSA Dimension Mappings example:

[
 {
 "type": "DSA",
 "targetPath": "/$sysId",
 "fieldName": "serial"
 }
]

DQL Dimension Mapping

For DQL dimensionMappings the structure of a dimension mapping object looks like the example below. query is
specific to the DQL type here and contains the DQL expression which is to be used to resolve the dimension value(s).
Only using the DQL dimension mapping type it is possible to resolve a list value, i.e. a list of strings or numbers.
However, for this to work the field definition in the asset class definition must be of a list type. In the below example, if
the nodeLabels is a list ([String] type in the asset class definition), it will store the labels of all found nodes and if not, it
will just use the first one found.

DQL Dimension Mappings example:

[
 {
 "type": "DQL",
 "filter": "<DQL Query which fetches the device lists>"

 }
]

The query has some special properties:

There is the variable ${SOURCE_ASSET_PATH} that will be replaced with the actual source asset path. That means the
path under which the sensor / device which this dimension belongs to was discovered, i.e. /downstream/sensor-
simulation/sensors/temperature-sensor-1.

the subscription / list table must contain a column named value. Only the content of this column will be used as value
for the dimension.

The query runs and collects rows until there was no new row for 5 seconds. Then it creates the dimension value from the
received rows. To change the amount of idle timeout seconds, update the config item asset-
registry/discovery/dimensionResolvingIdleTimeoutSeconds

Asset Dataflow Config

There are two representations of sensors in EFM. One is the set of all fields after a sensor is on-boarded to DSA. The
other (EFM), once an asset has been accepted and added to the list of accepted assets using EFM UI. Dataflows are
used to map the fields from DSA to EFM. There are multiple ways to achieve that. The config that is stored in the
database is a String > Object map that holds a dataflow configuration for each metric field name. The actual config is a

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 30 of 62

String > Object map with the fields type and config, where type specifies a certain configuration kind and config is
the actual configuration.

Asset Dataflow Config example:

{
 <metric_field_name>: {
 "type": "write-through-dataflow"
 "config": <JsonObject>
 }
}

Currently only write-through-dataflow configurations are supported. They consist of a single configuration property
path that defines the relative path to the source sensor metric, relative to the root node of the source sensor DSA tree.

EFM Device Definition files
The EFM Manager is an extensible component and supports many types of device definitions. It ships with the simulator
link and the corresponding device onboarding configuration file definitions for vibration and temperature sensors. In
addition, there is a set of template files to make the process of onboarding definition easier for the user. These will be
explained in the next section.

All EFM Manager configuration files are placed in the $EFM_ROOT/efm_manager/config/discovery directory. They
can be grouped under folder if desired, such as Panduit-link, simulation-link, template, etc. Each device requires two file
definitions:

- Asset Onboarding Definition for the device (source DSLink mapping). This is a json formatted file. This file defines
the inputs for the device.

- Asset Class that corresponds to the specific device Definition (describes the normalized device). This is a GraphQL
formatted file. This file defines what the outputs will be for the device.

Creating user Onboarding Definition files using the Onboarding Definition
Templates

The EFM Manager installation includes a generic set of onboarding definition files that we recommend using as
templates. These can be found under the efm_manager/config/discovery/template directory. These files contain several
sections, but we describe what fields are user configurable as well as the mandatory input fields.

Note that the files suffix terminate with .template. This termination is not a valid .json or .graphqls suffix and is ignored by
the EFM Manager at startup or restart. The user must copy and rename the template files for detection by the EFM
Manager.

The EFM Manager template configuration files are placed in the
$EFM_ROOT/efm_manager/config/discovery/template directory. Copy the files to a new directory in the
$EFM_ROOT/efm_manager/config/discovery path. For example, power-link.

Each device requires two file definitions:

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 31 of 62

- Asset Onboarding Definition for the device (source DSLink mapping). This is a json formatted file. This file defines
the inputs for the device. The template file is
device_discovery_definitions_((assetType))_v((assetTypeNumber)).json.template. It is suggested that the user
replace ((assetType)) with the assetType name and v((assetTypeNumber)) with the version number.2

- Asset Class that corresponds to the specific device definition (describe the normalized device). This is a GraphQL
formatted file. This file defines what the outputs will be for the device. The template file is
device_class_definitions_((assetType))_v((assetTypeNumber)).graphqls.template. It is suggested that the user
replace ((assetType)) with the assetType name and v((assetTypeNumber)) with the version number.

For example, we will rename the json file as asset_discovery_definitions_temperatureSensor_v2.json and
graphqls file as asset_class_temperatureSensor_v2.graphqls.

In the following sections, we will describe the template files and the sections that can be modified. After these
descriptions, example to discover message brokers and onboard them as devices are explained.

Device Discovery Definition JSON Template explained
This file is a JSON formatted file that defines how a device class is discovered and where it is placed into the broker data
path. The template file name is
“device_discovery_definitions_((assetType))_v((assetTypeNumber)).json.template”. An example file name is
device_discovery_definitions_BrokerDevice_v1.json.

The values surrounded by <> require valid values to be configured. Remove all lines that start with ##, since commenting
is not supported in the json file definition.

Note that if a device has been discovered with an existing device onboarding definition, modification of the device
definition file is not recommended. Rather it is recommended a new instance be created increasing the version number
inside the file, for example from version 1 to 2, 2 to 3, and so on.

This file has the following functional sections:

• General definitions (label, discoveryClassId, assetType, assetTypeVersion and productImageRef)

• Dimension Mapping, an array that defines a static field to be read from the discovered node, which will contain
the serial field mapping and any other static fields

• Discoveries, the method of finding devices is an array of Discovery Configs or queries

• Dataflow, an optional array that defines a streaming field to be read from the discovered node. A Dataflow field
can only be output as streaming value in the node path under the “label”, the EFM Manager UI does not show
this field.

2 The JSON file format is a standard JSON structure. All comments must be removed from the template for proper parsing to
occur.

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 32 of 62

[
 {
 "label": "<Label for Discovery>",
 "discoveryClassId": "<Discovery Class ID>",
 "assetType": "<Name for Asset Type>",
 "assetTypeVersion": <Version Number for Asset Type>,
 "productImageRef": "<static/images/cisco.svg>",

Section 1. - General definitions:

Label - Discovery name, for example “Simulated
Temperature Sensor On-Boarding’’

discoveryClassId - unique name definition, for example
“SimulationDevice-TemperatureSensor-1.0”

assetType - unique asset type, for example
“SimulatedTemperatureSensor”

assetTypeVersion - asset type configuration version

productImageRef - icon image that appears in the EFM
Manager UI. Path relative to $EFM_ROOT/efm_manager
/web/efm_manager/static/images/cisco.svg

"dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "<Source DSA Path to read
dimension>",
 "fieldName": "<uniqueFieldName>"
 }

Section 2. - Dimension Mapping

Type - always DSA

tartgetPath - Source DSA Path to read dimension

fieldname - unique field name for the field read
dimension

If more than one dimension needs to be read, repeat the
red highlighted lines for those many times and separate
them by a comma

"discoveries": [
 {
 "type": "DQL",
 "query": "<DQL Query which fetches the device
lists>"
 }

Section 3. - Discoveries

Type - DQL
query - DQL query statement

If more than one DQL needs to be run, repeat the above
red highlighted lines for those many times and separate
each of them by a comma

"dataflow": {
 "<uniqueFieldName>": {
 "type": "write-through-dataflow",
 "config": {
 "path": "<Source DSA Path to read metric value>"
 }
 }

Section 4. Dataflow

uniqueFieldName - unique field name for the field read
metric
type - must be “write-through-dataflow”
path - source of DSA path to read metric value (Relative
path from broker where efm manager is connected to)

If more than one metric needs to be read - repeat the
above red highlighted lines for those many times and
separate each of them by a comma

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 33 of 62

Device Discovery Definition JSON Template reference
This section details the device_discovery_definitions_((assetType))_v((assetTypeNumber)).json.template reference file.
This first section is the template file followed by a detailed description of the sections of the file.

<> Rule - Values surrounded by <> are the ones that are expected to be changed to valid values. Consider |
rule explained above a
s well. Remove characters < and > as well ##
Remove lines that start with ## characters as well ##
[
 {
 "label": "<Label for Discovery>",
 "discoveryClassId": "<Discovery Class ID>",
 "assetType": "<Name for Asset Type>",
 "assetTypeVersion": <Version Number for Asset Type>,
 "productImageRef": "<static/images/cisco.svg>",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "<Source DSA Path to read dimension>",
 "fieldName": "<uniqueFieldName>"
 }
 ## If more than one dimension needs to be read - repeat the above 5 lines for those many times and sep-
arate them by comma##
],
 "defaultValues": {
 "<uniqueFieldName>": "<Default Value to be entered into this dimension field>"
 ## If more than one dimension needs to be defaulted - repeat the above 1 line for those many times and
separate them by comma#

 },
 "discoveries": [
 {
 "type": "DQL",
 "filter": "<DQL Query which fetches the device lists>"
 }
 ## If more than one DQL needs to be run - repeat the above 4 lines for those many times and separate
each of them by comma##
],
 "dataflow": {
 "<uniqueFieldName>": {
 "type": "write-through-dataflow",
 "config": {
 "path": "<Source DSA Path to read metric value>"
 }
 }
 ## If more than one metric needs to be read - repeat the above 6 lines for those many times and sepa-
rate each of them by comma

 }
 }
]

Device Class Definition graphql Template explained
Normalized devices are described by a schema. The schema defines the dimension fields (that appear in the UI and also
under the EFM Manager data node structure) and metric (that are streamed to the EFM Manager data node structure with
the label header) fields and their value scopes. There are some fields such as id or label, that all devices share, can
be generalized to an abstract device base type. The device schema definition needs a serialized format because adding
of new schemas are expected to work at start or restart.

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 34 of 62

Note that if a device has been discovered with an existing device onboarding definition, modification of the device class
definition file is not recommended. Rather it is recommended a new instance be created increasing the version number
inside the file, for example from version 1 to 2, 2 to 3, and so on.

This file has the following functional sections:

• General definitions

• Defining Dimensions, apart from ones defined in Asset or Device class definitions

• Defining Metrics

• Renaming dimensions

• Renaming metrics

• Defining Default Value, needs to be set when changing a nullable to non-nullable dimension

• Defining enum dimensions (a list dimension) required in the asset. The next section defines the enum items that will use a UI
drop down list. They must be unique definitions and used once.

• Defining a mandatory set of different enum dimensions required in the asset. The next section defines the enum items which
will appear in the UI drop down list. They must correspond to the enum definition in the previous section.

This is the example file “device_class_definitions_((assetType))_v((assetTypeNumber)).graphqls.template”.

The definition file has rules that need to be followed:

• Comments are allowed and will be ignored. It is recommended the use of comments for documentation purposes.

• | Rule - Values which have a | in the middle indicate there are choices that user has, by which only one choice can
be chosen. Remove all other choices including the | symbol(s)

• <> Rule - Values surrounded by <> are the ones that are expected to be changed to valid values. Consider | rule
explained above as well. Remove characters < and > as well

• [] Rule - Values surrounded by [] are optional definitions which either needs to be completely removed or to be used
exactly as defined. Consider <> rule explained above as well. Remove characters [and] as well

• The optional directive @dsaMapping will be defaulted to $<uniqueFieldName> if the whole @dsaMapping directive is
omitted

• The optional directive @rename must be used when intending to rename a field name

• The optional directive @defaultValue for dimension must be used when making a nullable field as a non-nullable field

• The optional argument unique will be defaulted to false if whole argument is omitted

• The optional argument searchable will be defaulted to false if whole argument is omitted

• The optional argument access will be defaulted to RW if whole argument is omitted

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 35 of 62

• The optional argument unitName will be defaulted to "", if whole argument is omitted

• The optional argument unitSymbol will be defaulted to "", if whole argument is omitted

• The type name defined in enum <assetType>_<uniqueEnumFieldDefinition> must be unique across all available asset
definitions. Hence <assetType> is also added in the type name

• The type name must match between the field definition and the enum definition, for the enum values to be used

[#<Comments for type of asset>]
type <AssetType> implements Asset & Device @asset(
 version: <AssetTypeVersion>
 label: "<Label for Asset Class>"
) {

Section 1. - General definitions:

assetType - unique asset type, for example
“SimulatedTemperatureSensor”

assetTypeVersion - asset type configuration version(numeric
value)

Label -Asset Class name, for example “Simulated
Temperature Sensor’’

This section is define once.

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 36 of 62

 [#<Comment for Dimension Field>]
 <uniqueFieldName>: <String | Int | Float |
Long | Boolean>[!] [@rename(oldName:
"<uniqueFieldNameOld>")] [@defaultValue(value: "<String
representation of default value>")] [@dsaMapping(path:
"<DSA path expression>")] @dimension(

 label: "<Display Label of Field>"
 [unique: <true | false>]
 [searchable: <true | false>]
 [access: "<R | RW>"]
)

Section 2. - Defining Dimensions, apart from ones defined in
Asset or Device class definitions:

Dimension - This field appears in the UI at acceptance. Field will
be copied once from source link and as per access type. It can
be modified, or this can be a completely new field which will be
made available in the normalized asset DSLink

uniqueFieldName - unique name. Optional use of “!” to define a
non-null field.

label - The Label to be shown in the UI

unique - indicates if field values is unique (example, a serial
value is unique)

searchable - To indicate whether the field is searchable in UI

access - read and write capability

Repeat this block for each dimension to be defined, apart from
ones defined in Asset or Device class definitions. As part of
installation the following dimensions are already available. They
are Serial, Tag, Label, Product and Vendor.

In case of renaming the field after initial version is installed, then
the @rename directive must be used.
In case of making a nullable field as non-nullable after initial
version is installed, @defaultValue directive must be used

 [#<Comment for Metric Field>]
 <uniqueFieldName>: <String | Int | Float |
Long | Boolean> [@rename(oldName:
"<uniqueFieldNameOld>")] [@dsaMapping(path: "<DSA
path expression>")] @metric(
 label: "<Display Label of Field>"
 [unitName: "<Metric unit name>"]
 [unitSymbol: "<Metric unit symbol>"]
)

Section 3. - Defining metrics:

Metric - which is updated with the latest streamed value
from source node

uniqueFieldName - unique name.

label - The Label for the metric

unitName – indicates the Unit Name for Metric

unitSymbol – indicates the Unit Symbol for Metric

Repeat this block for each metric to be defined

In case of renaming the field after initial version is installed, then
the @rename directive must be used.

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 37 of 62

 [#<Comment for Dimension Field>]
 <uniqueFieldName>:
<assetType>_<uniqueEnumFieldTypeName>
[@dsaMapping(path: "<DSA path expression>")]
@dimension(
 label: "<Display Label of Field>"
 [searchable: <true | false>]
 [access: "<R | RW>"]
)

Section 4. - Defining a set of enum dimensions required in an
asset.

The Type <assetType>_<uniqueEnumFieldTypeName> must
match between the enum and this field definition.(Section 5)

Repeat the 6 lines for numbers of enum dimensions required in
the asset.

 [enum <assetType>_<uniqueEnumFieldTypeName> {
 <uniqueEnumFieldItemName> @enumValue(label:
"<Display Value for Dropdown Item>")
 ## Repeat above 1 line for number of options
which needs to be shown in the Dropdownlist ##
}]

Section 5. - Defining (mandatory set of different enum
dimensions required in the asset

Note: This is inserted into the global section of the template.

uniqueEnumFieldTypeName - the unique enum definition
that corresponds to a specific enum dimension field name in
section 4.

uniqueEnumFieldItemName - field item name for the
dropdown list

Repeat the Display Value Dropdown Item line for the number of
options which need to be shown in the Drop-down list

Repeat the block for each different enum dimensions definition
required in the asset.

Device Class Definition graphqls Template reference
This section details the device_class_definitions_((assetType))_v((assetTypeNumber)).graphqls.template reference file.
This first section is the template file followed by a detailed description of the sections of the file.

| Rule - Values which has | in the middle are the choices that user has by which only one choice can be
chosen. Remove all other
 choices including the | symbol(s)##
<> Rule - Values surrounded by <> are the ones that are expected to be changed to valid values. Consider |
rule explained above a
s well. Remove characters < and > as well##
[] Rule - Values surrounded by [] are optional definitions which either needs to be completely removed or
to be used exactly as d
efined. Consider <> rule explained above as well. Remove characters [and] as well ##

[#<Comments for type of asset>]
type <AssetType> implements Asset & Device @asset(
 version: <AssetTypeVersion>
 label: "<Label for Asset Class>"
) {

 ## Repeat below 7 lines for numbers of dimensions to be defined apart from ones defined in Asset or De-
vice class definitions ##
 [#<Comment for Dimension Field>]

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 38 of 62

 <uniqueFieldName>: <String | Int | Float | Long | Boolean>[!] [@dsaMapping(path: "<DSA path expres-
sion>")] @dimension(
 label: "<Display Label of Field>"
 [unique: <true | false>]
 [searchable: <true | false>]
 [access: "<R | RW>"]
)

 ## Repeat below 6 lines for numbers of metrics to be defined apart from ones defined in Asset and Device
class definitions ##
 [#<Comment for Metric Field>]
 <uniqueFieldName>: <String | Int | Float | Long | Boolean> [@dsaMapping(path: "<DSA path expression>")]
@metric(
 label: "<Display Label of Field>"
 [unitName: "<Metric unit name>"]
 [unitSymbol: "<Metric unit symbol>"]
)

 ## Repeat below 7 lines for numbers of dimensions to be renamed##
 [#<Comment for Dimension Field>]
 <uniqueFieldNameNew>: <String | Int | Float | Long | Boolean>[!] @rename(oldName: "<uniqueFieldNameOld>")
[@dsaMapping(path: "<D
SA path expression>")] @dimension(
 label: "<Display Label of Field>"
 [unique: <true | false>]
 [searchable: <true | false>]
 [access: "<R | RW>"]
)

 ## Repeat below 6 lines for numbers of metrics to be renamed##
 [#<Comment for Metric Field>]
 <uniqueFieldNameNew>: <String | Int | Float | Long | Boolean> @rename(oldName: "<uniqueFieldNameOld>")
[@dsaMapping(path: "<DSA
path expression>")] @metric(
 label: "<Display Label of Field>"
 [unitName: "<Metric unit name>"]
 [unitSymbol: "<Metric unit symbol>"]
)

 ## Repeat below 7 lines each of dimension where Default Value needs to be set when changing a nullable to
non nullable dimension

 [#<Comment for Dimension Field>]
 <uniqueFieldName>: <String | Int | Float | Long | Boolean>! @defaultValue(value: "<String representation
of default value>") [@d
saMapping(path: "<DSA path expression>")] @dimension(
 label: "<Display Label of Field>"
 [unique: <true | false>]
 [searchable: <true | false>]
 [access: "<R | RW>"]
)

 ## Repeat below 6 lines for numbers of enum dimensions required in the asset. The Type <asset-
Type>_<uniqueEnumFieldTypeName> mus
t match between the enum and this field definition.##
 [#<Comment for Dimension Field>]
 <uniqueFieldName>: <assetType>_<uniqueEnumFieldTypeName> [@dsaMapping(path: "<DSA path expression>")]
@dimension(
 label: "<Display Label of Field>"
 [searchable: <true | false>]
 [access: "<R | RW>"]
)
}

Repeat below 4 lines for number of different enum dimensions required in the asset##
[enum <assetType>_<uniqueEnumFieldTypeName> {
 <uniqueEnumFieldItemName> @enumValue(label: "<Display Value for Dropdown Item>")
 ## Repeat above 1 line for number of options which needs to be shown in the Dropdownlist ##
}]

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 39 of 62

The optional directive @dsaMapping will be defaulted to $<uniqueFieldName> if whole @dsaMapping directive
is omitted ##
The optional argument unique will be defaulted to false if whole argument is omitted ##
The optional argument searchable will be defaulted to false if whole argument is omitted ##
The optional argument access will be defaulted to RW if whole argument is omitted ##
The optional argument unitName will be defaulted to "", if whole argument is omitted ##
The optional argument unitSymbol will be defaulted to "", if whole argument is omitted ##
The type name defined in enum <assetType>_<uniqueEnumFieldDefinition> must be unique across all available
asset definitions. Henc
e <assetType> is also added in the type name ##

Note: The following definitions must match the corresponding values from the Device Definition file to the Asset Class.

device_discovery_definitions_((assetType))_v((assetT
ypeNumber)).json.template

device_class_definitions_((assetType))_v((assetTypeN
umber)).graphqls.template

 "assetType": "<Name for Asset Type>",
 "assetTypeVersion": <Version Number for Asset
Type>,

type <Name for Asset Type> implements Asset & Device
@asset(
 version: <Version Number for Asset Type>

"dataflow": {
 "<uniqueFieldName>":

 <uniqueFieldName>: <String | Int | Float | Long
| Boolean> [@dsaMapping(path: "<DSA path expres-
sion>")] @metric(
 label: "<Display Label of Field>"
 [unitName: "<Metric unit name>"]
 [unitSymbol: "<Metric unit symbol>"]
)

 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "<Source DSA Path to read
dimension>",
 "fieldName": "<uniqueFieldName>"
 }

 <uniqueFieldName>: <String | Int | Float | Long
| Boolean>[!] [@rename(oldName: "<uniqueField-
NameOld>")] [@defaultValue(value: "<String represen-
tation of default value>")] [@dsaMapping(path: "<DSA
path expression>")] @dimension(
 label: "<Display Label of Field>"
 [unique: <true | false>]
 [searchable: <true | false>]
 [access: "<R | RW>"]
)

Onboarding a Message Broker as a device example
This example describes the use of a set of defined files that discover message brokers and onboard them as devices.
Throughout the example we will make modifications in incremental steps to the files and highlight them we go for clarity.
The following steps will be shown:

• Modifying a field

• Adding a field

• Renaming a field

• Removing a field

• Making a field non-nullable

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 40 of 62

Let us create two files under a new directory broker-link in /opt/cisco/kinetic/efm_manager/config/discovery/ and place
the files device_discovery_definitions_BrokerDevice_v1.json and device_class_definitions_BrokerDevice_v1.graphqls
respectively as follows. See the tables below.

And we will use the following file content as version 1. Note that even if one of the files is not updated, the version
numbers must be in sync on both definition files and therefore incremented.

device_discovery_definitions_BrokerDevice_v1.json
[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 1,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter $is=\"dsa/broker\" and $brokerUUID"

 }
],
 "dataflow": {
 "cpu": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Usage/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 }
 }
 }
]

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 41 of 62

device_class_definitions_BrokerDevice_v1.graphqls
BrokerDevice Details
type BrokerDevice implements Asset & Device @asset(
 version: 1
 label: "Broker Device"
) {

 distribution: String @dsaMapping(path: "/Distribution/:value") @dimension(
 label: "Distribution"
 access: "R"
)

 cpu: Float @dsaMapping(path: "/CPU_Usage/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path: "/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

The files will be show for before and after with the changes highlighted in red.

• Modifying a field

o Changing the display name of a dimension distribution from "Distribution" to "Distribution Name"

o Changing the unit Symbol of metric data_in from "bytes" to "B"

device_discovery_definitions_BrokerDevice_v1.json device_discovery_definitions_BrokerDevice_v2.json

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 42 of 62

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 1,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 }
 }
 }
]

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 2,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 }
 }
 }
]

device_class_definitions_BrokerDevice_v1.graphqls device_class_definitions_BrokerDevice_v2.graphqls

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 43 of 62

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 1
 label: "Broker Device"
) {

 distribution: String @dsaMapping(path: "/Dis-
tribution/:value") @dimension(
 label: "Distribution"
 access: "R"
)

 cpu: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path:
"/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 2
 label: "Broker Device"
) {

 distribution: String @dsaMapping(path: "/Dis-
tribution/:value") @dimension(
 label: "Distribution Name"
 access: "R"
)

 cpu: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path:
"/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "B"
)
}

Example log output:

[root@centos7 efm_manager]# sudo service efm-manager stop

[root@centos7 efm_manager]# sudo /opt/cisco/kinetic/efm_manager/bin/load-configurations.sh

Schema migration command started

Configuration Directory: /opt/cisco/kinetic/efm_manager/config
Working Directory: /opt/cisco/kinetic/efm_manager/app-data
Schema Directory: /opt/cisco/kinetic/efm_manager/config/discovery

Starting Ignite
Acquiring EFM Manager startup lock
Reading configuration
Loaded 14 configuration file(s)
Installed 1 asset schema version(s)
Installed 1 asset discovery definition(s)
[Start] 'Asset type migration (1 type(s) to be migrated)' job
 + Start task 'Migrate asset type 'BrokerDevice' from v1 to v2'
[SUCCESS - processed 1 object(s) in 316 ms]
Done

[root@centos7 efm_manager]# sudo service efm-manager start

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 44 of 62

• Adding a field

o Adding a new dimension field hostname which will be read from the source link and must be a searchable
field.

o Adding a new dimension field contact_person, which will be given as input by the user and must be
searchable as well.

o Adding a new Metric field data_out which will be read from the source link.

device_discovery_definitions_BrokerDevice_v2.json device_discovery_definitions_BrokerDevice_v3.json

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 45 of 62

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 2,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution"
 }

],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 }

 }
 }
]

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 3,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution"
 },
 {
 "type": "DSA",
 "targetPath": "/downstream/System/Host-
name/:value",
 "fieldName": "hostname"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 },
 "data_out": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataOutPerSecond/:value"
 }
 }
 }
 }
]

device_class_definitions_BrokerDevice_v2.graphqls device_class_definitions_BrokerDevice_v3.graphqls

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 46 of 62

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 2
 label: "Broker Device"
) {

 distribution: String @dsaMapping(path: "/Dis-
tribution/:value") @dimension(
 label: "Distribution Name"
 access: "R"
)

 cpu: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path:
"/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "b"
)

}

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 3
 label: "Broker Device"
) {

 distribution: String @dsaMapping(path: "/Dis-
tribution/:value") @dimension(
 label: "Distribution Name"
 access: "R"
)

 hostname: String @dsaMapping(path: "/Host-
name/:value") @dimension(
 label: "Hostname"
 searchable: true
 access: "R"
)

 contact_person: String @dsaMapping(path:
"$contactPerson") @dimension(
 label: "Contact Person"
 searchable: true
 access: "RW"
)

 cpu: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path:
"/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "b"
)

 data_out: Float @dsaMapping(path:
"/Data_Out/:value") @metric(
 label: "Data Out"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

Example log output:

[root@centos7 efm_manager]# sudo systemctl efm-manager stop

[root@centos7 efm_manager]# sudo /opt/cisco/kinetic/efm_manager/bin/load-configurations.sh

Schema migration command started

Configuration Directory: /opt/cisco/kinetic/efm_manager/config
Working Directory: /opt/cisco/kinetic/efm_manager/app-data
Schema Directory: /opt/cisco/kinetic/efm_manager/config/discovery

Starting Ignite

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 47 of 62

Acquiring EFM Manager startup lock
Reading configuration
Loaded 16 configuration file(s)
Installed 1 asset schema version(s)
Installed 1 asset discovery definition(s)
[Start] 'Asset type migration (1 type(s) to be migrated)' job
 + Start task 'Migrate asset type 'BrokerDevice' from v2 to v3'
[SUCCESS - processed 1 object(s) in 493 ms]
Done

[root@centos7 efm_manager]# sudo systemctl efm-manager start

• Renaming a field

o Renaming the dimension field distribution to distribution_name

o Renaming the metric filed cpu to be called as cpu_usage

device_discovery_definitions_BrokerDevice_v3.json device_discovery_definitions_BrokerDevice_v4.json

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 48 of 62

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 3,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution"
 },
 {
 "type": "DSA",
 "targetPath": "/downstream/System/Host-
name/:value",
 "fieldName": "hostname"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 },
 "data_out": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataOutPerSecond/:value"
 }
 }
 }
 }
]

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 4,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution_name"
 },
 {
 "type": "DSA",
 "targetPath": "/downstream/System/Host-
name/:value",
 "fieldName": "hostname"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu_usage": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 },
 "data_out": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataOutPerSecond/:value"
 }
 }
 }
 }
]

device_class_definitions_BrokerDevice_v3.graphqls device_class_definitions_BrokerDevice_v4.graphqls

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 49 of 62

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 3
 label: "Broker Device"
) {

 distribution: String @dsaMapping(path: "/Dis-
tribution/:value") @dimension(
 label: "Distribution Name"
 access: "R"
)

 hostname: String @dsaMapping(path: "/Host-
name/:value") @dimension(
 label: "Hostname"
 searchable: true
 access: "R"
)

 contact_person: String @dsaMapping(path:
"$contactPerson") @dimension(
 label: "Contact Person"
 searchable: true
 access: "RW"
)

 cpu: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path:
"/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "b"
)

 data_out: Float @dsaMapping(path:
"/Data_Out/:value") @metric(
 label: "Data Out"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 4
 label: "Broker Device"
) {

 distribution_name: String @rename(oldName:
"distribution") @dsaMapping(path: "/Distribu-
tion/:value") @dimension(
 label: "Distribution Name"
 access: "R"
)

 hostname: String @dsaMapping(path: "/Host-
name/:value") @dimension(
 label: "Hostname"
 searchable: true
 access: "R"
)

 contact_person: String @dsaMapping(path:
"$contactPerson") @dimension(
 label: "Contact Person"
 searchable: true
 access: "RW"
)

 cpu_usage: Float @rename(oldName: "cpu")
@dsaMapping(path: "/CPU_Usage/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path:
"/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "b"
)

 data_out: Float @dsaMapping(path:
"/Data_Out/:value") @metric(
 label: "Data Out"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

Example log output:

[root@centos7 efm_manager]# sudo systemctl efm-manager stop

[root@centos7 efm_manager]# sudo /opt/cisco/kinetic/efm_manager/bin/load-configurations.sh

Schema migration command started

Configuration Directory: /opt/cisco/kinetic/efm_manager/config
Working Directory: /opt/cisco/kinetic/efm_manager/app-data
Schema Directory: /opt/cisco/kinetic/efm_manager/config/discovery

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 50 of 62

Starting Ignite
Acquiring EFM Manager startup lock
Reading configuration
Loaded 18 configuration file(s)
Installed 1 asset schema version(s)
Installed 1 asset discovery definition(s)
[Start] 'Asset type migration (1 type(s) to be migrated)' job
 + Start task 'Migrate asset type 'BrokerDevice' from v3 to v4'
[SUCCESS - processed 1 object(s) in 558 ms]
Done

[root@centos7 efm_manager]# sudo systemctl efm-manager start

• Removing a field

o Remove the dimension field distribution_name

o Remove the metric field data_in

device_discovery_definitions_BrokerDevice_v4.json device_discovery_definitions_BrokerDevice_v5.json

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 51 of 62

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 4,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/sys/dist/:value",
 "fieldName": "distribution_name"
 },
 {
 "type": "DSA",
 "targetPath": "/downstream/System/Host-
name/:value",
 "fieldName": "hostname"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu_usage": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_in": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataInPerSecond/:value"
 }
 },
 "data_out": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataOutPerSecond/:value"
 }
 }
 }
 }
]

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 5,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },

 {
 "type": "DSA",
 "targetPath": "/downstream/System/Host-
name/:value",
 "fieldName": "hostname"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu_usage": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },

 "data_out": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataOutPerSecond/:value"
 }
 }
 }
 }
]

device_class_definitions_BrokerDevice_v4.graphqls device_class_definitions_BrokerDevice_v5.graphqls

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 52 of 62

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 4
 label: "Broker Device"
) {

 distribution_name: String @rename(oldName:
"distribution") @dsaMapping(path: "/Distribu-
tion/:value") @dimension(
 label: "Distribution Name"
 access: "R"
)

 hostname: String @dsaMapping(path: "/Host-
name/:value") @dimension(
 label: "Hostname"
 searchable: true
 access: "R"
)

 contact_person: String @dsaMapping(path:
"$contactPerson") @dimension(
 label: "Contact Person"
 searchable: true
 access: "RW"
)

 cpu_usage: Float @rename(oldName: "cpu")
@dsaMapping(path: "/CPU_Usage/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_in: Float @dsaMapping(path:
"/Data_In/:value") @metric(
 label: "Data In"
 unitName: "bytes"
 unitSymbol: "b"
)

 data_out: Float @dsaMapping(path:
"/Data_Out/:value") @metric(
 label: "Data Out"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 5
 label: "Broker Device"
) {

 hostname: String @dsaMapping(path: "/Host-
name/:value") @dimension(
 label: "Hostname"
 searchable: true
 access: "R"
)

 contact_person: String @dsaMapping(path:
"$contactPerson") @dimension(
 label: "Contact Person"
 searchable: true
 access: "RW"
)

 cpu_usage: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_out: Float @dsaMapping(path:
"/Data_Out/:value") @metric(
 label: "Data Out"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

Note: The @rename directive must be removed on the next version of changes on the graphqls file.

Example log output:

[root@centos7 efm_manager]# sudo service efm-manager stop

[root@centos7 efm_manager]# sudo /opt/cisco/kinetic/efm_manager/bin/load-configurations.sh

Schema migration command started

Configuration Directory: /opt/cisco/kinetic/efm_manager/config
Working Directory: /opt/cisco/kinetic/efm_manager/app-data
Schema Directory: /opt/cisco/kinetic/efm_manager/config/discovery

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 53 of 62

Starting Ignite
Acquiring EFM Manager startup lock
Reading configuration
Loaded 20 configuration file(s)
Installed 1 asset schema version(s)
Installed 1 asset discovery definition(s)
[Start] 'Asset type migration (1 type(s) to be migrated)' job
 + Start task 'Migrate asset type 'BrokerDevice' from v4 to v5'
[SUCCESS - processed 1 object(s) in 532 ms]
Done

[root@centos7 efm_manager]# sudo service efm-manager start

• Making a field non-nullable

device_discovery_definitions_BrokerDevice_v5.json device_discovery_definitions_BrokerDevice_v6.json

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 54 of 62

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 5,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/downstream/System/Host-
name/:value",
 "fieldName": "hostname"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu_usage": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_out": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataOutPerSecond/:value"
 }
 }
 }
 }
]

[
 {
 "label": "Broker Device Discovery",
 "discoveryClassId": "BrokerDeviceAsset-1.0",
 "assetType": "BrokerDevice",
 "assetTypeVersion": 6,
 "productImageRef": "static/images/cisco.svg",
 "dimensionMapping": [
 {
 "type": "DSA",
 "targetPath": "/$brokerUUID",
 "fieldName": "serial"
 },
 {
 "type": "DSA",
 "targetPath": "/downstream/System/Host-
name/:value",
 "fieldName": "hostname"
 }
],
 "defaultValues": {
 "vendor": "Cisco",
 "product": "Dart Broker"
 },
 "discoveries": [
 {
 "type": "DQL",
 "query": "sublist brokers | filter
$is=\"dsa/broker\" and $brokerUUID"
 }
],
 "dataflow": {
 "cpu_usage": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/downstream/System/CPU_Us-
age/:value"
 }
 },
 "data_out": {
 "type": "write-through-dataflow",
 "config": {
 "path": "/sys/dataOutPerSecond/:value"
 }
 }
 }
 }
]

device_class_definitions_BrokerDevice_v5.graphqls device_class_definitions_BrokerDevice_v6.graphqls

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 55 of 62

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 5
 label: "Broker Device"
) {

 hostname: String @dsaMapping(path: "/Host-
name/:value") @dimension(
 label: "Hostname"
 searchable: true
 access: "R"
)

 contact_person: String @dsaMapping(path:
"$contactPerson") @dimension(
 label: "Contact Person"
 searchable: true
 access: "RW"
)

 cpu_usage: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_out: Float @dsaMapping(path:
"/Data_Out/:value") @metric(
 label: "Data Out"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

BrokerDevice Details
type BrokerDevice implements Asset & Device @as-
set(
 version: 6
 label: "Broker Device"
) {

 hostname: String @dsaMapping(path: "/Host-
name/:value") @dimension(
 label: "Hostname"
 searchable: true
 access: "R"
)

 contact_person: String! @defaultValue(value:
"Joe") @dsaMapping(path: "$contactPerson") @dimen-
sion(
 label: "Contact Person"
 searchable: true
 access: "RW"
)

 contact_method: String! @defaultValue(value:
"Telephone") @dsaMapping(path: "$contactMethod")
@dimension(
 label: "Contact Method"
 searchable: true
 access: "RW"
)

 cpu_usage: Float @dsaMapping(path: "/CPU_Us-
age/:value") @metric(
 label: "CPU Usage"
 unitName: "percentage"
 unitSymbol: "%"
)

 data_out: Float @dsaMapping(path:
"/Data_Out/:value") @metric(
 label: "Data Out"
 unitName: "bytes"
 unitSymbol: "bytes"
)
}

Example log output:

[root@centos7 efm_manager]# sudo systemctl stop efm-manager

[root@centos7 efm_manager]# sudo /opt/cisco/kinetic/efm_manager/bin/load-configurations.sh

Schema migration command started

Configuration Directory: /opt/cisco/kinetic/efm_manager/config
Working Directory: /opt/cisco/kinetic/efm_manager/app-data
Schema Directory: /opt/cisco/kinetic/efm_manager/config/discovery

Starting Ignite
Acquiring EFM Manager startup lock
Reading configuration

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 56 of 62

Loaded 22 configuration file(s)
Installed 1 asset schema version(s)
Installed 1 asset discovery definition(s)
[Start] 'Asset type migration (1 type(s) to be migrated)' job
 + Start task 'Migrate asset type 'BrokerDevice' from v5 to v6'
[SUCCESS - processed 1 object(s) in 515 ms]
Done

[root@centos7 efm_manager]# sudo systemctl start efm-manager

Restarting EFM Manager after adding or modifying Device Definition files
As a reminder, for all changes to onboarding configuration files require restarting the EFM Manager for them to be read
as well as running the load-cofngurations.sh script before restarting. This is accomplished with the following steps:

1. Stop EFM Manager:
sudo systemctl stop efm-manager

2. Run load configuration script.
sudo $EFM_ROOT/efm_manager/bin/load-configurations.sh
Look for the SUCCESS Message

3. Start EFM Manager:
sudo systemctl start efm-manager

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 57 of 62

Onboarding FAQ
Q: Should I stop the efm manager before I start to add new definitions files?

No. It is not required to stop the efm manager to add new configuration files to file system. But for the new files to be
read by efm manager, the following three steps are required:

1. Stop efm-manager

2. Run load_configuration.sh script

3. Start efm-manager

Q: Do I need to do the above steps for every new version of the definition file?

Yes. the above mentioned three steps are must to followed for the new definitions to take effect.

Q. What if a dimension is defined in json and not defined in graphqls?

This field will not be shown in UI and when trying to save the device, an error will be generated that the field is missing.

Q. What if a dimension is defined in graphqls and not defined in json?

This field will be shown in UI as new field and this will be a new dimension for the device.

Q. What if a metric is defined in json and not defined in graphqls?

This metric will not be carried over to asset DSLink and there will not be any error specific to that.

Q. What if a metric is defined in graphqls and not defined in json?

This metric will be displayed in asset DSLink but will be empty.

Q: Should a field name be unique in the same asset?

Yes. The field name must be unique within a defined asset.

Q. Should a field name be unique across different version of same asset?

The field name must be unique considering all the versions of same asset.

Q. Should the field name be unique across different types of asset?

No. Each of the assets can have its own dimension and they could be used in whichever way required for the specific
asset.

Q. Should the enum fieldtype name be unique across different assets?

YES. This is very important to have different fieldtype names for enums across different assets.

Q. Can a comment be added anywhere in the json file?

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 58 of 62

No. The json file cannot contain any comments.

Q. Can a comment be added to graphql file? Can it be added anywhere?

Yes. The comment is recommended to be added just before the start of a field definition or a type definition. But graphql
file will allow comments to be added anywhere. The comment line starts with #.

Q. Can I read the same value from source as dimension and metric, with two different field names and use it in the
graphqls file.

Yes. it is possible.

Q. Will it break if any dimension related argument is used in metric and vice versa?

No. It will not break anything. Those additional arguments are ignored.

Q. Where can I place the config files for on-boarding?

{EFM_INSTALLATION_PATH}/efm_manager/config/discovery/

Q. Will it break if I have older versions of the asset definition files in the file system?

No. It will not break anything and in fact its recommended to have the older versions of file as well, so its easily
understandable for the user to see changes between versions.

Q. Why two files are required for on-boarding a new device type?

There are two files which drives the on-boarding of a device type.

• A Json file, which has details on the dimensions to read from source dslink, a field name for it, the source DQL
Query to discover the device, default values for any fields and path from where the metric needs to be read
from the source.

• A corresponding graphqls, file which will have details about the way its stored in the asset DSLink and how it
will be shown in EFM manager UI as well.

Q. What do I need the serial field for?

With EFM 1.6, the serial field is the primary key. It is used to uniquely identify the device.

Q. Can I leave the @rename directive in the next version of changes on graphqls file?

No. The @rename directive must be removed on the next version of changes on the graphqls file.

Q. Do I need to have @defaultvalue directive for every non nullable(mandatory) dimension?

Yes, if it is not the first version of the definition file. In case of changed version of file for migration, this directive is
mandatory, as this will be used in migrating the already accepted devices from older version to newer version.

Q. What are the specific details of the each of the field, argument, type?

Refer to the documentation help for exact definition, syntax template etc.,

Q: What if the schema definition files are duplicated with same content?

EFM Manager User Guide
Onboarding Configuration and Workflow

© 2018 Cisco and/or its affiliates. All rights reserved. Page 59 of 62

Nothing will be affected, as the migration is triggered only based on the assettype and version number changes.

Q: What if in the config files, the contents were changed, but the version number is not increased?

Nothing will be affected, as the migration is triggered only based on the assettype and version number changes.

Q: What if in the json config file, the version is increased and not in graphqls file?

The load configuration script will error out expecting the similar version file of graphqls.

Q: What if in the graphqls config file, the version is increased and not in json file?

The load configuration script will error out expecting the similar version file of json.

Q. Do I have to stick to the file naming convention?

The file naming is not important as long as the extension are json and graphqls for the two files. The recommendation is
to have name like below where assetType and version numbers are mentioned.

• device_discovery_definitions_((assetType))_v((assetTypeNumber)).json

• device_class_definitions_((assetType))_v((assetTypeNumber)).graphqls

Q: Can I change the data type of a field in a new version?

No. Changing the data type of a field is not supported.

EFM Manager User Guide
Device Simulator Link

© 2018 Cisco and/or its affiliates. All rights reserved. Page 60 of 62

Device Simulator Link
The sensor-simulation DSLink is an optional component of the EFM Manager. It is used for testing and demonstration
purposes and generates virtual devices that are published to the message broker. Since the sensor-simulator devices are
defined using the Cisco EFM Device Object Model Standard structure, they will be detected properly by the EFM Manager.

The System Administrator can decide to disable or remove the device-simulator DSLink if desired.

By default, the device simulator performs the following:

• Generates 10 virtual devices, 5 temperature and 5 vibration devices

• The device update interval is every 60000 ms (milliseconds)

• A sinus finishing time of 15 minutes

The metrics for the device-simulator DSLink can be modified by the System Administrator tool or in the dataflow Editor under
the device-simulator DSLink, but not in the EFM Manager. The following metrics are user definable and can be set to new
values:

• Simulated Temperature Device Count

• Simulated Vibration Device Count

• Sinus Finishing Time (in minutes)

DSLink Input Definitions for generating devices
This DSLink uses the following as input in generating the device simulation. They can be modified using the Dataflow Editor
or the System Administrator for the device-simulator DSLink.

• Device Update Interval – This defines the interval in which the device reading has to be updated. Default – 60000 msec.

• Simulated Temperature Device Count – This defines the number of temperature devices that needs to be simulated.
Default - 5

• Simulated Vibration Device Count – This defines the number of Vibration devices that needs to be simulated. Default - 5

• Sinus Finishing Time: This defines the time required for the sinus curve to complete. Default – 15 minutes.

EFM Manager User Guide
Device Simulator Link

© 2018 Cisco and/or its affiliates. All rights reserved. Page 61 of 62

Device Simulation Details

Simulated Temperature Device:
According to the number specified in Simulated Temperature Device Count, the Devices are labelled. By default, the labels
are Temperature Device 1, Temperature Device 2 thru Temperature Device 5.

On changing the “Simulated Temperature Device Count” value, those specific number of NEW devices are simulated. For
example, if it set to 20, then Temperature Device 1 thru Temperature Device 20 will be generated.

Each Device will have Temperature value simulated from 18 to 22 in a sinus curve. The value is represented as °C.

Simulated Vibration Device
According to the number specified in Simulated Vibration Device Count, the Devices are labelled. By default, the labels are
Vibration Device 1, Vibration Device 2 thru Vibration Device 5.

On changing the “Simulated Vibration Device Count” value, those specific number of NEW devices are simulated. For
example, if it set to 20, then Vibration Device 1 thru Vibration Device 20 would be generated.

Each device will contain X Axis, Y Axis and Z Axis simulated values for Acceleration, Distance and Frequency.

Acceleration is defined as a value simulated from -1 to +1 in a sinus curve. The value is represented in .

Distance is defined as values between 0.7 and 3.7 (with stronger vibration) and between 0 and 0.2. The value is represented
in mm.

Frequency - Upper values between 10 and 20 (with stronger vibration) and between 1 and 5. The value is represented in
hertz.

EFM Manager User Guide
Obtaining documentation and submitting a service request

© 2018 Cisco and/or its affiliates. All rights reserved. Page 62 of 62

Obtaining documentation and submitting a service request

For information on obtaining documentation, submitting a service request, and gathering additional infor-
mation, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised
Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed
and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free
service and Cisco currently supports RSS Version 2.0.

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

	Introduction
	EFM Manager Components and functions
	Logging in to the EFM Manager
	User Interface Overview
	Devices Page
	Viewing and updating a Device
	Device Dashboard
	Removing a Device
	Devices Page and Device onboarding
	Accepting a Device
	Rejecting a Device in the Discovered Device list

	Brokers Page
	Viewing and updating a Broker
	Broker Dashboard
	Broker Relationship
	Removing a Broker
	Broker Page and Broker onboarding
	Accepting a Broker
	Rejecting a Broker in the Discovered Broker list

	Normalized Asset Synchronization
	Normalized Asset Grouping
	Backup and restore of EFM Manager
	For Backup:
	For Restore:

	Configuring the EFM Manager via the application-conf.json file
	Onboarding Configuration and Workflow
	Sensor Normalization Workflow
	Asset Schema Definition
	Devices Onboarding Definition
	EFM Device Definition files
	Creating user Onboarding Definition files using the Onboarding Definition Templates
	Device Discovery Definition JSON Template explained
	Device Discovery Definition JSON Template reference
	Device Class Definition graphql Template explained
	Device Class Definition graphqls Template reference

	Onboarding a Message Broker as a device example
	Restarting EFM Manager after adding or modifying Device Definition files
	Onboarding FAQ

	Device Simulator Link
	DSLink Input Definitions for generating devices
	Device Simulation Details
	Simulated Temperature Device:
	Simulated Vibration Device

	Obtaining documentation and submitting a service request

